-
Notifications
You must be signed in to change notification settings - Fork 45
/
api.py
266 lines (222 loc) · 10.1 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from __future__ import annotations
from aiohttp import web
from typing import NamedTuple
from pathlib import Path
import json
import traceback
import re
import logging
from comfy import model_detection, supported_models
import comfy.utils
import folder_paths
import server
from .translation import available_languages, translate
from .krita import WorkflowExchange
input_block_name = "model.diffusion_model.input_blocks.0.0.weight"
model_names = {
"SD15": "sd15",
"SD20": "sd20",
"SD21UnclipL": "sd21",
"SD21UnclipH": "sd21",
"SDXLRefiner": "sdxl",
"SDXL": "sdxl",
"SSD1B": "ssd1b",
"SVD_img2vid": "svd",
"Stable_Cascade_B": "cascade-b",
"Stable_Cascade_C": "cascade-c",
"SD3": "sd3",
"AuraFlow": "aura-flow",
"HunyuanDiT": "hunyuan-dit",
"HunyuanDiT1": "hunyuan-dit",
"Flux": "flux",
"FluxInpaint": "flux",
"FluxSchnell": "flux-schnell",
}
gguf_architectures = {"sd1": "sd15"}
class FakeTensor(NamedTuple):
shape: tuple
@staticmethod
def from_dict(d):
try:
return FakeTensor(tuple(d["shape"]))
except KeyError:
return d
def inspect_safetensors(filename: str, model_type: str, is_checkpoint: bool):
try:
# Read header of safetensors file
path = folder_paths.get_full_path(model_type, filename)
header = comfy.utils.safetensors_header(path)
if header:
cfg = json.loads(header.decode("utf-8"))
# Build a fake "state_dict" from the header info to avoid reading the full weights
for key in cfg:
if not key == "__metadata__":
cfg[key] = FakeTensor.from_dict(cfg[key])
# Reuse Comfy's model detection
prefix = model_detection.unet_prefix_from_state_dict(cfg)
if not is_checkpoint:
temp_sd = comfy.utils.state_dict_prefix_replace(cfg, {prefix: ""}, filter_keys=True)
if len(temp_sd) > 0:
cfg = temp_sd
prefix = ""
try: # latest ComfyUI takes 2 args
unet_config = model_detection.detect_unet_config(cfg, prefix)
except TypeError as e: # older ComfyUI versions take 3 args
raise TypeError(f"{e} when calling detect_unet_config - old version of ComfyUI?")
# Get input count to detect inpaint models
if input_block := cfg.get(input_block_name, None):
input_count = input_block.shape[1]
else:
input_count = 4
# Find a matching base model depending on unet config
base_model = model_detection.model_config_from_unet_config(unet_config)
if base_model is None:
return {"base_model": "unknown"}
base_model_class = base_model.__class__
base_model_name = model_names.get(base_model_class.__name__, "unknown")
is_inpaint = (
base_model_name in ["sd15", "sdxl"] and input_count > 4
) or base_model_class.__name__ == "FluxInpaint"
return {
"base_model": base_model_name,
"is_inpaint": is_inpaint,
"is_refiner": base_model_class is supported_models.SDXLRefiner,
}
return {"base_model": "unknown"}
except Exception as e:
# traceback.print_exc()
return {"base_model": "unknown", "error": f"Failed to detect base model: {e}"}
def inspect_gguf(filename: str, model_type: str):
try:
import gguf
except ImportError:
return {"base_model": "unknown", "error": "GGUF module not found"}
try:
path = folder_paths.get_full_path(model_type, filename)
reader = gguf.GGUFReader(path)
arch_field = reader.get_field("general.architecture")
if arch_field is not None:
if len(arch_field.types) != 1 or arch_field.types[0] != gguf.GGUFValueType.STRING:
raise TypeError(
f"Bad type for GGUF general.architecture key: expected string, got {arch_field.types!r}"
)
arch_str = str(arch_field.parts[arch_field.data[-1]], encoding="utf-8")
else: # stable-diffusion.cpp, requires conversion. not handled for now
return {"base_model": "flux", "is_inpaint": False, "is_refiner": False}
return {
"base_model": gguf_architectures.get(arch_str, arch_str),
"is_inpaint": False,
"is_refiner": False,
}
except Exception as e:
# traceback.print_exc()
return {"base_model": "unknown", "error": f"Failed to detect base model: {e}"}
def inspect_diffusion_model(filename: str, model_type: str, is_checkpoint: bool):
if filename.endswith(".gguf"):
return inspect_gguf(filename, model_type)
return inspect_safetensors(filename, model_type, is_checkpoint)
def inspect_models(model_type: str):
try:
try:
files = folder_paths.get_filename_list(model_type)
except KeyError:
return {"error": f"Model folder not found: {model_type}"}
