Skip to content

Abtinz/Machine-Learning-with-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine-Learning-with-Python

Welcome to my repository documenting the learning journey through various machine learning techniques and models. This collection encapsulates my hands-on experience with a range of methodologies aimed at both Supervised and Unsupervised Learning, Including Regression and Classification Models, Clustering Techniques, and Recommendation Systems.

Introduction and Data Processing:

  • Matplotlib, Numpy, Pandas

  • Statics and Plots:

    • varianse, mean, mode, median
    • Box Plot
    • Skewness and Quartiles
    • Q-Q Plot
    • Histogram Analysis
    • Correlation Detection
  • Data Cleaning

  • Normalizing

  • Missed Data

Regression :

  • Simple Liner Regression
  • Multiple Inputs
  • Polynominal Regression
  • NoneLiner Regression

Classification:

  • KNN
  • Decision Tree
  • Logestic Regression
  • Separated vector machine

Clustering:

  • KMeans
  • Hieracialy
  • DBSCAN

Recommandation systems:

  • Context Base
  • Collabrative Base

Data Mining:

  • Pre Processing
  • Regression
  • Classification
  • Clustering

Computational Intelligence:

  • Fuzzy Logic
  • Genetic Algorithms