-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_list_index.py
132 lines (106 loc) · 5.27 KB
/
generate_list_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
A program to preprocess text and generate postings list and inverted index
Sample usage:
python3 generate_list_index.py --lemmatize --stop_words data/saved.csv .
"""
import argparse
import os
import pandas as pd
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer
import pickle
parser = argparse.ArgumentParser(description="Process data and generate postings list and inverted index")
parser.add_argument('src', help="Path to csv file")
parser.add_argument('dst', help="Destination folder to save the postings list and inverted index")
parser.add_argument('--stem', default=False, action="store_true", help="Stem the words before generating index")
parser.add_argument('--lemmatize', default=False, action="store_true", help="Lemmatize words before generating index")
parser.add_argument('--stop_words', default=False, action="store_true", help="Remove stop words from the corpus")
args = parser.parse_args()
df = pd.read_csv(args.src)
tokenizer = RegexpTokenizer(r'\w+') #It retains only words and eliminates punctuations in words
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
postings_list = dict()
inverted_index = dict()
count_dict = dict()
def remove_stop_words(x, stop_words):
return [word for word in x if word not in stop_words]
def lemmatize_words(x):
return [lemmatizer.lemmatize(word) for word in x]
df['Snippet'] = df["Snippet"].apply(lambda x: x.lower())
df['Snippet'] = df['Snippet'].apply(lambda x: tokenizer.tokenize(x))
if (args.stop_words):
print("Removing stop words")
df['Snippet'] = df['Snippet'].apply(lambda x: remove_stop_words(x, stop_words))
if (args.stem):
print("Stemming")
df['Snippet'] = df['Snippet'].apply(lambda x: tokenizer.tokenize(x))
if (args.lemmatize):
print("Lemmatizing")
df['Snippet'] = df['Snippet'].apply(lambda x: lemmatize_words(x))
inverted_index = dict()
count_dict = dict()
count = 0
counter = 1
for document in os.listdir('archive/TelevisionNews/'):
documentId[document] = counter
counter += 1
for file in os.listdir('archive/TelevisionNews/'): #Change this to the directory with all csv files
if file.endswith(".csv"):
try:
df = pd.read_csv(os.path.join('archive/TelevisionNews/', file), index_col=None, header=0)
df['Snippet'] = df["Snippet"].apply(lambda x: x.lower())
df['Snippet'] = df['Snippet'].apply(lambda x: tokenizer.tokenize(x))
df['Snippet'] = df['Snippet'].apply(lambda x: remove_stop_words(x, stop_words))
df['Snippet'] = df['Snippet'].apply(lambda x: lemmatize_words(x))
for doc in range(len(df)):
for row in range(len(df.iloc[doc]["Snippet"])):
try:
if(inverted_index[df.iloc[doc]["Snippet"][row]][-1] == documentId[file]):
continue
inverted_index[df.iloc[doc]["Snippet"][row]].append(documentId[file])
count_dict[df.iloc[doc]["Snippet"][row]] += 1
except:
inverted_index[df.iloc[doc]["Snippet"][row]] = [documentId[file]]
count_dict[df.iloc[doc]["Snippet"][row]] = 1
except:
print("Skipped file: ", file) #Some error in the file, maybe it is empty
else:
print("Invalid file: ", file)
postings_lists_list = [0]*(len(list(documentId.keys()))+1)
count_dict = dict()
for file in os.listdir('archive/TelevisionNews/'): #Change this to the directory with all csv files
if (file == 'CNN.200910.csv'):
continue
if file.endswith(".csv"):
df = pd.read_csv(os.path.join('archive/TelevisionNews/', file), index_col=None, header=0)
df['Snippet'] = df["Snippet"].apply(lambda x: x.lower())
df['Snippet'] = df['Snippet'].apply(lambda x: tokenizer.tokenize(x))
df['Snippet'] = df['Snippet'].apply(lambda x: remove_stop_words(x, stop_words))
df['Snippet'] = df['Snippet'].apply(lambda x: lemmatize_words(x))
postings_list = dict()
for doc in range(len(df)):
for row in range(len(df.iloc[doc]["Snippet"])):
try:
if(postings_list[df.iloc[doc]["Snippet"][row]][-1][-1][0] == doc):
postings_list[df.iloc[doc]["Snippet"][row]][-1][-1][-1].append(row)
else:
postings_list[df.iloc[doc]["Snippet"][row]][-1].append([doc, [row]])
postings_list[df.iloc[doc]["Snippet"][row]][0] += 1
except:
postings_list[df.iloc[doc]["Snippet"][row]] = [1, [[doc, [row]]]]
postings_lists_list[documentId[file]] = postings_list
else:
print("Invalid file: ", file)
for key in postings_list.keys():
inverted_index[key] = [count_dict[key], postings_list[key]]
with open(os.path.join(args.dst, 'postings_lists_list.pkl'), 'wb') as f:
print("Saving list of posting lists")
pickle.dump(postings_lists_list, f)
del postings_lists_list
with open(os.path.join(args.dst, 'inverted_index.pkl'), 'wb') as f:
print("Saving inverted index")
pickle.dump(inverted_index, f)
del inverted_index