-
Notifications
You must be signed in to change notification settings - Fork 2
/
vivit_training.py
521 lines (404 loc) · 15.4 KB
/
vivit_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import os
import io
import cv2
import json
import time
import random
import threading
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from focal_loss import BinaryFocalLoss
from sklearn.model_selection import train_test_split
SEED = 42
os.environ["TF_CUDNN_DETERMINISTIC"] = "1"
tf.random.set_seed(SEED)
#!pip install keras==2.6.0
#!rm -rf DIR_NAME
###################### CONFIG ######################
# Opening JSON file
f = open('CONFIG.json',)
CONFIG = json.load(f)
print(CONFIG, "\n")
FILE_NAME = CONFIG["FILE_NAME"]
#os.mkdir(FILE_NAME)
print("File Created : ", FILE_NAME, "\n")
out_file = open(FILE_NAME + "/" + "CONFIG.json", "w")
json.dump(CONFIG, out_file, indent = 8)
out_file.close()
# DATA
#AUTO = tf.data.AUTOTUNE
#INPUT_SHAPE = (8, 192, 192, 3)
INPUT_SHAPE = tuple(CONFIG["INPUT_SHAPE"])
NUM_CLASSES = CONFIG["NUM_CLASSES"]
# OPTIMIZER
LEARNING_RATE = CONFIG["LEARNING_RATE"]
#WEIGHT_DECAY = 1e-4
# TRAINING
EPOCHS = CONFIG["EPOCHS"]
BATCH_SIZE = CONFIG["BATCH_SIZE"]
# TUBELET EMBEDDING
#PATCH_SIZE = (8, 8, 8)
PATCH_SIZE = tuple(CONFIG["PATCH_SIZE"])
NUM_PATCHES = (INPUT_SHAPE[0] // PATCH_SIZE[0]) ** 2
PROJECTION_DIM = CONFIG["PROJECTION_DIM"]
# ViViT ARCHITECTURE
LAYER_NORM_EPS = CONFIG["LAYER_NORM_EPS"]
NUM_HEADS = CONFIG["NUM_HEADS"]
KEY_DIM = CONFIG["KEY_DIM"]
NUM_LAYERS = CONFIG["NUM_LAYERS"]
'''
paths = []
labels = []
for video in os.listdir('faceforensics/manipulated_sequences/Deepfakes/c23/videos'):
vid_file = os.path.join('faceforensics/manipulated_sequences/Deepfakes/c23/videos', video)
paths.append(vid_file)
labels.append([1])
for video in os.listdir('faceforensics/original_sequences/youtube/c23/videos'):
vid_file = os.path.join('faceforensics/original_sequences/youtube/c23/videos', video)
paths.append(vid_file)
labels.append([0])
'''
paths = []
labels = []
for video in os.listdir('/raid/Data/Sayali/FF_Video_Fake'):
vid_file = os.path.join('/raid/Data/Sayali/FF_Video_Fake', video, 'project.avi')
paths.append(vid_file)
labels.append([1])
for video in os.listdir('/raid/Data/Sayali/FF_Video_Real'):
vid_file = os.path.join('/raid/Data/Sayali/FF_Video_Real', video, 'project.avi')
paths.append(vid_file)
labels.append([0])
f = open('frames_count_new.json',"r")
frames_count = json.load(f)
data_paths = []
for (path, max_frames), label in zip(frames_count.items(), labels):
for i in range(max_frames//INPUT_SHAPE[0]):
dt = [path, i*INPUT_SHAPE[0], (i+1)*INPUT_SHAPE[0], label]
data_paths.append(dt)
#data_paths = data_paths[:(len(data_paths)//BATCH_SIZE)*BATCH_SIZE]
#data_paths = random.sample(data_paths, 10000)
print("Total Available Samples : ", len(data_paths))
#data_paths = data_paths[:5000]
def normalize_image(matrix):
return (matrix - np.mean(matrix))/np.std(matrix)
'''
def video_generator(data_paths):
for i in range(0, (len(data_paths)//BATCH_SIZE)*BATCH_SIZE, BATCH_SIZE):
batch_vids = []
batch_labels = []
for path, start, end, label in data_paths[i:i+BATCH_SIZE]:
batch_labels.append(label)
cap = cv2.VideoCapture(path)
frameCount, frameWidth, frameHeight = INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2]
vid = np.empty((frameCount, frameHeight, frameWidth, 3), np.dtype('float'))
fc = 0
ret = True
for i in range(end):
ret, image = cap.read()
if i >= start:
vid[fc] = cv2.resize(image, (frameWidth, frameHeight))
vid = vid.astype(float)
fc += 1
batch_vids.append(vid)
batch_vids = np.asarray(batch_vids)/255
batch_labels = np.asarray(batch_labels)
#print("\n")
#[print(x[0], end = " ") for x in batch_labels]
