From 62d58811ed348dec13958ef630a3b4a28b7f7d83 Mon Sep 17 00:00:00 2001 From: alexsanchezpla Date: Mon, 11 Nov 2024 20:02:28 +0100 Subject: [PATCH] new chapters published --- 06-introInferencia.Rmd | 552 +++- 07-estimacionPuntual.Rmd | 1433 +++++++++++ ...imacion.Rmd => 08-estimacionIntervalos.Rmd | 2 +- ...asHipotesis.Rmd => 09-pruebasHipotesis.Rmd | 0 ...aAplicada.Rmd => 10-inferenciaAplicada.Rmd | 0 ...rIntensive.Rmd => 11-computerIntensive.Rmd | 0 complementos/EstadMat-AllChap(ES).html | 2235 +++++++++++++++++ complementos/EstadMat-AllChap(ES).md | 2079 +++++++++++++++ complementos/EstadMat-AllChap(ES).qmd | 2061 +++++++++++++++ .../libs/bootstrap/bootstrap-icons.css | 2078 +++++++++++++++ .../libs/bootstrap/bootstrap-icons.woff | Bin 0 -> 176200 bytes .../libs/bootstrap/bootstrap.min.css | 12 + .../libs/bootstrap/bootstrap.min.js | 7 + .../libs/clipboard/clipboard.min.js | 7 + .../libs/quarto-html/anchor.min.js | 9 + .../libs/quarto-html/popper.min.js | 6 + .../quarto-syntax-highlighting.css | 205 ++ .../libs/quarto-html/quarto.js | 908 +++++++ .../libs/quarto-html/tippy.css | 1 + .../libs/quarto-html/tippy.umd.min.js | 2 + complementos/EstadMat-AllChap-ES-.pdf | Bin 0 -> 212398 bytes .../html/__packages | 7 + ...k-1_b70e194f2bce3284a66ccbb76ef18433.RData | Bin 0 -> 164 bytes ...unk-1_b70e194f2bce3284a66ccbb76ef18433.rdb | 0 ...unk-1_b70e194f2bce3284a66ccbb76ef18433.rdx | Bin 0 -> 123 bytes .../EstadMat-AllChap-ES-_cache/pdf/__packages | 7 + ...k-1_18643fec1ba1d5667430b5bd15880d75.RData | Bin 0 -> 163 bytes ...unk-1_18643fec1ba1d5667430b5bd15880d75.rdb | 0 ...unk-1_18643fec1ba1d5667430b5bd15880d75.rdx | Bin 0 -> 123 bytes docs/404.html | 130 +- docs/_main.pdf | Bin 3576989 -> 3759927 bytes docs/_main.tex | 2180 +++++++++++++++- docs/agradecimiento-y-fuentes-utilizadas.html | 130 +- ...03\263n-intensiva-y-multiple-testing.html" | 162 +- ...es-de-probabilidad-multidimensionales.html | 132 +- docs/distribuciones-notables.html | 132 +- ...imaci\303\263n-por-int\303\251rvalos.html" | 4 +- "docs/estimaci\303\263n-puntual-1.html" | 599 +++++ "docs/estimaci\303\263n-puntual.html" | 1369 ++++++++++ docs/grandes-muestras.html | 130 +- docs/index.html | 132 +- docs/inferencia-aplicada.html | 166 +- ...n-a-la-inferencia-estad\303\255stica.html" | 715 +++++- ...s-de-obtenci\303\263n-de-estimadores.html" | 897 +++++++ ...robabilidad-y-experimentos-aleatorios.html | 132 +- "docs/pruebas-de-hip\303\263tesis.html" | 166 +- docs/reference-keys.txt | 224 -- docs/search_index.json | 2 +- ...rias-y-distribuciones-de-probabilidad.html | 132 +- 49 files changed, 18430 insertions(+), 715 deletions(-) create mode 100644 07-estimacionPuntual.Rmd rename 07-estimacion.Rmd => 08-estimacionIntervalos.Rmd (96%) rename 08-pruebasHipotesis.Rmd => 09-pruebasHipotesis.Rmd (100%) rename 09-inferenciaAplicada.Rmd => 10-inferenciaAplicada.Rmd (100%) rename 10-computerIntensive.Rmd => 11-computerIntensive.Rmd (100%) create mode 100644 complementos/EstadMat-AllChap(ES).html create mode 100644 complementos/EstadMat-AllChap(ES).md create mode 100644 complementos/EstadMat-AllChap(ES).qmd create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap-icons.css create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap-icons.woff create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap.min.css create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap.min.js create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/clipboard/clipboard.min.js create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/anchor.min.js create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/popper.min.js create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/quarto-syntax-highlighting.css create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/quarto.js create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/tippy.css create mode 100644 complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/tippy.umd.min.js create mode 100644 complementos/EstadMat-AllChap-ES-.pdf create mode 100644 complementos/EstadMat-AllChap-ES-_cache/html/__packages create mode 100644 complementos/EstadMat-AllChap-ES-_cache/html/unnamed-chunk-1_b70e194f2bce3284a66ccbb76ef18433.RData create mode 100644 complementos/EstadMat-AllChap-ES-_cache/html/unnamed-chunk-1_b70e194f2bce3284a66ccbb76ef18433.rdb create mode 100644 complementos/EstadMat-AllChap-ES-_cache/html/unnamed-chunk-1_b70e194f2bce3284a66ccbb76ef18433.rdx create mode 100644 complementos/EstadMat-AllChap-ES-_cache/pdf/__packages create mode 100644 complementos/EstadMat-AllChap-ES-_cache/pdf/unnamed-chunk-1_18643fec1ba1d5667430b5bd15880d75.RData create mode 100644 complementos/EstadMat-AllChap-ES-_cache/pdf/unnamed-chunk-1_18643fec1ba1d5667430b5bd15880d75.rdb create mode 100644 complementos/EstadMat-AllChap-ES-_cache/pdf/unnamed-chunk-1_18643fec1ba1d5667430b5bd15880d75.rdx create mode 100644 "docs/estimaci\303\263n-puntual-1.html" create mode 100644 "docs/estimaci\303\263n-puntual.html" create mode 100644 "docs/m\303\251todos-de-obtenci\303\263n-de-estimadores.html" delete mode 100644 docs/reference-keys.txt diff --git a/06-introInferencia.Rmd b/06-introInferencia.Rmd index 2153f95..a7d4765 100644 --- a/06-introInferencia.Rmd +++ b/06-introInferencia.Rmd @@ -1,28 +1,554 @@ # Introducción a la inferencia estadística -:::: {.calloutBox .important} +## Inferencia estadística -Este capítulo está pendiente de ser introducido en los apuntes. +Para comenzar, vamos a definir cuál es el ámbito de estudio de la inferencia estadística desde su relación con el cálculo de probabilidades. El cálculo de probabilidades proporciona una teoría matemática que permite analizar (o modelizar) las propiedades de los fenómenos donde interviene el azar. +El cálculo de probabilidades utiliza como modelo básico para cualquier situación aleatoria el concepto de espacio de probabilidades $(\Omega, \mathcal{A}, P)$ y una variable aleatoria $X: \Omega \rightarrow \mathbb{R}$ definida sobre él. +El conocimiento de la distribución de la variable aleatoria permite: -La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). +1. Análisis deductivo de situaciones. Por ejemplo: si asumimos que el peso de los recién nacidos se distribuye según una distribución $N(\mu=$ $3 \mathrm{~kg}, \sigma=0.25 \mathrm{~kg}$ ), nos puede interesar calcular la probabilidad de que un recién nacido pese entre 2.9 y 3.1 kg , o encontrar unos valores centrados en la media entre los cuales esperemos que se encuentren el $10 \%(25 \%, 50 \%, 95 \%, \ldots)$ de los recién nacidos. +2. Modelización de situaciones aleatorias. Por ejemplo: si asumimos que el tiempo, en años, hasta que se estropea un componente de un ordenador se distribuye según una distribución exponencial $T \sim \xi(\lambda=$ $0.3)$, nos puede interesar calcular la probabilidad de que un componente dado dure más de 4 años. -:::: +En los casos anteriores nos encontramos en una situación muy común, donde ya disponemos de un modelo sobre el cual efectuamos los cálculos, pero del cual desconocemos la procedencia. Parece razonable, y de hecho es precisamente así, que si queremos adaptar un modelo a una situación debamos basarnos únicamente en las observaciones del fenómeno. +Si queremos saber cómo se distribuyen los pesos de los recién nacidos tomaremos unos cuantos, los pesaremos y después observaremos la distribución de estos. Puede que no sea necesario pesar a todos los recién nacidos (jde hecho, no es posible!), pero tampoco es posible deducir la ley por consideraciones puramente teóricas. +Ahora, en lugar de partir de un espacio de probabilidades, partiremos de unas observaciones $\left(x_{1}, \ldots, x_{n}\right)$ y el objetivo que perseguiremos será obtener información sobre la distribución de probabilidades de un fenómeno a partir de una observación no exhaustiva del mismo. -Se plantean los problemas que trata la inferencia. Se relaciona con el capítulo anterior a través de la idea del muestreo aleatorio simple y las distribuciones en el muestreo. +## Problemas de inferencia estadística -Se plantea el problema de la estimación como una forma de aproximación a las características de las distribucionesa partir de muestras aleatorias simples. +Hemos presentado como objetivo de la inferencia estadística inducir propiedades del modelo probabilístico que representa la población a partir de un conjunto de observaciones. +Según el tipo de conclusión que queramos extraer, diferenciaremos diferentes tipos de problemas: -Se abordan las distintas formas de construcción de estimadores. +1. Si queremos utilizar la información proporcionada por la muestra para obtener un pronóstico numérico único (es decir, una única aproximación numérica) de una o más características de la población, tenemos un problema de estimación puntual. +2. Si queremos obtener información sobre un rango de valores dentro del cual podamos afirmar, con un cierto grado de confianza, que podemos capturar un parámetro desconocido de la distribución, hablamos de estimación por intervalo. +3. Si lo que queremos hacer es decidir si podemos aceptar o debemos rechazar una afirmación sobre la distribución de probabilidad del fenómeno estudiado, hablamos de contraste de hipótesis. Este contraste puede ser: -## Los problemas de la inferencia estadística. +- Paramétrico: si la afirmación (la hipótesis) se refiere a los parámetros de la distribución. +- No paramétrico: si la afirmación es sobre la forma de la distribución. -## Muestreo y distribuciones en el muestreo. -## La verosimilitud y su papel en la inferencia estadística +## Distribución de la población -## El problema de la estimación. Tipos de estimadores. +Todo problema de inferencia está motivado por un cierto grado de desconocimiento de la ley de probabilidades que rige un determinado fenómeno aleatorio. +El caso más sencillo que encontramos es cuando nos interesa una cierta variable $X$ con una función de distribución $F$ desconocida en mayor o menor grado. +La distribución que teóricamente sigue la variable de interés $X$ en la población recibe el nombre de distribución teórica o distribución de la población. La distribución de la población es importante ya que, a menudo, se utiliza para determinar la distribución de alguna característica de los individuos de una población. +En los modelos de la inferencia estadística indicamos el relativo grado de desconocimiento sobre la distribución $F$ en función de su pertenencia a una familia $\mathcal{F}$ de distribuciones. Por ello, en lugar de explicar que $X \sim F=F_{0}$ indicaremos que $X \sim F \in \mathcal{F}$, donde $\mathcal{F}$ puede ser un conjunto más o menos amplio de distribuciones de probabilidad, como todas las distribuciones normales o las distribuciones simétricas o las distribuciones discretas sobre $\mathbb{N}$. +Muchas veces, la distribución poblacional $F$ está completamente especificada excepto por el valor de algún parámetro o parámetros. En este caso, podemos concretar más la forma de la familia de distribuciones: -## Métodos de obtención de estimadores. Estimadores máximo verosímiles y estimadores bayesianos. +$$ +X \sim F \in \mathcal{F}=\left\{F_{\theta}: \theta \in \Theta \subset \mathbb{R}^{k}\right\} +$$ -## Propiedades de los estimadores. +donde $\Theta$ es el espacio de los $k$ parámetros. +La familia de posibles distribuciones de probabilidad para $X$ se denomina, genéricamente, modelo estadístico y se indica como: $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$. Veamos algunos ejemplos. +Ejemplo 1.3.1 Supongamos que $X$ representa la duración de un componente electrónico que no envejece, solo se estropea. Es decir, si en un instante $t$ está funcionando, su estado es el mismo que en cualquier momento del pasado y la distribución del tiempo hasta que se estropee es la misma que al principio. Esta propiedad se denomina falta de memoria. +Un modelo razonable para esta situación lo da la distribución de Weibull que, en este caso, podemos definir a través de la siguiente función de densidad: + +$$ +f_{\theta}(x)= \begin{cases}\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}} & \text { si } x \geq 0 \\ 0 & \text { si } x<0\end{cases} +$$ + +La familia de distribuciones asociada es + +$$ +\mathcal{F}=\left\{F_{\theta}: \theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty)\right\} +$$ + +Ejemplo 1.3.2 Supongamos que queremos determinar la masa de un cierto tipo de partículas elementales a partir de las observaciones en una cámara de burbujas. En cada observación obtenemos un dato de la masa de la partícula $x_{i}$ y asociado con ella un cierto error de medida $\varepsilon$. Si la masa común de cada una de ellas es $\mu$, entonces podemos escribir: + +$$ +x_{i}=\mu+\varepsilon_{i} \quad i=1, \ldots, n +$$ + +donde la distribución $\varepsilon_{i} \sim F$ es desconocida. Nuestro objetivo es obtener información sobre $F$. +Si admitimos que $P\left(\varepsilon_{i}<0\right)=P\left(\varepsilon_{i}>0\right)$, según el grado de exigencia que queramos tener, podemos suponer: + +- Con un enfoque de inferencia paramétrica: + +$$ +X \sim F \in \mathcal{F}=\left\{N(0, \sigma): \sigma \in \mathbb{R}^{+}\right\} +$$ + +- Con un enfoque de inferencia no paramétrica: + +$$ +X \sim F \in \mathcal{F}=\{\text { Distribuciones simétricas }\} +$$ + +## Muestra aleatoria simple + +### Definición + +Para estudiar un problema de inferencia estadística analizamos una muestra de tamaño $n$. Se trata de escoger $n$ individuos o elementos de la población $\Omega$ + +$$ +\omega_{1}, \omega_{2}, \ldots, \omega_{n} +$$ + +que sean representativos. El valor de $n$ y la forma de elección de los individuos de la muestra es una materia de Estadística llamada Muestreo estadístico. Por ahora y para simplificar, solo hace falta decir que la elección se hace de forma que todos los individuos tienen la misma probabilidad de estar presentes en la muestra, si es necesario con reemplazo, y que el valor de $n$ está dado. +En realidad, lo que nos interesa verdaderamente no son los individuos de la muestra sino las mediciones de una característica $X$ sobre ellos. Es decir, los valores de una variable aleatoria $X$ sobre estos individuos + +$$ +X\left(\omega_{1}\right)=x_{1}, X\left(\omega_{2}\right)=x_{2}, \ldots, X\left(\omega_{n}\right)=x_{n} +$$ + +También podemos pensar que los valores muestrales $x_{1}, x_{2}, \ldots, x_{n}$ son generados directamente desde la variable aleatoria. En todo caso, los valores muestrales no son únicos y podemos generar varias muestras + +$$ +\begin{array}{ccccc} +x_{1}^{1} & x_{2}^{1} & x_{3}^{1} & \ldots & x_{n}^{1} \\ +x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\ +\vdots & \vdots & \vdots & & \vdots \\ +x_{1}^{s} & x_{2}^{s} & x_{3}^{s} & \ldots & x_{n}^{s} +\end{array} +$$ + +Si todos los valores son independientes, de la misma forma que $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ es una muestra generada por $X$, podemos considerar todos los $x_{1}^{i} \quad i=1, \ldots, s$ provenientes de una variable aleatoria $X_{1}$ con la misma distribución que $X$ $X_{1} \stackrel{d}{=} X$ y que genera los primeros valores, los $x_{i}^{2}$ provenientes de una variable aleatoria $X_{2} \stackrel{d}{=} X$ que genera los segundos y así sucesivamente. +Todo esto nos lleva a definir el concepto de muestra aleatoria de una forma muy conveniente para trabajar con ella: + +Definició 1.1 Una muestra aleatoria simple de tamaño $n$ de una variable aleatoria $X$ con distribución $F$ es una colección de $n$ variables aleatorias independientes $X_{1}, X_{2}, \ldots, X_{n}$ con la misma distribución $F$ que $X$. Esto se suele indicar como: + +$$ +\mathbf{X}=X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} X +$$ + +Definició 1.2 El conjunto $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ de observaciones concretas de $X_{1}, X_{2}, \ldots, X_{n}$ se denomina realización de la muestra. + +### Distribución de la muestra + +Una muestra aleatoria simple, como vector aleatorio $n$-dimensional que es, tiene una distribución conjunta o distribución de la muestra que depende de $F$, pero que obviamente es diferente, ya que en particular $X$ y $\mathbf{X}$ tienen dimensiones diferentes. Sin embargo, gracias a la independencia de las variables $X_{1}, X_{2}, \ldots, X_{n}$, la función de distribución conjunta de $\mathbf{X}$, que podría ser muy complicada, toma una forma muy sencilla. En resumen: + +Definició 1.3 Se llama distribución de la muestra de una variable aleatoria $X \sim F$ a la distribución del vector aleatorio $n$-dimensional $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ + +$$ +G\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}\right) F\left(x_{2}\right) \cdots F\left(x_{n}\right) +$$ + +En los casos particulares en que $X$ sea discreta o absolutamente continua, la distribución conjunta de la muestra suele expresarse mediante la función de masa de probabilidad o la función de densidad: + +- Para variables discretas: + +$$ +\begin{aligned} +p_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\ +& =\prod_{i=1}^{n} P\left(X=x_{i}\right)=\prod_{i=1}^{n} p_{F}\left(x_{i}\right), +\end{aligned} +$$ + +- Para variables absolutamente continuas: + +$$ +g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right) +$$ + +Ejemplo 1.4.1 Una moneda tiene una probabilidad $\theta$ de salir cara. Queremos estudiar la variable aleatoria: + +$$ +X= \begin{cases}1 & \text { si sale cara } \\ 0 & \text { si sale cruz }\end{cases} +$$ + +con densidad $P\{X=1\}=\theta, P\{X=0\}=1-\theta$. Es decir + +$$ +X \sim F_{\theta} \in \mathcal{F}=\left\{F_{\theta}=B(1, \theta): \theta \in(0,1)\right\} +$$ + +Supongamos que hacemos tres lanzamientos. Las posibles muestras son: + +| $X_{1}$ | $X_{2}$ | $X_{3}$ | Probabilidad | +| :---: | :---: | :---: | :---: | +| 1 | 1 | 1 | $\theta^{3}$ | +| 1 | 0 | 0 | $\theta(1-\theta)^{2}$ | +| 0 | 1 | 0 | $\theta(1-\theta)^{2}$ | +| 0 | 0 | 1 | $\theta(1-\theta)^{2}$ | +| 1 | 0 | 1 | $\theta^{2}(1-\theta)$ | +| 1 | 1 | 0 | $\theta^{2}(1-\theta)$ | +| 0 | 1 | 1 | $\theta^{2}(1-\theta)$ | +| 0 | 0 | 0 | $(1-\theta)^{3}$ | + +El muestreo ha especificado la distribución conjunta de la muestra a través de la distribución desconocida $F_{\theta}$. Si escribimos la función de probabilidades de la variable aleatoria como $f_{\theta}(x)=\theta^{x}(1-\theta)^{1-x}$, entonces la función de probabilidades de la muestra la podemos expresar como: + +$$ +g_{\theta}\left(x_{1}, x_{2}, x_{3}\right)=\theta^{x_{1}+x_{2}+x_{3}}(1-\theta)^{3-\left(x_{1}+x_{2}+x_{3}\right)} +$$ + +## Estadísticos + +### Definición + +Para lograr el objetivo de realizar inferencias sobre la población a partir de la muestra, solemos basarnos en la realización de cálculos sobre la muestra para tratar de obtener la información que deseamos. En este proceso aparecen los conceptos de estadístico y el caso particular, que más nos interesa a nosotros, de estimador. Un estadístico es una función de la muestra que no depende del valor del parámetro. + +Definició 1.4 Dada una muestra aleatoria simple $X_{1}, X_{2}, \ldots, X_{n}$ y una función medible $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}$, entonces $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ es un vector aleatorio (variable aleatoria cuando $k=1$ ). Si $T$ no depende de $\theta$ (donde $\theta$ es un parámetro a especificar en $F_{\theta}$ ), entonces $T$ recibe el nombre de estadístico. + +Solo por su nombre, parece evidente que un estimador de un parámetro $\theta$ será alguna función de la muestra que sirva para aproximar, en algún sentido, el valor desconocido de $\theta$. Si añadimos la condición razonable de que un estimador no pueda tomar valores que no puede tomar el parámetro, podemos dar la siguiente definición. + +Definició 1.5 Un estimador de un parámetro $\theta$ es un estadístico $T$ cuyo recorrido es el espacio de los parámetros, es decir: + +$$ +\begin{array}{ccc} +T: & \mathbb{R}^{n} & \longrightarrow \\ +\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \longrightarrow \\ +\left(t_{1}, \ldots, t_{k}\right) \quad \in \Theta \subset \mathbb{R}^{k} +\end{array} +$$ + +Aquí tienes el texto traducido al castellano manteniendo toda la notación en LaTeX: + +## Distribución en el muestreo de un estadístico + +Dado un estadístico $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ nos interesa conocer su distribución de probabilidad, ya que para hacer inferencia necesitaremos hacer cálculos del tipo + +$$ +P\left[T\left(X_{1}, X_{2}, \ldots, X_{n}\right)>t_{0}\right] +$$ + +La distribución de probabilidad del estadístico se denomina distribución muestral o distribución en el muestreo del estadístico. Encontrarla es un problema que puede ser desde bastante sencillo hasta extremadamente complicado. Algunas de las técnicas utilizadas para intentar resolverlo son las siguientes: + +- Uso de la técnica de cambio de variable. +- Uso de la función generadora de momentos. +- Aplicación del Teorema Central del Límite. + +Ejemplo 1.5.1 Sea $X \sim F_{\theta}$ una variable aleatoria absolutamente continua con densidad + +$$ +f_{\theta}(x)=e^{-(x-\theta)} e^{-e^{-(x-\theta)}} \quad \theta \in \mathbb{R} +$$ + +y consideremos el estadístico + +$$ +T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} e^{-X_{i}} +$$ + +Si aplicamos el teorema de cambio de variable unidimensional, se obtiene fácilmente que la variable aleatoria $Y=e^{-X}$ sigue una distribución exponencial de parámetro $e^{-\theta}$, de donde la suma seguirá una distribución gamma $T \sim \Gamma\left(e^{-\theta}, n\right)$. + +Ejemplo 1.5.2 Supongamos que $X$ representa el número de averías en una máquina al cabo de un mes. Este valor varía mes a mes. Sea $\bar{X}$ la media de averías en $n$ meses. Si $X$ sigue una distribución de Poisson $P(\lambda)$, ¿cuál es la distribución de $\bar{X}$ ? +Como la suma de Poisson i.i.d. es $\sum_{i=1}^{n} X_{i} \sim P(n \lambda)$ + +$$ +P[\bar{X}=r]=P\left[\sum_{i=1}^{n} X_{i}=n r\right]=\frac{e^{-n \lambda}(n \lambda)^{n r}}{(n r)!} +$$ + +Como ocurre en este ejemplo, uno de los estadísticos para el cual a menudo deseamos calcular la distribución en el muestreo es la media aritmética. Una manera útil de hacerlo es con la función generadora de momentos y la aplicación del siguiente lema. + +Lema 1 Si $X$ es una v.a. con $M_{X}(t)$ como función generadora de momentos, entonces la f.g.m. de $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ es + +$$ +M_{\bar{X}_{n}}(t)=\left[M_{X}(t / n)\right]^{n} +$$ + +### Demostración: + +La demostración es inmediata a partir de la definición o por las propiedades de la función generadora de momentos. + +Si aplicamos directamente la definición de la f.g.m tenemos: + +$$ +\begin{aligned} +E\left(e^{t \bar{X}_{n}}\right) & =E\left(e^{t \frac{1}{n} \sum_{i=1}^{n} X_{i}}\right)=E\left(\prod_{i=1}^{n} e^{\frac{t}{n} X_{i}}\right)=\prod_{i=1}^{n} E\left(e^{\frac{t}{n} X_{i}}\right) \\ +& =\prod_{i=1}^{n} M_{X_{i}}(t / n)=\left[M_{X}(t / n)\right]^{n} +\end{aligned} +$$ + +Si usamos las propiedades de la f.g.m tenemos: + +1. Dado que $M_{a X}(t)=M_{X}(a t)$ y si $a=\frac{1}{n}$, entonces $M_{\bar{X}}(t)=M_{\sum_{i=1}^{n} X_{i}}(t / n)$. +2. $M_{\sum_{i=1}^{n} X_{i}}(t / n) \stackrel{\text { ind }}{=} \prod_{i=1}^{n} M_{X_{i}}(t / n) \stackrel{\text { id }}{=}\left[M_{X}(t / n)\right]^{n}$. + +Ejemplo 1.5.3 Para una variable aleatoria $X \sim N(\mu, \sigma)$ y por tanto $M_{X}(t)=$ $\exp \left(t \mu+\frac{t^{2} \sigma^{2}}{2}\right)$, entonces + +$$ +\begin{aligned} +M_{\bar{X}_{n}}(t) & =\left[\exp \left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right]^{n} \\ +& =\exp \left[n\left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right] \\ +& =\exp \left[t \mu+\frac{1}{2} t^{2}\left(\frac{\sigma}{\sqrt{n}}\right)^{2}\right] +\end{aligned} +$$ + +que es la función generadora de momentos de una variable $N(\mu, \sigma / \sqrt{n})$. + +## La distribución empírica + +### Definición + +En el apartado anterior hemos visto que a partir de una muestra $X_{1}, X_{2}, \ldots, X_{n}$ es interesante considerar la distribución muestral como la distribución conjunta del vector aleatorio $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, sin que intervenga una realización concreta de la muestra $x_{1}, x_{2}, \ldots, x_{n}$. Un enfoque diferente consiste en asociar una distribución particular directamente a las observaciones $x_{1}, x_{2}, \ldots, x_{n}$ con la intención de que, en tanto que la muestra "representa" la v.a. $X$, esta distribución asociada a la muestra $F_{n}(x)$ emule la distribución de la población. Esta distribución se denomina distribución empírica o distribución muestral y se define así: + +$$ +F_{n}(x)=\frac{k(x)}{n} +$$ + +donde $k(x)$ es el número de datos muestrales menores o iguales que $x$. En la práctica se construye por ordenación de la muestra + +$$ +x_{1}, x_{2}, \ldots, x_{n} \longrightarrow x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} +$$ + +y con la siguiente definición: + +$$ +F_{n}(x)= \begin{cases}0 & \text { si } x0 +$$ + +De modo que resulta que $Y=\sum_{i=1}^{k} X_{i}^{2}$ tiene una distribución gamma $G\left(\frac{1}{2}, \frac{k}{2}\right)$ y su f.g.m. es + +$$ +M(t)=(1-2 t)^{-k / 2} \quad \text { si } t<1 / 2 +$$ + +#### Propiedades + +1. Si recordamos que para $X \sim G(p, \alpha)$ entonces $E(X)=\frac{p}{\alpha} \mathrm{y} \operatorname{var}(X)=$ $\frac{p}{\alpha^{2}}$, resulta + +$$ +E(Y)=\frac{k / 2}{1 / 2}=k \quad \operatorname{var}(Y)=\frac{k / 2}{1 / 4}=2 k +$$ + +2. De la aditividad (reproductividad) de las leyes gamma se deduce también la reproductividad de la chi-cuadrado $\chi^{2}$, es decir + +$$ +Y_{1}^{2} \sim \chi_{n_{1}}^{2}, Y_{2}^{2} \sim \chi_{n_{2}}^{2} \quad \text { indep. } \longrightarrow Y_{1}^{2}+Y_{2}^{2} \sim \chi_{n_{1}+n_{2}}^{2} +$$ + +3. Como $Y$ es la suma de v.a. independientes $X_{i}^{2} \sim \chi_{1}^{2}$ se verifica + +$$ +\frac{Y-k}{\sqrt{2 k}} \xrightarrow{\mathcal{L}} N(0,1) +$$ + +Pero es mejor la aproximación de Fisher + +$$ +\sqrt{2 \chi_{k}^{2}}-\sqrt{2 k-1} \xrightarrow{\mathcal{L}} N(0,1) +$$ + +de donde se obtiene para valores de $k \geq 30$ + +$$ +\chi_{k}^{2} \stackrel{\text { aprox }}{=} \frac{1}{2}(Z+\sqrt{2 k-1})^{2} +$$ + +donde $Z \sim N(0,1)$. + +### Distribución $t$ de Student + +Sean $Y, Z$ dos variables aleatorias independientes con distribuciones $Z \sim$ $N(0,1)$ y $Y \sim \chi_{m}^{2}$, entonces se dice que la variable aleatoria + +$$ +t=\frac{Z}{\sqrt{Y / m}} +$$ + +tiene una distribución $t$ de Student con $m$ grados de libertad. +Su función de densidad es + +$$ +f(t)=\frac{\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \sqrt{m \pi}}\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \quad t \in \mathbb{R} +$$ + +Esta expresión se obtiene de la resolución del correspondiente problema de cambio de variable para encontrar la distribución de un cociente. + +Se trata de una distribución unimodal y simétrica respecto al cero. La distribución depende de $m$, que llamamos los grados de libertad (g.l.). A medida que $m$ crece, la forma acampanada se va "cerrando", acercándose a la ley normal: + +$$ +\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \xrightarrow{m \rightarrow \infty} e^{-t^{2} / 2} +$$ + +Este hecho es muy relevante en inferencia estadística. + +#### Propiedades + +1. Si $m=1$, entonces la $t$ es una Cauchy y, en particular, no tiene esperanza. +2. Para $m>1, E(t)=0$ y para $m>2, \operatorname{var}(t)=m /(m-2)$. +3. Cuando $m \rightarrow \infty$, entonces $t \xrightarrow{P} N(0,1)$. + +### La distribución $F$ de Fisher + +Esta distribución aparece cuando se considera un cociente entre dos distribuciones chi-cuadrado $U \sim \chi_{m}^{2}, V \sim \chi_{n}^{2}$ con $m$ y $n$ g.l. respectivamente. En concreto decimos que la variable aleatoria + +$$ +F=\frac{U / m}{V / n} +$$ + +sigue una distribución $F$ de Fisher con $m$ y $n$ grados de libertad. La función de densidad tiene la forma: + +$$ +f(x)=\frac{m^{m / 2} n^{n / 2} \Gamma[(m+n) / 2]}{\Gamma(m / 2) \Gamma(n / 2)} \cdot \frac{x^{m / 2-1}}{(m x+n)^{(m+n) / 2}} \quad \text { para } x>0 +$$ + +#### Propiedades + +1. La esperanza y la varianza son + +$$ +E(F)=\frac{n}{n-2} \quad \operatorname{var}(F)=\frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)} +$$ + +2. Esta distribución tiene una moda en $x=\frac{m-2}{m} \cdot \frac{n}{n+2}$, siempre que $m>2$. +3. Si $F \sim F_{m, n}$, entonces resulta que $1 / F \sim F_{n, m}$ y por lo tanto: + +$$ +P(F \leq x)=P\left(\frac{1}{F} \geq \frac{1}{x}\right)=1-P\left(\frac{1}{F} \leq \frac{1}{x}\right) +$$ + +Esta propiedad es de gran utilidad en el uso de las tablas. +4. Cuando $n \rightarrow \infty, F_{m, \infty} \xrightarrow{\mathcal{L}} \chi_{m}^{2}$. +5. Cuando $m \rightarrow \infty$ y $n \rightarrow \infty$, entonces $F_{m, n} \xrightarrow{\mathcal{L}} 1$. diff --git a/07-estimacionPuntual.Rmd b/07-estimacionPuntual.Rmd new file mode 100644 index 0000000..3c5a5ba --- /dev/null +++ b/07-estimacionPuntual.Rmd @@ -0,0 +1,1433 @@ +# Estimación puntual + +## El problema de la estimación puntual + +Informalmente, la estimación de parámetros consiste en buscar aproximaciones a los valores de estos, calculables a partir de una muestra, que sean lo más precisas posible. El problema, claro, es que para medir cuán precisas son estas aproximaciones sería necesario conocer los valores de los parámetros y, como estos son siempre desconocidos, debemos basarnos en el uso de estimadores con buenas propiedades que, en algún sentido, nos garanticen esa proximidad. +Más formalmente podemos plantear el problema de la siguiente manera: +Sea $X$ una v.a. con distribución $F_{\theta}$ donde $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right) \in \Theta \subset \mathbb{R}^{k}$ y sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra de $n$ v.a. de $X$. El problema de la estimación puntual consiste en obtener alguna aproximación de $\theta$ en base a la información disponible en la muestra mediante un estimador de $\theta$ que definimos a continuación. +Definició 2.1 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X$ con distribución $F_{\theta}$ donde $\theta \in \Theta \subset \mathbb{R}^{k}$. Un estadístico $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ se denomina un estimador puntual de $\theta$ si $T$ es una aplicación de $\mathbb{R}^{n}$ en $\Theta$, es decir, si toma valores sobre el mismo conjunto que los parámetros. + +Ejemplo 2.1.1 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de una v.a. de Poisson $X \sim P(\lambda)$. Para estimar $\lambda$ podemos utilizar: + +$$ +\begin{aligned} +& T_{1}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\ +& T_{2}=s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} +\end{aligned} +$$ + +ya que $E(X)=\operatorname{var}(X)=\lambda$, pero también + +$$ +\begin{aligned} +T_{3} & =\frac{2}{n(n+1)} \sum_{i=1}^{n} X_{i} \cdot i \\ +T_{4} & =X_{i} +\end{aligned} +$$ + +Ejemplo 2.1.2 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una m.a.s. de $X \sim B(1, p)$, con $p$ desconocido. Podemos estimar p de las siguientes maneras: + +$$ +\begin{aligned} +& T_{1}=\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i} \\ +& T_{2}=1 / 2 \\ +& T_{3}=\left(X_{1}+X_{2}\right) / 2 +\end{aligned} +$$ + +En cada caso resulta claro que algunos estimadores no son muy razonables mientras que la decisión entre los otros no está necesariamente clara. Básicamente debemos ocuparnos de dos problemas: + +- Dado un modelo estadístico $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$, ¿cómo podemos obtener estimadores de $\theta$ que tengan "buenas" propiedades? +- Dado varios estimadores para un mismo parámetro ¿cómo podemos escoger el mejor en base a algún criterio? + +Para poder alcanzar estos dos objetivos empezaremos por estudiar las propiedades de los estimadores, así como las medidas de optimalidad que podremos utilizar para decidir entre varios estimadores. +De entrada nos restringiremos al caso en que $\Theta \subseteq \mathbb{R}$ o en que queremos aproximar alguna función $g(\theta)$ de los parámetros donde $g$ es del tipo $g: \Theta \rightarrow$ $\mathbb{R}$. + +### Criterios de optimalidad de estimadores. El Riesgo + +Una forma de poder comparar entre diversos estimadores consiste en definir una función de pérdida que nos permita cuantificar de alguna manera la pérdida, o coste asociado, al estimar el valor real del parámetro, es decir, $\theta$, mediante la aproximación que proporciona un estimador, es decir, $t$. + +Definició 2.2 Una función de pérdida es una aplicación + +$$ +\begin{aligned} +L: & \Theta \times \Theta \rightarrow \mathbb{R} \\ +& (\theta, t) \rightarrow L(\theta, t) +\end{aligned} +$$ + +que verifica: +a) $L(\theta, t) \geq 0, \quad \forall \theta, t \in \Theta$ +b) $L(\theta, t)=0$, si $\theta=t$ +c) $L(\theta, t) \leq L\left(\theta, t^{\prime}\right)$, si $d(\theta, t) \leq d\left(\theta, t^{\prime}\right)$ donde $d$ es una distancia en $\Theta$. + +Por ejemplo, son funciones de pérdida: + +$$ +\begin{gathered} +L_{1}(\theta, t)=|\theta-t| \quad L_{2}(\theta, t)=(\theta-t)^{2} \\ +L_{3}(\theta, t)=\left|\frac{\theta-t}{\theta}\right| \quad L_{4}(\theta, t)=\left(\frac{\theta-t}{\theta}\right)^{2} \\ +L_{5}(\theta, t)= \begin{cases}c>0 & \text { si }|\theta-t|>\epsilon \\ +0 & \text { si }|\theta-t| \leq \epsilon\end{cases} +\end{gathered} +$$ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +### El error cuadrático medio + +Una de las funciones de pérdida más usuales es la función de pérdida cuadrática $L_{2}(\theta, t)=(\theta-t)^{2}$. Uno de los motivos de su uso es que el riesgo asociado a esta función de pérdida $E_{\theta}\left[(\theta-T)^{2}\right]$, que llamamos error cuadrático medio $E Q M_{T}$, representa una medida de la variabilidad del estimador $T$ en torno a $\theta$ semejante a la medida de dispersión en torno a la media que representa la varianza. +Además, del desarrollo de esta expresión se obtiene un interesante resultado que muestra cuáles pueden ser las propiedades más interesantes para un estimador. +Sea $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ y sea $T$ un estimador de $\theta$. El error cuadrático medio de $T$ para estimar $\theta$ vale + +$$ +E Q M_{T}(\theta)=E_{\theta}\left[(\theta-T)^{2}\right]=E\left[\theta^{2}-2 \theta T+T^{2}\right]=\theta^{2}-2 \theta E_{\theta}(T)+E_{\theta}\left(T^{2}\right) +$$ + +Ahora, sumando y restando $\left(E_{\theta}(T)\right)^{2}$, obtenemos + +$$ +\begin{aligned} +E Q M_{T}(\theta) & =E_{\theta}\left(T^{2}\right)-\left(E_{\theta}(T)\right)^{2}+\left(E_{\theta}(T)\right)^{2}+\theta^{2}-2 \theta E_{\theta}(T)= \\ +& =\operatorname{var}(T)+\left(E_{\theta}(T)-\theta\right)^{2} +\end{aligned} +$$ + +El término $\left(E_{\theta}(T)-\theta\right)^{2}$ es el cuadrado del sesgo de $T$, que se define como + +$$ +b_{\theta}(T)=E_{\theta}(T)-\theta +$$ + +Definició 2.5 El error cuadrático medio $E Q M_{T}(\theta)$, o simplemente $E Q M$, de un estimador $T$ para estimar el parámetro $\theta$ es la suma de su varianza más el cuadrado de la diferencia entre su valor medio y el verdadero valor del parámetro, que llamamos sesgo. + +Si en la búsqueda de estimadores de mínimo riesgo nos basamos en la función de pérdida cuadrática, parece que los estimadores más deseables deberían ser aquellos en los que la varianza y el sesgo sean lo más pequeños posibles. Idealmente, quisiéramos reducir ambas cantidades a la vez. En la práctica, sin embargo, observamos que, en general, no suele ser posible reducir simultáneamente la varianza y el sesgo. Además, incluso si fuera práctico calcular el $E Q M$ para cada estimador, encontraríamos que, para la mayoría de las familias de probabilidad $P_{\theta}$, no existiría ningún estimador que minimizase el $E Q M$ para todos los valores de $\theta$. Es decir, que un estimador puede tener un $E Q M$ mínimo para algunos valores de $\theta$, mientras que otro lo tendrá en otros valores de $\theta$. + +Ejemplo 2.1.4 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X \sim$ $N(\mu, \sigma)$, donde suponemos $\sigma$ conocida, y sean + +$$ +T_{1}=\bar{X} \quad T_{2}=\frac{\sum_{i=1}^{n} X_{i}}{n+1} +$$ + +Calculando la media y la varianza de los estimadores, tenemos + +$$ +\begin{array}{lll} +E_{\mu}\left(T_{1}\right)=\mu & \Rightarrow b_{T_{1}}(\mu)=0 & \operatorname{var}_{\mu}\left(T_{1}\right)=\frac{\sigma^{2}}{n} \\ +E_{\mu}\left(T_{2}\right)=\frac{n}{n+1} \mu & \Rightarrow b_{T_{2}}(\mu)=\frac{-1}{n+1} \mu & \operatorname{var}_{\mu}\left(T_{2}\right)=\frac{n}{(n+1)^{2}} \sigma^{2} +\end{array} +$$ + +de donde + +$$ +\begin{aligned} +& E Q M_{\mu}\left(T_{1}\right)=\operatorname{var}\left(T_{1}\right)=\frac{\sigma^{2}}{n} \\ +& E Q M_{\mu}\left(T_{2}\right)=\frac{1}{(n+1)^{2}} \mu^{2}+\frac{n}{(n+1)^{2}} \sigma^{2} +\end{aligned} +$$ + +que son respectivamente una recta y una parábola. De manera que para algunos valores de $\mu$ tenemos que $E Q M_{\mu}\left(T_{1}\right)0 \quad \lim _{n \rightarrow \infty} P\left\{\left|T_{n}-g(\theta)\right|>\varepsilon\right\}=0 +$$ + +Observemos que: + +1. Se trata de un concepto asintótico: Hablamos de ?sucesiones de estimadores consistentes? más que de estimadores propiamente dichos. +2. La definición puede reforzarse si, en lugar de considerar convergencia en probabilidad (consistencia débil), consideramos convergencia casi segura o en media cuadrática: + +- $T_{n}$ es fuertemente consistente si $T_{n} \xrightarrow{\text { c.s. }} g(\theta)$ +- $T_{n}$ es consistente en media- $r$ si $E_{\theta}\left[\left|T_{n}-g(\theta)\right|^{r}\right] \longrightarrow 0$ + +Ejemplo 2.2.5 Muchos estimadores consistentes lo son como consecuencia de las leyes de los grandes números. Recordemos que la Ley débil de los Grandes Números (Tchebychev) afirma que, dada una sucesión de v.a. independientes e idénticamente distribuidas con medias $\mu<\infty$ y varianzas $\sigma^{2}<\infty$, entonces + +$$ +\bar{X}_{n} \xrightarrow{P} \mu +$$ + +Como consecuencia de esta ley y dado que una muestra aleatoria simple es i.i.d., por definición, podemos afirmar que $\bar{X}_{n}$ es consistente para estimar $\mu$. + +Ejemplo 2.2.6 La sucesión $T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}$ es consistente para estimar el máximo de una distribución uniforme en $[0, \theta]$ : + +$$ +P\left[\left|\max _{1 \leq i \leq n}\left\{X_{i}\right\}-\theta\right|>\varepsilon\right]=P\left[\theta-\max _{1 \leq i \leq n}\left\{X_{i}\right\}>\varepsilon\right] +$$ + +ya que $X_{i} \in[0, \theta] y$, por lo tanto, podemos escribir: + +$$ +\begin{aligned} +P\left[\theta-\varepsilon>\max _{1 \leq i \leq n}\left\{X_{i}\right\}\right] & =P\left[\max _{1 \leq i \leq n}\left\{X_{i}\right\}<\theta-\varepsilon\right] \\ +& =\left(\frac{\theta-\varepsilon}{\theta}\right)^{n}=\left(1-\frac{\varepsilon}{\theta}\right)^{n} \underset{n \rightarrow \infty}{\longrightarrow} 0 +\end{aligned} +$$ + +Es inmediato comprobar que + +$$ +E\left[\left(\theta-T_{n}\right)^{2}\right]=\left(1-\frac{2 n}{n+1}+\frac{n}{n+2}\right) \theta^{2} +$$ + +que también tiende a cero cuando $n \rightarrow \infty$, y por lo tanto $T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}$ también es consistente en media cuadrática. + +Normalmente, cuando se habla de consistencia, se hace referencia a la convergencia en probabilidad, es decir, $T_{n}$ es consistente si $\lim _{n \rightarrow \infty} P\left(\left|T_{n}-g(\theta)\right|>\right.$ $\varepsilon)=0$. Si el estimador no tiene sesgo, estamos en la situación de aplicar la desigualdad de Tchebychev ${ }^{1}$ : +Si $E\left(T_{n}\right)=g(\theta)$, entonces + +$$ +P\left(\left|T_{n}-g(\theta)\right|>\varepsilon\right)=P\left(\left|T_{n}-E\left(T_{n}\right)\right|>\varepsilon\right) \underset{\text { Tchebychev }}{\leq} \frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} +$$ + +Así, para intentar establecer la consistencia de $T$, debemos probar que + +$$ +\frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +$$ + +Ejemplo 2.2.7 Sea $M_{n}=\sum_{i=1}^{n} a_{i} X_{i}$ una combinación lineal de los valores de la muestra con coeficientes tales que $\sum_{i=1}^{n} a_{i}=1$ y algún $a_{i}>0$. ¿Es consistente $M_{n}$ para estimar $E(X)$ ? +Comencemos por ver que $M_{n}$ no tiene sesgo + +$$ +\begin{aligned} +E\left(M_{n}\right) & =E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} E\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i} E\left(X_{i}\right) \stackrel{\text { i.i.d. }}{=} \sum_{i=1}^{n} a_{i} E(X)=E(X) +\end{aligned} +$$ + +[^1]Calculemos la varianza + +$$ +\begin{aligned} +\operatorname{var}\left(M_{n}\right) & =\operatorname{var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i}^{2} \operatorname{var}\left(X_{i}\right)=\operatorname{var}(X) \sum_{i=1}^{n} a_{i}^{2} +\end{aligned} +$$ + +Si aplicamos ahora la desigualdad de Tchebychev tenemos: + +$$ +P\left(\left|M_{n}-\mu\right|>\varepsilon\right) \leq \frac{\sigma^{2} \sum a_{i}^{2}}{\varepsilon^{2}} +$$ + +lo cual no tiene por qué tender a 0 cuando $n \rightarrow \infty$, y por lo tanto no podemos afirmar que el estimador es consistente. Por ejemplo, si $a_{1}=\frac{1}{2}, a_{2}=a_{3}=$ $\cdots=a_{n}=\frac{1}{2(n-1)}$ tendremos que $\lim _{n \rightarrow \infty} \sum a_{i}^{2}=\frac{1}{4}$. +Observamos que el resultado obtenido no puede asegurar la consistencia de $M_{n}$ para cualquier familia de coeficientes $a_{1}, \ldots, a_{n}$, aunque, obviamente, el estimador es consistente para alguno (caso $a_{i}=1 / n$ ). + +## Propiedades de los estimadores consistentes + +Muchas de las propiedades de los estimadores son consecuencia directa de las propiedades de la convergencia en probabilidad, que se pueden revisar, por ejemplo, en Martin Pliego (1998a) capítulo 11. + +1. Si $T_{n}$ es consistente para estimar $\theta$ y $g: \mathbb{R} \rightarrow \mathbb{R}$ es una función continua, entonces $g\left(T_{n}\right)$ es consistente para estimar $g(\theta)$. +2. Si $T_{1 n}$ y $T_{2 n}$ son consistentes para estimar $\theta_{1}$ y $\theta_{2}$ respectivamente, entonces +$a T_{1 n} \pm b T_{2 n}$ es consistente para estimar $a \theta_{1} \pm b \theta_{2}$ +$T_{1 n} \cdot T_{2 n}$ es consistente para estimar $\theta_{1} \cdot \theta_{2}$ +$T_{1 n} / T_{2 n}$ es consistente para estimar $\theta_{1} / \theta_{2}$, si $\theta_{2} \neq 0$. +3. Sea $a_{r}=(1 / n) \sum X_{i}^{r}$ el momento muestral de orden $r$. Como se ha visto en el capítulo 1 , la esperanza de $a_{r}$ es + +$$ +E\left(a_{r}\right)=E\left[\frac{1}{n} \sum X_{i}^{r}\right]=\frac{1}{n} \sum E\left(X^{r}\right)=\frac{1}{n} n \alpha_{r}=\alpha_{r} +$$ + +donde $\alpha_{r}$ es el momento poblacional de orden $r$. Así pues, $a_{r}$ no tiene sesgo para estimar $\alpha_{r}$. Su varianza es + +$$ +\begin{aligned} +\operatorname{var}\left(a_{r}\right) & =\operatorname{var}\left(\frac{1}{n} \sum X_{i}^{r}\right)=\frac{1}{n^{2}} \sum \operatorname{var}\left(X^{r}\right)=\frac{1}{n} E\left[X^{r}-E\left(X^{r}\right)\right]^{2} \\ +& =\frac{1}{n} E\left[X^{r}-\alpha_{r}\right]^{2}=\frac{1}{n} E\left(X^{2 r}+\alpha_{r}^{2}-2 \alpha_{r} X^{r}\right) \\ +& =\frac{1}{n}\left(\alpha_{2 r}-\alpha_{r}^{2}\right) . +\end{aligned} +$$ + +Y si aplicamos la desigualdad de Tchebychev, se obtiene + +$$ +P\left(\left|a_{r}-\alpha_{r}\right| \geq \varepsilon\right) \leq \frac{E\left(a_{r}-\alpha_{r}\right)^{2}}{\varepsilon^{2}}=\frac{\operatorname{var}\left(a_{r}\right)}{\varepsilon^{2}}=\frac{\alpha_{2 r}-\alpha_{r}^{2}}{n \varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +$$ + +Así pues, hemos visto que los momentos muestrales son estimadores consistentes de los momentos poblacionales. + +### Eficiencia + +Como ya hemos visto, un objetivo deseable en la búsqueda de estimadores óptimos es considerar estimadores de "mínimo riesgo" o, si nos basamos en la función de pérdida cuadrática, estimadores que minimicen el error cuadrático medio $E(\theta-T)^{2}$. +En general, es difícil encontrar estimadores que hagan mínimo el EQM para todos los valores de $\theta$; sin embargo, si nos restringimos a los estimadores sin sesgo, el problema tiene solución en una gama más amplia de situaciones. Supongamos que $T_{1}, T_{2}$ son dos estimadores sin sesgo de un parámetro $\theta$. Para estos estimadores tenemos que + +$$ +\begin{aligned} +& E Q M_{T_{1}}(\theta)=\operatorname{var}_{\theta}\left(T_{1}\right)+b_{T_{1}}^{2}(\theta) \\ +& E Q M_{T_{2}}(\theta)=\operatorname{var}_{\theta}\left(T_{2}\right)+b_{T_{2}}^{2}(\theta) +\end{aligned} +$$ + +Si los estimadores no tienen sesgo $b_{T_{1}}(\theta)=b_{T_{2}}(\theta)=0$, el que tenga menor varianza tendrá el menor riesgo para estimar $\theta$. Si, por ejemplo, $\operatorname{var}\left(T_{1}\right) \leq$ $\operatorname{var}\left(T_{2}\right)$, diremos que $T_{1}$ es más eficiente que $T_{2}$ para estimar $\theta$. +Para dos estimadores con sesgo cero $b_{T_{i}}(\theta)=0$, el cociente + +$$ +E R=\frac{E Q M_{T_{1}}(\theta)}{E Q M_{T_{2}}(\theta)}=\frac{\operatorname{var}_{\theta}\left(T_{1}\right)}{\operatorname{var}_{\theta}\left(T_{2}\right)} +$$ + +se denomina eficiencia relativa de $T_{1}$ respecto a $T_{2}$. Si solo hay dos estimadores de $\theta$ puede ser fácil ver cuál es el más eficiente. Si hay más, la cosa se complica. El "más eficiente", en caso de que exista, se llamará el estimador sin sesgo de mínima varianza. + +Figura 2.2: Comparación de la eficiencia de dos estimadores para un $\theta$ dado + +Definició 2.8 Sea $\mathcal{S}(\theta)$ la clase de los estimadores sin sesgo de $\theta$ y con varianza. Si para todos los estimadores de esta clase $T \in \mathcal{S}(\theta)$ se verifica que + +$$ +\operatorname{var}_{\theta}(T) \leq \operatorname{var}_{\theta}\left(T^{*}\right) \quad \forall T \in \mathcal{S}(\theta) +$$ + +diremos que $T^{*}$ es un estimador sin sesgo de mínima varianza de $\theta$. Si la desigualdad es cierta $\forall \theta \in \Theta$, diremos que $T^{*}$ es un estimador sin sesgo uniforme de mínima varianza (ESUMV) ${ }^{2}$. + +## Información de Fisher y cota de CramerRao + +Obviamente, en un problema de estimación lo ideal es disponer de un ESUMV, pero esto no siempre es posible. Nos enfrentamos a varios problemas: + +1. ¿Existen ESUMV para un parámetro $\theta$ en un modelo dado? +2. En caso de que exista el ESUMV, ¿sabremos cómo encontrarlo? + +Este problema tiene solución, bajo ciertas condiciones, utilizando los teoremas de Lehmann-Scheffé y Rao-Blackwell y el concepto de suficiencia, que se discute más adelante. + +[^2]Una solución parcial aparece gracias al Teorema de Cramer-Rao, que permite establecer una cota mínima para la varianza de un estimador. Cuando un estimador alcanza esta cota, sabemos que es un estimador de varianza mínima. +Informalmente, este resultado sugiere que, bajo ciertas condiciones de regularidad, si $T$ es un estimador insesgado de un parámetro $\theta$, su varianza está acotada por una expresión que llamamos cota de Cramer-Rao $\operatorname{CCR}(\theta)$ + +$$ +\operatorname{var}(T) \geq \operatorname{CCR}(\theta) +$$ + +Antes de establecer con precisión este teorema, consideremos el concepto de información de un modelo estadístico introducido por Fisher. + +## Información y verosimilitud de un modelo estadístico + +Una idea bastante razonable es esperar que un estimador funcione mejor en su intento de aproximarse al valor de un parámetro cuanto más información tenga para hacerlo. Por este motivo, la varianza del estimador y la información se presentan como cantidades opuestas: a mayor información, menor error (varianza) en la estimación: + +$$ +\operatorname{var}\left(T_{n}\right) \propto \frac{1}{I_{n}(\theta)} +$$ + +Ahora nos encontramos con el problema de cómo definir la cantidad de información (contenida en una muestra/de un modelo), para que se ajuste a la idea intuitiva de información. Fisher lo hizo a través de la función de verosimilitud. +Sea un modelo estadístico $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ y una m.a.s. $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, que toma valores $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Si $X$ es discreta, la función de masa de probabilidad indica, en términos generales, la probabilidad de observar la muestra, dado un valor del parámetro. Si $X$ es absolutamente continua, esta interpretación ya no es tan directa. + +$$ +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)= \begin{cases}P_{\theta}\left[X=x_{1}\right] \cdots P_{\theta}\left[X=x_{n}\right], & \text { si } X \text { es discreta } \\ f_{\theta}\left(x_{1}\right) \cdots f_{\theta}\left(x_{n}\right), & \text { si } X \text { es abs. continua }\end{cases} +$$ + +La función de verosimilitud se obtiene si consideramos, en la expresión anterior, que lo que queda fijado es la muestra y no el parámetro. Es decir, fijada una muestra x, la función de verosimilitud indica qué tan verosímil resulta, para cada valor del parámetro, que el modelo la haya generado. + +Ejemplo 2.3.1 Supongamos que tenemos una m.a.s. $x_{1}, x_{2}, \ldots, x_{n}$ de tamaño n de una variable aleatoria $X$, que sigue una ley de Poisson de parámetro $\lambda$ desconocido. + +$$ +X \sim F_{\lambda}=P(\lambda), \quad \lambda>0 +$$ + +La función de probabilidad de la muestra, fijado $\lambda$, es: + +$$ +g_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +$$ + +y la función de verosimilitud del modelo, fijada $\mathbf{x}$, es: + +$$ +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \lambda\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +$$ + +Aunque la forma funcional de $g_{\lambda}(\mathbf{x})$ y $L(\mathbf{x} ; \lambda)$ es la misma, su aspecto es diferente, como se puede comprobar en la figura 2.3, donde damos valores a $g_{\lambda}(\mathbf{x})$, variando $\mathbf{x}$ o a $L(\lambda ; \mathbf{x})$ variando $\lambda$. + +## Información de Fisher + +Para calcular la cantidad de información de Fisher contenida en una muestra sobre un parámetro, es necesario considerar modelos estadísticos regulares, es decir, donde se cumplen las siguientes condiciones de regularidad. + +Definició 2.9 Diremos que $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ es un modelo estadístico regular si se verifican las siguientes condiciones: + +1. La población de donde proviene la muestra presenta un ?campo de variación? o soporte $S_{\theta}=\{x \mid f(x ; \theta)>0\}=S$ que no depende de $\theta$. +2. La función $L(\mathbf{x} ; \theta)$ admite, al menos, las dos primeras derivadas. +3. Las operaciones de derivación e integración son intercambiables. + +Definició 2.10 Sea $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ un modelo estadístico regular, es decir, donde se verifican las condiciones de regularidad 1-3 anteriores. Si $Z=\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)$, la cantidad de información de Fisher es + +$$ +I_{n}(\theta)=\operatorname{var}_{\theta}(Z)=\operatorname{var}_{\theta}\left(\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)\right) +$$ + +Figura 2.3: Probabilidad de la suma de $n=5$ valores muestrales para 10 muestras de la ley de Poisson con $\lambda=3$ versus la función de verosimilitud para una muestra observada. + +Las condiciones de regularidad son necesarias para calcular $E_{\theta}\left(Z^{2}\right)$. +A continuación, presentamos algunas propiedades de la información de Fisher. Puedes ver la demostración en Ruiz-Maya y Pliego (1995). + +1. La información de Fisher se puede expresar como: + +$$ +I_{n}(\theta)=E_{\theta}\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right] +$$ + +Esto se puede comprobar, ya que si aplicamos las condiciones de regularidad + +$$ +\begin{aligned} +E(Z) & =E\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)=\int_{S^{n}} \frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} \frac{\frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta}}{L(\mathbf{x} ; \theta)} L(\mathbf{x} ; \theta) d \mathbf{x}=\int_{S^{n}} \frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta} d \mathbf{x} \\ +& =\frac{\partial}{\partial \theta}\left(\int_{S^{n}} L(\mathbf{x} ; \theta) d \mathbf{x}\right)=\frac{\partial}{\partial \theta} 1=0 +\end{aligned} +$$ + +De forma que $E(Z)=0$, y por lo tanto, tendremos que $\operatorname{var}_{\theta}(Z)=$ $E_{\theta}\left(Z^{2}\right)$. +2. $I_{n}(\theta)=0$ si y solo si $L(\mathbf{x} ; \theta)$ no depende de $\theta$. +3. Dadas dos m.a.s. $\mathbf{x}_{1}, \mathbf{x}_{2}$ de tamaños $n_{1}, n_{2}$ de la misma población, se verifica: + +$$ +I_{n_{1}, n_{2}}(\theta)=I_{n_{1}}(\theta)+I_{n_{2}}(\theta) +$$ + +De manera que podemos considerar una muestra de tamaño $n$ como $n$ muestras de tamaño 1 : + +$$ +I_{n}(\theta)=\sum_{i=1}^{n} I_{1}(\theta)=n \cdot i(\theta), \text { siendo } i(\theta)=I_{1}(\theta) +$$ + +Es decir + +$$ +E\left(\frac{\partial \log (L(\mathbf{X} ; \theta))}{\partial \theta}\right)=n E\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right) +$$ + +4. Se verifica la siguiente relación: + +$$ +I_{n}(\theta)=E\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right]=-E\left[\frac{\partial^{2} \log L(\mathbf{X} ; \theta)}{\partial^{2} \theta}\right] +$$ + +Ejemplo 2.3.2 Vamos a calcular la cantidad de información de Fisher contenida en una m.a.s. extraída de una población $N(\mu, \sigma)$ con $\sigma=\sigma_{0}$ conocida. La función de verosimilitud es + +$$ +L(\mathbf{x} ; \mu)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}}=\left(2 \pi \sigma_{0}^{2}\right)^{-n / 2} \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}\right) +$$ + +y su logaritmo + +$$ +\log L(\mathbf{x} ; \mu)=-\frac{n}{2} \log \left(2 \pi \sigma_{0}^{2}\right)-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} +$$ + +Si derivamos respecto a $\mu$ + +$$ +\frac{\partial \log L(\mathbf{x} ; \mu)}{\mu}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)}{\sigma_{0}^{2}} +$$ + +de donde + +$$ +\begin{aligned} +I_{n}(\mu) & =E\left(\frac{\partial \log L(\mathbf{X} ; \mu)}{\partial \mu}\right)^{2}=E\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}{\sigma_{0}^{2}}\right)^{2} \\ +& =\frac{1}{\sigma_{0}^{4}} E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+\sum_{i \neq j}\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right] \\ +& =\frac{1}{\sigma_{0}^{4}} n \sigma_{0}^{2}=\frac{n}{\sigma_{0}^{2}} +\end{aligned} +$$ + +Este cálculo también puede hacerse a partir de la tercera propiedad de la información de Fisher: + +$$ +I_{n}(\mu)=n E\left[\frac{\partial \log f(X ; \mu)}{\partial \mu}\right]=n \frac{1}{\sigma_{0}^{2}}=\frac{n}{\sigma_{0}^{2}} +$$ + +## La desigualdad de Cramer-Rao + +Una vez establecidas las condiciones de regularidad y características anteriores podemos enunciar el teorema de Cramer-Rao (1945). + +Teorema 2.1 Dado un modelo estadístico regular $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$, es decir, un modelo donde se verifican las condiciones de regularidad enunciadas, cualquier estimador $T \in \mathcal{S}(\theta)$ de la clase de los estimadores no sesgados y con varianza verifica + +$$ +\operatorname{var}_{\theta}(T) \geq \frac{1}{I_{n}(\theta)} +$$ + +Demostración: +El estimador $T \in \mathcal{S}(\theta)$ no tiene sesgo, es decir que + +$$ +E(T)=\int_{S^{n}} T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta) d \mathbf{x}=\theta +$$ + +Si derivamos e introducimos la derivada bajo el signo de la integral, obtenemos + +$$ +\begin{aligned} +\frac{\partial}{\partial \theta} E(T) & =\int_{S^{n}} \frac{\partial}{\partial \theta}(T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta)) d \mathbf{x}=\int_{S^{n}} T(\mathbf{x}) \frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} T(\mathbf{x})\left(\frac{\frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta)}{L(\mathbf{x} ; \theta)}\right) L(\mathbf{x} ; \theta) d \mathbf{x} +\end{aligned} +$$ + +Así pues + +$$ +1=\frac{\partial}{\partial \theta} \theta=\frac{\partial}{\partial \theta} E(T)=E(T Z)=\int_{S^{n}} T(\mathbf{x}) \cdot Z L(\mathbf{x} ; \theta) d \mathbf{x} +$$ + +En resumen + +$$ +E(T)=\theta, E(T Z)=1, E(Z)=0, \operatorname{var}(Z)=I_{n}(\theta) +$$ + +Si ahora consideramos el coeficiente de correlación al cuadrado entre $T$ y $Z$, tenemos + +$$ +\rho^{2}(T, Z)=\frac{[\operatorname{cov}(T, Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)}=\frac{[E(T Z)-E(T) E(Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)} \leq 1 +$$ + +Si sustituimos los resultados hallados antes, obtenemos + +$$ +\frac{1}{\operatorname{var}(T) \cdot I_{n}(\theta)} \leq 1 +$$ + +de donde se deduce la desigualdad enunciada. + +Definició 2.11 Si un estimador alcanza la CCR (Cota de Cramer-Rao), diremos que es un estimador eficiente. + +Todo estimador eficiente es de mínima varianza en la clase $\mathcal{S}(\theta)$. Sin embargo, también puede suceder que exista un estimador de mínima varianza sin alcanzar necesariamente la CCR. + +Ejemplo 2.3.3 Sea $X \sim F_{\theta}=P(\lambda), \lambda>0$ (Poisson). Buscamos la $C C R$ de los estimadores de $\lambda$. + +$$ +\begin{aligned} +L(\mathbf{x} ; \lambda) & =\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} \\ +\log L(\mathbf{x} ; \lambda) & =-n \lambda+\left(\sum x_{i}\right) \log \lambda-\log \left(\prod_{i=1}^{n} x_{i}!\right) \\ +\frac{\partial \log (L(\mathbf{x} ; \lambda))}{\partial \lambda} & =-n+\frac{\sum x_{i}}{\lambda} \\ +E\left[\frac{\partial \log L(\mathbf{x} ; \lambda)}{\partial \lambda}\right]^{2} & =E\left[n^{2}+\left(\frac{\sum X_{i}}{\lambda}\right)^{2}-\frac{2 n \sum X_{i}}{\lambda}\right] \\ +& =n^{2}+\frac{1}{\lambda^{2}} E\left(\sum X_{i}\right)^{2}-\frac{2 n}{\lambda} n E(X) +\end{aligned} +$$ + +Aquí recordamos que la suma de variables de Poisson también es una Poisson, es decir: + +$$ +\sum X_{i} \sim P(n \lambda) +$$ + +por lo que + +$$ +E\left(\sum X_{i}\right)^{2}=\operatorname{var}\left(\sum X_{i}\right)+\left[E\left(\sum X_{i}\right)\right]^{2}=n \lambda+(n \lambda)^{2} +$$ + +Finalmente, se obtiene: + +$$ +E\left(Z^{2}\right)=n^{2}+\frac{n \lambda}{\lambda^{2}}+\frac{n^{2} \lambda^{2}}{\lambda^{2}}-2 n^{2}=\frac{n}{\lambda} +$$ + +De esta forma, + +$$ +I_{n}(\lambda)=\frac{n}{\lambda} \quad \Longrightarrow \quad \operatorname{var}(T) \geq \frac{\lambda}{n} +$$ + +Sabemos que la media aritmética verifica + +$$ +\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\lambda}{n} +$$ + +lo cual coincide con la cota de Cramer-Rao, indicando que $\bar{X}_{n}$ es el estimador eficiente de $\lambda$. + +Ejemplo 2.3.4 Para calcular la CCR o, dicho de otro modo, para que el inverso de + +$$ +E\left[\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta}\right]^{2} +$$ + +sea realmente la cota minima de $\operatorname{var}(\widehat{\theta})$ en la clase $\mathcal{S}(\theta)$, es necesario que se verifiquen las condiciones de regularidad. De lo contrario, se pueden obtener resultados absurdos. +Consideremos, por ejemplo, una variable aleatoria $X$ con función de densidad + +$$ +f(x ; \theta)=\frac{3}{\theta^{3}} x^{2} \mathbf{1}_{[0, \theta]}(x) +$$ + +y esperanza + +$$ +E(X)=\int_{0}^{\theta} x \cdot \frac{3}{\theta^{3}} x^{2} d x=\frac{3}{4} \theta +$$ + +Ya que $\theta=\frac{4}{3} E(X)$, esto sugiere estimar $\theta$ mediante $\widehat{\theta}=\frac{4}{3} \bar{X}$, que no tiene sesgo. +Por otro lado, si calculamos la varianza de $X$, tenemos + +$$ +\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{3}{80} \theta^{2} +$$ + +Sabemos que $E(\widehat{\theta})=\theta, y$ además + +$$ +\operatorname{var}(\widehat{\theta})=\operatorname{var}\left(\frac{4}{3} \bar{X}\right)=\frac{\theta^{2}}{15 n} +$$ + +Si evaluamos $I_{n}(\theta)$ en su forma más sencilla, obtenemos + +$$ +I_{n}(\theta)=n I(\theta)=n \frac{9}{\theta^{2}} +$$ + +Así, la CCR resulta ser mayor que la varianza de este estimador: + +$$ +\operatorname{var}(\widehat{\theta})=\frac{\theta^{2}}{15 n}<\frac{\theta^{2}}{9 n} +$$ + +lo cual es un resultado absurdo. Este error se debe a no considerar que el soporte de $X$ depende de $\theta$, por lo que no se cumplen las condiciones de regularidad, y la cota de Cramer-Rao no existe. + +También ocurre que la varianza de un estimador es inferior a la CCR aunque esta exista. Esto puede pasar, por ejemplo, con algún estimador sesgado. + +## Caracterización del estimador eficiente + +Calcular la cota de Cramer-Rao es una cosa; encontrar el estimador que alcanza esta cota y, en consecuencia, tiene varianza mínima es otra. La siguiente caracterización permite, en algunos casos, obtener directamente la forma del estimador eficiente. + +Teorema 2.2 Sea $T$ el estimador eficiente de $\theta$, entonces se verifica + +$$ +\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(X_{i} ; \theta\right)=K(\theta, n)(T-\theta) +$$ + +donde $K(\theta, n)$ es una función que depende de $\theta$ y de $n$ y que suele coincidir con la información de Fisher. +Demostración: +Si $T$ es el estimador eficiente, entonces + +$$ +\operatorname{var}(T)=\frac{1}{I_{n}(\theta)} +$$ + +y, por lo tanto, $\rho^{2}(T, Z)=1$. +En general, dadas dos variables aleatorias $X$ e $Y$, se sabe que si $\rho(X, Y)=1$, entonces + +$$ +Y-E(Y)=\beta(X-E(X)) +$$ + +Si aplicamos este resultado a $T$ y $Z$, tenemos + +$$ +\begin{aligned} +Z-E(Z) & =\beta(T-E(T)) \\ +\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} & =K(\theta, n)(T-\theta) +\end{aligned} +$$ + +Ejemplo 2.3.5 En el caso de la distribución de Poisson, tenemos + +$$ +\begin{aligned} +f(x ; \lambda) & =e^{-\lambda} \frac{\lambda^{x}}{x!} \\ +\log f(x ; \lambda) & =-\lambda+x \log (\lambda)-\log (x!) \\ +\frac{\partial \log f(x ; \lambda)}{\partial \lambda} & =-1+x \frac{1}{\lambda} \\ +Z=\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \lambda\right)}{\partial \lambda} & =\sum_{i=1}^{n}\left(-1+\frac{X_{i}}{\lambda}\right) +\end{aligned} +$$ + +Queremos ver que + +$$ +\sum_{i=1}^{n}\left(\frac{X_{i}}{\lambda}-1\right)=K(\theta, n)(T-\theta) +$$ + +Si reescribimos esta expresión, obtenemos + +$$ +\frac{1}{\lambda} \sum_{i=1}^{n} X_{i}-n=\frac{1}{\lambda}\left(\sum_{i=1}^{n} X_{i}-n \lambda\right)=\frac{n}{\lambda}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\lambda\right) +$$ + +Así, $K(\lambda, n)=\frac{n}{\lambda}$, que coincide con la información de Fisher $I_{n}(\lambda)$. Por el teorema anterior, se deduce que $T=\bar{X}$ es el estimador eficiente $y$, por lo tanto, de mínima varianza. + +## Estadísticos suficientes + +En un problema de inferencia puede suceder que los datos contengan información superflua o irrelevante a la hora de estimar el parámetro. También puede ocurrir lo contrario, que intentemos hacer la estimación sin utilizar toda la información disponible en la muestra. Ambas situaciones son indeseables. Parece razonable que, para estimar un parámetro, dada la dificultad derivada de disponer de varios estimadores entre los que queremos elegir el óptimo, nos basemos únicamente en aquellos que utilizan (solo) toda la información relevante. + +Ejemplo 2.4.1 Supongamos que queremos estimar la proporción de piezas defectuosas $\theta$ en un proceso de fabricación. Para ello, examinamos $n$ piezas extraídas al azar a lo largo de una jornada y asignamos un 1 a las piezas defectuosas y un 0 a las que no lo son. Así, obtenemos una muestra aleatoria simple $X_{1}, X_{2}, \ldots, X_{n}$ donde + +$$ +X_{i}= \begin{cases}1 & \text { con probabilidad } \theta \\ 0 & \text { con probabilidad }(1-\theta)\end{cases} +$$ + +Intuitivamente, está claro que para estimar $\theta$ solo nos interesa el número de ceros y unos, es decir, el valor del estadístico + +$$ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +$$ + +En este caso, un estadístico que considere la posición de los unos y los ceros en la muestra no aportaría nada relevante. En cambio, un estadístico que no considere todos los valores, como por ejemplo $T(\mathbf{X})=X_{1}$, sería claramente menos adecuado. + +Las observaciones del ejemplo anterior se justifican al observar que todas las muestras de tamaño $n$ con el mismo número $t$ de unos (1) tienen la misma probabilidad. En concreto, la función de probabilidad de una muestra $x_{1}, x_{2}, \ldots, x_{n}$ es + +$$ +f_{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\theta^{t}(1-\theta)^{n-t} +$$ + +donde $t=\sum_{i=1}^{n} x_{i}, x_{i} \in\{0,1\}, i=1,2, \ldots, n$. +Como se puede ver, la probabilidad de la muestra solo depende del número de unos (o ceros) y no del orden en que aparecen en la muestra. El hecho de que la posición de los unos y los ceros en la muestra no aporte información relevante equivale a decir que el estadístico + +$$ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +$$ + +contiene la misma información que $X_{1}, X_{2}, \ldots, X_{n}$ para estimar $\theta$. Observamos, sin embargo, varias diferencias entre basarse en $T(\mathbf{X})$ o en $X_{1}, X_{2}, \ldots, X_{n}$ : + +- Al pasar de $X_{1}, X_{2}, \ldots, X_{n}$ a $\sum_{i=1}^{n} X_{i}$ hay una reducción de los datos que no implica pérdida de información. +- Muchas muestras diferentes dan lugar al mismo valor de $T$. + +Fisher formalizó esta idea con el cálculo de la probabilidad condicionada de la observación muestral con $T(\mathbf{X})=\sum_{i=1}^{n} X_{i}$ y para todo $t=0,1, \ldots, n$ : + +$$ +\begin{aligned} +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] & =\frac{P_{\theta}[\mathbf{X}=\mathbf{x}, T=t]}{P_{\theta}(T=t)} \\ +& =\frac{\theta^{t}(1-\theta)^{n-t}}{\binom{n}{t} \theta^{t}(1-\theta)^{n-t}}=\frac{1}{\binom{n}{t}} +\end{aligned} +$$ + +Es decir, dados $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1\}^{n} \mathrm{y} t \in\{0,1, \ldots, n\}$, tenemos + +$$ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]=\left\{\begin{array}{cc} +0 & \text { si } t \neq \sum_{i=1}^{n} x_{i} \\ +\frac{1}{\binom{n}{t}} & \text { si } t=\sum_{i=1}^{n} x_{i} +\end{array}\right. +$$ + +Obviamente, $P_{\theta}[\mathbf{X}=\mathbf{x}]$ depende de $\theta$, que es el parámetro que queremos estimar. Sin embargo, la probabilidad condicionada $P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]$ no depende de $\theta$. Tenemos entonces la siguiente expresión de la función de probabilidad de la muestra: + +$$ +P_{\theta}(\mathbf{X}=\mathbf{x})=P_{\theta}(T=t) \cdot P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] +$$ + +Esta expresión muestra que $P_{\theta}(\mathbf{X})$ se puede descomponer en dos factores, uno que depende de $\theta, P_{\theta}(T=t)$, y otro que no depende de $\theta$, + +$$ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] . +$$ + +Una forma de ver esta descomposición es pensar que el estadístico $T=$ $\sum_{i=1}^{n} X_{i}$ ?acumula? o ?absorbe? toda la información relativa a $\theta$, lo que se refleja en que la probabilidad de la muestra, dado $T=t$, ya no depende de $\theta$. Es decir, podemos imaginar la construcción de la muestra en dos etapas: + +- En una primera etapa se elige el valor $t$ para $T$ con distribución $B(n, \theta)$. +- A continuación, se sitúan aleatoriamente $t$ unos y $n-t$ ceros en las $n$ posiciones. + +Cuando la estructura del estadístico $T(\mathbf{X})$ hace que el segundo factor en la expresión anterior no dependa de $\theta$, significa que la observación adicional de la muestra es irrelevante. En este caso diremos que $T(\mathbf{X})$ es suficiente para la estimación de $\theta$. Dado que esta propiedad de $T$ queda caracterizada por la independencia de $P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]$ respecto a $\theta$, se utiliza esta independencia para definir la suficiencia. + +### Definició de estadísticop suficiente + +Dado un modelo estadístico $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ y un estadístico $T$, diremos que $T$ es suficiente para $\theta$ si, dada una muestra $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, se verifica que la distribución de $\mathbf{X}$ condicionada por el valor de $T$ no depende de $\theta$. + +- No es necesario que $F_{\theta}$ sea discreta, como en el ejemplo introductorio, o que la muestra sea una muestra aleatoria simple. +- El estadístico suficiente para un parámetro puede ser $k$-dimensional. + +Ejemplo 2.4.2 Dada una muestra $X_{1}, X_{2}, \ldots, X_{n}$ de una distribución de Poisson, la función de probabilidad de la muestra es + +$$ +P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\frac{e^{-n \lambda} \lambda \sum x_{i}}{x_{1}!\cdots x_{n}!} +$$ + +Calculemos la probabilidad de la muestra condicionada por el valor del estadístico $T=\sum_{i=1}^{n} X_{i}$ : + +$$ +\begin{aligned} +& P_{\theta}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T=t\right]=\frac{P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T=t\right)}{P_{\theta}(T=t)} +\end{aligned} +$$ + +$$ +\begin{aligned} +& =\frac{t!}{x_{1}!\cdots x_{n}!}\left(\frac{1}{n}\right)^{t} \mathbf{1}_{\left\{\sum x_{i}=t\right\}}\left(x_{1}, \ldots, x_{n}\right) +\end{aligned} +$$ + +La probabilidad condicional no depende de $\lambda y$, por lo tanto, $T$ es suficiente para $\lambda$. Conviene observar que, en este ejemplo, no todas las muestras tienen la misma probabilidad. + +### Teorema de factorización + +La justificación de la suficiencia de un estadístico mediante la definición no siempre es sencilla, ya que la distribución condicional puede ser intratable con las herramientas disponibles. El teorema que se presenta a continuación proporciona un método sencillo para comprobar la suficiencia de un estadístico y, a menudo, sugiere cuál es el estadístico suficiente de menor dimensión posible. + +Teorema 2.3 Neyman-Fisher. Sea $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ un modelo estadístico y $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X$. Sea $f_{\theta}(\mathbf{x})$ la función de probabilidad o la función de densidad de la muestra, según si $X$ es discreta o absolutamente continua. Un estadístico $T$ es suficiente para $\theta$ si y solo si existen dos funciones medibles $g_{\theta}$ y $h$ tales que + +$$ +f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x}) +$$ + +donde $h$ no depende de $\theta$ y g depende de $\theta$ y, además, solo depende de la muestra a través de $T$. + +Veamos ahora la demostración del teorema de factorización, restringida al caso de variables discretas. + +Demostración: +Comenzaremos suponiendo que $T$ es suficiente y concluiremos que es posible la factorización. +Si $T(\mathbf{X})$ es suficiente para la familia de distribuciones $\left\{F_{\theta} ; \theta \in \Theta\right\}$, la función de probabilidad de la muestra condicionada por $T$ no depende de $\theta$. Dado que + +$$ +f_{\theta}(\mathbf{x})=P_{\theta}[T=T(\mathbf{x})] \cdot f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})] +$$ + +solo es necesario tomar $g_{\theta}(t)=P_{\theta}[T=T(\mathbf{x})=t]$ y $h(\mathbf{x})=f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})]$ para obtener el resultado. +Ahora supongamos que es posible la factorización y deduzcamos la suficiencia. +Si $f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})$ y llamamos $A_{t}=\left\{\mathbf{x} \in X(\Omega)^{n} \mid T(\mathbf{x})=t\right\}$, entonces + +$$ +P_{\theta}[T(\mathbf{x})=t]=\sum_{A_{t}} g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})=g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x}) +$$ + +Consideremos ahora la distribución de la muestra condicionada a $T=t$. El Teorema de Bayes para densidad permite escribir: + +$$ +\begin{aligned} +f_{\theta}(\mathbf{x} \mid T=t) & =\frac{f_{\theta}(\mathbf{x}, T=t)}{P_{\theta}(T=t)} \\ +& = \begin{cases}\frac{g_{\theta}(t) \cdot h(\mathbf{x})}{g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x})}=\frac{h(\mathbf{x})}{\sum_{A_{t}} h(\mathbf{x})} & \text { si } T(\mathbf{x})=t \\ +0 & \text { si } T(\mathbf{x}) \neq t\end{cases} +\end{aligned} +$$ + +De modo que la distribución de $\mathbf{X}$ condicionada por el valor de $T$ no depende de $\theta$, y, en consecuencia, $T$ es suficiente. + +Ejemplo 2.4.3 Si X sigue una distribución de Bernoulli, tenemos: + +$$ +f_{\theta}(\mathbf{x})=\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-\sum_{i=1}^{n} x_{i}}=g_{\theta}\left(\sum_{i=1}^{n} x_{i}\right) . +$$ + +Si tomamos $h(\mathbf{x})=1$, queda probado que $T=\sum_{i=1}^{n} X_{i}$ es suficiente. +Ejemplo 2.4.4 Si consideramos una muestra de una distribución de Poisson + +$$ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \frac{\lambda^{\sum_{i=1}^{n} x_{i}}}{x_{1}!x_{2}!\cdots x_{n}!} +$$ + +$y$ tomamos $T(\mathbf{x})=\sum_{i=1}^{n} x_{i}$, podemos escribir + +$$ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \lambda^{T(\mathbf{x})} \cdot\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}=g_{\lambda}(T(\mathbf{x})) \cdot h(\mathbf{x}) +$$ + +donde + +$$ +g_{\lambda}(T(\mathbf{x}))=e^{-n \lambda} \lambda^{T(\mathbf{x})}, \quad h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1} +$$ + +De modo que $g_{\lambda}(t)=e^{-n \lambda} \lambda^{t}$ depende de la muestra solo a través de $T=$ $\sum_{i=1}^{n} x_{i}$ y $h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}$ no depende de $\lambda$. + +Ejemplo 2.4.5 Supongamos que $\mathbf{X}$ es una muestra aleatoria simple de una población $X \sim N(\mu, \sigma)$, cuya función de densidad es + +$$ +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} +$$ + +Para evidenciar la factorización, utilizamos que + +$$ +\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2} . +$$ + +Entonces, + +$$ +\begin{aligned} +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(n s^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =g_{\mu, \sigma^{2}}\left(\bar{x}, s^{2}\right) \cdot 1 +\end{aligned} +$$ + +Así, vemos que el estadístico $\left(\bar{X}, s^{2}\right)$ es suficiente para la estimación de $\left(\mu, \sigma^{2}\right)$. +Si suponemos conocido uno de los dos parámetros $\sigma^{2}$ o $\mu$, podemos obtener una factorización en la que se ve que $\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$ es suficiente para $\sigma^{2}$ (conocido $\mu$ ) o $\bar{x}$ es suficiente para $\mu$ (conocido $\sigma^{2}$ ). + +En el ejemplo anterior se observa que el estadístico suficiente para un problema puede tener una dimensión superior a 1. En general, buscaremos el estadístico suficiente de menor dimensión posible, ya que a menor dimensión se elimina más información superflua. Si no es posible encontrarlo así, siempre podemos basarnos en el estadístico $T=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, que es suficiente pero de dimensión máxima y, por lo tanto, no aporta ninguna reducción al problema de información. Estas reflexiones llevan a enunciar el principio de suficiencia, que aconseja condensar al máximo la información relevante en un estadístico suficiente $T$ de la menor dimensión posible ("mínima") y seleccionar un estimador $T^{\prime}$ entre los estadísticos que sean función de la muestra a través de $T: T^{\prime}(\mathbf{X})=\varphi(T(\mathbf{X}))$. + +### Propiedades de los estadísticos suficientes + +Las siguientes propiedades se prueban de manera sencilla utilizando el teorema de factorización: + +1. Si $T$ es un estadístico suficiente para $\theta$ y $\varphi$ es una función inyectiva (o monótona diferenciable), entonces $T_{1}=\varphi(T)$ también es suficiente para $\theta$. + +Ejemplo 2.4.6 En la familia de la Poisson hemos visto que $\sum_{i=1}^{n} X_{i}$ es suficiente para $\lambda$. Entonces $\bar{X}=\varphi\left(\sum_{i=1}^{n} X_{i}\right)$, donde $\varphi(z)=(1 / n) z$ es inyectiva, es suficiente para $\lambda$. +2. Si $T$ es un estadístico suficiente para $\theta$ y $\varphi$ es una función paramétrica monótona diferenciable, entonces $\varphi(T)$ también es suficiente para $\varphi(\theta)$. +3. Si $T_{1}, T_{2}$ son dos estadísticos suficientes para $\theta$, entonces $T_{1}$ es función de $T_{2}$. + +# MÉTODOS DE OBTENCIÓN DE ESTIMADORES + +En el capítulo anterior hemos analizado el problema de la estimación puntual desde el punto de vista de, dado un estimador, ver ?qué tan bueno es? para estimar un parámetro. +Otra cuestión que nos podemos plantear, de hecho la primera cuestión que hay que plantearse en la práctica, es cómo obtener un estimador ?razonablemente bueno? de un parámetro. De hecho, desde el punto de vista práctico parece razonable empezar por ver cómo se obtiene un estimador y, una vez obtenido, analizar ?cuán bueno resulta?. +Existen muchos métodos para obtener estimadores, cada uno de los cuales puede llevarnos a unos resultados de diferente calidad. +Los principales métodos de estimación son: + +1. Método de los momentos +2. Método de la máxima verosimilitud +3. Método de Bayes +4. Otros métodos + +## El método de los momentos + +Este método fue introducido por K. Pearson a finales del siglo XIX y es el principio en que nos basamos cuando hacemos una estimación de la media o de la varianza poblacional a partir de la media o la varianza muestrales. +La idea del método de los momentos es bastante intuitiva. Si lo que queremos estimar (uno o varios parámetros) es una función de los momentos +poblacionales, entonces una estimación razonable puede consistir en tomar como estimador la misma función en la que los momentos poblacionales han sido sustituidos por los momentos muestrales. +Dado que estos últimos son estimadores consistentes de los momentos poblacionales, en condiciones bastante generales se puede garantizar que los estimadores obtenidos serán estimadores consistentes para las funciones de los momentos poblacionales estimadas. +Algunos ejemplos típicos de estimadores basados en el método de los momentos son: + +$$ +\widehat{\mu}=\bar{X}_{n} \quad \widehat{\sigma}=\sqrt{S^{2}} \quad \widehat{\sigma^{2}}=S^{2} +$$ + +Sea un modelo estadístico, $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$, y $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X$. Sean $m_{1}, m_{2}, ?, m_{k}$ los momentos poblacionales de orden $1,2, ?, k$ de $X$, que suponemos que existen, + +$$ +m_{k}=E\left(X^{k}\right) +$$ + +y $a_{1}, a_{2}, ?, a_{k}$ los momentos muestrales respectivos + +$$ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} +$$ + +Suponemos que estamos interesados en estimar: + +$$ +\theta=h\left(m_{1}, m_{2}, \ldots, m_{p}\right), +$$ + +donde $h$ es una función conocida. +Definició 3.1 El método de los momentos consiste en estimar $\theta$ por el estadístico + +$$ +T(\mathbf{X})=h\left(a_{1}, a_{2}, \ldots, a_{p}\right) +$$ + +### Observaciones + +- El método se extiende de forma sencilla a la estimación de momentos conjuntos. Podemos usar $\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}$ para estimar $E(X Y)$, etc. +- Por la ley débil de los grandes números, + +$$ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{P} E\left(X^{k}\right), +$$ + +de modo que si lo que queremos es estimar los momentos muestrales, el método garantiza que los estimadores son consistentes y sin sesgo. + +En este caso, además, los estimadores son asintóticamente normales. Si lo que se desea estimar es una función $h$ continua de los momentos, entonces el método garantiza que el estimador $T(\mathbf{X})$ es consistente y, bajo ciertas condiciones de regularidad, también es asintóticamente normal. + +Ejemplo 3.1.1 Sea $X \sim \Gamma(p, \alpha)$. Queremos estimar $p$ y $\alpha$. En lugar de conocer la función $h\left(\theta_{1}, \theta_{2}\right)$ sabemos que: + +$$ +\begin{aligned} +m_{1} & =\frac{p}{\alpha}=E(X) \\ +m_{2} & =\frac{p(p+1)}{\alpha^{2}}=E\left(X^{2}\right) \\ +& =V(X)+[E(X)]^{2}=\frac{p}{\alpha^{2}}+\left(\frac{p}{\alpha}\right)^{2}=\frac{p^{2}+p}{\alpha^{2}}= +\end{aligned} +$$ + +De modo que podemos obtener las funciones deseadas ?aislando? p y $\alpha$ como funciones de $m_{1}$ y $m_{2}$ : + +$$ +\begin{aligned} +\alpha^{2} & =\frac{p^{2}}{m_{1}^{2}} \\ +\alpha^{2} & =\frac{p(p+1)}{m_{2}} +\end{aligned} +$$ + +Procediendo por igualación: + +$$ +\begin{aligned} +& \frac{p^{2}}{m_{1}^{2}}=\frac{p(p+1)}{m_{2}} \\ +& \frac{p}{m_{1}}=\frac{p+1}{m_{2}} \\ +& p m_{2}=p m_{1}^{2}+m_{1}^{2} \\ +& p\left(m_{2}-m_{1}^{2}\right)=m_{1}^{2} \\ +& p=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& \alpha=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& m_{1} +\end{aligned} \frac{m_{1}}{m_{2}-m_{1}^{2}} . +$$ + +Los estimadores por el método de los momentos se obtendrán ahora sustituyendo $p$ y $\alpha$ por $\hat{p}$ y $\hat{\alpha}$ en la expresión anterior, es decir: + +$$ +\widehat{p}=\frac{a_{1}^{2}}{a_{2}-a_{1}^{2}} +$$ + +Hacemos lo mismo para el parámetro $\alpha$ : + +$$ +\widehat{\alpha}=\frac{a_{1}}{a_{2}-a_{1}^{2}} +$$ + +## El método del máximo de verosimilitud + +#### Introducción + +El método de la máxima verosimilitud, introducido por Fisher, es un método de estimación que se basa en la función de verosimilitud, presentada en el capítulo anterior. Básicamente consiste en tomar como estimadores de los parámetros aquellos valores que hagan más probable observar precisamente lo que se ha observado, es decir, que hagan que la muestra observada resulte más verosímil. + +Ejemplo 3.2.1 Tomemos 5 papeles. En cada uno de ellos ponemos o bien un ?+? o bien un ?-?, sin que se sepa qué hay en cada papel, y los guardamos en una bolsa. Nuestro objetivo es estimar el número de papeles con el signo ?? escrito. Extraemos tres papeles, devolviéndolos a la bolsa después de cada extracción, y observamos que ha salido lo siguiente: ?++-?. Los valores posibles para la probabilidad de ?-?, llamémosla p, son: + +| En la bolsa hay | $p$ | +| :---: | :---: | +| $4 ?+$ ?, 1 ?-? | 0,2 | +| $3 ?+$ ?, 2 ?-? | 0,4 | +| $2 ?+$ ?, 3 ?-? | 0,6 | +| $1 ?+$ ?, 4 ?-? | 0,8 | + +Supongamos que la variable $X$ mide el número de ?-? en tres extracciones consecutivas y que, por tanto, sigue una distribución binomial: + +$$ +X \sim B(3, p(?-?)) +$$ + +La probabilidad de sacar un ?-? es: + +$$ +P_{p}[X=1]=\binom{3}{1} \cdot p^{1}(1-p)^{2} +$$ + +Para cada uno de los valores de p, las probabilidades quedan asi: + +| $p$ | $P_{p}[X=1]$ | +| :---: | :---: | +| 0.2 | $3 \cdot 0.2 \cdot 0.8^{2}=0.384$ | +| 0.4 | $3 \cdot 0.4 \cdot 0.6^{2}=0.432$ | +| 0.6 | $3 \cdot 0.6 \cdot 0.4^{2}=0.288$ | +| 0.8 | $3 \cdot 0.8 \cdot 0.2^{2}=0.096$ | + +El valor de p que da una probabilidad mayor a la muestra, es decir, que la hace más verosímil, es $p=0.4$. El método del máximo de verosimilitud consiste precisamente en tomar este valor como estimación de $p$. + +#### La función de verosimilitud + +Una vez introducido el método con un ejemplo, podemos pasar a definirlo con mayor precisión. Para ello, comenzaremos con el concepto de función de verosimilitud. +En el capítulo anterior presentamos la función de verosimilitud como la función que resulta de considerar que, en la función de probabilidad de la muestra, el parámetro es variable y la muestra queda fija. Es decir: + +$$ +\underbrace{f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)}_{\mathbf{x} \text { variable, } \theta \text { fijo }} \longrightarrow \underbrace{L\left(\theta ; x_{1}, x_{2}, \ldots, x_{n}\right)}_{\mathbf{x} \text { fija, } \theta \text { variable }} +$$ + +Esta definición es básicamente correcta. En el caso de las variables discretas, donde $f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ representa la probabilidad de la muestra, fijado $\theta$, resulta intuitivamente claro decir que la verosimilitud representa la ?probabilidad de la muestra para cada valor del parámetro?. +Refiriéndonos al ejemplo introductorio, resulta sencillo ver que se trata de ?dos puntos de vista? sobre la misma función. Fijado un valor del parámetro, por ejemplo, 0.4 , podemos considerar la probabilidad de diversas muestras posibles, como $x=0, x=1, \ldots$, hasta $x=3$ : + +$$ +\begin{aligned} +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{0.4}[X=x], x=0,1, \ldots, 3 \\ +& =\binom{3}{x} \cdot 0.4^{x}(0.6)^{3-x} . +\end{aligned} +$$ + +Análogamente, fijada una muestra, por ejemplo, $x=1$, podemos considerar la probabilidad de esta para diversos valores del parámetro, $p=0,0.2, \ldots, 1$. + +$$ +\begin{aligned} +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{p}[X=1], x=0,0.2,0.4, \ldots, 1 \\ +& =3 \cdot p(1-p)^{2} . +\end{aligned} +$$ + +En el caso de las distribuciones absolutamente continuas, el significado de la función de verosimilitud ya no es intuitivamente tan claro como en el caso de las discretas. En este caso, la función de densidad de la muestra ya no representa la probabilidad de esta como en el caso de las discretas. Algunos autores intentan solucionar esto explicando que existe una conocida aproximación en que la función de densidad es la probabilidad de un suceso ?infinitesimal?. +Lo que es importante en la función de verosimilitud, a la hora de hacer inferencias, es la parte que es función del parámetro. Esto hace que a menudo se considere que la expresión de la función de verosimilitud mantenga solo aquella parte de $f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ que depende de $\theta$, ignorando la parte que dependa solo de la muestra. Es decir, si podemos factorizar $f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ como + +$$ +f(\mathbf{x} ; \theta)=c(\mathbf{x}) \cdot g(\mathbf{x} ; \theta) +$$ + +podremos prescindir de la ?constante? $c(x)$ (constante porque no depende de $\theta$ ) al considerar la verosimilitud. + +$$ +L(\theta ; \mathbf{x})=g(\mathbf{x} ; \theta) \propto f(\mathbf{x} ; \theta) +$$ + +Esto implica que $L(\theta ; \mathbf{x})$ no tiene por qué integrar a 1 , como en el caso de las probabilidades, y que depende de las unidades de medida. + +Ejemplo 3.2.2 Si $X$ es discreta, $X \sim \mathcal{P}(\lambda)$, y suponemos $n=1$ (muestras de tamaño 1), tenemos que la f.d.p. de la muestra es: + +$$ +P[x ; \lambda]=e^{-\lambda} \frac{\lambda^{x}}{x!} +$$ + +con $x=0,1, \ldots$ Ahora, si hemos observado $x=5$, la función de verosimilitud vale: + +$$ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5}\left[\frac{1}{5!}\right] +$$ + +Como solo nos interesa la parte que es función de $\lambda$, podemos ignorar $\frac{1}{5!}$, es decir: + +$$ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5} \propto P[\mathbf{x} ; \lambda] . +$$ + +Ejemplo 3.2.3 Si dada una muestra de tamaño 1, por ejemplo, $x=2$, de una ley de Poisson $\mathcal{P}(\lambda)$ queremos comparar sus verosimilitudes respecto de los valores del parámetro $\lambda=1.5$ o $\lambda=3$, lo que haremos será basarnos en la razón de verosimilitudes: + +$$ +\begin{aligned} +\Lambda(\mathbf{x}) & =\frac{L\left(\lambda_{1} ; x\right)}{L\left(\lambda_{2} ; x\right)}=\frac{L(1.5 ; 2)}{L(3 ; 2)} \\ +& =\frac{e^{-1.5} 1.5^{2}\left[\frac{1}{2!}\right]}{e^{-3} 3^{2}\left[\frac{1}{2!}\right]}=\frac{e^{-1.5} 1.5^{2}}{e^{-3} 3^{2}}=\frac{0.5020}{0.4481}=1.12 . +\end{aligned} +$$ + +Como se observa, al basarnos en la razón de verosimilitudes, la parte correspondiente solo a la muestra no se toma en cuenta. La razón de verosimilitudes sugiere que el valor $\lambda=1.5$ hace la muestra más verosímil. + +#### El método del máximo de verosimilitud + +Si partimos de las dos ideas que hemos visto en la introducción: + +- Escoger como estimación el valor que maximice la probabilidad de la muestra observada. +- La verosimilitud de la muestra es una aproximación a la probabilidad de esta como función del valor del parámetro. + +Una forma razonable de definir el EMV es entonces como aquel que maximice la verosimilitud. + +Definició 3.2 Un estimador $T: \Omega \longrightarrow \Theta$ es un estimador del máximo de verosimilitud para el parámetro $\theta$ si cumple: + +$$ +L(T(\mathbf{x}) ; \mathbf{x})=\sup _{\theta \in \Theta} L(\theta ; \mathbf{x}) +$$ + +Como suele ocurrir en problemas de maximización, este valor ni existe necesariamente ni tiene por qué ser único. Ahora bien, bajo ciertas condiciones (las habituales para los problemas de máximos y mínimos) el problema se podrá reducir a buscar un máximo para la función de verosimilitud. + +Ejemplo 3.2.4 Supongamos que $x_{1}, \ldots, x_{n}$ es una muestra de una población de Bernouilli, $X \sim B e(p)$, donde queremos estimar p. La función de masa de la probabilidad de $X$ es: + +$$ +P\left[X=x_{i}\right]=P\left(x_{i} ; p\right)=p^{x_{i}}(1-p)^{1-x_{i}} \text { donde } x_{i} \in\{0,1\} ; i=1, \ldots, n +$$ + +La función de verosimilitud es: + +$$ +L(p ; \mathbf{x})=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum_{i=1}^{n} x_{i}}(1-p)^{\sum_{i=1}^{n}\left(1-x_{i}\right)} +$$ + +Debemos buscar el máximo de $L(p ; \mathbf{x})$. En este caso, como en otros, es más sencillo buscar el máximo de su logaritmo, que, dado que es una función monótona, es el mismo que el máximo de $L$ + +$$ +\ln L(p ; x)=\left(\sum_{i=1}^{n} x_{i}\right) \cdot \ln p+\left(n-\sum_{i=1}^{n} x_{i}\right) \cdot \ln (1-p) +$$ + +Derivamos respecto a p: + +$$ +\frac{\partial \ln L(p ; x)}{\partial p}=\frac{\sum_{i=1}^{n} x_{i}}{p}-\frac{n-\sum_{i=1}^{n} x_{i}}{1-p} +$$ + +e igualamos a cero la derivada, planteando lo que se denomina la ecuación de verosimilitud, cuyas soluciones nos conducirán eventualmente al estimador del máximo de verosimilitud. + +$$ +\frac{\sum_{i=1}^{n} x_{i}-n \hat{p}}{\hat{p}(1-\hat{p})}=0 \Rightarrow \hat{p}=\frac{\sum_{i=1}^{n} x_{i}}{n} +$$ + +Si la segunda derivada es negativa en $\widehat{p}$ entonces será un máximo: + +$$ +\begin{aligned} +\frac{\partial^{2} \ln L(p ; x)}{\partial p^{2}} & =\frac{\partial}{\partial p}\left(\frac{\sum_{i=1}^{n} x_{i}-n p}{p(1-p)}\right)=\frac{-n[p(1-p)]-\left(\sum_{i=1}^{n} x_{i}-n p\right) \cdot(1-2 p)}{p^{2}\left(1-p^{2}\right)}= \\ +& =\frac{-n p+n p^{2}-\sum_{i=1}^{n} x_{i}-n p-2 p \sum_{i=1}^{n} x_{i}-2 n p^{2}}{p^{2}(1-p)^{2}}= \\ +& =\frac{\left[\sum_{i=1}^{n} x_{i}(1+2 p)-n p^{2}\right]}{p^{2} \cdot(1-p)^{2}} +\end{aligned} +$$ + +que es negativa cuando $p=\hat{p}$, de forma que $\hat{p}$ es efectivamente un máximo. +El método analítico expuesto en el ejemplo anterior, consistente en el cálculo de un extremo de una función, no se puede aplicar en todas las situaciones. En estos casos, una alternativa puede ser estudiar directamente la función de verosimilitud. Veamos un ejemplo: + +Ejemplo 3.2.5 Sea $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} X \sim U(0, \theta) \quad \theta>0$ desconocido. Sabemos que: + +$$ +f(x ; \theta)=\left\{\begin{array}{c} +\frac{1}{\theta} \text { si } 0<\min \left\{x_{i}\right\} \leq \max \left\{x_{i}\right\} \leq \theta \\ +0 \quad \text { en caso contrario } +\end{array}\right\} +$$ + +La derivada respecto a $\theta$ es $-\frac{n}{\theta^{n-1}}$, que se anula cuando $\theta \underset{n \rightarrow \infty}{\longrightarrow} \infty$ que lleva a una solución sin sentido de la ecuación de verosimilitud. Una inspección de la gráfica de la función de verosimilitud revela que el EMV, en este caso, + +Figura 3.1: Función de verosimilitud para una distribución uniforme +es $\max \left\{X_{i}, \ldots, X_{n}\right\}$. Efectivamente, consideremos cualquier otro valor $\theta^{*}$ diferente del máximo: + +$$ +\begin{aligned} +& \text { Si } \theta^{*}>X_{(n)} \Rightarrow \frac{1}{\left(\theta^{*}\right)^{n}}<\frac{1}{\left(X_{n}\right)^{n}}, \\ +& \text { Si } \theta^{*}\left.0 y \frac{\partial^{2} z}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}<0 \Longrightarrow$ Hay un máximo relativo en $\left(x_{0}, y_{0}\right)$. +Si evaluamos el Hessiano en el punto $\left(\bar{x}, s^{2}\right)$ tenemos: + +$$ +H=\left(\begin{array}{cc} +-\frac{n}{s^{2}} & 0 \\ +0 & -\frac{n}{2 s^{4}} +\end{array}\right) . +$$ + +Las condiciones de extremo que hemos dado más arriba se verifican: $H_{11}<0 y|H|>0$, de manera que podemos concluir que el estimador del máximo de verosimilitud de $\left(\mu, \sigma^{2}\right)$ es, efectivamente, $\left(\bar{x}, s^{2}\right)$. diff --git a/07-estimacion.Rmd b/08-estimacionIntervalos.Rmd similarity index 96% rename from 07-estimacion.Rmd rename to 08-estimacionIntervalos.Rmd index 6f5d0da..0364570 100644 --- a/07-estimacion.Rmd +++ b/08-estimacionIntervalos.Rmd @@ -1,4 +1,4 @@ -# Estimación por intérvalos +# Estimación puntual :::: {.calloutBox .important} diff --git a/08-pruebasHipotesis.Rmd b/09-pruebasHipotesis.Rmd similarity index 100% rename from 08-pruebasHipotesis.Rmd rename to 09-pruebasHipotesis.Rmd diff --git a/09-inferenciaAplicada.Rmd b/10-inferenciaAplicada.Rmd similarity index 100% rename from 09-inferenciaAplicada.Rmd rename to 10-inferenciaAplicada.Rmd diff --git a/10-computerIntensive.Rmd b/11-computerIntensive.Rmd similarity index 100% rename from 10-computerIntensive.Rmd rename to 11-computerIntensive.Rmd diff --git a/complementos/EstadMat-AllChap(ES).html b/complementos/EstadMat-AllChap(ES).html new file mode 100644 index 0000000..fc245fa --- /dev/null +++ b/complementos/EstadMat-AllChap(ES).html @@ -0,0 +1,2235 @@ + + + + + + + + + + + +Introducción a la Estadística Matemática + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+

