-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
129 lines (97 loc) · 4.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
Utility functions for the model
"""
# importing libraries
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.functional import softmax
def subsequent_mask(size):
"""
Function to compute the mask used in attention layer of decoder
INPUT:
size - (int) horizon size
OUTPUT:
mask - (torch tensor) boolean array to mask out the data in decoder
"""
attn_shape = (1, size, size)
mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
mask = torch.from_numpy(mask) == 0
return mask
def attention(Q, K, V, mask=None, dropout=None):
"""
Function to compute the attention from given Q, K and V values
INPUT:
Q - (torch tensor) query for the transformer. Shape = (B, H, N, C)
K - (torch tensor) keys for the transformer. Shape = (B, H, N, C)
V - (torch tensor) values for the transformer. Shape = (B, H, N, C)
mask - (torch tensor) mask for decoder multi head attention layer
dropout - (float) dropout percentage
OUTPUT:
attn_output - (torch tensor) output of the multi head attention layer. Shape = (B, H, N, C)
"""
# finding the embedding size
new_emb_size = Q.shape[0]
# calculating attention scores
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(new_emb_size)
# applying mask on the attention
if mask is not None:
scores = scores.masked_fill_(mask == 0, -1e9)
# applying softmax layer and calculating prob of attention
p_attn = softmax(scores, dim=-1)
# applying dropout
if dropout is not None:
p_attn = dropout(p_attn)
# multiplying the prob of attentiom with Values (V)
attn_output = torch.matmul(p_attn, V)
return attn_output
def cosine_scheduler(t, eta_max, T):
"""
Function to implement cosine scheduler
"""
T_0 = T/5
if t <= T_0:
lr = 1e-6 + ((t/T_0) * eta_max)
else:
lr = 1e-8 + (eta_max * np.cos((np.pi/2)*((t-T_0)/(T-T_0))))
return lr
def learning_rate_finder(tf_model, optimizer, train_loader, iterations, device, mean, std, increment=1.1):
"""
Function to perform the "learning rate finder" algorithm.
"""
# initilizing array to store training loss of each minibatch
train_loss = []
# initializing the array to store the learning rates
learning_rates = []
for idx, data in enumerate(train_loader):
# getting encoder input data
enc_input = (data['src'][:,1:,2:4].to(device)-mean.to(device))/std.to(device)
# getting decoder input data
target = (data['trg'][:,:-1,2:4].to(device)-mean.to(device))/std.to(device)
target_append = torch.zeros((target.shape[0],target.shape[1],1)).to(device)
target = torch.cat((target,target_append),-1)
start_of_seq = torch.Tensor([0, 0, 1]).unsqueeze(0).unsqueeze(1).repeat(target.shape[0],1,1).to(device)
dec_input = torch.cat((start_of_seq, target), 1)
# getting masks for decoder
dec_source_mask = torch.ones((enc_input.shape[0], 1,enc_input.shape[1])).to(device)
dec_target_mask = subsequent_mask(dec_input.shape[1]).repeat(dec_input.shape[0],1,1).to(device)
# forward pass
optimizer.zero_grad()
predictions = tf_model.forward(enc_input, dec_input, dec_source_mask, dec_target_mask)
# calculating loss using pairwise distance of all predictions
loss = F.pairwise_distance(predictions[:, :,0:2].contiguous().view(-1, 2),
((data['trg'][:, :, 2:4].to(device)-mean.to(device))/std.to(device)).\
contiguous().view(-1, 2).to(device)).mean() + \
torch.mean(torch.abs(predictions[:,:,2]))
train_loss.append(loss.item())
# changing the learning rate
for param in optimizer.param_groups:
learning_rates.append(param['lr'])
param['lr'] *= increment
# updating weights
loss.backward()
optimizer.step()
if idx == iterations:
break
return train_loss, learning_rates