-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrope_evaluation.py
58 lines (47 loc) · 2.36 KB
/
rope_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import sys
sys.path.insert(1, '/home/owen/anaconda2/envs/softlearning/lib/python3.6/site-packages/cv2/')
import cv2
import numpy as np
import os
import glob
from collections import defaultdict
from pprint import pprint
import matplotlib.pyplot as plt
from vision_utils import segment_image, GREEN, WHITE, BLUE, YELLOW, IMAGE_INPUT_SIZE
IMAGE_DIR = "/home/owen/wilson/cloth-manipulation/images/"
EXP_PATH = os.path.join(IMAGE_DIR, "rope_test")
GOAL_IMAGE_PATHS = [os.path.join(IMAGE_DIR, file) for file in ["rope_goal_flat.png", "vert_rope.png", "pi_over_4.png", "3pi_over_4.png", "squiggle.png"]]
SEGMENTED_GOAL_IMAGES = [segment_image(cv2.resize(cv2.imread(image_name), (IMAGE_INPUT_SIZE, IMAGE_INPUT_SIZE)), WHITE) for image_name in GOAL_IMAGE_PATHS]
GOAL_DICT = dict(zip(["horizontal", "vertical", "_pi_over_4", "3pi_over_4", "squiggle"], SEGMENTED_GOAL_IMAGES))
for img in GOAL_DICT:
plt.imshow(GOAL_DICT[img])
plt.show()
EXP_RESULTS = defaultdict(list)
for folder in sorted(os.listdir(EXP_PATH)):
folder_path = os.path.join(EXP_PATH, folder)
# print("Folder", folder)
if "rope" in folder:
for exp in sorted(os.listdir(folder_path)):
exp_path = os.path.join(folder_path, exp)
print("Exp", exp)
for goal_name in GOAL_DICT.keys():
if goal_name in exp:
best_img = None
max_intersection = float("-inf")
for image in os.listdir(os.path.join(exp_path, "segmentations")):
image_path = os.path.join(exp_path, "segmentations", image)
segmented = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)/255
segmented = cv2.resize(segmented, (IMAGE_INPUT_SIZE, IMAGE_INPUT_SIZE))
intersection = np.sum(segmented * GOAL_DICT[goal_name])
if intersection > max_intersection:
max_intersection = intersection
best_img = image
EXP_RESULTS[f"{folder}_{goal_name}"].append(max_intersection)
print("Best img:", best_img)
for goal_name in GOAL_DICT:
EXP_RESULTS[f"{folder}_{goal_name}"] = np.mean(EXP_RESULTS[f"{folder}_{goal_name}"])
for val in sorted(EXP_RESULTS):
print(val)
for val in sorted(EXP_RESULTS):
print(EXP_RESULTS[val])
pprint(EXP_RESULTS)