forked from kwotsin/TensorFlow-ENet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_enet.py
193 lines (156 loc) · 9.44 KB
/
test_enet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import tensorflow as tf
from tensorflow.contrib.framework.python.ops.variables import get_or_create_global_step
from tensorflow.python.platform import tf_logging as logging
from enet import ENet, ENet_arg_scope
from preprocessing import preprocess
import os
import time
import numpy as np
import matplotlib.pyplot as plt
slim = tf.contrib.slim
#============INPUT ARGUMENTS================
flags = tf.app.flags
#Directories
flags.DEFINE_string('dataset_dir', './dataset', 'The dataset directory to find the train, validation and test images.')
flags.DEFINE_string('checkpoint_dir', './log/original', 'The checkpoint directory to restore your mode.l')
flags.DEFINE_string('logdir', './log/original_test', 'The log directory for event files created during test evaluation.')
flags.DEFINE_boolean('save_images', True, 'If True, saves 10 images to your logdir for visualization.')
#Evaluation information
flags.DEFINE_integer('num_classes', 12, 'The number of classes to predict.')
flags.DEFINE_integer('batch_size', 10, 'The batch_size for evaluation.')
flags.DEFINE_integer('image_height', 360, "The input height of the images.")
flags.DEFINE_integer('image_width', 480, "The input width of the images.")
flags.DEFINE_integer('num_epochs', 10, "The number of epochs to evaluate your model.")
#Architectural changes
flags.DEFINE_integer('num_initial_blocks', 1, 'The number of initial blocks to use in ENet.')
flags.DEFINE_integer('stage_two_repeat', 2, 'The number of times to repeat stage two.')
flags.DEFINE_boolean('skip_connections', False, 'If True, perform skip connections from encoder to decoder.')
FLAGS = flags.FLAGS
#==========NAME HANDLING FOR CONVENIENCE==============
num_classes = FLAGS.num_classes
batch_size = FLAGS.batch_size
image_height = FLAGS.image_height
image_width = FLAGS.image_width
num_epochs = FLAGS.num_epochs
save_images = FLAGS.save_images
#Architectural changes
num_initial_blocks = FLAGS.num_initial_blocks
stage_two_repeat = FLAGS.stage_two_repeat
skip_connections = FLAGS.skip_connections
dataset_dir = FLAGS.dataset_dir
checkpoint_dir = FLAGS.checkpoint_dir
photo_dir = os.path.join(FLAGS.logdir, "images")
logdir = FLAGS.logdir
#===============PREPARATION FOR TRAINING==================
#Checkpoint directories
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
#Dataset directories
image_files = sorted([os.path.join(dataset_dir, 'test', file) for file in os.listdir(dataset_dir + "/test") if file.endswith('.png')])
annotation_files = sorted([os.path.join(dataset_dir, "testannot", file) for file in os.listdir(dataset_dir + "/testannot") if file.endswith('.png')])
num_batches_per_epoch = len(image_files) / batch_size
num_steps_per_epoch = num_batches_per_epoch
#=============EVALUATION=================
def run():
with tf.Graph().as_default() as graph:
tf.logging.set_verbosity(tf.logging.INFO)
#===================TEST BRANCH=======================
#Load the files into one input queue
images = tf.convert_to_tensor(image_files)
annotations = tf.convert_to_tensor(annotation_files)
input_queue = tf.train.slice_input_producer([images, annotations])
#Decode the image and annotation raw content
image = tf.read_file(input_queue[0])
image = tf.image.decode_image(image, channels=3)
annotation = tf.read_file(input_queue[1])
annotation = tf.image.decode_image(annotation)
#preprocess and batch up the image and annotation
preprocessed_image, preprocessed_annotation = preprocess(image, annotation, image_height, image_width)
images, annotations = tf.train.batch([preprocessed_image, preprocessed_annotation], batch_size=batch_size, allow_smaller_final_batch=True)
#Create the model inference
with slim.arg_scope(ENet_arg_scope()):
logits, probabilities = ENet(images,
num_classes,
batch_size=batch_size,
is_training=True,
reuse=None,
num_initial_blocks=num_initial_blocks,
stage_two_repeat=stage_two_repeat,
skip_connections=skip_connections)
# Set up the variables to restore and restoring function from a saver.
exclude = []
variables_to_restore = slim.get_variables_to_restore(exclude=exclude)
saver = tf.train.Saver(variables_to_restore)
def restore_fn(sess):
return saver.restore(sess, checkpoint_file)
#perform one-hot-encoding on the ground truth annotation to get same shape as the logits
annotations = tf.reshape(annotations, shape=[batch_size, image_height, image_width])
annotations_ohe = tf.one_hot(annotations, num_classes, axis=-1)
annotations = tf.cast(annotations, tf.int64)
#State the metrics that you want to predict. We get a predictions that is not one_hot_encoded.
