-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwordembedding_search.py
71 lines (49 loc) · 2.07 KB
/
wordembedding_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import pickle
from generate_document_vectors import process_text, generate_document_vector
import gensim.downloader as api
import numpy as np
import pandas as pd
model = api.load('glove-wiki-gigaword-50')
def cosine_similarity(v1, v2):
dotProduct = np.dot(v1,v2)
norm1 = np.linalg.norm(v1)
norm2 = np.linalg.norm(v2)
s = norm1 * norm2
if(s == 0): return 0
else : return (dotProduct/(norm1 * norm2 ))
def search(query, document_vector, n_top=10):
processed_query = process_text(query)
query_vector = generate_document_vector(model, processed_query)
similarity_list = list()
for Id in document_vector.keys():
similarity_list.append([Id, cosine_similarity(query_vector, document_vector[Id])])
similarity_list = sorted(similarity_list, key=lambda x:x[1], reverse=True)
return similarity_list[:n_top]
def retrieve_documents(similarity_list, document_id):
result = list()
for i in range(len(similarity_list)):
result_dict = dict()
id = similarity_list[i][0]
csv_id = id // 10000
row_id = id % 10000
result_dict['Csv'] = document_id[csv_id]
result_dict['Row'] = row_id
df = pd.read_csv(os.path.join('archive/TelevisionNews/', document_id[csv_id]))
result_dict['URL'] = df['URL'][row_id]
result_dict['MatchDateTime'] = df['MatchDateTime'][row_id]
result_dict['Station'] = df['Station'][row_id]
result_dict['Show'] = df['Show'][row_id]
result_dict['IAShowID'] = df['IAShowID'][row_id]
result_dict['IAPreviewThumb'] = df['IAPreviewThumb'][row_id]
result_dict['Snippet'] = df['Snippet'][row_id]
result.append(result_dict)
return result
if __name__ == "__main__":
with open('document_vectors/document_vectors.pkl', 'rb') as f:
document_vectors = pickle.load(f)
with open('documentId.pkl', 'rb') as f:
document_id = pickle.load(f)
query = input("Enter search query: ")
similarity_list = search(query, document_vectors)
print(retrieve_documents(similarity_list, document_id))