-
Notifications
You must be signed in to change notification settings - Fork 0
/
FeedforwardNetwork.java
265 lines (221 loc) · 10.1 KB
/
FeedforwardNetwork.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import java.util.Arrays;
public class FeedforwardNetwork {
private final InputLayer inputLayer;
private final OutputLayer outputLayer;
private final HiddenLayer[] hiddenLayers;
private final int batchSize;
private final double globalLearningRate;
private final int DEFAULTBATCHSIZE = 8;
private final double DEFAULTLEARNINGRATE = .001d;
private final int maxLayerSize;
private final double minCost;
private final int maxIters = 30000;
private final double maxErrorJump = .005d;
public FeedforwardNetwork(InputLayer inputLayer, OutputLayer outputLayer, HiddenLayer... hiddenLayers) {
this.inputLayer = inputLayer;
this.outputLayer = outputLayer;
this.hiddenLayers = hiddenLayers;
this.batchSize = DEFAULTBATCHSIZE;
this.globalLearningRate = DEFAULTLEARNINGRATE;
for (int i = 0; i < hiddenLayers.length; i++) {
double[] previousLayerNeurons;
if (i == 0) {
previousLayerNeurons = inputLayer.neuronValues;
} else {
previousLayerNeurons = hiddenLayers[i - 1].neuronValues;
}
hiddenLayers[i].initLearningRate(globalLearningRate);
hiddenLayers[i].initPreviousLayerNeurons(previousLayerNeurons);
}
outputLayer.initLearningRate(globalLearningRate);
outputLayer.initPreviousLayerNeurons(hiddenLayers[hiddenLayers.length - 1].neuronValues);
this.maxLayerSize = getMaxLayerSize(hiddenLayers);
this.minCost = .005f;
}
public FeedforwardNetwork(int batchSize, double globalLearningRate, InputLayer inputLayer, OutputLayer outputLayer, HiddenLayer... hiddenLayers) {
this.inputLayer = inputLayer;
this.outputLayer = outputLayer;
this.hiddenLayers = hiddenLayers;
this.batchSize = batchSize;
this.globalLearningRate = globalLearningRate;
for (int i = 0; i < hiddenLayers.length; i++) {
double[] previousLayerNeurons;
if (i == 0) {
previousLayerNeurons = inputLayer.neuronValues;
} else {
previousLayerNeurons = hiddenLayers[i - 1].neuronValues;
}
hiddenLayers[i].initLearningRate(globalLearningRate);
hiddenLayers[i].initPreviousLayerNeurons(previousLayerNeurons);
}
outputLayer.initLearningRate(globalLearningRate);
outputLayer.initPreviousLayerNeurons(hiddenLayers[hiddenLayers.length - 1].neuronValues);
this.maxLayerSize = getMaxLayerSize(hiddenLayers);
this.minCost = .005f;
}
public void train(double[][] inputs, int[] expectedIndexes,boolean isDebug,boolean isGradientCheck) {
if (inputs.length != expectedIndexes.length) {
System.out.println("inputs and expectedIndexes must be same length!");
return;
}
if (inputs.length < batchSize) {
System.out.println("Too few training inputs for batch size!");
System.out.println("Try changing batch size: current =" + batchSize);
return;
}
int numBatches = inputs.length / batchSize;
int lastBatchSize = inputs.length % batchSize;
if(isDebug){
double[] networkOut = forwardPass(inputs[inputs.length / 2]);
double cost = CostFunctions.getMSECOST(networkOut, expectedIndexes[inputs.length / 2]);
System.out.println("Initial cost: " + cost);
}
// do the full batches
int iterCount = 0;
double lastCost = 1;
while (true) {
for (int i = 0; i < numBatches; i++) {
trainBatch(inputs, expectedIndexes, batchSize, i, 0,isDebug,isGradientCheck);
}
// do a forward inference pass for each input then calculate the error
// sum upp all errors for the whole batch then average out error;
// using this average error backpropagate and repeat
// do whatever remaining batch is left
if (lastBatchSize != 0) {
trainBatch(inputs, expectedIndexes, lastBatchSize, 0, numBatches * batchSize,isDebug,isGradientCheck);
}
double avgCost = getAverageCost(inputs,expectedIndexes);
iterCount++;
if(isDebug){
System.out.println("#(" + iterCount + ")Average cost = " + avgCost);
}
if(avgCost < minCost || iterCount > maxIters || (avgCost-lastCost > maxErrorJump) || Double.isNaN(avgCost)){
break;
}
}
if(isDebug){
double[] networkOutF = forwardPass(inputs[inputs.length / 2]);
double costF = CostFunctions.getMSECOST(networkOutF, expectedIndexes[inputs.length / 2]);
System.out.println("Final cost: " + costF);
}
}
private double getAverageCost(double[][] inputs,int[] expectedIndexes){