predictions = tf.argmax(probabilities, -1)
accuracy, accuracy_update = tf.contrib.metrics.streaming_accuracy(predictions, annotations)
mean_IOU, mean_IOU_update = tf.contrib.metrics.streaming_mean_iou(predictions=predictions, labels=annotations, num_classes=num_classes)
per_class_accuracy, per_class_accuracy_update = tf.metrics.mean_per_class_accuracy(labels=annotations, predictions=predictions, num_classes=num_classes)
metrics_op = tf.group(accuracy_update, mean_IOU_update, per_class_accuracy_update)
#Create the global step and an increment op for monitoring
global_step = get_or_create_global_step()
global_step_op = tf.assign(global_step, global_step + 1) #no apply_gradient method so manually increasing the global_step
#Create a evaluation step function
def eval_step(sess, metrics_op, global_step):
'''
Simply takes in a session, runs the metrics op and some logging information.
'''
start_time = time.time()
_, global_step_count, accuracy_value, mean_IOU_value, per_class_accuracy_value = sess.run([metrics_op, global_step_op, accuracy, mean_IOU, per_class_accuracy])
time_elapsed = time.time() - start_time
#Log some information
logging.info('Global Step %s: Streaming Accuracy: %.4f Streaming Mean IOU: %.4f Per-class Accuracy: %.4f (%.2f sec/step)',
global_step_count, accuracy_value, mean_IOU_value, per_class_accuracy_value, time_elapsed)
return accuracy_value, mean_IOU_value, per_class_accuracy_value
#Create your summaries
tf.summary.scalar('Monitor/test_accuracy', accuracy)
tf.summary.scalar('Monitor/test_mean_per_class_accuracy', per_class_accuracy)
tf.summary.scalar('Monitor/test_mean_IOU', mean_IOU)
my_summary_op = tf.summary.merge_all()
#Define your supervisor for running a managed session. Do not run the summary_op automatically or else it will consume too much memory
sv = tf.train.Supervisor(logdir = logdir, summary_op = None, init_fn=restore_fn)
#Run the managed session
with sv.managed_session() as sess:
for step in range(int(num_steps_per_epoch * num_epochs)):
#print vital information every start of the epoch as always
if step % num_batches_per_epoch == 0:
accuracy_value, mean_IOU_value = sess.run([accuracy, mean_IOU])
logging.info('Epoch: %s/%s', step / num_batches_per_epoch + 1, num_epochs)
logging.info('Current Streaming Accuracy: %.4f', accuracy_value)
logging.info('Current Streaming Mean IOU: %.4f', mean_IOU_value)
#Compute summaries every 10 steps and continue evaluating
if step % 10 == 0:
test_accuracy, test_mean_IOU, test_per_class_accuracy = eval_step(sess, metrics_op = metrics_op, global_step = sv.global_step)
summaries = sess.run(my_summary_op)
sv.summary_computed(sess, summaries)
#Otherwise just run as per normal
else:
test_accuracy, test_mean_IOU, test_per_class_accuracy = eval_step(sess, metrics_op = metrics_op, global_step = sv.global_step)
#At the end of all the evaluation, show the final accuracy
logging.info('Final Streaming Accuracy: %.4f', test_accuracy)
logging.info('Final Mean IOU: %.4f', test_mean_IOU)
logging.info('Final Per Class Accuracy %.4f', test_per_class_accuracy)
#Show end of evaluation
logging.info('Finished evaluating!')
#Save the images
if save_images:
if not os.path.exists(photo_dir):
os.mkdir(photo_dir)
#Save the image visualizations for the first 10 images.
logging.info('Saving the images now...')
predictions_val, annotations_val = sess.run([predictions, annotations])
for i in xrange(10):
predicted_annotation = predictions_val[i]
annotation = annotations_val[i]
plt.subplot(1,2,1)
plt.imshow(predicted_annotation)
plt.subplot(1,2,2)
plt.imshow(annotation)
plt.savefig(photo_dir+"/image_" + str(i))
if __name__ == '__main__':
run()