Introducción a la Estadística Matemática

+
+ + + +
+ +
+
Author
+
+

Alex Sanchez-Pla y Francesc Carmona-Pontaque

+
+
+ +
+
Published
+
+

November 11, 2024

+
+
+ + +
+ + + +
+ + +
+

2. Presentación

+

El material que se presenta a continuación se originó en las notas de clase de la asignatura Estadística Matemática que hemos impartido en la Diplomatura de Estadística desde su inicio en la Universidad de Barcelona. El objetivo de estos apuntes no es sustituir los libros citados en la bibliografía, sino, más bien, servir como una guía de estudio para que los estudiantes puedan repasar los razonamientos y los cálculos hechos en clase y asegurarse de que lo entienden todo correctamente. Este documento es una versión preliminar y, como tal, puede contener algunos errores. Si nos hemos animado a publicarlo de forma electrónica, ha sido con la idea de que pueda resultar de utilidad a aquellos a quienes va destinado, no en un futuro incierto sino desde ahora mismo. Nos gustaría que nos hicieran llegar cualquier error, errata o comentario.

+

Barcelona, 13 de febrero de 2002 Àlex Sánchez Pla (asanchez@ub.edu) Francesc Carmona (fcarmona@ub.edu) Departamento de Estadística Universidad de Barcelona

+
+
+

3. Capítol 1

+
+
+

4. INFERENCIA, MUESTREO Y DISTRIBUCIONES MUESTRALES

+
+

4.1. Inferencia estadística

+

Para comenzar, vamos a definir cuál es el ámbito de estudio de la inferencia estadística desde su relación con el cálculo de probabilidades. El cálculo de probabilidades proporciona una teoría matemática que permite analizar (o modelizar) las propiedades de los fenómenos donde interviene el azar. El cálculo de probabilidades utiliza como modelo básico para cualquier situación aleatoria el concepto de espacio de probabilidades \((\Omega, \mathcal{A}, P)\) y una variable aleatoria \(X: \Omega \rightarrow \mathbb{R}\) definida sobre él. El conocimiento de la distribución de la variable aleatoria permite:

+
    +
  1. Análisis deductivo de situaciones. Por ejemplo: si asumimos que el peso de los recién nacidos se distribuye según una distribución \(N(\mu=\) \(3 \mathrm{~kg}, \sigma=0.25 \mathrm{~kg}\) ), nos puede interesar calcular la probabilidad de que un recién nacido pese entre 2.9 y 3.1 kg , o encontrar unos valores centrados en la media entre los cuales esperemos que se encuentren el \(10 \%(25 \%, 50 \%, 95 \%, \ldots)\) de los recién nacidos.
  2. +
  3. Modelización de situaciones aleatorias. Por ejemplo: si asumimos que el tiempo, en años, hasta que se estropea un componente de un ordenador se distribuye según una distribución exponencial \(T \sim \xi(\lambda=\) \(0.3)\), nos puede interesar calcular la probabilidad de que un componente dado dure más de 4 años.
  4. +
+

En los casos anteriores nos encontramos en una situación muy común, donde ya disponemos de un modelo sobre el cual efectuamos los cálculos, pero del cual desconocemos la procedencia. Parece razonable, y de hecho es precisamente así, que si queremos adaptar un modelo a una situación debamos basarnos únicamente en las observaciones del fenómeno. Si queremos saber cómo se distribuyen los pesos de los recién nacidos tomaremos unos cuantos, los pesaremos y después observaremos la distribución de estos. Puede que no sea necesario pesar a todos los recién nacidos (jde hecho, no es posible!), pero tampoco es posible deducir la ley por consideraciones puramente teóricas. Ahora, en lugar de partir de un espacio de probabilidades, partiremos de unas observaciones \(\left(x_{1}, \ldots, x_{n}\right)\) y el objetivo que perseguiremos será obtener información sobre la distribución de probabilidades de un fenómeno a partir de una observación no exhaustiva del mismo.

+
+
+

4.2. Problemas de inferencia estadística

+

Hemos presentado como objetivo de la inferencia estadística inducir propiedades del modelo probabilístico que representa la población a partir de un conjunto de observaciones. Según el tipo de conclusión que queramos extraer, diferenciaremos diferentes tipos de problemas:

+
    +
  1. Si queremos utilizar la información proporcionada por la muestra para obtener un pronóstico numérico único (es decir, una única aproximación numérica) de una o más características de la población, tenemos un problema de estimación puntual.
  2. +
  3. Si queremos obtener información sobre un rango de valores dentro del cual podamos afirmar, con un cierto grado de confianza, que podemos capturar un parámetro desconocido de la distribución, hablamos de estimación por intervalo.
  4. +
  5. Si lo que queremos hacer es decidir si podemos aceptar o debemos rechazar una afirmación sobre la distribución de probabilidad del fenómeno estudiado, hablamos de contraste de hipótesis. Este contraste puede ser:
  6. +
+
    +
  • Paramétrico: si la afirmación (la hipótesis) se refiere a los parámetros de la distribución.
  • +
  • No paramétrico: si la afirmación es sobre la forma de la distribución.
  • +
+
+
+

4.3. Distribución de la población

+

Todo problema de inferencia está motivado por un cierto grado de desconocimiento de la ley de probabilidades que rige un determinado fenómeno aleatorio. El caso más sencillo que encontramos es cuando nos interesa una cierta variable \(X\) con una función de distribución \(F\) desconocida en mayor o menor grado. La distribución que teóricamente sigue la variable de interés \(X\) en la población recibe el nombre de distribución teórica o distribución de la población. La distribución de la población es importante ya que, a menudo, se utiliza para determinar la distribución de alguna característica de los individuos de una población. En los modelos de la inferencia estadística indicamos el relativo grado de desconocimiento sobre la distribución \(F\) en función de su pertenencia a una familia \(\mathcal{F}\) de distribuciones. Por ello, en lugar de explicar que \(X \sim F=F_{0}\) indicaremos que \(X \sim F \in \mathcal{F}\), donde \(\mathcal{F}\) puede ser un conjunto más o menos amplio de distribuciones de probabilidad, como todas las distribuciones normales o las distribuciones simétricas o las distribuciones discretas sobre \(\mathbb{N}\). Muchas veces, la distribución poblacional \(F\) está completamente especificada excepto por el valor de algún parámetro o parámetros. En este caso, podemos concretar más la forma de la familia de distribuciones:

+

\[ +X \sim F \in \mathcal{F}=\left\{F_{\theta}: \theta \in \Theta \subset \mathbb{R}^{k}\right\} +\]

+

donde \(\Theta\) es el espacio de los \(k\) parámetros. La familia de posibles distribuciones de probabilidad para \(X\) se denomina, genéricamente, modelo estadístico y se indica como: \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\). Veamos algunos ejemplos.

+

Exemple 1.3.1 Supongamos que \(X\) representa la duración de un componente electrónico que no envejece, solo se estropea. Es decir, si en un instante \(t\) está funcionando, su estado es el mismo que en cualquier momento del pasado y la distribución del tiempo hasta que se estropee es la misma que al principio. Esta propiedad se denomina falta de memoria. Un modelo razonable para esta situación lo da la distribución de Weibull que, en este caso, podemos definir a través de la siguiente función de densidad:

+

\[ +f_{\theta}(x)= \begin{cases}\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}} & \text { si } x \geq 0 \\ 0 & \text { si } x<0\end{cases} +\]

+

La familia de distribuciones asociada es

+

\[ +\mathcal{F}=\left\{F_{\theta}: \theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty)\right\} +\]

+

Exemple 1.3.2 Supongamos que queremos determinar la masa de un cierto tipo de partículas elementales a partir de las observaciones en una cámara de burbujas. En cada observación obtenemos un dato de la masa de la partícula \(x_{i}\) y asociado con ella un cierto error de medida \(\varepsilon\). Si la masa común de cada una de ellas es \(\mu\), entonces podemos escribir:

+

\[ +x_{i}=\mu+\varepsilon_{i} \quad i=1, \ldots, n +\]

+

donde la distribución \(\varepsilon_{i} \sim F\) es desconocida. Nuestro objetivo es obtener información sobre \(F\). Si admitimos que \(P\left(\varepsilon_{i}<0\right)=P\left(\varepsilon_{i}>0\right)\), según el grado de exigencia que queramos tener, podemos suponer:

+
    +
  • Con un enfoque de inferencia paramétrica:
  • +
+

\[ +X \sim F \in \mathcal{F}=\left\{N(0, \sigma): \sigma \in \mathbb{R}^{+}\right\} +\]

+
    +
  • Con un enfoque de inferencia no paramétrica:
  • +
+

\[ +X \sim F \in \mathcal{F}=\{\text { Distribuciones simétricas }\} +\]

+
+
+

4.4. Muestra aleatoria simple

+
+

4.4.1. Definición

+

Para estudiar un problema de inferencia estadística analizamos una muestra de tamaño \(n\). Se trata de escoger \(n\) individuos o elementos de la población \(\Omega\)

+

\[ +\omega_{1}, \omega_{2}, \ldots, \omega_{n} +\]

+

que sean representativos. El valor de \(n\) y la forma de elección de los individuos de la muestra es una materia de Estadística llamada Muestreo estadístico. Por ahora y para simplificar, solo hace falta decir que la elección se hace de forma que todos los individuos tienen la misma probabilidad de estar presentes en la muestra, si es necesario con reemplazo, y que el valor de \(n\) está dado. En realidad, lo que nos interesa verdaderamente no son los individuos de la muestra sino las mediciones de una característica \(X\) sobre ellos. Es decir, los valores de una variable aleatoria \(X\) sobre estos individuos

+

\[ +X\left(\omega_{1}\right)=x_{1}, X\left(\omega_{2}\right)=x_{2}, \ldots, X\left(\omega_{n}\right)=x_{n} +\]

+

También podemos pensar que los valores muestrales \(x_{1}, x_{2}, \ldots, x_{n}\) son generados directamente desde la variable aleatoria. En todo caso, los valores muestrales no son únicos y podemos generar varias muestras

+

\[ +\begin{array}{ccccc} +x_{1}^{1} & x_{2}^{1} & x_{3}^{1} & \ldots & x_{n}^{1} \\ +x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\ +\vdots & \vdots & \vdots & & \vdots \\ +x_{1}^{s} & x_{2}^{s} & x_{3}^{s} & \ldots & x_{n}^{s} +\end{array} +\]

+

Si todos los valores son independientes, de la misma forma que \(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\) es una muestra generada por \(X\), podemos considerar todos los \(x_{1}^{i} \quad i=1, \ldots, s\) provenientes de una variable aleatoria \(X_{1}\) con la misma distribución que \(X\) \(X_{1} \stackrel{d}{=} X\) y que genera los primeros valores, los \(x_{i}^{2}\) provenientes de una variable aleatoria \(X_{2} \stackrel{d}{=} X\) que genera los segundos y así sucesivamente. Todo esto nos lleva a definir el concepto de muestra aleatoria de una forma muy conveniente para trabajar con ella:

+

Definició 1.1 Una muestra aleatoria simple de tamaño \(n\) de una variable aleatoria \(X\) con distribución \(F\) es una colección de \(n\) variables aleatorias independientes \(X_{1}, X_{2}, \ldots, X_{n}\) con la misma distribución \(F\) que \(X\). Esto se suele indicar como:

+

\[ +\mathbf{X}=X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} X +\]

+

Definició 1.2 El conjunto \(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\) de observaciones concretas de \(X_{1}, X_{2}, \ldots, X_{n}\) se denomina realización de la muestra.

+
+
+

4.4.2. Distribución de la muestra

+

Una muestra aleatoria simple, como vector aleatorio \(n\)-dimensional que es, tiene una distribución conjunta o distribución de la muestra que depende de \(F\), pero que obviamente es diferente, ya que en particular \(X\) y \(\mathbf{X}\) tienen dimensiones diferentes. Sin embargo, gracias a la independencia de las variables \(X_{1}, X_{2}, \ldots, X_{n}\), la función de distribución conjunta de \(\mathbf{X}\), que podría ser muy complicada, toma una forma muy sencilla. En resumen:

+

Definició 1.3 Se llama distribución de la muestra de una variable aleatoria \(X \sim F\) a la distribución del vector aleatorio \(n\)-dimensional \(\left(X_{1}, X_{2}, \ldots, X_{n}\right)\)

+

\[ +G\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}\right) F\left(x_{2}\right) \cdots F\left(x_{n}\right) +\]

+

En los casos particulares en que \(X\) sea discreta o absolutamente continua, la distribución conjunta de la muestra suele expresarse mediante la función de masa de probabilidad o la función de densidad:

+
    +
  • Para variables discretas:
  • +
+

\[ +\begin{aligned} +p_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\ +& =\prod_{i=1}^{n} P\left(X=x_{i}\right)=\prod_{i=1}^{n} p_{F}\left(x_{i}\right), +\end{aligned} +\]

+
    +
  • Para variables absolutamente continuas:
  • +
+

\[ +g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right) +\]

+

Exemple 1.4.1 Una moneda tiene una probabilidad \(\theta\) de salir cara. Queremos estudiar la variable aleatoria:

+

\[ +X= \begin{cases}1 & \text { si sale cara } \\ 0 & \text { si sale cruz }\end{cases} +\]

+

con densidad \(P\{X=1\}=\theta, P\{X=0\}=1-\theta\). Es decir

+

\[ +X \sim F_{\theta} \in \mathcal{F}=\left\{F_{\theta}=B(1, \theta): \theta \in(0,1)\right\} +\]

+

Supongamos que hacemos tres lanzamientos. Las posibles muestras son:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
\(X_{1}\)\(X_{2}\)\(X_{3}\)Probabilidad
111\(\theta^{3}\)
100\(\theta(1-\theta)^{2}\)
010\(\theta(1-\theta)^{2}\)
001\(\theta(1-\theta)^{2}\)
101\(\theta^{2}(1-\theta)\)
110\(\theta^{2}(1-\theta)\)
011\(\theta^{2}(1-\theta)\)
000\((1-\theta)^{3}\)
+

El muestreo ha especificado la distribución conjunta de la muestra a través de la distribución desconocida \(F_{\theta}\). Si escribimos la función de probabilidades de la variable aleatoria como \(f_{\theta}(x)=\theta^{x}(1-\theta)^{1-x}\), entonces la función de probabilidades de la muestra la podemos expresar como:

+

\[ +g_{\theta}\left(x_{1}, x_{2}, x_{3}\right)=\theta^{x_{1}+x_{2}+x_{3}}(1-\theta)^{3-\left(x_{1}+x_{2}+x_{3}\right)} +\]

+
+
+
+

4.5. Estadísticos

+
+

4.5.1. Definición

+

Para lograr el objetivo de realizar inferencias sobre la población a partir de la muestra, solemos basarnos en la realización de cálculos sobre la muestra para tratar de obtener la información que deseamos. En este proceso aparecen los conceptos de estadístico y el caso particular, que más nos interesa a nosotros, de estimador. Un estadístico es una función de la muestra que no depende del valor del parámetro.

+

Definició 1.4 Dada una muestra aleatoria simple \(X_{1}, X_{2}, \ldots, X_{n}\) y una función medible \(T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}\), entonces \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) es un vector aleatorio (variable aleatoria cuando \(k=1\) ). Si \(T\) no depende de \(\theta\) (donde \(\theta\) es un parámetro a especificar en \(F_{\theta}\) ), entonces \(T\) recibe el nombre de estadístico.

+

Solo por su nombre, parece evidente que un estimador de un parámetro \(\theta\) será alguna función de la muestra que sirva para aproximar, en algún sentido, el valor desconocido de \(\theta\). Si añadimos la condición razonable de que un estimador no pueda tomar valores que no puede tomar el parámetro, podemos dar la siguiente definición.

+

Definició 1.5 Un estimador de un parámetro \(\theta\) es un estadístico \(T\) cuyo recorrido es el espacio de los parámetros, es decir:

+

\[ +\begin{array}{ccc} +T: & \mathbb{R}^{n} & \longrightarrow \\ +\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \longrightarrow \\ +\left(t_{1}, \ldots, t_{k}\right) \quad \in \Theta \subset \mathbb{R}^{k} +\end{array} +\]

+

Aquí tienes el texto traducido al castellano manteniendo toda la notación en LaTeX:

+
+
+

4.5.2. Distribución en el muestreo de un estadístico

+

Dado un estadístico \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) nos interesa conocer su distribución de probabilidad, ya que para hacer inferencia necesitaremos hacer cálculos del tipo

+

\[ +P\left[T\left(X_{1}, X_{2}, \ldots, X_{n}\right)>t_{0}\right] +\]

+

La distribución de probabilidad del estadístico se denomina distribución muestral o distribución en el muestreo del estadístico. Encontrarla es un problema que puede ser desde bastante sencillo hasta extremadamente complicado. Algunas de las técnicas utilizadas para intentar resolverlo son las siguientes:

+
    +
  • Uso de la técnica de cambio de variable.
  • +
  • Uso de la función generadora de momentos.
  • +
  • Aplicación del Teorema Central del Límite.
  • +
+

Exemple 1.5.1 Sea \(X \sim F_{\theta}\) una variable aleatoria absolutamente continua con densidad

+

\[ +f_{\theta}(x)=e^{-(x-\theta)} e^{-e^{-(x-\theta)}} \quad \theta \in \mathbb{R} +\]

+

y consideremos el estadístico

+

\[ +T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} e^{-X_{i}} +\]

+

Si aplicamos el teorema de cambio de variable unidimensional, se obtiene fácilmente que la variable aleatoria \(Y=e^{-X}\) sigue una distribución exponencial de parámetro \(e^{-\theta}\), de donde la suma seguirá una distribución gamma \(T \sim \Gamma\left(e^{-\theta}, n\right)\).

+

Exemple 1.5.2 Supongamos que \(X\) representa el número de averías en una máquina al cabo de un mes. Este valor varía mes a mes. Sea \(\bar{X}\) la media de averías en \(n\) meses. Si \(X\) sigue una distribución de Poisson \(P(\lambda)\), ¿cuál es la distribución de \(\bar{X}\) ? Como la suma de Poisson i.i.d. es \(\sum_{i=1}^{n} X_{i} \sim P(n \lambda)\)

+

\[ +P[\bar{X}=r]=P\left[\sum_{i=1}^{n} X_{i}=n r\right]=\frac{e^{-n \lambda}(n \lambda)^{n r}}{(n r)!} +\]

+

Como ocurre en este ejemplo, uno de los estadísticos para el cual a menudo deseamos calcular la distribución en el muestreo es la media aritmética. Una manera útil de hacerlo es con la función generadora de momentos y la aplicación del siguiente lema.

+

Lema 1 Si \(X\) es una v.a. con \(M_{X}(t)\) como función generadora de momentos, entonces la f.g.m. de \(\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}\) es

+

\[ +M_{\bar{X}_{n}}(t)=\left[M_{X}(t / n)\right]^{n} +\]

+
+
+
+
+

5. Demostración:

+

La demostración es inmediata a partir de la definición o por las propiedades de la función generadora de momentos.

+

Si aplicamos directamente la definición de la f.g.m tenemos:

+

\[ +\begin{aligned} +E\left(e^{t \bar{X}_{n}}\right) & =E\left(e^{t \frac{1}{n} \sum_{i=1}^{n} X_{i}}\right)=E\left(\prod_{i=1}^{n} e^{\frac{t}{n} X_{i}}\right)=\prod_{i=1}^{n} E\left(e^{\frac{t}{n} X_{i}}\right) \\ +& =\prod_{i=1}^{n} M_{X_{i}}(t / n)=\left[M_{X}(t / n)\right]^{n} +\end{aligned} +\]

+

Si usamos las propiedades de la f.g.m tenemos:

+
    +
  1. Dado que \(M_{a X}(t)=M_{X}(a t)\) y si \(a=\frac{1}{n}\), entonces \(M_{\bar{X}}(t)=M_{\sum_{i=1}^{n} X_{i}}(t / n)\).
  2. +
  3. \(M_{\sum_{i=1}^{n} X_{i}}(t / n) \stackrel{\text { ind }}{=} \prod_{i=1}^{n} M_{X_{i}}(t / n) \stackrel{\text { id }}{=}\left[M_{X}(t / n)\right]^{n}\).
  4. +
+

Exemple 1.5.3 Para una variable aleatoria \(X \sim N(\mu, \sigma)\) y por tanto \(M_{X}(t)=\) \(\exp \left(t \mu+\frac{t^{2} \sigma^{2}}{2}\right)\), entonces

+

\[ +\begin{aligned} +M_{\bar{X}_{n}}(t) & =\left[\exp \left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right]^{n} \\ +& =\exp \left[n\left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right] \\ +& =\exp \left[t \mu+\frac{1}{2} t^{2}\left(\frac{\sigma}{\sqrt{n}}\right)^{2}\right] +\end{aligned} +\]

+

que es la función generadora de momentos de una variable \(N(\mu, \sigma / \sqrt{n})\).

+
+

5.1. La distribución empírica

+
+

5.1.1. Definición

+

En el apartado anterior hemos visto que a partir de una muestra \(X_{1}, X_{2}, \ldots, X_{n}\) es interesante considerar la distribución muestral como la distribución conjunta del vector aleatorio \(\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), sin que intervenga una realización concreta de la muestra \(x_{1}, x_{2}, \ldots, x_{n}\). Un enfoque diferente consiste en asociar una distribución particular directamente a las observaciones \(x_{1}, x_{2}, \ldots, x_{n}\) con la intención de que, en tanto que la muestra “representa” la v.a. \(X\), esta distribución asociada a la muestra \(F_{n}(x)\) emule la distribución de la población. Esta distribución se denomina distribución empírica o distribución muestral y se define así:

+

\[ +F_{n}(x)=\frac{k(x)}{n} +\]

+

donde \(k(x)\) es el número de datos muestrales menores o iguales que \(x\). En la práctica se construye por ordenación de la muestra

+

\[ +x_{1}, x_{2}, \ldots, x_{n} \longrightarrow x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} +\]

+

y con la siguiente definición:

+

\[ +F_{n}(x)= \begin{cases}0 & \text { si } x<x_{(1)} \\ \frac{k}{n} & \text { si } x_{(k)} \leq x<x_{(k+1)} \\ 1 & \text { si } x_{(n)} \leq x\end{cases} +\]

+

Exemple 1.6.1 Extraemos una muestra y obtenemos:

+ + + + + + + + + + + + + + + + + + + + + + + +
\(x_{1}\)\(x_{2}\)\(x_{3}\)\(x_{4}\)\(x_{5}\)\(x_{6}\)\(x_{7}\)
5.13.41.217.62.116.44.3
+

Una vez ordenada queda:

+ +++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
\(x_{(1)}\)\(x_{(2)}\)\(x_{(3)}\)\(x_{(4)}\)\(x_{(5)}\)\(x_{(6)}\)\(x_{(7)}\)
\(x_{3}\)\(x_{5}\)\(x_{2}\)\(x_{7}\)\(x_{1}\)\(x_{6}\)\(x_{4}\)
1.22.13.44.35.116.417.6
+

y si hacemos la representación gráfica:

+

Figura 1.1: Función de distribución empírica con los datos del ejemplo

+

La distribución empírica refleja exclusivamente los valores observados en la muestra y, por lo tanto, no se relaciona directamente ni con la distribución conjunta de la muestra \(G\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) ni con la distribución de la población \(F\). Aquí tienes la traducción al castellano del fragmento en LaTeX, respetando toda la notación:

+
+
+
+

5.2. Los momentos muestrales

+
+

5.2.1. Definición

+

Sea \(F_{n}\) la v.a. que tiene \(F_{n}(x)\) por distribución. La función de densidad de probabilidad de \(F_{n}\) es una densidad discreta que asigna probabilidades \(1 / n\) a cada una de las observaciones muestrales \(x_{1}, x_{2}, \ldots, x_{n}\). Así pues, tiene sentido calcular sus momentos, que se conocen como momentos muestrales \(a_{k}\), y también sus momentos muestrales centrados respecto a la media \(b_{k}\).

+

\[ +\begin{aligned} +a_{k} & =E\left(F_{n}^{k}\right)=\sum_{i=1}^{n} x_{i}^{k} \cdot P\left(F_{n}=x_{i}\right)=\sum_{i=1}^{n} x_{i}^{k} \cdot \frac{1}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{k} \\ +b_{k} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{k} +\end{aligned} +\]

+

Observamos que dos medidas conocidas de la estadística descriptiva adquieren un significado diferente:

+
    +
  • Media muestral \(=\) Media de la distribución muestral
  • +
+

\[ +a_{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i} +\]

+
    +
  • Varianza muestral \(=\) Varianza de la distribución muestral
  • +
+

\[ +b_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} +\]

+
+
+

5.2.2. Distribución en el muestreo de los momentos muestrales

+

Dada una m.a.s. \(X_{1}, X_{2}, \ldots, X_{n}\), los momentos muestrales son estadísticos y, como tales, tienen su distribución en el muestreo. Por ejemplo, \(a_{k}=\) \(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\).

+

La distribución en cada caso puede ser compleja y depender de la distribución poblacional subyacente. Lo que sí es posible calcular son los momentos de los momentos muestrales o, mejor dicho, los momentos de las distribuciones en el muestreo de los momentos muestrales.

+
    +
  1. Si consideramos \(a_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\) y escribimos \(\alpha_{k}=E\left(X^{k}\right)\) como el momento poblacional de orden \(k\), tenemos:
  2. +
+

\[ +\begin{aligned} +E\left(a_{k}\right) & =E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\right)=\frac{1}{n} \cdot n \cdot \alpha_{k}=\alpha_{k} \\ +\operatorname{var}\left(a_{k}\right) & =\operatorname{var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left(X_{i}^{k}\right)=\frac{1}{n} \operatorname{var}\left(X^{k}\right) \\ +& =\frac{1}{n}\left[E\left(X^{2 k}\right)-\left(E\left(X^{k}\right)\right)^{2}\right]=\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n} +\end{aligned} +\]

+
    +
  1. Si consideramos \(s^{2}=b_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}\), podemos calcular:
  2. +
+

\[ +\begin{aligned} +E\left(s^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-E(\bar{X})^{2}=\alpha_{2}-\left(\frac{\sigma^{2}}{n}+\mu^{2}\right) \\ +& =\left(\sigma^{2}+\mu^{2}\right)-\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)=\frac{n-1}{n} \sigma^{2} +\end{aligned} +\]

+

El cálculo de la varianza de \(s^{2}\) es laborioso \({ }^{1}\) y no lo haremos aquí. Su valor es

+

\[ +\operatorname{var}\left(s^{2}\right)=\frac{\mu_{4}-\mu_{2}^{2}}{n}-\frac{2\left(\mu_{4}-2 \mu_{2}^{2}\right)}{n^{2}}+\frac{\mu_{4}-3 \mu_{2}^{2}}{n^{3}} +\]

+

donde \(\mu_{k}\) es el momento poblacional centrado de orden \(k\).

+
+
+

5.2.3. Propiedades asintóticas de los momentos muestrales

+
+
+
+
+

6. Convergencia en probabilidad

+

Los momentos muestrales, tanto respecto al origen como respecto a la media, convergen hacia los momentos poblacionales. Es posible establecer la convergencia basándose en la ley fuerte de los grandes números (convergencia casi

+

1segura) o en la ley débil (convergencia en probabilidad). Si nos limitamos a esta última podemos afirmar que \[ +a_{k} \xrightarrow{P} \alpha_{k} \quad \text { es decir } \quad \lim _{n \rightarrow \infty} P\left[\left|a_{k}-\alpha_{k}\right| \geq \epsilon\right]=0 +\]

+

1 \({ }^{1}\) Ver: Métodos matemáticos de la estadística, de H. Cramer. Ed. Aguilar

La prueba se basa en la desigualdad de Tchebychev. Si suponemos que \(\alpha_{2 k}<\infty\), tenemos

+

\[ +P\left[\left|a_{k}-\alpha_{k}\right| \geq \epsilon\right] \leq \frac{E\left|a_{k}-\alpha_{k}\right|^{2}}{\epsilon^{2}}=\frac{\operatorname{var}\left(a_{k}\right)}{\epsilon^{2}}=\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n \epsilon^{2}} \longrightarrow 0 +\]

+

Esta propiedad es importante porque hará posible el concepto de estimador consistente y en ella se basa un método de estimación llamado método de los momentos.

+
+
+

7. Distribución asintótica

+

Si consideramos el momento muestral \(a_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\), entonces \(n \cdot a_{k}\) es una suma de variables aleatorias i.i.d. a la que podemos aplicar el Teorema Central del Límite. Como hemos visto:

+

\[ +E\left(n a_{k}\right)=n \alpha_{k} \quad \operatorname{var}\left(n a_{k}\right)=n^{2} \operatorname{var}\left(a_{k}\right)=n^{2} \frac{\alpha_{2 k}-\alpha_{k}^{2}}{n} +\]

+

y por el Teorema Central del Límite de Lindeberg-Levy la variable

+

\[ +\frac{n a_{k}-E\left(n a_{k}\right)}{\sqrt{\operatorname{var}\left(n a_{k}\right)}}=\frac{n a_{k}-n \alpha_{k}}{n \sqrt{\operatorname{var}\left(a_{k}\right)}}=\frac{a_{k}-\alpha_{k}}{\sqrt{\operatorname{var}\left(a_{k}\right)}} +\]

+

verifica

+

\[ +\frac{a_{k}-\alpha_{k}}{\sqrt{\operatorname{var}\left(a_{k}\right)}} \xrightarrow{\mathcal{L}} N(0,1) +\]

+

es decir

+

\[ +a_{k} \sim A N\left(\alpha_{k}, \sqrt{\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n}}\right) +\]

+
+

7.1. Muestreo en poblaciones normales

+

Como hemos visto, a partir de una m.a.s. \(X_{1}, X_{2}, \ldots, X_{n}\) y si consideramos un estadístico \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), puede resultar complicado obtener su distribución en el muestreo. Esta distribución depende de:

+
    +
  • La forma funcional de \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\).
  • +
  • La distribución subyacente de \(X\), es decir, la distribución de la población.
  • +
+

Hay un caso especial en el que el problema se ha estudiado en profundidad para algunos estadísticos de gran importancia práctica. Si \(X \sim N(\mu, \sigma)\) es posible encontrar la distribución de los estadísticos más utilizados como \(\bar{X}\) y \(S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\). De hecho, obtendremos la distribución de funciones de estos estadísticos como

+

\[ +\frac{\bar{X}-\mu}{s / \sqrt{n-1}} ; \quad \frac{n s^{2}}{\sigma^{2}} ; \quad \bar{X}_{1}-\bar{X}_{2} ; \quad \frac{S_{1}^{2} /\left(n_{1}-1\right)}{S_{2}^{2} /\left(n_{2}-1\right)} +\]

+

donde \(s^{2}=(1 / n) S^{2}\). En el estudio de las distribuciones de estos estadísticos aparecen algunas distribuciones de probabilidad que han resultado ser de gran utilidad. Son las llamadas “distribuciones derivadas de la normal” y se conocen por el nombre del investigador que las formuló:

+
    +
  • la \(\chi^{2}\) chi-cuadrado de Pearson
  • +
  • la \(t\) de Student (Gosset)
  • +
  • la \(F\) de Fisher-Snedecor
  • +
+
+

7.1.1. La distribución chi-cuadrado

+

Sean \(X_{1}, X_{2}, \ldots, X_{k}\) un conjunto de v.a. independientes sobre un mismo espacio de probabilidad \((\Omega, \mathcal{A}, P)\) y con distribución común \(N(0,1)\). Consideremos la variable

+

\[ +Y=X_{1}^{2}+X_{2}^{2}+\cdots+X_{k}^{2} +\]

+

La distribución de la variable \(Y\) se llama chi-cuadrado con \(k\) grados de libertad. La función de densidad de la variable aleatoria \(Y\) es

+

\[ +f(x)=\frac{1}{\Gamma(k / 2) 2^{k / 2}} e^{-x / 2} x^{k / 2-1} \quad \text { si } x>0 +\]

+

De modo que resulta que \(Y=\sum_{i=1}^{k} X_{i}^{2}\) tiene una distribución gamma \(G\left(\frac{1}{2}, \frac{k}{2}\right)\) y su f.g.m. es

+

\[ +M(t)=(1-2 t)^{-k / 2} \quad \text { si } t<1 / 2 +\]

+
+
+
+
+

8. Propiedades

+
    +
  1. Si recordamos que para \(X \sim G(p, \alpha)\) entonces \(E(X)=\frac{p}{\alpha} \mathrm{y} \operatorname{var}(X)=\) \(\frac{p}{\alpha^{2}}\), resulta
  2. +
+

\[ +E(Y)=\frac{k / 2}{1 / 2}=k \quad \operatorname{var}(Y)=\frac{k / 2}{1 / 4}=2 k +\]

+
    +
  1. De la aditividad (reproductividad) de las leyes gamma se deduce también la reproductividad de la chi-cuadrado \(\chi^{2}\), es decir
  2. +
+

\[ +Y_{1}^{2} \sim \chi_{n_{1}}^{2}, Y_{2}^{2} \sim \chi_{n_{2}}^{2} \quad \text { indep. } \longrightarrow Y_{1}^{2}+Y_{2}^{2} \sim \chi_{n_{1}+n_{2}}^{2} +\]

+
    +
  1. Como \(Y\) es la suma de v.a. independientes \(X_{i}^{2} \sim \chi_{1}^{2}\) se verifica
  2. +
+

\[ +\frac{Y-k}{\sqrt{2 k}} \xrightarrow{\mathcal{L}} N(0,1) +\]

+

Pero es mejor la aproximación de Fisher

+

\[ +\sqrt{2 \chi_{k}^{2}}-\sqrt{2 k-1} \xrightarrow{\mathcal{L}} N(0,1) +\]

+

de donde se obtiene para valores de \(k \geq 30\)

+

\[ +\chi_{k}^{2} \stackrel{\text { aprox }}{=} \frac{1}{2}(Z+\sqrt{2 k-1})^{2} +\]

+

donde \(Z \sim N(0,1)\).

+
+

8.0.1. Distribución \(t\) de Student

+

Sean \(Y, Z\) dos variables aleatorias independientes con distribuciones \(Z \sim\) \(N(0,1)\) y \(Y \sim \chi_{m}^{2}\), entonces se dice que la variable aleatoria

+

\[ +t=\frac{Z}{\sqrt{Y / m}} +\]

+

tiene una distribución \(t\) de Student con \(m\) grados de libertad. Su función de densidad es

+

\[ +f(t)=\frac{\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \sqrt{m \pi}}\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \quad t \in \mathbb{R} +\]

+

Esta expresión se obtiene de la resolución del correspondiente problema de cambio de variable para encontrar la distribución de un cociente.

+

Se trata de una distribución unimodal y simétrica respecto al cero. La distribución depende de \(m\), que llamamos los grados de libertad (g.l.). A medida que \(m\) crece, la forma acampanada se va “cerrando”, acercándose a la ley normal:

+

\[ +\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \xrightarrow{m \rightarrow \infty} e^{-t^{2} / 2} +\]

+

Este hecho es muy relevante en inferencia estadística.

+
+
+
+

9. Propiedades

+
    +
  1. Si \(m=1\), entonces la \(t\) es una Cauchy y, en particular, no tiene esperanza.
  2. +
  3. Para \(m>1, E(t)=0\) y para \(m>2, \operatorname{var}(t)=m /(m-2)\).
  4. +
  5. Cuando \(m \rightarrow \infty\), entonces \(t \xrightarrow{P} N(0,1)\).
  6. +
+
+

9.0.1. La distribución \(F\) de Fisher

+

Esta distribución aparece cuando se considera un cociente entre dos distribuciones chi-cuadrado \(U \sim \chi_{m}^{2}, V \sim \chi_{n}^{2}\) con \(m\) y \(n\) g.l. respectivamente. En concreto decimos que la variable aleatoria

+

\[ +F=\frac{U / m}{V / n} +\]

+

sigue una distribución \(F\) de Fisher con \(m\) y \(n\) grados de libertad. La función de densidad tiene la forma:

+

\[ +f(x)=\frac{m^{m / 2} n^{n / 2} \Gamma[(m+n) / 2]}{\Gamma(m / 2) \Gamma(n / 2)} \cdot \frac{x^{m / 2-1}}{(m x+n)^{(m+n) / 2}} \quad \text { para } x>0 +\]

+
+
+
+

10. Propiedades

+
    +
  1. La esperanza y la varianza son
  2. +
+

\[ +E(F)=\frac{n}{n-2} \quad \operatorname{var}(F)=\frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)} +\]

+
    +
  1. Esta distribución tiene una moda en \(x=\frac{m-2}{m} \cdot \frac{n}{n+2}\), siempre que \(m>2\).
  2. +
  3. Si \(F \sim F_{m, n}\), entonces resulta que \(1 / F \sim F_{n, m}\) y por lo tanto:
  4. +
+

\[ +P(F \leq x)=P\left(\frac{1}{F} \geq \frac{1}{x}\right)=1-P\left(\frac{1}{F} \leq \frac{1}{x}\right) +\]

+

Esta propiedad es de gran utilidad en el uso de las tablas. 4. Cuando \(n \rightarrow \infty, F_{m, \infty} \xrightarrow{\mathcal{L}} \chi_{m}^{2}\). 5. Cuando \(m \rightarrow \infty\) y \(n \rightarrow \infty\), entonces \(F_{m, n} \xrightarrow{\mathcal{L}} 1\).

+
+
+

11. Capítol 2

+
+
+

12. ESTIMACIÓN PUNTUAL

+
+

12.1. El problema de la estimación puntual

+

Informalmente, la estimación de parámetros consiste en buscar aproximaciones a los valores de estos, calculables a partir de una muestra, que sean lo más precisas posible. El problema, claro, es que para medir cuán precisas son estas aproximaciones sería necesario conocer los valores de los parámetros y, como estos son siempre desconocidos, debemos basarnos en el uso de estimadores con buenas propiedades que, en algún sentido, nos garanticen esa proximidad. Más formalmente podemos plantear el problema de la siguiente manera: Sea \(X\) una v.a. con distribución \(F_{\theta}\) donde \(\theta=\left(\theta_{1}, \ldots, \theta_{k}\right) \in \Theta \subset \mathbb{R}^{k}\) y sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra de \(n\) v.a. de \(X\). El problema de la estimación puntual consiste en obtener alguna aproximación de \(\theta\) en base a la información disponible en la muestra mediante un estimador de \(\theta\) que definimos a continuación. Definició 2.1 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X\) con distribución \(F_{\theta}\) donde \(\theta \in \Theta \subset \mathbb{R}^{k}\). Un estadístico \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) se denomina un estimador puntual de \(\theta\) si \(T\) es una aplicación de \(\mathbb{R}^{n}\) en \(\Theta\), es decir, si toma valores sobre el mismo conjunto que los parámetros.

+

Exemple 2.1.1 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de una v.a. de Poisson \(X \sim P(\lambda)\). Para estimar \(\lambda\) podemos utilizar:

+

\[ +\begin{aligned} +& T_{1}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\ +& T_{2}=s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} +\end{aligned} +\]

+

ya que \(E(X)=\operatorname{var}(X)=\lambda\), pero también

+

\[ +\begin{aligned} +T_{3} & =\frac{2}{n(n+1)} \sum_{i=1}^{n} X_{i} \cdot i \\ +T_{4} & =X_{i} +\end{aligned} +\]

+

Exemple 2.1.2 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una m.a.s. de \(X \sim B(1, p)\), con \(p\) desconocido. Podemos estimar p de las siguientes maneras:

+

\[ +\begin{aligned} +& T_{1}=\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i} \\ +& T_{2}=1 / 2 \\ +& T_{3}=\left(X_{1}+X_{2}\right) / 2 +\end{aligned} +\]

+

En cada caso resulta claro que algunos estimadores no son muy razonables mientras que la decisión entre los otros no está necesariamente clara. Básicamente debemos ocuparnos de dos problemas:

+
    +
  • Dado un modelo estadístico \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\), ¿cómo podemos obtener estimadores de \(\theta\) que tengan “buenas” propiedades?
  • +
  • Dado varios estimadores para un mismo parámetro ¿cómo podemos escoger el mejor en base a algún criterio?
  • +
+

Para poder alcanzar estos dos objetivos empezaremos por estudiar las propiedades de los estimadores, así como las medidas de optimalidad que podremos utilizar para decidir entre varios estimadores. De entrada nos restringiremos al caso en que \(\Theta \subseteq \mathbb{R}\) o en que queremos aproximar alguna función \(g(\theta)\) de los parámetros donde \(g\) es del tipo \(g: \Theta \rightarrow\) \(\mathbb{R}\).

+
+

12.1.1. Criterios de optimalidad de estimadores. El Riesgo

+

Una forma de poder comparar entre diversos estimadores consiste en definir una función de pérdida que nos permita cuantificar de alguna manera la pérdida, o coste asociado, al estimar el valor real del parámetro, es decir, \(\theta\), mediante la aproximación que proporciona un estimador, es decir, \(t\).

+

Definició 2.2 Una función de pérdida es una aplicación

+

\[ +\begin{aligned} +L: & \Theta \times \Theta \rightarrow \mathbb{R} \\ +& (\theta, t) \rightarrow L(\theta, t) +\end{aligned} +\]

+

que verifica: a) \(L(\theta, t) \geq 0, \quad \forall \theta, t \in \Theta\) b) \(L(\theta, t)=0\), si \(\theta=t\) c) \(L(\theta, t) \leq L\left(\theta, t^{\prime}\right)\), si \(d(\theta, t) \leq d\left(\theta, t^{\prime}\right)\) donde \(d\) es una distancia en \(\Theta\).

+

Por ejemplo, son funciones de pérdida:

+

\[ +\begin{gathered} +L_{1}(\theta, t)=|\theta-t| \quad L_{2}(\theta, t)=(\theta-t)^{2} \\ +L_{3}(\theta, t)=\left|\frac{\theta-t}{\theta}\right| \quad L_{4}(\theta, t)=\left(\frac{\theta-t}{\theta}\right)^{2} \\ +L_{5}(\theta, t)= \begin{cases}c>0 & \text { si }|\theta-t|>\epsilon \\ +0 & \text { si }|\theta-t| \leq \epsilon\end{cases} +\end{gathered} +\]

+

Los valores que toma la función de pérdida dependen de los valores del estimador y de los del parámetro. Para una muestra dada podemos conocer el valor que toma el estimador, pero no el valor del parámetro. Una posibilidad que nos permitirá comparar los posibles estimadores, para un valor dado del parámetro, consiste en promediar los diferentes valores de \(L(\theta, t)\) sobre todos los posibles valores de \(T\). A este promedio lo llamamos el riesgo del estimador \(T\) asociado a cada valor posible \(\theta\) del parámetro y lo escribimos \(R_{T}(\theta)\).

+

Definició 2.3 Sea \(H_{\theta}(t)\) la distribución en el muestreo de T, es decir

+

\[ +T\left(X_{1}, X_{2}, \ldots, X_{n}\right) \sim H_{\theta}(t)=P_{\theta}(T \leq t) +\]

+

y \(h_{\theta}(t)\) representa la función de densidad de probabilidad, si \(H_{\theta}(t)\) es absolutamente continua, o \(h_{\theta}\left(t_{i}\right)\) la función de masa de probabilidad si \(H_{\theta}\left(t_{i}\right)\) es discreta. Entonces el riesgo del estimador \(T\) para estimar \(\theta\) se define como:

+

\[ +\begin{aligned} +R_{T}(\theta) & =E_{\theta}\left[L\left(\theta, T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)\right]=\int_{\mathbb{R}} L(\theta, t) d H_{\theta}(t) \\ +& = \begin{cases}\int_{-\infty}^{+\infty} L(\theta, t) h_{\theta}(t) d t & \text { si } H_{\theta}(t) \text { es absolutamente continua, } \\ +\sum_{\forall t_{i}} L(\theta, t) h_{\theta}\left(t_{i}\right) & \text { si } H_{\theta}(t) \text { es discreta }\end{cases} +\end{aligned} +\]

+

El riesgo permite comparar dos estimadores. Definició 2.4 Diremos que un estimador \(T_{1}\) es preferible a otro \(T_{2}\) si:

+

\[ +\begin{aligned} +& R_{T_{1}}(\theta) \leq R_{T_{2}}(\theta), \forall \theta \in \Theta, y \\ +& R_{T_{1}}(\theta)<R_{T_{2}}(\theta), \text { para algún } \theta \in \Theta . +\end{aligned} +\]

+

Exemple 2.1.3 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de una distribución uniforme \(X \sim U(0, \theta)\). El parámetro que nos interesa estimar es \(\theta\), el máximo de la distribución. Un estimador razonable puede ser:

+

\[ +T_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\} +\]

+

el máximo de la muestra, o un múltiplo de este:

+

\[ +T_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=k T_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right) +\]

+

La distribución en el muestreo de \(T_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) es

+

\[ +\begin{aligned} +H_{\theta}(t) & =P_{\theta}\left[T_{1} \leq t\right]=P_{\theta}\left[\max _{1 \leq i \leq n}\left\{X_{i}\right\} \leq t\right] \\ +& =P_{\theta}\left[\left(X_{1} \leq t\right) \cap \cdots \cap\left(X_{n} \leq t\right)\right]=\prod_{i=1}^{n} P_{\theta}\left[X_{i} \leq t\right]=\left(\frac{t}{\theta}\right)^{n} +\end{aligned} +\]

+

si \(t \in(0, \theta)\), y su función de densidad es

+

\[ +h_{\theta}(t)=H_{\theta}^{\prime}(t)=\frac{n}{\theta}\left(\frac{t}{\theta}\right)^{n-1} +\]

+

La esperanza de \(T_{1}\) vale:

+

\[ +E_{\theta}\left(T_{1}\right)=\int_{0}^{\theta} t \cdot\left[\frac{n}{\theta}\left(\frac{t}{\theta}\right)^{n-1}\right] d t=\left.\frac{n}{\theta^{n}} \frac{t^{n+1}}{n+1}\right|_{0} ^{\theta}=\frac{n}{n+1} \theta +\]

+

y el momento de segundo orden

+

\[ +E_{\theta}\left(T_{1}^{2}\right)=\int_{0}^{\theta} t^{2} \cdot\left[\frac{n}{\theta}\left(\frac{t}{\theta}\right)^{n-1}\right] d t=\frac{n}{n+2} \theta^{2} +\]

+

Si ahora fijamos una función de pérdida podemos comparar los dos estimadores. Tomamos como función de pérdida el error relativo en la estimación al cuadrado:

+

\[ +L_{4}(\theta, t)=\frac{(\theta-t)^{2}}{\theta^{2}} +\]

+

El riesgo de \(T_{k}\) para estimar \(\theta\) será

+

\[ +\begin{aligned} +R_{T_{k}}(\theta) & =E_{\theta}\left[\frac{\left(\theta-T_{k}\right)^{2}}{\theta^{2}}\right]=E_{\theta}\left[1-\frac{2}{\theta} T_{k}+\frac{1}{\theta^{2}} T_{k}^{2}\right] \\ +& =1-\frac{2}{\theta} E_{\theta} T_{k}+\frac{1}{\theta^{2}} E_{\theta} T_{k}^{2}=1-\frac{2 n}{n+1} k+\frac{n}{n+2} k^{2} +\end{aligned} +\]

+

Vemos que el riesgo es una función que depende de \(k\) y que, como es una parábola \(a k^{2}+b k+c\), con \(a=n /(n+2), b=-2 n /(n+1)\) y \(c=1\), alcanza un mínimo absoluto en el punto de abscisa

+

\[ +-\frac{b}{2 a}=\frac{n+2}{n+1} +\]

+

Por lo tanto, entre los múltiplos de \(T_{1}\), el mejor estimador en el sentido de la función de pérdida elegida \(L_{4}(\theta, t)=(\theta-t)^{2} / \theta^{2}\) es

+

\[ +\frac{n+2}{n+1} \max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\} +\]

+

El ejemplo anterior es atípico, pues un solo estimador minimiza el riesgo para todos los valores de \(\theta\), ya que el riesgo obtenido no depende de \(\theta\). A menudo nos encontraremos con que los estimadores no son comparables, ya que el riesgo de uno es inferior al del otro para algunos valores del parámetro, mientras que la situación se invierte para otros valores. Esto hace que este criterio sea limitado, en el sentido de que no es un criterio generalmente bueno para encontrar un estimador óptimo sino para hacer una comparación puntual entre dos estimadores.

+
+
+

12.1.2. El error cuadrático medio

+

Una de las funciones de pérdida más usuales es la función de pérdida cuadrática \(L_{2}(\theta, t)=(\theta-t)^{2}\). Uno de los motivos de su uso es que el riesgo asociado a esta función de pérdida \(E_{\theta}\left[(\theta-T)^{2}\right]\), que llamamos error cuadrático medio \(E Q M_{T}\), representa una medida de la variabilidad del estimador \(T\) en torno a \(\theta\) semejante a la medida de dispersión en torno a la media que representa la varianza. Además, del desarrollo de esta expresión se obtiene un interesante resultado que muestra cuáles pueden ser las propiedades más interesantes para un estimador. Sea \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) y sea \(T\) un estimador de \(\theta\). El error cuadrático medio de \(T\) para estimar \(\theta\) vale

+

\[ +E Q M_{T}(\theta)=E_{\theta}\left[(\theta-T)^{2}\right]=E\left[\theta^{2}-2 \theta T+T^{2}\right]=\theta^{2}-2 \theta E_{\theta}(T)+E_{\theta}\left(T^{2}\right) +\]

+

Ahora, sumando y restando \(\left(E_{\theta}(T)\right)^{2}\), obtenemos

+

\[ +\begin{aligned} +E Q M_{T}(\theta) & =E_{\theta}\left(T^{2}\right)-\left(E_{\theta}(T)\right)^{2}+\left(E_{\theta}(T)\right)^{2}+\theta^{2}-2 \theta E_{\theta}(T)= \\ +& =\operatorname{var}(T)+\left(E_{\theta}(T)-\theta\right)^{2} +\end{aligned} +\]

+

El término \(\left(E_{\theta}(T)-\theta\right)^{2}\) es el cuadrado del sesgo de \(T\), que se define como

+

\[ +b_{\theta}(T)=E_{\theta}(T)-\theta +\]

+

Definició 2.5 El error cuadrático medio \(E Q M_{T}(\theta)\), o simplemente \(E Q M\), de un estimador \(T\) para estimar el parámetro \(\theta\) es la suma de su varianza más el cuadrado de la diferencia entre su valor medio y el verdadero valor del parámetro, que llamamos sesgo.

+

Si en la búsqueda de estimadores de mínimo riesgo nos basamos en la función de pérdida cuadrática, parece que los estimadores más deseables deberían ser aquellos en los que la varianza y el sesgo sean lo más pequeños posibles. Idealmente, quisiéramos reducir ambas cantidades a la vez. En la práctica, sin embargo, observamos que, en general, no suele ser posible reducir simultáneamente la varianza y el sesgo. Además, incluso si fuera práctico calcular el \(E Q M\) para cada estimador, encontraríamos que, para la mayoría de las familias de probabilidad \(P_{\theta}\), no existiría ningún estimador que minimizase el \(E Q M\) para todos los valores de \(\theta\). Es decir, que un estimador puede tener un \(E Q M\) mínimo para algunos valores de \(\theta\), mientras que otro lo tendrá en otros valores de \(\theta\).

+

Exemple 2.1.4 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X \sim\) \(N(\mu, \sigma)\), donde suponemos \(\sigma\) conocida, y sean

+

\[ +T_{1}=\bar{X} \quad T_{2}=\frac{\sum_{i=1}^{n} X_{i}}{n+1} +\]

+

Calculando la media y la varianza de los estimadores, tenemos

+

\[ +\begin{array}{lll} +E_{\mu}\left(T_{1}\right)=\mu & \Rightarrow b_{T_{1}}(\mu)=0 & \operatorname{var}_{\mu}\left(T_{1}\right)=\frac{\sigma^{2}}{n} \\ +E_{\mu}\left(T_{2}\right)=\frac{n}{n+1} \mu & \Rightarrow b_{T_{2}}(\mu)=\frac{-1}{n+1} \mu & \operatorname{var}_{\mu}\left(T_{2}\right)=\frac{n}{(n+1)^{2}} \sigma^{2} +\end{array} +\]

+

de donde

+

\[ +\begin{aligned} +& E Q M_{\mu}\left(T_{1}\right)=\operatorname{var}\left(T_{1}\right)=\frac{\sigma^{2}}{n} \\ +& E Q M_{\mu}\left(T_{2}\right)=\frac{1}{(n+1)^{2}} \mu^{2}+\frac{n}{(n+1)^{2}} \sigma^{2} +\end{aligned} +\]

+

que son respectivamente una recta y una parábola. De manera que para algunos valores de \(\mu\) tenemos que \(E Q M_{\mu}\left(T_{1}\right)<E Q M_{\mu}\left(T_{2}\right)\) y para otros, al revés. La figura 2.1 muestra esta diferencia.