#print("\n")
#[print(x[0], end = " ") for x in model.predict(batch_vids)]
#print("\n")
yield normalize_image(batch_vids), batch_labels
'''
'''
next_batch = None
is_batch_trainied = True
def prepare_next_batch(data_paths):
global next_batch
batch_vids = []
batch_labels = []
for path, start, end, label in data_paths:
batch_labels.append(label)
cap = cv2.VideoCapture(path)
frameCount, frameWidth, frameHeight = INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2]
vid = np.empty((frameCount, frameHeight, frameWidth, 3), np.dtype('float'))
fc = 0
ret = True
for i in range(end):
ret, image = cap.read()
if i >= start:
vid[fc] = cv2.resize(image, (frameWidth, frameHeight))
vid = vid.astype(float)
fc += 1
batch_vids.append(vid)
batch_vids = normalize_image(np.asarray(batch_vids)/255)
batch_labels = np.asarray(batch_labels)
while True:
if is_batch_trainied:
next_batch = (batch_vids, batch_labels)
break
def video_generator(data_paths):
global next_batch
global is_batch_trainied
t = threading.Thread(target=prepare_next_batch, args=(data_paths[:BATCH_SIZE],))
t.start()
for i in range(1, (len(data_paths)//BATCH_SIZE)*BATCH_SIZE, BATCH_SIZE):
is_batch_trainied = True
t.join()
batch_vids, batch_labels = next_batch
is_batch_trainied = False
t = threading.Thread(target=prepare_next_batch, args=(data_paths[i:i+BATCH_SIZE],))
t.start()
yield batch_vids, batch_labels
'''
'''
next_batch = None
is_batch_loaded = True
batch_vids = [None]*BATCH_SIZE
batch_labels = [None]*BATCH_SIZE
def load_video(j, data_path):
global batch_vids
global batch_labels
path, start, end, label = data_path
cap = cv2.VideoCapture(path)
frameCount, frameWidth, frameHeight = INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2]
vid = np.empty((frameCount, frameHeight, frameWidth, 3), np.dtype('float'))
fc = 0
ret = True
for k in range(end):
ret, image = cap.read()
if k >= start:
vid[fc] = cv2.resize(image, (frameWidth, frameHeight))
vid = vid.astype(float)
fc += 1
batch_vids[j] = vid
batch_labels[j] = label
def prepare_next_batch(data_paths):
global next_batch
global batch_vids
global batch_labels
global thread_list
#batch_vids = [None]*BATCH_SIZE
#batch_labels = [None]*BATCH_SIZE
thread_list = []
for j, data_path in enumerate(data_paths):
thread = threading.Thread(target=load_video, args=(j, data_path))
thread_list.append(thread)
thread.start()
for thread in thread_list:
thread.join()
batch_vids = normalize_image(np.asarray(batch_vids)/255)
batch_labels = np.asarray(batch_labels)
while True:
if is_batch_loaded:
next_batch = (batch_vids, batch_labels)
break
def video_generator(data_paths):
global next_batch
global batch_vids
global batch_labels
global thread_list
t = threading.Thread(target=prepare_next_batch, args=(data_paths[:BATCH_SIZE],))
t.start()
for i in range(1, (len(data_paths)//BATCH_SIZE)*BATCH_SIZE, BATCH_SIZE):
is_batch_loaded = True
t.join()
batch_vids, batch_labels = next_batch
is_batch_loaded = False
t = threading.Thread(target=prepare_next_batch, args=(data_paths[i:i+BATCH_SIZE],))
t.start()
yield batch_vids, batch_labels
'''
#BATCH_SIZE = 32
next_batch = None
#is_batch_loaded = True
batch_vids = [None]*BATCH_SIZE
batch_labels = [None]*BATCH_SIZE
def load_video(j, data_path):
global batch_vids
global batch_labels
path, start, end, label = data_path
cap = cv2.VideoCapture(path)
frameCount, frameWidth, frameHeight = INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2]
vid = np.empty((frameCount, frameHeight, frameWidth, 3), np.dtype('float'))
fc = 0
ret = True
for k in range(end):
ret, image = cap.read()
if k >= start:
vid[fc] = cv2.resize(image, (frameWidth, frameHeight))
vid = vid.astype(float)
fc += 1
