-
Notifications
You must be signed in to change notification settings - Fork 45
/
tile.py
175 lines (140 loc) · 5.55 KB
/
tile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from __future__ import annotations
import numpy as np
import numpy.typing as npt
import torch
from torch import Tensor
IntArray = npt.NDArray[np.int_]
class TileLayout:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"min_tile_size": ("INT", {"default": 512, "min": 64, "max": 8192, "step": 8}),
"padding": ("INT", {"default": 32, "min": 0, "max": 8192, "step": 8}),
"blending": ("INT", {"default": 8, "min": 0, "max": 256, "step": 8}),
}
}
CATEGORY = "external_tooling/tiles"
RETURN_TYPES = ("TILE_LAYOUT",)
FUNCTION = "node"
image_size: IntArray
tile_size: IntArray
padding: int
blending: int
tile_count: IntArray
def node(self, image: Tensor, min_tile_size: int, padding: int, blending: int):
self.init(image, min_tile_size, padding, blending)
return (self,)
def init(self, image: Tensor, min_tile_size: int, padding: int, blending: int):
assert all([x % 8 == 0 for x in image.shape[-3:-1]]), "Image size must be divisible by 8"
assert min_tile_size % 8 == 0, "Tile size must be divisible by 8"
assert blending < padding, "Blending must be smaller than padding"
self.image_size = np.array(image.shape[-3:-1])
self.padding = padding
self.blending = blending
self.tile_count = np.maximum(1, self.image_size // (min_tile_size - 2 * padding))
image_size_with_overlap = self.image_size + (self.tile_count - 1) * 2 * padding
tile_size = np.ceil(image_size_with_overlap / self.tile_count)
self.tile_size = (np.ceil(tile_size / 8) * 8).astype(int)
def size(self, coord: IntArray):
return self.end(coord) - self.start(coord)
def start(self, coord: IntArray, pad=0):
offset = coord * (self.tile_size - 2 * self.padding)
offset = offset + np.where(coord == 0, 0, pad)
return offset
def end(self, coord: IntArray, pad=0):
end = self.start(coord) + self.tile_size
end = end - np.where(coord == self.tile_count - 1, 0, pad)
return end.clip(0, self.image_size)
def coord(self, index: int):
return np.array((index % self.tile_count[0], index // self.tile_count[0]))
@property
def total_count(self):
return self.tile_count.prod()
def rect(self, coord: IntArray):
s = self.start(coord)
e = self.end(coord)
return (slice(None), slice(s[0], e[0]), slice(s[1], e[1]), slice(None))
def tile(self, image: Tensor, index: int):
return image[self.rect(self.coord(index))]
def mask(self, coord: IntArray, blend: bool):
from kornia.filters import box_blur
size = self.size(coord)
padding = self.padding if blend else self.padding - self.blending
s = self.start(coord, padding) - self.start(coord)
e = self.end(coord, padding) - self.start(coord)
mask = torch.zeros((1, 1, size[0], size[1]), dtype=torch.float)
mask[:, :, s[0] : e[0], s[1] : e[1]] = 1.0
if blend and self.blending > 0:
mask = box_blur(mask, (self.blending, self.blending))
return mask.squeeze(0)
def merge(self, image: Tensor, index: int, tile: Tensor):
coord = self.coord(index)
rect = self.rect(coord)
mask = self.mask(coord, blend=True)
mask = mask.reshape(*mask.shape, 1).repeat(1, 1, 1, image.shape[-1])
image[rect] = (1 - mask) * image[rect] + mask * tile
class ExtractImageTile:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"layout": ("TILE_LAYOUT",),
"index": ("INT", {"min": 0}),
}
}
CATEGORY = "external_tooling/tiles"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "slice"
def slice(self, image: Tensor, layout: TileLayout, index: int):
return (layout.tile(image, index),)
class ExtractMaskTile:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"layout": ("TILE_LAYOUT",),
"index": ("INT", {"min": 0}),
}
}
CATEGORY = "external_tooling/tiles"
RETURN_TYPES = ("MASK",)
FUNCTION = "slice"
def slice(self, mask: Tensor, layout: TileLayout, index: int):
tile = layout.tile(mask.unsqueeze(3), index)
return (tile.squeeze(3),)
class GenerateTileMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {"layout": ("TILE_LAYOUT",), "index": ("INT", {"min": 0})},
"optional": {"blend": ("BOOLEAN",)},
}
CATEGORY = "external_tooling/tiles"
RETURN_TYPES = ("MASK",)
FUNCTION = "generate"
def generate(self, layout: TileLayout, index: int, blend: bool = False):
return (layout.mask(layout.coord(index), blend=blend),)
class MergeImageTile:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"layout": ("TILE_LAYOUT",),
"index": ("INT", {"min": 0}),
"tile": ("IMAGE",),
}
}
CATEGORY = "external_tooling/tiles"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "merge"
def merge(self, image: Tensor, layout: TileLayout, index: int, tile: Tensor):
assert index < layout.total_count, f"Index {index} out of range"
if index == 0:
image = image.clone()
layout.merge(image, index, tile)
return (image,)