+

Exemple 2.1.5 Un ejemplo trivial bastante interesante es el siguiente. Para estimar un parámetro \(\theta\), el estimador que consiste en un valor fijo \(\theta_{0}\), tiene riesgo 0 en \(\theta=\theta_{0}\). Sin embargo, el riesgo aumenta considerablemente al alejarnos del valor real de \(\theta\). Por lo tanto, no resulta un estimador razonable, aunque su riesgo pueda ser mínimo para algún (único) valor de \(\theta\).

+

Figura 2.1: Comparación del riesgo de dos estimadores

+

Los ejemplos anteriores nos muestran que los criterios de preferencia entre estimadores basados en el riesgo o en el \(E Q M\) no son de gran utilidad general ya que muchos estimadores pueden ser incomparables. Ante este hecho nos planteamos si es posible completar el criterio de minimizar el riesgo mediante alguna propiedad o criterio adicional. Las posibles soluciones obtenidas a esta cuestión siguen dos vías:

+
    +
  1. Restringir la clase de estimadores considerados a aquellos que cumplan alguna propiedad adicional de interés, eliminando estimadores indeseables para que el criterio de minimizar el riesgo permita seleccionar uno preferible a los demás. Este criterio lleva a considerar las propiedades deseables de los estimadores como falta de sesgo, consistencia, eficiencia y analizar cómo combinarlas con el criterio de mínimo riesgo. Este proceso culmina con el estudio de los Estimadores Sin Sesgo Uniformemente de Mínima Varianza (ESUMV).
  2. +
  3. Reforzar el criterio de preferencia de estimadores mediante la reducción de toda la función de riesgo \(R_{T}(\theta)\) a un único valor representativo que permita ordenar linealmente todos los estimadores. Este criterio nos lleva a los Estimadores Bayes y a los Estimadores Minimax.
  4. +
+
+
+
+

12.2. Estudio de las propiedades deseables de los estimadores

+
+

12.2.1. El sesgo

+

Supongamos que tenemos un modelo estadístico \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) y un estimador \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) de una función medible \(g(\theta)\) del parámetro. Una forma razonable de valorar qué tan próximos son los valores de \(T\) a los de \(g(\theta)\) es ver si, en promedio, los valores de \(T\) coinciden con el valor medio de \(g(\theta)\).

+

Definició 2.6 Bajo las condiciones mencionadas, si \(E_{\theta}(T)\) es la esperanza de \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) y \(g(\theta)\) es una función del parámetro (en particular la identidad), la diferencia

+

\[ +b_{T}(\theta)=b_{T}(\theta)=E_{\theta}(T)-g(\theta) +\]

+

se denomina sesgo del estimador \(T\) para estimar \(g(\theta)\). Si el sesgo es nulo, es decir, si:

+

\[ +E_{\theta}(T)=g(\theta), \quad \forall \theta \in \Theta +\]

+

diremos que \(T\) es un estimador insesgado de \(g(\theta)\). Exemple 2.2.1 Los dos ejemplos más conocidos son el de la media y la varianza muestrales.

+
    +
  • La media muestral es un estimador insesgado de \(\mu\).
  • +
  • La varianza muestral es un estimador con sesgo de la varianza poblacional. En concreto, su sesgo vale:
  • +
+

\[ +b_{s^{2}}\left(\sigma^{2}\right)=E_{\sigma^{2}}\left(s^{2}\right)-\sigma^{2}=\frac{n-1}{n} \sigma^{2}-\sigma^{2}=\frac{-1}{n} \sigma^{2} +\]

+

El uso de estimadores insesgados es conveniente en muestras de tamaño grande. En estas, \(\operatorname{var}_{\theta}(T)\) es a menudo pequeña y entonces, como \(E_{\theta}(T)=\) \(g(\theta)+b_{T}(\theta)\), es muy probable obtener estimaciones centradas en este valor en lugar de en el entorno de \(g(\theta)\).

+

Exemple 2.2.2 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X \sim\) \(U(0, \theta)\). Tomemos \(T=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}\) como el estimador del máximo de la distribución. Obviamente podemos decir que \(T<\theta\) y, por lo tanto, la estimación siempre está sesgada. Como hemos visto en el ejemplo ??, la distribución en el muestreo de \(T\) es

+

\[ +H_{\theta}(t)=P_{\theta}[T \leq t]=\left(\frac{t}{\theta}\right)^{n} +\]

+

y su función de densidad es

+

\[ +f_{\theta}(\theta)=H_{\theta}^{\prime}(\theta)=\frac{n}{\theta}\left(\frac{t}{\theta}\right)^{n-1} +\]

+

Su esperanza (ver ejemplo ??) vale

+

\[ +E_{\theta}(T)=\int_{0}^{\theta} t \cdot\left[\frac{n}{\theta}\left(\frac{t}{\theta}\right)^{n-1}\right] d t=\frac{n}{n+1} \theta +\]

+

de donde el sesgo de \(T\) para estimar \(\theta\) es

+

\[ +b_{T}(\theta)=\frac{n}{n+1} \theta-\theta=-\frac{1}{n+1} \theta +\]

+

Podemos preguntarnos si podríamos mejorar este estimador corrigiendo el sesgo de forma análoga a lo que hacíamos con \(\hat{s}^{2}\), es decir, tomando un estimador corregido para el sesgo

+

\[ +T^{\prime}=\frac{n+1}{n} T \text { que, por construcción, verifica: } E\left(T^{\prime}\right)=\theta \text {. } +\]

+

Consideremos el estimador de mínimo riesgo en el sentido del error cuadrático medio, es decir, el estimador que minimiza \(E\left[(\theta-T)^{2}\right]\). De hecho, como hemos visto en el ejemplo ??, conviene elegir el que minimice \(E\left[(\theta-T)^{2} / \theta^{2}\right]\), porque también minimiza el EQM, pero alcanza un mínimo absoluto. Este estimador es

+

\[ +T^{\prime \prime}=\frac{n+2}{n+1} T +\]

+

y, por tanto, es más adecuado que \(T^{\prime}\), ya que tiene un menor riesgo respecto al error cuadrático medio. Cuando, como aquí, nos encontramos con que dado un estimador podemos encontrar otro de menor riesgo, decimos que el primero no es admisible respecto de la función de pérdida. En este caso decimos que \(T^{\prime}\) no es admisible respecto al EQM. ¡Cuidado! Esto no significa que no podamos usarlo, sino que existe otro con menor riesgo, ya que existe otro \(T^{\prime \prime}\) preferible a él que, por cierto, no es centrado. Efectivamente

+

\[ +E_{\theta}\left(T^{\prime \prime}\right)=\frac{n+2}{n+1} E_{\theta}(T)=\frac{(n+2) n}{(n+1)^{2}} \theta +\]

+

El ejemplo anterior muestra que, debido a la descomposición \(E Q M_{T}(\theta)=\) \(\operatorname{var}_{\theta}(T)+b_{T}^{2}(\theta)\), puede ser preferible un estimador con sesgo a otro que no lo tenga. En general, sin embargo, eliminar el sesgo no es una mala estrategia, sobre todo porque al restringirnos a la clase de los estimadores insesgados obtenemos una solución constructiva que permitirá obtener estimadores insesgados de mínima varianza en condiciones bastante generales. Los siguientes ejemplos ilustran dos propiedades interesantes del sesgo. Por un lado, muestran que no siempre existe un estimador insesgado. Por otro lado, vemos cómo a veces, incluso teniendo un estimador insesgado para un parámetro \(E_{\theta}(T)=\theta\), una función \(g(T)\) no es necesariamente un estimador insesgado de \(g(\theta)\).

+

Exemple 2.2.3 Consideremos una variable \(X\) con distribución de Bernoulli \(B(1, p)\). Supongamos que deseamos estimar \(g(p)=p^{2}\) con una única observación. Para que un estimador \(T\) no tenga sesgo para estimar \(p^{2}\) sería necesario que

+

\[ +p^{2}=E_{p}(T)=p \cdot T(1)+(1-p) \cdot T(0), \quad 0 \leq p \leq 1 +\]

+

es decir, para cualquier valor de \(p \in[0,1]\) se debería verificar

+

\[ +p^{2}=p \cdot(T(1)-T(0))+T(0) +\]

+

Esto claramente no es posible, ya que la única forma en que una función lineal y una función parabólica coincidan en todo el intervalo \([0,1]\) es cuando los coeficientes \(T(0)\) y \(T(1)\) valen cero.

+

Exemple 2.2.4 El parámetro \(\alpha\) de una ley exponencial con función de densidad

+

\[ +f(x)=\alpha e^{-\alpha x} \mathbf{1}_{(0, \infty)}(x) +\]

+

es el inverso de la media de la distribución, es decir, \(\alpha=1 / E(X)\). Un estimador razonable de \(\alpha=g(\mu)\) puede ser \(\hat{\alpha}=g(\hat{\mu})\), es decir, \(\hat{\alpha}=\) \(1 / \bar{X}\). Si aplicamos la propiedad de que la suma de variables aleatorias i.i.d. exponenciales sigue una ley gamma de parámetros \(n\) y \(\alpha\), se obtiene que este estimador tiene sesgo. Su esperanza es

+

\[ +E(\hat{\alpha})=\frac{n}{n-1} \alpha +\]

+

El sesgo se corrige simplemente con

+

\[ +\hat{\alpha}^{\prime}=\frac{n-1}{n} \hat{\alpha} +\]

+
+
+

12.2.2. Consistencia

+

La consistencia de un estimador es una propiedad bastante intuitiva que indica, de manera informal, que cuando aumenta el tamaño muestral, el valor del estimador se aproxima cada vez más al verdadero valor del parámetro.

+

Definició 2.7 Sea \(X_{1}, X_{2}, \ldots, X_{n}, \ldots\) una sucesión de variables aleatorias i.i.d. \(X \sim F_{\theta}, \theta \in \Theta\). Una sucesión de estimadores puntuales \(T_{n}=\) \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) se denomina consistente para \(g(\theta)\) si

+

\[ +T_{n} \xrightarrow[n \rightarrow \infty]{P} g(\theta) +\]

+

para cada \(\theta \in \Theta\), es decir, si

+

\[ +\forall \varepsilon>0 \quad \lim _{n \rightarrow \infty} P\left\{\left|T_{n}-g(\theta)\right|>\varepsilon\right\}=0 +\]

+

Observemos que:

+
    +
  1. Se trata de un concepto asintótico: Hablamos de ?sucesiones de estimadores consistentes? más que de estimadores propiamente dichos.
  2. +
  3. La definición puede reforzarse si, en lugar de considerar convergencia en probabilidad (consistencia débil), consideramos convergencia casi segura o en media cuadrática:
  4. +
+
    +
  • \(T_{n}\) es fuertemente consistente si \(T_{n} \xrightarrow{\text { c.s. }} g(\theta)\)
  • +
  • \(T_{n}\) es consistente en media- \(r\) si \(E_{\theta}\left[\left|T_{n}-g(\theta)\right|^{r}\right] \longrightarrow 0\)
  • +
+

Exemple 2.2.5 Muchos estimadores consistentes lo son como consecuencia de las leyes de los grandes números. Recordemos que la Ley débil de los Grandes Números (Tchebychev) afirma que, dada una sucesión de v.a. independientes e idénticamente distribuidas con medias \(\mu<\infty\) y varianzas \(\sigma^{2}<\infty\), entonces

+

\[ +\bar{X}_{n} \xrightarrow{P} \mu +\]

+

Como consecuencia de esta ley y dado que una muestra aleatoria simple es i.i.d., por definición, podemos afirmar que \(\bar{X}_{n}\) es consistente para estimar \(\mu\).

+

Exemple 2.2.6 La sucesión \(T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}\) es consistente para estimar el máximo de una distribución uniforme en \([0, \theta]\) :

+

\[ +P\left[\left|\max _{1 \leq i \leq n}\left\{X_{i}\right\}-\theta\right|>\varepsilon\right]=P\left[\theta-\max _{1 \leq i \leq n}\left\{X_{i}\right\}>\varepsilon\right] +\]

+

ya que \(X_{i} \in[0, \theta] y\), por lo tanto, podemos escribir:

+

\[ +\begin{aligned} +P\left[\theta-\varepsilon>\max _{1 \leq i \leq n}\left\{X_{i}\right\}\right] & =P\left[\max _{1 \leq i \leq n}\left\{X_{i}\right\}<\theta-\varepsilon\right] \\ +& =\left(\frac{\theta-\varepsilon}{\theta}\right)^{n}=\left(1-\frac{\varepsilon}{\theta}\right)^{n} \underset{n \rightarrow \infty}{\longrightarrow} 0 +\end{aligned} +\]

+

Es inmediato comprobar que

+

\[ +E\left[\left(\theta-T_{n}\right)^{2}\right]=\left(1-\frac{2 n}{n+1}+\frac{n}{n+2}\right) \theta^{2} +\]

+

que también tiende a cero cuando \(n \rightarrow \infty\), y por lo tanto \(T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}\) también es consistente en media cuadrática.

+

Normalmente, cuando se habla de consistencia, se hace referencia a la convergencia en probabilidad, es decir, \(T_{n}\) es consistente si \(\lim _{n \rightarrow \infty} P\left(\left|T_{n}-g(\theta)\right|>\right.\) \(\varepsilon)=0\). Si el estimador no tiene sesgo, estamos en la situación de aplicar la desigualdad de Tchebychev \({ }^{1}\) : Si \(E\left(T_{n}\right)=g(\theta)\), entonces

+

\[ +P\left(\left|T_{n}-g(\theta)\right|>\varepsilon\right)=P\left(\left|T_{n}-E\left(T_{n}\right)\right|>\varepsilon\right) \underset{\text { Tchebychev }}{\leq} \frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} +\]

+

Así, para intentar establecer la consistencia de \(T\), debemos probar que

+

\[ +\frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +\]

+

Exemple 2.2.7 Sea \(M_{n}=\sum_{i=1}^{n} a_{i} X_{i}\) una combinación lineal de los valores de la muestra con coeficientes tales que \(\sum_{i=1}^{n} a_{i}=1\) y algún \(a_{i}>0\). ¿Es consistente \(M_{n}\) para estimar \(E(X)\) ? Comencemos por ver que \(M_{n}\) no tiene sesgo

+

\[ +\begin{aligned} +E\left(M_{n}\right) & =E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} E\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i} E\left(X_{i}\right) \stackrel{\text { i.i.d. }}{=} \sum_{i=1}^{n} a_{i} E(X)=E(X) +\end{aligned} +\]

+

2Calculemos la varianza

+

2 \({ }^{1}\) Si \(\operatorname{var}(X)\) existe, entonces \(\forall \varepsilon>0\) se verifica \(P(|X-E(X)|>\varepsilon) \leq \frac{\operatorname{var}(X)}{\varepsilon^{2}}\)

\[ +\begin{aligned} +\operatorname{var}\left(M_{n}\right) & =\operatorname{var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i}^{2} \operatorname{var}\left(X_{i}\right)=\operatorname{var}(X) \sum_{i=1}^{n} a_{i}^{2} +\end{aligned} +\]

+

Si aplicamos ahora la desigualdad de Tchebychev tenemos:

+

\[ +P\left(\left|M_{n}-\mu\right|>\varepsilon\right) \leq \frac{\sigma^{2} \sum a_{i}^{2}}{\varepsilon^{2}} +\]

+

lo cual no tiene por qué tender a 0 cuando \(n \rightarrow \infty\), y por lo tanto no podemos afirmar que el estimador es consistente. Por ejemplo, si \(a_{1}=\frac{1}{2}, a_{2}=a_{3}=\) \(\cdots=a_{n}=\frac{1}{2(n-1)}\) tendremos que \(\lim _{n \rightarrow \infty} \sum a_{i}^{2}=\frac{1}{4}\). Observamos que el resultado obtenido no puede asegurar la consistencia de \(M_{n}\) para cualquier familia de coeficientes \(a_{1}, \ldots, a_{n}\), aunque, obviamente, el estimador es consistente para alguno (caso \(a_{i}=1 / n\) ).

+
+
+
+
+

13. Propiedades de los estimadores consistentes

+

Muchas de las propiedades de los estimadores son consecuencia directa de las propiedades de la convergencia en probabilidad, que se pueden revisar, por ejemplo, en Martin Pliego (1998a) capítulo 11.

+
    +
  1. Si \(T_{n}\) es consistente para estimar \(\theta\) y \(g: \mathbb{R} \rightarrow \mathbb{R}\) es una función continua, entonces \(g\left(T_{n}\right)\) es consistente para estimar \(g(\theta)\).
  2. +
  3. Si \(T_{1 n}\) y \(T_{2 n}\) son consistentes para estimar \(\theta_{1}\) y \(\theta_{2}\) respectivamente, entonces \(a T_{1 n} \pm b T_{2 n}\) es consistente para estimar \(a \theta_{1} \pm b \theta_{2}\) \(T_{1 n} \cdot T_{2 n}\) es consistente para estimar \(\theta_{1} \cdot \theta_{2}\) \(T_{1 n} / T_{2 n}\) es consistente para estimar \(\theta_{1} / \theta_{2}\), si \(\theta_{2} \neq 0\).
  4. +
  5. Sea \(a_{r}=(1 / n) \sum X_{i}^{r}\) el momento muestral de orden \(r\). Como se ha visto en el capítulo 1 , la esperanza de \(a_{r}\) es
  6. +
+

\[ +E\left(a_{r}\right)=E\left[\frac{1}{n} \sum X_{i}^{r}\right]=\frac{1}{n} \sum E\left(X^{r}\right)=\frac{1}{n} n \alpha_{r}=\alpha_{r} +\]

+

donde \(\alpha_{r}\) es el momento poblacional de orden \(r\). Así pues, \(a_{r}\) no tiene sesgo para estimar \(\alpha_{r}\). Su varianza es

+

\[ +\begin{aligned} +\operatorname{var}\left(a_{r}\right) & =\operatorname{var}\left(\frac{1}{n} \sum X_{i}^{r}\right)=\frac{1}{n^{2}} \sum \operatorname{var}\left(X^{r}\right)=\frac{1}{n} E\left[X^{r}-E\left(X^{r}\right)\right]^{2} \\ +& =\frac{1}{n} E\left[X^{r}-\alpha_{r}\right]^{2}=\frac{1}{n} E\left(X^{2 r}+\alpha_{r}^{2}-2 \alpha_{r} X^{r}\right) \\ +& =\frac{1}{n}\left(\alpha_{2 r}-\alpha_{r}^{2}\right) . +\end{aligned} +\]

+

Y si aplicamos la desigualdad de Tchebychev, se obtiene

+

\[ +P\left(\left|a_{r}-\alpha_{r}\right| \geq \varepsilon\right) \leq \frac{E\left(a_{r}-\alpha_{r}\right)^{2}}{\varepsilon^{2}}=\frac{\operatorname{var}\left(a_{r}\right)}{\varepsilon^{2}}=\frac{\alpha_{2 r}-\alpha_{r}^{2}}{n \varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +\]

+

Así pues, hemos visto que los momentos muestrales son estimadores consistentes de los momentos poblacionales.

+
+

13.0.1. Eficiencia

+

Como ya hemos visto, un objetivo deseable en la búsqueda de estimadores óptimos es considerar estimadores de “mínimo riesgo” o, si nos basamos en la función de pérdida cuadrática, estimadores que minimicen el error cuadrático medio \(E(\theta-T)^{2}\). En general, es difícil encontrar estimadores que hagan mínimo el EQM para todos los valores de \(\theta\); sin embargo, si nos restringimos a los estimadores sin sesgo, el problema tiene solución en una gama más amplia de situaciones. Supongamos que \(T_{1}, T_{2}\) son dos estimadores sin sesgo de un parámetro \(\theta\). Para estos estimadores tenemos que

+

\[ +\begin{aligned} +& E Q M_{T_{1}}(\theta)=\operatorname{var}_{\theta}\left(T_{1}\right)+b_{T_{1}}^{2}(\theta) \\ +& E Q M_{T_{2}}(\theta)=\operatorname{var}_{\theta}\left(T_{2}\right)+b_{T_{2}}^{2}(\theta) +\end{aligned} +\]

+

Si los estimadores no tienen sesgo \(b_{T_{1}}(\theta)=b_{T_{2}}(\theta)=0\), el que tenga menor varianza tendrá el menor riesgo para estimar \(\theta\). Si, por ejemplo, \(\operatorname{var}\left(T_{1}\right) \leq\) \(\operatorname{var}\left(T_{2}\right)\), diremos que \(T_{1}\) es más eficiente que \(T_{2}\) para estimar \(\theta\). Para dos estimadores con sesgo cero \(b_{T_{i}}(\theta)=0\), el cociente

+

\[ +E R=\frac{E Q M_{T_{1}}(\theta)}{E Q M_{T_{2}}(\theta)}=\frac{\operatorname{var}_{\theta}\left(T_{1}\right)}{\operatorname{var}_{\theta}\left(T_{2}\right)} +\]

+

se denomina eficiencia relativa de \(T_{1}\) respecto a \(T_{2}\). Si solo hay dos estimadores de \(\theta\) puede ser fácil ver cuál es el más eficiente. Si hay más, la cosa se complica. El “más eficiente”, en caso de que exista, se llamará el estimador sin sesgo de mínima varianza.

+

Figura 2.2: Comparación de la eficiencia de dos estimadores para un \(\theta\) dado

+

Definició 2.8 Sea \(\mathcal{S}(\theta)\) la clase de los estimadores sin sesgo de \(\theta\) y con varianza. Si para todos los estimadores de esta clase \(T \in \mathcal{S}(\theta)\) se verifica que

+

\[ +\operatorname{var}_{\theta}(T) \leq \operatorname{var}_{\theta}\left(T^{*}\right) \quad \forall T \in \mathcal{S}(\theta) +\]

+

diremos que \(T^{*}\) es un estimador sin sesgo de mínima varianza de \(\theta\). Si la desigualdad es cierta \(\forall \theta \in \Theta\), diremos que \(T^{*}\) es un estimador sin sesgo uniforme de mínima varianza (ESUMV) \({ }^{2}\).

+
+
+

13.1. Información de Fisher y cota de CramerRao

+

Obviamente, en un problema de estimación lo ideal es disponer de un ESUMV, pero esto no siempre es posible. Nos enfrentamos a varios problemas:

+
    +
  1. ¿Existen ESUMV para un parámetro \(\theta\) en un modelo dado?
  2. +
  3. En caso de que exista el ESUMV, ¿sabremos cómo encontrarlo?
  4. +
+

Este problema tiene solución, bajo ciertas condiciones, utilizando los teoremas de Lehmann-Scheffé y Rao-Blackwell y el concepto de suficiencia, que se discute más adelante.

+

3Una solución parcial aparece gracias al Teorema de Cramer-Rao, que permite establecer una cota mínima para la varianza de un estimador. Cuando un estimador alcanza esta cota, sabemos que es un estimador de varianza mínima. Informalmente, este resultado sugiere que, bajo ciertas condiciones de regularidad, si \(T\) es un estimador insesgado de un parámetro \(\theta\), su varianza está acotada por una expresión que llamamos cota de Cramer-Rao \(\operatorname{CCR}(\theta)\)

+

3 \({ }^{2}\) UMVUE, en inglés

\[ +\operatorname{var}(T) \geq \operatorname{CCR}(\theta) +\]

+

Antes de establecer con precisión este teorema, consideremos el concepto de información de un modelo estadístico introducido por Fisher.

+
+
+
+

14. Información y verosimilitud de un modelo estadístico

+

Una idea bastante razonable es esperar que un estimador funcione mejor en su intento de aproximarse al valor de un parámetro cuanto más información tenga para hacerlo. Por este motivo, la varianza del estimador y la información se presentan como cantidades opuestas: a mayor información, menor error (varianza) en la estimación:

+

\[ +\operatorname{var}\left(T_{n}\right) \propto \frac{1}{I_{n}(\theta)} +\]

+

Ahora nos encontramos con el problema de cómo definir la cantidad de información (contenida en una muestra/de un modelo), para que se ajuste a la idea intuitiva de información. Fisher lo hizo a través de la función de verosimilitud. Sea un modelo estadístico \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) y una m.a.s. \(\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), que toma valores \(\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\). Si \(X\) es discreta, la función de masa de probabilidad indica, en términos generales, la probabilidad de observar la muestra, dado un valor del parámetro. Si \(X\) es absolutamente continua, esta interpretación ya no es tan directa.

+

\[ +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)= \begin{cases}P_{\theta}\left[X=x_{1}\right] \cdots P_{\theta}\left[X=x_{n}\right], & \text { si } X \text { es discreta } \\ f_{\theta}\left(x_{1}\right) \cdots f_{\theta}\left(x_{n}\right), & \text { si } X \text { es abs. continua }\end{cases} +\]

+

La función de verosimilitud se obtiene si consideramos, en la expresión anterior, que lo que queda fijado es la muestra y no el parámetro. Es decir, fijada una muestra x, la función de verosimilitud indica qué tan verosímil resulta, para cada valor del parámetro, que el modelo la haya generado.

+

Exemple 2.3.1 Supongamos que tenemos una m.a.s. \(x_{1}, x_{2}, \ldots, x_{n}\) de tamaño n de una variable aleatoria \(X\), que sigue una ley de Poisson de parámetro \(\lambda\) desconocido.

+

\[ +X \sim F_{\lambda}=P(\lambda), \quad \lambda>0 +\]

+

La función de probabilidad de la muestra, fijado \(\lambda\), es:

+

\[ +g_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +\]

+

y la función de verosimilitud del modelo, fijada \(\mathbf{x}\), es:

+

\[ +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \lambda\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +\]

+

Aunque la forma funcional de \(g_{\lambda}(\mathbf{x})\) y \(L(\mathbf{x} ; \lambda)\) es la misma, su aspecto es diferente, como se puede comprobar en la figura 2.3, donde damos valores a \(g_{\lambda}(\mathbf{x})\), variando \(\mathbf{x}\) o a \(L(\lambda ; \mathbf{x})\) variando \(\lambda\).

+
+
+

15. Información de Fisher

+

Para calcular la cantidad de información de Fisher contenida en una muestra sobre un parámetro, es necesario considerar modelos estadísticos regulares, es decir, donde se cumplen las siguientes condiciones de regularidad.

+

Definició 2.9 Diremos que \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) es un modelo estadístico regular si se verifican las siguientes condiciones:

+
    +
  1. La población de donde proviene la muestra presenta un ?campo de variación? o soporte \(S_{\theta}=\{x \mid f(x ; \theta)>0\}=S\) que no depende de \(\theta\).
  2. +
  3. La función \(L(\mathbf{x} ; \theta)\) admite, al menos, las dos primeras derivadas.
  4. +
  5. Las operaciones de derivación e integración son intercambiables.
  6. +
+

Definició 2.10 Sea \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) un modelo estadístico regular, es decir, donde se verifican las condiciones de regularidad 1-3 anteriores. Si \(Z=\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)\), la cantidad de información de Fisher es

+

\[ +I_{n}(\theta)=\operatorname{var}_{\theta}(Z)=\operatorname{var}_{\theta}\left(\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)\right) +\]

+

Figura 2.3: Probabilidad de la suma de \(n=5\) valores muestrales para 10 muestras de la ley de Poisson con \(\lambda=3\) versus la función de verosimilitud para una muestra observada.

+

Las condiciones de regularidad son necesarias para calcular \(E_{\theta}\left(Z^{2}\right)\). A continuación, presentamos algunas propiedades de la información de Fisher. Puedes ver la demostración en Ruiz-Maya y Pliego (1995).

+
    +
  1. La información de Fisher se puede expresar como:
  2. +
+

\[ +I_{n}(\theta)=E_{\theta}\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right] +\]

+

Esto se puede comprobar, ya que si aplicamos las condiciones de regularidad

+

\[ +\begin{aligned} +E(Z) & =E\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)=\int_{S^{n}} \frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} \frac{\frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta}}{L(\mathbf{x} ; \theta)} L(\mathbf{x} ; \theta) d \mathbf{x}=\int_{S^{n}} \frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta} d \mathbf{x} \\ +& =\frac{\partial}{\partial \theta}\left(\int_{S^{n}} L(\mathbf{x} ; \theta) d \mathbf{x}\right)=\frac{\partial}{\partial \theta} 1=0 +\end{aligned} +\]

+

De forma que \(E(Z)=0\), y por lo tanto, tendremos que \(\operatorname{var}_{\theta}(Z)=\) \(E_{\theta}\left(Z^{2}\right)\). 2. \(I_{n}(\theta)=0\) si y solo si \(L(\mathbf{x} ; \theta)\) no depende de \(\theta\). 3. Dadas dos m.a.s. \(\mathbf{x}_{1}, \mathbf{x}_{2}\) de tamaños \(n_{1}, n_{2}\) de la misma población, se verifica:

+

\[ +I_{n_{1}, n_{2}}(\theta)=I_{n_{1}}(\theta)+I_{n_{2}}(\theta) +\]

+

De manera que podemos considerar una muestra de tamaño \(n\) como \(n\) muestras de tamaño 1 :

+

\[ +I_{n}(\theta)=\sum_{i=1}^{n} I_{1}(\theta)=n \cdot i(\theta), \text { siendo } i(\theta)=I_{1}(\theta) +\]

+

Es decir

+

\[ +E\left(\frac{\partial \log (L(\mathbf{X} ; \theta))}{\partial \theta}\right)=n E\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right) +\]

+
    +
  1. Se verifica la siguiente relación:
  2. +
+

\[ +I_{n}(\theta)=E\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right]=-E\left[\frac{\partial^{2} \log L(\mathbf{X} ; \theta)}{\partial^{2} \theta}\right] +\]

+

Exemple 2.3.2 Vamos a calcular la cantidad de información de Fisher contenida en una m.a.s. extraída de una población \(N(\mu, \sigma)\) con \(\sigma=\sigma_{0}\) conocida. La función de verosimilitud es

+

\[ +L(\mathbf{x} ; \mu)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}}=\left(2 \pi \sigma_{0}^{2}\right)^{-n / 2} \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}\right) +\]

+

y su logaritmo

+

\[ +\log L(\mathbf{x} ; \mu)=-\frac{n}{2} \log \left(2 \pi \sigma_{0}^{2}\right)-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} +\]

+

Si derivamos respecto a \(\mu\)

+

\[ +\frac{\partial \log L(\mathbf{x} ; \mu)}{\mu}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)}{\sigma_{0}^{2}} +\]

+

de donde

+

\[ +\begin{aligned} +I_{n}(\mu) & =E\left(\frac{\partial \log L(\mathbf{X} ; \mu)}{\partial \mu}\right)^{2}=E\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}{\sigma_{0}^{2}}\right)^{2} \\ +& =\frac{1}{\sigma_{0}^{4}} E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+\sum_{i \neq j}\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right] \\ +& =\frac{1}{\sigma_{0}^{4}} n \sigma_{0}^{2}=\frac{n}{\sigma_{0}^{2}} +\end{aligned} +\]

+

Este cálculo también puede hacerse a partir de la tercera propiedad de la información de Fisher:

+

\[ +I_{n}(\mu)=n E\left[\frac{\partial \log f(X ; \mu)}{\partial \mu}\right]=n \frac{1}{\sigma_{0}^{2}}=\frac{n}{\sigma_{0}^{2}} +\]

+
+
+

16. La desigualdad de Cramer-Rao

+

Una vez establecidas las condiciones de regularidad y características anteriores podemos enunciar el teorema de Cramer-Rao (1945).

+

Teorema 2.1 Dado un modelo estadístico regular \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\), es decir, un modelo donde se verifican las condiciones de regularidad enunciadas, cualquier estimador \(T \in \mathcal{S}(\theta)\) de la clase de los estimadores no sesgados y con varianza verifica

+

\[ +\operatorname{var}_{\theta}(T) \geq \frac{1}{I_{n}(\theta)} +\]

+

Demostración: El estimador \(T \in \mathcal{S}(\theta)\) no tiene sesgo, es decir que

+

\[ +E(T)=\int_{S^{n}} T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta) d \mathbf{x}=\theta +\]

+

Si derivamos e introducimos la derivada bajo el signo de la integral, obtenemos

+

\[ +\begin{aligned} +\frac{\partial}{\partial \theta} E(T) & =\int_{S^{n}} \frac{\partial}{\partial \theta}(T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta)) d \mathbf{x}=\int_{S^{n}} T(\mathbf{x}) \frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} T(\mathbf{x})\left(\frac{\frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta)}{L(\mathbf{x} ; \theta)}\right) L(\mathbf{x} ; \theta) d \mathbf{x} +\end{aligned} +\]

+

Así pues

+

\[ +1=\frac{\partial}{\partial \theta} \theta=\frac{\partial}{\partial \theta} E(T)=E(T Z)=\int_{S^{n}} T(\mathbf{x}) \cdot Z L(\mathbf{x} ; \theta) d \mathbf{x} +\]

+

En resumen

+

\[ +E(T)=\theta, E(T Z)=1, E(Z)=0, \operatorname{var}(Z)=I_{n}(\theta) +\]

+

Si ahora consideramos el coeficiente de correlación al cuadrado entre \(T\) y \(Z\), tenemos

+

\[ +\rho^{2}(T, Z)=\frac{[\operatorname{cov}(T, Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)}=\frac{[E(T Z)-E(T) E(Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)} \leq 1 +\]

+

Si sustituimos los resultados hallados antes, obtenemos

+

\[ +\frac{1}{\operatorname{var}(T) \cdot I_{n}(\theta)} \leq 1 +\]

+

de donde se deduce la desigualdad enunciada.

+

Definició 2.11 Si un estimador alcanza la CCR (Cota de Cramer-Rao), diremos que es un estimador eficiente.

+

Todo estimador eficiente es de mínima varianza en la clase \(\mathcal{S}(\theta)\). Sin embargo, también puede suceder que exista un estimador de mínima varianza sin alcanzar necesariamente la CCR.

+

Exemple 2.3.3 Sea \(X \sim F_{\theta}=P(\lambda), \lambda>0\) (Poisson). Buscamos la \(C C R\) de los estimadores de \(\lambda\).

+

\[ +\begin{aligned} +L(\mathbf{x} ; \lambda) & =\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} \\ +\log L(\mathbf{x} ; \lambda) & =-n \lambda+\left(\sum x_{i}\right) \log \lambda-\log \left(\prod_{i=1}^{n} x_{i}!\right) \\ +\frac{\partial \log (L(\mathbf{x} ; \lambda))}{\partial \lambda} & =-n+\frac{\sum x_{i}}{\lambda} \\ +E\left[\frac{\partial \log L(\mathbf{x} ; \lambda)}{\partial \lambda}\right]^{2} & =E\left[n^{2}+\left(\frac{\sum X_{i}}{\lambda}\right)^{2}-\frac{2 n \sum X_{i}}{\lambda}\right] \\ +& =n^{2}+\frac{1}{\lambda^{2}} E\left(\sum X_{i}\right)^{2}-\frac{2 n}{\lambda} n E(X) +\end{aligned} +\]

+

Aquí recordamos que la suma de variables de Poisson también es una Poisson, es decir:

+

\[ +\sum X_{i} \sim P(n \lambda) +\]

+

por lo que

+

\[ +E\left(\sum X_{i}\right)^{2}=\operatorname{var}\left(\sum X_{i}\right)+\left[E\left(\sum X_{i}\right)\right]^{2}=n \lambda+(n \lambda)^{2} +\]

+

Finalmente, se obtiene:

+

\[ +E\left(Z^{2}\right)=n^{2}+\frac{n \lambda}{\lambda^{2}}+\frac{n^{2} \lambda^{2}}{\lambda^{2}}-2 n^{2}=\frac{n}{\lambda} +\]

+

De esta forma,

+

\[ +I_{n}(\lambda)=\frac{n}{\lambda} \quad \Longrightarrow \quad \operatorname{var}(T) \geq \frac{\lambda}{n} +\]

+

Sabemos que la media aritmética verifica

+

\[ +\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\lambda}{n} +\]

+

lo cual coincide con la cota de Cramer-Rao, indicando que \(\bar{X}_{n}\) es el estimador eficiente de \(\lambda\).

+

Exemple 2.3.4 Para calcular la CCR o, dicho de otro modo, para que el inverso de

+

\[ +E\left[\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta}\right]^{2} +\]

+

sea realmente la cota minima de \(\operatorname{var}(\widehat{\theta})\) en la clase \(\mathcal{S}(\theta)\), es necesario que se verifiquen las condiciones de regularidad. De lo contrario, se pueden obtener resultados absurdos. Consideremos, por ejemplo, una variable aleatoria \(X\) con función de densidad

+

\[ +f(x ; \theta)=\frac{3}{\theta^{3}} x^{2} \mathbf{1}_{[0, \theta]}(x) +\]

+

y esperanza

+

\[ +E(X)=\int_{0}^{\theta} x \cdot \frac{3}{\theta^{3}} x^{2} d x=\frac{3}{4} \theta +\]

+

Ya que \(\theta=\frac{4}{3} E(X)\), esto sugiere estimar \(\theta\) mediante \(\widehat{\theta}=\frac{4}{3} \bar{X}\), que no tiene sesgo. Por otro lado, si calculamos la varianza de \(X\), tenemos

+

\[ +\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{3}{80} \theta^{2} +\]

+

Sabemos que \(E(\widehat{\theta})=\theta, y\) además

+

\[ +\operatorname{var}(\widehat{\theta})=\operatorname{var}\left(\frac{4}{3} \bar{X}\right)=\frac{\theta^{2}}{15 n} +\]

+

Si evaluamos \(I_{n}(\theta)\) en su forma más sencilla, obtenemos

+

\[ +I_{n}(\theta)=n I(\theta)=n \frac{9}{\theta^{2}} +\]

+

Así, la CCR resulta ser mayor que la varianza de este estimador:

+

\[ +\operatorname{var}(\widehat{\theta})=\frac{\theta^{2}}{15 n}<\frac{\theta^{2}}{9 n} +\]

+

lo cual es un resultado absurdo. Este error se debe a no considerar que el soporte de \(X\) depende de \(\theta\), por lo que no se cumplen las condiciones de regularidad, y la cota de Cramer-Rao no existe.

+

También ocurre que la varianza de un estimador es inferior a la CCR aunque esta exista. Esto puede pasar, por ejemplo, con algún estimador sesgado.

+
+
+

17. Caracterización del estimador eficiente

+

Calcular la cota de Cramer-Rao es una cosa; encontrar el estimador que alcanza esta cota y, en consecuencia, tiene varianza mínima es otra. La siguiente caracterización permite, en algunos casos, obtener directamente la forma del estimador eficiente.

+

Teorema 2.2 Sea \(T\) el estimador eficiente de \(\theta\), entonces se verifica

+

\[ +\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(X_{i} ; \theta\right)=K(\theta, n)(T-\theta) +\]

+

donde \(K(\theta, n)\) es una función que depende de \(\theta\) y de \(n\) y que suele coincidir con la información de Fisher. Demostración: Si \(T\) es el estimador eficiente, entonces

+

\[ +\operatorname{var}(T)=\frac{1}{I_{n}(\theta)} +\]

+

y, por lo tanto, \(\rho^{2}(T, Z)=1\). En general, dadas dos variables aleatorias \(X\) e \(Y\), se sabe que si \(\rho(X, Y)=1\), entonces

+

\[ +Y-E(Y)=\beta(X-E(X)) +\]

+

Si aplicamos este resultado a \(T\) y \(Z\), tenemos

+

\[ +\begin{aligned} +Z-E(Z) & =\beta(T-E(T)) \\ +\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} & =K(\theta, n)(T-\theta) +\end{aligned} +\]

+

Exemple 2.3.5 En el caso de la distribución de Poisson, tenemos

+

\[ +\begin{aligned} +f(x ; \lambda) & =e^{-\lambda} \frac{\lambda^{x}}{x!} \\ +\log f(x ; \lambda) & =-\lambda+x \log (\lambda)-\log (x!) \\ +\frac{\partial \log f(x ; \lambda)}{\partial \lambda} & =-1+x \frac{1}{\lambda} \\ +Z=\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \lambda\right)}{\partial \lambda} & =\sum_{i=1}^{n}\left(-1+\frac{X_{i}}{\lambda}\right) +\end{aligned} +\]

+

Queremos ver que

+

\[ +\sum_{i=1}^{n}\left(\frac{X_{i}}{\lambda}-1\right)=K(\theta, n)(T-\theta) +\]

+

Si reescribimos esta expresión, obtenemos

+

\[ +\frac{1}{\lambda} \sum_{i=1}^{n} X_{i}-n=\frac{1}{\lambda}\left(\sum_{i=1}^{n} X_{i}-n \lambda\right)=\frac{n}{\lambda}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\lambda\right) +\]

+

Así, \(K(\lambda, n)=\frac{n}{\lambda}\), que coincide con la información de Fisher \(I_{n}(\lambda)\). Por el teorema anterior, se deduce que \(T=\bar{X}\) es el estimador eficiente \(y\), por lo tanto, de mínima varianza.

+
+

17.1. Estadísticos suficientes

+

En un problema de inferencia puede suceder que los datos contengan información superflua o irrelevante a la hora de estimar el parámetro. También puede ocurrir lo contrario, que intentemos hacer la estimación sin utilizar toda la información disponible en la muestra. Ambas situaciones son indeseables. Parece razonable que, para estimar un parámetro, dada la dificultad derivada de disponer de varios estimadores entre los que queremos elegir el óptimo, nos basemos únicamente en aquellos que utilizan (solo) toda la información relevante.

+

Exemple 2.4.1 Supongamos que queremos estimar la proporción de piezas defectuosas \(\theta\) en un proceso de fabricación. Para ello, examinamos \(n\) piezas extraídas al azar a lo largo de una jornada y asignamos un 1 a las piezas defectuosas y un 0 a las que no lo son. Así, obtenemos una muestra aleatoria simple \(X_{1}, X_{2}, \ldots, X_{n}\) donde

+

\[ +X_{i}= \begin{cases}1 & \text { con probabilidad } \theta \\ 0 & \text { con probabilidad }(1-\theta)\end{cases} +\]

+

Intuitivamente, está claro que para estimar \(\theta\) solo nos interesa el número de ceros y unos, es decir, el valor del estadístico

+

\[ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +\]

+

En este caso, un estadístico que considere la posición de los unos y los ceros en la muestra no aportaría nada relevante. En cambio, un estadístico que no considere todos los valores, como por ejemplo \(T(\mathbf{X})=X_{1}\), sería claramente menos adecuado.

+

Las observaciones del ejemplo anterior se justifican al observar que todas las muestras de tamaño \(n\) con el mismo número \(t\) de unos (1) tienen la misma probabilidad. En concreto, la función de probabilidad de una muestra \(x_{1}, x_{2}, \ldots, x_{n}\) es

+

\[ +f_{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\theta^{t}(1-\theta)^{n-t} +\]

+

donde \(t=\sum_{i=1}^{n} x_{i}, x_{i} \in\{0,1\}, i=1,2, \ldots, n\). Como se puede ver, la probabilidad de la muestra solo depende del número de unos (o ceros) y no del orden en que aparecen en la muestra. El hecho de que la posición de los unos y los ceros en la muestra no aporte información relevante equivale a decir que el estadístico

+

\[ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +\]

+

contiene la misma información que \(X_{1}, X_{2}, \ldots, X_{n}\) para estimar \(\theta\). Observamos, sin embargo, varias diferencias entre basarse en \(T(\mathbf{X})\) o en \(X_{1}, X_{2}, \ldots, X_{n}\) :

+
    +
  • Al pasar de \(X_{1}, X_{2}, \ldots, X_{n}\) a \(\sum_{i=1}^{n} X_{i}\) hay una reducción de los datos que no implica pérdida de información.
  • +
  • Muchas muestras diferentes dan lugar al mismo valor de \(T\).
  • +
+

Fisher formalizó esta idea con el cálculo de la probabilidad condicionada de la observación muestral con \(T(\mathbf{X})=\sum_{i=1}^{n} X_{i}\) y para todo \(t=0,1, \ldots, n\) :

+

\[ +\begin{aligned} +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] & =\frac{P_{\theta}[\mathbf{X}=\mathbf{x}, T=t]}{P_{\theta}(T=t)} \\ +& =\frac{\theta^{t}(1-\theta)^{n-t}}{\binom{n}{t} \theta^{t}(1-\theta)^{n-t}}=\frac{1}{\binom{n}{t}} +\end{aligned} +\]

+

Es decir, dados \(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1\}^{n} \mathrm{y} t \in\{0,1, \ldots, n\}\), tenemos

+

\[ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]=\left\{\begin{array}{cc} +0 & \text { si } t \neq \sum_{i=1}^{n} x_{i} \\ +\frac{1}{\binom{n}{t}} & \text { si } t=\sum_{i=1}^{n} x_{i} +\end{array}\right. +\]

+

Obviamente, \(P_{\theta}[\mathbf{X}=\mathbf{x}]\) depende de \(\theta\), que es el parámetro que queremos estimar. Sin embargo, la probabilidad condicionada \(P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]\) no depende de \(\theta\). Tenemos entonces la siguiente expresión de la función de probabilidad de la muestra:

+

\[ +P_{\theta}(\mathbf{X}=\mathbf{x})=P_{\theta}(T=t) \cdot P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] +\]

+

Esta expresión muestra que \(P_{\theta}(\mathbf{X})\) se puede descomponer en dos factores, uno que depende de \(\theta, P_{\theta}(T=t)\), y otro que no depende de \(\theta\),

+

\[ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] . +\]

+

Una forma de ver esta descomposición es pensar que el estadístico \(T=\) \(\sum_{i=1}^{n} X_{i}\) ?acumula? o ?absorbe? toda la información relativa a \(\theta\), lo que se refleja en que la probabilidad de la muestra, dado \(T=t\), ya no depende de \(\theta\). Es decir, podemos imaginar la construcción de la muestra en dos etapas:

+
    +
  • En una primera etapa se elige el valor \(t\) para \(T\) con distribución \(B(n, \theta)\).
  • +
  • A continuación, se sitúan aleatoriamente \(t\) unos y \(n-t\) ceros en las \(n\) posiciones.
  • +
+

Cuando la estructura del estadístico \(T(\mathbf{X})\) hace que el segundo factor en la expresión anterior no dependa de \(\theta\), significa que la observación adicional de la muestra es irrelevante. En este caso diremos que \(T(\mathbf{X})\) es suficiente para la estimación de \(\theta\). Dado que esta propiedad de \(T\) queda caracterizada por la independencia de \(P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]\) respecto a \(\theta\), se utiliza esta independencia para definir la suficiencia.

+
+
+
+

18. Definició 2.12

+

Dado un modelo estadístico \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) y un estadístico \(T\), diremos que \(T\) es suficiente para \(\theta\) si, dada una muestra \(\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), se verifica que la distribución de \(\mathbf{X}\) condicionada por el valor de \(T\) no depende de \(\theta\).

+
    +
  • No es necesario que \(F_{\theta}\) sea discreta, como en el ejemplo introductorio, o que la muestra sea una muestra aleatoria simple.
  • +
  • El estadístico suficiente para un parámetro puede ser \(k\)-dimensional.
  • +
+

Exemple 2.4.2 Dada una muestra \(X_{1}, X_{2}, \ldots, X_{n}\) de una distribución de Poisson, la función de probabilidad de la muestra es

+

\[ +P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\frac{e^{-n \lambda} \lambda \sum x_{i}}{x_{1}!\cdots x_{n}!} +\]

+

Calculemos la probabilidad de la muestra condicionada por el valor del estadístico \(T=\sum_{i=1}^{n} X_{i}\) :

+

\[ +\begin{aligned} +& P_{\theta}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T=t\right]=\frac{P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T=t\right)}{P_{\theta}(T=t)} +\end{aligned} +\]

+

\[ +\begin{aligned} +& =\frac{t!}{x_{1}!\cdots x_{n}!}\left(\frac{1}{n}\right)^{t} \mathbf{1}_{\left\{\sum x_{i}=t\right\}}\left(x_{1}, \ldots, x_{n}\right) +\end{aligned} +\]

+

La probabilidad condicional no depende de \(\lambda y\), por lo tanto, \(T\) es suficiente para \(\lambda\). Conviene observar que, en este ejemplo, no todas las muestras tienen la misma probabilidad.

+
+

18.0.1. Teorema de factorización

+

La justificación de la suficiencia de un estadístico mediante la definición no siempre es sencilla, ya que la distribución condicional puede ser intratable con las herramientas disponibles. El teorema que se presenta a continuación proporciona un método sencillo para comprobar la suficiencia de un estadístico y, a menudo, sugiere cuál es el estadístico suficiente de menor dimensión posible.

+

Teorema 2.3 Neyman-Fisher. Sea \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) un modelo estadístico y \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X\). Sea \(f_{\theta}(\mathbf{x})\) la función de probabilidad o la función de densidad de la muestra, según si \(X\) es discreta o absolutamente continua. Un estadístico \(T\) es suficiente para \(\theta\) si y solo si existen dos funciones medibles \(g_{\theta}\) y \(h\) tales que

+

\[ +f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x}) +\]

+

donde \(h\) no depende de \(\theta\) y g depende de \(\theta\) y, además, solo depende de la muestra a través de \(T\).

+

Veamos ahora la demostración del teorema de factorización, restringida al caso de variables discretas.

+

Demostración: Comenzaremos suponiendo que \(T\) es suficiente y concluiremos que es posible la factorización. Si \(T(\mathbf{X})\) es suficiente para la familia de distribuciones \(\left\{F_{\theta} ; \theta \in \Theta\right\}\), la función de probabilidad de la muestra condicionada por \(T\) no depende de \(\theta\). Dado que

+

\[ +f_{\theta}(\mathbf{x})=P_{\theta}[T=T(\mathbf{x})] \cdot f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})] +\]

+

solo es necesario tomar \(g_{\theta}(t)=P_{\theta}[T=T(\mathbf{x})=t]\) y \(h(\mathbf{x})=f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})]\) para obtener el resultado. Ahora supongamos que es posible la factorización y deduzcamos la suficiencia. Si \(f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})\) y llamamos \(A_{t}=\left\{\mathbf{x} \in X(\Omega)^{n} \mid T(\mathbf{x})=t\right\}\), entonces

+

\[ +P_{\theta}[T(\mathbf{x})=t]=\sum_{A_{t}} g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})=g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x}) +\]

+

Consideremos ahora la distribución de la muestra condicionada a \(T=t\). El Teorema de Bayes para densidad permite escribir:

+

\[ +\begin{aligned} +f_{\theta}(\mathbf{x} \mid T=t) & =\frac{f_{\theta}(\mathbf{x}, T=t)}{P_{\theta}(T=t)} \\ +& = \begin{cases}\frac{g_{\theta}(t) \cdot h(\mathbf{x})}{g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x})}=\frac{h(\mathbf{x})}{\sum_{A_{t}} h(\mathbf{x})} & \text { si } T(\mathbf{x})=t \\ +0 & \text { si } T(\mathbf{x}) \neq t\end{cases} +\end{aligned} +\]

+

De modo que la distribución de \(\mathbf{X}\) condicionada por el valor de \(T\) no depende de \(\theta\), y, en consecuencia, \(T\) es suficiente.

+

Exemple 2.4.3 Si X sigue una distribución de Bernoulli, tenemos:

+

\[ +f_{\theta}(\mathbf{x})=\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-\sum_{i=1}^{n} x_{i}}=g_{\theta}\left(\sum_{i=1}^{n} x_{i}\right) . +\]

+

Si tomamos \(h(\mathbf{x})=1\), queda probado que \(T=\sum_{i=1}^{n} X_{i}\) es suficiente. Exemple 2.4.4 Si consideramos una muestra de una distribución de Poisson

+

\[ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \frac{\lambda^{\sum_{i=1}^{n} x_{i}}}{x_{1}!x_{2}!\cdots x_{n}!} +\]

+

\(y\) tomamos \(T(\mathbf{x})=\sum_{i=1}^{n} x_{i}\), podemos escribir

+

\[ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \lambda^{T(\mathbf{x})} \cdot\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}=g_{\lambda}(T(\mathbf{x})) \cdot h(\mathbf{x}) +\]

+

donde

+

\[ +g_{\lambda}(T(\mathbf{x}))=e^{-n \lambda} \lambda^{T(\mathbf{x})}, \quad h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1} +\]

+

De modo que \(g_{\lambda}(t)=e^{-n \lambda} \lambda^{t}\) depende de la muestra solo a través de \(T=\) \(\sum_{i=1}^{n} x_{i}\) y \(h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}\) no depende de \(\lambda\).

+

Exemple 2.4.5 Supongamos que \(\mathbf{X}\) es una muestra aleatoria simple de una población \(X \sim N(\mu, \sigma)\), cuya función de densidad es

+

\[ +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} +\]

+

Para evidenciar la factorización, utilizamos que

+

\[ +\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2} . +\]

+

Entonces,

+

\[ +\begin{aligned} +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(n s^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =g_{\mu, \sigma^{2}}\left(\bar{x}, s^{2}\right) \cdot 1 +\end{aligned} +\]

+

Así, vemos que el estadístico \(\left(\bar{X}, s^{2}\right)\) es suficiente para la estimación de \(\left(\mu, \sigma^{2}\right)\). Si suponemos conocido uno de los dos parámetros \(\sigma^{2}\) o \(\mu\), podemos obtener una factorización en la que se ve que \(\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\) es suficiente para \(\sigma^{2}\) (conocido \(\mu\) ) o \(\bar{x}\) es suficiente para \(\mu\) (conocido \(\sigma^{2}\) ).

+

En el ejemplo anterior se observa que el estadístico suficiente para un problema puede tener una dimensión superior a 1. En general, buscaremos el estadístico suficiente de menor dimensión posible, ya que a menor dimensión se elimina más información superflua. Si no es posible encontrarlo así, siempre podemos basarnos en el estadístico \(T=\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), que es suficiente pero de dimensión máxima y, por lo tanto, no aporta ninguna reducción al problema de información. Estas reflexiones llevan a enunciar el principio de suficiencia, que aconseja condensar al máximo la información relevante en un estadístico suficiente \(T\) de la menor dimensión posible (“mínima”) y seleccionar un estimador \(T^{\prime}\) entre los estadísticos que sean función de la muestra a través de \(T: T^{\prime}(\mathbf{X})=\varphi(T(\mathbf{X}))\).

+
+
+

18.0.2. Propiedades de los estadísticos suficientes

+

Las siguientes propiedades se prueban de manera sencilla utilizando el teorema de factorización:

+
    +
  1. Si \(T\) es un estadístico suficiente para \(\theta\) y \(\varphi\) es una función inyectiva (o monótona diferenciable), entonces \(T_{1}=\varphi(T)\) también es suficiente para \(\theta\).
  2. +
+

Exemple 2.4.6 En la familia de la Poisson hemos visto que \(\sum_{i=1}^{n} X_{i}\) es suficiente para \(\lambda\). Entonces \(\bar{X}=\varphi\left(\sum_{i=1}^{n} X_{i}\right)\), donde \(\varphi(z)=(1 / n) z\) es inyectiva, es suficiente para \(\lambda\). 2. Si \(T\) es un estadístico suficiente para \(\theta\) y \(\varphi\) es una función paramétrica monótona diferenciable, entonces \(\varphi(T)\) también es suficiente para \(\varphi(\theta)\). 3. Si \(T_{1}, T_{2}\) son dos estadísticos suficientes para \(\theta\), entonces \(T_{1}\) es función de \(T_{2}\).

+
+
+
+

19. Capítol 3

+
+
+

20. MÉTODOS DE OBTENCIÓN DE ESTIMADORES

+

En el capítulo anterior hemos analizado el problema de la estimación puntual desde el punto de vista de, dado un estimador, ver ?qué tan bueno es? para estimar un parámetro. Otra cuestión que nos podemos plantear, de hecho la primera cuestión que hay que plantearse en la práctica, es cómo obtener un estimador ?razonablemente bueno? de un parámetro. De hecho, desde el punto de vista práctico parece razonable empezar por ver cómo se obtiene un estimador y, una vez obtenido, analizar ?cuán bueno resulta?. Existen muchos métodos para obtener estimadores, cada uno de los cuales puede llevarnos a unos resultados de diferente calidad. Los principales métodos de estimación son:

+
    +
  1. Método de los momentos
  2. +
  3. Método de la máxima verosimilitud
  4. +
  5. Método de Bayes
  6. +
  7. Otros métodos
  8. +
+
+

20.1. El método de los momentos

+

Este método fue introducido por K. Pearson a finales del siglo XIX y es el principio en que nos basamos cuando hacemos una estimación de la media o de la varianza poblacional a partir de la media o la varianza muestrales. La idea del método de los momentos es bastante intuitiva. Si lo que queremos estimar (uno o varios parámetros) es una función de los momentos poblacionales, entonces una estimación razonable puede consistir en tomar como estimador la misma función en la que los momentos poblacionales han sido sustituidos por los momentos muestrales. Dado que estos últimos son estimadores consistentes de los momentos poblacionales, en condiciones bastante generales se puede garantizar que los estimadores obtenidos serán estimadores consistentes para las funciones de los momentos poblacionales estimadas. Algunos ejemplos típicos de estimadores basados en el método de los momentos son:

+

\[ +\widehat{\mu}=\bar{X}_{n} \quad \widehat{\sigma}=\sqrt{S^{2}} \quad \widehat{\sigma^{2}}=S^{2} +\]

+

Sea un modelo estadístico, \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\), y \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X\). Sean \(m_{1}, m_{2}, ?, m_{k}\) los momentos poblacionales de orden \(1,2, ?, k\) de \(X\), que suponemos que existen,

+

\[ +m_{k}=E\left(X^{k}\right) +\]

+

y \(a_{1}, a_{2}, ?, a_{k}\) los momentos muestrales respectivos

+

\[ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} +\]

+

Suponemos que estamos interesados en estimar:

+

\[ +\theta=h\left(m_{1}, m_{2}, \ldots, m_{p}\right), +\]

+

donde \(h\) es una función conocida. Definició 3.1 El método de los momentos consiste en estimar \(\theta\) por el estadístico

+

\[ +T(\mathbf{X})=h\left(a_{1}, a_{2}, \ldots, a_{p}\right) +\]

+
+
+
+

21. Observaciones

+
    +
  • El método se extiende de forma sencilla a la estimación de momentos conjuntos. Podemos usar \(\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}\) para estimar \(E(X Y)\), etc.
  • +
  • Por la ley débil de los grandes números,
  • +
+

\[ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{P} E\left(X^{k}\right), +\]

+

de modo que si lo que queremos es estimar los momentos muestrales, el método garantiza que los estimadores son consistentes y sin sesgo.

+

En este caso, además, los estimadores son asintóticamente normales. Si lo que se desea estimar es una función \(h\) continua de los momentos, entonces el método garantiza que el estimador \(T(\mathbf{X})\) es consistente y, bajo ciertas condiciones de regularidad, también es asintóticamente normal.

+

Exemple 3.1.1 Sea \(X \sim \Gamma(p, \alpha)\). Queremos estimar \(p\) y \(\alpha\). En lugar de conocer la función \(h\left(\theta_{1}, \theta_{2}\right)\) sabemos que:

+

\[ +\begin{aligned} +m_{1} & =\frac{p}{\alpha}=E(X) \\ +m_{2} & =\frac{p(p+1)}{\alpha^{2}}=E\left(X^{2}\right) \\ +& =V(X)+[E(X)]^{2}=\frac{p}{\alpha^{2}}+\left(\frac{p}{\alpha}\right)^{2}=\frac{p^{2}+p}{\alpha^{2}}= +\end{aligned} +\]

+

De modo que podemos obtener las funciones deseadas ?aislando? p y \(\alpha\) como funciones de \(m_{1}\) y \(m_{2}\) :

+

\[ +\begin{aligned} +\alpha^{2} & =\frac{p^{2}}{m_{1}^{2}} \\ +\alpha^{2} & =\frac{p(p+1)}{m_{2}} +\end{aligned} +\]

+

Procediendo por igualación:

+

\[ +\begin{aligned} +& \frac{p^{2}}{m_{1}^{2}}=\frac{p(p+1)}{m_{2}} \\ +& \frac{p}{m_{1}}=\frac{p+1}{m_{2}} \\ +& p m_{2}=p m_{1}^{2}+m_{1}^{2} \\ +& p\left(m_{2}-m_{1}^{2}\right)=m_{1}^{2} \\ +& p=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& \alpha=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& m_{1} +\end{aligned} \frac{m_{1}}{m_{2}-m_{1}^{2}} . +\]

+

Los estimadores por el método de los momentos se obtendrán ahora sustituyendo \(p\) y \(\alpha\) por \(\hat{p}\) y \(\hat{\alpha}\) en la expresión anterior, es decir:

+

\[ +\widehat{p}=\frac{a_{1}^{2}}{a_{2}-a_{1}^{2}} +\]

+

Hacemos lo mismo para el parámetro \(\alpha\) :

+

\[ +\widehat{\alpha}=\frac{a_{1}}{a_{2}-a_{1}^{2}} +\]

+
+

21.1. El método del máximo de verosimilitud

+
+

21.1.1. Introducción

+

El método de la máxima verosimilitud, introducido por Fisher, es un método de estimación que se basa en la función de verosimilitud, presentada en el capítulo anterior. Básicamente consiste en tomar como estimadores de los parámetros aquellos valores que hagan más probable observar precisamente lo que se ha observado, es decir, que hagan que la muestra observada resulte más verosímil.

+

Exemple 3.2.1 Tomemos 5 papeles. En cada uno de ellos ponemos o bien un ?+? o bien un ?-?, sin que se sepa qué hay en cada papel, y los guardamos en una bolsa. Nuestro objetivo es estimar el número de papeles con el signo ?? escrito. Extraemos tres papeles, devolviéndolos a la bolsa después de cada extracción, y observamos que ha salido lo siguiente: ?++-?. Los valores posibles para la probabilidad de ?-?, llamémosla p, son:

+ + + + + + + + + + + + + + + + + + + + + + + + + +
En la bolsa hay\(p\)
\(4 ?+\) ?, 1 ?-?0,2
\(3 ?+\) ?, 2 ?-?0,4
\(2 ?+\) ?, 3 ?-?0,6
\(1 ?+\) ?, 4 ?-?0,8
+

Supongamos que la variable \(X\) mide el número de ?-? en tres extracciones consecutivas y que, por tanto, sigue una distribución binomial:

+

\[ +X \sim B(3, p(?-?)) +\]

+

La probabilidad de sacar un ?-? es:

+

\[ +P_{p}[X=1]=\binom{3}{1} \cdot p^{1}(1-p)^{2} +\]

+

Para cada uno de los valores de p, las probabilidades quedan asi:

+ + + + + + + + + + + + + + + + + + + + + + + + + +
\(p\)\(P_{p}[X=1]\)
0.2\(3 \cdot 0.2 \cdot 0.8^{2}=0.384\)
0.4\(3 \cdot 0.4 \cdot 0.6^{2}=0.432\)
0.6\(3 \cdot 0.6 \cdot 0.4^{2}=0.288\)
0.8\(3 \cdot 0.8 \cdot 0.2^{2}=0.096\)
+

El valor de p que da una probabilidad mayor a la muestra, es decir, que la hace más verosímil, es \(p=0.4\). El método del máximo de verosimilitud consiste precisamente en tomar este valor como estimación de \(p\).

+
+
+

21.1.2. La función de verosimilitud

+

Una vez introducido el método con un ejemplo, podemos pasar a definirlo con mayor precisión. Para ello, comenzaremos con el concepto de función de verosimilitud. En el capítulo anterior presentamos la función de verosimilitud como la función que resulta de considerar que, en la función de probabilidad de la muestra, el parámetro es variable y la muestra queda fija. Es decir:

+

\[ +\underbrace{f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)}_{\mathbf{x} \text { variable, } \theta \text { fijo }} \longrightarrow \underbrace{L\left(\theta ; x_{1}, x_{2}, \ldots, x_{n}\right)}_{\mathbf{x} \text { fija, } \theta \text { variable }} +\]

+

Esta definición es básicamente correcta. En el caso de las variables discretas, donde \(f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)\) representa la probabilidad de la muestra, fijado \(\theta\), resulta intuitivamente claro decir que la verosimilitud representa la ?probabilidad de la muestra para cada valor del parámetro?. Refiriéndonos al ejemplo introductorio, resulta sencillo ver que se trata de ?dos puntos de vista? sobre la misma función. Fijado un valor del parámetro, por ejemplo, 0.4 , podemos considerar la probabilidad de diversas muestras posibles, como \(x=0, x=1, \ldots\), hasta \(x=3\) :

+

\[ +\begin{aligned} +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{0.4}[X=x], x=0,1, \ldots, 3 \\ +& =\binom{3}{x} \cdot 0.4^{x}(0.6)^{3-x} . +\end{aligned} +\]

+

Análogamente, fijada una muestra, por ejemplo, \(x=1\), podemos considerar la probabilidad de esta para diversos valores del parámetro, \(p=0,0.2, \ldots, 1\).

+

\[ +\begin{aligned} +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{p}[X=1], x=0,0.2,0.4, \ldots, 1 \\ +& =3 \cdot p(1-p)^{2} . +\end{aligned} +\]

+

En el caso de las distribuciones absolutamente continuas, el significado de la función de verosimilitud ya no es intuitivamente tan claro como en el caso de las discretas. En este caso, la función de densidad de la muestra ya no representa la probabilidad de esta como en el caso de las discretas. Algunos autores intentan solucionar esto explicando que existe una conocida aproximación en que la función de densidad es la probabilidad de un suceso ?infinitesimal?. Lo que es importante en la función de verosimilitud, a la hora de hacer inferencias, es la parte que es función del parámetro. Esto hace que a menudo se considere que la expresión de la función de verosimilitud mantenga solo aquella parte de \(f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)\) que depende de \(\theta\), ignorando la parte que dependa solo de la muestra. Es decir, si podemos factorizar \(f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)\) como

+

\[ +f(\mathbf{x} ; \theta)=c(\mathbf{x}) \cdot g(\mathbf{x} ; \theta) +\]

+

podremos prescindir de la ?constante? \(c(x)\) (constante porque no depende de \(\theta\) ) al considerar la verosimilitud.

+

\[ +L(\theta ; \mathbf{x})=g(\mathbf{x} ; \theta) \propto f(\mathbf{x} ; \theta) +\]

+

Esto implica que \(L(\theta ; \mathbf{x})\) no tiene por qué integrar a 1 , como en el caso de las probabilidades, y que depende de las unidades de medida.

+

Exemple 3.2.2 Si \(X\) es discreta, \(X \sim \mathcal{P}(\lambda)\), y suponemos \(n=1\) (muestras de tamaño 1), tenemos que la f.d.p. de la muestra es:

+

\[ +P[x ; \lambda]=e^{-\lambda} \frac{\lambda^{x}}{x!} +\]

+

con \(x=0,1, \ldots\) Ahora, si hemos observado \(x=5\), la función de verosimilitud vale:

+

\[ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5}\left[\frac{1}{5!}\right] +\]

+

Como solo nos interesa la parte que es función de \(\lambda\), podemos ignorar \(\frac{1}{5!}\), es decir:

+

\[ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5} \propto P[\mathbf{x} ; \lambda] . +\]

+

Exemple 3.2.3 Si dada una muestra de tamaño 1, por ejemplo, \(x=2\), de una ley de Poisson \(\mathcal{P}(\lambda)\) queremos comparar sus verosimilitudes respecto de los valores del parámetro \(\lambda=1.5\) o \(\lambda=3\), lo que haremos será basarnos en la razón de verosimilitudes:

+

\[ +\begin{aligned} +\Lambda(\mathbf{x}) & =\frac{L\left(\lambda_{1} ; x\right)}{L\left(\lambda_{2} ; x\right)}=\frac{L(1.5 ; 2)}{L(3 ; 2)} \\ +& =\frac{e^{-1.5} 1.5^{2}\left[\frac{1}{2!}\right]}{e^{-3} 3^{2}\left[\frac{1}{2!}\right]}=\frac{e^{-1.5} 1.5^{2}}{e^{-3} 3^{2}}=\frac{0.5020}{0.4481}=1.12 . +\end{aligned} +\]

+

Como se observa, al basarnos en la razón de verosimilitudes, la parte correspondiente solo a la muestra no se toma en cuenta. La razón de verosimilitudes sugiere que el valor \(\lambda=1.5\) hace la muestra más verosímil.

+
+
+

21.1.3. El método del máximo de verosimilitud

+

Si partimos de las dos ideas que hemos visto en la introducción:

+
    +
  • Escoger como estimación el valor que maximice la probabilidad de la muestra observada.
  • +
  • La verosimilitud de la muestra es una aproximación a la probabilidad de esta como función del valor del parámetro.
  • +
+

Una forma razonable de definir el EMV es entonces como aquel que maximice la verosimilitud.

+

Definició 3.2 Un estimador \(T: \Omega \longrightarrow \Theta\) es un estimador del máximo de verosimilitud para el parámetro \(\theta\) si cumple:

+

\[ +L(T(\mathbf{x}) ; \mathbf{x})=\sup _{\theta \in \Theta} L(\theta ; \mathbf{x}) +\]

+

Como suele ocurrir en problemas de maximización, este valor ni existe necesariamente ni tiene por qué ser único. Ahora bien, bajo ciertas condiciones (las habituales para los problemas de máximos y mínimos) el problema se podrá reducir a buscar un máximo para la función de verosimilitud.

+

Exemple 3.2.4 Supongamos que \(x_{1}, \ldots, x_{n}\) es una muestra de una población de Bernouilli, \(X \sim B e(p)\), donde queremos estimar p. La función de masa de la probabilidad de \(X\) es:

+

\[ +P\left[X=x_{i}\right]=P\left(x_{i} ; p\right)=p^{x_{i}}(1-p)^{1-x_{i}} \text { donde } x_{i} \in\{0,1\} ; i=1, \ldots, n +\]

+

La función de verosimilitud es:

+

\[ +L(p ; \mathbf{x})=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum_{i=1}^{n} x_{i}}(1-p)^{\sum_{i=1}^{n}\left(1-x_{i}\right)} +\]

+

Debemos buscar el máximo de \(L(p ; \mathbf{x})\). En este caso, como en otros, es más sencillo buscar el máximo de su logaritmo, que, dado que es una función monótona, es el mismo que el máximo de \(L\)

+

\[ +\ln L(p ; x)=\left(\sum_{i=1}^{n} x_{i}\right) \cdot \ln p+\left(n-\sum_{i=1}^{n} x_{i}\right) \cdot \ln (1-p) +\]

+

Derivamos respecto a p:

+

\[ +\frac{\partial \ln L(p ; x)}{\partial p}=\frac{\sum_{i=1}^{n} x_{i}}{p}-\frac{n-\sum_{i=1}^{n} x_{i}}{1-p} +\]

+

e igualamos a cero la derivada, planteando lo que se denomina la ecuación de verosimilitud, cuyas soluciones nos conducirán eventualmente al estimador del máximo de verosimilitud.

+

\[ +\frac{\sum_{i=1}^{n} x_{i}-n \hat{p}}{\hat{p}(1-\hat{p})}=0 \Rightarrow \hat{p}=\frac{\sum_{i=1}^{n} x_{i}}{n} +\]

+

Si la segunda derivada es negativa en \(\widehat{p}\) entonces será un máximo:

+

\[ +\begin{aligned} +\frac{\partial^{2} \ln L(p ; x)}{\partial p^{2}} & =\frac{\partial}{\partial p}\left(\frac{\sum_{i=1}^{n} x_{i}-n p}{p(1-p)}\right)=\frac{-n[p(1-p)]-\left(\sum_{i=1}^{n} x_{i}-n p\right) \cdot(1-2 p)}{p^{2}\left(1-p^{2}\right)}= \\ +& =\frac{-n p+n p^{2}-\sum_{i=1}^{n} x_{i}-n p-2 p \sum_{i=1}^{n} x_{i}-2 n p^{2}}{p^{2}(1-p)^{2}}= \\ +& =\frac{\left[\sum_{i=1}^{n} x_{i}(1+2 p)-n p^{2}\right]}{p^{2} \cdot(1-p)^{2}} +\end{aligned} +\]

+

que es negativa cuando \(p=\hat{p}\), de forma que \(\hat{p}\) es efectivamente un máximo. El método analítico expuesto en el ejemplo anterior, consistente en el cálculo de un extremo de una función, no se puede aplicar en todas las situaciones. En estos casos, una alternativa puede ser estudiar directamente la función de verosimilitud. Veamos un ejemplo:

+

Exemple 3.2.5 Sea \(X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} X \sim U(0, \theta) \quad \theta>0\) desconocido. Sabemos que:

+

\[ +f(x ; \theta)=\left\{\begin{array}{c} +\frac{1}{\theta} \text { si } 0<\min \left\{x_{i}\right\} \leq \max \left\{x_{i}\right\} \leq \theta \\ +0 \quad \text { en caso contrario } +\end{array}\right\} +\]

+

La derivada respecto a \(\theta\) es \(-\frac{n}{\theta^{n-1}}\), que se anula cuando \(\theta \underset{n \rightarrow \infty}{\longrightarrow} \infty\) que lleva a una solución sin sentido de la ecuación de verosimilitud. Una inspección de la gráfica de la función de verosimilitud revela que el EMV, en este caso,

+

Figura 3.1: Función de verosimilitud para una distribución uniforme es \(\max \left\{X_{i}, \ldots, X_{n}\right\}\). Efectivamente, consideremos cualquier otro valor \(\theta^{*}\) diferente del máximo:

+

\[ +\begin{aligned} +& \text { Si } \theta^{*}>X_{(n)} \Rightarrow \frac{1}{\left(\theta^{*}\right)^{n}}<\frac{1}{\left(X_{n}\right)^{n}}, \\ +& \text { Si } \theta^{*}<X_{(n)} \Rightarrow L\left(\theta^{*} ; \mathbf{x}\right)=0 +\end{aligned} +\]

+

ya que si un estimador toma un valor inferior al máximo de la muestra habrá algún valor muestral, \(x_{i}\) para el cual se verificará que \(\theta^{*}<x_{i}\), lo que hace la muestra inverosímil, y por tanto el estimador no es admisible. A la vista de lo anterior, deducimos que el valor que maximiza \(L(\theta ; \mathbf{x})\) es el máximo de la muestra.

+

Exemple 3.2.6 El método del máximo de verosimilitud se extiende de forma inmediata a los parámetros \(K\)-dimensionales. Consideremos el caso de la ley normal \(X \sim N\left(\mu, \sigma^{2}\right)\). Aquí el parámetro \(\theta\) es bidimensional, es decir: \(\theta=\left(\mu, \sigma^{2}\right) \in \Theta=\mathbb{R} \times \mathbb{R}^{+}\)

+
    +
  1. La función de verosimilitud de una muestra de tamaño \(n\) es:
  2. +
+

\[ +L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}=\frac{1}{(2 \pi)^{n / 2}\left(\sigma^{2}(n / 2\right.} e^{-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} +\]

+
    +
  1. Sacando logaritmos
  2. +
+

\[ +\log L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} +\]

+
    +
  1. La derivada de \(L()\) es la matriz de derivadas:
  2. +
+

\[ +D \log L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)=\binom{\frac{\partial \log L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)}{\partial \mu}}{\frac{\partial \log L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)}{\partial \sigma^{2}}}=\left\{\begin{array}{c} +\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)}{\sigma^{2}} \\ +\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{4}}-\frac{n}{2 \sigma^{2}} +\end{array}\right. +\]

+
    +
  1. Planteando y resolviendo la ecuación de verosimilitud tenemos:
  2. +
+

\[ +D \log L\left(\left(\hat{\mu}, \hat{\sigma}^{2}\right) ; \mathbf{x}\right)=\left\{\begin{array}{c} +\frac{\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)}{\hat{\sigma}^{2}}=0 \\ +\frac{\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}}{2 \hat{\sigma}^{4}}=\frac{n}{2 \hat{\sigma}^{2}} +\end{array}\right. +\]

+

de donde las raíces de la ecuación de verosimilitud son:

+

\[ +\hat{m} u=\bar{x}, \quad \hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}=s^{2} . +\]

+
    +
  1. Para decidir si las raíces de la ecuación de verosimilitud corresponden a un máximo, analizamos la matriz de derivadas segundas, denominada Hessiana.
  2. +
+

\[ +H=\left(\begin{array}{cc} +\frac{\partial^{2} z}{\partial x^{2}} & \frac{\partial^{2} z}{\partial x \partial y} \\ +\frac{\partial^{2} z}{\partial y \partial x} & \frac{\partial^{2} z}{\partial y^{2}} +\end{array}\right) +\]

+

Una condición suficiente para que un punto \(\left(x_{0}, y_{0}\right)\) sea un máximo es que el determinante de \(H\) sea positivo y el menor en la posición ?11? negativo, es decir: \(S i|H|>\left.0 y \frac{\partial^{2} z}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}<0 \Longrightarrow\) Hay un máximo relativo en \(\left(x_{0}, y_{0}\right)\). Si evaluamos el Hessiano en el punto \(\left(\bar{x}, s^{2}\right)\) tenemos:

+

\[ +H=\left(\begin{array}{cc} +-\frac{n}{s^{2}} & 0 \\ +0 & -\frac{n}{2 s^{4}} +\end{array}\right) . +\]

+

Las condiciones de extremo que hemos dado más arriba se verifican: \(H_{11}<0 y|H|>0\), de manera que podemos concluir que el estimador del máximo de verosimilitud de \(\left(\mu, \sigma^{2}\right)\) es, efectivamente, \(\left(\bar{x}, s^{2}\right)\).

+
+
+
+
+

22. Bibliografia

+

[1] Canavos, George C. (1988). Probabilidad y Estadistica. Aplicaciones y Metodos. McGraw-Hill/Interamericana. Mexico. [2] Cuadras, C.M. (2000). Problemas de probabilidades y estadística. Vol. 2: Inferencia estadística. EUB. Economía y Empresa. Barcelona. [3] De Groot, M. (1988). Probabilidad y Estadística. Addison-Wesley. . [4] Casella, G. Berger, M (1990). Statistical inference. Duxbury Press. . [5] Dudewicz, Edward J., Mishra, S. (1989). Modern mathematical statistics. John Wiley & Sons, Wiley series in probability and statistics. New York. [6] Fortiana, J., Nualart, D. (1999). Estadística. Publicacions de la Universitat de Barcelona. Barcelona. [7] Lehman, E. (1986). Testing Statistical Hypothesis. John Wiley & Sons, Wiley series in probability and statistics. New York. [8] Martínez A., Rodriguez, C., Gutiérrez, R (1993). Inferencia Estadistica, un Enfoque Clasico. Ediciones Pirámide, Economia y Administración de Empresas. Madrid. [9] Peña, Daniel (1987). Estadística modelos y metodos 1. Fundamentos. Alianza editorial. Madrid. [10] Rohatgi, V. K. (1976). An Introduction to Probability Theory and Mathematical Statistics. John Wiley & Sons, Wiley Series in Probability. New York. [11] Ruiz-Maya, L., Martín Pliego, J. (1995). Estadística II: Inferencia. Editorial AC. Colección Plan Nuevo. Madrid. [12] Sanz, Marta (1999). Probabilitats. Edicions de la UNiversitat de Barcelona. Barcelona. [13] Vélez Ibarrola, Ricardo, Garcia Perez, Alfonso (1993). Principios de Inferencia estadística. Editorial UNED. Madrid.