is_checkpoint = model_type == "checkpoints"
info = {
filename: inspect_diffusion_model(filename, model_type, is_checkpoint)
for filename in files
}
return web.json_response(info)
except Exception as e:
traceback.print_exc()
return web.json_response(dict(error=str(e)), status=500)
def has_invalid_folder_name(folder_name: str):
valid_names = list(folder_paths.folder_names_and_paths.keys())
if folder_name not in valid_names:
return web.json_response(
dict(error=f"Invalid folder path, must be one of {', '.join(valid_names)}"),
status=400,
)
return None
def has_invalid_filename(filename: str):
if not filename.lower().endswith((".sft", ".safetensors")):
return web.json_response(dict(error="File extension must be .safetensors"), status=400)
if not filename or not filename.strip() or len(filename) > 255:
return web.json_response(dict(error="Invalid filename"), status=400)
if any(char in filename for char in ["..", "/", "\\", "\n", "\r", "\t", "\0"]):
return web.json_response(dict(error="Invalid filename"), status=400)
if filename.startswith(".") or not re.match(r"^[a-zA-Z0-9_\-. ]+$", filename):
return web.json_response(dict(error="Invalid filename"), status=400)
return None
_server: server.PromptServer | None = getattr(server.PromptServer, "instance", None)
if _server is not None:
_workflow_exchange = WorkflowExchange(_server)
@_server.routes.get("/api/etn/model_info/{folder_name}")
async def model_info(request: web.Request):
folder_name = request.match_info.get("folder_name", "checkpoints")
if error := has_invalid_folder_name(folder_name):
return error
return inspect_models(folder_name)
@_server.routes.get("/api/etn/model_info")
async def api_model_info(request):
return inspect_models("checkpoints")
@_server.routes.get("/etn/model_info")
async def api_model_info(request):
return inspect_models("checkpoints")
@_server.routes.get("/api/etn/languages")
async def languages(request):
try:
result = [dict(name=name, code=code) for code, name in available_languages()]
return web.json_response(result)
except Exception as e:
return web.json_response(dict(error=str(e)), status=500)
@_server.routes.get("/api/etn/translate/{lang}/{text}")
async def translate_text(request):
try:
language = request.match_info.get("lang", "en")
text = request.match_info.get("text", "")
result = translate(f"lang:{language} {text}")
return web.json_response(result)
except Exception as e:
return web.json_response(dict(error=str(e)), status=500)
@_server.routes.put("/api/etn/upload/{folder_name}/{filename}")
async def upload(request: web.Request):
folder_name = request.match_info.get("folder_name", "")
if error := has_invalid_folder_name(folder_name):
return error
filename = request.match_info.get("filename", "")
if error := has_invalid_filename(filename):
return error
try:
if folder_paths.get_full_path(folder_name, filename) is not None:
return web.json_response(dict(status="cached"), status=200)
folder = Path(folder_paths.folder_names_and_paths[folder_name][0][0])
total_size = int(request.headers.get("Content-Length", "0"))
logging.info(f"Uploading {filename} ({total_size/(1024**2):.1f} MB) to {folder} folder")
with open(folder / filename, "wb") as f:
async for chunk, _ in request.content.iter_chunks():
f.write(chunk)
return web.json_response(dict(status="success"), status=201)
except Exception as e:
return web.json_response(dict(error=str(e)), status=500)
async def _handle_workflow_request(request: web.Request, handler, *arg_keys):
try:
data = await request.json()
args = [data[key] for key in arg_keys]
await handler(*args)
return web.json_response(dict(status="success"), status=200)
except KeyError as e:
return web.json_response(dict(error=str(e)), status=400)
except Exception as e:
return web.json_response(dict(error=str(e)), status=500)
@_server.routes.post("/api/etn/workflow/publish")
async def publish_workflow(request: web.Request):
return await _handle_workflow_request(
request, _workflow_exchange.publish, "name", "client_id", "workflow"
)
@_server.routes.post("/api/etn/workflow/subscribe")
async def subscribe_workflow(request: web.Request):
return await _handle_workflow_request(request, _workflow_exchange.subscribe, "client_id")
@_server.routes.post("/api/etn/workflow/unsubscribe")
async def unsubscribe_workflow(request: web.Request):
return await _handle_workflow_request(request, _workflow_exchange.unsubscribe, "client_id")