diff --git a/fairpyx/algorithms/heterogeneous_matroid_constraints_algorithms.py b/fairpyx/algorithms/heterogeneous_matroid_constraints_algorithms.py index 4f4f9be..4232d0b 100644 --- a/fairpyx/algorithms/heterogeneous_matroid_constraints_algorithms.py +++ b/fairpyx/algorithms/heterogeneous_matroid_constraints_algorithms.py @@ -21,10 +21,6 @@ def per_category_round_robin(alloc: AllocationBuilder, item_categories: dict[str,list], agent_category_capacities: dict[str,dict[str,int]], initial_agent_order: list): - #TODO - # item_categories: 1) validate no duplicates - # agent_category_capacities : 1) maybe negative numbers in capacity arent accepted 2) validate identical capacities for everyone - # initial_agent_order : validate no duplicates """ this is the Algorithm 1 from the paper per category round-robin is an allocation algorithm which guarantees EF1 (envy-freeness up to 1 good) allocation @@ -99,14 +95,6 @@ def per_category_round_robin(alloc: AllocationBuilder, item_categories: dict[str def capped_round_robin(alloc: AllocationBuilder,item_categories: dict[str,list], agent_category_capacities: dict[str,dict[str,int]], initial_agent_order: list, target_category: str): - #TODO - # target_category: validate it does belong to the items_categories.keys - # initial_agent_order: validate no duplicates✅ - # item_categories: validate no duplicates✅ - # agent_category_capacities: validate no negative capacities ✅ - # validate non-negative valuations ✅ - - """ this is Algorithm 2 CRR (capped round-robin) algorithm TLDR: single category , may have differnt capacities capped in CRR stands for capped capacity for each agent unlke RR , maye have different valuations -> F-EF1 ( @@ -183,13 +171,6 @@ def capped_round_robin(alloc: AllocationBuilder,item_categories: dict[str,list], def two_categories_capped_round_robin(alloc: AllocationBuilder,item_categories: dict[str,list], agent_category_capacities: dict[str,dict[str,int]], initial_agent_order: list, target_category_pair: tuple[str]): - #TODO - # initial_agent_order: validate no duplicates - # target_category_pair : validate list(target_category_pair)== list(item_categories.keys) - # agent_category_capacities: validate no negative capacities - # item_categories: validate no duplicates - # validate non negative valuations - """ this is Algorithm 3 back and forth capped round-robin algorithm (2 categories,may have different capacities,may have different valuations) in which we simply @@ -279,12 +260,6 @@ def two_categories_capped_round_robin(alloc: AllocationBuilder,item_categories: def per_category_capped_round_robin(alloc: AllocationBuilder,item_categories: dict[str,list], agent_category_capacities: dict[str,dict[str,int]], initial_agent_order: list): - #TODO - # no need for different capacities validation since its also acceptable to have equal capacities , it doesnt hurt - # validate identical valuations , non negative - # item_categories: validate no duplicates - # initial_agent_order: validate no duplicates - # agent_category_capacities: validate no negative capacities """ this is Algorithm 4 deals with (Different Capacities, Identical Valuations), suitable for any number of categories CRR (per-category capped round-robin) algorithm @@ -311,7 +286,7 @@ def per_category_capped_round_robin(alloc: AllocationBuilder,item_categories: di >>> # Example 2 (3 agents 3 categories , different capacities ) >>> from fairpyx import divide - >>> order=['Agent2','Agent3','Agent1']#TODO change in papers + >>> order=['Agent2','Agent3','Agent1'] >>> items=['m1','m2','m3','m4','m5','m6','m7','m8','m9'] >>> item_categories = {'c1': ['m1','m2','m3','m4'],'c2':['m5','m6','m7'],'c3':['m8','m9']} >>> agent_category_capacities = {'Agent1': {'c1':1,'c2':4,'c3':4}, 'Agent2': {'c1':4,'c2':0,'c3':4},'Agent3': {'c1':4,'c2':4,'c3':0}} @@ -355,10 +330,6 @@ def per_category_capped_round_robin(alloc: AllocationBuilder,item_categories: di def iterated_priority_matching(alloc: AllocationBuilder, item_categories: dict[str,list], agent_category_capacities: dict[str,dict[str,int]]): - #TODO - # validate binary valuations , all values must be either 0 or 1 - # item_categories: validate no duplicates - # agent_category_capacities : validate no negative capacities """ this is Algorithm 5 deals with (partition Matroids with Binary Valuations, may have different capacities) loops as much as maximum capacity in per each