+
+ + +
+ + +
+ + + + + \ No newline at end of file diff --git a/complementos/EstadMat-AllChap(ES).md b/complementos/EstadMat-AllChap(ES).md new file mode 100644 index 0000000..3997b93 --- /dev/null +++ b/complementos/EstadMat-AllChap(ES).md @@ -0,0 +1,2079 @@ +# ESTADÍSTICA MATEMÀTICA II APUNTES + +Àlex Sánchez Pla Francesc Carmona + +Departament d'Estadística + +## 1. Índex + +1 INFERENCIA, MUESTREO Y DISTRIBUCIONES MU- ESTRALES ..... 1 +1.1 Inferencia estadística ..... 1 +1.2 Problemas de inferencia estadística ..... 2 +1.3 Distribución de la población ..... 3 +1.4 Muestra aleatoria simple ..... 4 +1.4.1 Definición ..... 4 +1.4.2 Distribución de la muestra ..... 5 +1.5 Estadísticos ..... 7 +1.5.1 Definición ..... 7 +1.5.2 Distribución en el muestreo de un estadístico ..... 7 +1.6 La distribución empírica ..... 9 +1.6.1 Definición ..... 9 +1.7 Los momentos muestrales ..... 11 +1.7.1 Definición ..... 11 +1.7.2 Distribución en el muestreo de los momentos muestrales ..... 11 +1.7.3 Propiedades asintóticas de los momentos muestrales ..... 12 +1.8 Muestreo en poblaciones normales ..... 13 +1.8.1 La distribución chi-cuadrado ..... 14 +1.8.2 Distribución $t$ de Student ..... 15 +1.8.3 La distribución $F$ de Fisher ..... 16 +2 ESTIMACIÓN PUNTUAL ..... 18 +2.1 El problema de la estimación puntual ..... 18 +2.1.1 Criterios de optimalidad de estimadores. El Riesgo ..... 19 +2.1.2 El error cuadrático medio ..... 22 +2.2 Estudio de las propiedades deseables de los estimadores ..... 25 +2.2.1 El sesgo ..... 25 +2.2.2 Consistencia ..... 28 +2.2.3 Eficiencia ..... 31 +2.3 Información de Fisher y cota de Cramer-Rao ..... 32 +2.4 Estadísticos suficientes ..... 42 +2.4.1 Teorema de factorización ..... 45 +2.4.2 Propiedades de los estadísticos suficientes ..... 47 +3 MÉTODOS DE OBTENCIÓN DE ESTIMADORES ..... 49 +3.1 El método de los momentos ..... 49 +3.2 El método del máximo de verosimilitud ..... 52 +3.2.1 Introducción ..... 52 +3.2.2 La función de verosimilitud ..... 53 +3.2.3 El método del máximo de verosimilitud ..... 55 + +## 2. Presentación + +El material que se presenta a continuación se originó en las notas de clase de la asignatura Estadística Matemática que hemos impartido en la Diplomatura de Estadística desde su inicio en la Universidad de Barcelona. +El objetivo de estos apuntes no es sustituir los libros citados en la bibliografía, sino, más bien, servir como una guía de estudio para que los estudiantes puedan repasar los razonamientos y los cálculos hechos en clase y asegurarse de que lo entienden todo correctamente. +Este documento es una versión preliminar y, como tal, puede contener algunos errores. Si nos hemos animado a publicarlo de forma electrónica, ha sido con la idea de que pueda resultar de utilidad a aquellos a quienes va destinado, no en un futuro incierto sino desde ahora mismo. Nos gustaría que nos hicieran llegar cualquier error, errata o comentario. + +Barcelona, 13 de febrero de 2002 +Àlex Sánchez Pla (asanchez@ub.edu) +Francesc Carmona (fcarmona@ub.edu) +Departamento de Estadística +Universidad de Barcelona + +## 3. Capítol 1 + +## 4. INFERENCIA, MUESTREO Y DISTRIBUCIONES MUESTRALES + +### 4.1. Inferencia estadística + +Para comenzar, vamos a definir cuál es el ámbito de estudio de la inferencia estadística desde su relación con el cálculo de probabilidades. El cálculo de probabilidades proporciona una teoría matemática que permite analizar (o modelizar) las propiedades de los fenómenos donde interviene el azar. +El cálculo de probabilidades utiliza como modelo básico para cualquier situación aleatoria el concepto de espacio de probabilidades $(\Omega, \mathcal{A}, P)$ y una variable aleatoria $X: \Omega \rightarrow \mathbb{R}$ definida sobre él. +El conocimiento de la distribución de la variable aleatoria permite: + +1. Análisis deductivo de situaciones. Por ejemplo: si asumimos que el peso de los recién nacidos se distribuye según una distribución $N(\mu=$ $3 \mathrm{~kg}, \sigma=0.25 \mathrm{~kg}$ ), nos puede interesar calcular la probabilidad de que un recién nacido pese entre 2.9 y 3.1 kg , o encontrar unos valores centrados en la media entre los cuales esperemos que se encuentren el $10 \%(25 \%, 50 \%, 95 \%, \ldots)$ de los recién nacidos. +2. Modelización de situaciones aleatorias. Por ejemplo: si asumimos que el tiempo, en años, hasta que se estropea un componente de un ordenador se distribuye según una distribución exponencial $T \sim \xi(\lambda=$ $0.3)$, nos puede interesar calcular la probabilidad de que un componente dado dure más de 4 años. + +En los casos anteriores nos encontramos en una situación muy común, donde ya disponemos de un modelo sobre el cual efectuamos los cálculos, pero del cual desconocemos la procedencia. Parece razonable, y de hecho es precisamente así, que si queremos adaptar un modelo a una situación debamos basarnos únicamente en las observaciones del fenómeno. +Si queremos saber cómo se distribuyen los pesos de los recién nacidos tomaremos unos cuantos, los pesaremos y después observaremos la distribución de estos. Puede que no sea necesario pesar a todos los recién nacidos (jde hecho, no es posible!), pero tampoco es posible deducir la ley por consideraciones puramente teóricas. +Ahora, en lugar de partir de un espacio de probabilidades, partiremos de unas observaciones $\left(x_{1}, \ldots, x_{n}\right)$ y el objetivo que perseguiremos será obtener información sobre la distribución de probabilidades de un fenómeno a partir de una observación no exhaustiva del mismo. + +### 4.2. Problemas de inferencia estadística + +Hemos presentado como objetivo de la inferencia estadística inducir propiedades del modelo probabilístico que representa la población a partir de un conjunto de observaciones. +Según el tipo de conclusión que queramos extraer, diferenciaremos diferentes tipos de problemas: + +1. Si queremos utilizar la información proporcionada por la muestra para obtener un pronóstico numérico único (es decir, una única aproximación numérica) de una o más características de la población, tenemos un problema de estimación puntual. +2. Si queremos obtener información sobre un rango de valores dentro del cual podamos afirmar, con un cierto grado de confianza, que podemos capturar un parámetro desconocido de la distribución, hablamos de estimación por intervalo. +3. Si lo que queremos hacer es decidir si podemos aceptar o debemos rechazar una afirmación sobre la distribución de probabilidad del fenómeno estudiado, hablamos de contraste de hipótesis. Este contraste puede ser: + +- Paramétrico: si la afirmación (la hipótesis) se refiere a los parámetros de la distribución. +- No paramétrico: si la afirmación es sobre la forma de la distribución. + + +### 4.3. Distribución de la población + +Todo problema de inferencia está motivado por un cierto grado de desconocimiento de la ley de probabilidades que rige un determinado fenómeno aleatorio. +El caso más sencillo que encontramos es cuando nos interesa una cierta variable $X$ con una función de distribución $F$ desconocida en mayor o menor grado. +La distribución que teóricamente sigue la variable de interés $X$ en la población recibe el nombre de distribución teórica o distribución de la población. La distribución de la población es importante ya que, a menudo, se utiliza para determinar la distribución de alguna característica de los individuos de una población. +En los modelos de la inferencia estadística indicamos el relativo grado de desconocimiento sobre la distribución $F$ en función de su pertenencia a una familia $\mathcal{F}$ de distribuciones. Por ello, en lugar de explicar que $X \sim F=F_{0}$ indicaremos que $X \sim F \in \mathcal{F}$, donde $\mathcal{F}$ puede ser un conjunto más o menos amplio de distribuciones de probabilidad, como todas las distribuciones normales o las distribuciones simétricas o las distribuciones discretas sobre $\mathbb{N}$. +Muchas veces, la distribución poblacional $F$ está completamente especificada excepto por el valor de algún parámetro o parámetros. En este caso, podemos concretar más la forma de la familia de distribuciones: + +$$ +X \sim F \in \mathcal{F}=\left\{F_{\theta}: \theta \in \Theta \subset \mathbb{R}^{k}\right\} +$$ + +donde $\Theta$ es el espacio de los $k$ parámetros. +La familia de posibles distribuciones de probabilidad para $X$ se denomina, genéricamente, modelo estadístico y se indica como: $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$. Veamos algunos ejemplos. + +Exemple 1.3.1 Supongamos que $X$ representa la duración de un componente electrónico que no envejece, solo se estropea. Es decir, si en un instante $t$ está funcionando, su estado es el mismo que en cualquier momento del pasado y la distribución del tiempo hasta que se estropee es la misma que al principio. Esta propiedad se denomina falta de memoria. +Un modelo razonable para esta situación lo da la distribución de Weibull que, en este caso, podemos definir a través de la siguiente función de densidad: + +$$ +f_{\theta}(x)= \begin{cases}\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}} & \text { si } x \geq 0 \\ 0 & \text { si } x<0\end{cases} +$$ + +La familia de distribuciones asociada es + +$$ +\mathcal{F}=\left\{F_{\theta}: \theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty)\right\} +$$ + +Exemple 1.3.2 Supongamos que queremos determinar la masa de un cierto tipo de partículas elementales a partir de las observaciones en una cámara de burbujas. En cada observación obtenemos un dato de la masa de la partícula $x_{i}$ y asociado con ella un cierto error de medida $\varepsilon$. Si la masa común de cada una de ellas es $\mu$, entonces podemos escribir: + +$$ +x_{i}=\mu+\varepsilon_{i} \quad i=1, \ldots, n +$$ + +donde la distribución $\varepsilon_{i} \sim F$ es desconocida. Nuestro objetivo es obtener información sobre $F$. +Si admitimos que $P\left(\varepsilon_{i}<0\right)=P\left(\varepsilon_{i}>0\right)$, según el grado de exigencia que queramos tener, podemos suponer: + +- Con un enfoque de inferencia paramétrica: + +$$ +X \sim F \in \mathcal{F}=\left\{N(0, \sigma): \sigma \in \mathbb{R}^{+}\right\} +$$ + +- Con un enfoque de inferencia no paramétrica: + +$$ +X \sim F \in \mathcal{F}=\{\text { Distribuciones simétricas }\} +$$ + +### 4.4. Muestra aleatoria simple + +#### 4.4.1. Definición + +Para estudiar un problema de inferencia estadística analizamos una muestra de tamaño $n$. Se trata de escoger $n$ individuos o elementos de la población $\Omega$ + +$$ +\omega_{1}, \omega_{2}, \ldots, \omega_{n} +$$ + +que sean representativos. El valor de $n$ y la forma de elección de los individuos de la muestra es una materia de Estadística llamada Muestreo estadístico. Por ahora y para simplificar, solo hace falta decir que la elección se hace de forma que todos los individuos tienen la misma probabilidad de estar presentes en la muestra, si es necesario con reemplazo, y que el valor de $n$ está dado. +En realidad, lo que nos interesa verdaderamente no son los individuos de la muestra sino las mediciones de una característica $X$ sobre ellos. Es decir, los valores de una variable aleatoria $X$ sobre estos individuos + +$$ +X\left(\omega_{1}\right)=x_{1}, X\left(\omega_{2}\right)=x_{2}, \ldots, X\left(\omega_{n}\right)=x_{n} +$$ + +También podemos pensar que los valores muestrales $x_{1}, x_{2}, \ldots, x_{n}$ son generados directamente desde la variable aleatoria. En todo caso, los valores muestrales no son únicos y podemos generar varias muestras + +$$ +\begin{array}{ccccc} +x_{1}^{1} & x_{2}^{1} & x_{3}^{1} & \ldots & x_{n}^{1} \\ +x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\ +\vdots & \vdots & \vdots & & \vdots \\ +x_{1}^{s} & x_{2}^{s} & x_{3}^{s} & \ldots & x_{n}^{s} +\end{array} +$$ + +Si todos los valores son independientes, de la misma forma que $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ es una muestra generada por $X$, podemos considerar todos los $x_{1}^{i} \quad i=1, \ldots, s$ provenientes de una variable aleatoria $X_{1}$ con la misma distribución que $X$ $X_{1} \stackrel{d}{=} X$ y que genera los primeros valores, los $x_{i}^{2}$ provenientes de una variable aleatoria $X_{2} \stackrel{d}{=} X$ que genera los segundos y así sucesivamente. +Todo esto nos lleva a definir el concepto de muestra aleatoria de una forma muy conveniente para trabajar con ella: + +Definició 1.1 Una muestra aleatoria simple de tamaño $n$ de una variable aleatoria $X$ con distribución $F$ es una colección de $n$ variables aleatorias independientes $X_{1}, X_{2}, \ldots, X_{n}$ con la misma distribución $F$ que $X$. Esto se suele indicar como: + +$$ +\mathbf{X}=X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} X +$$ + +Definició 1.2 El conjunto $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ de observaciones concretas de $X_{1}, X_{2}, \ldots, X_{n}$ se denomina realización de la muestra. + +#### 4.4.2. Distribución de la muestra + +Una muestra aleatoria simple, como vector aleatorio $n$-dimensional que es, tiene una distribución conjunta o distribución de la muestra que depende de $F$, pero que obviamente es diferente, ya que en particular $X$ y $\mathbf{X}$ tienen dimensiones diferentes. Sin embargo, gracias a la independencia de las variables $X_{1}, X_{2}, \ldots, X_{n}$, la función de distribución conjunta de $\mathbf{X}$, que podría ser muy complicada, toma una forma muy sencilla. En resumen: + +Definició 1.3 Se llama distribución de la muestra de una variable aleatoria $X \sim F$ a la distribución del vector aleatorio $n$-dimensional $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ + +$$ +G\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}\right) F\left(x_{2}\right) \cdots F\left(x_{n}\right) +$$ + +En los casos particulares en que $X$ sea discreta o absolutamente continua, la distribución conjunta de la muestra suele expresarse mediante la función de masa de probabilidad o la función de densidad: + +- Para variables discretas: + +$$ +\begin{aligned} +p_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\ +& =\prod_{i=1}^{n} P\left(X=x_{i}\right)=\prod_{i=1}^{n} p_{F}\left(x_{i}\right), +\end{aligned} +$$ + +- Para variables absolutamente continuas: + +$$ +g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right) +$$ + +Exemple 1.4.1 Una moneda tiene una probabilidad $\theta$ de salir cara. Queremos estudiar la variable aleatoria: + +$$ +X= \begin{cases}1 & \text { si sale cara } \\ 0 & \text { si sale cruz }\end{cases} +$$ + +con densidad $P\{X=1\}=\theta, P\{X=0\}=1-\theta$. Es decir + +$$ +X \sim F_{\theta} \in \mathcal{F}=\left\{F_{\theta}=B(1, \theta): \theta \in(0,1)\right\} +$$ + +Supongamos que hacemos tres lanzamientos. Las posibles muestras son: + +| $X_{1}$ | $X_{2}$ | $X_{3}$ | Probabilidad | +| :---: | :---: | :---: | :---: | +| 1 | 1 | 1 | $\theta^{3}$ | +| 1 | 0 | 0 | $\theta(1-\theta)^{2}$ | +| 0 | 1 | 0 | $\theta(1-\theta)^{2}$ | +| 0 | 0 | 1 | $\theta(1-\theta)^{2}$ | +| 1 | 0 | 1 | $\theta^{2}(1-\theta)$ | +| 1 | 1 | 0 | $\theta^{2}(1-\theta)$ | +| 0 | 1 | 1 | $\theta^{2}(1-\theta)$ | +| 0 | 0 | 0 | $(1-\theta)^{3}$ | + +El muestreo ha especificado la distribución conjunta de la muestra a través de la distribución desconocida $F_{\theta}$. Si escribimos la función de probabilidades de la variable aleatoria como $f_{\theta}(x)=\theta^{x}(1-\theta)^{1-x}$, entonces la función de probabilidades de la muestra la podemos expresar como: + +$$ +g_{\theta}\left(x_{1}, x_{2}, x_{3}\right)=\theta^{x_{1}+x_{2}+x_{3}}(1-\theta)^{3-\left(x_{1}+x_{2}+x_{3}\right)} +$$ + +### 4.5. Estadísticos + +#### 4.5.1. Definición + +Para lograr el objetivo de realizar inferencias sobre la población a partir de la muestra, solemos basarnos en la realización de cálculos sobre la muestra para tratar de obtener la información que deseamos. En este proceso aparecen los conceptos de estadístico y el caso particular, que más nos interesa a nosotros, de estimador. Un estadístico es una función de la muestra que no depende del valor del parámetro. + +Definició 1.4 Dada una muestra aleatoria simple $X_{1}, X_{2}, \ldots, X_{n}$ y una función medible $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}$, entonces $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ es un vector aleatorio (variable aleatoria cuando $k=1$ ). Si $T$ no depende de $\theta$ (donde $\theta$ es un parámetro a especificar en $F_{\theta}$ ), entonces $T$ recibe el nombre de estadístico. + +Solo por su nombre, parece evidente que un estimador de un parámetro $\theta$ será alguna función de la muestra que sirva para aproximar, en algún sentido, el valor desconocido de $\theta$. Si añadimos la condición razonable de que un estimador no pueda tomar valores que no puede tomar el parámetro, podemos dar la siguiente definición. + +Definició 1.5 Un estimador de un parámetro $\theta$ es un estadístico $T$ cuyo recorrido es el espacio de los parámetros, es decir: + +$$ +\begin{array}{ccc} +T: & \mathbb{R}^{n} & \longrightarrow \\ +\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \longrightarrow \\ +\left(t_{1}, \ldots, t_{k}\right) \quad \in \Theta \subset \mathbb{R}^{k} +\end{array} +$$ + +Aquí tienes el texto traducido al castellano manteniendo toda la notación en LaTeX: + +#### 4.5.2. Distribución en el muestreo de un estadístico + +Dado un estadístico $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ nos interesa conocer su distribución de probabilidad, ya que para hacer inferencia necesitaremos hacer cálculos del tipo + +$$ +P\left[T\left(X_{1}, X_{2}, \ldots, X_{n}\right)>t_{0}\right] +$$ + +La distribución de probabilidad del estadístico se denomina distribución muestral o distribución en el muestreo del estadístico. Encontrarla es un problema que puede ser desde bastante sencillo hasta extremadamente complicado. Algunas de las técnicas utilizadas para intentar resolverlo son las siguientes: + +- Uso de la técnica de cambio de variable. +- Uso de la función generadora de momentos. +- Aplicación del Teorema Central del Límite. + +Exemple 1.5.1 Sea $X \sim F_{\theta}$ una variable aleatoria absolutamente continua con densidad + +$$ +f_{\theta}(x)=e^{-(x-\theta)} e^{-e^{-(x-\theta)}} \quad \theta \in \mathbb{R} +$$ + +y consideremos el estadístico + +$$ +T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} e^{-X_{i}} +$$ + +Si aplicamos el teorema de cambio de variable unidimensional, se obtiene fácilmente que la variable aleatoria $Y=e^{-X}$ sigue una distribución exponencial de parámetro $e^{-\theta}$, de donde la suma seguirá una distribución gamma $T \sim \Gamma\left(e^{-\theta}, n\right)$. + +Exemple 1.5.2 Supongamos que $X$ representa el número de averías en una máquina al cabo de un mes. Este valor varía mes a mes. Sea $\bar{X}$ la media de averías en $n$ meses. Si $X$ sigue una distribución de Poisson $P(\lambda)$, ¿cuál es la distribución de $\bar{X}$ ? +Como la suma de Poisson i.i.d. es $\sum_{i=1}^{n} X_{i} \sim P(n \lambda)$ + +$$ +P[\bar{X}=r]=P\left[\sum_{i=1}^{n} X_{i}=n r\right]=\frac{e^{-n \lambda}(n \lambda)^{n r}}{(n r)!} +$$ + +Como ocurre en este ejemplo, uno de los estadísticos para el cual a menudo deseamos calcular la distribución en el muestreo es la media aritmética. Una manera útil de hacerlo es con la función generadora de momentos y la aplicación del siguiente lema. + +Lema 1 Si $X$ es una v.a. con $M_{X}(t)$ como función generadora de momentos, entonces la f.g.m. de $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ es + +$$ +M_{\bar{X}_{n}}(t)=\left[M_{X}(t / n)\right]^{n} +$$ + +## 5. Demostración: + +La demostración es inmediata a partir de la definición o por las propiedades de la función generadora de momentos. + +Si aplicamos directamente la definición de la f.g.m tenemos: + +$$ +\begin{aligned} +E\left(e^{t \bar{X}_{n}}\right) & =E\left(e^{t \frac{1}{n} \sum_{i=1}^{n} X_{i}}\right)=E\left(\prod_{i=1}^{n} e^{\frac{t}{n} X_{i}}\right)=\prod_{i=1}^{n} E\left(e^{\frac{t}{n} X_{i}}\right) \\ +& =\prod_{i=1}^{n} M_{X_{i}}(t / n)=\left[M_{X}(t / n)\right]^{n} +\end{aligned} +$$ + +Si usamos las propiedades de la f.g.m tenemos: + +1. Dado que $M_{a X}(t)=M_{X}(a t)$ y si $a=\frac{1}{n}$, entonces $M_{\bar{X}}(t)=M_{\sum_{i=1}^{n} X_{i}}(t / n)$. +2. $M_{\sum_{i=1}^{n} X_{i}}(t / n) \stackrel{\text { ind }}{=} \prod_{i=1}^{n} M_{X_{i}}(t / n) \stackrel{\text { id }}{=}\left[M_{X}(t / n)\right]^{n}$. + +Exemple 1.5.3 Para una variable aleatoria $X \sim N(\mu, \sigma)$ y por tanto $M_{X}(t)=$ $\exp \left(t \mu+\frac{t^{2} \sigma^{2}}{2}\right)$, entonces + +$$ +\begin{aligned} +M_{\bar{X}_{n}}(t) & =\left[\exp \left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right]^{n} \\ +& =\exp \left[n\left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right] \\ +& =\exp \left[t \mu+\frac{1}{2} t^{2}\left(\frac{\sigma}{\sqrt{n}}\right)^{2}\right] +\end{aligned} +$$ + +que es la función generadora de momentos de una variable $N(\mu, \sigma / \sqrt{n})$. + +### 5.1. La distribución empírica + +#### 5.1.1. Definición + +En el apartado anterior hemos visto que a partir de una muestra $X_{1}, X_{2}, \ldots, X_{n}$ es interesante considerar la distribución muestral como la distribución conjunta del vector aleatorio $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, sin que intervenga una realización concreta de la muestra $x_{1}, x_{2}, \ldots, x_{n}$. Un enfoque diferente consiste en asociar una distribución particular directamente a las observaciones $x_{1}, x_{2}, \ldots, x_{n}$ con la intención de que, en tanto que la muestra "representa" la v.a. $X$, esta distribución asociada a la muestra $F_{n}(x)$ emule la distribución de la población. Esta distribución se denomina distribución empírica o distribución muestral y se define así: + +$$ +F_{n}(x)=\frac{k(x)}{n} +$$ + +donde $k(x)$ es el número de datos muestrales menores o iguales que $x$. En la práctica se construye por ordenación de la muestra + +$$ +x_{1}, x_{2}, \ldots, x_{n} \longrightarrow x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} +$$ + +y con la siguiente definición: + +$$ +F_{n}(x)= \begin{cases}0 & \text { si } x0 +$$ + +De modo que resulta que $Y=\sum_{i=1}^{k} X_{i}^{2}$ tiene una distribución gamma $G\left(\frac{1}{2}, \frac{k}{2}\right)$ y su f.g.m. es + +$$ +M(t)=(1-2 t)^{-k / 2} \quad \text { si } t<1 / 2 +$$ + +## 8. Propiedades + +1. Si recordamos que para $X \sim G(p, \alpha)$ entonces $E(X)=\frac{p}{\alpha} \mathrm{y} \operatorname{var}(X)=$ $\frac{p}{\alpha^{2}}$, resulta + +$$ +E(Y)=\frac{k / 2}{1 / 2}=k \quad \operatorname{var}(Y)=\frac{k / 2}{1 / 4}=2 k +$$ + +2. De la aditividad (reproductividad) de las leyes gamma se deduce también la reproductividad de la chi-cuadrado $\chi^{2}$, es decir + +$$ +Y_{1}^{2} \sim \chi_{n_{1}}^{2}, Y_{2}^{2} \sim \chi_{n_{2}}^{2} \quad \text { indep. } \longrightarrow Y_{1}^{2}+Y_{2}^{2} \sim \chi_{n_{1}+n_{2}}^{2} +$$ + +3. Como $Y$ es la suma de v.a. independientes $X_{i}^{2} \sim \chi_{1}^{2}$ se verifica + +$$ +\frac{Y-k}{\sqrt{2 k}} \xrightarrow{\mathcal{L}} N(0,1) +$$ + +Pero es mejor la aproximación de Fisher + +$$ +\sqrt{2 \chi_{k}^{2}}-\sqrt{2 k-1} \xrightarrow{\mathcal{L}} N(0,1) +$$ + +de donde se obtiene para valores de $k \geq 30$ + +$$ +\chi_{k}^{2} \stackrel{\text { aprox }}{=} \frac{1}{2}(Z+\sqrt{2 k-1})^{2} +$$ + +donde $Z \sim N(0,1)$. + +#### 8.0.1. Distribución $t$ de Student + +Sean $Y, Z$ dos variables aleatorias independientes con distribuciones $Z \sim$ $N(0,1)$ y $Y \sim \chi_{m}^{2}$, entonces se dice que la variable aleatoria + +$$ +t=\frac{Z}{\sqrt{Y / m}} +$$ + +tiene una distribución $t$ de Student con $m$ grados de libertad. +Su función de densidad es + +$$ +f(t)=\frac{\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \sqrt{m \pi}}\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \quad t \in \mathbb{R} +$$ + +Esta expresión se obtiene de la resolución del correspondiente problema de cambio de variable para encontrar la distribución de un cociente. + +Se trata de una distribución unimodal y simétrica respecto al cero. La distribución depende de $m$, que llamamos los grados de libertad (g.l.). A medida que $m$ crece, la forma acampanada se va "cerrando", acercándose a la ley normal: + +$$ +\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \xrightarrow{m \rightarrow \infty} e^{-t^{2} / 2} +$$ + +Este hecho es muy relevante en inferencia estadística. + +## 9. Propiedades + +1. Si $m=1$, entonces la $t$ es una Cauchy y, en particular, no tiene esperanza. +2. Para $m>1, E(t)=0$ y para $m>2, \operatorname{var}(t)=m /(m-2)$. +3. Cuando $m \rightarrow \infty$, entonces $t \xrightarrow{P} N(0,1)$. + +#### 9.0.1. La distribución $F$ de Fisher + +Esta distribución aparece cuando se considera un cociente entre dos distribuciones chi-cuadrado $U \sim \chi_{m}^{2}, V \sim \chi_{n}^{2}$ con $m$ y $n$ g.l. respectivamente. En concreto decimos que la variable aleatoria + +$$ +F=\frac{U / m}{V / n} +$$ + +sigue una distribución $F$ de Fisher con $m$ y $n$ grados de libertad. La función de densidad tiene la forma: + +$$ +f(x)=\frac{m^{m / 2} n^{n / 2} \Gamma[(m+n) / 2]}{\Gamma(m / 2) \Gamma(n / 2)} \cdot \frac{x^{m / 2-1}}{(m x+n)^{(m+n) / 2}} \quad \text { para } x>0 +$$ + +## 10. Propiedades + +1. La esperanza y la varianza son + +$$ +E(F)=\frac{n}{n-2} \quad \operatorname{var}(F)=\frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)} +$$ + +2. Esta distribución tiene una moda en $x=\frac{m-2}{m} \cdot \frac{n}{n+2}$, siempre que $m>2$. +3. Si $F \sim F_{m, n}$, entonces resulta que $1 / F \sim F_{n, m}$ y por lo tanto: + +$$ +P(F \leq x)=P\left(\frac{1}{F} \geq \frac{1}{x}\right)=1-P\left(\frac{1}{F} \leq \frac{1}{x}\right) +$$ + +Esta propiedad es de gran utilidad en el uso de las tablas. +4. Cuando $n \rightarrow \infty, F_{m, \infty} \xrightarrow{\mathcal{L}} \chi_{m}^{2}$. +5. Cuando $m \rightarrow \infty$ y $n \rightarrow \infty$, entonces $F_{m, n} \xrightarrow{\mathcal{L}} 1$. + +## 11. Capítol 2 + +## 12. ESTIMACIÓN PUNTUAL + +### 12.1. El problema de la estimación puntual + +Informalmente, la estimación de parámetros consiste en buscar aproximaciones a los valores de estos, calculables a partir de una muestra, que sean lo más precisas posible. El problema, claro, es que para medir cuán precisas son estas aproximaciones sería necesario conocer los valores de los parámetros y, como estos son siempre desconocidos, debemos basarnos en el uso de estimadores con buenas propiedades que, en algún sentido, nos garanticen esa proximidad. +Más formalmente podemos plantear el problema de la siguiente manera: +Sea $X$ una v.a. con distribución $F_{\theta}$ donde $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right) \in \Theta \subset \mathbb{R}^{k}$ y sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra de $n$ v.a. de $X$. El problema de la estimación puntual consiste en obtener alguna aproximación de $\theta$ en base a la información disponible en la muestra mediante un estimador de $\theta$ que definimos a continuación. +Definició 2.1 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X$ con distribución $F_{\theta}$ donde $\theta \in \Theta \subset \mathbb{R}^{k}$. Un estadístico $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ se denomina un estimador puntual de $\theta$ si $T$ es una aplicación de $\mathbb{R}^{n}$ en $\Theta$, es decir, si toma valores sobre el mismo conjunto que los parámetros. + +Exemple 2.1.1 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de una v.a. de Poisson $X \sim P(\lambda)$. Para estimar $\lambda$ podemos utilizar: + +$$ +\begin{aligned} +& T_{1}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\ +& T_{2}=s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} +\end{aligned} +$$ + +ya que $E(X)=\operatorname{var}(X)=\lambda$, pero también + +$$ +\begin{aligned} +T_{3} & =\frac{2}{n(n+1)} \sum_{i=1}^{n} X_{i} \cdot i \\ +T_{4} & =X_{i} +\end{aligned} +$$ + +Exemple 2.1.2 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una m.a.s. de $X \sim B(1, p)$, con $p$ desconocido. Podemos estimar p de las siguientes maneras: + +$$ +\begin{aligned} +& T_{1}=\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i} \\ +& T_{2}=1 / 2 \\ +& T_{3}=\left(X_{1}+X_{2}\right) / 2 +\end{aligned} +$$ + +En cada caso resulta claro que algunos estimadores no son muy razonables mientras que la decisión entre los otros no está necesariamente clara. Básicamente debemos ocuparnos de dos problemas: + +- Dado un modelo estadístico $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$, ¿cómo podemos obtener estimadores de $\theta$ que tengan "buenas" propiedades? +- Dado varios estimadores para un mismo parámetro ¿cómo podemos escoger el mejor en base a algún criterio? + +Para poder alcanzar estos dos objetivos empezaremos por estudiar las propiedades de los estimadores, así como las medidas de optimalidad que podremos utilizar para decidir entre varios estimadores. +De entrada nos restringiremos al caso en que $\Theta \subseteq \mathbb{R}$ o en que queremos aproximar alguna función $g(\theta)$ de los parámetros donde $g$ es del tipo $g: \Theta \rightarrow$ $\mathbb{R}$. + +#### 12.1.1. Criterios de optimalidad de estimadores. El Riesgo + +Una forma de poder comparar entre diversos estimadores consiste en definir una función de pérdida que nos permita cuantificar de alguna manera la pérdida, o coste asociado, al estimar el valor real del parámetro, es decir, $\theta$, mediante la aproximación que proporciona un estimador, es decir, $t$. + +Definició 2.2 Una función de pérdida es una aplicación + +$$ +\begin{aligned} +L: & \Theta \times \Theta \rightarrow \mathbb{R} \\ +& (\theta, t) \rightarrow L(\theta, t) +\end{aligned} +$$ + +que verifica: +a) $L(\theta, t) \geq 0, \quad \forall \theta, t \in \Theta$ +b) $L(\theta, t)=0$, si $\theta=t$ +c) $L(\theta, t) \leq L\left(\theta, t^{\prime}\right)$, si $d(\theta, t) \leq d\left(\theta, t^{\prime}\right)$ donde $d$ es una distancia en $\Theta$. + +Por ejemplo, son funciones de pérdida: + +$$ +\begin{gathered} +L_{1}(\theta, t)=|\theta-t| \quad L_{2}(\theta, t)=(\theta-t)^{2} \\ +L_{3}(\theta, t)=\left|\frac{\theta-t}{\theta}\right| \quad L_{4}(\theta, t)=\left(\frac{\theta-t}{\theta}\right)^{2} \\ +L_{5}(\theta, t)= \begin{cases}c>0 & \text { si }|\theta-t|>\epsilon \\ +0 & \text { si }|\theta-t| \leq \epsilon\end{cases} +\end{gathered} +$$ + +Los valores que toma la función de pérdida dependen de los valores del estimador y de los del parámetro. Para una muestra dada podemos conocer el valor que toma el estimador, pero no el valor del parámetro. Una posibilidad que nos permitirá comparar los posibles estimadores, para un valor dado del parámetro, consiste en promediar los diferentes valores de $L(\theta, t)$ sobre todos los posibles valores de $T$. A este promedio lo llamamos el riesgo del estimador $T$ asociado a cada valor posible $\theta$ del parámetro y lo escribimos $R_{T}(\theta)$. + +Definició 2.3 Sea $H_{\theta}(t)$ la distribución en el muestreo de T, es decir + +$$ +T\left(X_{1}, X_{2}, \ldots, X_{n}\right) \sim H_{\theta}(t)=P_{\theta}(T \leq t) +$$ + +y $h_{\theta}(t)$ representa la función de densidad de probabilidad, si $H_{\theta}(t)$ es absolutamente continua, o $h_{\theta}\left(t_{i}\right)$ la función de masa de probabilidad si $H_{\theta}\left(t_{i}\right)$ es discreta. Entonces el riesgo del estimador $T$ para estimar $\theta$ se define como: + +$$ +\begin{aligned} +R_{T}(\theta) & =E_{\theta}\left[L\left(\theta, T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)\right]=\int_{\mathbb{R}} L(\theta, t) d H_{\theta}(t) \\ +& = \begin{cases}\int_{-\infty}^{+\infty} L(\theta, t) h_{\theta}(t) d t & \text { si } H_{\theta}(t) \text { es absolutamente continua, } \\ +\sum_{\forall t_{i}} L(\theta, t) h_{\theta}\left(t_{i}\right) & \text { si } H_{\theta}(t) \text { es discreta }\end{cases} +\end{aligned} +$$ + +El riesgo permite comparar dos estimadores. +Definició 2.4 Diremos que un estimador $T_{1}$ es preferible a otro $T_{2}$ si: + +$$ +\begin{aligned} +& R_{T_{1}}(\theta) \leq R_{T_{2}}(\theta), \forall \theta \in \Theta, y \\ +& R_{T_{1}}(\theta)0 \quad \lim _{n \rightarrow \infty} P\left\{\left|T_{n}-g(\theta)\right|>\varepsilon\right\}=0 +$$ + +Observemos que: + +1. Se trata de un concepto asintótico: Hablamos de ?sucesiones de estimadores consistentes? más que de estimadores propiamente dichos. +2. La definición puede reforzarse si, en lugar de considerar convergencia en probabilidad (consistencia débil), consideramos convergencia casi segura o en media cuadrática: + +- $T_{n}$ es fuertemente consistente si $T_{n} \xrightarrow{\text { c.s. }} g(\theta)$ +- $T_{n}$ es consistente en media- $r$ si $E_{\theta}\left[\left|T_{n}-g(\theta)\right|^{r}\right] \longrightarrow 0$ + +Exemple 2.2.5 Muchos estimadores consistentes lo son como consecuencia de las leyes de los grandes números. Recordemos que la Ley débil de los Grandes Números (Tchebychev) afirma que, dada una sucesión de v.a. independientes e idénticamente distribuidas con medias $\mu<\infty$ y varianzas $\sigma^{2}<\infty$, entonces + +$$ +\bar{X}_{n} \xrightarrow{P} \mu +$$ + +Como consecuencia de esta ley y dado que una muestra aleatoria simple es i.i.d., por definición, podemos afirmar que $\bar{X}_{n}$ es consistente para estimar $\mu$. + +Exemple 2.2.6 La sucesión $T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}$ es consistente para estimar el máximo de una distribución uniforme en $[0, \theta]$ : + +$$ +P\left[\left|\max _{1 \leq i \leq n}\left\{X_{i}\right\}-\theta\right|>\varepsilon\right]=P\left[\theta-\max _{1 \leq i \leq n}\left\{X_{i}\right\}>\varepsilon\right] +$$ + +ya que $X_{i} \in[0, \theta] y$, por lo tanto, podemos escribir: + +$$ +\begin{aligned} +P\left[\theta-\varepsilon>\max _{1 \leq i \leq n}\left\{X_{i}\right\}\right] & =P\left[\max _{1 \leq i \leq n}\left\{X_{i}\right\}<\theta-\varepsilon\right] \\ +& =\left(\frac{\theta-\varepsilon}{\theta}\right)^{n}=\left(1-\frac{\varepsilon}{\theta}\right)^{n} \underset{n \rightarrow \infty}{\longrightarrow} 0 +\end{aligned} +$$ + +Es inmediato comprobar que + +$$ +E\left[\left(\theta-T_{n}\right)^{2}\right]=\left(1-\frac{2 n}{n+1}+\frac{n}{n+2}\right) \theta^{2} +$$ + +que también tiende a cero cuando $n \rightarrow \infty$, y por lo tanto $T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}$ también es consistente en media cuadrática. + +Normalmente, cuando se habla de consistencia, se hace referencia a la convergencia en probabilidad, es decir, $T_{n}$ es consistente si $\lim _{n \rightarrow \infty} P\left(\left|T_{n}-g(\theta)\right|>\right.$ $\varepsilon)=0$. Si el estimador no tiene sesgo, estamos en la situación de aplicar la desigualdad de Tchebychev ${ }^{1}$ : +Si $E\left(T_{n}\right)=g(\theta)$, entonces + +$$ +P\left(\left|T_{n}-g(\theta)\right|>\varepsilon\right)=P\left(\left|T_{n}-E\left(T_{n}\right)\right|>\varepsilon\right) \underset{\text { Tchebychev }}{\leq} \frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} +$$ + +Así, para intentar establecer la consistencia de $T$, debemos probar que + +$$ +\frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +$$ + +Exemple 2.2.7 Sea $M_{n}=\sum_{i=1}^{n} a_{i} X_{i}$ una combinación lineal de los valores de la muestra con coeficientes tales que $\sum_{i=1}^{n} a_{i}=1$ y algún $a_{i}>0$. ¿Es consistente $M_{n}$ para estimar $E(X)$ ? +Comencemos por ver que $M_{n}$ no tiene sesgo + +$$ +\begin{aligned} +E\left(M_{n}\right) & =E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} E\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i} E\left(X_{i}\right) \stackrel{\text { i.i.d. }}{=} \sum_{i=1}^{n} a_{i} E(X)=E(X) +\end{aligned} +$$ + +[^1]Calculemos la varianza + +$$ +\begin{aligned} +\operatorname{var}\left(M_{n}\right) & =\operatorname{var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i}^{2} \operatorname{var}\left(X_{i}\right)=\operatorname{var}(X) \sum_{i=1}^{n} a_{i}^{2} +\end{aligned} +$$ + +Si aplicamos ahora la desigualdad de Tchebychev tenemos: + +$$ +P\left(\left|M_{n}-\mu\right|>\varepsilon\right) \leq \frac{\sigma^{2} \sum a_{i}^{2}}{\varepsilon^{2}} +$$ + +lo cual no tiene por qué tender a 0 cuando $n \rightarrow \infty$, y por lo tanto no podemos afirmar que el estimador es consistente. Por ejemplo, si $a_{1}=\frac{1}{2}, a_{2}=a_{3}=$ $\cdots=a_{n}=\frac{1}{2(n-1)}$ tendremos que $\lim _{n \rightarrow \infty} \sum a_{i}^{2}=\frac{1}{4}$. +Observamos que el resultado obtenido no puede asegurar la consistencia de $M_{n}$ para cualquier familia de coeficientes $a_{1}, \ldots, a_{n}$, aunque, obviamente, el estimador es consistente para alguno (caso $a_{i}=1 / n$ ). + +## 13. Propiedades de los estimadores consistentes + +Muchas de las propiedades de los estimadores son consecuencia directa de las propiedades de la convergencia en probabilidad, que se pueden revisar, por ejemplo, en Martin Pliego (1998a) capítulo 11. + +1. Si $T_{n}$ es consistente para estimar $\theta$ y $g: \mathbb{R} \rightarrow \mathbb{R}$ es una función continua, entonces $g\left(T_{n}\right)$ es consistente para estimar $g(\theta)$. +2. Si $T_{1 n}$ y $T_{2 n}$ son consistentes para estimar $\theta_{1}$ y $\theta_{2}$ respectivamente, entonces +$a T_{1 n} \pm b T_{2 n}$ es consistente para estimar $a \theta_{1} \pm b \theta_{2}$ +$T_{1 n} \cdot T_{2 n}$ es consistente para estimar $\theta_{1} \cdot \theta_{2}$ +$T_{1 n} / T_{2 n}$ es consistente para estimar $\theta_{1} / \theta_{2}$, si $\theta_{2} \neq 0$. +3. Sea $a_{r}=(1 / n) \sum X_{i}^{r}$ el momento muestral de orden $r$. Como se ha visto en el capítulo 1 , la esperanza de $a_{r}$ es + +$$ +E\left(a_{r}\right)=E\left[\frac{1}{n} \sum X_{i}^{r}\right]=\frac{1}{n} \sum E\left(X^{r}\right)=\frac{1}{n} n \alpha_{r}=\alpha_{r} +$$ + +donde $\alpha_{r}$ es el momento poblacional de orden $r$. Así pues, $a_{r}$ no tiene sesgo para estimar $\alpha_{r}$. Su varianza es + +$$ +\begin{aligned} +\operatorname{var}\left(a_{r}\right) & =\operatorname{var}\left(\frac{1}{n} \sum X_{i}^{r}\right)=\frac{1}{n^{2}} \sum \operatorname{var}\left(X^{r}\right)=\frac{1}{n} E\left[X^{r}-E\left(X^{r}\right)\right]^{2} \\ +& =\frac{1}{n} E\left[X^{r}-\alpha_{r}\right]^{2}=\frac{1}{n} E\left(X^{2 r}+\alpha_{r}^{2}-2 \alpha_{r} X^{r}\right) \\ +& =\frac{1}{n}\left(\alpha_{2 r}-\alpha_{r}^{2}\right) . +\end{aligned} +$$ + +Y si aplicamos la desigualdad de Tchebychev, se obtiene + +$$ +P\left(\left|a_{r}-\alpha_{r}\right| \geq \varepsilon\right) \leq \frac{E\left(a_{r}-\alpha_{r}\right)^{2}}{\varepsilon^{2}}=\frac{\operatorname{var}\left(a_{r}\right)}{\varepsilon^{2}}=\frac{\alpha_{2 r}-\alpha_{r}^{2}}{n \varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +$$ + +Así pues, hemos visto que los momentos muestrales son estimadores consistentes de los momentos poblacionales. + +#### 13.0.1. Eficiencia + +Como ya hemos visto, un objetivo deseable en la búsqueda de estimadores óptimos es considerar estimadores de "mínimo riesgo" o, si nos basamos en la función de pérdida cuadrática, estimadores que minimicen el error cuadrático medio $E(\theta-T)^{2}$. +En general, es difícil encontrar estimadores que hagan mínimo el EQM para todos los valores de $\theta$; sin embargo, si nos restringimos a los estimadores sin sesgo, el problema tiene solución en una gama más amplia de situaciones. Supongamos que $T_{1}, T_{2}$ son dos estimadores sin sesgo de un parámetro $\theta$. Para estos estimadores tenemos que + +$$ +\begin{aligned} +& E Q M_{T_{1}}(\theta)=\operatorname{var}_{\theta}\left(T_{1}\right)+b_{T_{1}}^{2}(\theta) \\ +& E Q M_{T_{2}}(\theta)=\operatorname{var}_{\theta}\left(T_{2}\right)+b_{T_{2}}^{2}(\theta) +\end{aligned} +$$ + +Si los estimadores no tienen sesgo $b_{T_{1}}(\theta)=b_{T_{2}}(\theta)=0$, el que tenga menor varianza tendrá el menor riesgo para estimar $\theta$. Si, por ejemplo, $\operatorname{var}\left(T_{1}\right) \leq$ $\operatorname{var}\left(T_{2}\right)$, diremos que $T_{1}$ es más eficiente que $T_{2}$ para estimar $\theta$. +Para dos estimadores con sesgo cero $b_{T_{i}}(\theta)=0$, el cociente + +$$ +E R=\frac{E Q M_{T_{1}}(\theta)}{E Q M_{T_{2}}(\theta)}=\frac{\operatorname{var}_{\theta}\left(T_{1}\right)}{\operatorname{var}_{\theta}\left(T_{2}\right)} +$$ + +se denomina eficiencia relativa de $T_{1}$ respecto a $T_{2}$. Si solo hay dos estimadores de $\theta$ puede ser fácil ver cuál es el más eficiente. Si hay más, la cosa se complica. El "más eficiente", en caso de que exista, se llamará el estimador sin sesgo de mínima varianza. + +Figura 2.2: Comparación de la eficiencia de dos estimadores para un $\theta$ dado + +Definició 2.8 Sea $\mathcal{S}(\theta)$ la clase de los estimadores sin sesgo de $\theta$ y con varianza. Si para todos los estimadores de esta clase $T \in \mathcal{S}(\theta)$ se verifica que + +$$ +\operatorname{var}_{\theta}(T) \leq \operatorname{var}_{\theta}\left(T^{*}\right) \quad \forall T \in \mathcal{S}(\theta) +$$ + +diremos que $T^{*}$ es un estimador sin sesgo de mínima varianza de $\theta$. Si la desigualdad es cierta $\forall \theta \in \Theta$, diremos que $T^{*}$ es un estimador sin sesgo uniforme de mínima varianza (ESUMV) ${ }^{2}$. + +### 13.1. Información de Fisher y cota de CramerRao + +Obviamente, en un problema de estimación lo ideal es disponer de un ESUMV, pero esto no siempre es posible. Nos enfrentamos a varios problemas: + +1. ¿Existen ESUMV para un parámetro $\theta$ en un modelo dado? +2. En caso de que exista el ESUMV, ¿sabremos cómo encontrarlo? + +Este problema tiene solución, bajo ciertas condiciones, utilizando los teoremas de Lehmann-Scheffé y Rao-Blackwell y el concepto de suficiencia, que se discute más adelante. + +[^2]Una solución parcial aparece gracias al Teorema de Cramer-Rao, que permite establecer una cota mínima para la varianza de un estimador. Cuando un estimador alcanza esta cota, sabemos que es un estimador de varianza mínima. +Informalmente, este resultado sugiere que, bajo ciertas condiciones de regularidad, si $T$ es un estimador insesgado de un parámetro $\theta$, su varianza está acotada por una expresión que llamamos cota de Cramer-Rao $\operatorname{CCR}(\theta)$ + +$$ +\operatorname{var}(T) \geq \operatorname{CCR}(\theta) +$$ + +Antes de establecer con precisión este teorema, consideremos el concepto de información de un modelo estadístico introducido por Fisher. + +## 14. Información y verosimilitud de un modelo estadístico + +Una idea bastante razonable es esperar que un estimador funcione mejor en su intento de aproximarse al valor de un parámetro cuanto más información tenga para hacerlo. Por este motivo, la varianza del estimador y la información se presentan como cantidades opuestas: a mayor información, menor error (varianza) en la estimación: + +$$ +\operatorname{var}\left(T_{n}\right) \propto \frac{1}{I_{n}(\theta)} +$$ + +Ahora nos encontramos con el problema de cómo definir la cantidad de información (contenida en una muestra/de un modelo), para que se ajuste a la idea intuitiva de información. Fisher lo hizo a través de la función de verosimilitud. +Sea un modelo estadístico $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ y una m.a.s. $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, que toma valores $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Si $X$ es discreta, la función de masa de probabilidad indica, en términos generales, la probabilidad de observar la muestra, dado un valor del parámetro. Si $X$ es absolutamente continua, esta interpretación ya no es tan directa. + +$$ +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)= \begin{cases}P_{\theta}\left[X=x_{1}\right] \cdots P_{\theta}\left[X=x_{n}\right], & \text { si } X \text { es discreta } \\ f_{\theta}\left(x_{1}\right) \cdots f_{\theta}\left(x_{n}\right), & \text { si } X \text { es abs. continua }\end{cases} +$$ + +La función de verosimilitud se obtiene si consideramos, en la expresión anterior, que lo que queda fijado es la muestra y no el parámetro. Es decir, fijada una muestra x, la función de verosimilitud indica qué tan verosímil resulta, para cada valor del parámetro, que el modelo la haya generado. + +Exemple 2.3.1 Supongamos que tenemos una m.a.s. $x_{1}, x_{2}, \ldots, x_{n}$ de tamaño n de una variable aleatoria $X$, que sigue una ley de Poisson de parámetro $\lambda$ desconocido. + +$$ +X \sim F_{\lambda}=P(\lambda), \quad \lambda>0 +$$ + +La función de probabilidad de la muestra, fijado $\lambda$, es: + +$$ +g_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +$$ + +y la función de verosimilitud del modelo, fijada $\mathbf{x}$, es: + +$$ +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \lambda\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +$$ + +Aunque la forma funcional de $g_{\lambda}(\mathbf{x})$ y $L(\mathbf{x} ; \lambda)$ es la misma, su aspecto es diferente, como se puede comprobar en la figura 2.3, donde damos valores a $g_{\lambda}(\mathbf{x})$, variando $\mathbf{x}$ o a $L(\lambda ; \mathbf{x})$ variando $\lambda$. + +## 15. Información de Fisher + +Para calcular la cantidad de información de Fisher contenida en una muestra sobre un parámetro, es necesario considerar modelos estadísticos regulares, es decir, donde se cumplen las siguientes condiciones de regularidad. + +Definició 2.9 Diremos que $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ es un modelo estadístico regular si se verifican las siguientes condiciones: + +1. La población de donde proviene la muestra presenta un ?campo de variación? o soporte $S_{\theta}=\{x \mid f(x ; \theta)>0\}=S$ que no depende de $\theta$. +2. La función $L(\mathbf{x} ; \theta)$ admite, al menos, las dos primeras derivadas. +3. Las operaciones de derivación e integración son intercambiables. + +Definició 2.10 Sea $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ un modelo estadístico regular, es decir, donde se verifican las condiciones de regularidad 1-3 anteriores. Si $Z=\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)$, la cantidad de información de Fisher es + +$$ +I_{n}(\theta)=\operatorname{var}_{\theta}(Z)=\operatorname{var}_{\theta}\left(\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)\right) +$$ + +Figura 2.3: Probabilidad de la suma de $n=5$ valores muestrales para 10 muestras de la ley de Poisson con $\lambda=3$ versus la función de verosimilitud para una muestra observada. + +Las condiciones de regularidad son necesarias para calcular $E_{\theta}\left(Z^{2}\right)$. +A continuación, presentamos algunas propiedades de la información de Fisher. Puedes ver la demostración en Ruiz-Maya y Pliego (1995). + +1. La información de Fisher se puede expresar como: + +$$ +I_{n}(\theta)=E_{\theta}\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right] +$$ + +Esto se puede comprobar, ya que si aplicamos las condiciones de regularidad + +$$ +\begin{aligned} +E(Z) & =E\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)=\int_{S^{n}} \frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} \frac{\frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta}}{L(\mathbf{x} ; \theta)} L(\mathbf{x} ; \theta) d \mathbf{x}=\int_{S^{n}} \frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta} d \mathbf{x} \\ +& =\frac{\partial}{\partial \theta}\left(\int_{S^{n}} L(\mathbf{x} ; \theta) d \mathbf{x}\right)=\frac{\partial}{\partial \theta} 1=0 +\end{aligned} +$$ + +De forma que $E(Z)=0$, y por lo tanto, tendremos que $\operatorname{var}_{\theta}(Z)=$ $E_{\theta}\left(Z^{2}\right)$. +2. $I_{n}(\theta)=0$ si y solo si $L(\mathbf{x} ; \theta)$ no depende de $\theta$. +3. Dadas dos m.a.s. $\mathbf{x}_{1}, \mathbf{x}_{2}$ de tamaños $n_{1}, n_{2}$ de la misma población, se verifica: + +$$ +I_{n_{1}, n_{2}}(\theta)=I_{n_{1}}(\theta)+I_{n_{2}}(\theta) +$$ + +De manera que podemos considerar una muestra de tamaño $n$ como $n$ muestras de tamaño 1 : + +$$ +I_{n}(\theta)=\sum_{i=1}^{n} I_{1}(\theta)=n \cdot i(\theta), \text { siendo } i(\theta)=I_{1}(\theta) +$$ + +Es decir + +$$ +E\left(\frac{\partial \log (L(\mathbf{X} ; \theta))}{\partial \theta}\right)=n E\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right) +$$ + +4. Se verifica la siguiente relación: + +$$ +I_{n}(\theta)=E\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right]=-E\left[\frac{\partial^{2} \log L(\mathbf{X} ; \theta)}{\partial^{2} \theta}\right] +$$ + +Exemple 2.3.2 Vamos a calcular la cantidad de información de Fisher contenida en una m.a.s. extraída de una población $N(\mu, \sigma)$ con $\sigma=\sigma_{0}$ conocida. La función de verosimilitud es + +$$ +L(\mathbf{x} ; \mu)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}}=\left(2 \pi \sigma_{0}^{2}\right)^{-n / 2} \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}\right) +$$ + +y su logaritmo + +$$ +\log L(\mathbf{x} ; \mu)=-\frac{n}{2} \log \left(2 \pi \sigma_{0}^{2}\right)-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} +$$ + +Si derivamos respecto a $\mu$ + +$$ +\frac{\partial \log L(\mathbf{x} ; \mu)}{\mu}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)}{\sigma_{0}^{2}} +$$ + +de donde + +$$ +\begin{aligned} +I_{n}(\mu) & =E\left(\frac{\partial \log L(\mathbf{X} ; \mu)}{\partial \mu}\right)^{2}=E\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}{\sigma_{0}^{2}}\right)^{2} \\ +& =\frac{1}{\sigma_{0}^{4}} E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+\sum_{i \neq j}\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right] \\ +& =\frac{1}{\sigma_{0}^{4}} n \sigma_{0}^{2}=\frac{n}{\sigma_{0}^{2}} +\end{aligned} +$$ + +Este cálculo también puede hacerse a partir de la tercera propiedad de la información de Fisher: + +$$ +I_{n}(\mu)=n E\left[\frac{\partial \log f(X ; \mu)}{\partial \mu}\right]=n \frac{1}{\sigma_{0}^{2}}=\frac{n}{\sigma_{0}^{2}} +$$ + +## 16. La desigualdad de Cramer-Rao + +Una vez establecidas las condiciones de regularidad y características anteriores podemos enunciar el teorema de Cramer-Rao (1945). + +Teorema 2.1 Dado un modelo estadístico regular $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$, es decir, un modelo donde se verifican las condiciones de regularidad enunciadas, cualquier estimador $T \in \mathcal{S}(\theta)$ de la clase de los estimadores no sesgados y con varianza verifica + +$$ +\operatorname{var}_{\theta}(T) \geq \frac{1}{I_{n}(\theta)} +$$ + +Demostración: +El estimador $T \in \mathcal{S}(\theta)$ no tiene sesgo, es decir que + +$$ +E(T)=\int_{S^{n}} T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta) d \mathbf{x}=\theta +$$ + +Si derivamos e introducimos la derivada bajo el signo de la integral, obtenemos + +$$ +\begin{aligned} +\frac{\partial}{\partial \theta} E(T) & =\int_{S^{n}} \frac{\partial}{\partial \theta}(T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta)) d \mathbf{x}=\int_{S^{n}} T(\mathbf{x}) \frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} T(\mathbf{x})\left(\frac{\frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta)}{L(\mathbf{x} ; \theta)}\right) L(\mathbf{x} ; \theta) d \mathbf{x} +\end{aligned} +$$ + +Así pues + +$$ +1=\frac{\partial}{\partial \theta} \theta=\frac{\partial}{\partial \theta} E(T)=E(T Z)=\int_{S^{n}} T(\mathbf{x}) \cdot Z L(\mathbf{x} ; \theta) d \mathbf{x} +$$ + +En resumen + +$$ +E(T)=\theta, E(T Z)=1, E(Z)=0, \operatorname{var}(Z)=I_{n}(\theta) +$$ + +Si ahora consideramos el coeficiente de correlación al cuadrado entre $T$ y $Z$, tenemos + +$$ +\rho^{2}(T, Z)=\frac{[\operatorname{cov}(T, Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)}=\frac{[E(T Z)-E(T) E(Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)} \leq 1 +$$ + +Si sustituimos los resultados hallados antes, obtenemos + +$$ +\frac{1}{\operatorname{var}(T) \cdot I_{n}(\theta)} \leq 1 +$$ + +de donde se deduce la desigualdad enunciada. + +Definició 2.11 Si un estimador alcanza la CCR (Cota de Cramer-Rao), diremos que es un estimador eficiente. + +Todo estimador eficiente es de mínima varianza en la clase $\mathcal{S}(\theta)$. Sin embargo, también puede suceder que exista un estimador de mínima varianza sin alcanzar necesariamente la CCR. + +Exemple 2.3.3 Sea $X \sim F_{\theta}=P(\lambda), \lambda>0$ (Poisson). Buscamos la $C C R$ de los estimadores de $\lambda$. + +$$ +\begin{aligned} +L(\mathbf{x} ; \lambda) & =\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} \\ +\log L(\mathbf{x} ; \lambda) & =-n \lambda+\left(\sum x_{i}\right) \log \lambda-\log \left(\prod_{i=1}^{n} x_{i}!\right) \\ +\frac{\partial \log (L(\mathbf{x} ; \lambda))}{\partial \lambda} & =-n+\frac{\sum x_{i}}{\lambda} \\ +E\left[\frac{\partial \log L(\mathbf{x} ; \lambda)}{\partial \lambda}\right]^{2} & =E\left[n^{2}+\left(\frac{\sum X_{i}}{\lambda}\right)^{2}-\frac{2 n \sum X_{i}}{\lambda}\right] \\ +& =n^{2}+\frac{1}{\lambda^{2}} E\left(\sum X_{i}\right)^{2}-\frac{2 n}{\lambda} n E(X) +\end{aligned} +$$ + +Aquí recordamos que la suma de variables de Poisson también es una Poisson, es decir: + +$$ +\sum X_{i} \sim P(n \lambda) +$$ + +por lo que + +$$ +E\left(\sum X_{i}\right)^{2}=\operatorname{var}\left(\sum X_{i}\right)+\left[E\left(\sum X_{i}\right)\right]^{2}=n \lambda+(n \lambda)^{2} +$$ + +Finalmente, se obtiene: + +$$ +E\left(Z^{2}\right)=n^{2}+\frac{n \lambda}{\lambda^{2}}+\frac{n^{2} \lambda^{2}}{\lambda^{2}}-2 n^{2}=\frac{n}{\lambda} +$$ + +De esta forma, + +$$ +I_{n}(\lambda)=\frac{n}{\lambda} \quad \Longrightarrow \quad \operatorname{var}(T) \geq \frac{\lambda}{n} +$$ + +Sabemos que la media aritmética verifica + +$$ +\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\lambda}{n} +$$ + +lo cual coincide con la cota de Cramer-Rao, indicando que $\bar{X}_{n}$ es el estimador eficiente de $\lambda$. + +Exemple 2.3.4 Para calcular la CCR o, dicho de otro modo, para que el inverso de + +$$ +E\left[\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta}\right]^{2} +$$ + +sea realmente la cota minima de $\operatorname{var}(\widehat{\theta})$ en la clase $\mathcal{S}(\theta)$, es necesario que se verifiquen las condiciones de regularidad. De lo contrario, se pueden obtener resultados absurdos. +Consideremos, por ejemplo, una variable aleatoria $X$ con función de densidad + +$$ +f(x ; \theta)=\frac{3}{\theta^{3}} x^{2} \mathbf{1}_{[0, \theta]}(x) +$$ + +y esperanza + +$$ +E(X)=\int_{0}^{\theta} x \cdot \frac{3}{\theta^{3}} x^{2} d x=\frac{3}{4} \theta +$$ + +Ya que $\theta=\frac{4}{3} E(X)$, esto sugiere estimar $\theta$ mediante $\widehat{\theta}=\frac{4}{3} \bar{X}$, que no tiene sesgo. +Por otro lado, si calculamos la varianza de $X$, tenemos + +$$ +\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{3}{80} \theta^{2} +$$ + +Sabemos que $E(\widehat{\theta})=\theta, y$ además + +$$ +\operatorname{var}(\widehat{\theta})=\operatorname{var}\left(\frac{4}{3} \bar{X}\right)=\frac{\theta^{2}}{15 n} +$$ + +Si evaluamos $I_{n}(\theta)$ en su forma más sencilla, obtenemos + +$$ +I_{n}(\theta)=n I(\theta)=n \frac{9}{\theta^{2}} +$$ + +Así, la CCR resulta ser mayor que la varianza de este estimador: + +$$ +\operatorname{var}(\widehat{\theta})=\frac{\theta^{2}}{15 n}<\frac{\theta^{2}}{9 n} +$$ + +lo cual es un resultado absurdo. Este error se debe a no considerar que el soporte de $X$ depende de $\theta$, por lo que no se cumplen las condiciones de regularidad, y la cota de Cramer-Rao no existe. + +También ocurre que la varianza de un estimador es inferior a la CCR aunque esta exista. Esto puede pasar, por ejemplo, con algún estimador sesgado. + +## 17. Caracterización del estimador eficiente + +Calcular la cota de Cramer-Rao es una cosa; encontrar el estimador que alcanza esta cota y, en consecuencia, tiene varianza mínima es otra. La siguiente caracterización permite, en algunos casos, obtener directamente la forma del estimador eficiente. + +Teorema 2.2 Sea $T$ el estimador eficiente de $\theta$, entonces se verifica + +$$ +\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(X_{i} ; \theta\right)=K(\theta, n)(T-\theta) +$$ + +donde $K(\theta, n)$ es una función que depende de $\theta$ y de $n$ y que suele coincidir con la información de Fisher. +Demostración: +Si $T$ es el estimador eficiente, entonces + +$$ +\operatorname{var}(T)=\frac{1}{I_{n}(\theta)} +$$ + +y, por lo tanto, $\rho^{2}(T, Z)=1$. +En general, dadas dos variables aleatorias $X$ e $Y$, se sabe que si $\rho(X, Y)=1$, entonces + +$$ +Y-E(Y)=\beta(X-E(X)) +$$ + +Si aplicamos este resultado a $T$ y $Z$, tenemos + +$$ +\begin{aligned} +Z-E(Z) & =\beta(T-E(T)) \\ +\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} & =K(\theta, n)(T-\theta) +\end{aligned} +$$ + +Exemple 2.3.5 En el caso de la distribución de Poisson, tenemos + +$$ +\begin{aligned} +f(x ; \lambda) & =e^{-\lambda} \frac{\lambda^{x}}{x!} \\ +\log f(x ; \lambda) & =-\lambda+x \log (\lambda)-\log (x!) \\ +\frac{\partial \log f(x ; \lambda)}{\partial \lambda} & =-1+x \frac{1}{\lambda} \\ +Z=\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \lambda\right)}{\partial \lambda} & =\sum_{i=1}^{n}\left(-1+\frac{X_{i}}{\lambda}\right) +\end{aligned} +$$ + +Queremos ver que + +$$ +\sum_{i=1}^{n}\left(\frac{X_{i}}{\lambda}-1\right)=K(\theta, n)(T-\theta) +$$ + +Si reescribimos esta expresión, obtenemos + +$$ +\frac{1}{\lambda} \sum_{i=1}^{n} X_{i}-n=\frac{1}{\lambda}\left(\sum_{i=1}^{n} X_{i}-n \lambda\right)=\frac{n}{\lambda}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\lambda\right) +$$ + +Así, $K(\lambda, n)=\frac{n}{\lambda}$, que coincide con la información de Fisher $I_{n}(\lambda)$. Por el teorema anterior, se deduce que $T=\bar{X}$ es el estimador eficiente $y$, por lo tanto, de mínima varianza. + +### 17.1. Estadísticos suficientes + +En un problema de inferencia puede suceder que los datos contengan información superflua o irrelevante a la hora de estimar el parámetro. También puede ocurrir lo contrario, que intentemos hacer la estimación sin utilizar toda la información disponible en la muestra. Ambas situaciones son indeseables. Parece razonable que, para estimar un parámetro, dada la dificultad derivada de disponer de varios estimadores entre los que queremos elegir el óptimo, nos basemos únicamente en aquellos que utilizan (solo) toda la información relevante. + +Exemple 2.4.1 Supongamos que queremos estimar la proporción de piezas defectuosas $\theta$ en un proceso de fabricación. Para ello, examinamos $n$ piezas extraídas al azar a lo largo de una jornada y asignamos un 1 a las piezas defectuosas y un 0 a las que no lo son. Así, obtenemos una muestra aleatoria simple $X_{1}, X_{2}, \ldots, X_{n}$ donde + +$$ +X_{i}= \begin{cases}1 & \text { con probabilidad } \theta \\ 0 & \text { con probabilidad }(1-\theta)\end{cases} +$$ + +Intuitivamente, está claro que para estimar $\theta$ solo nos interesa el número de ceros y unos, es decir, el valor del estadístico + +$$ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +$$ + +En este caso, un estadístico que considere la posición de los unos y los ceros en la muestra no aportaría nada relevante. En cambio, un estadístico que no considere todos los valores, como por ejemplo $T(\mathbf{X})=X_{1}$, sería claramente menos adecuado. + +Las observaciones del ejemplo anterior se justifican al observar que todas las muestras de tamaño $n$ con el mismo número $t$ de unos (1) tienen la misma probabilidad. En concreto, la función de probabilidad de una muestra $x_{1}, x_{2}, \ldots, x_{n}$ es + +$$ +f_{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\theta^{t}(1-\theta)^{n-t} +$$ + +donde $t=\sum_{i=1}^{n} x_{i}, x_{i} \in\{0,1\}, i=1,2, \ldots, n$. +Como se puede ver, la probabilidad de la muestra solo depende del número de unos (o ceros) y no del orden en que aparecen en la muestra. El hecho de que la posición de los unos y los ceros en la muestra no aporte información relevante equivale a decir que el estadístico + +$$ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +$$ + +contiene la misma información que $X_{1}, X_{2}, \ldots, X_{n}$ para estimar $\theta$. Observamos, sin embargo, varias diferencias entre basarse en $T(\mathbf{X})$ o en $X_{1}, X_{2}, \ldots, X_{n}$ : + +- Al pasar de $X_{1}, X_{2}, \ldots, X_{n}$ a $\sum_{i=1}^{n} X_{i}$ hay una reducción de los datos que no implica pérdida de información. +- Muchas muestras diferentes dan lugar al mismo valor de $T$. + +Fisher formalizó esta idea con el cálculo de la probabilidad condicionada de la observación muestral con $T(\mathbf{X})=\sum_{i=1}^{n} X_{i}$ y para todo $t=0,1, \ldots, n$ : + +$$ +\begin{aligned} +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] & =\frac{P_{\theta}[\mathbf{X}=\mathbf{x}, T=t]}{P_{\theta}(T=t)} \\ +& =\frac{\theta^{t}(1-\theta)^{n-t}}{\binom{n}{t} \theta^{t}(1-\theta)^{n-t}}=\frac{1}{\binom{n}{t}} +\end{aligned} +$$ + +Es decir, dados $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1\}^{n} \mathrm{y} t \in\{0,1, \ldots, n\}$, tenemos + +$$ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]=\left\{\begin{array}{cc} +0 & \text { si } t \neq \sum_{i=1}^{n} x_{i} \\ +\frac{1}{\binom{n}{t}} & \text { si } t=\sum_{i=1}^{n} x_{i} +\end{array}\right. +$$ + +Obviamente, $P_{\theta}[\mathbf{X}=\mathbf{x}]$ depende de $\theta$, que es el parámetro que queremos estimar. Sin embargo, la probabilidad condicionada $P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]$ no depende de $\theta$. Tenemos entonces la siguiente expresión de la función de probabilidad de la muestra: + +$$ +P_{\theta}(\mathbf{X}=\mathbf{x})=P_{\theta}(T=t) \cdot P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] +$$ + +Esta expresión muestra que $P_{\theta}(\mathbf{X})$ se puede descomponer en dos factores, uno que depende de $\theta, P_{\theta}(T=t)$, y otro que no depende de $\theta$, + +$$ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] . +$$ + +Una forma de ver esta descomposición es pensar que el estadístico $T=$ $\sum_{i=1}^{n} X_{i}$ ?acumula? o ?absorbe? toda la información relativa a $\theta$, lo que se refleja en que la probabilidad de la muestra, dado $T=t$, ya no depende de $\theta$. Es decir, podemos imaginar la construcción de la muestra en dos etapas: + +- En una primera etapa se elige el valor $t$ para $T$ con distribución $B(n, \theta)$. +- A continuación, se sitúan aleatoriamente $t$ unos y $n-t$ ceros en las $n$ posiciones. + +Cuando la estructura del estadístico $T(\mathbf{X})$ hace que el segundo factor en la expresión anterior no dependa de $\theta$, significa que la observación adicional de la muestra es irrelevante. En este caso diremos que $T(\mathbf{X})$ es suficiente para la estimación de $\theta$. Dado que esta propiedad de $T$ queda caracterizada por la independencia de $P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]$ respecto a $\theta$, se utiliza esta independencia para definir la suficiencia. + +## 18. Definició 2.12 + +Dado un modelo estadístico $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ y un estadístico $T$, diremos que $T$ es suficiente para $\theta$ si, dada una muestra $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, se verifica que la distribución de $\mathbf{X}$ condicionada por el valor de $T$ no depende de $\theta$. + +- No es necesario que $F_{\theta}$ sea discreta, como en el ejemplo introductorio, o que la muestra sea una muestra aleatoria simple. +- El estadístico suficiente para un parámetro puede ser $k$-dimensional. + +Exemple 2.4.2 Dada una muestra $X_{1}, X_{2}, \ldots, X_{n}$ de una distribución de Poisson, la función de probabilidad de la muestra es + +$$ +P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\frac{e^{-n \lambda} \lambda \sum x_{i}}{x_{1}!\cdots x_{n}!} +$$ + +Calculemos la probabilidad de la muestra condicionada por el valor del estadístico $T=\sum_{i=1}^{n} X_{i}$ : + +$$ +\begin{aligned} +& P_{\theta}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T=t\right]=\frac{P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T=t\right)}{P_{\theta}(T=t)} +\end{aligned} +$$ + +$$ +\begin{aligned} +& =\frac{t!}{x_{1}!\cdots x_{n}!}\left(\frac{1}{n}\right)^{t} \mathbf{1}_{\left\{\sum x_{i}=t\right\}}\left(x_{1}, \ldots, x_{n}\right) +\end{aligned} +$$ + +La probabilidad condicional no depende de $\lambda y$, por lo tanto, $T$ es suficiente para $\lambda$. Conviene observar que, en este ejemplo, no todas las muestras tienen la misma probabilidad. + +#### 18.0.1. Teorema de factorización + +La justificación de la suficiencia de un estadístico mediante la definición no siempre es sencilla, ya que la distribución condicional puede ser intratable con las herramientas disponibles. El teorema que se presenta a continuación proporciona un método sencillo para comprobar la suficiencia de un estadístico y, a menudo, sugiere cuál es el estadístico suficiente de menor dimensión posible. + +Teorema 2.3 Neyman-Fisher. Sea $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ un modelo estadístico y $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X$. Sea $f_{\theta}(\mathbf{x})$ la función de probabilidad o la función de densidad de la muestra, según si $X$ es discreta o absolutamente continua. Un estadístico $T$ es suficiente para $\theta$ si y solo si existen dos funciones medibles $g_{\theta}$ y $h$ tales que + +$$ +f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x}) +$$ + +donde $h$ no depende de $\theta$ y g depende de $\theta$ y, además, solo depende de la muestra a través de $T$. + +Veamos ahora la demostración del teorema de factorización, restringida al caso de variables discretas. + +Demostración: +Comenzaremos suponiendo que $T$ es suficiente y concluiremos que es posible la factorización. +Si $T(\mathbf{X})$ es suficiente para la familia de distribuciones $\left\{F_{\theta} ; \theta \in \Theta\right\}$, la función de probabilidad de la muestra condicionada por $T$ no depende de $\theta$. Dado que + +$$ +f_{\theta}(\mathbf{x})=P_{\theta}[T=T(\mathbf{x})] \cdot f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})] +$$ + +solo es necesario tomar $g_{\theta}(t)=P_{\theta}[T=T(\mathbf{x})=t]$ y $h(\mathbf{x})=f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})]$ para obtener el resultado. +Ahora supongamos que es posible la factorización y deduzcamos la suficiencia. +Si $f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})$ y llamamos $A_{t}=\left\{\mathbf{x} \in X(\Omega)^{n} \mid T(\mathbf{x})=t\right\}$, entonces + +$$ +P_{\theta}[T(\mathbf{x})=t]=\sum_{A_{t}} g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})=g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x}) +$$ + +Consideremos ahora la distribución de la muestra condicionada a $T=t$. El Teorema de Bayes para densidad permite escribir: + +$$ +\begin{aligned} +f_{\theta}(\mathbf{x} \mid T=t) & =\frac{f_{\theta}(\mathbf{x}, T=t)}{P_{\theta}(T=t)} \\ +& = \begin{cases}\frac{g_{\theta}(t) \cdot h(\mathbf{x})}{g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x})}=\frac{h(\mathbf{x})}{\sum_{A_{t}} h(\mathbf{x})} & \text { si } T(\mathbf{x})=t \\ +0 & \text { si } T(\mathbf{x}) \neq t\end{cases} +\end{aligned} +$$ + +De modo que la distribución de $\mathbf{X}$ condicionada por el valor de $T$ no depende de $\theta$, y, en consecuencia, $T$ es suficiente. + +Exemple 2.4.3 Si X sigue una distribución de Bernoulli, tenemos: + +$$ +f_{\theta}(\mathbf{x})=\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-\sum_{i=1}^{n} x_{i}}=g_{\theta}\left(\sum_{i=1}^{n} x_{i}\right) . +$$ + +Si tomamos $h(\mathbf{x})=1$, queda probado que $T=\sum_{i=1}^{n} X_{i}$ es suficiente. +Exemple 2.4.4 Si consideramos una muestra de una distribución de Poisson + +$$ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \frac{\lambda^{\sum_{i=1}^{n} x_{i}}}{x_{1}!x_{2}!\cdots x_{n}!} +$$ + +$y$ tomamos $T(\mathbf{x})=\sum_{i=1}^{n} x_{i}$, podemos escribir + +$$ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \lambda^{T(\mathbf{x})} \cdot\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}=g_{\lambda}(T(\mathbf{x})) \cdot h(\mathbf{x}) +$$ + +donde + +$$ +g_{\lambda}(T(\mathbf{x}))=e^{-n \lambda} \lambda^{T(\mathbf{x})}, \quad h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1} +$$ + +De modo que $g_{\lambda}(t)=e^{-n \lambda} \lambda^{t}$ depende de la muestra solo a través de $T=$ $\sum_{i=1}^{n} x_{i}$ y $h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}$ no depende de $\lambda$. + +Exemple 2.4.5 Supongamos que $\mathbf{X}$ es una muestra aleatoria simple de una población $X \sim N(\mu, \sigma)$, cuya función de densidad es + +$$ +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} +$$ + +Para evidenciar la factorización, utilizamos que + +$$ +\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2} . +$$ + +Entonces, + +$$ +\begin{aligned} +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(n s^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =g_{\mu, \sigma^{2}}\left(\bar{x}, s^{2}\right) \cdot 1 +\end{aligned} +$$ + +Así, vemos que el estadístico $\left(\bar{X}, s^{2}\right)$ es suficiente para la estimación de $\left(\mu, \sigma^{2}\right)$. +Si suponemos conocido uno de los dos parámetros $\sigma^{2}$ o $\mu$, podemos obtener una factorización en la que se ve que $\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$ es suficiente para $\sigma^{2}$ (conocido $\mu$ ) o $\bar{x}$ es suficiente para $\mu$ (conocido $\sigma^{2}$ ). + +En el ejemplo anterior se observa que el estadístico suficiente para un problema puede tener una dimensión superior a 1. En general, buscaremos el estadístico suficiente de menor dimensión posible, ya que a menor dimensión se elimina más información superflua. Si no es posible encontrarlo así, siempre podemos basarnos en el estadístico $T=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, que es suficiente pero de dimensión máxima y, por lo tanto, no aporta ninguna reducción al problema de información. Estas reflexiones llevan a enunciar el principio de suficiencia, que aconseja condensar al máximo la información relevante en un estadístico suficiente $T$ de la menor dimensión posible ("mínima") y seleccionar un estimador $T^{\prime}$ entre los estadísticos que sean función de la muestra a través de $T: T^{\prime}(\mathbf{X})=\varphi(T(\mathbf{X}))$. + +#### 18.0.2. Propiedades de los estadísticos suficientes + +Las siguientes propiedades se prueban de manera sencilla utilizando el teorema de factorización: + +1. Si $T$ es un estadístico suficiente para $\theta$ y $\varphi$ es una función inyectiva (o monótona diferenciable), entonces $T_{1}=\varphi(T)$ también es suficiente para $\theta$. + +Exemple 2.4.6 En la familia de la Poisson hemos visto que $\sum_{i=1}^{n} X_{i}$ es suficiente para $\lambda$. Entonces $\bar{X}=\varphi\left(\sum_{i=1}^{n} X_{i}\right)$, donde $\varphi(z)=(1 / n) z$ es inyectiva, es suficiente para $\lambda$. +2. Si $T$ es un estadístico suficiente para $\theta$ y $\varphi$ es una función paramétrica monótona diferenciable, entonces $\varphi(T)$ también es suficiente para $\varphi(\theta)$. +3. Si $T_{1}, T_{2}$ son dos estadísticos suficientes para $\theta$, entonces $T_{1}$ es función de $T_{2}$. + +## 19. Capítol 3 + +## 20. MÉTODOS DE OBTENCIÓN DE ESTIMADORES + +En el capítulo anterior hemos analizado el problema de la estimación puntual desde el punto de vista de, dado un estimador, ver ?qué tan bueno es? para estimar un parámetro. +Otra cuestión que nos podemos plantear, de hecho la primera cuestión que hay que plantearse en la práctica, es cómo obtener un estimador ?razonablemente bueno? de un parámetro. De hecho, desde el punto de vista práctico parece razonable empezar por ver cómo se obtiene un estimador y, una vez obtenido, analizar ?cuán bueno resulta?. +Existen muchos métodos para obtener estimadores, cada uno de los cuales puede llevarnos a unos resultados de diferente calidad. +Los principales métodos de estimación son: + +1. Método de los momentos +2. Método de la máxima verosimilitud +3. Método de Bayes +4. Otros métodos + +### 20.1. El método de los momentos + +Este método fue introducido por K. Pearson a finales del siglo XIX y es el principio en que nos basamos cuando hacemos una estimación de la media o de la varianza poblacional a partir de la media o la varianza muestrales. +La idea del método de los momentos es bastante intuitiva. Si lo que queremos estimar (uno o varios parámetros) es una función de los momentos +poblacionales, entonces una estimación razonable puede consistir en tomar como estimador la misma función en la que los momentos poblacionales han sido sustituidos por los momentos muestrales. +Dado que estos últimos son estimadores consistentes de los momentos poblacionales, en condiciones bastante generales se puede garantizar que los estimadores obtenidos serán estimadores consistentes para las funciones de los momentos poblacionales estimadas. +Algunos ejemplos típicos de estimadores basados en el método de los momentos son: + +$$ +\widehat{\mu}=\bar{X}_{n} \quad \widehat{\sigma}=\sqrt{S^{2}} \quad \widehat{\sigma^{2}}=S^{2} +$$ + +Sea un modelo estadístico, $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$, y $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X$. Sean $m_{1}, m_{2}, ?, m_{k}$ los momentos poblacionales de orden $1,2, ?, k$ de $X$, que suponemos que existen, + +$$ +m_{k}=E\left(X^{k}\right) +$$ + +y $a_{1}, a_{2}, ?, a_{k}$ los momentos muestrales respectivos + +$$ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} +$$ + +Suponemos que estamos interesados en estimar: + +$$ +\theta=h\left(m_{1}, m_{2}, \ldots, m_{p}\right), +$$ + +donde $h$ es una función conocida. +Definició 3.1 El método de los momentos consiste en estimar $\theta$ por el estadístico + +$$ +T(\mathbf{X})=h\left(a_{1}, a_{2}, \ldots, a_{p}\right) +$$ + +## 21. Observaciones + +- El método se extiende de forma sencilla a la estimación de momentos conjuntos. Podemos usar $\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}$ para estimar $E(X Y)$, etc. +- Por la ley débil de los grandes números, + +$$ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{P} E\left(X^{k}\right), +$$ + +de modo que si lo que queremos es estimar los momentos muestrales, el método garantiza que los estimadores son consistentes y sin sesgo. + +En este caso, además, los estimadores son asintóticamente normales. Si lo que se desea estimar es una función $h$ continua de los momentos, entonces el método garantiza que el estimador $T(\mathbf{X})$ es consistente y, bajo ciertas condiciones de regularidad, también es asintóticamente normal. + +Exemple 3.1.1 Sea $X \sim \Gamma(p, \alpha)$. Queremos estimar $p$ y $\alpha$. En lugar de conocer la función $h\left(\theta_{1}, \theta_{2}\right)$ sabemos que: + +$$ +\begin{aligned} +m_{1} & =\frac{p}{\alpha}=E(X) \\ +m_{2} & =\frac{p(p+1)}{\alpha^{2}}=E\left(X^{2}\right) \\ +& =V(X)+[E(X)]^{2}=\frac{p}{\alpha^{2}}+\left(\frac{p}{\alpha}\right)^{2}=\frac{p^{2}+p}{\alpha^{2}}= +\end{aligned} +$$ + +De modo que podemos obtener las funciones deseadas ?aislando? p y $\alpha$ como funciones de $m_{1}$ y $m_{2}$ : + +$$ +\begin{aligned} +\alpha^{2} & =\frac{p^{2}}{m_{1}^{2}} \\ +\alpha^{2} & =\frac{p(p+1)}{m_{2}} +\end{aligned} +$$ + +Procediendo por igualación: + +$$ +\begin{aligned} +& \frac{p^{2}}{m_{1}^{2}}=\frac{p(p+1)}{m_{2}} \\ +& \frac{p}{m_{1}}=\frac{p+1}{m_{2}} \\ +& p m_{2}=p m_{1}^{2}+m_{1}^{2} \\ +& p\left(m_{2}-m_{1}^{2}\right)=m_{1}^{2} \\ +& p=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& \alpha=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& m_{1} +\end{aligned} \frac{m_{1}}{m_{2}-m_{1}^{2}} . +$$ + +Los estimadores por el método de los momentos se obtendrán ahora sustituyendo $p$ y $\alpha$ por $\hat{p}$ y $\hat{\alpha}$ en la expresión anterior, es decir: + +$$ +\widehat{p}=\frac{a_{1}^{2}}{a_{2}-a_{1}^{2}} +$$ + +Hacemos lo mismo para el parámetro $\alpha$ : + +$$ +\widehat{\alpha}=\frac{a_{1}}{a_{2}-a_{1}^{2}} +$$ + +### 21.1. El método del máximo de verosimilitud + +#### 21.1.1. Introducción + +El método de la máxima verosimilitud, introducido por Fisher, es un método de estimación que se basa en la función de verosimilitud, presentada en el capítulo anterior. Básicamente consiste en tomar como estimadores de los parámetros aquellos valores que hagan más probable observar precisamente lo que se ha observado, es decir, que hagan que la muestra observada resulte más verosímil. + +Exemple 3.2.1 Tomemos 5 papeles. En cada uno de ellos ponemos o bien un ?