batch_vids[j] = vid
batch_labels[j] = label
def prepare_next_batch(data_paths):
global next_batch
global batch_vids
global batch_labels
global thread_list
thread_list = []
for j, data_path in enumerate(data_paths):
thread = threading.Thread(target=load_video, args=(j, data_path))
thread_list.append(thread)
thread.start()
#print("Started : ", j)
for thread in thread_list[::-1]:
thread.join()
batch_vids = (2*(np.asarray(batch_vids)/255) - 1)
batch_labels = np.asarray(batch_labels)
next_batch = (batch_vids, batch_labels)
def video_generator(data_paths):
global next_batch
global batch_vids
global batch_labels
global thread_list
t = threading.Thread(target=prepare_next_batch, args=(data_paths[:BATCH_SIZE],))
t.start()
for i in range(1, (len(data_paths)//BATCH_SIZE)*BATCH_SIZE, BATCH_SIZE):
t.join()
batch_vids, batch_labels = next_batch
t = threading.Thread(target=prepare_next_batch, args=(data_paths[i:i+BATCH_SIZE],))
t.start()
yield batch_vids, batch_labels
train_paths, test_paths, _, __ = train_test_split(data_paths, data_paths, test_size=0.2, random_state=42)
train_paths, validation_paths, _, __ = train_test_split(train_paths, train_paths, test_size=0.25, random_state=42)
data = {"train_paths":train_paths, "validation_paths":validation_paths, "test_paths":test_paths}
out_file = open(FILE_NAME + "/" + FILE_NAME + "_data_train_validation_test_split.json", "w")
json.dump(data, out_file, indent = 8)
out_file.close()
print("Total Training Samples : ", len(train_paths))
print("Total Validation Samples : ", len(validation_paths))
print("Total Testing Samples : ", len(test_paths))
trainloader = tf.data.Dataset.from_generator(
lambda: video_generator(train_paths),
output_types=(tf.float32, tf.float32),
output_shapes=((BATCH_SIZE, INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2], INPUT_SHAPE[3]), (BATCH_SIZE, 1))
)
validloader = tf.data.Dataset.from_generator(
lambda: video_generator(validation_paths),
output_types=(tf.float32, tf.float32),
output_shapes=((BATCH_SIZE, INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2], INPUT_SHAPE[3]), (BATCH_SIZE, 1))
)
testloader = tf.data.Dataset.from_generator(
lambda: video_generator(test_paths),
output_types=(tf.float32, tf.float32),
output_shapes=((BATCH_SIZE, INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2], INPUT_SHAPE[3]), (BATCH_SIZE, 1))
)
print(trainloader)
class TubeletEmbedding(layers.Layer):
def __init__(self, embed_dim, patch_size, **kwargs):
super().__init__(**kwargs)
self.projection = layers.Conv3D(
filters=embed_dim,
kernel_size=patch_size,
strides=patch_size,
padding="VALID",
)
self.flatten = layers.Reshape(target_shape=(-1, embed_dim))
def call(self, videos):
projected_patches = self.projection(videos)
flattened_patches = self.flatten(projected_patches)
return flattened_patches
class PositionalEncoder(layers.Layer):
def __init__(self, embed_dim, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
def build(self, input_shape):
_, num_tokens, _ = input_shape
self.position_embedding = layers.Embedding(
input_dim=num_tokens, output_dim=self.embed_dim
)
self.positions = tf.range(start=0, limit=num_tokens, delta=1)
def call(self, encoded_tokens):
# Encode the positions and add it to the encoded tokens
encoded_positions = self.position_embedding(self.positions)
encoded_tokens = encoded_tokens + encoded_positions
return encoded_tokens
def create_vivit_classifier(
tubelet_embedder,
positional_encoder,
input_shape=INPUT_SHAPE,
transformer_layers=NUM_LAYERS,
num_heads=NUM_HEADS,
embed_dim=PROJECTION_DIM,
key_dim=KEY_DIM,
layer_norm_eps=LAYER_NORM_EPS,
num_classes=NUM_CLASSES,
):
# Get the input layer
inputs = layers.Input(shape=input_shape)