category , each iteration we build : @@ -389,13 +360,13 @@ def iterated_priority_matching(alloc: AllocationBuilder, item_categories: dict[s >>> items=['m1','m2','m3'] >>> item_categories = {'c1': ['m1'],'c2':['m2','m3']} >>> agent_category_capacities = {'Agent1': {'c1':2,'c2':2}, 'Agent2': {'c1':2,'c2':2},'Agent3': {'c1':2,'c2':2}} - >>> valuations = {'Agent1':{'m1':1,'m2':1,'m3':1},'Agent2':{'m1':1,'m2':1,'m3':0},'Agent3':{'m1':0,'m2':0,'m3':0}} # TODO change valuation in paper + >>> valuations = {'Agent1':{'m1':1,'m2':1,'m3':1},'Agent2':{'m1':1,'m2':1,'m3':0},'Agent3':{'m1':0,'m2':0,'m3':0}} >>> #divide(algorithm=iterated_priority_matching,instance=Instance(valuations=valuations,items=items),item_categories=item_categories,agent_category_capacities= agent_category_capacities) {'Agent1': ['m1', 'm3'], 'Agent2': ['m2'], 'Agent3': []} >>> # Example 3 ( 3 agents , 3 categories , with common interests, and remainder unallocated items at the end ) >>> from fairpyx import divide - >>> items=['m1','m2','m3','m4','m5','m6']#TODO change in papers since in case there is no envy we cant choose whatever order we want. maybe on papers yes but in here no + >>> items=['m1','m2','m3','m4','m5','m6'] >>> item_categories = {'c1': ['m1','m2','m3'],'c2':['m4','m5'],'c3':['m6']} >>> agent_category_capacities = {'Agent1': {'c1':1,'c2':1,'c3':1}, 'Agent2': {'c1':1,'c2':1,'c3':1},'Agent3': {'c1':0,'c2':0,'c3':1}} >>> valuations = {'Agent1':{'m1':1,'m2':1,'m3':0,'m4':1,'m5':1,'m6':1},'Agent2':{'m1':0,'m2':1,'m3':0,'m4':1,'m5':1,'m6':1},'Agent3':{'m1':0,'m2':0,'m3':0,'m4':0,'m5':0,'m6':1}} @@ -1081,14 +1052,14 @@ def helper_priority_matching(agent_item_bipartite_graph:nx.Graph, current_order: # we used max weight matching in which (agents are getting high weights in desc order 2^n,2^n-1.......1) logger.info(f'matching is -> {matching}') for match in matching: - if match[0].startswith('A'): # TODO: agent name not always starts with A. do different check + if match[0] in current_order: # previously was .startsWith('A') but not necessarily if ((match[0], match[1]) not in alloc.remaining_conflicts) and match[0] in remaining_category_agent_capacities.keys(): alloc.give(match[0], match[1], logger) remaining_category_agent_capacities[match[0]] -= 1 if remaining_category_agent_capacities[match[0]] <= 0: del remaining_category_agent_capacities[match[0]] #else do nothing .... - else: + else:#meaning match[1] in current_order if ((match[1], match[0]) not in alloc.remaining_conflicts) and match[1] in remaining_category_agent_capacities.keys(): alloc.give(match[1], match[0], logger) remaining_category_agent_capacities[match[1]] -= 1 @@ -1232,14 +1203,12 @@ def helper_validate_item_categories(item_categories:dict[str, list]): sum_agent_category_capacities={agent:sum(cap.values()) for agent,cap in agent_category_capacities.items()} instance=Instance(valuations=valuations,items=items,agent_capacities=sum_agent_category_capacities) divide(algorithm=per_category_round_robin,instance=instance,item_categories=item_categories,agent_category_capacities=agent_category_capacities,initial_agent_order=order) - # divide(algorithm=capped_round_robin,instance=instance,item_categories=item_categories,agent_category_capacities=agent_category_capacities,initial_agent_order=order,target_category="c1") divide(algorithm=two_categories_capped_round_robin,instance=instance,item_categories=item_categories,agent_category_capacities=agent_category_capacities,initial_agent_order=order,target_category_pair=("c1","c2")) - # divide(algorithm=per_category_capped_round_robin,instance=instance,item_categories=item_categories,agent_category_capacities=agent_category_capacities,initial_agent_order=order) - + items=['m1','m2','m3'] item_categories = {'c1': ['m1'],'c2':['m2','m3']} agent_category_capacities = {'Agent1': {'c1':2,'c2':2}, 'Agent2': {'c1':2,'c2':2},'Agent3': {'c1':2,'c2':2}} - valuations = {'Agent1':{'m1':1,'m2':1,'m3':1},'Agent2':{'m1':1,'m2':1,'m3':0},'Agent3':{'m1':0,'m2':0,'m3':0}} # TODO change valuation in paper + valuations = {'Agent1':{'m1':1,'m2':1,'m3':1},'Agent2':{'m1':1,'m2':1,'m3':0},'Agent3':{'m1':0,'m2':0,'m3':0}} instance=Instance(valuations=valuations,items=items,agent_capacities=sum_agent_category_capacities) divide(algorithm=iterated_priority_matching,instance=instance,item_categories=item_categories,agent_category_capacities=agent_category_capacities)