+? o bien un ?-?, sin que se sepa qué hay en cada papel, y los guardamos en una bolsa. Nuestro objetivo es estimar el número de papeles con el signo ?? escrito. Extraemos tres papeles, devolviéndolos a la bolsa después de cada extracción, y observamos que ha salido lo siguiente: ?++-?. Los valores posibles para la probabilidad de ?-?, llamémosla p, son: + +| En la bolsa hay | $p$ | +| :---: | :---: | +| $4 ?+$ ?, 1 ?-? | 0,2 | +| $3 ?+$ ?, 2 ?-? | 0,4 | +| $2 ?+$ ?, 3 ?-? | 0,6 | +| $1 ?+$ ?, 4 ?-? | 0,8 | + +Supongamos que la variable $X$ mide el número de ?-? en tres extracciones consecutivas y que, por tanto, sigue una distribución binomial: + +$$ +X \sim B(3, p(?-?)) +$$ + +La probabilidad de sacar un ?-? es: + +$$ +P_{p}[X=1]=\binom{3}{1} \cdot p^{1}(1-p)^{2} +$$ + +Para cada uno de los valores de p, las probabilidades quedan asi: + +| $p$ | $P_{p}[X=1]$ | +| :---: | :---: | +| 0.2 | $3 \cdot 0.2 \cdot 0.8^{2}=0.384$ | +| 0.4 | $3 \cdot 0.4 \cdot 0.6^{2}=0.432$ | +| 0.6 | $3 \cdot 0.6 \cdot 0.4^{2}=0.288$ | +| 0.8 | $3 \cdot 0.8 \cdot 0.2^{2}=0.096$ | + +El valor de p que da una probabilidad mayor a la muestra, es decir, que la hace más verosímil, es $p=0.4$. El método del máximo de verosimilitud consiste precisamente en tomar este valor como estimación de $p$. + +#### 21.1.2. La función de verosimilitud + +Una vez introducido el método con un ejemplo, podemos pasar a definirlo con mayor precisión. Para ello, comenzaremos con el concepto de función de verosimilitud. +En el capítulo anterior presentamos la función de verosimilitud como la función que resulta de considerar que, en la función de probabilidad de la muestra, el parámetro es variable y la muestra queda fija. Es decir: + +$$ +\underbrace{f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)}_{\mathbf{x} \text { variable, } \theta \text { fijo }} \longrightarrow \underbrace{L\left(\theta ; x_{1}, x_{2}, \ldots, x_{n}\right)}_{\mathbf{x} \text { fija, } \theta \text { variable }} +$$ + +Esta definición es básicamente correcta. En el caso de las variables discretas, donde $f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ representa la probabilidad de la muestra, fijado $\theta$, resulta intuitivamente claro decir que la verosimilitud representa la ?probabilidad de la muestra para cada valor del parámetro?. +Refiriéndonos al ejemplo introductorio, resulta sencillo ver que se trata de ?dos puntos de vista? sobre la misma función. Fijado un valor del parámetro, por ejemplo, 0.4 , podemos considerar la probabilidad de diversas muestras posibles, como $x=0, x=1, \ldots$, hasta $x=3$ : + +$$ +\begin{aligned} +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{0.4}[X=x], x=0,1, \ldots, 3 \\ +& =\binom{3}{x} \cdot 0.4^{x}(0.6)^{3-x} . +\end{aligned} +$$ + +Análogamente, fijada una muestra, por ejemplo, $x=1$, podemos considerar la probabilidad de esta para diversos valores del parámetro, $p=0,0.2, \ldots, 1$. + +$$ +\begin{aligned} +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{p}[X=1], x=0,0.2,0.4, \ldots, 1 \\ +& =3 \cdot p(1-p)^{2} . +\end{aligned} +$$ + +En el caso de las distribuciones absolutamente continuas, el significado de la función de verosimilitud ya no es intuitivamente tan claro como en el caso de las discretas. En este caso, la función de densidad de la muestra ya no representa la probabilidad de esta como en el caso de las discretas. Algunos autores intentan solucionar esto explicando que existe una conocida aproximación en que la función de densidad es la probabilidad de un suceso ?infinitesimal?. +Lo que es importante en la función de verosimilitud, a la hora de hacer inferencias, es la parte que es función del parámetro. Esto hace que a menudo se considere que la expresión de la función de verosimilitud mantenga solo aquella parte de $f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ que depende de $\theta$, ignorando la parte que dependa solo de la muestra. Es decir, si podemos factorizar $f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ como + +$$ +f(\mathbf{x} ; \theta)=c(\mathbf{x}) \cdot g(\mathbf{x} ; \theta) +$$ + +podremos prescindir de la ?constante? $c(x)$ (constante porque no depende de $\theta$ ) al considerar la verosimilitud. + +$$ +L(\theta ; \mathbf{x})=g(\mathbf{x} ; \theta) \propto f(\mathbf{x} ; \theta) +$$ + +Esto implica que $L(\theta ; \mathbf{x})$ no tiene por qué integrar a 1 , como en el caso de las probabilidades, y que depende de las unidades de medida. + +Exemple 3.2.2 Si $X$ es discreta, $X \sim \mathcal{P}(\lambda)$, y suponemos $n=1$ (muestras de tamaño 1), tenemos que la f.d.p. de la muestra es: + +$$ +P[x ; \lambda]=e^{-\lambda} \frac{\lambda^{x}}{x!} +$$ + +con $x=0,1, \ldots$ Ahora, si hemos observado $x=5$, la función de verosimilitud vale: + +$$ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5}\left[\frac{1}{5!}\right] +$$ + +Como solo nos interesa la parte que es función de $\lambda$, podemos ignorar $\frac{1}{5!}$, es decir: + +$$ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5} \propto P[\mathbf{x} ; \lambda] . +$$ + +Exemple 3.2.3 Si dada una muestra de tamaño 1, por ejemplo, $x=2$, de una ley de Poisson $\mathcal{P}(\lambda)$ queremos comparar sus verosimilitudes respecto de los valores del parámetro $\lambda=1.5$ o $\lambda=3$, lo que haremos será basarnos en la razón de verosimilitudes: + +$$ +\begin{aligned} +\Lambda(\mathbf{x}) & =\frac{L\left(\lambda_{1} ; x\right)}{L\left(\lambda_{2} ; x\right)}=\frac{L(1.5 ; 2)}{L(3 ; 2)} \\ +& =\frac{e^{-1.5} 1.5^{2}\left[\frac{1}{2!}\right]}{e^{-3} 3^{2}\left[\frac{1}{2!}\right]}=\frac{e^{-1.5} 1.5^{2}}{e^{-3} 3^{2}}=\frac{0.5020}{0.4481}=1.12 . +\end{aligned} +$$ + +Como se observa, al basarnos en la razón de verosimilitudes, la parte correspondiente solo a la muestra no se toma en cuenta. La razón de verosimilitudes sugiere que el valor $\lambda=1.5$ hace la muestra más verosímil. + +#### 21.1.3. El método del máximo de verosimilitud + +Si partimos de las dos ideas que hemos visto en la introducción: + +- Escoger como estimación el valor que maximice la probabilidad de la muestra observada. +- La verosimilitud de la muestra es una aproximación a la probabilidad de esta como función del valor del parámetro. + +Una forma razonable de definir el EMV es entonces como aquel que maximice la verosimilitud. + +Definició 3.2 Un estimador $T: \Omega \longrightarrow \Theta$ es un estimador del máximo de verosimilitud para el parámetro $\theta$ si cumple: + +$$ +L(T(\mathbf{x}) ; \mathbf{x})=\sup _{\theta \in \Theta} L(\theta ; \mathbf{x}) +$$ + +Como suele ocurrir en problemas de maximización, este valor ni existe necesariamente ni tiene por qué ser único. Ahora bien, bajo ciertas condiciones (las habituales para los problemas de máximos y mínimos) el problema se podrá reducir a buscar un máximo para la función de verosimilitud. + +Exemple 3.2.4 Supongamos que $x_{1}, \ldots, x_{n}$ es una muestra de una población de Bernouilli, $X \sim B e(p)$, donde queremos estimar p. La función de masa de la probabilidad de $X$ es: + +$$ +P\left[X=x_{i}\right]=P\left(x_{i} ; p\right)=p^{x_{i}}(1-p)^{1-x_{i}} \text { donde } x_{i} \in\{0,1\} ; i=1, \ldots, n +$$ + +La función de verosimilitud es: + +$$ +L(p ; \mathbf{x})=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum_{i=1}^{n} x_{i}}(1-p)^{\sum_{i=1}^{n}\left(1-x_{i}\right)} +$$ + +Debemos buscar el máximo de $L(p ; \mathbf{x})$. En este caso, como en otros, es más sencillo buscar el máximo de su logaritmo, que, dado que es una función monótona, es el mismo que el máximo de $L$ + +$$ +\ln L(p ; x)=\left(\sum_{i=1}^{n} x_{i}\right) \cdot \ln p+\left(n-\sum_{i=1}^{n} x_{i}\right) \cdot \ln (1-p) +$$ + +Derivamos respecto a p: + +$$ +\frac{\partial \ln L(p ; x)}{\partial p}=\frac{\sum_{i=1}^{n} x_{i}}{p}-\frac{n-\sum_{i=1}^{n} x_{i}}{1-p} +$$ + +e igualamos a cero la derivada, planteando lo que se denomina la ecuación de verosimilitud, cuyas soluciones nos conducirán eventualmente al estimador del máximo de verosimilitud. + +$$ +\frac{\sum_{i=1}^{n} x_{i}-n \hat{p}}{\hat{p}(1-\hat{p})}=0 \Rightarrow \hat{p}=\frac{\sum_{i=1}^{n} x_{i}}{n} +$$ + +Si la segunda derivada es negativa en $\widehat{p}$ entonces será un máximo: + +$$ +\begin{aligned} +\frac{\partial^{2} \ln L(p ; x)}{\partial p^{2}} & =\frac{\partial}{\partial p}\left(\frac{\sum_{i=1}^{n} x_{i}-n p}{p(1-p)}\right)=\frac{-n[p(1-p)]-\left(\sum_{i=1}^{n} x_{i}-n p\right) \cdot(1-2 p)}{p^{2}\left(1-p^{2}\right)}= \\ +& =\frac{-n p+n p^{2}-\sum_{i=1}^{n} x_{i}-n p-2 p \sum_{i=1}^{n} x_{i}-2 n p^{2}}{p^{2}(1-p)^{2}}= \\ +& =\frac{\left[\sum_{i=1}^{n} x_{i}(1+2 p)-n p^{2}\right]}{p^{2} \cdot(1-p)^{2}} +\end{aligned} +$$ + +que es negativa cuando $p=\hat{p}$, de forma que $\hat{p}$ es efectivamente un máximo. +El método analítico expuesto en el ejemplo anterior, consistente en el cálculo de un extremo de una función, no se puede aplicar en todas las situaciones. En estos casos, una alternativa puede ser estudiar directamente la función de verosimilitud. Veamos un ejemplo: + +Exemple 3.2.5 Sea $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} X \sim U(0, \theta) \quad \theta>0$ desconocido. Sabemos que: + +$$ +f(x ; \theta)=\left\{\begin{array}{c} +\frac{1}{\theta} \text { si } 0<\min \left\{x_{i}\right\} \leq \max \left\{x_{i}\right\} \leq \theta \\ +0 \quad \text { en caso contrario } +\end{array}\right\} +$$ + +La derivada respecto a $\theta$ es $-\frac{n}{\theta^{n-1}}$, que se anula cuando $\theta \underset{n \rightarrow \infty}{\longrightarrow} \infty$ que lleva a una solución sin sentido de la ecuación de verosimilitud. Una inspección de la gráfica de la función de verosimilitud revela que el EMV, en este caso, + +Figura 3.1: Función de verosimilitud para una distribución uniforme +es $\max \left\{X_{i}, \ldots, X_{n}\right\}$. Efectivamente, consideremos cualquier otro valor $\theta^{*}$ diferente del máximo: + +$$ +\begin{aligned} +& \text { Si } \theta^{*}>X_{(n)} \Rightarrow \frac{1}{\left(\theta^{*}\right)^{n}}<\frac{1}{\left(X_{n}\right)^{n}}, \\ +& \text { Si } \theta^{*}\left.0 y \frac{\partial^{2} z}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}<0 \Longrightarrow$ Hay un máximo relativo en $\left(x_{0}, y_{0}\right)$. +Si evaluamos el Hessiano en el punto $\left(\bar{x}, s^{2}\right)$ tenemos: + +$$ +H=\left(\begin{array}{cc} +-\frac{n}{s^{2}} & 0 \\ +0 & -\frac{n}{2 s^{4}} +\end{array}\right) . +$$ + +Las condiciones de extremo que hemos dado más arriba se verifican: $H_{11}<0 y|H|>0$, de manera que podemos concluir que el estimador del máximo de verosimilitud de $\left(\mu, \sigma^{2}\right)$ es, efectivamente, $\left(\bar{x}, s^{2}\right)$. + +## 22. Bibliografia + +[1] Canavos, George C. (1988). Probabilidad y Estadistica. Aplicaciones y Metodos. McGraw-Hill/Interamericana. Mexico. +[2] Cuadras, C.M. (2000). Problemas de probabilidades y estadística. Vol. 2: Inferencia estadística. EUB. Economía y Empresa. Barcelona. +[3] De Groot, M. (1988). Probabilidad y Estadística. Addison-Wesley. . +[4] Casella, G. Berger, M (1990). Statistical inference. Duxbury Press. . +[5] Dudewicz, Edward J., Mishra, S. (1989). Modern mathematical statistics. John Wiley \& Sons, Wiley series in probability and statistics. New York. +[6] Fortiana, J., Nualart, D. (1999). Estadística. Publicacions de la Universitat de Barcelona. Barcelona. +[7] Lehman, E. (1986). Testing Statistical Hypothesis. John Wiley \& Sons, Wiley series in probability and statistics. New York. +[8] Martínez A., Rodriguez, C., Gutiérrez, R (1993). Inferencia Estadistica, un Enfoque Clasico. Ediciones Pirámide, Economia y Administración de Empresas. Madrid. +[9] Peña, Daniel (1987). Estadística modelos y metodos 1. Fundamentos. Alianza editorial. Madrid. +[10] Rohatgi, V. K. (1976). An Introduction to Probability Theory and Mathematical Statistics. John Wiley \& Sons, Wiley Series in Probability. New York. +[11] Ruiz-Maya, L., Martín Pliego, J. (1995). Estadística II: Inferencia. Editorial AC. Colección Plan Nuevo. Madrid. +[12] Sanz, Marta (1999). Probabilitats. Edicions de la UNiversitat de Barcelona. Barcelona. +[13] Vélez Ibarrola, Ricardo, Garcia Perez, Alfonso (1993). Principios de Inferencia estadística. Editorial UNED. Madrid. + + +[^0]: ${ }^{1}$ Ver: Métodos matemáticos de la estadística, de H. Cramer. Ed. Aguilar + +[^1]: ${ }^{1}$ Si $\operatorname{var}(X)$ existe, entonces $\forall \varepsilon>0$ se verifica $P(|X-E(X)|>\varepsilon) \leq \frac{\operatorname{var}(X)}{\varepsilon^{2}}$ + +[^2]: ${ }^{2}$ UMVUE, en inglés + diff --git a/complementos/EstadMat-AllChap(ES).qmd b/complementos/EstadMat-AllChap(ES).qmd new file mode 100644 index 0000000..4a8fbfc --- /dev/null +++ b/complementos/EstadMat-AllChap(ES).qmd @@ -0,0 +1,2061 @@ +--- +title: "Introducción a la Estadística Matemática" +author: Alex Sanchez-Pla y Francesc Carmona-Pontaque +date: "`r Sys.Date()`" +format: + html: + toc: true + toc-location: left + toc-depth: 3 + code-fold: false + fig-width: 8 + fig-height: 6 + pdf: + toc: true + number-sections: true + colorlinks: true + geometry: + - top=20mm + - left=15mm + papersize: A4 +quarto: + chunk_options: + echo: true + cache: false + prompt: false + tidy: true + comment: NA + message: false + warning: false + knit_options: + width: 75 +reference-location: margin +execute: + echo: true + message: false + warning: false + cache: true +# bibliography: "../StatisticalLearning.bib" +editor_options: + chunk_output_type: console +editor: + markdown: + wrap: 72 +--- + +```{r eval=FALSE, echo=FALSE} +# quarto::quarto_render("EstadMat-AllChap(ES).qmd", output_format = "all") +``` + +## INFERENCIA MUESTREO Y DISTRIBUCIONES MUESTRALES + +### Inferencia estadística + +Para comenzar, vamos a definir cuál es el ámbito de estudio de la inferencia estadística desde su relación con el cálculo de probabilidades. El cálculo de probabilidades proporciona una teoría matemática que permite analizar (o modelizar) las propiedades de los fenómenos donde interviene el azar. +El cálculo de probabilidades utiliza como modelo básico para cualquier situación aleatoria el concepto de espacio de probabilidades $(\Omega, \mathcal{A}, P)$ y una variable aleatoria $X: \Omega \rightarrow \mathbb{R}$ definida sobre él. +El conocimiento de la distribución de la variable aleatoria permite: + +1. Análisis deductivo de situaciones. Por ejemplo: si asumimos que el peso de los recién nacidos se distribuye según una distribución $N(\mu=$ $3 \mathrm{~kg}, \sigma=0.25 \mathrm{~kg}$ ), nos puede interesar calcular la probabilidad de que un recién nacido pese entre 2.9 y 3.1 kg , o encontrar unos valores centrados en la media entre los cuales esperemos que se encuentren el $10 \%(25 \%, 50 \%, 95 \%, \ldots)$ de los recién nacidos. +2. Modelización de situaciones aleatorias. Por ejemplo: si asumimos que el tiempo, en años, hasta que se estropea un componente de un ordenador se distribuye según una distribución exponencial $T \sim \xi(\lambda=$ $0.3)$, nos puede interesar calcular la probabilidad de que un componente dado dure más de 4 años. + +En los casos anteriores nos encontramos en una situación muy común, donde ya disponemos de un modelo sobre el cual efectuamos los cálculos, pero del cual desconocemos la procedencia. Parece razonable, y de hecho es precisamente así, que si queremos adaptar un modelo a una situación debamos basarnos únicamente en las observaciones del fenómeno. +Si queremos saber cómo se distribuyen los pesos de los recién nacidos tomaremos unos cuantos, los pesaremos y después observaremos la distribución de estos. Puede que no sea necesario pesar a todos los recién nacidos (jde hecho, no es posible!), pero tampoco es posible deducir la ley por consideraciones puramente teóricas. +Ahora, en lugar de partir de un espacio de probabilidades, partiremos de unas observaciones $\left(x_{1}, \ldots, x_{n}\right)$ y el objetivo que perseguiremos será obtener información sobre la distribución de probabilidades de un fenómeno a partir de una observación no exhaustiva del mismo. + +### Problemas de inferencia estadística + +Hemos presentado como objetivo de la inferencia estadística inducir propiedades del modelo probabilístico que representa la población a partir de un conjunto de observaciones. +Según el tipo de conclusión que queramos extraer, diferenciaremos diferentes tipos de problemas: + +1. Si queremos utilizar la información proporcionada por la muestra para obtener un pronóstico numérico único (es decir, una única aproximación numérica) de una o más características de la población, tenemos un problema de estimación puntual. +2. Si queremos obtener información sobre un rango de valores dentro del cual podamos afirmar, con un cierto grado de confianza, que podemos capturar un parámetro desconocido de la distribución, hablamos de estimación por intervalo. +3. Si lo que queremos hacer es decidir si podemos aceptar o debemos rechazar una afirmación sobre la distribución de probabilidad del fenómeno estudiado, hablamos de contraste de hipótesis. Este contraste puede ser: + +- Paramétrico: si la afirmación (la hipótesis) se refiere a los parámetros de la distribución. +- No paramétrico: si la afirmación es sobre la forma de la distribución. + + +### Distribución de la población + +Todo problema de inferencia está motivado por un cierto grado de desconocimiento de la ley de probabilidades que rige un determinado fenómeno aleatorio. +El caso más sencillo que encontramos es cuando nos interesa una cierta variable $X$ con una función de distribución $F$ desconocida en mayor o menor grado. +La distribución que teóricamente sigue la variable de interés $X$ en la población recibe el nombre de distribución teórica o distribución de la población. La distribución de la población es importante ya que, a menudo, se utiliza para determinar la distribución de alguna característica de los individuos de una población. +En los modelos de la inferencia estadística indicamos el relativo grado de desconocimiento sobre la distribución $F$ en función de su pertenencia a una familia $\mathcal{F}$ de distribuciones. Por ello, en lugar de explicar que $X \sim F=F_{0}$ indicaremos que $X \sim F \in \mathcal{F}$, donde $\mathcal{F}$ puede ser un conjunto más o menos amplio de distribuciones de probabilidad, como todas las distribuciones normales o las distribuciones simétricas o las distribuciones discretas sobre $\mathbb{N}$. +Muchas veces, la distribución poblacional $F$ está completamente especificada excepto por el valor de algún parámetro o parámetros. En este caso, podemos concretar más la forma de la familia de distribuciones: + +$$ +X \sim F \in \mathcal{F}=\left\{F_{\theta}: \theta \in \Theta \subset \mathbb{R}^{k}\right\} +$$ + +donde $\Theta$ es el espacio de los $k$ parámetros. +La familia de posibles distribuciones de probabilidad para $X$ se denomina, genéricamente, modelo estadístico y se indica como: $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$. Veamos algunos ejemplos. + +Exemple 1.3.1 Supongamos que $X$ representa la duración de un componente electrónico que no envejece, solo se estropea. Es decir, si en un instante $t$ está funcionando, su estado es el mismo que en cualquier momento del pasado y la distribución del tiempo hasta que se estropee es la misma que al principio. Esta propiedad se denomina falta de memoria. +Un modelo razonable para esta situación lo da la distribución de Weibull que, en este caso, podemos definir a través de la siguiente función de densidad: + +$$ +f_{\theta}(x)= \begin{cases}\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}} & \text { si } x \geq 0 \\ 0 & \text { si } x<0\end{cases} +$$ + +La familia de distribuciones asociada es + +$$ +\mathcal{F}=\left\{F_{\theta}: \theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty)\right\} +$$ + +Exemple 1.3.2 Supongamos que queremos determinar la masa de un cierto tipo de partículas elementales a partir de las observaciones en una cámara de burbujas. En cada observación obtenemos un dato de la masa de la partícula $x_{i}$ y asociado con ella un cierto error de medida $\varepsilon$. Si la masa común de cada una de ellas es $\mu$, entonces podemos escribir: + +$$ +x_{i}=\mu+\varepsilon_{i} \quad i=1, \ldots, n +$$ + +donde la distribución $\varepsilon_{i} \sim F$ es desconocida. Nuestro objetivo es obtener información sobre $F$. +Si admitimos que $P\left(\varepsilon_{i}<0\right)=P\left(\varepsilon_{i}>0\right)$, según el grado de exigencia que queramos tener, podemos suponer: + +- Con un enfoque de inferencia paramétrica: + +$$ +X \sim F \in \mathcal{F}=\left\{N(0, \sigma): \sigma \in \mathbb{R}^{+}\right\} +$$ + +- Con un enfoque de inferencia no paramétrica: + +$$ +X \sim F \in \mathcal{F}=\{\text { Distribuciones simétricas }\} +$$ + +### Muestra aleatoria simple + +#### Definición + +Para estudiar un problema de inferencia estadística analizamos una muestra de tamaño $n$. Se trata de escoger $n$ individuos o elementos de la población $\Omega$ + +$$ +\omega_{1}, \omega_{2}, \ldots, \omega_{n} +$$ + +que sean representativos. El valor de $n$ y la forma de elección de los individuos de la muestra es una materia de Estadística llamada Muestreo estadístico. Por ahora y para simplificar, solo hace falta decir que la elección se hace de forma que todos los individuos tienen la misma probabilidad de estar presentes en la muestra, si es necesario con reemplazo, y que el valor de $n$ está dado. +En realidad, lo que nos interesa verdaderamente no son los individuos de la muestra sino las mediciones de una característica $X$ sobre ellos. Es decir, los valores de una variable aleatoria $X$ sobre estos individuos + +$$ +X\left(\omega_{1}\right)=x_{1}, X\left(\omega_{2}\right)=x_{2}, \ldots, X\left(\omega_{n}\right)=x_{n} +$$ + +También podemos pensar que los valores muestrales $x_{1}, x_{2}, \ldots, x_{n}$ son generados directamente desde la variable aleatoria. En todo caso, los valores muestrales no son únicos y podemos generar varias muestras + +$$ +\begin{array}{ccccc} +x_{1}^{1} & x_{2}^{1} & x_{3}^{1} & \ldots & x_{n}^{1} \\ +x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\ +\vdots & \vdots & \vdots & & \vdots \\ +x_{1}^{s} & x_{2}^{s} & x_{3}^{s} & \ldots & x_{n}^{s} +\end{array} +$$ + +Si todos los valores son independientes, de la misma forma que $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ es una muestra generada por $X$, podemos considerar todos los $x_{1}^{i} \quad i=1, \ldots, s$ provenientes de una variable aleatoria $X_{1}$ con la misma distribución que $X$ $X_{1} \stackrel{d}{=} X$ y que genera los primeros valores, los $x_{i}^{2}$ provenientes de una variable aleatoria $X_{2} \stackrel{d}{=} X$ que genera los segundos y así sucesivamente. +Todo esto nos lleva a definir el concepto de muestra aleatoria de una forma muy conveniente para trabajar con ella: + +Definició 1.1 Una muestra aleatoria simple de tamaño $n$ de una variable aleatoria $X$ con distribución $F$ es una colección de $n$ variables aleatorias independientes $X_{1}, X_{2}, \ldots, X_{n}$ con la misma distribución $F$ que $X$. Esto se suele indicar como: + +$$ +\mathbf{X}=X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} X +$$ + +Definició 1.2 El conjunto $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ de observaciones concretas de $X_{1}, X_{2}, \ldots, X_{n}$ se denomina realización de la muestra. + +#### Distribución de la muestra + +Una muestra aleatoria simple, como vector aleatorio $n$-dimensional que es, tiene una distribución conjunta o distribución de la muestra que depende de $F$, pero que obviamente es diferente, ya que en particular $X$ y $\mathbf{X}$ tienen dimensiones diferentes. Sin embargo, gracias a la independencia de las variables $X_{1}, X_{2}, \ldots, X_{n}$, la función de distribución conjunta de $\mathbf{X}$, que podría ser muy complicada, toma una forma muy sencilla. En resumen: + +Definició 1.3 Se llama distribución de la muestra de una variable aleatoria $X \sim F$ a la distribución del vector aleatorio $n$-dimensional $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ + +$$ +G\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}\right) F\left(x_{2}\right) \cdots F\left(x_{n}\right) +$$ + +En los casos particulares en que $X$ sea discreta o absolutamente continua, la distribución conjunta de la muestra suele expresarse mediante la función de masa de probabilidad o la función de densidad: + +- Para variables discretas: + +$$ +\begin{aligned} +p_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\ +& =\prod_{i=1}^{n} P\left(X=x_{i}\right)=\prod_{i=1}^{n} p_{F}\left(x_{i}\right), +\end{aligned} +$$ + +- Para variables absolutamente continuas: + +$$ +g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right) +$$ + +Exemple 1.4.1 Una moneda tiene una probabilidad $\theta$ de salir cara. Queremos estudiar la variable aleatoria: + +$$ +X= \begin{cases}1 & \text { si sale cara } \\ 0 & \text { si sale cruz }\end{cases} +$$ + +con densidad $P\{X=1\}=\theta, P\{X=0\}=1-\theta$. Es decir + +$$ +X \sim F_{\theta} \in \mathcal{F}=\left\{F_{\theta}=B(1, \theta): \theta \in(0,1)\right\} +$$ + +Supongamos que hacemos tres lanzamientos. Las posibles muestras son: + +| $X_{1}$ | $X_{2}$ | $X_{3}$ | Probabilidad | +| :---: | :---: | :---: | :---: | +| 1 | 1 | 1 | $\theta^{3}$ | +| 1 | 0 | 0 | $\theta(1-\theta)^{2}$ | +| 0 | 1 | 0 | $\theta(1-\theta)^{2}$ | +| 0 | 0 | 1 | $\theta(1-\theta)^{2}$ | +| 1 | 0 | 1 | $\theta^{2}(1-\theta)$ | +| 1 | 1 | 0 | $\theta^{2}(1-\theta)$ | +| 0 | 1 | 1 | $\theta^{2}(1-\theta)$ | +| 0 | 0 | 0 | $(1-\theta)^{3}$ | + +El muestreo ha especificado la distribución conjunta de la muestra a través de la distribución desconocida $F_{\theta}$. Si escribimos la función de probabilidades de la variable aleatoria como $f_{\theta}(x)=\theta^{x}(1-\theta)^{1-x}$, entonces la función de probabilidades de la muestra la podemos expresar como: + +$$ +g_{\theta}\left(x_{1}, x_{2}, x_{3}\right)=\theta^{x_{1}+x_{2}+x_{3}}(1-\theta)^{3-\left(x_{1}+x_{2}+x_{3}\right)} +$$ + +### Estadísticos + +#### Definición + +Para lograr el objetivo de realizar inferencias sobre la población a partir de la muestra, solemos basarnos en la realización de cálculos sobre la muestra para tratar de obtener la información que deseamos. En este proceso aparecen los conceptos de estadístico y el caso particular, que más nos interesa a nosotros, de estimador. Un estadístico es una función de la muestra que no depende del valor del parámetro. + +Definició 1.4 Dada una muestra aleatoria simple $X_{1}, X_{2}, \ldots, X_{n}$ y una función medible $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}$, entonces $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ es un vector aleatorio (variable aleatoria cuando $k=1$ ). Si $T$ no depende de $\theta$ (donde $\theta$ es un parámetro a especificar en $F_{\theta}$ ), entonces $T$ recibe el nombre de estadístico. + +Solo por su nombre, parece evidente que un estimador de un parámetro $\theta$ será alguna función de la muestra que sirva para aproximar, en algún sentido, el valor desconocido de $\theta$. Si añadimos la condición razonable de que un estimador no pueda tomar valores que no puede tomar el parámetro, podemos dar la siguiente definición. + +Definició 1.5 Un estimador de un parámetro $\theta$ es un estadístico $T$ cuyo recorrido es el espacio de los parámetros, es decir: + +$$ +\begin{array}{ccc} +T: & \mathbb{R}^{n} & \longrightarrow \\ +\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \longrightarrow \\ +\left(t_{1}, \ldots, t_{k}\right) \quad \in \Theta \subset \mathbb{R}^{k} +\end{array} +$$ + +Aquí tienes el texto traducido al castellano manteniendo toda la notación en LaTeX: + +#### Distribución en el muestreo de un estadístico + +Dado un estadístico $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ nos interesa conocer su distribución de probabilidad, ya que para hacer inferencia necesitaremos hacer cálculos del tipo + +$$ +P\left[T\left(X_{1}, X_{2}, \ldots, X_{n}\right)>t_{0}\right] +$$ + +La distribución de probabilidad del estadístico se denomina distribución muestral o distribución en el muestreo del estadístico. Encontrarla es un problema que puede ser desde bastante sencillo hasta extremadamente complicado. Algunas de las técnicas utilizadas para intentar resolverlo son las siguientes: + +- Uso de la técnica de cambio de variable. +- Uso de la función generadora de momentos. +- Aplicación del Teorema Central del Límite. + +Exemple 1.5.1 Sea $X \sim F_{\theta}$ una variable aleatoria absolutamente continua con densidad + +$$ +f_{\theta}(x)=e^{-(x-\theta)} e^{-e^{-(x-\theta)}} \quad \theta \in \mathbb{R} +$$ + +y consideremos el estadístico + +$$ +T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} e^{-X_{i}} +$$ + +Si aplicamos el teorema de cambio de variable unidimensional, se obtiene fácilmente que la variable aleatoria $Y=e^{-X}$ sigue una distribución exponencial de parámetro $e^{-\theta}$, de donde la suma seguirá una distribución gamma $T \sim \Gamma\left(e^{-\theta}, n\right)$. + +Exemple 1.5.2 Supongamos que $X$ representa el número de averías en una máquina al cabo de un mes. Este valor varía mes a mes. Sea $\bar{X}$ la media de averías en $n$ meses. Si $X$ sigue una distribución de Poisson $P(\lambda)$, ¿cuál es la distribución de $\bar{X}$ ? +Como la suma de Poisson i.i.d. es $\sum_{i=1}^{n} X_{i} \sim P(n \lambda)$ + +$$ +P[\bar{X}=r]=P\left[\sum_{i=1}^{n} X_{i}=n r\right]=\frac{e^{-n \lambda}(n \lambda)^{n r}}{(n r)!} +$$ + +Como ocurre en este ejemplo, uno de los estadísticos para el cual a menudo deseamos calcular la distribución en el muestreo es la media aritmética. Una manera útil de hacerlo es con la función generadora de momentos y la aplicación del siguiente lema. + +Lema 1 Si $X$ es una v.a. con $M_{X}(t)$ como función generadora de momentos, entonces la f.g.m. de $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ es + +$$ +M_{\bar{X}_{n}}(t)=\left[M_{X}(t / n)\right]^{n} +$$ + +##### Demostración: + +La demostración es inmediata a partir de la definición o por las propiedades de la función generadora de momentos. + +Si aplicamos directamente la definición de la f.g.m tenemos: + +$$ +\begin{aligned} +E\left(e^{t \bar{X}_{n}}\right) & =E\left(e^{t \frac{1}{n} \sum_{i=1}^{n} X_{i}}\right)=E\left(\prod_{i=1}^{n} e^{\frac{t}{n} X_{i}}\right)=\prod_{i=1}^{n} E\left(e^{\frac{t}{n} X_{i}}\right) \\ +& =\prod_{i=1}^{n} M_{X_{i}}(t / n)=\left[M_{X}(t / n)\right]^{n} +\end{aligned} +$$ + +Si usamos las propiedades de la f.g.m tenemos: + +1. Dado que $M_{a X}(t)=M_{X}(a t)$ y si $a=\frac{1}{n}$, entonces $M_{\bar{X}}(t)=M_{\sum_{i=1}^{n} X_{i}}(t / n)$. +2. $M_{\sum_{i=1}^{n} X_{i}}(t / n) \stackrel{\text { ind }}{=} \prod_{i=1}^{n} M_{X_{i}}(t / n) \stackrel{\text { id }}{=}\left[M_{X}(t / n)\right]^{n}$. + +Exemple 1.5.3 Para una variable aleatoria $X \sim N(\mu, \sigma)$ y por tanto $M_{X}(t)=$ $\exp \left(t \mu+\frac{t^{2} \sigma^{2}}{2}\right)$, entonces + +$$ +\begin{aligned} +M_{\bar{X}_{n}}(t) & =\left[\exp \left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right]^{n} \\ +& =\exp \left[n\left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right] \\ +& =\exp \left[t \mu+\frac{1}{2} t^{2}\left(\frac{\sigma}{\sqrt{n}}\right)^{2}\right] +\end{aligned} +$$ + +que es la función generadora de momentos de una variable $N(\mu, \sigma / \sqrt{n})$. + +### La distribución empírica + +#### Definición + +En el apartado anterior hemos visto que a partir de una muestra $X_{1}, X_{2}, \ldots, X_{n}$ es interesante considerar la distribución muestral como la distribución conjunta del vector aleatorio $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, sin que intervenga una realización concreta de la muestra $x_{1}, x_{2}, \ldots, x_{n}$. Un enfoque diferente consiste en asociar una distribución particular directamente a las observaciones $x_{1}, x_{2}, \ldots, x_{n}$ con la intención de que, en tanto que la muestra "representa" la v.a. $X$, esta distribución asociada a la muestra $F_{n}(x)$ emule la distribución de la población. Esta distribución se denomina distribución empírica o distribución muestral y se define así: + +$$ +F_{n}(x)=\frac{k(x)}{n} +$$ + +donde $k(x)$ es el número de datos muestrales menores o iguales que $x$. En la práctica se construye por ordenación de la muestra + +$$ +x_{1}, x_{2}, \ldots, x_{n} \longrightarrow x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} +$$ + +y con la siguiente definición: + +$$ +F_{n}(x)= \begin{cases}0 & \text { si } x0 +$$ + +De modo que resulta que $Y=\sum_{i=1}^{k} X_{i}^{2}$ tiene una distribución gamma $G\left(\frac{1}{2}, \frac{k}{2}\right)$ y su f.g.m. es + +$$ +M(t)=(1-2 t)^{-k / 2} \quad \text { si } t<1 / 2 +$$ + +##### Propiedades + +1. Si recordamos que para $X \sim G(p, \alpha)$ entonces $E(X)=\frac{p}{\alpha} \mathrm{y} \operatorname{var}(X)=$ $\frac{p}{\alpha^{2}}$, resulta + +$$ +E(Y)=\frac{k / 2}{1 / 2}=k \quad \operatorname{var}(Y)=\frac{k / 2}{1 / 4}=2 k +$$ + +2. De la aditividad (reproductividad) de las leyes gamma se deduce también la reproductividad de la chi-cuadrado $\chi^{2}$, es decir + +$$ +Y_{1}^{2} \sim \chi_{n_{1}}^{2}, Y_{2}^{2} \sim \chi_{n_{2}}^{2} \quad \text { indep. } \longrightarrow Y_{1}^{2}+Y_{2}^{2} \sim \chi_{n_{1}+n_{2}}^{2} +$$ + +3. Como $Y$ es la suma de v.a. independientes $X_{i}^{2} \sim \chi_{1}^{2}$ se verifica + +$$ +\frac{Y-k}{\sqrt{2 k}} \xrightarrow{\mathcal{L}} N(0,1) +$$ + +Pero es mejor la aproximación de Fisher + +$$ +\sqrt{2 \chi_{k}^{2}}-\sqrt{2 k-1} \xrightarrow{\mathcal{L}} N(0,1) +$$ + +de donde se obtiene para valores de $k \geq 30$ + +$$ +\chi_{k}^{2} \stackrel{\text { aprox }}{=} \frac{1}{2}(Z+\sqrt{2 k-1})^{2} +$$ + +donde $Z \sim N(0,1)$. + +#### Distribución $t$ de Student + +Sean $Y, Z$ dos variables aleatorias independientes con distribuciones $Z \sim$ $N(0,1)$ y $Y \sim \chi_{m}^{2}$, entonces se dice que la variable aleatoria + +$$ +t=\frac{Z}{\sqrt{Y / m}} +$$ + +tiene una distribución $t$ de Student con $m$ grados de libertad. +Su función de densidad es + +$$ +f(t)=\frac{\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \sqrt{m \pi}}\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \quad t \in \mathbb{R} +$$ + +Esta expresión se obtiene de la resolución del correspondiente problema de cambio de variable para encontrar la distribución de un cociente. + +Se trata de una distribución unimodal y simétrica respecto al cero. La distribución depende de $m$, que llamamos los grados de libertad (g.l.). A medida que $m$ crece, la forma acampanada se va "cerrando", acercándose a la ley normal: + +$$ +\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \xrightarrow{m \rightarrow \infty} e^{-t^{2} / 2} +$$ + +Este hecho es muy relevante en inferencia estadística. + +##### Propiedades + +1. Si $m=1$, entonces la $t$ es una Cauchy y, en particular, no tiene esperanza. +2. Para $m>1, E(t)=0$ y para $m>2, \operatorname{var}(t)=m /(m-2)$. +3. Cuando $m \rightarrow \infty$, entonces $t \xrightarrow{P} N(0,1)$. + +#### La distribución $F$ de Fisher + +Esta distribución aparece cuando se considera un cociente entre dos distribuciones chi-cuadrado $U \sim \chi_{m}^{2}, V \sim \chi_{n}^{2}$ con $m$ y $n$ g.l. respectivamente. En concreto decimos que la variable aleatoria + +$$ +F=\frac{U / m}{V / n} +$$ + +sigue una distribución $F$ de Fisher con $m$ y $n$ grados de libertad. La función de densidad tiene la forma: + +$$ +f(x)=\frac{m^{m / 2} n^{n / 2} \Gamma[(m+n) / 2]}{\Gamma(m / 2) \Gamma(n / 2)} \cdot \frac{x^{m / 2-1}}{(m x+n)^{(m+n) / 2}} \quad \text { para } x>0 +$$ + +##### Propiedades + +1. La esperanza y la varianza son + +$$ +E(F)=\frac{n}{n-2} \quad \operatorname{var}(F)=\frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)} +$$ + +2. Esta distribución tiene una moda en $x=\frac{m-2}{m} \cdot \frac{n}{n+2}$, siempre que $m>2$. +3. Si $F \sim F_{m, n}$, entonces resulta que $1 / F \sim F_{n, m}$ y por lo tanto: + +$$ +P(F \leq x)=P\left(\frac{1}{F} \geq \frac{1}{x}\right)=1-P\left(\frac{1}{F} \leq \frac{1}{x}\right) +$$ + +Esta propiedad es de gran utilidad en el uso de las tablas. +4. Cuando $n \rightarrow \infty, F_{m, \infty} \xrightarrow{\mathcal{L}} \chi_{m}^{2}$. +5. Cuando $m \rightarrow \infty$ y $n \rightarrow \infty$, entonces $F_{m, n} \xrightarrow{\mathcal{L}} 1$. + +## ESTIMACIÓN PUNTUAL + +### El problema de la estimación puntual + +Informalmente, la estimación de parámetros consiste en buscar aproximaciones a los valores de estos, calculables a partir de una muestra, que sean lo más precisas posible. El problema, claro, es que para medir cuán precisas son estas aproximaciones sería necesario conocer los valores de los parámetros y, como estos son siempre desconocidos, debemos basarnos en el uso de estimadores con buenas propiedades que, en algún sentido, nos garanticen esa proximidad. +Más formalmente podemos plantear el problema de la siguiente manera: +Sea $X$ una v.a. con distribución $F_{\theta}$ donde $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right) \in \Theta \subset \mathbb{R}^{k}$ y sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra de $n$ v.a. de $X$. El problema de la estimación puntual consiste en obtener alguna aproximación de $\theta$ en base a la información disponible en la muestra mediante un estimador de $\theta$ que definimos a continuación. +Definició 2.1 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X$ con distribución $F_{\theta}$ donde $\theta \in \Theta \subset \mathbb{R}^{k}$. Un estadístico $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ se denomina un estimador puntual de $\theta$ si $T$ es una aplicación de $\mathbb{R}^{n}$ en $\Theta$, es decir, si toma valores sobre el mismo conjunto que los parámetros. + +Exemple 2.1.1 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de una v.a. de Poisson $X \sim P(\lambda)$. Para estimar $\lambda$ podemos utilizar: + +$$ +\begin{aligned} +& T_{1}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\ +& T_{2}=s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} +\end{aligned} +$$ + +ya que $E(X)=\operatorname{var}(X)=\lambda$, pero también + +$$ +\begin{aligned} +T_{3} & =\frac{2}{n(n+1)} \sum_{i=1}^{n} X_{i} \cdot i \\ +T_{4} & =X_{i} +\end{aligned} +$$ + +Ejemplo 2.1.2 Sea $X_{1}, X_{2}, \ldots, X_{n}$ una m.a.s. de $X \sim B(1, p)$, con $p$ desconocido. Podemos estimar p de las siguientes maneras: + +$$ +\begin{aligned} +& T_{1}=\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i} \\ +& T_{2}=1 / 2 \\ +& T_{3}=\left(X_{1}+X_{2}\right) / 2 +\end{aligned} +$$ + +En cada caso resulta claro que algunos estimadores no son muy razonables mientras que la decisión entre los otros no está necesariamente clara. Básicamente debemos ocuparnos de dos problemas: + +- Dado un modelo estadístico $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$, ¿cómo podemos obtener estimadores de $\theta$ que tengan "buenas" propiedades? +- Dado varios estimadores para un mismo parámetro ¿cómo podemos escoger el mejor en base a algún criterio? + +Para poder alcanzar estos dos objetivos empezaremos por estudiar las propiedades de los estimadores, así como las medidas de optimalidad que podremos utilizar para decidir entre varios estimadores. +De entrada nos restringiremos al caso en que $\Theta \subseteq \mathbb{R}$ o en que queremos aproximar alguna función $g(\theta)$ de los parámetros donde $g$ es del tipo $g: \Theta \rightarrow$ $\mathbb{R}$. + +#### Criterios de optimalidad de estimadores. El Riesgo + +Una forma de poder comparar entre diversos estimadores consiste en definir una función de pérdida que nos permita cuantificar de alguna manera la pérdida, o coste asociado, al estimar el valor real del parámetro, es decir, $\theta$, mediante la aproximación que proporciona un estimador, es decir, $t$. + +Definició 2.2 Una función de pérdida es una aplicación + +$$ +\begin{aligned} +L: & \Theta \times \Theta \rightarrow \mathbb{R} \\ +& (\theta, t) \rightarrow L(\theta, t) +\end{aligned} +$$ + +que verifica: +a) $L(\theta, t) \geq 0, \quad \forall \theta, t \in \Theta$ +b) $L(\theta, t)=0$, si $\theta=t$ +c) $L(\theta, t) \leq L\left(\theta, t^{\prime}\right)$, si $d(\theta, t) \leq d\left(\theta, t^{\prime}\right)$ donde $d$ es una distancia en $\Theta$. + +Por ejemplo, son funciones de pérdida: + +$$ +\begin{gathered} +L_{1}(\theta, t)=|\theta-t| \quad L_{2}(\theta, t)=(\theta-t)^{2} \\ +L_{3}(\theta, t)=\left|\frac{\theta-t}{\theta}\right| \quad L_{4}(\theta, t)=\left(\frac{\theta-t}{\theta}\right)^{2} \\ +L_{5}(\theta, t)= \begin{cases}c>0 & \text { si }|\theta-t|>\epsilon \\ +0 & \text { si }|\theta-t| \leq \epsilon\end{cases} +\end{gathered} +$$ + +Los valores que toma la función de pérdida dependen de los valores del estimador y de los del parámetro. Para una muestra dada podemos conocer el valor que toma el estimador, pero no el valor del parámetro. Una posibilidad que nos permitirá comparar los posibles estimadores, para un valor dado del parámetro, consiste en promediar los diferentes valores de $L(\theta, t)$ sobre todos los posibles valores de $T$. A este promedio lo llamamos el riesgo del estimador $T$ asociado a cada valor posible $\theta$ del parámetro y lo escribimos $R_{T}(\theta)$. + +Definició 2.3 Sea $H_{\theta}(t)$ la distribución en el muestreo de T, es decir + +$$ +T\left(X_{1}, X_{2}, \ldots, X_{n}\right) \sim H_{\theta}(t)=P_{\theta}(T \leq t) +$$ + +y $h_{\theta}(t)$ representa la función de densidad de probabilidad, si $H_{\theta}(t)$ es absolutamente continua, o $h_{\theta}\left(t_{i}\right)$ la función de masa de probabilidad si $H_{\theta}\left(t_{i}\right)$ es discreta. Entonces el riesgo del estimador $T$ para estimar $\theta$ se define como: + +$$ +\begin{aligned} +R_{T}(\theta) & =E_{\theta}\left[L\left(\theta, T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)\right]=\int_{\mathbb{R}} L(\theta, t) d H_{\theta}(t) \\ +& = \begin{cases}\int_{-\infty}^{+\infty} L(\theta, t) h_{\theta}(t) d t & \text { si } H_{\theta}(t) \text { es absolutamente continua, } \\ +\sum_{\forall t_{i}} L(\theta, t) h_{\theta}\left(t_{i}\right) & \text { si } H_{\theta}(t) \text { es discreta }\end{cases} +\end{aligned} +$$ + +El riesgo permite comparar dos estimadores. +Definició 2.4 Diremos que un estimador $T_{1}$ es preferible a otro $T_{2}$ si: + +$$ +\begin{aligned} +& R_{T_{1}}(\theta) \leq R_{T_{2}}(\theta), \forall \theta \in \Theta, y \\ +& R_{T_{1}}(\theta)0 \quad \lim _{n \rightarrow \infty} P\left\{\left|T_{n}-g(\theta)\right|>\varepsilon\right\}=0 +$$ + +Observemos que: + +1. Se trata de un concepto asintótico: Hablamos de ?sucesiones de estimadores consistentes? más que de estimadores propiamente dichos. +2. La definición puede reforzarse si, en lugar de considerar convergencia en probabilidad (consistencia débil), consideramos convergencia casi segura o en media cuadrática: + +- $T_{n}$ es fuertemente consistente si $T_{n} \xrightarrow{\text { c.s. }} g(\theta)$ +- $T_{n}$ es consistente en media- $r$ si $E_{\theta}\left[\left|T_{n}-g(\theta)\right|^{r}\right] \longrightarrow 0$ + +Exemple 2.2.5 Muchos estimadores consistentes lo son como consecuencia de las leyes de los grandes números. Recordemos que la Ley débil de los Grandes Números (Tchebychev) afirma que, dada una sucesión de v.a. independientes e idénticamente distribuidas con medias $\mu<\infty$ y varianzas $\sigma^{2}<\infty$, entonces + +$$ +\bar{X}_{n} \xrightarrow{P} \mu +$$ + +Como consecuencia de esta ley y dado que una muestra aleatoria simple es i.i.d., por definición, podemos afirmar que $\bar{X}_{n}$ es consistente para estimar $\mu$. + +Exemple 2.2.6 La sucesión $T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}$ es consistente para estimar el máximo de una distribución uniforme en $[0, \theta]$ : + +$$ +P\left[\left|\max _{1 \leq i \leq n}\left\{X_{i}\right\}-\theta\right|>\varepsilon\right]=P\left[\theta-\max _{1 \leq i \leq n}\left\{X_{i}\right\}>\varepsilon\right] +$$ + +ya que $X_{i} \in[0, \theta] y$, por lo tanto, podemos escribir: + +$$ +\begin{aligned} +P\left[\theta-\varepsilon>\max _{1 \leq i \leq n}\left\{X_{i}\right\}\right] & =P\left[\max _{1 \leq i \leq n}\left\{X_{i}\right\}<\theta-\varepsilon\right] \\ +& =\left(\frac{\theta-\varepsilon}{\theta}\right)^{n}=\left(1-\frac{\varepsilon}{\theta}\right)^{n} \underset{n \rightarrow \infty}{\longrightarrow} 0 +\end{aligned} +$$ + +Es inmediato comprobar que + +$$ +E\left[\left(\theta-T_{n}\right)^{2}\right]=\left(1-\frac{2 n}{n+1}+\frac{n}{n+2}\right) \theta^{2} +$$ + +que también tiende a cero cuando $n \rightarrow \infty$, y por lo tanto $T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}$ también es consistente en media cuadrática. + +Normalmente, cuando se habla de consistencia, se hace referencia a la convergencia en probabilidad, es decir, $T_{n}$ es consistente si $\lim _{n \rightarrow \infty} P\left(\left|T_{n}-g(\theta)\right|>\right.$ $\varepsilon)=0$. Si el estimador no tiene sesgo, estamos en la situación de aplicar la desigualdad de Tchebychev ${ }^{1}$ : +Si $E\left(T_{n}\right)=g(\theta)$, entonces + +$$ +P\left(\left|T_{n}-g(\theta)\right|>\varepsilon\right)=P\left(\left|T_{n}-E\left(T_{n}\right)\right|>\varepsilon\right) \underset{\text { Tchebychev }}{\leq} \frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} +$$ + +Así, para intentar establecer la consistencia de $T$, debemos probar que + +$$ +\frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +$$ + +Exemple 2.2.7 Sea $M_{n}=\sum_{i=1}^{n} a_{i} X_{i}$ una combinación lineal de los valores de la muestra con coeficientes tales que $\sum_{i=1}^{n} a_{i}=1$ y algún $a_{i}>0$. ¿Es consistente $M_{n}$ para estimar $E(X)$ ? +Comencemos por ver que $M_{n}$ no tiene sesgo + +$$ +\begin{aligned} +E\left(M_{n}\right) & =E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} E\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i} E\left(X_{i}\right) \stackrel{\text { i.i.d. }}{=} \sum_{i=1}^{n} a_{i} E(X)=E(X) +\end{aligned} +$$ + +[^1]Calculemos la varianza + +$$ +\begin{aligned} +\operatorname{var}\left(M_{n}\right) & =\operatorname{var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i}^{2} \operatorname{var}\left(X_{i}\right)=\operatorname{var}(X) \sum_{i=1}^{n} a_{i}^{2} +\end{aligned} +$$ + +Si aplicamos ahora la desigualdad de Tchebychev tenemos: + +$$ +P\left(\left|M_{n}-\mu\right|>\varepsilon\right) \leq \frac{\sigma^{2} \sum a_{i}^{2}}{\varepsilon^{2}} +$$ + +lo cual no tiene por qué tender a 0 cuando $n \rightarrow \infty$, y por lo tanto no podemos afirmar que el estimador es consistente. Por ejemplo, si $a_{1}=\frac{1}{2}, a_{2}=a_{3}=$ $\cdots=a_{n}=\frac{1}{2(n-1)}$ tendremos que $\lim _{n \rightarrow \infty} \sum a_{i}^{2}=\frac{1}{4}$. +Observamos que el resultado obtenido no puede asegurar la consistencia de $M_{n}$ para cualquier familia de coeficientes $a_{1}, \ldots, a_{n}$, aunque, obviamente, el estimador es consistente para alguno (caso $a_{i}=1 / n$ ). + +## Propiedades de los estimadores consistentes + +Muchas de las propiedades de los estimadores son consecuencia directa de las propiedades de la convergencia en probabilidad, que se pueden revisar, por ejemplo, en Martin Pliego (1998a) capítulo 11. + +1. Si $T_{n}$ es consistente para estimar $\theta$ y $g: \mathbb{R} \rightarrow \mathbb{R}$ es una función continua, entonces $g\left(T_{n}\right)$ es consistente para estimar $g(\theta)$. +2. Si $T_{1 n}$ y $T_{2 n}$ son consistentes para estimar $\theta_{1}$ y $\theta_{2}$ respectivamente, entonces +$a T_{1 n} \pm b T_{2 n}$ es consistente para estimar $a \theta_{1} \pm b \theta_{2}$ +$T_{1 n} \cdot T_{2 n}$ es consistente para estimar $\theta_{1} \cdot \theta_{2}$ +$T_{1 n} / T_{2 n}$ es consistente para estimar $\theta_{1} / \theta_{2}$, si $\theta_{2} \neq 0$. +3. Sea $a_{r}=(1 / n) \sum X_{i}^{r}$ el momento muestral de orden $r$. Como se ha visto en el capítulo 1 , la esperanza de $a_{r}$ es + +$$ +E\left(a_{r}\right)=E\left[\frac{1}{n} \sum X_{i}^{r}\right]=\frac{1}{n} \sum E\left(X^{r}\right)=\frac{1}{n} n \alpha_{r}=\alpha_{r} +$$ + +donde $\alpha_{r}$ es el momento poblacional de orden $r$. Así pues, $a_{r}$ no tiene sesgo para estimar $\alpha_{r}$. Su varianza es + +$$ +\begin{aligned} +\operatorname{var}\left(a_{r}\right) & =\operatorname{var}\left(\frac{1}{n} \sum X_{i}^{r}\right)=\frac{1}{n^{2}} \sum \operatorname{var}\left(X^{r}\right)=\frac{1}{n} E\left[X^{r}-E\left(X^{r}\right)\right]^{2} \\ +& =\frac{1}{n} E\left[X^{r}-\alpha_{r}\right]^{2}=\frac{1}{n} E\left(X^{2 r}+\alpha_{r}^{2}-2 \alpha_{r} X^{r}\right) \\ +& =\frac{1}{n}\left(\alpha_{2 r}-\alpha_{r}^{2}\right) . +\end{aligned} +$$ + +Y si aplicamos la desigualdad de Tchebychev, se obtiene + +$$ +P\left(\left|a_{r}-\alpha_{r}\right| \geq \varepsilon\right) \leq \frac{E\left(a_{r}-\alpha_{r}\right)^{2}}{\varepsilon^{2}}=\frac{\operatorname{var}\left(a_{r}\right)}{\varepsilon^{2}}=\frac{\alpha_{2 r}-\alpha_{r}^{2}}{n \varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +$$ + +Así pues, hemos visto que los momentos muestrales son estimadores consistentes de los momentos poblacionales. + +#### Eficiencia + +Como ya hemos visto, un objetivo deseable en la búsqueda de estimadores óptimos es considerar estimadores de "mínimo riesgo" o, si nos basamos en la función de pérdida cuadrática, estimadores que minimicen el error cuadrático medio $E(\theta-T)^{2}$. +En general, es difícil encontrar estimadores que hagan mínimo el EQM para todos los valores de $\theta$; sin embargo, si nos restringimos a los estimadores sin sesgo, el problema tiene solución en una gama más amplia de situaciones. Supongamos que $T_{1}, T_{2}$ son dos estimadores sin sesgo de un parámetro $\theta$. Para estos estimadores tenemos que + +$$ +\begin{aligned} +& E Q M_{T_{1}}(\theta)=\operatorname{var}_{\theta}\left(T_{1}\right)+b_{T_{1}}^{2}(\theta) \\ +& E Q M_{T_{2}}(\theta)=\operatorname{var}_{\theta}\left(T_{2}\right)+b_{T_{2}}^{2}(\theta) +\end{aligned} +$$ + +Si los estimadores no tienen sesgo $b_{T_{1}}(\theta)=b_{T_{2}}(\theta)=0$, el que tenga menor varianza tendrá el menor riesgo para estimar $\theta$. Si, por ejemplo, $\operatorname{var}\left(T_{1}\right) \leq$ $\operatorname{var}\left(T_{2}\right)$, diremos que $T_{1}$ es más eficiente que $T_{2}$ para estimar $\theta$. +Para dos estimadores con sesgo cero $b_{T_{i}}(\theta)=0$, el cociente + +$$ +E R=\frac{E Q M_{T_{1}}(\theta)}{E Q M_{T_{2}}(\theta)}=\frac{\operatorname{var}_{\theta}\left(T_{1}\right)}{\operatorname{var}_{\theta}\left(T_{2}\right)} +$$ + +se denomina eficiencia relativa de $T_{1}$ respecto a $T_{2}$. Si solo hay dos estimadores de $\theta$ puede ser fácil ver cuál es el más eficiente. Si hay más, la cosa se complica. El "más eficiente", en caso de que exista, se llamará el estimador sin sesgo de mínima varianza. + +Figura 2.2: Comparación de la eficiencia de dos estimadores para un $\theta$ dado + +Definició 2.8 Sea $\mathcal{S}(\theta)$ la clase de los estimadores sin sesgo de $\theta$ y con varianza. Si para todos los estimadores de esta clase $T \in \mathcal{S}(\theta)$ se verifica que + +$$ +\operatorname{var}_{\theta}(T) \leq \operatorname{var}_{\theta}\left(T^{*}\right) \quad \forall T \in \mathcal{S}(\theta) +$$ + +diremos que $T^{*}$ es un estimador sin sesgo de mínima varianza de $\theta$. Si la desigualdad es cierta $\forall \theta \in \Theta$, diremos que $T^{*}$ es un estimador sin sesgo uniforme de mínima varianza (ESUMV) ${ }^{2}$. + +### Información de Fisher y cota de CramerRao + +Obviamente, en un problema de estimación lo ideal es disponer de un ESUMV, pero esto no siempre es posible. Nos enfrentamos a varios problemas: + +1. ¿Existen ESUMV para un parámetro $\theta$ en un modelo dado? +2. En caso de que exista el ESUMV, ¿sabremos cómo encontrarlo? + +Este problema tiene solución, bajo ciertas condiciones, utilizando los teoremas de Lehmann-Scheffé y Rao-Blackwell y el concepto de suficiencia, que se discute más adelante. + +[^2]Una solución parcial aparece gracias al Teorema de Cramer-Rao, que permite establecer una cota mínima para la varianza de un estimador. Cuando un estimador alcanza esta cota, sabemos que es un estimador de varianza mínima. +Informalmente, este resultado sugiere que, bajo ciertas condiciones de regularidad, si $T$ es un estimador insesgado de un parámetro $\theta$, su varianza está acotada por una expresión que llamamos cota de Cramer-Rao $\operatorname{CCR}(\theta)$ + +$$ +\operatorname{var}(T) \geq \operatorname{CCR}(\theta) +$$ + +Antes de establecer con precisión este teorema, consideremos el concepto de información de un modelo estadístico introducido por Fisher. + +## Información y verosimilitud de un modelo estadístico + +Una idea bastante razonable es esperar que un estimador funcione mejor en su intento de aproximarse al valor de un parámetro cuanto más información tenga para hacerlo. Por este motivo, la varianza del estimador y la información se presentan como cantidades opuestas: a mayor información, menor error (varianza) en la estimación: + +$$ +\operatorname{var}\left(T_{n}\right) \propto \frac{1}{I_{n}(\theta)} +$$ + +Ahora nos encontramos con el problema de cómo definir la cantidad de información (contenida en una muestra/de un modelo), para que se ajuste a la idea intuitiva de información. Fisher lo hizo a través de la función de verosimilitud. +Sea un modelo estadístico $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ y una m.a.s. $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, que toma valores $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Si $X$ es discreta, la función de masa de probabilidad indica, en términos generales, la probabilidad de observar la muestra, dado un valor del parámetro. Si $X$ es absolutamente continua, esta interpretación ya no es tan directa. + +$$ +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)= \begin{cases}P_{\theta}\left[X=x_{1}\right] \cdots P_{\theta}\left[X=x_{n}\right], & \text { si } X \text { es discreta } \\ f_{\theta}\left(x_{1}\right) \cdots f_{\theta}\left(x_{n}\right), & \text { si } X \text { es abs. continua }\end{cases} +$$ + +La función de verosimilitud se obtiene si consideramos, en la expresión anterior, que lo que queda fijado es la muestra y no el parámetro. Es decir, fijada una muestra x, la función de verosimilitud indica qué tan verosímil resulta, para cada valor del parámetro, que el modelo la haya generado. + +Exemple 2.3.1 Supongamos que tenemos una m.a.s. $x_{1}, x_{2}, \ldots, x_{n}$ de tamaño n de una variable aleatoria $X$, que sigue una ley de Poisson de parámetro $\lambda$ desconocido. + +$$ +X \sim F_{\lambda}=P(\lambda), \quad \lambda>0 +$$ + +La función de probabilidad de la muestra, fijado $\lambda$, es: + +$$ +g_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +$$ + +y la función de verosimilitud del modelo, fijada $\mathbf{x}$, es: + +$$ +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \lambda\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +$$ + +Aunque la forma funcional de $g_{\lambda}(\mathbf{x})$ y $L(\mathbf{x} ; \lambda)$ es la misma, su aspecto es diferente, como se puede comprobar en la figura 2.3, donde damos valores a $g_{\lambda}(\mathbf{x})$, variando $\mathbf{x}$ o a $L(\lambda ; \mathbf{x})$ variando $\lambda$. + +## Información de Fisher + +Para calcular la cantidad de información de Fisher contenida en una muestra sobre un parámetro, es necesario considerar modelos estadísticos regulares, es decir, donde se cumplen las siguientes condiciones de regularidad. + +Definició 2.9 Diremos que $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ es un modelo estadístico regular si se verifican las siguientes condiciones: + +1. La población de donde proviene la muestra presenta un ?campo de variación? o soporte $S_{\theta}=\{x \mid f(x ; \theta)>0\}=S$ que no depende de $\theta$. +2. La función $L(\mathbf{x} ; \theta)$ admite, al menos, las dos primeras derivadas. +3. Las operaciones de derivación e integración son intercambiables. + +Definició 2.10 Sea $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ un modelo estadístico regular, es decir, donde se verifican las condiciones de regularidad 1-3 anteriores. Si $Z=\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)$, la cantidad de información de Fisher es + +$$ +I_{n}(\theta)=\operatorname{var}_{\theta}(Z)=\operatorname{var}_{\theta}\left(\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)\right) +$$ + +Figura 2.3: Probabilidad de la suma de $n=5$ valores muestrales para 10 muestras de la ley de Poisson con $\lambda=3$ versus la función de verosimilitud para una muestra observada. + +Las condiciones de regularidad son necesarias para calcular $E_{\theta}\left(Z^{2}\right)$. +A continuación, presentamos algunas propiedades de la información de Fisher. Puedes ver la demostración en Ruiz-Maya y Pliego (1995). + +1. La información de Fisher se puede expresar como: + +$$ +I_{n}(\theta)=E_{\theta}\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right] +$$ + +Esto se puede comprobar, ya que si aplicamos las condiciones de regularidad + +$$ +\begin{aligned} +E(Z) & =E\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)=\int_{S^{n}} \frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} \frac{\frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta}}{L(\mathbf{x} ; \theta)} L(\mathbf{x} ; \theta) d \mathbf{x}=\int_{S^{n}} \frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta} d \mathbf{x} \\ +& =\frac{\partial}{\partial \theta}\left(\int_{S^{n}} L(\mathbf{x} ; \theta) d \mathbf{x}\right)=\frac{\partial}{\partial \theta} 1=0 +\end{aligned} +$$ + +De forma que $E(Z)=0$, y por lo tanto, tendremos que $\operatorname{var}_{\theta}(Z)=$ $E_{\theta}\left(Z^{2}\right)$. +2. $I_{n}(\theta)=0$ si y solo si $L(\mathbf{x} ; \theta)$ no depende de $\theta$. +3. Dadas dos m.a.s. $\mathbf{x}_{1}, \mathbf{x}_{2}$ de tamaños $n_{1}, n_{2}$ de la misma población, se verifica: + +$$ +I_{n_{1}, n_{2}}(\theta)=I_{n_{1}}(\theta)+I_{n_{2}}(\theta) +$$ + +De manera que podemos considerar una muestra de tamaño $n$ como $n$ muestras de tamaño 1 : + +$$ +I_{n}(\theta)=\sum_{i=1}^{n} I_{1}(\theta)=n \cdot i(\theta), \text { siendo } i(\theta)=I_{1}(\theta) +$$ + +Es decir + +$$ +E\left(\frac{\partial \log (L(\mathbf{X} ; \theta))}{\partial \theta}\right)=n E\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right) +$$ + +4. Se verifica la siguiente relación: + +$$ +I_{n}(\theta)=E\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right]=-E\left[\frac{\partial^{2} \log L(\mathbf{X} ; \theta)}{\partial^{2} \theta}\right] +$$ + +Exemple 2.3.2 Vamos a calcular la cantidad de información de Fisher contenida en una m.a.s. extraída de una población $N(\mu, \sigma)$ con $\sigma=\sigma_{0}$ conocida. La función de verosimilitud es + +$$ +L(\mathbf{x} ; \mu)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}}=\left(2 \pi \sigma_{0}^{2}\right)^{-n / 2} \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}\right) +$$ + +y su logaritmo + +$$ +\log L(\mathbf{x} ; \mu)=-\frac{n}{2} \log \left(2 \pi \sigma_{0}^{2}\right)-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} +$$ + +Si derivamos respecto a $\mu$ + +$$ +\frac{\partial \log L(\mathbf{x} ; \mu)}{\mu}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)}{\sigma_{0}^{2}} +$$ + +de donde + +$$ +\begin{aligned} +I_{n}(\mu) & =E\left(\frac{\partial \log L(\mathbf{X} ; \mu)}{\partial \mu}\right)^{2}=E\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}{\sigma_{0}^{2}}\right)^{2} \\ +& =\frac{1}{\sigma_{0}^{4}} E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+\sum_{i \neq j}\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right] \\ +& =\frac{1}{\sigma_{0}^{4}} n \sigma_{0}^{2}=\frac{n}{\sigma_{0}^{2}} +\end{aligned} +$$ + +Este cálculo también puede hacerse a partir de la tercera propiedad de la información de Fisher: + +$$ +I_{n}(\mu)=n E\left[\frac{\partial \log f(X ; \mu)}{\partial \mu}\right]=n \frac{1}{\sigma_{0}^{2}}=\frac{n}{\sigma_{0}^{2}} +$$ + +## La desigualdad de Cramer-Rao + +Una vez establecidas las condiciones de regularidad y características anteriores podemos enunciar el teorema de Cramer-Rao (1945). + +Teorema 2.1 Dado un modelo estadístico regular $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$, es decir, un modelo donde se verifican las condiciones de regularidad enunciadas, cualquier estimador $T \in \mathcal{S}(\theta)$ de la clase de los estimadores no sesgados y con varianza verifica + +$$ +\operatorname{var}_{\theta}(T) \geq \frac{1}{I_{n}(\theta)} +$$ + +Demostración: +El estimador $T \in \mathcal{S}(\theta)$ no tiene sesgo, es decir que + +$$ +E(T)=\int_{S^{n}} T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta) d \mathbf{x}=\theta +$$ + +Si derivamos e introducimos la derivada bajo el signo de la integral, obtenemos + +$$ +\begin{aligned} +\frac{\partial}{\partial \theta} E(T) & =\int_{S^{n}} \frac{\partial}{\partial \theta}(T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta)) d \mathbf{x}=\int_{S^{n}} T(\mathbf{x}) \frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} T(\mathbf{x})\left(\frac{\frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta)}{L(\mathbf{x} ; \theta)}\right) L(\mathbf{x} ; \theta) d \mathbf{x} +\end{aligned} +$$ + +Así pues + +$$ +1=\frac{\partial}{\partial \theta} \theta=\frac{\partial}{\partial \theta} E(T)=E(T Z)=\int_{S^{n}} T(\mathbf{x}) \cdot Z L(\mathbf{x} ; \theta) d \mathbf{x} +$$ + +En resumen + +$$ +E(T)=\theta, E(T Z)=1, E(Z)=0, \operatorname{var}(Z)=I_{n}(\theta) +$$ + +Si ahora consideramos el coeficiente de correlación al cuadrado entre $T$ y $Z$, tenemos + +$$ +\rho^{2}(T, Z)=\frac{[\operatorname{cov}(T, Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)}=\frac{[E(T Z)-E(T) E(Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)} \leq 1 +$$ + +Si sustituimos los resultados hallados antes, obtenemos + +$$ +\frac{1}{\operatorname{var}(T) \cdot I_{n}(\theta)} \leq 1 +$$ + +de donde se deduce la desigualdad enunciada. + +Definició 2.11 Si un estimador alcanza la CCR (Cota de Cramer-Rao), diremos que es un estimador eficiente. + +Todo estimador eficiente es de mínima varianza en la clase $\mathcal{S}(\theta)$. Sin embargo, también puede suceder que exista un estimador de mínima varianza sin alcanzar necesariamente la CCR. + +Exemple 2.3.3 Sea $X \sim F_{\theta}=P(\lambda), \lambda>0$ (Poisson). Buscamos la $C C R$ de los estimadores de $\lambda$. + +$$ +\begin{aligned} +L(\mathbf{x} ; \lambda) & =\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} \\ +\log L(\mathbf{x} ; \lambda) & =-n \lambda+\left(\sum x_{i}\right) \log \lambda-\log \left(\prod_{i=1}^{n} x_{i}!\right) \\ +\frac{\partial \log (L(\mathbf{x} ; \lambda))}{\partial \lambda} & =-n+\frac{\sum x_{i}}{\lambda} \\ +E\left[\frac{\partial \log L(\mathbf{x} ; \lambda)}{\partial \lambda}\right]^{2} & =E\left[n^{2}+\left(\frac{\sum X_{i}}{\lambda}\right)^{2}-\frac{2 n \sum X_{i}}{\lambda}\right] \\ +& =n^{2}+\frac{1}{\lambda^{2}} E\left(\sum X_{i}\right)^{2}-\frac{2 n}{\lambda} n E(X) +\end{aligned} +$$ + +Aquí recordamos que la suma de variables de Poisson también es una Poisson, es decir: + +$$ +\sum X_{i} \sim P(n \lambda) +$$ + +por lo que + +$$ +E\left(\sum X_{i}\right)^{2}=\operatorname{var}\left(\sum X_{i}\right)+\left[E\left(\sum X_{i}\right)\right]^{2}=n \lambda+(n \lambda)^{2} +$$ + +Finalmente, se obtiene: + +$$ +E\left(Z^{2}\right)=n^{2}+\frac{n \lambda}{\lambda^{2}}+\frac{n^{2} \lambda^{2}}{\lambda^{2}}-2 n^{2}=\frac{n}{\lambda} +$$ + +De esta forma, + +$$ +I_{n}(\lambda)=\frac{n}{\lambda} \quad \Longrightarrow \quad \operatorname{var}(T) \geq \frac{\lambda}{n} +$$ + +Sabemos que la media aritmética verifica + +$$ +\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\lambda}{n} +$$ + +lo cual coincide con la cota de Cramer-Rao, indicando que $\bar{X}_{n}$ es el estimador eficiente de $\lambda$. + +Exemple 2.3.4 Para calcular la CCR o, dicho de otro modo, para que el inverso de + +$$ +E\left[\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta}\right]^{2} +$$ + +sea realmente la cota minima de $\operatorname{var}(\widehat{\theta})$ en la clase $\mathcal{S}(\theta)$, es necesario que se verifiquen las condiciones de regularidad. De lo contrario, se pueden obtener resultados absurdos. +Consideremos, por ejemplo, una variable aleatoria $X$ con función de densidad + +$$ +f(x ; \theta)=\frac{3}{\theta^{3}} x^{2} \mathbf{1}_{[0, \theta]}(x) +$$ + +y esperanza + +$$ +E(X)=\int_{0}^{\theta} x \cdot \frac{3}{\theta^{3}} x^{2} d x=\frac{3}{4} \theta +$$ + +Ya que $\theta=\frac{4}{3} E(X)$, esto sugiere estimar $\theta$ mediante $\widehat{\theta}=\frac{4}{3} \bar{X}$, que no tiene sesgo. +Por otro lado, si calculamos la varianza de $X$, tenemos + +$$ +\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{3}{80} \theta^{2} +$$ + +Sabemos que $E(\widehat{\theta})=\theta, y$ además + +$$ +\operatorname{var}(\widehat{\theta})=\operatorname{var}\left(\frac{4}{3} \bar{X}\right)=\frac{\theta^{2}}{15 n} +$$ + +Si evaluamos $I_{n}(\theta)$ en su forma más sencilla, obtenemos + +$$ +I_{n}(\theta)=n I(\theta)=n \frac{9}{\theta^{2}} +$$ + +Así, la CCR resulta ser mayor que la varianza de este estimador: + +$$ +\operatorname{var}(\widehat{\theta})=\frac{\theta^{2}}{15 n}<\frac{\theta^{2}}{9 n} +$$ + +lo cual es un resultado absurdo. Este error se debe a no considerar que el soporte de $X$ depende de $\theta$, por lo que no se cumplen las condiciones de regularidad, y la cota de Cramer-Rao no existe. + +También ocurre que la varianza de un estimador es inferior a la CCR aunque esta exista. Esto puede pasar, por ejemplo, con algún estimador sesgado. + +## Caracterización del estimador eficiente + +Calcular la cota de Cramer-Rao es una cosa; encontrar el estimador que alcanza esta cota y, en consecuencia, tiene varianza mínima es otra. La siguiente caracterización permite, en algunos casos, obtener directamente la forma del estimador eficiente. + +Teorema 2.2 Sea $T$ el estimador eficiente de $\theta$, entonces se verifica + +$$ +\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(X_{i} ; \theta\right)=K(\theta, n)(T-\theta) +$$ + +donde $K(\theta, n)$ es una función que depende de $\theta$ y de $n$ y que suele coincidir con la información de Fisher. +Demostración: +Si $T$ es el estimador eficiente, entonces + +$$ +\operatorname{var}(T)=\frac{1}{I_{n}(\theta)} +$$ + +y, por lo tanto, $\rho^{2}(T, Z)=1$. +En general, dadas dos variables aleatorias $X$ e $Y$, se sabe que si $\rho(X, Y)=1$, entonces + +$$ +Y-E(Y)=\beta(X-E(X)) +$$ + +Si aplicamos este resultado a $T$ y $Z$, tenemos + +$$ +\begin{aligned} +Z-E(Z) & =\beta(T-E(T)) \\ +\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} & =K(\theta, n)(T-\theta) +\end{aligned} +$$ + +Exemple 2.3.5 En el caso de la distribución de Poisson, tenemos + +$$ +\begin{aligned} +f(x ; \lambda) & =e^{-\lambda} \frac{\lambda^{x}}{x!} \\ +\log f(x ; \lambda) & =-\lambda+x \log (\lambda)-\log (x!) \\ +\frac{\partial \log f(x ; \lambda)}{\partial \lambda} & =-1+x \frac{1}{\lambda} \\ +Z=\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \lambda\right)}{\partial \lambda} & =\sum_{i=1}^{n}\left(-1+\frac{X_{i}}{\lambda}\right) +\end{aligned} +$$ + +Queremos ver que + +$$ +\sum_{i=1}^{n}\left(\frac{X_{i}}{\lambda}-1\right)=K(\theta, n)(T-\theta) +$$ + +Si reescribimos esta expresión, obtenemos + +$$ +\frac{1}{\lambda} \sum_{i=1}^{n} X_{i}-n=\frac{1}{\lambda}\left(\sum_{i=1}^{n} X_{i}-n \lambda\right)=\frac{n}{\lambda}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\lambda\right) +$$ + +Así, $K(\lambda, n)=\frac{n}{\lambda}$, que coincide con la información de Fisher $I_{n}(\lambda)$. Por el teorema anterior, se deduce que $T=\bar{X}$ es el estimador eficiente $y$, por lo tanto, de mínima varianza. + +### Estadísticos suficientes + +En un problema de inferencia puede suceder que los datos contengan información superflua o irrelevante a la hora de estimar el parámetro. También puede ocurrir lo contrario, que intentemos hacer la estimación sin utilizar toda la información disponible en la muestra. Ambas situaciones son indeseables. Parece razonable que, para estimar un parámetro, dada la dificultad derivada de disponer de varios estimadores entre los que queremos elegir el óptimo, nos basemos únicamente en aquellos que utilizan (solo) toda la información relevante. + +Exemple 2.4.1 Supongamos que queremos estimar la proporción de piezas defectuosas $\theta$ en un proceso de fabricación. Para ello, examinamos $n$ piezas extraídas al azar a lo largo de una jornada y asignamos un 1 a las piezas defectuosas y un 0 a las que no lo son. Así, obtenemos una muestra aleatoria simple $X_{1}, X_{2}, \ldots, X_{n}$ donde + +$$ +X_{i}= \begin{cases}1 & \text { con probabilidad } \theta \\ 0 & \text { con probabilidad }(1-\theta)\end{cases} +$$ + +Intuitivamente, está claro que para estimar $\theta$ solo nos interesa el número de ceros y unos, es decir, el valor del estadístico + +$$ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +$$ + +En este caso, un estadístico que considere la posición de los unos y los ceros en la muestra no aportaría nada relevante. En cambio, un estadístico que no considere todos los valores, como por ejemplo $T(\mathbf{X})=X_{1}$, sería claramente menos adecuado. + +Las observaciones del ejemplo anterior se justifican al observar que todas las muestras de tamaño $n$ con el mismo número $t$ de unos (1) tienen la misma probabilidad. En concreto, la función de probabilidad de una muestra $x_{1}, x_{2}, \ldots, x_{n}$ es + +$$ +f_{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\theta^{t}(1-\theta)^{n-t} +$$ + +donde $t=\sum_{i=1}^{n} x_{i}, x_{i} \in\{0,1\}, i=1,2, \ldots, n$. +Como se puede ver, la probabilidad de la muestra solo depende del número de unos (o ceros) y no del orden en que aparecen en la muestra. El hecho de que la posición de los unos y los ceros en la muestra no aporte información relevante equivale a decir que el estadístico + +$$ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +$$ + +contiene la misma información que $X_{1}, X_{2}, \ldots, X_{n}$ para estimar $\theta$. Observamos, sin embargo, varias diferencias entre basarse en $T(\mathbf{X})$ o en $X_{1}, X_{2}, \ldots, X_{n}$ : + +- Al pasar de $X_{1}, X_{2}, \ldots, X_{n}$ a $\sum_{i=1}^{n} X_{i}$ hay una reducción de los datos que no implica pérdida de información. +- Muchas muestras diferentes dan lugar al mismo valor de $T$. + +Fisher formalizó esta idea con el cálculo de la probabilidad condicionada de la observación muestral con $T(\mathbf{X})=\sum_{i=1}^{n} X_{i}$ y para todo $t=0,1, \ldots, n$ : + +$$ +\begin{aligned} +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] & =\frac{P_{\theta}[\mathbf{X}=\mathbf{x}, T=t]}{P_{\theta}(T=t)} \\ +& =\frac{\theta^{t}(1-\theta)^{n-t}}{\binom{n}{t} \theta^{t}(1-\theta)^{n-t}}=\frac{1}{\binom{n}{t}} +\end{aligned} +$$ + +Es decir, dados $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1\}^{n} \mathrm{y} t \in\{0,1, \ldots, n\}$, tenemos + +$$ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]=\left\{\begin{array}{cc} +0 & \text { si } t \neq \sum_{i=1}^{n} x_{i} \\ +\frac{1}{\binom{n}{t}} & \text { si } t=\sum_{i=1}^{n} x_{i} +\end{array}\right. +$$ + +Obviamente, $P_{\theta}[\mathbf{X}=\mathbf{x}]$ depende de $\theta$, que es el parámetro que queremos estimar. Sin embargo, la probabilidad condicionada $P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]$ no depende de $\theta$. Tenemos entonces la siguiente expresión de la función de probabilidad de la muestra: + +$$ +P_{\theta}(\mathbf{X}=\mathbf{x})=P_{\theta}(T=t) \cdot P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] +$$ + +Esta expresión muestra que $P_{\theta}(\mathbf{X})$ se puede descomponer en dos factores, uno que depende de $\theta, P_{\theta}(T=t)$, y otro que no depende de $\theta$, + +$$ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] . +$$ + +Una forma de ver esta descomposición es pensar que el estadístico $T=$ $\sum_{i=1}^{n} X_{i}$ ?acumula? o ?absorbe? toda la información relativa a $\theta$, lo que se refleja en que la probabilidad de la muestra, dado $T=t$, ya no depende de $\theta$. Es decir, podemos imaginar la construcción de la muestra en dos etapas: + +- En una primera etapa se elige el valor $t$ para $T$ con distribución $B(n, \theta)$. +- A continuación, se sitúan aleatoriamente $t$ unos y $n-t$ ceros en las $n$ posiciones. + +Cuando la estructura del estadístico $T(\mathbf{X})$ hace que el segundo factor en la expresión anterior no dependa de $\theta$, significa que la observación adicional de la muestra es irrelevante. En este caso diremos que $T(\mathbf{X})$ es suficiente para la estimación de $\theta$. Dado que esta propiedad de $T$ queda caracterizada por la independencia de $P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]$ respecto a $\theta$, se utiliza esta independencia para definir la suficiencia. + +#### Definició de estadísticop suficiente + +Dado un modelo estadístico $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ y un estadístico $T$, diremos que $T$ es suficiente para $\theta$ si, dada una muestra $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, se verifica que la distribución de $\mathbf{X}$ condicionada por el valor de $T$ no depende de $\theta$. + +- No es necesario que $F_{\theta}$ sea discreta, como en el ejemplo introductorio, o que la muestra sea una muestra aleatoria simple. +- El estadístico suficiente para un parámetro puede ser $k$-dimensional. + +Exemple 2.4.2 Dada una muestra $X_{1}, X_{2}, \ldots, X_{n}$ de una distribución de Poisson, la función de probabilidad de la muestra es + +$$ +P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\frac{e^{-n \lambda} \lambda \sum x_{i}}{x_{1}!