# Create patches.
patches = tubelet_embedder(inputs)
# Encode patches.
encoded_patches = positional_encoder(patches)
# Create multiple layers of the Transformer block.
for _ in range(transformer_layers):
# Layer normalization and MHSA
x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)
attention_output = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=key_dim, dropout=0.1
)(x1, x1)
# Skip connection
x2 = layers.Add()([attention_output, encoded_patches])
# Layer Normalization and MLP
x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
x3 = keras.Sequential(
[
layers.Dense(units=embed_dim * 4, activation=tf.nn.gelu),
layers.Dense(units=embed_dim, activation=tf.nn.gelu),
]
)(x3)
# Skip connection
encoded_patches = layers.Add()([x3, x2])
# Layer normalization and Global average pooling.
representation = layers.LayerNormalization(epsilon=layer_norm_eps)(encoded_patches)
representation = layers.GlobalAvgPool1D()(representation)
outputs = layers.Dense(units=512, activation="relu")(representation)
outputs = layers.Dense(units=128, activation="relu")(representation)
# Classify outputs.
outputs = layers.Dense(units=num_classes, activation="sigmoid")(representation)
# Create the Keras model.
model = keras.Model(inputs=inputs, outputs=outputs)
return model
def get_model():
model = create_vivit_classifier(
tubelet_embedder = TubeletEmbedding(
embed_dim = PROJECTION_DIM,
patch_size = PATCH_SIZE
),
positional_encoder=PositionalEncoder(embed_dim=PROJECTION_DIM),
)
optimizer = keras.optimizers.Adam(learning_rate=LEARNING_RATE)
model.compile(
optimizer=optimizer,
loss=BinaryFocalLoss(gamma=1),
metrics=["accuracy"],
)
return model
#model = get_model()
model = tf.keras.models.load_model("model_1_bin_focal_gamma_1_threading_E_0_10/model/saved_model")
model.summary(line_length=125)
checkpoint_filepath = FILE_NAME + "/" + FILE_NAME + '/'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
save_weights_only=False,
save_freq = "epoch")
'''
class NBatchLogger(tf.keras.callbacks.Callback):
def __init__(self,display=5):
self.seen = 0
self.display = display
def on_batch_end(self,batch,logs={}):
self.seen += logs.get('size', 0)
if self.seen % self.display == 0:
print(self.__dict__.items())
'''
#out_batch = NBatchLogger(display=100)
#history = model.fit(trainloader, validation_data = validloader, epochs = EPOCHS, verbose = 1, use_multiprocessing = True, callbacks=[model_checkpoint_callback])
#history = model.fit(trainloader, validation_data = validloader, epochs = EPOCHS, verbose = 1, use_multiprocessing = True)
#out_file = open(FILE_NAME + "/" + FILE_NAME + "_history.json", "w")
#json.dump(history.history, out_file, indent = 8)
#out_file.close()
#model.save(FILE_NAME + "/model/saved_model")
model.evaluate(testloader)