double totalCost = 0;
for(int i = 0;i<inputs.length;i++){
double[] networkOut = forwardPass(inputs[i]);
double cost = CostFunctions.getMSECOST(networkOut, expectedIndexes[i]);
totalCost += cost;
}
return totalCost/inputs.length;
}
public int getHighestProbIndex(double[] softMaxxedOutput) {
int highestIndex = -1;
double highestProb = -1;
for (int i = 0; i < softMaxxedOutput.length; i++) {
if (softMaxxedOutput[i] > highestProb) {
highestIndex = i;
highestProb = softMaxxedOutput[i];
}
}
return highestIndex;
}
private void trainBatch(double[][] batchInputs, int[] batchExpectedIndexes, int batchLength, int callCount, int isEndOfBatchIndex,boolean isDebug,boolean isGradientCheck) {
double[] outputGradientsAvg = null;
double[][] hiddenGradientsAvg = new double[hiddenLayers.length][];
int index;
if (isEndOfBatchIndex != 0) {
index = isEndOfBatchIndex;
} else {
index = batchLength * callCount;
}
for (int i = index; i < index + batchLength; i++) {
// calculate gradients for each input
int expectedIndex = batchExpectedIndexes[i];
double[] batchInput = batchInputs[i];
double[] networkOut = forwardPass(batchInput);
double[] costgradients = outputLayer.calculateCostFunctionGradient(networkOut, expectedIndex);
if(isGradientCheck){
System.out.println("Network Out: " + Arrays.toString(networkOut));
System.out.println("Cost gradient: " + Arrays.toString(costgradients));
System.out.println("Board: " + Arrays.toString(batchInput));
System.out.println("Expected index: " + expectedIndex);
}
double[] outputGradients = outputLayer.calculateGradientsOutput(costgradients);
double[][] hiddenGradients = new double[hiddenLayers.length][];
double[][] lastWeights = outputLayer.layerWeights;
double[] lastGradients = outputGradients;
for (int j = hiddenLayers.length - 1; j >= 0; j--) {
// reverse order for backprop
hiddenGradients[j] = hiddenLayers[j].calculateLayerGradients(lastGradients, lastWeights);
lastGradients = hiddenGradients[j];
lastWeights = hiddenLayers[j].layerWeights;
if (hiddenGradientsAvg[j] == null) {
hiddenGradientsAvg[j] = hiddenGradients[j];
} else {
hiddenGradientsAvg[j] = mergeGradients(hiddenGradientsAvg[j], hiddenGradients[j]);
}
}
if (outputGradientsAvg == null) {
outputGradientsAvg = outputGradients;
} else {
outputGradientsAvg = mergeGradients(outputGradientsAvg, outputGradients);
}
}
// average out gradients
averageGradients(outputGradientsAvg, batchLength);
for (int i = 0; i < hiddenGradientsAvg.length; i++) {
hiddenGradientsAvg[i] = averageGradients(hiddenGradientsAvg[i], batchLength);
}
outputLayer.adjustWeights(outputGradientsAvg);
outputLayer.adjustBiases(outputGradientsAvg);
if(isGradientCheck){
System.out.println("Output gradients: " + Arrays.toString(outputGradientsAvg));
Arrays.stream(hiddenGradientsAvg).forEach(d -> System.out.println("Hidden gradient: " + Arrays.toString(d)));
}
for (int i = 0; i < hiddenGradientsAvg.length; i++) {
hiddenLayers[i].adjustWeights(hiddenGradientsAvg[i]);
hiddenLayers[i].adjustBiases(hiddenGradientsAvg[i]);
}
}
private void updateLayerLearningRate(double LearningRate) {
outputLayer.learningRate = LearningRate;
for (HiddenLayer l : hiddenLayers) {
l.learningRate = LearningRate;
}
}
private double[] mergeGradients(double[] gradients, double[] newGradients) {
if (gradients.length != newGradients.length) {
System.out.println("Error! merging gradients that do not match in size!");
System.out.println("Gradient 1 size " + gradients.length + " gradient 2 size " + newGradients.length);
return null;
}
for (int i = 0; i < gradients.length; i++) {
gradients[i] += newGradients[i];
}
return gradients;
}
private double[] averageGradients(double[] gradients, int batchLength) {
for (int i = 0; i < gradients.length; i++) {
gradients[i] /= (batchLength);
}
return gradients;
}
public double[] forwardPass(double[] inputs) {
inputLayer.setInputs(inputs);
for (HiddenLayer l : hiddenLayers) {
l.ForwardPropagate();
}
outputLayer.ForwardPropagate();
return outputLayer.neuronValues;
}
private int getMaxLayerSize(HiddenLayer[] layers) {
int maxSize = 0;
for (HiddenLayer l : layers) {
if (l.neuronValues.length > maxSize) {
maxSize = l.neuronValues.length;
}
}
System.out.println(maxSize);
return maxSize;
}
}