\cdots x_{n}!} +$$ + +Calculemos la probabilidad de la muestra condicionada por el valor del estadístico $T=\sum_{i=1}^{n} X_{i}$ : + +$$ +\begin{aligned} +& P_{\theta}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T=t\right]=\frac{P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T=t\right)}{P_{\theta}(T=t)} +\end{aligned} +$$ + +$$ +\begin{aligned} +& =\frac{t!}{x_{1}!\cdots x_{n}!}\left(\frac{1}{n}\right)^{t} \mathbf{1}_{\left\{\sum x_{i}=t\right\}}\left(x_{1}, \ldots, x_{n}\right) +\end{aligned} +$$ + +La probabilidad condicional no depende de $\lambda y$, por lo tanto, $T$ es suficiente para $\lambda$. Conviene observar que, en este ejemplo, no todas las muestras tienen la misma probabilidad. + +#### Teorema de factorización + +La justificación de la suficiencia de un estadístico mediante la definición no siempre es sencilla, ya que la distribución condicional puede ser intratable con las herramientas disponibles. El teorema que se presenta a continuación proporciona un método sencillo para comprobar la suficiencia de un estadístico y, a menudo, sugiere cuál es el estadístico suficiente de menor dimensión posible. + +Teorema 2.3 Neyman-Fisher. Sea $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$ un modelo estadístico y $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X$. Sea $f_{\theta}(\mathbf{x})$ la función de probabilidad o la función de densidad de la muestra, según si $X$ es discreta o absolutamente continua. Un estadístico $T$ es suficiente para $\theta$ si y solo si existen dos funciones medibles $g_{\theta}$ y $h$ tales que + +$$ +f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x}) +$$ + +donde $h$ no depende de $\theta$ y g depende de $\theta$ y, además, solo depende de la muestra a través de $T$. + +Veamos ahora la demostración del teorema de factorización, restringida al caso de variables discretas. + +Demostración: +Comenzaremos suponiendo que $T$ es suficiente y concluiremos que es posible la factorización. +Si $T(\mathbf{X})$ es suficiente para la familia de distribuciones $\left\{F_{\theta} ; \theta \in \Theta\right\}$, la función de probabilidad de la muestra condicionada por $T$ no depende de $\theta$. Dado que + +$$ +f_{\theta}(\mathbf{x})=P_{\theta}[T=T(\mathbf{x})] \cdot f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})] +$$ + +solo es necesario tomar $g_{\theta}(t)=P_{\theta}[T=T(\mathbf{x})=t]$ y $h(\mathbf{x})=f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})]$ para obtener el resultado. +Ahora supongamos que es posible la factorización y deduzcamos la suficiencia. +Si $f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})$ y llamamos $A_{t}=\left\{\mathbf{x} \in X(\Omega)^{n} \mid T(\mathbf{x})=t\right\}$, entonces + +$$ +P_{\theta}[T(\mathbf{x})=t]=\sum_{A_{t}} g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})=g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x}) +$$ + +Consideremos ahora la distribución de la muestra condicionada a $T=t$. El Teorema de Bayes para densidad permite escribir: + +$$ +\begin{aligned} +f_{\theta}(\mathbf{x} \mid T=t) & =\frac{f_{\theta}(\mathbf{x}, T=t)}{P_{\theta}(T=t)} \\ +& = \begin{cases}\frac{g_{\theta}(t) \cdot h(\mathbf{x})}{g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x})}=\frac{h(\mathbf{x})}{\sum_{A_{t}} h(\mathbf{x})} & \text { si } T(\mathbf{x})=t \\ +0 & \text { si } T(\mathbf{x}) \neq t\end{cases} +\end{aligned} +$$ + +De modo que la distribución de $\mathbf{X}$ condicionada por el valor de $T$ no depende de $\theta$, y, en consecuencia, $T$ es suficiente. + +Exemple 2.4.3 Si X sigue una distribución de Bernoulli, tenemos: + +$$ +f_{\theta}(\mathbf{x})=\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-\sum_{i=1}^{n} x_{i}}=g_{\theta}\left(\sum_{i=1}^{n} x_{i}\right) . +$$ + +Si tomamos $h(\mathbf{x})=1$, queda probado que $T=\sum_{i=1}^{n} X_{i}$ es suficiente. +Exemple 2.4.4 Si consideramos una muestra de una distribución de Poisson + +$$ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \frac{\lambda^{\sum_{i=1}^{n} x_{i}}}{x_{1}!x_{2}!\cdots x_{n}!} +$$ + +$y$ tomamos $T(\mathbf{x})=\sum_{i=1}^{n} x_{i}$, podemos escribir + +$$ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \lambda^{T(\mathbf{x})} \cdot\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}=g_{\lambda}(T(\mathbf{x})) \cdot h(\mathbf{x}) +$$ + +donde + +$$ +g_{\lambda}(T(\mathbf{x}))=e^{-n \lambda} \lambda^{T(\mathbf{x})}, \quad h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1} +$$ + +De modo que $g_{\lambda}(t)=e^{-n \lambda} \lambda^{t}$ depende de la muestra solo a través de $T=$ $\sum_{i=1}^{n} x_{i}$ y $h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}$ no depende de $\lambda$. + +Exemple 2.4.5 Supongamos que $\mathbf{X}$ es una muestra aleatoria simple de una población $X \sim N(\mu, \sigma)$, cuya función de densidad es + +$$ +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} +$$ + +Para evidenciar la factorización, utilizamos que + +$$ +\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2} . +$$ + +Entonces, + +$$ +\begin{aligned} +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(n s^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =g_{\mu, \sigma^{2}}\left(\bar{x}, s^{2}\right) \cdot 1 +\end{aligned} +$$ + +Así, vemos que el estadístico $\left(\bar{X}, s^{2}\right)$ es suficiente para la estimación de $\left(\mu, \sigma^{2}\right)$. +Si suponemos conocido uno de los dos parámetros $\sigma^{2}$ o $\mu$, podemos obtener una factorización en la que se ve que $\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$ es suficiente para $\sigma^{2}$ (conocido $\mu$ ) o $\bar{x}$ es suficiente para $\mu$ (conocido $\sigma^{2}$ ). + +En el ejemplo anterior se observa que el estadístico suficiente para un problema puede tener una dimensión superior a 1. En general, buscaremos el estadístico suficiente de menor dimensión posible, ya que a menor dimensión se elimina más información superflua. Si no es posible encontrarlo así, siempre podemos basarnos en el estadístico $T=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, que es suficiente pero de dimensión máxima y, por lo tanto, no aporta ninguna reducción al problema de información. Estas reflexiones llevan a enunciar el principio de suficiencia, que aconseja condensar al máximo la información relevante en un estadístico suficiente $T$ de la menor dimensión posible ("mínima") y seleccionar un estimador $T^{\prime}$ entre los estadísticos que sean función de la muestra a través de $T: T^{\prime}(\mathbf{X})=\varphi(T(\mathbf{X}))$. + +#### Propiedades de los estadísticos suficientes + +Las siguientes propiedades se prueban de manera sencilla utilizando el teorema de factorización: + +1. Si $T$ es un estadístico suficiente para $\theta$ y $\varphi$ es una función inyectiva (o monótona diferenciable), entonces $T_{1}=\varphi(T)$ también es suficiente para $\theta$. + +Exemple 2.4.6 En la familia de la Poisson hemos visto que $\sum_{i=1}^{n} X_{i}$ es suficiente para $\lambda$. Entonces $\bar{X}=\varphi\left(\sum_{i=1}^{n} X_{i}\right)$, donde $\varphi(z)=(1 / n) z$ es inyectiva, es suficiente para $\lambda$. +2. Si $T$ es un estadístico suficiente para $\theta$ y $\varphi$ es una función paramétrica monótona diferenciable, entonces $\varphi(T)$ también es suficiente para $\varphi(\theta)$. +3. Si $T_{1}, T_{2}$ son dos estadísticos suficientes para $\theta$, entonces $T_{1}$ es función de $T_{2}$. + +## MÉTODOS DE OBTENCIÓN DE ESTIMADORES + +En el capítulo anterior hemos analizado el problema de la estimación puntual desde el punto de vista de, dado un estimador, ver ?qué tan bueno es? para estimar un parámetro. +Otra cuestión que nos podemos plantear, de hecho la primera cuestión que hay que plantearse en la práctica, es cómo obtener un estimador ?razonablemente bueno? de un parámetro. De hecho, desde el punto de vista práctico parece razonable empezar por ver cómo se obtiene un estimador y, una vez obtenido, analizar ?cuán bueno resulta?. +Existen muchos métodos para obtener estimadores, cada uno de los cuales puede llevarnos a unos resultados de diferente calidad. +Los principales métodos de estimación son: + +1. Método de los momentos +2. Método de la máxima verosimilitud +3. Método de Bayes +4. Otros métodos + +### El método de los momentos + +Este método fue introducido por K. Pearson a finales del siglo XIX y es el principio en que nos basamos cuando hacemos una estimación de la media o de la varianza poblacional a partir de la media o la varianza muestrales. +La idea del método de los momentos es bastante intuitiva. Si lo que queremos estimar (uno o varios parámetros) es una función de los momentos +poblacionales, entonces una estimación razonable puede consistir en tomar como estimador la misma función en la que los momentos poblacionales han sido sustituidos por los momentos muestrales. +Dado que estos últimos son estimadores consistentes de los momentos poblacionales, en condiciones bastante generales se puede garantizar que los estimadores obtenidos serán estimadores consistentes para las funciones de los momentos poblacionales estimadas. +Algunos ejemplos típicos de estimadores basados en el método de los momentos son: + +$$ +\widehat{\mu}=\bar{X}_{n} \quad \widehat{\sigma}=\sqrt{S^{2}} \quad \widehat{\sigma^{2}}=S^{2} +$$ + +Sea un modelo estadístico, $\left\{X \sim F_{\theta}: \theta \in \Theta\right\}$, y $X_{1}, X_{2}, \ldots, X_{n}$ una muestra aleatoria simple de $X$. Sean $m_{1}, m_{2}, ?, m_{k}$ los momentos poblacionales de orden $1,2, ?, k$ de $X$, que suponemos que existen, + +$$ +m_{k}=E\left(X^{k}\right) +$$ + +y $a_{1}, a_{2}, ?, a_{k}$ los momentos muestrales respectivos + +$$ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} +$$ + +Suponemos que estamos interesados en estimar: + +$$ +\theta=h\left(m_{1}, m_{2}, \ldots, m_{p}\right), +$$ + +donde $h$ es una función conocida. +Definició 3.1 El método de los momentos consiste en estimar $\theta$ por el estadístico + +$$ +T(\mathbf{X})=h\left(a_{1}, a_{2}, \ldots, a_{p}\right) +$$ + +### Observaciones + +- El método se extiende de forma sencilla a la estimación de momentos conjuntos. Podemos usar $\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}$ para estimar $E(X Y)$, etc. +- Por la ley débil de los grandes números, + +$$ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{P} E\left(X^{k}\right), +$$ + +de modo que si lo que queremos es estimar los momentos muestrales, el método garantiza que los estimadores son consistentes y sin sesgo. + +En este caso, además, los estimadores son asintóticamente normales. Si lo que se desea estimar es una función $h$ continua de los momentos, entonces el método garantiza que el estimador $T(\mathbf{X})$ es consistente y, bajo ciertas condiciones de regularidad, también es asintóticamente normal. + +Exemple 3.1.1 Sea $X \sim \Gamma(p, \alpha)$. Queremos estimar $p$ y $\alpha$. En lugar de conocer la función $h\left(\theta_{1}, \theta_{2}\right)$ sabemos que: + +$$ +\begin{aligned} +m_{1} & =\frac{p}{\alpha}=E(X) \\ +m_{2} & =\frac{p(p+1)}{\alpha^{2}}=E\left(X^{2}\right) \\ +& =V(X)+[E(X)]^{2}=\frac{p}{\alpha^{2}}+\left(\frac{p}{\alpha}\right)^{2}=\frac{p^{2}+p}{\alpha^{2}}= +\end{aligned} +$$ + +De modo que podemos obtener las funciones deseadas ?aislando? p y $\alpha$ como funciones de $m_{1}$ y $m_{2}$ : + +$$ +\begin{aligned} +\alpha^{2} & =\frac{p^{2}}{m_{1}^{2}} \\ +\alpha^{2} & =\frac{p(p+1)}{m_{2}} +\end{aligned} +$$ + +Procediendo por igualación: + +$$ +\begin{aligned} +& \frac{p^{2}}{m_{1}^{2}}=\frac{p(p+1)}{m_{2}} \\ +& \frac{p}{m_{1}}=\frac{p+1}{m_{2}} \\ +& p m_{2}=p m_{1}^{2}+m_{1}^{2} \\ +& p\left(m_{2}-m_{1}^{2}\right)=m_{1}^{2} \\ +& p=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& \alpha=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& m_{1} +\end{aligned} \frac{m_{1}}{m_{2}-m_{1}^{2}} . +$$ + +Los estimadores por el método de los momentos se obtendrán ahora sustituyendo $p$ y $\alpha$ por $\hat{p}$ y $\hat{\alpha}$ en la expresión anterior, es decir: + +$$ +\widehat{p}=\frac{a_{1}^{2}}{a_{2}-a_{1}^{2}} +$$ + +Hacemos lo mismo para el parámetro $\alpha$ : + +$$ +\widehat{\alpha}=\frac{a_{1}}{a_{2}-a_{1}^{2}} +$$ + +### El método del máximo de verosimilitud + +#### Introducción + +El método de la máxima verosimilitud, introducido por Fisher, es un método de estimación que se basa en la función de verosimilitud, presentada en el capítulo anterior. Básicamente consiste en tomar como estimadores de los parámetros aquellos valores que hagan más probable observar precisamente lo que se ha observado, es decir, que hagan que la muestra observada resulte más verosímil. + +Exemple 3.2.1 Tomemos 5 papeles. En cada uno de ellos ponemos o bien un ?+? o bien un ?-?, sin que se sepa qué hay en cada papel, y los guardamos en una bolsa. Nuestro objetivo es estimar el número de papeles con el signo ?? escrito. Extraemos tres papeles, devolviéndolos a la bolsa después de cada extracción, y observamos que ha salido lo siguiente: ?++-?. Los valores posibles para la probabilidad de ?-?, llamémosla p, son: + +| En la bolsa hay | $p$ | +| :---: | :---: | +| $4 ?+$ ?, 1 ?-? | 0,2 | +| $3 ?+$ ?, 2 ?-? | 0,4 | +| $2 ?+$ ?, 3 ?-? | 0,6 | +| $1 ?+$ ?, 4 ?-? | 0,8 | + +Supongamos que la variable $X$ mide el número de ?-? en tres extracciones consecutivas y que, por tanto, sigue una distribución binomial: + +$$ +X \sim B(3, p(?-?)) +$$ + +La probabilidad de sacar un ?-? es: + +$$ +P_{p}[X=1]=\binom{3}{1} \cdot p^{1}(1-p)^{2} +$$ + +Para cada uno de los valores de p, las probabilidades quedan asi: + +| $p$ | $P_{p}[X=1]$ | +| :---: | :---: | +| 0.2 | $3 \cdot 0.2 \cdot 0.8^{2}=0.384$ | +| 0.4 | $3 \cdot 0.4 \cdot 0.6^{2}=0.432$ | +| 0.6 | $3 \cdot 0.6 \cdot 0.4^{2}=0.288$ | +| 0.8 | $3 \cdot 0.8 \cdot 0.2^{2}=0.096$ | + +El valor de p que da una probabilidad mayor a la muestra, es decir, que la hace más verosímil, es $p=0.4$. El método del máximo de verosimilitud consiste precisamente en tomar este valor como estimación de $p$. + +#### La función de verosimilitud + +Una vez introducido el método con un ejemplo, podemos pasar a definirlo con mayor precisión. Para ello, comenzaremos con el concepto de función de verosimilitud. +En el capítulo anterior presentamos la función de verosimilitud como la función que resulta de considerar que, en la función de probabilidad de la muestra, el parámetro es variable y la muestra queda fija. Es decir: + +$$ +\underbrace{f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)}_{\mathbf{x} \text { variable, } \theta \text { fijo }} \longrightarrow \underbrace{L\left(\theta ; x_{1}, x_{2}, \ldots, x_{n}\right)}_{\mathbf{x} \text { fija, } \theta \text { variable }} +$$ + +Esta definición es básicamente correcta. En el caso de las variables discretas, donde $f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ representa la probabilidad de la muestra, fijado $\theta$, resulta intuitivamente claro decir que la verosimilitud representa la ?probabilidad de la muestra para cada valor del parámetro?. +Refiriéndonos al ejemplo introductorio, resulta sencillo ver que se trata de ?dos puntos de vista? sobre la misma función. Fijado un valor del parámetro, por ejemplo, 0.4 , podemos considerar la probabilidad de diversas muestras posibles, como $x=0, x=1, \ldots$, hasta $x=3$ : + +$$ +\begin{aligned} +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{0.4}[X=x], x=0,1, \ldots, 3 \\ +& =\binom{3}{x} \cdot 0.4^{x}(0.6)^{3-x} . +\end{aligned} +$$ + +Análogamente, fijada una muestra, por ejemplo, $x=1$, podemos considerar la probabilidad de esta para diversos valores del parámetro, $p=0,0.2, \ldots, 1$. + +$$ +\begin{aligned} +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{p}[X=1], x=0,0.2,0.4, \ldots, 1 \\ +& =3 \cdot p(1-p)^{2} . +\end{aligned} +$$ + +En el caso de las distribuciones absolutamente continuas, el significado de la función de verosimilitud ya no es intuitivamente tan claro como en el caso de las discretas. En este caso, la función de densidad de la muestra ya no representa la probabilidad de esta como en el caso de las discretas. Algunos autores intentan solucionar esto explicando que existe una conocida aproximación en que la función de densidad es la probabilidad de un suceso ?infinitesimal?. +Lo que es importante en la función de verosimilitud, a la hora de hacer inferencias, es la parte que es función del parámetro. Esto hace que a menudo se considere que la expresión de la función de verosimilitud mantenga solo aquella parte de $f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ que depende de $\theta$, ignorando la parte que dependa solo de la muestra. Es decir, si podemos factorizar $f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)$ como + +$$ +f(\mathbf{x} ; \theta)=c(\mathbf{x}) \cdot g(\mathbf{x} ; \theta) +$$ + +podremos prescindir de la ?constante? $c(x)$ (constante porque no depende de $\theta$ ) al considerar la verosimilitud. + +$$ +L(\theta ; \mathbf{x})=g(\mathbf{x} ; \theta) \propto f(\mathbf{x} ; \theta) +$$ + +Esto implica que $L(\theta ; \mathbf{x})$ no tiene por qué integrar a 1 , como en el caso de las probabilidades, y que depende de las unidades de medida. + +Exemple 3.2.2 Si $X$ es discreta, $X \sim \mathcal{P}(\lambda)$, y suponemos $n=1$ (muestras de tamaño 1), tenemos que la f.d.p. de la muestra es: + +$$ +P[x ; \lambda]=e^{-\lambda} \frac{\lambda^{x}}{x!} +$$ + +con $x=0,1, \ldots$ Ahora, si hemos observado $x=5$, la función de verosimilitud vale: + +$$ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5}\left[\frac{1}{5!}\right] +$$ + +Como solo nos interesa la parte que es función de $\lambda$, podemos ignorar $\frac{1}{5!}$, es decir: + +$$ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5} \propto P[\mathbf{x} ; \lambda] . +$$ + +Exemple 3.2.3 Si dada una muestra de tamaño 1, por ejemplo, $x=2$, de una ley de Poisson $\mathcal{P}(\lambda)$ queremos comparar sus verosimilitudes respecto de los valores del parámetro $\lambda=1.5$ o $\lambda=3$, lo que haremos será basarnos en la razón de verosimilitudes: + +$$ +\begin{aligned} +\Lambda(\mathbf{x}) & =\frac{L\left(\lambda_{1} ; x\right)}{L\left(\lambda_{2} ; x\right)}=\frac{L(1.5 ; 2)}{L(3 ; 2)} \\ +& =\frac{e^{-1.5} 1.5^{2}\left[\frac{1}{2!}\right]}{e^{-3} 3^{2}\left[\frac{1}{2!}\right]}=\frac{e^{-1.5} 1.5^{2}}{e^{-3} 3^{2}}=\frac{0.5020}{0.4481}=1.12 . +\end{aligned} +$$ + +Como se observa, al basarnos en la razón de verosimilitudes, la parte correspondiente solo a la muestra no se toma en cuenta. La razón de verosimilitudes sugiere que el valor $\lambda=1.5$ hace la muestra más verosímil. + +#### El método del máximo de verosimilitud + +Si partimos de las dos ideas que hemos visto en la introducción: + +- Escoger como estimación el valor que maximice la probabilidad de la muestra observada. +- La verosimilitud de la muestra es una aproximación a la probabilidad de esta como función del valor del parámetro. + +Una forma razonable de definir el EMV es entonces como aquel que maximice la verosimilitud. + +Definició 3.2 Un estimador $T: \Omega \longrightarrow \Theta$ es un estimador del máximo de verosimilitud para el parámetro $\theta$ si cumple: + +$$ +L(T(\mathbf{x}) ; \mathbf{x})=\sup _{\theta \in \Theta} L(\theta ; \mathbf{x}) +$$ + +Como suele ocurrir en problemas de maximización, este valor ni existe necesariamente ni tiene por qué ser único. Ahora bien, bajo ciertas condiciones (las habituales para los problemas de máximos y mínimos) el problema se podrá reducir a buscar un máximo para la función de verosimilitud. + +Exemple 3.2.4 Supongamos que $x_{1}, \ldots, x_{n}$ es una muestra de una población de Bernouilli, $X \sim B e(p)$, donde queremos estimar p. La función de masa de la probabilidad de $X$ es: + +$$ +P\left[X=x_{i}\right]=P\left(x_{i} ; p\right)=p^{x_{i}}(1-p)^{1-x_{i}} \text { donde } x_{i} \in\{0,1\} ; i=1, \ldots, n +$$ + +La función de verosimilitud es: + +$$ +L(p ; \mathbf{x})=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum_{i=1}^{n} x_{i}}(1-p)^{\sum_{i=1}^{n}\left(1-x_{i}\right)} +$$ + +Debemos buscar el máximo de $L(p ; \mathbf{x})$. En este caso, como en otros, es más sencillo buscar el máximo de su logaritmo, que, dado que es una función monótona, es el mismo que el máximo de $L$ + +$$ +\ln L(p ; x)=\left(\sum_{i=1}^{n} x_{i}\right) \cdot \ln p+\left(n-\sum_{i=1}^{n} x_{i}\right) \cdot \ln (1-p) +$$ + +Derivamos respecto a p: + +$$ +\frac{\partial \ln L(p ; x)}{\partial p}=\frac{\sum_{i=1}^{n} x_{i}}{p}-\frac{n-\sum_{i=1}^{n} x_{i}}{1-p} +$$ + +e igualamos a cero la derivada, planteando lo que se denomina la ecuación de verosimilitud, cuyas soluciones nos conducirán eventualmente al estimador del máximo de verosimilitud. + +$$ +\frac{\sum_{i=1}^{n} x_{i}-n \hat{p}}{\hat{p}(1-\hat{p})}=0 \Rightarrow \hat{p}=\frac{\sum_{i=1}^{n} x_{i}}{n} +$$ + +Si la segunda derivada es negativa en $\widehat{p}$ entonces será un máximo: + +$$ +\begin{aligned} +\frac{\partial^{2} \ln L(p ; x)}{\partial p^{2}} & =\frac{\partial}{\partial p}\left(\frac{\sum_{i=1}^{n} x_{i}-n p}{p(1-p)}\right)=\frac{-n[p(1-p)]-\left(\sum_{i=1}^{n} x_{i}-n p\right) \cdot(1-2 p)}{p^{2}\left(1-p^{2}\right)}= \\ +& =\frac{-n p+n p^{2}-\sum_{i=1}^{n} x_{i}-n p-2 p \sum_{i=1}^{n} x_{i}-2 n p^{2}}{p^{2}(1-p)^{2}}= \\ +& =\frac{\left[\sum_{i=1}^{n} x_{i}(1+2 p)-n p^{2}\right]}{p^{2} \cdot(1-p)^{2}} +\end{aligned} +$$ + +que es negativa cuando $p=\hat{p}$, de forma que $\hat{p}$ es efectivamente un máximo. +El método analítico expuesto en el ejemplo anterior, consistente en el cálculo de un extremo de una función, no se puede aplicar en todas las situaciones. En estos casos, una alternativa puede ser estudiar directamente la función de verosimilitud. Veamos un ejemplo: + +Exemple 3.2.5 Sea $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} X \sim U(0, \theta) \quad \theta>0$ desconocido. Sabemos que: + +$$ +f(x ; \theta)=\left\{\begin{array}{c} +\frac{1}{\theta} \text { si } 0<\min \left\{x_{i}\right\} \leq \max \left\{x_{i}\right\} \leq \theta \\ +0 \quad \text { en caso contrario } +\end{array}\right\} +$$ + +La derivada respecto a $\theta$ es $-\frac{n}{\theta^{n-1}}$, que se anula cuando $\theta \underset{n \rightarrow \infty}{\longrightarrow} \infty$ que lleva a una solución sin sentido de la ecuación de verosimilitud. Una inspección de la gráfica de la función de verosimilitud revela que el EMV, en este caso, + +Figura 3.1: Función de verosimilitud para una distribución uniforme +es $\max \left\{X_{i}, \ldots, X_{n}\right\}$. Efectivamente, consideremos cualquier otro valor $\theta^{*}$ diferente del máximo: + +$$ +\begin{aligned} +& \text { Si } \theta^{*}>X_{(n)} \Rightarrow \frac{1}{\left(\theta^{*}\right)^{n}}<\frac{1}{\left(X_{n}\right)^{n}}, \\ +& \text { Si } \theta^{*}\left.0 y \frac{\partial^{2} z}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}<0 \Longrightarrow$ Hay un máximo relativo en $\left(x_{0}, y_{0}\right)$. +Si evaluamos el Hessiano en el punto $\left(\bar{x}, s^{2}\right)$ tenemos: + +$$ +H=\left(\begin{array}{cc} +-\frac{n}{s^{2}} & 0 \\ +0 & -\frac{n}{2 s^{4}} +\end{array}\right) . +$$ + +Las condiciones de extremo que hemos dado más arriba se verifican: $H_{11}<0 y|H|>0$, de manera que podemos concluir que el estimador del máximo de verosimilitud de $\left(\mu, \sigma^{2}\right)$ es, efectivamente, $\left(\bar{x}, s^{2}\right)$. + +## Bibliografia + +[1] Canavos, George C. (1988). Probabilidad y Estadistica. Aplicaciones y Metodos. McGraw-Hill/Interamericana. Mexico. +[2] Cuadras, C.M. (2000). Problemas de probabilidades y estadística. Vol. 2: Inferencia estadística. EUB. Economía y Empresa. Barcelona. +[3] De Groot, M. (1988). Probabilidad y Estadística. Addison-Wesley. . +[4] Casella, G. Berger, M (1990). Statistical inference. Duxbury Press. . +[5] Dudewicz, Edward J., Mishra, S. (1989). Modern mathematical statistics. John Wiley \& Sons, Wiley series in probability and statistics. New York. +[6] Fortiana, J., Nualart, D. (1999). Estadística. Publicacions de la Universitat de Barcelona. Barcelona. +[7] Lehman, E. (1986). Testing Statistical Hypothesis. John Wiley \& Sons, Wiley series in probability and statistics. New York. +[8] Martínez A., Rodriguez, C., Gutiérrez, R (1993). Inferencia Estadistica, un Enfoque Clasico. Ediciones Pirámide, Economia y Administración de Empresas. Madrid. +[9] Peña, Daniel (1987). Estadística modelos y metodos 1. Fundamentos. Alianza editorial. Madrid. +[10] Rohatgi, V. K. (1976). An Introduction to Probability Theory and Mathematical Statistics. John Wiley \& Sons, Wiley Series in Probability. New York. +[11] Ruiz-Maya, L., Martín Pliego, J. (1995). Estadística II: Inferencia. Editorial AC. Colección Plan Nuevo. Madrid. +[12] Sanz, Marta (1999). Probabilitats. Edicions de la UNiversitat de Barcelona. Barcelona. +[13] Vélez Ibarrola, Ricardo, Garcia Perez, Alfonso (1993). Principios de Inferencia estadística. Editorial UNED. Madrid. + + +[^0]: ${ }^{1}$ Ver: Métodos matemáticos de la estadística, de H. Cramer. Ed. Aguilar + +[^1]: ${ }^{1}$ Si $\operatorname{var}(X)$ existe, entonces $\forall \varepsilon>0$ se verifica $P(|X-E(X)|>\varepsilon) \leq \frac{\operatorname{var}(X)}{\varepsilon^{2}}$ + +[^2]: ${ }^{2}$ UMVUE, en inglés + diff --git a/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap-icons.css b/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap-icons.css new file mode 100644 index 0000000..285e444 --- /dev/null +++ b/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap-icons.css @@ -0,0 +1,2078 @@ +/*! + * Bootstrap Icons v1.11.1 (https://icons.getbootstrap.com/) + * Copyright 2019-2023 The Bootstrap Authors + * Licensed under MIT (https://github.com/twbs/icons/blob/main/LICENSE) + */ + +@font-face { + font-display: block; + font-family: "bootstrap-icons"; + src: +url("./bootstrap-icons.woff?2820a3852bdb9a5832199cc61cec4e65") format("woff"); +} + +.bi::before, +[class^="bi-"]::before, +[class*=" bi-"]::before { + display: inline-block; + font-family: bootstrap-icons !important; + font-style: normal; + font-weight: normal !important; + font-variant: normal; + text-transform: none; + line-height: 1; + vertical-align: -.125em; + -webkit-font-smoothing: antialiased; + -moz-osx-font-smoothing: grayscale; +} + +.bi-123::before { content: "\f67f"; } +.bi-alarm-fill::before { content: "\f101"; } +.bi-alarm::before { content: "\f102"; } +.bi-align-bottom::before { content: "\f103"; } +.bi-align-center::before { content: "\f104"; } +.bi-align-end::before { content: "\f105"; } +.bi-align-middle::before { content: "\f106"; } +.bi-align-start::before { content: "\f107"; } +.bi-align-top::before { content: "\f108"; } +.bi-alt::before { content: "\f109"; } +.bi-app-indicator::before { content: "\f10a"; } +.bi-app::before { content: "\f10b"; } +.bi-archive-fill::before { content: "\f10c"; } +.bi-archive::before { content: "\f10d"; } +.bi-arrow-90deg-down::before { content: "\f10e"; } +.bi-arrow-90deg-left::before { content: "\f10f"; } +.bi-arrow-90deg-right::before { content: "\f110"; } +.bi-arrow-90deg-up::before { content: "\f111"; } +.bi-arrow-bar-down::before { content: "\f112"; } +.bi-arrow-bar-left::before { content: "\f113"; } +.bi-arrow-bar-right::before { content: "\f114"; } +.bi-arrow-bar-up::before { content: "\f115"; } +.bi-arrow-clockwise::before { content: "\f116"; } +.bi-arrow-counterclockwise::before { content: "\f117"; } +.bi-arrow-down-circle-fill::before { content: "\f118"; } +.bi-arrow-down-circle::before { content: "\f119"; } +.bi-arrow-down-left-circle-fill::before { content: "\f11a"; } +.bi-arrow-down-left-circle::before { content: "\f11b"; } +.bi-arrow-down-left-square-fill::before { content: "\f11c"; } +.bi-arrow-down-left-square::before { content: "\f11d"; } +.bi-arrow-down-left::before { content: "\f11e"; } +.bi-arrow-down-right-circle-fill::before { content: "\f11f"; } +.bi-arrow-down-right-circle::before { content: "\f120"; } +.bi-arrow-down-right-square-fill::before { content: "\f121"; } +.bi-arrow-down-right-square::before { content: "\f122"; } +.bi-arrow-down-right::before { content: "\f123"; } +.bi-arrow-down-short::before { content: "\f124"; } +.bi-arrow-down-square-fill::before { content: "\f125"; } +.bi-arrow-down-square::before { content: "\f126"; } +.bi-arrow-down-up::before { content: "\f127"; } +.bi-arrow-down::before { content: "\f128"; } +.bi-arrow-left-circle-fill::before { content: "\f129"; } +.bi-arrow-left-circle::before { content: "\f12a"; } +.bi-arrow-left-right::before { content: "\f12b"; } +.bi-arrow-left-short::before { content: "\f12c"; } +.bi-arrow-left-square-fill::before { content: "\f12d"; } +.bi-arrow-left-square::before { content: "\f12e"; } +.bi-arrow-left::before { content: "\f12f"; } +.bi-arrow-repeat::before { content: "\f130"; } +.bi-arrow-return-left::before { content: "\f131"; } +.bi-arrow-return-right::before { content: "\f132"; } +.bi-arrow-right-circle-fill::before { content: "\f133"; } +.bi-arrow-right-circle::before { content: "\f134"; } +.bi-arrow-right-short::before { content: "\f135"; } +.bi-arrow-right-square-fill::before { content: "\f136"; } +.bi-arrow-right-square::before { content: "\f137"; } +.bi-arrow-right::before { content: "\f138"; } +.bi-arrow-up-circle-fill::before { content: "\f139"; } +.bi-arrow-up-circle::before { content: "\f13a"; } +.bi-arrow-up-left-circle-fill::before { content: "\f13b"; } +.bi-arrow-up-left-circle::before { content: "\f13c"; } +.bi-arrow-up-left-square-fill::before { content: "\f13d"; } +.bi-arrow-up-left-square::before { content: "\f13e"; } +.bi-arrow-up-left::before { content: "\f13f"; } +.bi-arrow-up-right-circle-fill::before { content: "\f140"; } +.bi-arrow-up-right-circle::before { content: "\f141"; } +.bi-arrow-up-right-square-fill::before { content: "\f142"; } +.bi-arrow-up-right-square::before { content: "\f143"; } +.bi-arrow-up-right::before { content: "\f144"; } +.bi-arrow-up-short::before { content: "\f145"; } +.bi-arrow-up-square-fill::before { content: "\f146"; } +.bi-arrow-up-square::before { content: "\f147"; } +.bi-arrow-up::before { content: "\f148"; } +.bi-arrows-angle-contract::before { content: "\f149"; } +.bi-arrows-angle-expand::before { content: "\f14a"; } +.bi-arrows-collapse::before { content: "\f14b"; } +.bi-arrows-expand::before { content: "\f14c"; } +.bi-arrows-fullscreen::before { content: "\f14d"; } +.bi-arrows-move::before { content: "\f14e"; } +.bi-aspect-ratio-fill::before { content: "\f14f"; } +.bi-aspect-ratio::before { content: "\f150"; } +.bi-asterisk::before { content: "\f151"; } +.bi-at::before { content: "\f152"; } +.bi-award-fill::before { content: "\f153"; } +.bi-award::before { content: "\f154"; } +.bi-back::before { content: "\f155"; } +.bi-backspace-fill::before { content: "\f156"; } +.bi-backspace-reverse-fill::before { content: "\f157"; } +.bi-backspace-reverse::before { content: "\f158"; } +.bi-backspace::before { content: "\f159"; } +.bi-badge-3d-fill::before { content: "\f15a"; } +.bi-badge-3d::before { content: "\f15b"; } +.bi-badge-4k-fill::before { content: "\f15c"; } +.bi-badge-4k::before { content: "\f15d"; } +.bi-badge-8k-fill::before { content: "\f15e"; } +.bi-badge-8k::before { content: "\f15f"; } +.bi-badge-ad-fill::before { content: "\f160"; } +.bi-badge-ad::before { content: "\f161"; } +.bi-badge-ar-fill::before { content: "\f162"; } +.bi-badge-ar::before { content: "\f163"; } +.bi-badge-cc-fill::before { content: "\f164"; } +.bi-badge-cc::before { content: "\f165"; } +.bi-badge-hd-fill::before { content: "\f166"; } +.bi-badge-hd::before { content: "\f167"; } +.bi-badge-tm-fill::before { content: "\f168"; } +.bi-badge-tm::before { content: "\f169"; } +.bi-badge-vo-fill::before { content: "\f16a"; } +.bi-badge-vo::before { content: "\f16b"; } +.bi-badge-vr-fill::before { content: "\f16c"; } +.bi-badge-vr::before { content: "\f16d"; } +.bi-badge-wc-fill::before { content: "\f16e"; } +.bi-badge-wc::before { content: "\f16f"; } +.bi-bag-check-fill::before { content: "\f170"; } +.bi-bag-check::before { content: "\f171"; } +.bi-bag-dash-fill::before { content: "\f172"; } +.bi-bag-dash::before { content: "\f173"; } +.bi-bag-fill::before { content: "\f174"; } +.bi-bag-plus-fill::before { content: "\f175"; } +.bi-bag-plus::before { content: "\f176"; } +.bi-bag-x-fill::before { content: "\f177"; } +.bi-bag-x::before { content: "\f178"; } +.bi-bag::before { content: "\f179"; } +.bi-bar-chart-fill::before { content: "\f17a"; } +.bi-bar-chart-line-fill::before { content: "\f17b"; } +.bi-bar-chart-line::before { content: "\f17c"; } +.bi-bar-chart-steps::before { content: "\f17d"; } +.bi-bar-chart::before { content: "\f17e"; } +.bi-basket-fill::before { content: "\f17f"; } +.bi-basket::before { content: "\f180"; } +.bi-basket2-fill::before { content: "\f181"; } +.bi-basket2::before { content: "\f182"; } +.bi-basket3-fill::before { content: "\f183"; } +.bi-basket3::before { content: "\f184"; } +.bi-battery-charging::before { content: "\f185"; } +.bi-battery-full::before { content: "\f186"; } +.bi-battery-half::before { content: "\f187"; } +.bi-battery::before { content: "\f188"; } +.bi-bell-fill::before { content: "\f189"; } +.bi-bell::before { content: "\f18a"; } +.bi-bezier::before { content: "\f18b"; } +.bi-bezier2::before { content: "\f18c"; } +.bi-bicycle::before { content: "\f18d"; } +.bi-binoculars-fill::before { content: "\f18e"; } +.bi-binoculars::before { content: "\f18f"; } +.bi-blockquote-left::before { content: "\f190"; } +.bi-blockquote-right::before { content: "\f191"; } +.bi-book-fill::before { content: "\f192"; } +.bi-book-half::before { content: "\f193"; } +.bi-book::before { content: "\f194"; } +.bi-bookmark-check-fill::before { content: "\f195"; } +.bi-bookmark-check::before { content: "\f196"; } +.bi-bookmark-dash-fill::before { content: "\f197"; } +.bi-bookmark-dash::before { content: "\f198"; } +.bi-bookmark-fill::before { content: "\f199"; } +.bi-bookmark-heart-fill::before { content: "\f19a"; } +.bi-bookmark-heart::before { content: "\f19b"; } +.bi-bookmark-plus-fill::before { content: "\f19c"; } +.bi-bookmark-plus::before { content: "\f19d"; } +.bi-bookmark-star-fill::before { content: "\f19e"; } +.bi-bookmark-star::before { content: "\f19f"; } +.bi-bookmark-x-fill::before { content: "\f1a0"; } +.bi-bookmark-x::before { content: "\f1a1"; } +.bi-bookmark::before { content: "\f1a2"; } +.bi-bookmarks-fill::before { content: "\f1a3"; } +.bi-bookmarks::before { content: "\f1a4"; } +.bi-bookshelf::before { content: "\f1a5"; } +.bi-bootstrap-fill::before { content: "\f1a6"; } +.bi-bootstrap-reboot::before { content: "\f1a7"; } +.bi-bootstrap::before { content: "\f1a8"; } +.bi-border-all::before { content: "\f1a9"; } +.bi-border-bottom::before { content: "\f1aa"; } +.bi-border-center::before { content: "\f1ab"; } +.bi-border-inner::before { content: "\f1ac"; } +.bi-border-left::before { content: "\f1ad"; } +.bi-border-middle::before { content: "\f1ae"; } +.bi-border-outer::before { content: "\f1af"; } +.bi-border-right::before { content: "\f1b0"; } +.bi-border-style::before { content: "\f1b1"; } +.bi-border-top::before { content: "\f1b2"; } +.bi-border-width::before { content: "\f1b3"; } +.bi-border::before { content: "\f1b4"; } +.bi-bounding-box-circles::before { content: "\f1b5"; } +.bi-bounding-box::before { content: "\f1b6"; } +.bi-box-arrow-down-left::before { content: "\f1b7"; } +.bi-box-arrow-down-right::before { content: "\f1b8"; } +.bi-box-arrow-down::before { content: "\f1b9"; } +.bi-box-arrow-in-down-left::before { content: "\f1ba"; } +.bi-box-arrow-in-down-right::before { content: "\f1bb"; } +.bi-box-arrow-in-down::before { content: "\f1bc"; } +.bi-box-arrow-in-left::before { content: "\f1bd"; } +.bi-box-arrow-in-right::before { content: "\f1be"; } +.bi-box-arrow-in-up-left::before { content: "\f1bf"; } +.bi-box-arrow-in-up-right::before { content: "\f1c0"; } +.bi-box-arrow-in-up::before { content: "\f1c1"; } +.bi-box-arrow-left::before { content: "\f1c2"; } +.bi-box-arrow-right::before { content: "\f1c3"; } +.bi-box-arrow-up-left::before { content: "\f1c4"; } +.bi-box-arrow-up-right::before { content: "\f1c5"; } +.bi-box-arrow-up::before { content: "\f1c6"; } +.bi-box-seam::before { content: "\f1c7"; } +.bi-box::before { content: "\f1c8"; } +.bi-braces::before { content: "\f1c9"; } +.bi-bricks::before { content: "\f1ca"; } +.bi-briefcase-fill::before { content: "\f1cb"; } +.bi-briefcase::before { content: "\f1cc"; } +.bi-brightness-alt-high-fill::before { content: "\f1cd"; } +.bi-brightness-alt-high::before { content: "\f1ce"; } +.bi-brightness-alt-low-fill::before { content: "\f1cf"; } +.bi-brightness-alt-low::before { content: "\f1d0"; } +.bi-brightness-high-fill::before { content: "\f1d1"; } +.bi-brightness-high::before { content: "\f1d2"; } +.bi-brightness-low-fill::before { content: "\f1d3"; } +.bi-brightness-low::before { content: "\f1d4"; } +.bi-broadcast-pin::before { content: "\f1d5"; } +.bi-broadcast::before { content: "\f1d6"; } +.bi-brush-fill::before { content: "\f1d7"; } +.bi-brush::before { content: "\f1d8"; } +.bi-bucket-fill::before { content: "\f1d9"; } +.bi-bucket::before { content: "\f1da"; } +.bi-bug-fill::before { content: "\f1db"; } +.bi-bug::before { content: "\f1dc"; } +.bi-building::before { content: "\f1dd"; } +.bi-bullseye::before { content: "\f1de"; } +.bi-calculator-fill::before { content: "\f1df"; } +.bi-calculator::before { content: "\f1e0"; } +.bi-calendar-check-fill::before { content: "\f1e1"; } +.bi-calendar-check::before { content: "\f1e2"; } +.bi-calendar-date-fill::before { content: "\f1e3"; } +.bi-calendar-date::before { content: "\f1e4"; } +.bi-calendar-day-fill::before { content: "\f1e5"; } +.bi-calendar-day::before { content: "\f1e6"; } +.bi-calendar-event-fill::before { content: "\f1e7"; } +.bi-calendar-event::before { content: "\f1e8"; } +.bi-calendar-fill::before { content: "\f1e9"; } +.bi-calendar-minus-fill::before { content: "\f1ea"; } +.bi-calendar-minus::before { content: "\f1eb"; } +.bi-calendar-month-fill::before { content: "\f1ec"; } +.bi-calendar-month::before { content: "\f1ed"; } +.bi-calendar-plus-fill::before { content: "\f1ee"; } +.bi-calendar-plus::before { content: "\f1ef"; } +.bi-calendar-range-fill::before { content: "\f1f0"; } +.bi-calendar-range::before { content: "\f1f1"; } +.bi-calendar-week-fill::before { content: "\f1f2"; } +.bi-calendar-week::before { content: "\f1f3"; } +.bi-calendar-x-fill::before { content: "\f1f4"; } +.bi-calendar-x::before { content: "\f1f5"; } +.bi-calendar::before { content: "\f1f6"; } +.bi-calendar2-check-fill::before { content: "\f1f7"; } +.bi-calendar2-check::before { content: "\f1f8"; } +.bi-calendar2-date-fill::before { content: "\f1f9"; } +.bi-calendar2-date::before { content: "\f1fa"; } +.bi-calendar2-day-fill::before { content: "\f1fb"; } +.bi-calendar2-day::before { content: "\f1fc"; } +.bi-calendar2-event-fill::before { content: "\f1fd"; } +.bi-calendar2-event::before { content: "\f1fe"; } +.bi-calendar2-fill::before { content: "\f1ff"; } +.bi-calendar2-minus-fill::before { content: "\f200"; } +.bi-calendar2-minus::before { content: "\f201"; } +.bi-calendar2-month-fill::before { content: "\f202"; } +.bi-calendar2-month::before { content: "\f203"; } +.bi-calendar2-plus-fill::before { content: "\f204"; } +.bi-calendar2-plus::before { content: "\f205"; } +.bi-calendar2-range-fill::before { content: "\f206"; } +.bi-calendar2-range::before { content: "\f207"; } +.bi-calendar2-week-fill::before { content: "\f208"; } +.bi-calendar2-week::before { content: "\f209"; } +.bi-calendar2-x-fill::before { content: "\f20a"; } +.bi-calendar2-x::before { content: "\f20b"; } +.bi-calendar2::before { content: "\f20c"; } +.bi-calendar3-event-fill::before { content: "\f20d"; } +.bi-calendar3-event::before { content: "\f20e"; } +.bi-calendar3-fill::before { content: "\f20f"; } +.bi-calendar3-range-fill::before { content: "\f210"; } +.bi-calendar3-range::before { content: "\f211"; } +.bi-calendar3-week-fill::before { content: "\f212"; } +.bi-calendar3-week::before { content: "\f213"; } +.bi-calendar3::before { content: "\f214"; } +.bi-calendar4-event::before { content: "\f215"; } +.bi-calendar4-range::before { content: "\f216"; } +.bi-calendar4-week::before { content: "\f217"; } +.bi-calendar4::before { content: "\f218"; } +.bi-camera-fill::before { content: "\f219"; } +.bi-camera-reels-fill::before { content: "\f21a"; } +.bi-camera-reels::before { content: "\f21b"; } +.bi-camera-video-fill::before { content: "\f21c"; } +.bi-camera-video-off-fill::before { content: "\f21d"; } +.bi-camera-video-off::before { content: "\f21e"; } +.bi-camera-video::before { content: "\f21f"; } +.bi-camera::before { content: "\f220"; } +.bi-camera2::before { content: "\f221"; } +.bi-capslock-fill::before { content: "\f222"; } +.bi-capslock::before { content: "\f223"; } +.bi-card-checklist::before { content: "\f224"; } +.bi-card-heading::before { content: "\f225"; } +.bi-card-image::before { content: "\f226"; } +.bi-card-list::before { content: "\f227"; } +.bi-card-text::before { content: "\f228"; } +.bi-caret-down-fill::before { content: "\f229"; } +.bi-caret-down-square-fill::before { content: "\f22a"; } +.bi-caret-down-square::before { content: "\f22b"; } +.bi-caret-down::before { content: "\f22c"; } +.bi-caret-left-fill::before { content: "\f22d"; } +.bi-caret-left-square-fill::before { content: "\f22e"; } +.bi-caret-left-square::before { content: "\f22f"; } +.bi-caret-left::before { content: "\f230"; } +.bi-caret-right-fill::before { content: "\f231"; } +.bi-caret-right-square-fill::before { content: "\f232"; } +.bi-caret-right-square::before { content: "\f233"; } +.bi-caret-right::before { content: "\f234"; } +.bi-caret-up-fill::before { content: "\f235"; } +.bi-caret-up-square-fill::before { content: "\f236"; } +.bi-caret-up-square::before { content: "\f237"; } +.bi-caret-up::before { content: "\f238"; } +.bi-cart-check-fill::before { content: "\f239"; } +.bi-cart-check::before { content: "\f23a"; } +.bi-cart-dash-fill::before { content: "\f23b"; } +.bi-cart-dash::before { content: "\f23c"; } +.bi-cart-fill::before { content: "\f23d"; } +.bi-cart-plus-fill::before { content: "\f23e"; } +.bi-cart-plus::before { content: "\f23f"; } +.bi-cart-x-fill::before { content: "\f240"; } +.bi-cart-x::before { content: "\f241"; } +.bi-cart::before { content: "\f242"; } +.bi-cart2::before { content: "\f243"; } +.bi-cart3::before { content: "\f244"; } +.bi-cart4::before { content: "\f245"; } +.bi-cash-stack::before { content: "\f246"; } +.bi-cash::before { content: "\f247"; } +.bi-cast::before { content: "\f248"; } +.bi-chat-dots-fill::before { content: "\f249"; } +.bi-chat-dots::before { content: "\f24a"; } +.bi-chat-fill::before { content: "\f24b"; } +.bi-chat-left-dots-fill::before { content: "\f24c"; } +.bi-chat-left-dots::before { content: "\f24d"; } +.bi-chat-left-fill::before { content: "\f24e"; } +.bi-chat-left-quote-fill::before { content: "\f24f"; } +.bi-chat-left-quote::before { content: "\f250"; } +.bi-chat-left-text-fill::before { content: "\f251"; } +.bi-chat-left-text::before { content: "\f252"; } +.bi-chat-left::before { content: "\f253"; } +.bi-chat-quote-fill::before { content: "\f254"; } +.bi-chat-quote::before { content: "\f255"; } +.bi-chat-right-dots-fill::before { content: "\f256"; } +.bi-chat-right-dots::before { content: "\f257"; } +.bi-chat-right-fill::before { content: "\f258"; } +.bi-chat-right-quote-fill::before { content: "\f259"; } +.bi-chat-right-quote::before { content: "\f25a"; } +.bi-chat-right-text-fill::before { content: "\f25b"; } +.bi-chat-right-text::before { content: "\f25c"; } +.bi-chat-right::before { content: "\f25d"; } +.bi-chat-square-dots-fill::before { content: "\f25e"; } +.bi-chat-square-dots::before { content: "\f25f"; } +.bi-chat-square-fill::before { content: "\f260"; } +.bi-chat-square-quote-fill::before { content: "\f261"; } +.bi-chat-square-quote::before { content: "\f262"; } +.bi-chat-square-text-fill::before { content: "\f263"; } +.bi-chat-square-text::before { content: "\f264"; } +.bi-chat-square::before { content: "\f265"; } +.bi-chat-text-fill::before { content: "\f266"; } +.bi-chat-text::before { content: "\f267"; } +.bi-chat::before { content: "\f268"; } +.bi-check-all::before { content: "\f269"; } +.bi-check-circle-fill::before { content: "\f26a"; } +.bi-check-circle::before { content: "\f26b"; } +.bi-check-square-fill::before { content: "\f26c"; } +.bi-check-square::before { content: "\f26d"; } +.bi-check::before { content: "\f26e"; } +.bi-check2-all::before { content: "\f26f"; } +.bi-check2-circle::before { content: "\f270"; } +.bi-check2-square::before { content: "\f271"; } +.bi-check2::before { content: "\f272"; } +.bi-chevron-bar-contract::before { content: "\f273"; } +.bi-chevron-bar-down::before { content: "\f274"; } +.bi-chevron-bar-expand::before { content: "\f275"; } +.bi-chevron-bar-left::before { content: "\f276"; } +.bi-chevron-bar-right::before { content: "\f277"; } +.bi-chevron-bar-up::before { content: "\f278"; } +.bi-chevron-compact-down::before { content: "\f279"; } +.bi-chevron-compact-left::before { content: "\f27a"; } +.bi-chevron-compact-right::before { content: "\f27b"; } +.bi-chevron-compact-up::before { content: "\f27c"; } +.bi-chevron-contract::before { content: "\f27d"; } +.bi-chevron-double-down::before { content: "\f27e"; } +.bi-chevron-double-left::before { content: "\f27f"; } +.bi-chevron-double-right::before { content: "\f280"; } +.bi-chevron-double-up::before { content: "\f281"; } +.bi-chevron-down::before { content: "\f282"; } +.bi-chevron-expand::before { content: "\f283"; } +.bi-chevron-left::before { content: "\f284"; } +.bi-chevron-right::before { content: "\f285"; } +.bi-chevron-up::before { content: "\f286"; } +.bi-circle-fill::before { content: "\f287"; } +.bi-circle-half::before { content: "\f288"; } +.bi-circle-square::before { content: "\f289"; } +.bi-circle::before { content: "\f28a"; } +.bi-clipboard-check::before { content: "\f28b"; } +.bi-clipboard-data::before { content: "\f28c"; } +.bi-clipboard-minus::before { content: "\f28d"; } +.bi-clipboard-plus::before { content: "\f28e"; } +.bi-clipboard-x::before { content: "\f28f"; } +.bi-clipboard::before { content: "\f290"; } +.bi-clock-fill::before { content: "\f291"; } +.bi-clock-history::before { content: "\f292"; } +.bi-clock::before { content: "\f293"; } +.bi-cloud-arrow-down-fill::before { content: "\f294"; } +.bi-cloud-arrow-down::before { content: "\f295"; } +.bi-cloud-arrow-up-fill::before { content: "\f296"; } +.bi-cloud-arrow-up::before { content: "\f297"; } +.bi-cloud-check-fill::before { content: "\f298"; } +.bi-cloud-check::before { content: "\f299"; } +.bi-cloud-download-fill::before { content: "\f29a"; } +.bi-cloud-download::before { content: "\f29b"; } +.bi-cloud-drizzle-fill::before { content: "\f29c"; } +.bi-cloud-drizzle::before { content: "\f29d"; } +.bi-cloud-fill::before { content: "\f29e"; } +.bi-cloud-fog-fill::before { content: "\f29f"; } +.bi-cloud-fog::before { content: "\f2a0"; } +.bi-cloud-fog2-fill::before { content: "\f2a1"; } +.bi-cloud-fog2::before { content: "\f2a2"; } +.bi-cloud-hail-fill::before { content: "\f2a3"; } +.bi-cloud-hail::before { content: "\f2a4"; } +.bi-cloud-haze-fill::before { content: "\f2a6"; } +.bi-cloud-haze::before { content: "\f2a7"; } +.bi-cloud-haze2-fill::before { content: "\f2a8"; } +.bi-cloud-lightning-fill::before { content: "\f2a9"; } +.bi-cloud-lightning-rain-fill::before { content: "\f2aa"; } +.bi-cloud-lightning-rain::before { content: "\f2ab"; } +.bi-cloud-lightning::before { content: "\f2ac"; } +.bi-cloud-minus-fill::before { content: "\f2ad"; } +.bi-cloud-minus::before { content: "\f2ae"; } +.bi-cloud-moon-fill::before { content: "\f2af"; } +.bi-cloud-moon::before { content: "\f2b0"; } +.bi-cloud-plus-fill::before { content: "\f2b1"; } +.bi-cloud-plus::before { content: "\f2b2"; } +.bi-cloud-rain-fill::before { content: "\f2b3"; } +.bi-cloud-rain-heavy-fill::before { content: "\f2b4"; } +.bi-cloud-rain-heavy::before { content: "\f2b5"; } +.bi-cloud-rain::before { content: "\f2b6"; } +.bi-cloud-slash-fill::before { content: "\f2b7"; } +.bi-cloud-slash::before { content: "\f2b8"; } +.bi-cloud-sleet-fill::before { content: "\f2b9"; } +.bi-cloud-sleet::before { content: "\f2ba"; } +.bi-cloud-snow-fill::before { content: "\f2bb"; } +.bi-cloud-snow::before { content: "\f2bc"; } +.bi-cloud-sun-fill::before { content: "\f2bd"; } +.bi-cloud-sun::before { content: "\f2be"; } +.bi-cloud-upload-fill::before { content: "\f2bf"; } +.bi-cloud-upload::before { content: "\f2c0"; } +.bi-cloud::before { content: "\f2c1"; } +.bi-clouds-fill::before { content: "\f2c2"; } +.bi-clouds::before { content: "\f2c3"; } +.bi-cloudy-fill::before { content: "\f2c4"; } +.bi-cloudy::before { content: "\f2c5"; } +.bi-code-slash::before { content: "\f2c6"; } +.bi-code-square::before { content: "\f2c7"; } +.bi-code::before { content: "\f2c8"; } +.bi-collection-fill::before { content: "\f2c9"; } +.bi-collection-play-fill::before { content: "\f2ca"; } +.bi-collection-play::before { content: "\f2cb"; } +.bi-collection::before { content: "\f2cc"; } +.bi-columns-gap::before { content: "\f2cd"; } +.bi-columns::before { content: "\f2ce"; } +.bi-command::before { content: "\f2cf"; } +.bi-compass-fill::before { content: "\f2d0"; } +.bi-compass::before { content: "\f2d1"; } +.bi-cone-striped::before { content: "\f2d2"; } +.bi-cone::before { content: "\f2d3"; } +.bi-controller::before { content: "\f2d4"; } +.bi-cpu-fill::before { content: "\f2d5"; } +.bi-cpu::before { content: "\f2d6"; } +.bi-credit-card-2-back-fill::before { content: "\f2d7"; } +.bi-credit-card-2-back::before { content: "\f2d8"; } +.bi-credit-card-2-front-fill::before { content: "\f2d9"; } +.bi-credit-card-2-front::before { content: "\f2da"; } +.bi-credit-card-fill::before { content: "\f2db"; } +.bi-credit-card::before { content: "\f2dc"; } +.bi-crop::before { content: "\f2dd"; } +.bi-cup-fill::before { content: "\f2de"; } +.bi-cup-straw::before { content: "\f2df"; } +.bi-cup::before { content: "\f2e0"; } +.bi-cursor-fill::before { content: "\f2e1"; } +.bi-cursor-text::before { content: "\f2e2"; } +.bi-cursor::before { content: "\f2e3"; } +.bi-dash-circle-dotted::before { content: "\f2e4"; } +.bi-dash-circle-fill::before { content: "\f2e5"; } +.bi-dash-circle::before { content: "\f2e6"; } +.bi-dash-square-dotted::before { content: "\f2e7"; } +.bi-dash-square-fill::before { content: "\f2e8"; } +.bi-dash-square::before { content: "\f2e9"; } +.bi-dash::before { content: "\f2ea"; } +.bi-diagram-2-fill::before { content: "\f2eb"; } +.bi-diagram-2::before { content: "\f2ec"; } +.bi-diagram-3-fill::before { content: "\f2ed"; } +.bi-diagram-3::before { content: "\f2ee"; } +.bi-diamond-fill::before { content: "\f2ef"; } +.bi-diamond-half::before { content: "\f2f0"; } +.bi-diamond::before { content: "\f2f1"; } +.bi-dice-1-fill::before { content: "\f2f2"; } +.bi-dice-1::before { content: "\f2f3"; } +.bi-dice-2-fill::before { content: "\f2f4"; } +.bi-dice-2::before { content: "\f2f5"; } +.bi-dice-3-fill::before { content: "\f2f6"; } +.bi-dice-3::before { content: "\f2f7"; } +.bi-dice-4-fill::before { content: "\f2f8"; } +.bi-dice-4::before { content: "\f2f9"; } +.bi-dice-5-fill::before { content: "\f2fa"; } +.bi-dice-5::before { content: "\f2fb"; } +.bi-dice-6-fill::before { content: "\f2fc"; } +.bi-dice-6::before { content: "\f2fd"; } +.bi-disc-fill::before { content: "\f2fe"; } +.bi-disc::before { content: "\f2ff"; } +.bi-discord::before { content: "\f300"; } +.bi-display-fill::before { content: "\f301"; } +.bi-display::before { content: "\f302"; } +.bi-distribute-horizontal::before { content: "\f303"; } +.bi-distribute-vertical::before { content: "\f304"; } +.bi-door-closed-fill::before { content: "\f305"; } +.bi-door-closed::before { content: "\f306"; } +.bi-door-open-fill::before { content: "\f307"; } +.bi-door-open::before { content: "\f308"; } +.bi-dot::before { content: "\f309"; } +.bi-download::before { content: "\f30a"; } +.bi-droplet-fill::before { content: "\f30b"; } +.bi-droplet-half::before { content: "\f30c"; } +.bi-droplet::before { content: "\f30d"; } +.bi-earbuds::before { content: "\f30e"; } +.bi-easel-fill::before { content: "\f30f"; } +.bi-easel::before { content: "\f310"; } +.bi-egg-fill::before { content: "\f311"; } +.bi-egg-fried::before { content: "\f312"; } +.bi-egg::before { content: "\f313"; } +.bi-eject-fill::before { content: "\f314"; } +.bi-eject::before { content: "\f315"; } +.bi-emoji-angry-fill::before { content: "\f316"; } +.bi-emoji-angry::before { content: "\f317"; } +.bi-emoji-dizzy-fill::before { content: "\f318"; } +.bi-emoji-dizzy::before { content: "\f319"; } +.bi-emoji-expressionless-fill::before { content: "\f31a"; } +.bi-emoji-expressionless::before { content: "\f31b"; } +.bi-emoji-frown-fill::before { content: "\f31c"; } +.bi-emoji-frown::before { content: "\f31d"; } +.bi-emoji-heart-eyes-fill::before { content: "\f31e"; } +.bi-emoji-heart-eyes::before { content: "\f31f"; } +.bi-emoji-laughing-fill::before { content: "\f320"; } +.bi-emoji-laughing::before { content: "\f321"; } +.bi-emoji-neutral-fill::before { content: "\f322"; } +.bi-emoji-neutral::before { content: "\f323"; } +.bi-emoji-smile-fill::before { content: "\f324"; } +.bi-emoji-smile-upside-down-fill::before { content: "\f325"; } +.bi-emoji-smile-upside-down::before { content: "\f326"; } +.bi-emoji-smile::before { content: "\f327"; } +.bi-emoji-sunglasses-fill::before { content: "\f328"; } +.bi-emoji-sunglasses::before { content: "\f329"; } +.bi-emoji-wink-fill::before { content: "\f32a"; } +.bi-emoji-wink::before { content: "\f32b"; } +.bi-envelope-fill::before { content: "\f32c"; } +.bi-envelope-open-fill::before { content: "\f32d"; } +.bi-envelope-open::before { content: "\f32e"; } +.bi-envelope::before { content: "\f32f"; } +.bi-eraser-fill::before { content: "\f330"; } +.bi-eraser::before { content: "\f331"; } +.bi-exclamation-circle-fill::before { content: "\f332"; } +.bi-exclamation-circle::before { content: "\f333"; } +.bi-exclamation-diamond-fill::before { content: "\f334"; } +.bi-exclamation-diamond::before { content: "\f335"; } +.bi-exclamation-octagon-fill::before { content: "\f336"; } +.bi-exclamation-octagon::before { content: "\f337"; } +.bi-exclamation-square-fill::before { content: "\f338"; } +.bi-exclamation-square::before { content: "\f339"; } +.bi-exclamation-triangle-fill::before { content: "\f33a"; } +.bi-exclamation-triangle::before { content: "\f33b"; } +.bi-exclamation::before { content: "\f33c"; } +.bi-exclude::before { content: "\f33d"; } +.bi-eye-fill::before { content: "\f33e"; } +.bi-eye-slash-fill::before { content: "\f33f"; } +.bi-eye-slash::before { content: "\f340"; } +.bi-eye::before { content: "\f341"; } +.bi-eyedropper::before { content: "\f342"; } +.bi-eyeglasses::before { content: "\f343"; } +.bi-facebook::before { content: "\f344"; } +.bi-file-arrow-down-fill::before { content: "\f345"; } +.bi-file-arrow-down::before { content: "\f346"; } +.bi-file-arrow-up-fill::before { content: "\f347"; } +.bi-file-arrow-up::before { content: "\f348"; } +.bi-file-bar-graph-fill::before { content: "\f349"; } +.bi-file-bar-graph::before { content: "\f34a"; } +.bi-file-binary-fill::before { content: "\f34b"; } +.bi-file-binary::before { content: "\f34c"; } +.bi-file-break-fill::before { content: "\f34d"; } +.bi-file-break::before { content: "\f34e"; } +.bi-file-check-fill::before { content: "\f34f"; } +.bi-file-check::before { content: "\f350"; } +.bi-file-code-fill::before { content: "\f351"; } +.bi-file-code::before { content: "\f352"; } +.bi-file-diff-fill::before { content: "\f353"; } +.bi-file-diff::before { content: "\f354"; } +.bi-file-earmark-arrow-down-fill::before { content: "\f355"; } +.bi-file-earmark-arrow-down::before { content: "\f356"; } +.bi-file-earmark-arrow-up-fill::before { content: "\f357"; } +.bi-file-earmark-arrow-up::before { content: "\f358"; } +.bi-file-earmark-bar-graph-fill::before { content: "\f359"; } +.bi-file-earmark-bar-graph::before { content: "\f35a"; } +.bi-file-earmark-binary-fill::before { content: "\f35b"; } +.bi-file-earmark-binary::before { content: "\f35c"; } +.bi-file-earmark-break-fill::before { content: "\f35d"; } +.bi-file-earmark-break::before { content: "\f35e"; } +.bi-file-earmark-check-fill::before { content: "\f35f"; } +.bi-file-earmark-check::before { content: "\f360"; } +.bi-file-earmark-code-fill::before { content: "\f361"; } +.bi-file-earmark-code::before { content: "\f362"; } +.bi-file-earmark-diff-fill::before { content: "\f363"; } +.bi-file-earmark-diff::before { content: "\f364"; } +.bi-file-earmark-easel-fill::before { content: "\f365"; } +.bi-file-earmark-easel::before { content: "\f366"; } +.bi-file-earmark-excel-fill::before { content: "\f367"; } +.bi-file-earmark-excel::before { content: "\f368"; } +.bi-file-earmark-fill::before { content: "\f369"; } +.bi-file-earmark-font-fill::before { content: "\f36a"; } +.bi-file-earmark-font::before { content: "\f36b"; } +.bi-file-earmark-image-fill::before { content: "\f36c"; } +.bi-file-earmark-image::before { content: "\f36d"; } +.bi-file-earmark-lock-fill::before { content: "\f36e"; } +.bi-file-earmark-lock::before { content: "\f36f"; } +.bi-file-earmark-lock2-fill::before { content: "\f370"; } +.bi-file-earmark-lock2::before { content: "\f371"; } +.bi-file-earmark-medical-fill::before { content: "\f372"; } +.bi-file-earmark-medical::before { content: "\f373"; } +.bi-file-earmark-minus-fill::before { content: "\f374"; } +.bi-file-earmark-minus::before { content: "\f375"; } +.bi-file-earmark-music-fill::before { content: "\f376"; } +.bi-file-earmark-music::before { content: "\f377"; } +.bi-file-earmark-person-fill::before { content: "\f378"; } +.bi-file-earmark-person::before { content: "\f379"; } +.bi-file-earmark-play-fill::before { content: "\f37a"; } +.bi-file-earmark-play::before { content: "\f37b"; } +.bi-file-earmark-plus-fill::before { content: "\f37c"; } +.bi-file-earmark-plus::before { content: "\f37d"; } +.bi-file-earmark-post-fill::before { content: "\f37e"; } +.bi-file-earmark-post::before { content: "\f37f"; } +.bi-file-earmark-ppt-fill::before { content: "\f380"; } +.bi-file-earmark-ppt::before { content: "\f381"; } +.bi-file-earmark-richtext-fill::before { content: "\f382"; } +.bi-file-earmark-richtext::before { content: "\f383"; } +.bi-file-earmark-ruled-fill::before { content: "\f384"; } +.bi-file-earmark-ruled::before { content: "\f385"; } +.bi-file-earmark-slides-fill::before { content: "\f386"; } +.bi-file-earmark-slides::before { content: "\f387"; } +.bi-file-earmark-spreadsheet-fill::before { content: "\f388"; } +.bi-file-earmark-spreadsheet::before { content: "\f389"; } +.bi-file-earmark-text-fill::before { content: "\f38a"; } +.bi-file-earmark-text::before { content: "\f38b"; } +.bi-file-earmark-word-fill::before { content: "\f38c"; } +.bi-file-earmark-word::before { content: "\f38d"; } +.bi-file-earmark-x-fill::before { content: "\f38e"; } +.bi-file-earmark-x::before { content: "\f38f"; } +.bi-file-earmark-zip-fill::before { content: "\f390"; } +.bi-file-earmark-zip::before { content: "\f391"; } +.bi-file-earmark::before { content: "\f392"; } +.bi-file-easel-fill::before { content: "\f393"; } +.bi-file-easel::before { content: "\f394"; } +.bi-file-excel-fill::before { content: "\f395"; } +.bi-file-excel::before { content: "\f396"; } +.bi-file-fill::before { content: "\f397"; } +.bi-file-font-fill::before { content: "\f398"; } +.bi-file-font::before { content: "\f399"; } +.bi-file-image-fill::before { content: "\f39a"; } +.bi-file-image::before { content: "\f39b"; } +.bi-file-lock-fill::before { content: "\f39c"; } +.bi-file-lock::before { content: "\f39d"; } +.bi-file-lock2-fill::before { content: "\f39e"; } +.bi-file-lock2::before { content: "\f39f"; } +.bi-file-medical-fill::before { content: "\f3a0"; } +.bi-file-medical::before { content: "\f3a1"; } +.bi-file-minus-fill::before { content: "\f3a2"; } +.bi-file-minus::before { content: "\f3a3"; } +.bi-file-music-fill::before { content: "\f3a4"; } +.bi-file-music::before { content: "\f3a5"; } +.bi-file-person-fill::before { content: "\f3a6"; } +.bi-file-person::before { content: "\f3a7"; } +.bi-file-play-fill::before { content: "\f3a8"; } +.bi-file-play::before { content: "\f3a9"; } +.bi-file-plus-fill::before { content: "\f3aa"; } +.bi-file-plus::before { content: "\f3ab"; } +.bi-file-post-fill::before { content: "\f3ac"; } +.bi-file-post::before { content: "\f3ad"; } +.bi-file-ppt-fill::before { content: "\f3ae"; } +.bi-file-ppt::before { content: "\f3af"; } +.bi-file-richtext-fill::before { content: "\f3b0"; } +.bi-file-richtext::before { content: "\f3b1"; } +.bi-file-ruled-fill::before { content: "\f3b2"; } +.bi-file-ruled::before { content: "\f3b3"; } +.bi-file-slides-fill::before { content: "\f3b4"; } +.bi-file-slides::before { content: "\f3b5"; } +.bi-file-spreadsheet-fill::before { content: "\f3b6"; } +.bi-file-spreadsheet::before { content: "\f3b7"; } +.bi-file-text-fill::before { content: "\f3b8"; } +.bi-file-text::before { content: "\f3b9"; } +.bi-file-word-fill::before { content: "\f3ba"; } +.bi-file-word::before { content: "\f3bb"; } +.bi-file-x-fill::before { content: "\f3bc"; } +.bi-file-x::before { content: "\f3bd"; } +.bi-file-zip-fill::before { content: "\f3be"; } +.bi-file-zip::before { content: "\f3bf"; } +.bi-file::before { content: "\f3c0"; } +.bi-files-alt::before { content: "\f3c1"; } +.bi-files::before { content: "\f3c2"; } +.bi-film::before { content: "\f3c3"; } +.bi-filter-circle-fill::before { content: "\f3c4"; } +.bi-filter-circle::before { content: "\f3c5"; } +.bi-filter-left::before { content: "\f3c6"; } +.bi-filter-right::before { content: "\f3c7"; } +.bi-filter-square-fill::before { content: "\f3c8"; } +.bi-filter-square::before { content: "\f3c9"; } +.bi-filter::before { content: "\f3ca"; } +.bi-flag-fill::before { content: "\f3cb"; } +.bi-flag::before { content: "\f3cc"; } +.bi-flower1::before { content: "\f3cd"; } +.bi-flower2::before { content: "\f3ce"; } +.bi-flower3::before { content: "\f3cf"; } +.bi-folder-check::before { content: "\f3d0"; } +.bi-folder-fill::before { content: "\f3d1"; } +.bi-folder-minus::before { content: "\f3d2"; } +.bi-folder-plus::before { content: "\f3d3"; } +.bi-folder-symlink-fill::before { content: "\f3d4"; } +.bi-folder-symlink::before { content: "\f3d5"; } +.bi-folder-x::before { content: "\f3d6"; } +.bi-folder::before { content: "\f3d7"; } +.bi-folder2-open::before { content: "\f3d8"; } +.bi-folder2::before { content: "\f3d9"; } +.bi-fonts::before { content: "\f3da"; } +.bi-forward-fill::before { content: "\f3db"; } +.bi-forward::before { content: "\f3dc"; } +.bi-front::before { content: "\f3dd"; } +.bi-fullscreen-exit::before { content: "\f3de"; } +.bi-fullscreen::before { content: "\f3df"; } +.bi-funnel-fill::before { content: "\f3e0"; } +.bi-funnel::before { content: "\f3e1"; } +.bi-gear-fill::before { content: "\f3e2"; } +.bi-gear-wide-connected::before { content: "\f3e3"; } +.bi-gear-wide::before { content: "\f3e4"; } +.bi-gear::before { content: "\f3e5"; } +.bi-gem::before { content: "\f3e6"; } +.bi-geo-alt-fill::before { content: "\f3e7"; } +.bi-geo-alt::before { content: "\f3e8"; } +.bi-geo-fill::before { content: "\f3e9"; } +.bi-geo::before { content: "\f3ea"; } +.bi-gift-fill::before { content: "\f3eb"; } +.bi-gift::before { content: "\f3ec"; } +.bi-github::before { content: "\f3ed"; } +.bi-globe::before { content: "\f3ee"; } +.bi-globe2::before { content: "\f3ef"; } +.bi-google::before { content: "\f3f0"; } +.bi-graph-down::before { content: "\f3f1"; } +.bi-graph-up::before { content: "\f3f2"; } +.bi-grid-1x2-fill::before { content: "\f3f3"; } +.bi-grid-1x2::before { content: "\f3f4"; } +.bi-grid-3x2-gap-fill::before { content: "\f3f5"; } +.bi-grid-3x2-gap::before { content: "\f3f6"; } +.bi-grid-3x2::before { content: "\f3f7"; } +.bi-grid-3x3-gap-fill::before { content: "\f3f8"; } +.bi-grid-3x3-gap::before { content: "\f3f9"; } +.bi-grid-3x3::before { content: "\f3fa"; } +.bi-grid-fill::before { content: "\f3fb"; } +.bi-grid::before { content: "\f3fc"; } +.bi-grip-horizontal::before { content: "\f3fd"; } +.bi-grip-vertical::before { content: "\f3fe"; } +.bi-hammer::before { content: "\f3ff"; } +.bi-hand-index-fill::before { content: "\f400"; } +.bi-hand-index-thumb-fill::before { content: "\f401"; } +.bi-hand-index-thumb::before { content: "\f402"; } +.bi-hand-index::before { content: "\f403"; } +.bi-hand-thumbs-down-fill::before { content: "\f404"; } +.bi-hand-thumbs-down::before { content: "\f405"; } +.bi-hand-thumbs-up-fill::before { content: "\f406"; } +.bi-hand-thumbs-up::before { content: "\f407"; } +.bi-handbag-fill::before { content: "\f408"; } +.bi-handbag::before { content: "\f409"; } +.bi-hash::before { content: "\f40a"; } +.bi-hdd-fill::before { content: "\f40b"; } +.bi-hdd-network-fill::before { content: "\f40c"; } +.bi-hdd-network::before { content: "\f40d"; } +.bi-hdd-rack-fill::before { content: "\f40e"; } +.bi-hdd-rack::before { content: "\f40f"; } +.bi-hdd-stack-fill::before { content: "\f410"; } +.bi-hdd-stack::before { content: "\f411"; } +.bi-hdd::before { content: "\f412"; } +.bi-headphones::before { content: "\f413"; } +.bi-headset::before { content: "\f414"; } +.bi-heart-fill::before { content: "\f415"; } +.bi-heart-half::before { content: "\f416"; } +.bi-heart::before { content: "\f417"; } +.bi-heptagon-fill::before { content: "\f418"; } +.bi-heptagon-half::before { content: "\f419"; } +.bi-heptagon::before { content: "\f41a"; } +.bi-hexagon-fill::before { content: "\f41b"; } +.bi-hexagon-half::before { content: "\f41c"; } +.bi-hexagon::before { content: "\f41d"; } +.bi-hourglass-bottom::before { content: "\f41e"; } +.bi-hourglass-split::before { content: "\f41f"; } +.bi-hourglass-top::before { content: "\f420"; } +.bi-hourglass::before { content: "\f421"; } +.bi-house-door-fill::before { content: "\f422"; } +.bi-house-door::before { content: "\f423"; } +.bi-house-fill::before { content: "\f424"; } +.bi-house::before { content: "\f425"; } +.bi-hr::before { content: "\f426"; } +.bi-hurricane::before { content: "\f427"; } +.bi-image-alt::before { content: "\f428"; } +.bi-image-fill::before { content: "\f429"; } +.bi-image::before { content: "\f42a"; } +.bi-images::before { content: "\f42b"; } +.bi-inbox-fill::before { content: "\f42c"; } +.bi-inbox::before { content: "\f42d"; } +.bi-inboxes-fill::before { content: "\f42e"; } +.bi-inboxes::before { content: "\f42f"; } +.bi-info-circle-fill::before { content: "\f430"; } +.bi-info-circle::before { content: "\f431"; } +.bi-info-square-fill::before { content: "\f432"; } +.bi-info-square::before { content: "\f433"; } +.bi-info::before { content: "\f434"; } +.bi-input-cursor-text::before { content: "\f435"; } +.bi-input-cursor::before { content: "\f436"; } +.bi-instagram::before { content: "\f437"; } +.bi-intersect::before { content: "\f438"; } +.bi-journal-album::before { content: "\f439"; } +.bi-journal-arrow-down::before { content: "\f43a"; } +.bi-journal-arrow-up::before { content: "\f43b"; } +.bi-journal-bookmark-fill::before { content: "\f43c"; } +.bi-journal-bookmark::before { content: "\f43d"; } +.bi-journal-check::before { content: "\f43e"; } +.bi-journal-code::before { content: "\f43f"; } +.bi-journal-medical::before { content: "\f440"; } +.bi-journal-minus::before { content: "\f441"; } +.bi-journal-plus::before { content: "\f442"; } +.bi-journal-richtext::before { content: "\f443"; } +.bi-journal-text::before { content: "\f444"; } +.bi-journal-x::before { content: "\f445"; } +.bi-journal::before { content: "\f446"; } +.bi-journals::before { content: "\f447"; } +.bi-joystick::before { content: "\f448"; } +.bi-justify-left::before { content: "\f449"; } +.bi-justify-right::before { content: "\f44a"; } +.bi-justify::before { content: "\f44b"; } +.bi-kanban-fill::before { content: "\f44c"; } +.bi-kanban::before { content: "\f44d"; } +.bi-key-fill::before { content: "\f44e"; } +.bi-key::before { content: "\f44f"; } +.bi-keyboard-fill::before { content: "\f450"; } +.bi-keyboard::before { content: "\f451"; } +.bi-ladder::before { content: "\f452"; } +.bi-lamp-fill::before { content: "\f453"; } +.bi-lamp::before { content: "\f454"; } +.bi-laptop-fill::before { content: "\f455"; } +.bi-laptop::before { content: "\f456"; } +.bi-layer-backward::before { content: "\f457"; } +.bi-layer-forward::before { content: "\f458"; } +.bi-layers-fill::before { content: "\f459"; } +.bi-layers-half::before { content: "\f45a"; } +.bi-layers::before { content: "\f45b"; } +.bi-layout-sidebar-inset-reverse::before { content: "\f45c"; } +.bi-layout-sidebar-inset::before { content: "\f45d"; } +.bi-layout-sidebar-reverse::before { content: "\f45e"; } +.bi-layout-sidebar::before { content: "\f45f"; } +.bi-layout-split::before { content: "\f460"; } +.bi-layout-text-sidebar-reverse::before { content: "\f461"; } +.bi-layout-text-sidebar::before { content: "\f462"; } +.bi-layout-text-window-reverse::before { content: "\f463"; } +.bi-layout-text-window::before { content: "\f464"; } +.bi-layout-three-columns::before { content: "\f465"; } +.bi-layout-wtf::before { content: "\f466"; } +.bi-life-preserver::before { content: "\f467"; } +.bi-lightbulb-fill::before { content: "\f468"; } +.bi-lightbulb-off-fill::before { content: "\f469"; } +.bi-lightbulb-off::before { content: "\f46a"; } +.bi-lightbulb::before { content: "\f46b"; } +.bi-lightning-charge-fill::before { content: "\f46c"; } +.bi-lightning-charge::before { content: "\f46d"; } +.bi-lightning-fill::before { content: "\f46e"; } +.bi-lightning::before { content: "\f46f"; } +.bi-link-45deg::before { content: "\f470"; } +.bi-link::before { content: "\f471"; } +.bi-linkedin::before { content: "\f472"; } +.bi-list-check::before { content: "\f473"; } +.bi-list-nested::before { content: "\f474"; } +.bi-list-ol::before { content: "\f475"; } +.bi-list-stars::before { content: "\f476"; } +.bi-list-task::before { content: "\f477"; } +.bi-list-ul::before { content: "\f478"; } +.bi-list::before { content: "\f479"; } +.bi-lock-fill::before { content: "\f47a"; } +.bi-lock::before { content: "\f47b"; } +.bi-mailbox::before { content: "\f47c"; } +.bi-mailbox2::before { content: "\f47d"; } +.bi-map-fill::before { content: "\f47e"; } +.bi-map::before { content: "\f47f"; } +.bi-markdown-fill::before { content: "\f480"; } +.bi-markdown::before { content: "\f481"; } +.bi-mask::before { content: "\f482"; } +.bi-megaphone-fill::before { content: "\f483"; } +.bi-megaphone::before { content: "\f484"; } +.bi-menu-app-fill::before { content: "\f485"; } +.bi-menu-app::before { content: "\f486"; } +.bi-menu-button-fill::before { content: "\f487"; } +.bi-menu-button-wide-fill::before { content: "\f488"; } +.bi-menu-button-wide::before { content: "\f489"; } +.bi-menu-button::before { content: "\f48a"; } +.bi-menu-down::before { content: "\f48b"; } +.bi-menu-up::before { content: "\f48c"; } +.bi-mic-fill::before { content: "\f48d"; } +.bi-mic-mute-fill::before { content: "\f48e"; } +.bi-mic-mute::before { content: "\f48f"; } +.bi-mic::before { content: "\f490"; } +.bi-minecart-loaded::before { content: "\f491"; } +.bi-minecart::before { content: "\f492"; } +.bi-moisture::before { content: "\f493"; } +.bi-moon-fill::before { content: "\f494"; } +.bi-moon-stars-fill::before { content: "\f495"; } +.bi-moon-stars::before { content: "\f496"; } +.bi-moon::before { content: "\f497"; } +.bi-mouse-fill::before { content: "\f498"; } +.bi-mouse::before { content: "\f499"; } +.bi-mouse2-fill::before { content: "\f49a"; } +.bi-mouse2::before { content: "\f49b"; } +.bi-mouse3-fill::before { content: "\f49c"; } +.bi-mouse3::before { content: "\f49d"; } +.bi-music-note-beamed::before { content: "\f49e"; } +.bi-music-note-list::before { content: "\f49f"; } +.bi-music-note::before { content: "\f4a0"; } +.bi-music-player-fill::before { content: "\f4a1"; } +.bi-music-player::before { content: "\f4a2"; } +.bi-newspaper::before { content: "\f4a3"; } +.bi-node-minus-fill::before { content: "\f4a4"; } +.bi-node-minus::before { content: "\f4a5"; } +.bi-node-plus-fill::before { content: "\f4a6"; } +.bi-node-plus::before { content: "\f4a7"; } +.bi-nut-fill::before { content: "\f4a8"; } +.bi-nut::before { content: "\f4a9"; } +.bi-octagon-fill::before { content: "\f4aa"; } +.bi-octagon-half::before { content: "\f4ab"; } +.bi-octagon::before { content: "\f4ac"; } +.bi-option::before { content: "\f4ad"; } +.bi-outlet::before { content: "\f4ae"; } +.bi-paint-bucket::before { content: "\f4af"; } +.bi-palette-fill::before { content: "\f4b0"; } +.bi-palette::before { content: "\f4b1"; } +.bi-palette2::before { content: "\f4b2"; } +.bi-paperclip::before { content: "\f4b3"; } +.bi-paragraph::before { content: "\f4b4"; } +.bi-patch-check-fill::before { content: "\f4b5"; } +.bi-patch-check::before { content: "\f4b6"; } +.bi-patch-exclamation-fill::before { content: "\f4b7"; } +.bi-patch-exclamation::before { content: "\f4b8"; } +.bi-patch-minus-fill::before { content: "\f4b9"; } +.bi-patch-minus::before { content: "\f4ba"; } +.bi-patch-plus-fill::before { content: "\f4bb"; } +.bi-patch-plus::before { content: "\f4bc"; } +.bi-patch-question-fill::before { content: "\f4bd"; } +.bi-patch-question::before { content: "\f4be"; } +.bi-pause-btn-fill::before { content: "\f4bf"; } +.bi-pause-btn::before { content: "\f4c0"; } +.bi-pause-circle-fill::before { content: "\f4c1"; } +.bi-pause-circle::before { content: "\f4c2"; } +.bi-pause-fill::before { content: "\f4c3"; } +.bi-pause::before { content: "\f4c4"; } +.bi-peace-fill::before { content: "\f4c5"; } +.bi-peace::before { content: "\f4c6"; } +.bi-pen-fill::before { content: "\f4c7"; } +.bi-pen::before { content: "\f4c8"; } +.bi-pencil-fill::before { content: "\f4c9"; } +.bi-pencil-square::before { content: "\f4ca"; } +.bi-pencil::before { content: "\f4cb"; } +.bi-pentagon-fill::before { content: "\f4cc"; } +.bi-pentagon-half::before { content: "\f4cd"; } +.bi-pentagon::before { content: "\f4ce"; } +.bi-people-fill::before { content: "\f4cf"; } +.bi-people::before { content: "\f4d0"; } +.bi-percent::before { content: "\f4d1"; } +.bi-person-badge-fill::before { content: "\f4d2"; } +.bi-person-badge::before { content: "\f4d3"; } +.bi-person-bounding-box::before { content: "\f4d4"; } +.bi-person-check-fill::before { content: "\f4d5"; } +.bi-person-check::before { content: "\f4d6"; } +.bi-person-circle::before { content: "\f4d7"; } +.bi-person-dash-fill::before { content: "\f4d8"; } +.bi-person-dash::before { content: "\f4d9"; } +.bi-person-fill::before { content: "\f4da"; } +.bi-person-lines-fill::before { content: "\f4db"; } +.bi-person-plus-fill::before { content: "\f4dc"; } +.bi-person-plus::before { content: "\f4dd"; } +.bi-person-square::before { content: "\f4de"; } +.bi-person-x-fill::before { content: "\f4df"; } +.bi-person-x::before { content: "\f4e0"; } +.bi-person::before { content: "\f4e1"; } +.bi-phone-fill::before { content: "\f4e2"; } +.bi-phone-landscape-fill::before { content: "\f4e3"; } +.bi-phone-landscape::before { content: "\f4e4"; } +.bi-phone-vibrate-fill::before { content: "\f4e5"; } +.bi-phone-vibrate::before { content: "\f4e6"; } +.bi-phone::before { content: "\f4e7"; } +.bi-pie-chart-fill::before { content: "\f4e8"; } +.bi-pie-chart::before { content: "\f4e9"; } +.bi-pin-angle-fill::before { content: "\f4ea"; } +.bi-pin-angle::before { content: "\f4eb"; } +.bi-pin-fill::before { content: "\f4ec"; } +.bi-pin::before { content: "\f4ed"; } +.bi-pip-fill::before { content: "\f4ee"; } +.bi-pip::before { content: "\f4ef"; } +.bi-play-btn-fill::before { content: "\f4f0"; } +.bi-play-btn::before { content: "\f4f1"; } +.bi-play-circle-fill::before { content: "\f4f2"; } +.bi-play-circle::before { content: "\f4f3"; } +.bi-play-fill::before { content: "\f4f4"; } +.bi-play::before { content: "\f4f5"; } +.bi-plug-fill::before { content: "\f4f6"; } +.bi-plug::before { content: "\f4f7"; } +.bi-plus-circle-dotted::before { content: "\f4f8"; } +.bi-plus-circle-fill::before { content: "\f4f9"; } +.bi-plus-circle::before { content: "\f4fa"; } +.bi-plus-square-dotted::before { content: "\f4fb"; } +.bi-plus-square-fill::before { content: "\f4fc"; } +.bi-plus-square::before { content: "\f4fd"; } +.bi-plus::before { content: "\f4fe"; } +.bi-power::before { content: "\f4ff"; } +.bi-printer-fill::before { content: "\f500"; } +.bi-printer::before { content: "\f501"; } +.bi-puzzle-fill::before { content: "\f502"; } +.bi-puzzle::before { content: "\f503"; } +.bi-question-circle-fill::before { content: "\f504"; } +.bi-question-circle::before { content: "\f505"; } +.bi-question-diamond-fill::before { content: "\f506"; } +.bi-question-diamond::before { content: "\f507"; } +.bi-question-octagon-fill::before { content: "\f508"; } +.bi-question-octagon::before { content: "\f509"; } +.bi-question-square-fill::before { content: "\f50a"; } +.bi-question-square::before { content: "\f50b"; } +.bi-question::before { content: "\f50c"; } +.bi-rainbow::before { content: "\f50d"; } +.bi-receipt-cutoff::before { content: "\f50e"; } +.bi-receipt::before { content: "\f50f"; } +.bi-reception-0::before { content: "\f510"; } +.bi-reception-1::before { content: "\f511"; } +.bi-reception-2::before { content: "\f512"; } +.bi-reception-3::before { content: "\f513"; } +.bi-reception-4::before { content: "\f514"; } +.bi-record-btn-fill::before { content: "\f515"; } +.bi-record-btn::before { content: "\f516"; } +.bi-record-circle-fill::before { content: "\f517"; } +.bi-record-circle::before { content: "\f518"; } +.bi-record-fill::before { content: "\f519"; } +.bi-record::before { content: "\f51a"; } +.bi-record2-fill::before { content: "\f51b"; } +.bi-record2::before { content: "\f51c"; } +.bi-reply-all-fill::before { content: "\f51d"; } +.bi-reply-all::before { content: "\f51e"; } +.bi-reply-fill::before { content: "\f51f"; } +.bi-reply::before { content: "\f520"; } +.bi-rss-fill::before { content: "\f521"; } +.bi-rss::before { content: "\f522"; } +.bi-rulers::before { content: "\f523"; } +.bi-save-fill::before { content: "\f524"; } +.bi-save::before { content: "\f525"; } +.bi-save2-fill::before { content: "\f526"; } +.bi-save2::before { content: "\f527"; } +.bi-scissors::before { content: "\f528"; } +.bi-screwdriver::before { content: "\f529"; } +.bi-search::before { content: "\f52a"; } +.bi-segmented-nav::before { content: "\f52b"; } +.bi-server::before { content: "\f52c"; } +.bi-share-fill::before { content: "\f52d"; } +.bi-share::before { content: "\f52e"; } +.bi-shield-check::before { content: "\f52f"; } +.bi-shield-exclamation::before { content: "\f530"; } +.bi-shield-fill-check::before { content: "\f531"; } +.bi-shield-fill-exclamation::before { content: "\f532"; } +.bi-shield-fill-minus::before { content: "\f533"; } +.bi-shield-fill-plus::before { content: "\f534"; } +.bi-shield-fill-x::before { content: "\f535"; } +.bi-shield-fill::before { content: "\f536"; } +.bi-shield-lock-fill::before { content: "\f537"; } +.bi-shield-lock::before { content: "\f538"; } +.bi-shield-minus::before { content: "\f539"; } +.bi-shield-plus::before { content: "\f53a"; } +.bi-shield-shaded::before { content: "\f53b"; } +.bi-shield-slash-fill::before { content: "\f53c"; } +.bi-shield-slash::before { content: "\f53d"; } +.bi-shield-x::before { content: "\f53e"; } +.bi-shield::before { content: "\f53f"; } +.bi-shift-fill::before { content: "\f540"; } +.bi-shift::before { content: "\f541"; } +.bi-shop-window::before { content: "\f542"; } +.bi-shop::before { content: "\f543"; } +.bi-shuffle::before { content: "\f544"; } +.bi-signpost-2-fill::before { content: "\f545"; } +.bi-signpost-2::before { content: "\f546"; } +.bi-signpost-fill::before { content: "\f547"; } +.bi-signpost-split-fill::before { content: "\f548"; } +.bi-signpost-split::before { content: "\f549"; } +.bi-signpost::before { content: "\f54a"; } +.bi-sim-fill::before { content: "\f54b"; } +.bi-sim::before { content: "\f54c"; } +.bi-skip-backward-btn-fill::before { content: "\f54d"; } +.bi-skip-backward-btn::before { content: "\f54e"; } +.bi-skip-backward-circle-fill::before { content: "\f54f"; } +.bi-skip-backward-circle::before { content: "\f550"; } +.bi-skip-backward-fill::before { content: "\f551"; } +.bi-skip-backward::before { content: "\f552"; } +.bi-skip-end-btn-fill::before { content: "\f553"; } +.bi-skip-end-btn::before { content: "\f554"; } +.bi-skip-end-circle-fill::before { content: "\f555"; } +.bi-skip-end-circle::before { content: "\f556"; } +.bi-skip-end-fill::before { content: "\f557"; } +.bi-skip-end::before { content: "\f558"; } +.bi-skip-forward-btn-fill::before { content: "\f559"; } +.bi-skip-forward-btn::before { content: "\f55a"; } +.bi-skip-forward-circle-fill::before { content: "\f55b"; } +.bi-skip-forward-circle::before { content: "\f55c"; } +.bi-skip-forward-fill::before { content: "\f55d"; } +.bi-skip-forward::before { content: "\f55e"; } +.bi-skip-start-btn-fill::before { content: "\f55f"; } +.bi-skip-start-btn::before { content: "\f560"; } +.bi-skip-start-circle-fill::before { content: "\f561"; } +.bi-skip-start-circle::before { content: "\f562"; } +.bi-skip-start-fill::before { content: "\f563"; } +.bi-skip-start::before { content: "\f564"; } +.bi-slack::before { content: "\f565"; } +.bi-slash-circle-fill::before { content: "\f566"; } +.bi-slash-circle::before { content: "\f567"; } +.bi-slash-square-fill::before { content: "\f568"; } +.bi-slash-square::before { content: "\f569"; } +.bi-slash::before { content: "\f56a"; } +.bi-sliders::before { content: "\f56b"; } +.bi-smartwatch::before { content: "\f56c"; } +.bi-snow::before { content: "\f56d"; } +.bi-snow2::before { content: "\f56e"; } +.bi-snow3::before { content: "\f56f"; } +.bi-sort-alpha-down-alt::before { content: "\f570"; } +.bi-sort-alpha-down::before { content: "\f571"; } +.bi-sort-alpha-up-alt::before { content: "\f572"; } +.bi-sort-alpha-up::before { content: "\f573"; } +.bi-sort-down-alt::before { content: "\f574"; } +.bi-sort-down::before { content: "\f575"; } +.bi-sort-numeric-down-alt::before { content: "\f576"; } +.bi-sort-numeric-down::before { content: "\f577"; } +.bi-sort-numeric-up-alt::before { content: "\f578"; } +.bi-sort-numeric-up::before { content: "\f579"; } +.bi-sort-up-alt::before { content: "\f57a"; } +.bi-sort-up::before { content: "\f57b"; } +.bi-soundwave::before { content: "\f57c"; } +.bi-speaker-fill::before { content: "\f57d"; } +.bi-speaker::before { content: "\f57e"; } +.bi-speedometer::before { content: "\f57f"; } +.bi-speedometer2::before { content: "\f580"; } +.bi-spellcheck::before { content: "\f581"; } +.bi-square-fill::before { content: "\f582"; } +.bi-square-half::before { content: "\f583"; } +.bi-square::before { content: "\f584"; } +.bi-stack::before { content: "\f585"; } +.bi-star-fill::before { content: "\f586"; } +.bi-star-half::before { content: "\f587"; } +.bi-star::before { content: "\f588"; } +.bi-stars::before { content: "\f589"; } +.bi-stickies-fill::before { content: "\f58a"; } +.bi-stickies::before { content: "\f58b"; } +.bi-sticky-fill::before { content: "\f58c"; } +.bi-sticky::before { content: "\f58d"; } +.bi-stop-btn-fill::before { content: "\f58e"; } +.bi-stop-btn::before { content: "\f58f"; } +.bi-stop-circle-fill::before { content: "\f590"; } +.bi-stop-circle::before { content: "\f591"; } +.bi-stop-fill::before { content: "\f592"; } +.bi-stop::before { content: "\f593"; } +.bi-stoplights-fill::before { content: "\f594"; } +.bi-stoplights::before { content: "\f595"; } +.bi-stopwatch-fill::before { content: "\f596"; } +.bi-stopwatch::before { content: "\f597"; } +.bi-subtract::before { content: "\f598"; } +.bi-suit-club-fill::before { content: "\f599"; } +.bi-suit-club::before { content: "\f59a"; } +.bi-suit-diamond-fill::before { content: "\f59b"; } +.bi-suit-diamond::before { content: "\f59c"; } +.bi-suit-heart-fill::before { content: "\f59d"; } +.bi-suit-heart::before { content: "\f59e"; } +.bi-suit-spade-fill::before { content: "\f59f"; } +.bi-suit-spade::before { content: "\f5a0"; } +.bi-sun-fill::before { content: "\f5a1"; } +.bi-sun::before { content: "\f5a2"; } +.bi-sunglasses::before { content: "\f5a3"; } +.bi-sunrise-fill::before { content: "\f5a4"; } +.bi-sunrise::before { content: "\f5a5"; } +.bi-sunset-fill::before { content: "\f5a6"; } +.bi-sunset::before { content: "\f5a7"; } +.bi-symmetry-horizontal::before { content: "\f5a8"; } +.bi-symmetry-vertical::before { content: "\f5a9"; } +.bi-table::before { content: "\f5aa"; } +.bi-tablet-fill::before { content: "\f5ab"; } +.bi-tablet-landscape-fill::before { content: "\f5ac"; } +.bi-tablet-landscape::before { content: "\f5ad"; } +.bi-tablet::before { content: "\f5ae"; } +.bi-tag-fill::before { content: "\f5af"; } +.bi-tag::before { content: "\f5b0"; } +.bi-tags-fill::before { content: "\f5b1"; } +.bi-tags::before { content: "\f5b2"; } +.bi-telegram::before { content: "\f5b3"; } +.bi-telephone-fill::before { content: "\f5b4"; } +.bi-telephone-forward-fill::before { content: "\f5b5"; } +.bi-telephone-forward::before { content: "\f5b6"; } +.bi-telephone-inbound-fill::before { content: "\f5b7"; } +.bi-telephone-inbound::before { content: "\f5b8"; } +.bi-telephone-minus-fill::before { content: "\f5b9"; } +.bi-telephone-minus::before { content: "\f5ba"; } +.bi-telephone-outbound-fill::before { content: "\f5bb"; } +.bi-telephone-outbound::before { content: "\f5bc"; } +.bi-telephone-plus-fill::before { content: "\f5bd"; } +.bi-telephone-plus::before { content: "\f5be"; } +.bi-telephone-x-fill::before { content: "\f5bf"; } +.bi-telephone-x::before { content: "\f5c0"; } +.bi-telephone::before { content: "\f5c1"; } +.bi-terminal-fill::before { content: "\f5c2"; } +.bi-terminal::before { content: "\f5c3"; } +.bi-text-center::before { content: "\f5c4"; } +.bi-text-indent-left::before { content: "\f5c5"; } +.bi-text-indent-right::before { content: "\f5c6"; } +.bi-text-left::before { content: "\f5c7"; } +.bi-text-paragraph::before { content: "\f5c8"; } +.bi-text-right::before { content: "\f5c9"; } +.bi-textarea-resize::before { content: "\f5ca"; } +.bi-textarea-t::before { content: "\f5cb"; } +.bi-textarea::before { content: "\f5cc"; } +.bi-thermometer-half::before { content: "\f5cd"; } +.bi-thermometer-high::before { content: "\f5ce"; } +.bi-thermometer-low::before { content: "\f5cf"; } +.bi-thermometer-snow::before { content: "\f5d0"; } +.bi-thermometer-sun::before { content: "\f5d1"; } +.bi-thermometer::before { content: "\f5d2"; } +.bi-three-dots-vertical::before { content: "\f5d3"; } +.bi-three-dots::before { content: "\f5d4"; } +.bi-toggle-off::before { content: "\f5d5"; } +.bi-toggle-on::before { content: "\f5d6"; } +.bi-toggle2-off::before { content: "\f5d7"; } +.bi-toggle2-on::before { content: "\f5d8"; } +.bi-toggles::before { content: "\f5d9"; } +.bi-toggles2::before { content: "\f5da"; } +.bi-tools::before { content: "\f5db"; } +.bi-tornado::before { content: "\f5dc"; } +.bi-trash-fill::before { content: "\f5dd"; } +.bi-trash::before { content: "\f5de"; } +.bi-trash2-fill::before { content: "\f5df"; } +.bi-trash2::before { content: "\f5e0"; } +.bi-tree-fill::before { content: "\f5e1"; } +.bi-tree::before { content: "\f5e2"; } +.bi-triangle-fill::before { content: "\f5e3"; } +.bi-triangle-half::before { content: "\f5e4"; } +.bi-triangle::before { content: "\f5e5"; } +.bi-trophy-fill::before { content: "\f5e6"; } +.bi-trophy::before { content: "\f5e7"; } +.bi-tropical-storm::before { content: "\f5e8"; } +.bi-truck-flatbed::before { content: "\f5e9"; } +.bi-truck::before { content: "\f5ea"; } +.bi-tsunami::before { content: "\f5eb"; } +.bi-tv-fill::before { content: "\f5ec"; } +.bi-tv::before { content: "\f5ed"; } +.bi-twitch::before { content: "\f5ee"; } +.bi-twitter::before { content: "\f5ef"; } +.bi-type-bold::before { content: "\f5f0"; } +.bi-type-h1::before { content: "\f5f1"; } +.bi-type-h2::before { content: "\f5f2"; } +.bi-type-h3::before { content: "\f5f3"; } +.bi-type-italic::before { content: "\f5f4"; } +.bi-type-strikethrough::before { content: "\f5f5"; } +.bi-type-underline::before { content: "\f5f6"; } +.bi-type::before { content: "\f5f7"; } +.bi-ui-checks-grid::before { content: "\f5f8"; } +.bi-ui-checks::before { content: "\f5f9"; } +.bi-ui-radios-grid::before { content: "\f5fa"; } +.bi-ui-radios::before { content: "\f5fb"; } +.bi-umbrella-fill::before { content: "\f5fc"; } +.bi-umbrella::before { content: "\f5fd"; } +.bi-union::before { content: "\f5fe"; } +.bi-unlock-fill::before { content: "\f5ff"; } +.bi-unlock::before { content: "\f600"; } +.bi-upc-scan::before { content: "\f601"; } +.bi-upc::before { content: "\f602"; } +.bi-upload::before { content: "\f603"; } +.bi-vector-pen::before { content: "\f604"; } +.bi-view-list::before { content: "\f605"; } +.bi-view-stacked::before { content: "\f606"; } +.bi-vinyl-fill::before { content: "\f607"; } +.bi-vinyl::before { content: "\f608"; } +.bi-voicemail::before { content: "\f609"; } +.bi-volume-down-fill::before { content: "\f60a"; } +.bi-volume-down::before { content: "\f60b"; } +.bi-volume-mute-fill::before { content: "\f60c"; } +.bi-volume-mute::before { content: "\f60d"; } +.bi-volume-off-fill::before { content: "\f60e"; } +.bi-volume-off::before { content: "\f60f"; } +.bi-volume-up-fill::before { content: "\f610"; } +.bi-volume-up::before { content: "\f611"; } +.bi-vr::before { content: "\f612"; } +.bi-wallet-fill::before { content: "\f613"; } +.bi-wallet::before { content: "\f614"; } +.bi-wallet2::before { content: "\f615"; } +.bi-watch::before { content: "\f616"; } +.bi-water::before { content: "\f617"; } +.bi-whatsapp::before { content: "\f618"; } +.bi-wifi-1::before { content: "\f619"; } +.bi-wifi-2::before { content: "\f61a"; } +.bi-wifi-off::before { content: "\f61b"; } +.bi-wifi::before { content: "\f61c"; } +.bi-wind::before { content: "\f61d"; } +.bi-window-dock::before { content: "\f61e"; } +.bi-window-sidebar::before { content: "\f61f"; } +.bi-window::before { content: "\f620"; } +.bi-wrench::before { content: "\f621"; } +.bi-x-circle-fill::before { content: "\f622"; } +.bi-x-circle::before { content: "\f623"; } +.bi-x-diamond-fill::before { content: "\f624"; } +.bi-x-diamond::before { content: "\f625"; } +.bi-x-octagon-fill::before { content: "\f626"; } +.bi-x-octagon::before { content: "\f627"; } +.bi-x-square-fill::before { content: "\f628"; } +.bi-x-square::before { content: "\f629"; } +.bi-x::before { content: "\f62a"; } +.bi-youtube::before { content: "\f62b"; } +.bi-zoom-in::before { content: "\f62c"; } +.bi-zoom-out::before { content: "\f62d"; } +.bi-bank::before { content: "\f62e"; } +.bi-bank2::before { content: "\f62f"; } +.bi-bell-slash-fill::before { content: "\f630"; } +.bi-bell-slash::before { content: "\f631"; } +.bi-cash-coin::before { content: "\f632"; } +.bi-check-lg::before { content: "\f633"; } +.bi-coin::before { content: "\f634"; } +.bi-currency-bitcoin::before { content: "\f635"; } +.bi-currency-dollar::before { content: "\f636"; } +.bi-currency-euro::before { content: "\f637"; } +.bi-currency-exchange::before { content: "\f638"; } +.bi-currency-pound::before { content: "\f639"; } +.bi-currency-yen::before { content: "\f63a"; } +.bi-dash-lg::before { content: "\f63b"; } +.bi-exclamation-lg::before { content: "\f63c"; } +.bi-file-earmark-pdf-fill::before { content: "\f63d"; } +.bi-file-earmark-pdf::before { content: "\f63e"; } +.bi-file-pdf-fill::before { content: "\f63f"; } +.bi-file-pdf::before { content: "\f640"; } +.bi-gender-ambiguous::before { content: "\f641"; } +.bi-gender-female::before { content: "\f642"; } +.bi-gender-male::before { content: "\f643"; } +.bi-gender-trans::before { content: "\f644"; } +.bi-headset-vr::before { content: "\f645"; } +.bi-info-lg::before { content: "\f646"; } +.bi-mastodon::before { content: "\f647"; } +.bi-messenger::before { content: "\f648"; } +.bi-piggy-bank-fill::before { content: "\f649"; } +.bi-piggy-bank::before { content: "\f64a"; } +.bi-pin-map-fill::before { content: "\f64b"; } +.bi-pin-map::before { content: "\f64c"; } +.bi-plus-lg::before { content: "\f64d"; } +.bi-question-lg::before { content: "\f64e"; } +.bi-recycle::before { content: "\f64f"; } +.bi-reddit::before { content: "\f650"; } +.bi-safe-fill::before { content: "\f651"; } +.bi-safe2-fill::before { content: "\f652"; } +.bi-safe2::before { content: "\f653"; } +.bi-sd-card-fill::before { content: "\f654"; } +.bi-sd-card::before { content: "\f655"; } +.bi-skype::before { content: "\f656"; } +.bi-slash-lg::before { content: "\f657"; } +.bi-translate::before { content: "\f658"; } +.bi-x-lg::before { content: "\f659"; } +.bi-safe::before { content: "\f65a"; } +.bi-apple::before { content: "\f65b"; } +.bi-microsoft::before { content: "\f65d"; } +.bi-windows::before { content: "\f65e"; } +.bi-behance::before { content: "\f65c"; } +.bi-dribbble::before { content: "\f65f"; } +.bi-line::before { content: "\f660"; } +.bi-medium::before { content: "\f661"; } +.bi-paypal::before { content: "\f662"; } +.bi-pinterest::before { content: "\f663"; } +.bi-signal::before { content: "\f664"; } +.bi-snapchat::before { content: "\f665"; } +.bi-spotify::before { content: "\f666"; } +.bi-stack-overflow::before { content: "\f667"; } +.bi-strava::before { content: "\f668"; } +.bi-wordpress::before { content: "\f669"; } +.bi-vimeo::before { content: "\f66a"; } +.bi-activity::before { content: "\f66b"; } +.bi-easel2-fill::before { content: "\f66c"; } +.bi-easel2::before { content: "\f66d"; } +.bi-easel3-fill::before { content: "\f66e"; } +.bi-easel3::before { content: "\f66f"; } +.bi-fan::before { content: "\f670"; } +.bi-fingerprint::before { content: "\f671"; } +.bi-graph-down-arrow::before { content: "\f672"; } +.bi-graph-up-arrow::before { content: "\f673"; } +.bi-hypnotize::before { content: "\f674"; } +.bi-magic::before { content: "\f675"; } +.bi-person-rolodex::before { content: "\f676"; } +.bi-person-video::before { content: "\f677"; } +.bi-person-video2::before { content: "\f678"; } +.bi-person-video3::before { content: "\f679"; } +.bi-person-workspace::before { content: "\f67a"; } +.bi-radioactive::before { content: "\f67b"; } +.bi-webcam-fill::before { content: "\f67c"; } +.bi-webcam::before { content: "\f67d"; } +.bi-yin-yang::before { content: "\f67e"; } +.bi-bandaid-fill::before { content: "\f680"; } +.bi-bandaid::before { content: "\f681"; } +.bi-bluetooth::before { content: "\f682"; } +.bi-body-text::before { content: "\f683"; } +.bi-boombox::before { content: "\f684"; } +.bi-boxes::before { content: "\f685"; } +.bi-dpad-fill::before { content: "\f686"; } +.bi-dpad::before { content: "\f687"; } +.bi-ear-fill::before { content: "\f688"; } +.bi-ear::before { content: "\f689"; } +.bi-envelope-check-fill::before { content: "\f68b"; } +.bi-envelope-check::before { content: "\f68c"; } +.bi-envelope-dash-fill::before { content: "\f68e"; } +.bi-envelope-dash::before { content: "\f68f"; } +.bi-envelope-exclamation-fill::before { content: "\f691"; } +.bi-envelope-exclamation::before { content: "\f692"; } +.bi-envelope-plus-fill::before { content: "\f693"; } +.bi-envelope-plus::before { content: "\f694"; } +.bi-envelope-slash-fill::before { content: "\f696"; } +.bi-envelope-slash::before { content: "\f697"; } +.bi-envelope-x-fill::before { content: "\f699"; } +.bi-envelope-x::before { content: "\f69a"; } +.bi-explicit-fill::before { content: "\f69b"; } +.bi-explicit::before { content: "\f69c"; } +.bi-git::before { content: "\f69d"; } +.bi-infinity::before { content: "\f69e"; } +.bi-list-columns-reverse::before { content: "\f69f"; } +.bi-list-columns::before { content: "\f6a0"; } +.bi-meta::before { content: "\f6a1"; } +.bi-nintendo-switch::before { content: "\f6a4"; } +.bi-pc-display-horizontal::before { content: "\f6a5"; } +.bi-pc-display::before { content: "\f6a6"; } +.bi-pc-horizontal::before { content: "\f6a7"; } +.bi-pc::before { content: "\f6a8"; } +.bi-playstation::before { content: "\f6a9"; } +.bi-plus-slash-minus::before { content: "\f6aa"; } +.bi-projector-fill::before { content: "\f6ab"; } +.bi-projector::before { content: "\f6ac"; } +.bi-qr-code-scan::before { content: "\f6ad"; } +.bi-qr-code::before { content: "\f6ae"; } +.bi-quora::before { content: "\f6af"; } +.bi-quote::before { content: "\f6b0"; } +.bi-robot::before { content: "\f6b1"; } +.bi-send-check-fill::before { content: "\f6b2"; } +.bi-send-check::before { content: "\f6b3"; } +.bi-send-dash-fill::before { content: "\f6b4"; } +.bi-send-dash::before { content: "\f6b5"; } +.bi-send-exclamation-fill::before { content: "\f6b7"; } +.bi-send-exclamation::before { content: "\f6b8"; } +.bi-send-fill::before { content: "\f6b9"; } +.bi-send-plus-fill::before { content: "\f6ba"; } +.bi-send-plus::before { content: "\f6bb"; } +.bi-send-slash-fill::before { content: "\f6bc"; } +.bi-send-slash::before { content: "\f6bd"; } +.bi-send-x-fill::before { content: "\f6be"; } +.bi-send-x::before { content: "\f6bf"; } +.bi-send::before { content: "\f6c0"; } +.bi-steam::before { content: "\f6c1"; } +.bi-terminal-dash::before { content: "\f6c3"; } +.bi-terminal-plus::before { content: "\f6c4"; } +.bi-terminal-split::before { content: "\f6c5"; } +.bi-ticket-detailed-fill::before { content: "\f6c6"; } +.bi-ticket-detailed::before { content: "\f6c7"; } +.bi-ticket-fill::before { content: "\f6c8"; } +.bi-ticket-perforated-fill::before { content: "\f6c9"; } +.bi-ticket-perforated::before { content: "\f6ca"; } +.bi-ticket::before { content: "\f6cb"; } +.bi-tiktok::before { content: "\f6cc"; } +.bi-window-dash::before { content: "\f6cd"; } +.bi-window-desktop::before { content: "\f6ce"; } +.bi-window-fullscreen::before { content: "\f6cf"; } +.bi-window-plus::before { content: "\f6d0"; } +.bi-window-split::before { content: "\f6d1"; } +.bi-window-stack::before { content: "\f6d2"; } +.bi-window-x::before { content: "\f6d3"; } +.bi-xbox::before { content: "\f6d4"; } +.bi-ethernet::before { content: "\f6d5"; } +.bi-hdmi-fill::before { content: "\f6d6"; } +.bi-hdmi::before { content: "\f6d7"; } +.bi-usb-c-fill::before { content: "\f6d8"; } +.bi-usb-c::before { content: "\f6d9"; } +.bi-usb-fill::before { content: "\f6da"; } +.bi-usb-plug-fill::before { content: "\f6db"; } +.bi-usb-plug::before { content: "\f6dc"; } +.bi-usb-symbol::before { content: "\f6dd"; } +.bi-usb::before { content: "\f6de"; } +.bi-boombox-fill::before { content: "\f6df"; } +.bi-displayport::before { content: "\f6e1"; } +.bi-gpu-card::before { content: "\f6e2"; } +.bi-memory::before { content: "\f6e3"; } +.bi-modem-fill::before { content: "\f6e4"; } +.bi-modem::before { content: "\f6e5"; } +.bi-motherboard-fill::before { content: "\f6e6"; } +.bi-motherboard::before { content: "\f6e7"; } +.bi-optical-audio-fill::before { content: "\f6e8"; } +.bi-optical-audio::before { content: "\f6e9"; } +.bi-pci-card::before { content: "\f6ea"; } +.bi-router-fill::before { content: "\f6eb"; } +.bi-router::before { content: "\f6ec"; } +.bi-thunderbolt-fill::before { content: "\f6ef"; } +.bi-thunderbolt::before { content: "\f6f0"; } +.bi-usb-drive-fill::before { content: "\f6f1"; } +.bi-usb-drive::before { content: "\f6f2"; } +.bi-usb-micro-fill::before { content: "\f6f3"; } +.bi-usb-micro::before { content: "\f6f4"; } +.bi-usb-mini-fill::before { content: "\f6f5"; } +.bi-usb-mini::before { content: "\f6f6"; } +.bi-cloud-haze2::before { content: "\f6f7"; } +.bi-device-hdd-fill::before { content: "\f6f8"; } +.bi-device-hdd::before { content: "\f6f9"; } +.bi-device-ssd-fill::before { content: "\f6fa"; } +.bi-device-ssd::before { content: "\f6fb"; } +.bi-displayport-fill::before { content: "\f6fc"; } +.bi-mortarboard-fill::before { content: "\f6fd"; } +.bi-mortarboard::before { content: "\f6fe"; } +.bi-terminal-x::before { content: "\f6ff"; } +.bi-arrow-through-heart-fill::before { content: "\f700"; } +.bi-arrow-through-heart::before { content: "\f701"; } +.bi-badge-sd-fill::before { content: "\f702"; } +.bi-badge-sd::before { content: "\f703"; } +.bi-bag-heart-fill::before { content: "\f704"; } +.bi-bag-heart::before { content: "\f705"; } +.bi-balloon-fill::before { content: "\f706"; } +.bi-balloon-heart-fill::before { content: "\f707"; } +.bi-balloon-heart::before { content: "\f708"; } +.bi-balloon::before { content: "\f709"; } +.bi-box2-fill::before { content: "\f70a"; } +.bi-box2-heart-fill::before { content: "\f70b"; } +.bi-box2-heart::before { content: "\f70c"; } +.bi-box2::before { content: "\f70d"; } +.bi-braces-asterisk::before { content: "\f70e"; } +.bi-calendar-heart-fill::before { content: "\f70f"; } +.bi-calendar-heart::before { content: "\f710"; } +.bi-calendar2-heart-fill::before { content: "\f711"; } +.bi-calendar2-heart::before { content: "\f712"; } +.bi-chat-heart-fill::before { content: "\f713"; } +.bi-chat-heart::before { content: "\f714"; } +.bi-chat-left-heart-fill::before { content: "\f715"; } +.bi-chat-left-heart::before { content: "\f716"; } +.bi-chat-right-heart-fill::before { content: "\f717"; } +.bi-chat-right-heart::before { content: "\f718"; } +.bi-chat-square-heart-fill::before { content: "\f719"; } +.bi-chat-square-heart::before { content: "\f71a"; } +.bi-clipboard-check-fill::before { content: "\f71b"; } +.bi-clipboard-data-fill::before { content: "\f71c"; } +.bi-clipboard-fill::before { content: "\f71d"; } +.bi-clipboard-heart-fill::before { content: "\f71e"; } +.bi-clipboard-heart::before { content: "\f71f"; } +.bi-clipboard-minus-fill::before { content: "\f720"; } +.bi-clipboard-plus-fill::before { content: "\f721"; } +.bi-clipboard-pulse::before { content: "\f722"; } +.bi-clipboard-x-fill::before { content: "\f723"; } +.bi-clipboard2-check-fill::before { content: "\f724"; } +.bi-clipboard2-check::before { content: "\f725"; } +.bi-clipboard2-data-fill::before { content: "\f726"; } +.bi-clipboard2-data::before { content: "\f727"; } +.bi-clipboard2-fill::before { content: "\f728"; } +.bi-clipboard2-heart-fill::before { content: "\f729"; } +.bi-clipboard2-heart::before { content: "\f72a"; } +.bi-clipboard2-minus-fill::before { content: "\f72b"; } +.bi-clipboard2-minus::before { content: "\f72c"; } +.bi-clipboard2-plus-fill::before { content: "\f72d"; } +.bi-clipboard2-plus::before { content: "\f72e"; } +.bi-clipboard2-pulse-fill::before { content: "\f72f"; } +.bi-clipboard2-pulse::before { content: "\f730"; } +.bi-clipboard2-x-fill::before { content: "\f731"; } +.bi-clipboard2-x::before { content: "\f732"; } +.bi-clipboard2::before { content: "\f733"; } +.bi-emoji-kiss-fill::before { content: "\f734"; } +.bi-emoji-kiss::before { content: "\f735"; } +.bi-envelope-heart-fill::before { content: "\f736"; } +.bi-envelope-heart::before { content: "\f737"; } +.bi-envelope-open-heart-fill::before { content: "\f738"; } +.bi-envelope-open-heart::before { content: "\f739"; } +.bi-envelope-paper-fill::before { content: "\f73a"; } +.bi-envelope-paper-heart-fill::before { content: "\f73b"; } +.bi-envelope-paper-heart::before { content: "\f73c"; } +.bi-envelope-paper::before { content: "\f73d"; } +.bi-filetype-aac::before { content: "\f73e"; } +.bi-filetype-ai::before { content: "\f73f"; } +.bi-filetype-bmp::before { content: "\f740"; } +.bi-filetype-cs::before { content: "\f741"; } +.bi-filetype-css::before { content: "\f742"; } +.bi-filetype-csv::before { content: "\f743"; } +.bi-filetype-doc::before { content: "\f744"; } +.bi-filetype-docx::before { content: "\f745"; } +.bi-filetype-exe::before { content: "\f746"; } +.bi-filetype-gif::before { content: "\f747"; } +.bi-filetype-heic::before { content: "\f748"; } +.bi-filetype-html::before { content: "\f749"; } +.bi-filetype-java::before { content: "\f74a"; } +.bi-filetype-jpg::before { content: "\f74b"; } +.bi-filetype-js::before { content: "\f74c"; } +.bi-filetype-jsx::before { content: "\f74d"; } +.bi-filetype-key::before { content: "\f74e"; } +.bi-filetype-m4p::before { content: "\f74f"; } +.bi-filetype-md::before { content: "\f750"; } +.bi-filetype-mdx::before { content: "\f751"; } +.bi-filetype-mov::before { content: "\f752"; } +.bi-filetype-mp3::before { content: "\f753"; } +.bi-filetype-mp4::before { content: "\f754"; } +.bi-filetype-otf::before { content: "\f755"; } +.bi-filetype-pdf::before { content: "\f756"; } +.bi-filetype-php::before { content: "\f757"; } +.bi-filetype-png::before { content: "\f758"; } +.bi-filetype-ppt::before { content: "\f75a"; } +.bi-filetype-psd::before { content: "\f75b"; } +.bi-filetype-py::before { content: "\f75c"; } +.bi-filetype-raw::before { content: "\f75d"; } +.bi-filetype-rb::before { content: "\f75e"; } +.bi-filetype-sass::before { content: "\f75f"; } +.bi-filetype-scss::before { content: "\f760"; } +.bi-filetype-sh::before { content: "\f761"; } +.bi-filetype-svg::before { content: "\f762"; } +.bi-filetype-tiff::before { content: "\f763"; } +.bi-filetype-tsx::before { content: "\f764"; } +.bi-filetype-ttf::before { content: "\f765"; } +.bi-filetype-txt::before { content: "\f766"; } +.bi-filetype-wav::before { content: "\f767"; } +.bi-filetype-woff::before { content: "\f768"; } +.bi-filetype-xls::before { content: "\f76a"; } +.bi-filetype-xml::before { content: "\f76b"; } +.bi-filetype-yml::before { content: "\f76c"; } +.bi-heart-arrow::before { content: "\f76d"; } +.bi-heart-pulse-fill::before { content: "\f76e"; } +.bi-heart-pulse::before { content: "\f76f"; } +.bi-heartbreak-fill::before { content: "\f770"; } +.bi-heartbreak::before { content: "\f771"; } +.bi-hearts::before { content: "\f772"; } +.bi-hospital-fill::before { content: "\f773"; } +.bi-hospital::before { content: "\f774"; } +.bi-house-heart-fill::before { content: "\f775"; } +.bi-house-heart::before { content: "\f776"; } +.bi-incognito::before { content: "\f777"; } +.bi-magnet-fill::before { content: "\f778"; } +.bi-magnet::before { content: "\f779"; } +.bi-person-heart::before { content: "\f77a"; } +.bi-person-hearts::before { content: "\f77b"; } +.bi-phone-flip::before { content: "\f77c"; } +.bi-plugin::before { content: "\f77d"; } +.bi-postage-fill::before { content: "\f77e"; } +.bi-postage-heart-fill::before { content: "\f77f"; } +.bi-postage-heart::before { content: "\f780"; } +.bi-postage::before { content: "\f781"; } +.bi-postcard-fill::before { content: "\f782"; } +.bi-postcard-heart-fill::before { content: "\f783"; } +.bi-postcard-heart::before { content: "\f784"; } +.bi-postcard::before { content: "\f785"; } +.bi-search-heart-fill::before { content: "\f786"; } +.bi-search-heart::before { content: "\f787"; } +.bi-sliders2-vertical::before { content: "\f788"; } +.bi-sliders2::before { content: "\f789"; } +.bi-trash3-fill::before { content: "\f78a"; } +.bi-trash3::before { content: "\f78b"; } +.bi-valentine::before { content: "\f78c"; } +.bi-valentine2::before { content: "\f78d"; } +.bi-wrench-adjustable-circle-fill::before { content: "\f78e"; } +.bi-wrench-adjustable-circle::before { content: "\f78f"; } +.bi-wrench-adjustable::before { content: "\f790"; } +.bi-filetype-json::before { content: "\f791"; } +.bi-filetype-pptx::before { content: "\f792"; } +.bi-filetype-xlsx::before { content: "\f793"; } +.bi-1-circle-fill::before { content: "\f796"; } +.bi-1-circle::before { content: "\f797"; } +.bi-1-square-fill::before { content: "\f798"; } +.bi-1-square::before { content: "\f799"; } +.bi-2-circle-fill::before { content: "\f79c"; } +.bi-2-circle::before { content: "\f79d"; } +.bi-2-square-fill::before { content: "\f79e"; } +.bi-2-square::before { content: "\f79f"; } +.bi-3-circle-fill::before { content: "\f7a2"; } +.bi-3-circle::before { content: "\f7a3"; } +.bi-3-square-fill::before { content: "\f7a4"; } +.bi-3-square::before { content: "\f7a5"; } +.bi-4-circle-fill::before { content: "\f7a8"; } +.bi-4-circle::before { content: "\f7a9"; } +.bi-4-square-fill::before { content: "\f7aa"; } +.bi-4-square::before { content: "\f7ab"; } +.bi-5-circle-fill::before { content: "\f7ae"; } +.bi-5-circle::before { content: "\f7af"; } +.bi-5-square-fill::before { content: "\f7b0"; } +.bi-5-square::before { content: "\f7b1"; } +.bi-6-circle-fill::before { content: "\f7b4"; } +.bi-6-circle::before { content: "\f7b5"; } +.bi-6-square-fill::before { content: "\f7b6"; } +.bi-6-square::before { content: "\f7b7"; } +.bi-7-circle-fill::before { content: "\f7ba"; } +.bi-7-circle::before { content: "\f7bb"; } +.bi-7-square-fill::before { content: "\f7bc"; } +.bi-7-square::before { content: "\f7bd"; } +.bi-8-circle-fill::before { content: "\f7c0"; } +.bi-8-circle::before { content: "\f7c1"; } +.bi-8-square-fill::before { content: "\f7c2"; } +.bi-8-square::before { content: "\f7c3"; } +.bi-9-circle-fill::before { content: "\f7c6"; } +.bi-9-circle::before { content: "\f7c7"; } +.bi-9-square-fill::before { content: "\f7c8"; } +.bi-9-square::before { content: "\f7c9"; } +.bi-airplane-engines-fill::before { content: "\f7ca"; } +.bi-airplane-engines::before { content: "\f7cb"; } +.bi-airplane-fill::before { content: "\f7cc"; } +.bi-airplane::before { content: "\f7cd"; } +.bi-alexa::before { content: "\f7ce"; } +.bi-alipay::before { content: "\f7cf"; } +.bi-android::before { content: "\f7d0"; } +.bi-android2::before { content: "\f7d1"; } +.bi-box-fill::before { content: "\f7d2"; } +.bi-box-seam-fill::before { content: "\f7d3"; } +.bi-browser-chrome::before { content: "\f7d4"; } +.bi-browser-edge::before { content: "\f7d5"; } +.bi-browser-firefox::before { content: "\f7d6"; } +.bi-browser-safari::before { content: "\f7d7"; } +.bi-c-circle-fill::before { content: "\f7da"; } +.bi-c-circle::before { content: "\f7db"; } +.bi-c-square-fill::before { content: "\f7dc"; } +.bi-c-square::before { content: "\f7dd"; } +.bi-capsule-pill::before { content: "\f7de"; } +.bi-capsule::before { content: "\f7df"; } +.bi-car-front-fill::before { content: "\f7e0"; } +.bi-car-front::before { content: "\f7e1"; } +.bi-cassette-fill::before { content: "\f7e2"; } +.bi-cassette::before { content: "\f7e3"; } +.bi-cc-circle-fill::before { content: "\f7e6"; } +.bi-cc-circle::before { content: "\f7e7"; } +.bi-cc-square-fill::before { content: "\f7e8"; } +.bi-cc-square::before { content: "\f7e9"; } +.bi-cup-hot-fill::before { content: "\f7ea"; } +.bi-cup-hot::before { content: "\f7eb"; } +.bi-currency-rupee::before { content: "\f7ec"; } +.bi-dropbox::before { content: "\f7ed"; } +.bi-escape::before { content: "\f7ee"; } +.bi-fast-forward-btn-fill::before { content: "\f7ef"; } +.bi-fast-forward-btn::before { content: "\f7f0"; } +.bi-fast-forward-circle-fill::before { content: "\f7f1"; } +.bi-fast-forward-circle::before { content: "\f7f2"; } +.bi-fast-forward-fill::before { content: "\f7f3"; } +.bi-fast-forward::before { content: "\f7f4"; } +.bi-filetype-sql::before { content: "\f7f5"; } +.bi-fire::before { content: "\f7f6"; } +.bi-google-play::before { content: "\f7f7"; } +.bi-h-circle-fill::before { content: "\f7fa"; } +.bi-h-circle::before { content: "\f7fb"; } +.bi-h-square-fill::before { content: "\f7fc"; } +.bi-h-square::before { content: "\f7fd"; } +.bi-indent::before { content: "\f7fe"; } +.bi-lungs-fill::before { content: "\f7ff"; } +.bi-lungs::before { content: "\f800"; } +.bi-microsoft-teams::before { content: "\f801"; } +.bi-p-circle-fill::before { content: "\f804"; } +.bi-p-circle::before { content: "\f805"; } +.bi-p-square-fill::before { content: "\f806"; } +.bi-p-square::before { content: "\f807"; } +.bi-pass-fill::before { content: "\f808"; } +.bi-pass::before { content: "\f809"; } +.bi-prescription::before { content: "\f80a"; } +.bi-prescription2::before { content: "\f80b"; } +.bi-r-circle-fill::before { content: "\f80e"; } +.bi-r-circle::before { content: "\f80f"; } +.bi-r-square-fill::before { content: "\f810"; } +.bi-r-square::before { content: "\f811"; } +.bi-repeat-1::before { content: "\f812"; } +.bi-repeat::before { content: "\f813"; } +.bi-rewind-btn-fill::before { content: "\f814"; } +.bi-rewind-btn::before { content: "\f815"; } +.bi-rewind-circle-fill::before { content: "\f816"; } +.bi-rewind-circle::before { content: "\f817"; } +.bi-rewind-fill::before { content: "\f818"; } +.bi-rewind::before { content: "\f819"; } +.bi-train-freight-front-fill::before { content: "\f81a"; } +.bi-train-freight-front::before { content: "\f81b"; } +.bi-train-front-fill::before { content: "\f81c"; } +.bi-train-front::before { content: "\f81d"; } +.bi-train-lightrail-front-fill::before { content: "\f81e"; } +.bi-train-lightrail-front::before { content: "\f81f"; } +.bi-truck-front-fill::before { content: "\f820"; } +.bi-truck-front::before { content: "\f821"; } +.bi-ubuntu::before { content: "\f822"; } +.bi-unindent::before { content: "\f823"; } +.bi-unity::before { content: "\f824"; } +.bi-universal-access-circle::before { content: "\f825"; } +.bi-universal-access::before { content: "\f826"; } +.bi-virus::before { content: "\f827"; } +.bi-virus2::before { content: "\f828"; } +.bi-wechat::before { content: "\f829"; } +.bi-yelp::before { content: "\f82a"; } +.bi-sign-stop-fill::before { content: "\f82b"; } +.bi-sign-stop-lights-fill::before { content: "\f82c"; } +.bi-sign-stop-lights::before { content: "\f82d"; } +.bi-sign-stop::before { content: "\f82e"; } +.bi-sign-turn-left-fill::before { content: "\f82f"; } +.bi-sign-turn-left::before { content: "\f830"; } +.bi-sign-turn-right-fill::before { content: "\f831"; } +.bi-sign-turn-right::before { content: "\f832"; } +.bi-sign-turn-slight-left-fill::before { content: "\f833"; } +.bi-sign-turn-slight-left::before { content: "\f834"; } +.bi-sign-turn-slight-right-fill::before { content: "\f835"; } +.bi-sign-turn-slight-right::before { content: "\f836"; } +.bi-sign-yield-fill::before { content: "\f837"; } +.bi-sign-yield::before { content: "\f838"; } +.bi-ev-station-fill::before { content: "\f839"; } +.bi-ev-station::before { content: "\f83a"; } +.bi-fuel-pump-diesel-fill::before { content: "\f83b"; } +.bi-fuel-pump-diesel::before { content: "\f83c"; } +.bi-fuel-pump-fill::before { content: "\f83d"; } +.bi-fuel-pump::before { content: "\f83e"; } +.bi-0-circle-fill::before { content: "\f83f"; } +.bi-0-circle::before { content: "\f840"; } +.bi-0-square-fill::before { content: "\f841"; } +.bi-0-square::before { content: "\f842"; } +.bi-rocket-fill::before { content: "\f843"; } +.bi-rocket-takeoff-fill::before { content: "\f844"; } +.bi-rocket-takeoff::before { content: "\f845"; } +.bi-rocket::before { content: "\f846"; } +.bi-stripe::before { content: "\f847"; } +.bi-subscript::before { content: "\f848"; } +.bi-superscript::before { content: "\f849"; } +.bi-trello::before { content: "\f84a"; } +.bi-envelope-at-fill::before { content: "\f84b"; } +.bi-envelope-at::before { content: "\f84c"; } +.bi-regex::before { content: "\f84d"; } +.bi-text-wrap::before { content: "\f84e"; } +.bi-sign-dead-end-fill::before { content: "\f84f"; } +.bi-sign-dead-end::before { content: "\f850"; } +.bi-sign-do-not-enter-fill::before { content: "\f851"; } +.bi-sign-do-not-enter::before { content: "\f852"; } +.bi-sign-intersection-fill::before { content: "\f853"; } +.bi-sign-intersection-side-fill::before { content: "\f854"; } +.bi-sign-intersection-side::before { content: "\f855"; } +.bi-sign-intersection-t-fill::before { content: "\f856"; } +.bi-sign-intersection-t::before { content: "\f857"; } +.bi-sign-intersection-y-fill::before { content: "\f858"; } +.bi-sign-intersection-y::before { content: "\f859"; } +.bi-sign-intersection::before { content: "\f85a"; } +.bi-sign-merge-left-fill::before { content: "\f85b"; } +.bi-sign-merge-left::before { content: "\f85c"; } +.bi-sign-merge-right-fill::before { content: "\f85d"; } +.bi-sign-merge-right::before { content: "\f85e"; } +.bi-sign-no-left-turn-fill::before { content: "\f85f"; } +.bi-sign-no-left-turn::before { content: "\f860"; } +.bi-sign-no-parking-fill::before { content: "\f861"; } +.bi-sign-no-parking::before { content: "\f862"; } +.bi-sign-no-right-turn-fill::before { content: "\f863"; } +.bi-sign-no-right-turn::before { content: "\f864"; } +.bi-sign-railroad-fill::before { content: "\f865"; } +.bi-sign-railroad::before { content: "\f866"; } +.bi-building-add::before { content: "\f867"; } +.bi-building-check::before { content: "\f868"; } +.bi-building-dash::before { content: "\f869"; } +.bi-building-down::before { content: "\f86a"; } +.bi-building-exclamation::before { content: "\f86b"; } +.bi-building-fill-add::before { content: "\f86c"; } +.bi-building-fill-check::before { content: "\f86d"; } +.bi-building-fill-dash::before { content: "\f86e"; } +.bi-building-fill-down::before { content: "\f86f"; } +.bi-building-fill-exclamation::before { content: "\f870"; } +.bi-building-fill-gear::before { content: "\f871"; } +.bi-building-fill-lock::before { content: "\f872"; } +.bi-building-fill-slash::before { content: "\f873"; } +.bi-building-fill-up::before { content: "\f874"; } +.bi-building-fill-x::before { content: "\f875"; } +.bi-building-fill::before { content: "\f876"; } +.bi-building-gear::before { content: "\f877"; } +.bi-building-lock::before { content: "\f878"; } +.bi-building-slash::before { content: "\f879"; } +.bi-building-up::before { content: "\f87a"; } +.bi-building-x::before { content: "\f87b"; } +.bi-buildings-fill::before { content: "\f87c"; } +.bi-buildings::before { content: "\f87d"; } +.bi-bus-front-fill::before { content: "\f87e"; } +.bi-bus-front::before { content: "\f87f"; } +.bi-ev-front-fill::before { content: "\f880"; } +.bi-ev-front::before { content: "\f881"; } +.bi-globe-americas::before { content: "\f882"; } +.bi-globe-asia-australia::before { content: "\f883"; } +.bi-globe-central-south-asia::before { content: "\f884"; } +.bi-globe-europe-africa::before { content: "\f885"; } +.bi-house-add-fill::before { content: "\f886"; } +.bi-house-add::before { content: "\f887"; } +.bi-house-check-fill::before { content: "\f888"; } +.bi-house-check::before { content: "\f889"; } +.bi-house-dash-fill::before { content: "\f88a"; } +.bi-house-dash::before { content: "\f88b"; } +.bi-house-down-fill::before { content: "\f88c"; } +.bi-house-down::before { content: "\f88d"; } +.bi-house-exclamation-fill::before { content: "\f88e"; } +.bi-house-exclamation::before { content: "\f88f"; } +.bi-house-gear-fill::before { content: "\f890"; } +.bi-house-gear::before { content: "\f891"; } +.bi-house-lock-fill::before { content: "\f892"; } +.bi-house-lock::before { content: "\f893"; } +.bi-house-slash-fill::before { content: "\f894"; } +.bi-house-slash::before { content: "\f895"; } +.bi-house-up-fill::before { content: "\f896"; } +.bi-house-up::before { content: "\f897"; } +.bi-house-x-fill::before { content: "\f898"; } +.bi-house-x::before { content: "\f899"; } +.bi-person-add::before { content: "\f89a"; } +.bi-person-down::before { content: "\f89b"; } +.bi-person-exclamation::before { content: "\f89c"; } +.bi-person-fill-add::before { content: "\f89d"; } +.bi-person-fill-check::before { content: "\f89e"; } +.bi-person-fill-dash::before { content: "\f89f"; } +.bi-person-fill-down::before { content: "\f8a0"; } +.bi-person-fill-exclamation::before { content: "\f8a1"; } +.bi-person-fill-gear::before { content: "\f8a2"; } +.bi-person-fill-lock::before { content: "\f8a3"; } +.bi-person-fill-slash::before { content: "\f8a4"; } +.bi-person-fill-up::before { content: "\f8a5"; } +.bi-person-fill-x::before { content: "\f8a6"; } +.bi-person-gear::before { content: "\f8a7"; } +.bi-person-lock::before { content: "\f8a8"; } +.bi-person-slash::before { content: "\f8a9"; } +.bi-person-up::before { content: "\f8aa"; } +.bi-scooter::before { content: "\f8ab"; } +.bi-taxi-front-fill::before { content: "\f8ac"; } +.bi-taxi-front::before { content: "\f8ad"; } +.bi-amd::before { content: "\f8ae"; } +.bi-database-add::before { content: "\f8af"; } +.bi-database-check::before { content: "\f8b0"; } +.bi-database-dash::before { content: "\f8b1"; } +.bi-database-down::before { content: "\f8b2"; } +.bi-database-exclamation::before { content: "\f8b3"; } +.bi-database-fill-add::before { content: "\f8b4"; } +.bi-database-fill-check::before { content: "\f8b5"; } +.bi-database-fill-dash::before { content: "\f8b6"; } +.bi-database-fill-down::before { content: "\f8b7"; } +.bi-database-fill-exclamation::before { content: "\f8b8"; } +.bi-database-fill-gear::before { content: "\f8b9"; } +.bi-database-fill-lock::before { content: "\f8ba"; } +.bi-database-fill-slash::before { content: "\f8bb"; } +.bi-database-fill-up::before { content: "\f8bc"; } +.bi-database-fill-x::before { content: "\f8bd"; } +.bi-database-fill::before { content: "\f8be"; } +.bi-database-gear::before { content: "\f8bf"; } +.bi-database-lock::before { content: "\f8c0"; } +.bi-database-slash::before { content: "\f8c1"; } +.bi-database-up::before { content: "\f8c2"; } +.bi-database-x::before { content: "\f8c3"; } +.bi-database::before { content: "\f8c4"; } +.bi-houses-fill::before { content: "\f8c5"; } +.bi-houses::before { content: "\f8c6"; } +.bi-nvidia::before { content: "\f8c7"; } +.bi-person-vcard-fill::before { content: "\f8c8"; } +.bi-person-vcard::before { content: "\f8c9"; } +.bi-sina-weibo::before { content: "\f8ca"; } +.bi-tencent-qq::before { content: "\f8cb"; } +.bi-wikipedia::before { content: "\f8cc"; } +.bi-alphabet-uppercase::before { content: "\f2a5"; } +.bi-alphabet::before { content: "\f68a"; } +.bi-amazon::before { content: "\f68d"; } +.bi-arrows-collapse-vertical::before { content: "\f690"; } +.bi-arrows-expand-vertical::before { content: "\f695"; } +.bi-arrows-vertical::before { content: "\f698"; } +.bi-arrows::before { content: "\f6a2"; } +.bi-ban-fill::before { content: "\f6a3"; } +.bi-ban::before { content: "\f6b6"; } +.bi-bing::before { content: "\f6c2"; } +.bi-cake::before { content: "\f6e0"; } +.bi-cake2::before { content: "\f6ed"; } +.bi-cookie::before { content: "\f6ee"; } +.bi-copy::before { content: "\f759"; } +.bi-crosshair::before { content: "\f769"; } +.bi-crosshair2::before { content: "\f794"; } +.bi-emoji-astonished-fill::before { content: "\f795"; } +.bi-emoji-astonished::before { content: "\f79a"; } +.bi-emoji-grimace-fill::before { content: "\f79b"; } +.bi-emoji-grimace::before { content: "\f7a0"; } +.bi-emoji-grin-fill::before { content: "\f7a1"; } +.bi-emoji-grin::before { content: "\f7a6"; } +.bi-emoji-surprise-fill::before { content: "\f7a7"; } +.bi-emoji-surprise::before { content: "\f7ac"; } +.bi-emoji-tear-fill::before { content: "\f7ad"; } +.bi-emoji-tear::before { content: "\f7b2"; } +.bi-envelope-arrow-down-fill::before { content: "\f7b3"; } +.bi-envelope-arrow-down::before { content: "\f7b8"; } +.bi-envelope-arrow-up-fill::before { content: "\f7b9"; } +.bi-envelope-arrow-up::before { content: "\f7be"; } +.bi-feather::before { content: "\f7bf"; } +.bi-feather2::before { content: "\f7c4"; } +.bi-floppy-fill::before { content: "\f7c5"; } +.bi-floppy::before { content: "\f7d8"; } +.bi-floppy2-fill::before { content: "\f7d9"; } +.bi-floppy2::before { content: "\f7e4"; } +.bi-gitlab::before { content: "\f7e5"; } +.bi-highlighter::before { content: "\f7f8"; } +.bi-marker-tip::before { content: "\f802"; } +.bi-nvme-fill::before { content: "\f803"; } +.bi-nvme::before { content: "\f80c"; } +.bi-opencollective::before { content: "\f80d"; } +.bi-pci-card-network::before { content: "\f8cd"; } +.bi-pci-card-sound::before { content: "\f8ce"; } +.bi-radar::before { content: "\f8cf"; } +.bi-send-arrow-down-fill::before { content: "\f8d0"; } +.bi-send-arrow-down::before { content: "\f8d1"; } +.bi-send-arrow-up-fill::before { content: "\f8d2"; } +.bi-send-arrow-up::before { content: "\f8d3"; } +.bi-sim-slash-fill::before { content: "\f8d4"; } +.bi-sim-slash::before { content: "\f8d5"; } +.bi-sourceforge::before { content: "\f8d6"; } +.bi-substack::before { content: "\f8d7"; } +.bi-threads-fill::before { content: "\f8d8"; } +.bi-threads::before { content: "\f8d9"; } +.bi-transparency::before { content: "\f8da"; } +.bi-twitter-x::before { content: "\f8db"; } +.bi-type-h4::before { content: "\f8dc"; } +.bi-type-h5::before { content: "\f8dd"; } +.bi-type-h6::before { content: "\f8de"; } +.bi-backpack-fill::before { content: "\f8df"; } +.bi-backpack::before { content: "\f8e0"; } +.bi-backpack2-fill::before { content: "\f8e1"; } +.bi-backpack2::before { content: "\f8e2"; } +.bi-backpack3-fill::before { content: "\f8e3"; } +.bi-backpack3::before { content: "\f8e4"; } +.bi-backpack4-fill::before { content: "\f8e5"; } +.bi-backpack4::before { content: "\f8e6"; } +.bi-brilliance::before { content: "\f8e7"; } +.bi-cake-fill::before { content: "\f8e8"; } +.bi-cake2-fill::before { content: "\f8e9"; } +.bi-duffle-fill::before { content: "\f8ea"; } +.bi-duffle::before { content: "\f8eb"; } +.bi-exposure::before { content: "\f8ec"; } +.bi-gender-neuter::before { content: "\f8ed"; } +.bi-highlights::before { content: "\f8ee"; } +.bi-luggage-fill::before { content: "\f8ef"; } +.bi-luggage::before { content: "\f8f0"; } +.bi-mailbox-flag::before { content: "\f8f1"; } +.bi-mailbox2-flag::before { content: "\f8f2"; } +.bi-noise-reduction::before { content: "\f8f3"; } +.bi-passport-fill::before { content: "\f8f4"; } +.bi-passport::before { content: "\f8f5"; } +.bi-person-arms-up::before { content: "\f8f6"; } +.bi-person-raised-hand::before { content: "\f8f7"; } +.bi-person-standing-dress::before { content: "\f8f8"; } +.bi-person-standing::before { content: "\f8f9"; } +.bi-person-walking::before { content: "\f8fa"; } +.bi-person-wheelchair::before { content: "\f8fb"; } +.bi-shadows::before { content: "\f8fc"; } +.bi-suitcase-fill::before { content: "\f8fd"; } +.bi-suitcase-lg-fill::before { content: "\f8fe"; } +.bi-suitcase-lg::before { content: "\f8ff"; } +.bi-suitcase::before { content: "\f900"; } +.bi-suitcase2-fill::before { content: "\f901"; } +.bi-suitcase2::before { content: "\f902"; } +.bi-vignette::before { content: "\f903"; } diff --git a/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap-icons.woff b/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap-icons.woff new file mode 100644 index 0000000000000000000000000000000000000000..dbeeb055674125ad78fda0f3d166b36e5cc92336 GIT binary patch literal 176200 zcmZ6SbyyUC7sW9!5J7YWX;@miUAjA$5+r2-2|<=_6$w#bgHDkJBm@EJQV`gsB}7_e z>5^`EXMTUaKF=J!_jAs@GaIZkv+Ad>rbcp!goNbs7Y&kIz|ZSC4FA=@^8f#+8<{AP zkX*U}aA{yOW_iaEsBa`F0x%VzRs=R%IWi+5`{#Bq02WO`BDzUJ;u&f8kFVLuEx?h4 zMBJa`vT!BIHQG-iKWulOIoKgcE<5o7eZUM7iN_@$6rKSPV75Tb1Z?b=U)-d6_S_rj zb9xEP3?(69xoUUw+|JFz9>_TZ5y%X{ZajFd$oJgN{{_kAkUs!q1~!(Pk1n~o+dX$6 zxeTHZ@w(f<8mp94fFa;74Vc@X@NAiYJYWru{+ahdj|2!44{bFy6^xU~= z_orKvk6@2_YHRnB1SKPqF3cq=i+**b<4RZgOJ@oe$MEROB%IQu8YEz^-LPH8w{KnF zzI}2PqF8r_z3T{Zecc5_yH0HcUixg`{rq{RVl3LK>AS)jbl< zh?_rvqw~*LpNhCh7^x@yH$@M*zeatJKB0n?M{^louWX<|&ZoeR`;ml6fJ;GCzf+*@ zsPHM=Bqd$Q^m8PMIN|$sB)V}lxjA(}<`gQrv*Gl)(@TaaFTqU9+_UM0R^qeIUr%j{ z{JoBHkAE=Ntl;j2P2TU^yt&=*RphAEF6gut9_4+0L+>ccbT*+RBhQ4^r}ANOSK)Ti z>!MHYW{JiQCaNYTBgQ@^%2UNIMHWTXMY$_Qfh%$*HsS`iP1r^riyP{ih>loR8Ssys zty~(>sxp0U{A5J0%8b!ieMHm8)XLawMAyem)>wb@!6-5@#y5Q*Y)QW{&N&*dIjpjzK0=t1@N1nLEq!r~C zF1tjg6;7L04!en~_nPbs2UjWZ8^0TVTBX8o(mjlV{ZCCU+2dvBrWc>CtbCBd zi99qkPb|vlDt;|h689;0#bz&CD!)o%+@+w2LTUwC|4B|WyX4)n(Qe_fn3ZMnK*6f$ zZt5{#NVS}Lc5(mE;_9v4h+}9-d9zCLaPkW8ZsKuZNO-eh@-K&7-D5{9)8wIfA5tsB znIexNzg4aJie`1QpC&%qQ(Ar_Q{H}4$_K-gE7tWjp&IffCrj$yVP~I0b>vI42d?a5 zk9p3%hN{UIUtduS{1U21`LlmDCoqMnRDH=X@GDbp=L*fv@|l`Y1C0Qr|T^D?8U`79D?JA1gY2 z^`0)3(QpPrPof~jsMk5amd8#{(kVr>*L=avD-JfA;nXKdlX9z9b>XSkTOMZt@#NI* z-unw$UWq&or4pkluDw1B*Nny!MDO=}UXU=F7#8-?mG#Ol^q@Ett=9nX>(|s1CE2rIr=zBSLn#SC!QH8*{;ekNE!GokIK8C2NRlT=|gvAs_n)bQEe z^>@&ENOkjbTl(>i>bK8b(#IC6Bc3~N);xE6GSOFE!|0|yLD;XR9E*C+JTbao8UOoy z-|!?QWKz!V`fsjvqkZR-_aVP1zJ{;ao@6jS&8|^i7m}Wg`y%)o?VG^(yz_VYzN&Oz zGs332?6=vv>%PxPWXMol&Al}hX@Xw0#~6=qeWsn$c+EPW^h95|*SgF}T*zo&&8;=1 z2E0JE_8PpQN1%pxEoeWaVKCHI{%i4?`o4X`cxid|Z~b+reXo;&dCKWv zqGerv|E27bfLC$@?_}b}L$fZc^-|B#2Kvd~(h}aqt_HHwj}7fpEAC!34bqdD8v=ec z#l(jVL6*1u%8Hj=>c&gsidR?aPAu<@4vTyBTHP8Ql>IZ_Kv9ZaU8!$iDlG^a*h4l= zDR0<~cJBF{O|q4?(ErKu)~_p=65TMD9Jq}PpYn2#4w}C0(>D1+vbE`tTD_tB*Px$G zL~GBoddW!@NrJAgM;(uQQP4y$vT}-{W`G~rJyo!A>mcuBJY=rf$8}2TAoIzlL~XD8 zyNQ)h?}O|p$I(tqRX!=}PEQlvK$N2mQ)GY{krm);$IJZBH95M0pTDmWer_Oxlu-su15 zbX<7~1Ag(d{2BkbX;?!`+syLjw%>_X zb45$1+0IDF?Xa@4_0_|Z;E}@pyK~XVyb^UZ8~P^fd;D(h=`;C`_&vd6&vTB8 zitHt>Bf>eqe7pYM(5bh4TmP=diFs&s_TtRe=J8SJE1M;nqxN(Ai^7Y^u-TR^`NPlW z>Mgw&Yhhb0$1|tCEp3~-4X5rcofq>5CoO04=P%`#D39Lj2d{WF|Dil#JC_gZVWxZt zx!vB%ljF}#)kp3WQP~EYZF~`0%VPOJfXplcKD+Wlw^qWErj%0h4ZZTR0p}#dox(x6 z&OmOGY2$`pWP?(sf#mS5Sf#lEcCp*NO78}wzTON`YWb(J#LRR%KBBYjo}Gffh|K*g zivBlFZQq2r$tn6HSZ9xf#K>>8wMG9^dd!gYCeP0NF_Y<=gVyVICWqX?45m@yv)F&m zhkU_I%{Oc!%UVZg)BinxO#drlv-S83s~dTG>w%ruA*a9Qjc|4+yQ@`&c_EVKv`F*(t zADw;-SLf5M1b-J9e(HFR;aY!R8Llk){&$O=xBfux9p% zmh2cT*Jfo4Hl$?^goh?F@RF_*mTZ-H3hfW659d4%&~) z72O`tw{w;|yHTfiQkOe4%FEq((q3I|wMG@xaoxV`x3nCDIWFYy%R@x)LpjFl9g16Z zkJ#myqdM$7{TZm#+kblMFwon)7i>?StL>C`o+%pznz{wr(&VhE$?mG%jP7vCTb;0-_5k|c`8pnkZj+aTd3u5e<$CbJtw#| zS}S|bp0I}iW9cJa z)g}B+yklJ}0YUMfKdSvMs!j{}R*gJp*gPXWSF$l_`q2E3@vQh<{GvXr&FQRVcKC(G zBiRfp0gB`|E;;r~5UD7EmF@v??^{#K@dKhV4+0~mXLJ6&__`AB?@@B!wKJ~VXpN!a zM``(!H736wnOpI-yc=(W=CZdweV*^AE%#Kke31O(;O~j2!>Iz}Xl4)7=-AA{>TzIm zp~u3>acHR0r~59e0*-EO%+fzpJv}YylH2D!Bb+^&C1z4QdMzp^B=>cnGVY-QA2;Pr zn=pT(9N}6q+DkpQw8_(6F5VMAmYOm<7!q7UA5%7I1Hbo!g?-C&YN@NevH9=o2$ODI zY1{c9>)I#XH-!As8hWPkF@DKL zP3@z4fB$fN?&2lkaclpJ?9=%1u=TM06xofhqJ2_}jkg5qp{1Xs37Km#sWekO8)9aY zi7yHoL?=@>`26CeM>7}u{Ag-#O{qFIHvCTXPOeX$a^3Jb$fw`rtfh6&51RSxO@CH( zE(N@tf5WzqK7`+tsQsgSLl|f;97Z?$`O{@6Dps@Z5}UaLW*{isKc|@(@vWSCPB}4@xnAnUI3;%QDX2$wBkM(aFi%)j*>d;M^|Rb_;fva^R?6M* zR?S(&O!vV}j<&qniWdR3;*-=H6p2dnFZ4g%E$V14w+Uw7kB{%@{Cmq2k-^~9VeaXh zaZf(p<_Gg!i(Oy}m1AU0TZxc#&rPqk#(#SLl0B5ST9uxR{_--hG%@QnF;hFY9N}Ru zilUpHHW1CC>VH4l@qPbVkbNzO1O;2$Cn2f#H|^Wr*;)GYG%{GfUca}XCa+Us{~@@dTvexL41vV*LXZy`&jb@7v(?p06b z;n=GPRBbA4AW<(m(!uSi*=e==VUCWw@SW(nNK__+-#XczRVV8Nr@H#R}r3jP3g)QQ9 z5{8=)Wg?7CVEP;;x_v_$CdrkL3h9tZEIwr!1=u2!BLSjk@Kh_u!!s>?`5 zyRa_K<1D%YNDEKq8!^LIkk+b2i5YnsRY^N8@aM$FNaH84GL8|wzEzE?T%}J67ujW=JS+rTMbil^ zhTzn?%(I8NVe}|EekWzPJ<(0Yr6eO(vx(d39(<1IrsdL@(W{}0s)QB3MOL$jYxX7K zIJ*Pn3u}nMFNYzpC+M_?POk7FqMNcyea3UmUQ{JxVJfnkYp*(kQKJ`A$yPXq^o5G6 z_x0fxy2c`gWnc}MG(jgx_$}g^o=Z-KtOh@(lB=*CDW~D`Hls;{Ke1A>&;co@;!>AE ziM3#LVuo)L#*&9mko#;^@IG~o&zMU2!gykE!f+>2PR*q%BOZ&nCcS&LunI}RQl;0& zr5VDtXoUOKeI!DC@=QHOk^B%uOTB>a~aqtRSX^kOIs zK{l(nv}6ckkDv6JX`Hbw7UL-JM|6eZ$Y#A2)M-CGP6XMk`4H_TQ&^I5Pa_Yh$DWAw zx?9+ofz`ZE41PCk2P;5HK^KkT>hl?DD>kqK?6H0yEiR4#!-`3rJ|A5AXO8gRA%jaopfMYSl?F`f%Jdmjb^2~r?&3rNrah9GAwg^dy&V{?L-R4^?NKmvjL zKwuN>(gzF-F!u@oDS-|%0EVdmqlAH^3joD|WHzv)Ff9PmE@P0PdccCz*?TV;_jAMs zt=1W;OUHO}+u3`q2KTevRWsLq6ol$@j15_0QodIJLv3*Bw=Q7LVAVR^Ib*G-l<1m{ zuQ=}#O$V0<%$m7eHE1>ca}_$-BT)bf;(p$5!KiVas?m)#W{On=Tz5w7=ndi*W;EH- zFIZyTrd0tW9WW>X!x}K;K?52~KCMni+n6mTa_BLL{}ZOc7EXy$yT;5OOD?BEN1MSK zORfj7N*ww-k2B&$oS4WXeL7l87Qoh_qYZuo^l>{Q{uA8)y(6}9^u z#heLa?^*d_>E$>MC(*dCM7IuXQbzC9K}=<;h6Pf>=na7Kxq(!VCYay?T?iY{0E+;e z1!FKcqybEd0i6UE(8&ZHa?lag1e`u72-88x079?-;D0l+L3kO2w?HTWChJl_co&2i zaF@v#V6deca4=pl@Hp<{I3z{QFiDd=mZ}y=QKOizM8^e}K}>q8tA@6_V<`uJU1}Zh zNE{aeK}ZimcXj~s=z{S`(BTA~bWOnN0tY3qfwn$qzXI%hs57CrhacQe4QNjSI~Vnm z1|cH|{r-dC&b=f7sKWtH>jIqv6c9IN1*R2hfzx8aX;RLFE}h$hn8ef|O>Is`7fjOo z?qMiDZE~Tmg@}Mr)K`RgzJN2KLPvHG{O?1|<5aAt){)#Zo z7j`C;=-eB`n5X9BILJkM!C)E~{K~>Vmf);uQNiOS?@Y+=xq{*n{ z$_m=rfISpPj{GD`OEkDHg3pOVpp-N5EKyQeMG7C*aE2AFYp~&1ARr9{D1ks00wqg{ zQQY5!hOaH_UK`uFLyPEd17HZACFmG5*uvKW-jG)m$OA?$V8o*p_hs~eW%$KpOyMc-zQk&T!h}NOH%e zCn701RR|&FRS>d;(^}|X6aD&%-0>M3ZO;HFU~Up@BPFokOWat)&5r=XftR+YD;^=l zJAt<~4TSZ8av7OX{T)59>|r%vAig`CJ?+yVBx->D>RaOVZ;yI=52^5(g4#6L!6X!zzM0DD(Vr$$C1prL| z+&6FZ<*D#rFDCr0Dr0>&+ML7}y6J=13M%8`4GKVBF&}He(i6I}G7~s?Pu$^=C2I`? zU4+Aot~)31R9XTDC~Tl`0b9JT{V#%&ElHPoIi0E4}SU_Mz9~4JW7C@m!IMC==U=jtiH@JAMl4KN2 z>-n5jLD2<885C_$)Ire)WEqSsYk;BxijJx8cib)WF;Z+PB5w}k4$1~7OrT_ea-E>n z$D*6AV#60ZO@Log*sr1j}%|E{I&J2_X)6oDgzm&N-v>PNEnBmq}o|gNn$dkIKXW7%g%s z^$kNHr#6Kw7Ngux#OF9|69+^|0o(@sR0rxffS&^X4l``GM;I{Xh}SX>YxwkE4APqG z>PfM=;x(NR{IKQsC2U-o=shA%wBl8Ux0(b7+lQxS1rWa$kP5mBB-RL^+YUD9gN|$> z5Zo6-4$_YO1s#t694^oa&+t~>*Fg?mAFIS`UPttEaxtQ0qcRX7`<6(|+}I9YGtQ}> ziwl<3^fH6!zpn(scOVqxy{aHh=f-UG4j1af>8MJHAfHSQJ!s{T+ z1fk!5P#1tt-ew@wt3^OZ7IaL&X~h_D8XGtbY;?(r8Zn9&9^ z@fqZ<`*L9B7|h%TGxXpb2`G?xt^;Hy-hlh!0rur43I-RzAU_yejiCL^9rUJ9cg>J0>zbbvqv5a0y@l0aYs2*?6~ zKp-Ha0hsRqQ!;?qsZ2!EQexE|cUj|mmb95tf5yvH%u;RRBhQKG+wmB62^lq}v44*O z5N-DWa0SmspT!4`9?_+L4Nuar71n==tkK6n>|Sw?EI~ zia(;)V%m{>FSFqBD4=KN#&${z4PdBYI!|Mv@i2N_CNGIdnFTk#fS$2;L}C3oynU86 zG`=n%Rc2w~{&q^b8NuG&nhgM%G7EohZ>NMy66`5Du$>G#Eb*`u4JI$4w=xU1A^|<$ zpAdzw8{zFK@-cwP2AFzGeqq-FCeKodo(D6W@eT6tWHwIRwre-N@N)wF9Pte@@iH6R z(nL@F8IJfMsce~zsmt57ezyp7)BMo*pqdl_+y#I(VUCHPEk5XLhRnuKvh7;+O?0Ph zAQ1nl1r*GvPT6A=P&@<+z&Qr`e!2jKD}IhCM2YEO$p|R2(VbrB88TTrG{mip7WVkX z)B6E3i)Dm4SeP!e7)AfMUj7;K| zS14Ef=y|w|br4NJY;U``095zHT>By2Ue-|@AF-pZkaQB9w z5Zv{lkDy?=@zWVuI*R)XUmpP3T?kplXnp}4)g&Ps`+BX)*%PcexbfEMS$c~5&Vx; zW`V#1$=#JA8&qH3gCP7gJwC9UXa%y7F2DXN1`0XpnAu=DH@+D&4Lp{_uY6#Qgy5tH zw?QETB?goy+!}tk8aQf0!vom4R-iN(l>V<#6KLEOAR824o`T?92em-y0wsuBV-#od zpYQ;y5pE5p{1G0FnmloCKn~z2cWu}I#1LE=0kUd=BmM5HI5}9Yg%71kT>Mz>s{0F7*Ntc0iF`m z@gz{-oD<|7*7Qy0+htpyGG-&;3^Z8a8R(XcU6yBNSCv|(tsjKx*WI5 zN;b&2+y*{Lau8h5U^6J85S-DVI=99F?u`V=T~6NRAsduj9)hs14LNZG>3%q>S@Sv^RjPU25a_#Zgo@M5&Shc5Qsl5SVdQ`Z z#=)p{82>V_jr-%1NF$Y+_aCC=0$xFn5$vkF1n!t6>`%x~E_?2e`W_!c$5Ro|O zF_8l>l6gMrTjv1jL;#2bVD#n%ZR+mrn57s=o{zj8Mk;1HAEHZBG^nhE-$Lu3il}N<8z9!Jp7V&hWj#FhSTCbN-ps{+0NZ1L)6RR-a$zxe(X`+5Q`C^tosW(9RE25pc4){I-pYt!oGYE zMuE^W207}rXqeEDC7u0oa&M9pGGDqVfaCU)^`la)o2h%p(sEQX&hS$Thw&bZ?(7kZ@H9x4HZAzmTCK(d=9k!L-JiB#wlyRc~K zjA8|~jTfa*+Pb#7CwM$#-;|bGpnxAe?Q-?xI^u==CJQfZdIOfv`a+<>|Ez)VSI!vv z?!+K91L42Hgv89&JtVTXd6^Ih6q&_pdcNV7KFGsHar~UymAM&je zw38O3P@VEMY@}oS$V_exeWH}nx2X*!#R|bu;Qjc4UX^fQ=@&D&TE~PFx+hDprDkFe zH(yevt{h0`+umlaI6R`nwyo~6MjZ?$GlYi9Bk@h@czb~pY$tPAf=tD#@OEu+Jhsy+ zmMl4I zZ2yT2En?I_1Yc^0_-7f3Ra|(_5&;W+#fNlYHz#&+!&8=jBGAJ2c&L2`ru8Hc&A08y zU{37SMhLG8V%tkvl*l&EOe$*I%FyjS&3a^;2e&KmFC_`kD;?POscZ#mzc47Qr;{DI zltv)_r1wCpd+4ynk7jF;&Gd@FD~uNMf%B^#miPlXtjzSu1aWKH3Edf#t;-Z59M!l+ zR#yiZDBt1!U_X=dax5VEa=o`4srUG0vZb#PkbjwcA738SrCeU{xk=j74JS)MJK(<1 z^A)@tvr@cNxx+--vvC3uYT)Iu^_Bnda_kIs+0pMl0M!A=Z1iodG(S4T={65>hYR?G z%7&}thp15BYsDPuyx(0681EoLb}7b4s}W292x#`&(lB7(tj^*S=;^JmCbMi?%7u`w2!wWtr- z3J%SWUfj8*DwA!)^Y`dfjjXOdQ>?j|5%KTb57TzAFCBnrXD0rPZNTT!`(f4N*IDD4 zCbXGoPq_jR|7?iDWhdN!f`02?0{)@PpuaVEZwmPmDz(C*>OIUFQ+q-SY&TUW5BPvB z0lEgrff3Z zp_4Mj!^oVMJ5LL74*I>>Y8F|}&5xV|@{jJ~I7D{}ut@@hY(Yt=<_ZcCADK- z8_aue({s2;#l1yAHns+XbEHVc^~Ew4wiEYrEs??aqhdV1IbBdyZGY-?1c8|8wNX|J z6bj>~UH*RRgTS3^k7Cgq-7^Ym$J}9Tw1oX&XOW7{g>Do&L^A9iErD>_3pOQluoz@uJ$z(R_VR@Lki{7tFjc)CKdq{!nT2;C*TQ-^v+H>g+Rt3X$xi20~Zx z0xvr8sK<VenssS6GGPjvG_mE1@JOO(*@BmLG#r9U|q1y0^uOHQw8>} zqS_gYwJE&J;~5sV<&Y`e$3&sz+ju(xdQ6+81T?D7O^3p3>v<|EQc*nL0JQA00FEX_EHRH1JAn!0(Vu< z!s7WhE>3VlExekuN1+O2m8YycJ=+f}mTKbhPn+dABbu#r$z~?#;D=0dtPz{DMiuz* zetZtSJXb{j2`SI+zhvA%n+>}4;GZ~8aFWN33x1j-56zsQQB3P<8Cyi$SsbL^QS5NH6R*K2FJ5R+WVXbLZJ%%r;y1H3*;>L_ zV^7Z$#WwIBI8XIzYzO0*BAp+C%lR~8MssfQRFPt)O#q2cox*JaUjudYPioW2@8}O6 zriP)vTW+w0*G&R9>vtt-*REZlRHK+#-etiwsAavP`2snWsb#S!)qVuwqZ1sNQpfz zG`%2IC2X}OLO42anHeT92qt{wrZuij`-m`@rHc`%iE!oVvf{B+SFFdq0Ip3jt+yfn zygYC$l?L3pmo{_ANgJcmx&O#c>HqISfEbDS&K{BLcXZ(nG9J!8HxYiZ?JO(1^2YH-T0Y`qHnH}Jy`|){WJsA)Te=j*K2AKju3?8 zL$Uv&q+paEjMip@)^%>MOBL*L1-r)o>q-JGUkH2Dt#zJ1=YAi+odBmyv1FNGd`U;K zqI@7iEKA>P&|hv!WA4bCD|T@x902+Npu}|SEUVJ>7f3qGWJdw6j1Evx0!1@!EBF}Q zu@mqHh=u{tcpw_^UM#DB4sfzqVi!eU0tFVgrIQ7Xb=nqlmWguGn1jh^Q)hd!mBXzt{@M2kb0Kb5`H3Xb?>Tt#Pi-gO_b?X3U zoF3TDlWbLM-=S8w?Fv`w1yr(Zg;4V4jX@dU3d;|;!kXcT(8<)lmhE?mHh4M$@h^Y| z{e96&2LLw#kOzQd5a~#50dh%Yz;xPMj{mrG;(ZFJ6^~~EiCbTN0`R7rHC?ocbxTM+U4mvNeEhd2A;rJ z^(9GWV_a&x)^*14o4}W>%L|@YNPFhg$nZaPA*kFLqi+W_sh68u_<{El|EU7i$xqW5 z{3~W2==Ewt;JQtPO7uWfwWn7QA}rYg|KW5L3t2!)^YqM9z*D+2aYD&0*jCGPMY6J% zcM$6^NuI`YropA&CfrZ@FpQensj8aqYO9<`#SNN$Z2RI_I>Yu6Gcu*+3b8zlkv;xw z^-jQ=0qyqE)*G2)F5q5e8b&>T0dG&eL-h0mZbS)EU^|;0DKYi$a055Y!gxM-o##eR z?L1Ij%j)DwlG&=ElVk0g4tQ*o(6sX4riTNuJ z?DPU;!u`nK3*VLKj(SO}u=Zuz{K{&?{+BPVwodz%*RJ)}HeFm;t00IbBU8T&)Df0P z(_u{)XPaRcC)q4F|0z@4oVoMq3(F+SjWcVk+L`IEI6K^zwQN`ry)fxt}FO3h)B|?OunL~ z`Dcla^@qnBbTO@??M;TL``=pcK2)NAp}!BB_B?oW>#Tk; z#CGdgy37Uqnn0YbxTUt^Lee!fu@K3ql_t=XH4fK1?sK-tBKONw$#g^UN zFWp!>SF9M=sFIlYmm2lHt9n zRE$rgNIn)Yr~UUQ>R~S_e2j4*AjhJ#(dYrXCg58I9`5kz_otidg`*0OP%l`UKoQNQQOQz@=6Cb98JmqWKt*-gYN6I-R6yGvKgXFDG z?5%_Aq#dzpL1JKi%RDnZ<;||fJ*){g+=&JK8quy?*zbH()NqwJ1+DFtEF&{uH z{u*?XbydB5zwP8Dc+PTm2g6Ou@%IA@yV2wQBjlbzY?tq1+V$hKl1JsTsbL>-Ut7Sw z@U4`f@X{17B9laa^v@GcGcNbPY`<_Le*0+4rhoPgjz1XmQnW?dW^b zam)9K&!+Skw0E#t1W|7#m0s`DM_c0E0%IIG-1_`4SJ?+XkFB~3iTvao6ufl&lUwgE z_q7K>R;cRFCWF~Ud-4kb`B!XFS4p5GDS7D#_s>~(%KqNl497OSVkUj&_C|D{(dgdI zpSR156(42(_?5qVO*LRu7geL(ieL$p{~}3Lg`F-2y?TObr~c-1mN)1vUp^UCk)6ty z8wB59zZZnHV-%GhPbXO#NZmE4QcRDetm017?`tUNRveJ}qUT74T-tRp%%zfjAzybk z@Ik&^%8eDWaJBYkZ{@pn$bCN#UONu`8iA}2TD&*93al6(9v>0ldr?XIB)=?*l|FZH z{D#Ebxv4wM`1l}2SorG9lMmx&^A$V$Xs*VIXzIMd`vU{iUy`gR|3fkt^UAc$JD;7bQHAHn_>>oF0 z`#)7$Aw6&TTyBx*;J^`BSQO+lBlNmSmCy{WK?eZQBMFxq-B)&y{j?bA(wPM zaL^hU)mKi{>fQaR9Xun#z>|Mqd0nWe-lV8sZ)4QL)AoTaW_d+B_r7XUad9j()1aRr z?Ss?)o97>F`gE@se0p+@gxN&&3ya<7 z`Mj|YmNvz|1D~szW%_rP9a*>0GxmE&*auluk!X7*k{~oWcX}iA=-uA3U-5{kJ@Yr_ zaQG=Qg}Oug;d4KGWgP5@CTk|tGp?wA*t?;^RPcJGb~o+7l}y}Chp!Kg&DZT+oF9J6 zCW=#DlkrF)pDpmu1imEuqnm4c-`k9|W01a8oaEcYpUAB(py;wY0F9N(78H{OzWv+50f**dnQ_6MAqyH*yb~_dV{fU(>ra zX#uTn=4VO$wrEwxZ7u78AD)KC>t~O5==gSau&{sEOAd3fOIB{K?^>lS{<7KU_B5(` z-MFuKw-BN?usg4GMT%9L2f0vEXnt*Eh1VyRF3GXay=Qv4L*SH0vG>4L@s+c5R-vZK z$H;ZAw;uEm0kI+8MBan6YR0ks=S#(&R+j=#p*BISH)lI!JB@!|*_X(f*r-bVv~%g2 z=t9T$Z0IGYOS@DEHK9~)Mrpe|%e3gEMdgN-9qaW~6#Nr;sm+5tKrC?aXw0>IlL_E zaI4ZL)J1EF?8M4AtEYO!>%Eqz;h}s;;wD2@VRDAS-7|$6%~a#NUn(OTzST^XL+bZN z(mtClh>h^9*WTV0x;-($y;x$k!8$)#O;Q`EdmR!?|A{g@5zckxd5mqCR1t}7HPhio zh*aKjk6q`CUQP!0pa(CkNW$#r`nb!~?c|LIBr=m1j2+XQpMze|a&7;r+QX;_qq;ruOr?{X#CUzKk?Z*nY_ZOJ3k0rV-z0)WtLTdsIrcV#Yn0sy=6a3pJ3Pg znP8>~-^#GfoH?SvmOpu1rh3V0y!%en_?;6hyJGPkF2x`b{WNyh>1Kl}CZ*gvmT0r0 zKyS{`5XtNMT$RFs_oyNFX*>YMO)U-J~`D zu6=@=8Czv@Z&yRjlW=a`WLs7yYg$F$=7sVYe>1U4Ro?vuxe>vCMMdbX`N<51*7?(0+yW>k0Ssl!8MNhkXM>=`MHmQlWe&PeG%1@~I6GrLX7LUB|v8?&>kP@yPZ;*G%1w!_Tj+ zrMMaHm(sXjVW=CoqiCZwB)ytLZ^gE9ndJum8GGYx{-*0>#mO&{#Y~*=)G@RglQ)I+ z7=}p?M@*1RE^3jhnYno@B{$bCk&dP5p6t5lo-vo@XX?o#;?K^+4UNUi_2k^1xjg>- z>}RXlS1oa4@it2qT?3{x3wWTDZx?6i$X3YpZjo+jr$8;u#Qu+gumFuggrRlfkJVkR zh_Hh@NoIvhKVN?cz8;FF`!{$$?uO*e8MX}7uJ_W>M@Rww`DHQcE{<+y7V!x=p zpe}1Wd!bvO*b^OB`{iL4306SwC1>$fp{OKT<-5Tb)MI| zH^ZZ=hE5$EDw*$Sf`c}G1U}yitibRcI9Zqp@>UkHrm3gxRi(){JTPC6Kq6iSn#)OC zZ}Oj(G}XL+c=y$r#4Q8w>u1xRgVP@~cr*S@S?`of>>EDsWm(`wLHjG)cKYp|4#?#K zBhzLs@4k|;d-R~q;8XZSrBd|$4?*%j=<0t)w$Ob< znm^$EX83s}+4|)$Gj21j z?mUHT5qim@y5-jqYLHtI*9srrkit6!XZ@)OpmKuYROV40u4*xTV+@LR5Z@1acXRgM zlkwBC>M-7#`yd~_-zqw!nEhiS)Q?2U_;SZ%>7hru5A+rr#or45n0TR3xOl&BT;Wd3 zPUdjwxSAj=IX!}67xQFESp8!Awf09&FO;vzxSFt|npw6To|OEBG1@5P0jGj~@FAtP zkKqAbakKAkemdP<)&hOzph}mFtXSPA7N5*Uwb!LrIsA(^F0XVmmaVk2?h&+_cCna} zAkkas5l9{_Z^d7DYEgB|@TcVP0IFug<8b&{@_UOyhB31HHwUu(kWp{Sz8{WXr4v`A z$ySRGYe^TA?v>LBeyv0L!dXliiZdD}9b#T=s})&MU%tcgG>QG`8;Wx7z0d5KE(ITJ zw0}64FzsJ9lAL<`73)nz2*;@EOX}Lh=lUK6iI3EeA6P!X7)})jT&nt{ zxc9-bLi?@WD6^M%6Cyon`BAmwMB*m~sW|)8q}cFWr1PJN_I>le){Jg{xo*ypTaO~T@|B$EiZg^Up%W#3osll=(1)*_9)85pmI`QEbX2yvHFsQXLVM@_FgrF(mKc$q@mp*!o8J4?Fs)_! zCxP#R{*mC}_cs@<9WNe8zOH5@A3tV^6ZmxeEYzzw{_DFTD$C^T9+a*oTVh9{nyQ!y zPwJ}Wsf&{URlCVRdzQ1@WtZM7J_r0zEnb$~m{JDvIEi%i@Nmq&z~z3O{y)qlyeqd* z5f2sazAkmY$@N{NiRJ}~S{<%Q!H!($R?-cLJC5ac?24GoFU_wTx&o)7)zgI{CK+O0 z=Qvl|e_rR6AYWbk!1!AzINW#37-?$kV4mowa{rotSCGz>;?<&j*UL58$NvK_K+wN! z=oMVk{Cm~KPvVtDNi0*!KJ)`obf6;2_&C*<#XkEIGl?XN~MJ;{U8+Y&&}aO5)SU;2kTG4R`Y@PKJ<4l6+Q^{wXtwxx1dt6$QA(Ds zgLo-wV(RvviG~p-2RspsE=`1CmP}<`*38yS;y_p6#ipi-8VWL%s!9BRezye_=dY@Q z4t7tA^?}F9JnGJzY8lDU#NtOY&e65yHtRKICugz)dvO|Km#zDTKFN$_pJ{dXE)6p?%=rPXsxu1mF!yHQ4zX@NQC?FdGw2=8sJQP>x)OBzmPKD z6zV`MA4jEFl1sV+wY3F8%f_yqX~q2eY4whj-(uY?DD+wE%5x9(Z7KMY})ly7q8F01kz77@E`37@Lc;u~a@*C#yB#t*I0xJIUdxffxG zQ{QC6dUaz`iF?D6;)mlo9?^;;qI9@E#H?s2eDge+RMjd+Y4E*Yv=WXDG5EO*xy=3PXKCtus5Mz>=n@Sxb>peo6UEO%(Ze?O@}j=vlFd;;Y35RzvA?Q|yRFTD8o zixAxc)Eb)Wc0u#^;e2G$r8P1s)1N|#;tJ{#UvJ_7=`fZ1R@^lI_ zWJrK3maNN>t6Xsp*F8n9zRZb<6k>oVmnl~~KB6NC^8=R@v&Z^LFY7b1>8%cSlZ56h zy7^2|u%LzkkB0>dV7wB!nnHJE8{iA{p{g^cjMJUm+*H5_ z`#Q5^cfioZMt}6{+>t!E%goQO%Sz7szX6!a=_q&#@3Ch5CKSM`LGST|5=Z*KFz@_8 zaU|)uzF<{ihd8~jM|*j3x}^YGOIjN10}t;R;V>D5DXQwO3E)iDR&$d86LX(WnQPD~ z_HJvMtsPDx@nlxsRg?{s%!#s*@%tOXpYZ-@0xh843u9PA6B}y(3`0d2>+4&C4i#G( zMx1Toj5cpyh;^3-dJeT_l;xq;TvP>6lRTsfM%ww-CA9O&T%Xp=zcxt z4i)|e+f=L2+YeD;as!&s(o#RcBC!OM#qw>j`ItCuqg%9#AqTAd7-uroRW_ANFi4Zm zh+F6srszuRe63)(|2~|HEh59e_~EE+gQk$8lc!eHkZ!(HZS}f-e&@5Qh~oiKZD%Lv z15XhRrBd?O=jINcuXb!N%5UW3a8Ho`i=&xyBSzEI-lW4|)W#3;3N|B_-NW;Z)!*F9$Q0>&h0Tmh8ILOe<_6l?G!!ZdV-`@hed7J53{fxUitA{U`LX zOatM&^|5^abRSEulZT^g;}c{ppT^DozL(`=IWz2Hxh#D=x%z1?mN7^s5@8ZhBf4{J zjMa&pf*r>DU#GC>aoopJw8_T3ESIl0r!Zogi)EA)6P4z%F-i>kSBls&`D5`gy>b7_ zx0(BRqJQO3CRe>8mlLq6(hev?6UlqUQgt~pHM#0(?iJKN`@2`pqGFjSQ-`u~dx4uQ zHYMpt*-SHXH18D${uS@^sDC9BDipd29+oTVk0(=Os*7cm9Fyg0j2grKl@W|j^2zw# z1pmq;!5Z>=yhK8^sw>Bh9f} zW3WuCaw?E-6qy4Nr154HNvQa?u{&>M^`ID+lj+m zoa>wF@XWv;$S&_qE*pl+MUugs`wG$CJ26V)Qx6J6A`nwS3F**;?5o3LrZs@b9{C#G&FA0LZQ2Z#F zgrgu7*34nsx>>k?ulAL@sz>G+rZzm9OUrrm&y-c3SU2b$ubKX_L6x&b7?}&`;}**9X5w!V#Yc)KC3~0D*yIKVeB#z zp{+xg75z?xJy?7AvM~OCmep4v=s5lIIGH_4{P3R86zngIQ=h}$g@?aw);>lS^xi_Pb29`1v&$kwkp!DR}R5F#ctMdGK_%a4rnup(wL4 z4hvV~9On=)z5eJphqo$}HLjc!{vt*Z@;R^pboD$i{hKUi7XZUWEEm+lh5F3_pw<^u z`6+B9aHzAscx})vuVs3g^Q#8!=I~(t1ZVhNTyBJBe69dMVpiEwBV2Jq_`Hf{-mMte zpzppL>18N)n_hP7B`=|}=F+=iWM*pjZ-4+By0pG7=>~}K#{Fm(4erXWBg=R*v*U%o zCz7zqwJ;k~uu$TDkHwm2Q^!0qyP1ZZr{U-<(!Rq2PhrIP_tmxIhigaID}kCgOY8CC zMkjVHN=u^T8@NgqL;gh9imUH;tFBjZf4+9GTw9-Aze@E)d3~w2R4z5w>Xh!dnlW>D z#xxA875HH|ACgjLXTkVf2!$F@a8{y;E3HZW&PkC*{iNrT&hBi}tEg(lYtH6pD?2;w zR*S57%3NikS(#HjJZmn%*&p5(hPUAo5~)yj2lG*c9al=|taMW9^w$WTC3#(NJFV_(;1$j=_&0Mxy42!cwf-Y8WR+g2*2MxC8KodGp8&ccjx81u(1=b`m8 z%?Z*Td%JGT(vp4Li(6jI7G3Ouk*x7CSc^S~-FECfWzyaBX&T>8p*~Ys5LSefxMHk7 zh$N2CS&&5-vOIRI_e+>%)TY=5Fi|V-p`daFxZd2~7$e zl}OF)R!yaf64h#vqENNgI-6S1J8TLwU5i0keC@n&NVrZo!&Zs$DAxkm(dZZj^X{ar zvy*o0e2rkXh6%d$t%Os92Lxv{S|zv0%iBe~I6`;`&jp~+wxhXtez^|BsFCIQ5a{5U zVP&P_n~$4*W#u!q)(~3rnR1b@Ig%3P!;B2-5Mek)%qkT0AS$T`;RMmo@);nHH^E-K zLwFU=66NSM`;5mlLxKf1Z)MAR*!t8f;yOchCj_>~n&w%dS_1S+YG`?y7G0(g?4k_B zrfh46EKfHK-Lnp9wrs|iDG^$}{*%kYON3Vl4+)P5@BVINBFO}UFP`qCYg%yOXhBM7 zK|oOFvgM?BuOD$zcP>qAq5&~O%7_`~LbQ`g(8fw7aFA{nbSUAn@eyILv)K&+F2F(s^+2!>-4wQ2(GxqxrJ2R zIEmXdX?OYwg)jCK&Lrr3GA^x>Q8sbG+jc;dG*g!yRdO|KYjw?)R7cj?eH+Cuz;+j& zqnhFTibi$E;S2z6#W=vm;~5LiAIU{gp@~98SuSb%p;E*fU{pG!Yb9A0sgh_iqb5NY z1(0n`*JeP-^?LXKG6D<=Sw>FCGEtj3E0}CD`em~DG8l1upYTTEhptpM>tm7V$+`yHNxOU{hyUz@WijGkN8qJM4_OTm! zu^YEgoIcxb^P8tM?83E2u;8nijk=xLoobGw3wG00&=OxNJeZHTCreCDfdrQ%a?W>h z3Q){C2_L;8efm+sNrIk$hAAFhu{h9m9ReXno5Oi^BD`R{e(FX32magoj4GDjmE!Q@_g-i__oD~|Gd zJ9gj4?ku6-IDNXrz9o#na)^y#0D^Srmd2m5>D4suEOjZT{>s>UJTPA_%P%*B$G!MV z=$T{{NCQw*X>kH5;sDST6e)+JF08VV0D>@#drp>(L4K8Vn!6coAaJyq^88B@mOlZW zA48k-y&2TH^75A}I6O8p`H(2fwRIJnXK!ME-`gBb2h-=d6njlvxy)>? z6NIm@W#cVO-;ktpW?yz)&;9zqLH;V;Gy^jtQLF6gnjIY|k;rfjgId=vRjQTh(lfV& zVY`LxX4i`%?>gOuVWb@duI0cW$SHfiqiUL?`|FLZ#=vI8@%DnS%yPTk$s>#Q0kNMh zU`yl5}a(>|oYnxO?pa@ek$T{E9Z`IMJ3_{z!Roxi)LX zF?sKH?KOpZZ?I1XQ52Lq&f!z*_JMO7Lv-djPkAOGT)CSkRHf^<+PdFN7gG0=Zf8HL zzD!ce=2ql5ea|Pm<%1-St=Zc0<^(D}CmWp-f_3_Iqqco|W8>Tbd;Qc)rcrJHFVDMh zRJdu+Okx=o2bsH8Q|C*G=k4kjDSF!Q4EU3*z=FTI9LRT-J7uuXG&5?(U`VOjeL0Q) zC#vg?t{>qmZ{J-2_D5V44NVn^XdAZY*`@`js&;)weKp4gJ$Ng^5#cnhyX_Bh{HF=& z@_cmtbkVI!vy;nW%ge*ErUDjmGXgBARxTmbhN0<*uJwsM8TGxx$lwZoK*n-|>kxlO z-!#~=;#cp-!6FY$=1uDY7qh%6Z0>T6H0c-zc?JRyNo)$-Q{)n!(%^rCdJW%rtxcRk zdw4_O>b3+35z*1z;1)e@S6hkxV}Prvo0etJ)zxrQQ!|k zItv^+hB-Dytw5si{U3XrF0;4-3!YtXM zW&%#enF*{o+W`1pzPc)v0y`*a)OqU)rM{(G2FLBT{b-Nw*>LLi>knlREi;%;>_O8g2X3on z1p4<*A!X4weF(;xgD96wUUSLljV008Y}r4ol_5?ik` zZQC>~5)E!f#3Hl+-YvfCc)qENUQ{nTkVL8kLq`Aoc{%Qaj+m{vWoQSO)|)d&E9v9CpPS#~0tUSQO+eiV}=vpx#b%4NB@ z`>CDyTb}2-e=*PyuZYT?6SziT0*_;`xEx>C&615*cPv%lXVg;kL(g_)Su&^wwpJLr zcqOW~uB%QUa$|9z)37(WMz|Sm#nI%3qqp<)KW?i3-F z3vH;zXHELOf!Q$LezQ(^BL+Yj(0}ce9r*j7^NRJ#Y6bp&wA!v#NTu>&P?4Zf;P8P$ z&94V_iQ1)Bd+E7*?kTio3T=57;J`g9x_w5DqzF*~f_(=f)pi9Ss6NL5iaDTj6WjDX z_ngcjYUdE&cxi2WmhEdWrMHL9mLW0R+yCllPyY~ywS9Bm)BnbBHy;9wL;bu`kl$J0 zT@T04t$k=hQ<`=sS^$F(tO9ZVbxOvc8tL+%pG=(3BAi1Vej$#C_wC0sFUinIc}fR} zXi$_i1~(&RcR;p3(^*oi0Fz<`EGd?5+4lF5Fs#KM34(yQaV@-%Q}JQUhgD*HE@gdP z5Zrq14){4I4E5bvhT=VYXWAbIZ9kd(E!&y|@teY7h<|4SAAZUW#(-bHH3fZI0~d<% zP!!tuN5#7~-snGDZ`aR;S2J(O)xpexnZQCn$vTTDs7spoP4wC7 zy8bi*`ivgT1i{Q((fhI{tn-_1bdV1DZY%LDjPk;M$wSs=!`^cX@}s%>)!0|u}6 zbof*uhjT`w&OS6MWI7xt&x065z*g=~qRe|>)CqsW5KSy05|-FLA!Cth`;+6rw6+~t zU7JFQ^Agsn{>!~6Fvy*OxtQyP?2D7C-yN-qR3;WaEPt2_Ynk;hV+9U)zr|vpX&YAq zZG5dz#ba1!s8>s(<;>1HmRPD@7_M!b!|<5y&-hWP6v4+3osqXKPUq>|O?nwrogq-h zIlXp)IRwuSfi#Kf|KTa5@gu`vjmTVoADPQTaE2!|&?Fm&?1-W%b(F(8oHS568k699 zE&A8%AR6`TWLPdSbJ-E$+H{q8nm-|%Vdmj*y>vXjznt#MDI^2fNc-gFp6pKPzO$@8_gLL`;I4^?DQ zBSeykCaLIWRwZ($Hd~TZMRp=pvXocq#}}&yE0u%Q#pAjm%AyEkBVyPZF7+a!rF(Tn zC2;=}K_cPQvS+D#gbnPYx*d||1hpFdIh+KvfL??;Wg-$PFI&&RYAT#vYz7EtO?S2Q^9UzB! z=uVJb+nlLWh3L^qTvVsf`ivPLsV0)x?uMcmcH5$qRF9+>JF27+%sGd--6-K0Cq~JT zH6q!%B!0&>WydjX&p!x1zGs_`Bb)!K17xT!h`tDa3soRR2T4IxrS9pLNF+%#HQRvV zfuJH$#Lr7w$(4v?2GW2QOb#s=!QVV0iT%>PNS|Z_VXk%<-e5DJTmrXu7nVxR#b#;g zUAbsZL{mux_&uU)$cicj6$!%`&a0bEo_4Ug`O;KOrz2)$67A_OeqE8OJ}BXV%<{EK z!Pxq`q~Goom(%^DO24Gi!fK}PywDPaO^%;ubd>TM52YG3QRLeJOT=!>6u3HmFaq*t*bFvI@}Fn3sQ3I3`>t z+yb(CpYST-HR$VP$<18}6Jl+hWGll_&r{5e1!pu({<)E)H!zDo7-5z<}+wQpCzCCv55BXOY2%MhXnbDFFxWTC>rbJ|sJ@8C4 zk-+IyMqu^@qI+I^d+e{i`u00+b8e6PL-X$2$BEtGlq?Ss`wje~EHUf7%wK7wSLrkU z1wqi$*!mUd={v$fpl}yxd{j7zmQDJi{6qizwsS$a7UF*xTzug>|5YI(S=m3)Tzr%ToX?X+5F+wHSl z!jPW3#SH-pVz~VnQ1wDEaFn0R#cq2biy4eu271EPK=FIAFAOm(kgX^=LE_m#)OkKE z%G3@}xXq&kH@13gqm1mlc%PrMV3FeeS3u_{iidycFxyO{H=jniJ(C8!&6jx#T_b#3 zfK}d@aSaAZKj8%uNusPtx7~(&XGr%lt#u!cug)*Ps-bg=6jU0GIjG^+C|2He)R^aK(M5c)7R9Jo~T{R zGy8svsL%10Zp++@vov%iwfQ9}ivz;3Sh>4!fO;1@y;l-HaTf+m-qjAn?JJ=noDS(2 zl&@QH%@`XAG&9jpc%0$ML8xU1?Ts=1bL_+JXRA%IX?qN zaMNM})Jp}-!aVE5@XT$l`ghXA?8MB32Ab^KG12qevGuC=a*^7hyfyK*#?Q6~cZ&1) zRhD<@fN-1eJ*@wj4ENytIO$AmVClYFYl8-cLX>p-J0mC@VPPKTZPI81nm~h7bDy3& zKLMA**)NL4CNxHk$IqP`?3q**=GY$YliI+10c@!=pQ7`IF(|o0Mc|Isi3WeluYj>t z9)%*S|Kk7m$RmoX4#Ti|NiZ~X`D)U=;8>~$85npr9h84OhoC5roI}?0SocH1MIi>7 ztP9t}c<)v={!R0wp}RWGMt}nh+NHVR(`J@Q9)@;Fvp-lkLDQxH{VR+NLEFX&;MLoR ze?<~W)PnKZ10q!irysl{IEidrVOt7&hw6r6l|Q4-;k|BfJ>HwIOQNOS=2@2a-$hlr z-c(*MN$DqPgr;^gn*`W#bZo%BD z+!4WoPH-Z8Rm51(4NTF`_Ku6XJdy=xnO4P3ywCOuiD|PG_xUa&>ne@ZsN2RJd0y(2 ze9g9e-weyvy?2_9qEW4VP_bZu5q(>&7`=d}6At%jN&TDI#~U0EWpQdX(0Q5h^E za!kDD=9`~ajKFpRRjGP*WUIfnV^}cMAqQ_2RhcS|-PJ6$92=#|T%{zdPV9J&=3E19 zOOX{(5uG!^z^8y~!&S`I#x_ta#bN3>LFWnE@noKDWC94|ba~WNbVFC>4oV6&ETUQl zRiuM44BAMd>MH(iE;yChq@nALWVYhYZ?e4>{*G*rSwR<2kKpW9H!T#mT^X)0VX8Y# z2#+Is`l?@JwUBzLnpUn*>nG#6=r!n1B_%wzwMH^maVXsasu&9V(arhN>~h>hwp-|O zC6TDB={#2ok1resJL8%HJROSL;G%Zmn=&FuuGnXr4zNOhlPZcRE>vHuY8PK%Xr>k(7zlNC%^&HCA{jQi8m;+=M6((cE6L%=-QrmLTCkMv&u1^A0{SuT zmI|^lLhB|vN;ffqTepM$QIH~TU5xABk?WA50chKl+Li=EKF`t1DHg>ibCRw(Rzy5= zh`djwsH^g~@f*jp}zU0xb>; z-w-y1Bf>G^6j%=T73Onsj9A#1HQ8dh`ayI$6xSW$9sy#)Hf&5N5CsjKc87M_j)?x# zKC?L3wgT`a?sDEyWSmZuZ>2<$7$lbJMoT5Db+9UXdPh>)Qnfi3$mOQ*0o&@jBS-$s zv6@5;#f)9ijN$<3r%InSNKh|pR@DKuVMt$NE8g{3l;OiKYi{RYqBU1s_kQQ>h~Bnk>m8A);LI4U^K6*D(zd>_|zrm7j*U4ad+u zVu)%3x-(t;Lsb^VzN|>1q(E0^s0vjHNJy>cR39OvC8K*@2K!UigF1zB%rXVTUIhsR z1-dAiKxyMEwhoO4%2Nhoj4Io6WaygyC{wN{$@Pac8-`Gd|1{Gg20uQh;|HQM@Qs`lPQ!@$G0?uBD6CEE4m9!X z(0c1p^ah3=?(*3mPz8tMC>cPVPBHnF3uaP}#TsH(gKWJTI=NV>G)l5L$zCTv+hz^C z%}_@IF;e72Vpm8gP#JAiHrkrzDdd*)f#~fJ#nZGFd;69aYyRYx9X3GTcKg5gh>r6Y>L$(X4{v2N!$Bx;0 zc<2L77Js`2E$v>`(gyo+j-KO+sge5~R7Q@NsBs!rZ~|=;yv28=W6K6l5S9w#xzx2b zc6cs-`W0w1nxa!ebX}zy#Tl*@31C-rRWsNfS$&>+g|_(zMlBF@2W@kA&}&2t-GP>B zTAGP^LK?b(4&N)meZo2BKuwrgo`yASu9D)tRl@HLkY|Xdcn_Vir@kx?Bf0_xc6vi4 zlTk;ECnApX%VUVAw&r(0%dLR5t$@9W``ut(i#4&I^b(rT9_=I>s9LdqZL@s`nFadO z7(ZLx@|JJycF!F2u4^V$+i~n_azj$FUDvK8->8%ytdwh8?(%DI?QWiV?Xvqy%bjih zKy%i$@)Lx?F8FzI$DJcq_|PfQQcxHr4uUn!g4PX9ss58{EC1$mj7C4!ihFWt$%JQ^H?X z<;U=i$7J;}o-{|^<=*S8-gbIOH&j*^xSLx}z1{q#JoK^GD+}o!w(~=;rh8kh5HEGZ&% zl9KwIqKZ_3nj=YyFoivZ`_HKo+!I+BDCYI+Y@Hrf7U9mWolAq|$zW-AZm!Wz^!U+%8>2J-l80gVJ&Y$IL$#vz`uU7PyX5OnP_nO)t zNNE@+1}treM>tTbytyf>3YhowZ&zh`^>4Wkw}^jz68;6HUqtt9PJ76-Um zV973zL~8DhW+6cH>WLVBfj7!~_rQ!4Xf1@18eEiR< z{)P)k(^%!Pjzi_0*CJmu&1%&&ML*Jq%KrBMqB#}Uhab1>4#|Wq%&?U}L*?#GsNJE8 zzHcI}{-jV}dpg02ajux0r!J{SP zZo<6qa0X!FzIK>g0XN0y_BZ-_3)e>{gD4FkeAPr+|M{Mfp4y|$7HPaRk;Xg>754#3 zSo-WN4}XEO-^-&rF{AWQq~|a>e-9H=L@}nY;PIU-@KlTobgV*a+@2hDigOyB_U7L7 z8;>e5K8_I3B zDf+VFo99@CvZ=8pC0`rVqJy&h-&IADzK-<_>wwh>HT8>_bl7weQ^;FPAs4F!%x+MW z8%*u{KcbnkqLbJ=XZpkS|Bb2r4kGzGn%Oex*Ck0&zXsn==UFI=<(?A`2#aatZkI3E z_fvfnWlbgABK$4$qq~UjYHiAxb!69h}PSYr|IHGuod*Sgf zz#D!3Y=(5^BR-AT>lceZfgyne3@TkSFMie3zNvnlM=Mk&$IM2J|e`cvd8mM66FrI)aUB34rSL${6i3&obDQ1WrL$(%-MCb@IAu! z3a=G@80h|fmJ1=>`Fud#l#n^SI|VZ-$w*1__ZQec-E7xb{wT>xplP_|Rwu8(R?(|vxh26oRS~mWJu}y!`N3Lx#cu6L{D+GfY`u*_i{3|IGF>^lTR>iat0tr z|1(i>SL8G{j2{hNzQeCVe*e*wtX-_4Qy(F=oL9|Q@+@QJb6CZ5jGf!t+dGd9)=gke zU0mhX!Wk2`+%+oU3goTc=0P&F&A5n(xWp#q@2Hf`m#EE0<{fvw(e(Z1!l6>L1b@43 zJu=Ox?!M<#T=7gVY*c<>%{G%8Y`gL)d=CF+TyuBbT5Mi;G7hYgD2kCAm0>LN-$4%@ z2AGyX7ETrS9biUAcVk9$q*ZYXcTs_!J$9MqQkx@oP^U3e3<_By~;IiApTRiXUv$E3=kciMHZ~iipey(4nugvpQGuwj?&LJXP9)>wAgN|bJ%rG~+lWEAePMc&O0 z-%*~q8Pi?n$L17Xado8;0v#*ysR|?Z0#N%WQbML5JIVZfvWthEGEfreS+auoI!5+x z#kSu)coqJhOW%b;!FFWj;#b2*gGV2I^h1y0IjKC# z&L4dg_h(Ma&_SR2Ld13q$Jo9slJrJlhefEoRCqaP)$bP`5*|)l_y>hg2tOe_Dg3PP zi^AuG&kMgSd{KB>_zGzLW|n{^DgMK)b@**Y>rpcNjAh@5x(a;sQ`o1TcQMt@I{Zc$ zPnZ{Sg!GP(<`EJd!4$oP!t>X=N?HUiyqbCr3L^+~osa+;2K)s9|2x1hbv+>D;y;E@ z1doOn|9a@->pHq1^;-75-q6>u$cujkTzCS%F!aG#vI6DmMu1QwCKiOyD$InmrPxk4Dm&xl_2>0jwew*-vjOR}X9}zw-d`kFv;j_ZO68<%C`+qF2 zd-Ky7RXpd(j-cF2f+0#@j;@f=UrpQ7I42qB4oobMRduCIp2pMz41QLE!6Z!A(+eyf z+1mg6tU_zdCkjgljiUWf`mCiExx-n+0y&P+(Iq%A#BhrUyW!$j|6yN2W$NoduFZN=OoluzxjGW# z_Rx6t-_iWhWBH^5$b~pRhH}lB0BNNW{KHQg|P3o($ z4QKsz)`l}nYTR;u|D?X!kLLHVegEmkJXdHwqb7M#2SWRr&tcg6?ngrV8qMkY;{!sY$ z!q_{_^y+2__!P{u$f5!1i@?A9M@Pn5`c*75GY$t{0tp4&v7XL0pIT zhe}y*GO_J~*bbLIcwb4&=tFr^&p9mc_9emI%U)+P)?-3-0A&QFj9t}GD)fv0d6Go` z6&KrP_O(HQLLDw}2EP2d(j#S6UO&%c+Q zbh8s&%ix;kp|GCFpOoWTN%U;n6HB!?zqGtH!;wBIIR^iDj(_F<<{y8`KS%|St{FIy z>^UPPWS3H89T=1YADjG37x)MN8^jZ?uzW$YxjiO?EK^=HRgi3kq9G2(y10A<6ZKKJ z=)fyyadG9jvuu&&xpw=pZTQ*61EDRr&mV^P=v=$SpTJ?Tc7dVje-$lNE1BnpJgLa~p?oq)(V3<9$MZ$~MxM(BKfpPhBR6 zd7HZeo!cMT^fuf3^F`OWlUrOC56Wei!9GM^nr=v1+#Ql*H$$S%$R@*Co4ah?zlVOA zj%}eYrm3zQ>x<*z_LgDhuzgk8p4AwPIn?s@P#Bj5dd{Z_igA*yGun@&tK5e)_k^~` z!bkSDb<~2X^UX^#bq4(i&Z$r8i?fYMhx_96B^36dc6SMe&gBC*)b1|7ueiVP4 zr>P41qSzmtUcI`i()Ewa^2gU{+RpR(T9;B^hj#j7buK=9h}G#meCXlH^&VIY@_N

2+UrCZlNAp`)&G@jg{m-!Dn; zhYym7;-O&8glg>dkFUeu$1lk8mPmg_)x|9l{&e+csF?1#Jg9$uQ2X9BKRmV8)xB#h zw(pR|(=DVs6k|HjCDA+#o^ViggRb^OQ-hAv6nm=Pz4(HDJ~&TS=uM*ZEC#$h zD~UJJdsNkC10`vw?1Pg_r`@c4Iur>!QrC^=byk}`luLEA>K$ALygicMHP3^+!f499 zF{5$E6CsP50M;x4_;!b?y>S?}pT6<@V>d1Xe7m~e@JsLmA5RQJ7Q*l`eER7;252Ss zLkb}(rIfL0AQUd|#LT3fWImejLk+w_3|taFc;hkJH1PYq0pj z6}GN&-0Kf@vI-NvNRCAu0?O%%yIk74Nw3pS`fH?z>AOJwl71(X#g8b;4a(JckgvH$ zh7Y{h-0T{go5AL$(cRqC;l${6yN`9d|7({V6vahJy}2zZx2w{kD7M?|#_fvKzFCzX zXfzt$%vFuXRWlx(`d2lM9&KE8bE7fy3;ga;p_n6l9&7;IHKUi>R6U+&LrwER#Ow~+ z_ApAdf4be~R=1bgiV=@J!$nYibP4p)0|scLn}BwrsBYN`jbl`haZDB4`m3=!Z<@7d z4j!DbXM^nIYiD#+(sM+j=NA(*?lL79QrmpDUL7Z znXU68V7ZvWj;psg?7um7=W<~$#1rlnhk~oSGOue64_KSgcXx(T;HtX&hAyy*DWvL3q+q~gQ?dqE*4`At3rkCbauQ5 z#bAgx3P{q=6I&%Q4?0H808cnn>F(({SeeaNHWeHxWA zrBW^5dt3OUG{zWr5>$yLC zbdBx9h({r(Zl}0SS~9d}+K>bmFVaPOd=O2G7s+5L9})vE&}$f%F0i!4?6AXSQXUh{ z=Le_12eQdzQlg&~@u=eU=OrrD(9cnoJ`dxVDw92t$J4UX-!rkWvqKfWcBBwoNmvt? zhbzRU0M}?UrF7I_^noiDj|r!Rmq0&uPIw27+p?6UJU)7XC3orn(~uOShgaw4lL7jr z7n!nWvHaEfaKO6@FE)YUM^DGXl_5 z2_}a_-%k2j5X5VE0~~6Uf6Q_CW!@-1#y{S}+vdmlM?v1cXXr~WE0(u2^c`uaJRy}U z%J$F9a6ST7_-Ww|o{M0jT)hbBj|)xX%BV0d8(+9WVhsE>7LISbIlF=N9YDLA(tzFW z0x1fK#Q$aU*a5a1zyY=;z=31ULPBu3@@Jd)pgHR|kEP>zTt`GOgIpUZenvP8)Mm?o z7?n`J_Zi(BGI|RR3FZSp((<%2oBWo_{V$ju1McBeE8a_eGppoCP$~u32%;p3puM#m z({!-EL_1s5)CVPgicNw&ItUG@Q7U1oXo-FIhr>o$c3mK(?R_geym>fe`_uG~^>MqL zgHEU8pqs{CXfN23q8SoD#YW7ZLE~$jInzKO(yu@0MpDqINUy^t{5q*Lkv1=R(P@+Q zpx-@BHsiS{nu}j7a^U7ib1~l&IQ1*9K`Sk@wP-BAJ?(F`JKb18iNu|GF^!O#bdcFe zvrQe6u7sK)WM$!a>wv5p4=NYGx_I4ERi(aXYOl7=o{o23a=rH>mgxq4FOKJ+(%sh8 z%gTG5h7p8|*DpOF6Pe2Ts~fe`twp-ANEBM#M!@Ex94=hndP=ySWzXWtIlAi`Cs;-- z^ZK(0qhiV=OnC&{!WsUpZqn|o12=G4Tyl85&o&muWPvO_0VXc#ZT8^N zdW`v&;x9;w5gJA~A1b0k!kbstZuOi)n+Ge3LVlUJ{?&^b6@AOm%|>JyR5NT(r^#~d zD~c+KVtLUK6$$6MYlrKx66&_->;5~TU(iHSnh!l!H^k;rf5nfI#hPL(jRW%s4#|>C zOg}hu=zu{KqA64&!OSm+A|d)*Bq>CaXtG$ArTApU) zm?W->#|e4}K?F|{q!wVS&WeB=YE8u0Wf`MzrEm-{G17F_w-TI}U!ZFu5C?NL93h+> zSVH^1QD1Rnu)?ps`FN8MQE^p=DuhTbbiuMied>VNYN`Stdln{kF=~OQ8H%o`C076| zK-9l)hKfe1B*Ji8G3-zjWxeF6CYAqIj;v-|X&srNi>F$|FpP3ZcT|xYj^Z1EFWIUl zOCZS#RAZN+2qF{LJ{THQmPFGp0j)9VpBtE%eJb&E*GrH#<$^tkGQAF?KaBExweXPe zgTniSj|xu;|3dgx;kUr*{S)Co3jay?Z^R^JasV^<6}q6Xu$A7xtl5Y=TSy&;pqy_TPdon(fs4nx_)OitN(VM1Uu?+UIo=0hB`f6~#;7R3<{PfP8PJ|F(Dm1muVSH*I` z=BJ&3lf1o|6fY1W<|^Gnc=#D*PUIM!sO^4xaE_IVTQj07s_jlP1Od;r!z{HWE3{jvT)gkr7kmA4hU>O7i)PnzHl@Bqbmoe;Y3( zMS|0V87f5ly9^T|{yqT$$c!ML6Y(hF^;=U66!}zs#=e;n@#@0)BT($?Pb2>9gDemU zsD^D3j(-bBMom%7^7^A~(}vF(OyS9Mz~FCZRRYa|x@im7*W(^HTN`8v3XE=D2rGb( zs@si*Vo*t@It=p^t3+kPp1FTnR0;e`hu?f4)OF2-K8^yWD%EA#v~@Kg#45Y3d#Yl= z*Nrf23D*fX;9l*Q1Pg6<7AVW27PBO?ENKm#;TK(Ty}y2`z&-~WkYa8?-K~-@!IP$5`Sf#j`L+Wd7XYRmk(~hV)9KiTDX3sIvax-MXx(V~?PX#T`;tz+S7` z3qi18S7Cgh1g?8)_*tpCREDqO>+p7{;+l4gC$j@OJ^k4b?z1a+2xSGn#ov|H@=|rM zf7$`z`-Stu+k|)H90&9fV3+op<^~g~%Y2?&MOSpuC5;5Zzz04E&7AE;mvqrd%_*I9 zH`&T)%(sa12T+5!$#SUyhwhXpBbJ&Ha4Nmn?oHE3hE$iORwHP%Y%97dvTRgAGEgl@ zDH)QfwBa%}ovtD9K%$TAG?wMvU3s~&6M7A!R5BWv6v#~N2pp>|g7n=bJRrPTcwG3H z@N>ei2){jIE%c*lIcoA~oQ$4LpKmS_H76u=?T%k#5Nm!-i_gIVp74Hy?Eij}rCtAK zkPaIC*;0_uLocX% zK2HIF@#|T}L3S^N)1S z#n%#G0WF4)B;(Ie4EQ5?%||`P#ugac2hFUpk?q;_5#wF6Xs~yVh4&a6ua9RJ9q%qP zv^L`2_s^GAnbp;8A$7ffz85zlZrq5taU*Dw+Bm(Zz$UzoyOnz@_W<{C?latZ?)TI5 zR#3h3GkKw=^bI!v2dBcAvZ4L|tc@LZ1DXpyeEQCHG414cuAogWS(@PjJ7*{Q<2a zKtgw_7sZ@oP+6GWPx#58YlUV2Gy%UR`g&@-`lpwNzULyB;(b#XKV`1cCss{#Urq5C z0djfhZHDw_m8I6X+d|<=mxq?8BEBwzo=21J!N>fv-+DsldNp?^==>k%exCauxUX=3v=fc1g)YLx;uIiC zUuKnQC~G(oUGWhwb>2_2h7-}*zn@@@^zWTCZ;YaFra{CN+iG1OlS-B#g!B_jo+O?y)E{IpMeO)Q$OSQG&?44Y zj((e<_Y`-Mdo6bcte1~+pN3xjdn0RHFKHrYD_obG!kJpv<)v?hI}z*AzXm;e1dZz@ zP1>}=b-9Te*San*E$6tKxDD<;?x(q*;eLhtGOh|APvd$?({-4_b$RGJn$~sc=^g3V zdt=t{C%DgYUj%FE-^VnrmmV=kR=6$?NuSwT>$>E$+*;`h&72^>sMq&`%$)7Z$rwLHbe$)}kOWB=1)djW z9$ACO$~uCm!)1dIUe|HMo*{xL3mASR$n=C>=J(PRpG9(+_-S$g0J5Wo^e{hcv1t0T z25YHRK<{7UuH|0Gy~X#veHk^ukOQ%(nD;Nra86{{(GOz0Idh1otEFL~9mY*L=zF{- z&0Yc)sztA88LBhmVy)zL)mT%FmcjVp=M2fJ7bR_%xj+kzI_Xx`unVqRu>B&d8$?%a zTcs+4L1Pt`>AD^xOADND<$15KxJP-6FyS$d;iaqq5-~qp5wx4G%r!jm4zt;)YI?OX zJE5u{zl@UOt(s7o&3CTUMX%AwXo9h6WT2mk1$ts^8^vCmdRhxz>}FSgOKa5;zma}j?@ zCM_&#qJj@wJ~+NiqxojUVYk!o@&oWh^v89))ffjnNIBr&(e*V>k*>-L5-VUT>LSuF zs#1`dN3Gw9PB1mc!1IawtG!gU%yyS8;9*Z^JTUM9prx)JVj1h#5XI+Xbc>VL4$1YN zIAz0JYn=$SSVqmNPdqN01^=GxaADbYOILniI7~i7!kvZc6=}nUs6ljaK2tY z=r{ix?jK*`Uh_+&+Fx=f`<0hOtH1QV`CV7*V|sm@|K86%%KZ}e6wL)Y2LBCo>ootR z<;K>(2f2|RCsH36Nwv@BrrOR12oNJIG6j2ZPUHT##K#Mw@@ zzvPl*Ypwor%(RX$w?3X`{}LqgOJQz(1g-uukUOGv*1Y;RU*h_~cxwG6C+YgA8vUgw z>?kU|5$f|%-sGsK|7I-P(J;OJQjfp=6hrtj160wOQm_t{|%e- z_BzYs+A5XkW(|(#=?-s`rX=y}f^>L}h$5u}OImRY%^zMWJ&V6#zou!B*YM37HhTvk zqa5O+&Na9LppUF^SHSpn6?ZLn1B_y)xYu#72M)iRdkc3j@cFyo>5!L#0_j10b*wGl zD-cXv9oA_t7D#{zf8WnI4>9Ba#g8!yF>yqiN(0by9*+38Nt@#18ylq-U0&RJ_%ub> zJl(F-*0$&tvFKlzj~xKs76d7tDRJoYQi0VmygBMA@*#BJj7!O ziNHnq8p5^otH4WGAC2qBSE?pg>L%`hs<%Y)e4WP}EL*MX#TBc~E3U=OT(qWWZ*{Rs z!@*%c-Kmr5&e0B7eVyrnrMw4N6*Aj@2W;$UJG;9AQ|2Nx|@HU56@Eqkb3+V{FW zvZUO)e-F}n&uw(K?=HhK;NK?Oog;>d*^F^>UNue_Ww{k`OiQuh5~}wT)&vi|5O#*z z5JiG9_(asTJRFKBNyYHsoT}^aZZ+7!XTS{910F&=Vor%EZUv;#d$^C&oD!*Wc+l(r~po6P>HWJ9W z-$#t0+DRNPEbNgLNoM$!_uiVsKafY0Lh{I}e(u0NJ?AH(Gxhx&h!O*=C5jpyjx36! zvxB&_MWX4Fq-#Xn7@))aAidl4Y`0p# zY-JSENr%rBVmQK@c|m5Pn1-Tk30KPkGx&R0J@xIGppZq^`fDsZ`h3CN$Oa(F2{#4b zKN4m`9P-6rV$iU99s+ET^p|jV(r9U#;Hk}n*7Volc$CKkX{VkY{ZZG!K3R_6u?>=G}0uh%j z*DknB^>M8dbUl&3O_7W#L(0>wQqZM>q}S=Tuo4}|wz6K;{Ktc>R@KQ=p&%OKUe{W4 z3+veG^@0n?*ee=ul635gx@7CJtmEIUl4KaspHfu>EjrZ%rOI*fJbQE8%V5;Jhx;(# zO_7n5vD{OBianNl3N}YcJ5-#vz@Nj^Ym{V4HYyQu&TMx8p__)tBPvUl%bdO{ z@X?{`LXY6$cc2w676tUSX_C1f{AL;*(knf*diuSY#u5haFoWQ@l_T_$eaT0x!eELfI@7OlRRe z3l1KX1yR#wUO28+49O4`ebOY7DG_s0S46l{QB5%?86My|FY!Pj9`=gr8B$L08UJ>| zzfLp?uj9$>a7Hf$`!|v|z(4=&O{@GNULZu^j~rq9L;NZ(59SFGTau#Z&gFDPHVoN6 zlv*OeyTZ)0E=mF~$~v#&P^a>`Eb@XRYSTqY5F|lE)q*GrY$RC|@EWdT^yzyQ_crd6 z-0uWE2uU$Ta~dE|_pt|I3W#ntl}oxNl(2i0 z_Pk>cJ^1J0RLvPB_)5tLpB}~;taq;P@*w48ekEXmWr5!p9Piy59PQ(UW!T+X;z?B` zO)^j5Uy~QAgfB@lC?>Lq{S*`wdA>Z9#wA-3O;cQ46GR!sfGi4!hHy$W=ZJN}XTYY5 zypcc0{c6HHvL5*+SZQ}Qn(OoU9By6_IwoS%mB<(tEPzjAKupiToPNl86b- za1;886{<_c>ux;+{q_m&xBW`$kx>m6VamTZtR9!|Kicm6BI|nrx1=3XRQ;jF!!bvW zPq|F8Wgo`ePFb5nSwEFXTuHMd6>>QsAagO&$LB+*QFL@}#Jl#IPdnHo^>xgVxr)81 z73wLoL7Gl_#p}-cjNVqF6m8VuiZSS*S)lHVYezPpzwj4SNq)m29v#`TBDerFr~}eUP8U4)rYx_WIY6 zPG1jeSR?KlG_U!MTjDPWI*uU{_^nf?F%k#!L9ubCETc0G#;jgHjo3G7IkS{AKjP!} z1NkD!5nVGt`0F{loS!dWn=^7|E(6oQVLGPi8rM*Sw=5VXTw75~b$g{c_2#=@D{DDb ziR-T_$lAT2!JfkGyG>B6VBqXCSXXJH1TPNPYR`BHg4U$&tE zFoJ11*_SJs@bBSaM0(ZTikeg9*HmgiHmaTpiRlf(@Z#KyR%&%mJ`X(VzprW zG+9i4>%5PX6fF*pNQ*@N_+gYt=8YdpjSnU=)<^JQ#+iN+p18UdK&2p5EV)(|RKCxK z0=7nEI@X@c1`H8nJsSe|btJ@xwbE3n>^NoErEs-8D&N*gu&`|yroO(8OUc%OHHKp8 zcA6TO#o|RgYtq_^Tq3R57z}$x7K1O(4`W!Iu2g0DYuj+E62r|DP_6@G_ba%!Z-t|2 z(qz$DY<*5QhO=hB<2BoKe(9j^7XwqBPW^hUn$W?7y9^Vc<51L2W0)`03;)irb-k>2 zePsXlTr)S9*XJL~35I4CawSclNAIj)D*0kDuYm1l+BJ)0km8~J`xlIS&Xml2-n@#^ zW%=&A>&rKSA(P9k9m{+OwAB-`xG5C3#(?EBtnRxX$D|W|MV~>d0oAJ_uZ!!7u993V3#|&yaIy({N=3t zx-KbpQ7$4bH2s#mDI)U3T<+(#m4C_pc5KA{=J*{hV`2EP{`c4v_5#cg%T`B8Td1t> zt&!MsGET82`(%wff|^C&r$HPPIRIr0LT!pt8oE~wBg6R!CUFW&e8CU4(PjA)rrLVGf*52A+J|EeEvqWGxnkB+(X zhI;z6YHY3}Fzd@hk%j?vb)#TByB$Ny34ZKwFXwK?+@w3vUXrHhYAfX)sadi3myMXE zO(L(x()Nm&onb=9HcyQyr;d!s5ni7LHm4(&j*?-t{&mN}Dh95LQ9O==5k0Oe3dT^< zegJ*|mapSta2xzUQU%u$bs;IQCb=uPYiLa%G_SKjS{;Kp?-UTWK{$n>g!qCWFgRTY zL*ZN(gWw#OS3kZT;-mUaGdSltTtgm!^29J;1~ui>M}^oo5725t+kMqbsjdoJ93QTV z?`Ht>AN~wIsedNPau>02&_y3f4KoQ3fiLEJx(}&+5EDehFDST?TrF}dbOm0_s}eYK zwx@C0JDTd!fwLv>`eZm;D!!k~P@eNE%)#atcr4Twx`8&c8#r&MG}8fWT4CShl70(Z zm+~s^HXM6>kIS}=8X!)Vmjl$Vw(kh({1$V>ylE?%y*lOC$dTe6>h#Fn%X~3^uq_dP zZ>qXt*GuT(&}GAVGkQLh*Cym|;HSBbyJvSjHQUg62mYH(x*xrpHL7Y@@y0GNch2ME zu|W(kGqkD#%Cu8E>764ud$#Pb%R@ar+jrgDvwc62?GX8XFxGwx?@yhK?)}+@-sAX$ zG6{V=-WppJv5|M(_$%WPI4O6p+zDkspVpGNF-kk;eR3P> zHzR%bRJ=*aK6k}V`dk#^w{?H}SsFr*cJ2uM?Oej$x6U7kue)E%$ovL1>Ye^puUS*7SWRQDh z3y%SR->^nz(r7K++8T}5NVa!vXO=5VliyXAz#hVKt6Pfns}Z!*PZC{SUss13)^Rn; zu#DEas*{!xx9b>vuwK|MP$+UIGBS-yl?M~P#PJA%{>3Tubq?AoK}6HVYqRO)bjeTZ!{br%|@9 zJ&u2JELK|1h%9Pl2PJU>vU+_dTt*A7D!4ucV`pg%RzJDpmJIa43Gu5MScC5Pw(oW=8fng&(`DMndM&i(X;e(pN6j#a8*KJ2eMeuy>Q&zrj4N! zkSNcGHq#FybLm;SLdS@&+qf1((!Zf-n)0vls|6#zW<TL9B`b*zM&tfo3 z%+QMYr?HxOhz$v_5mcNB=+<%3M2ew=PMe*jpxuvw^9(JU8!dq995&|$LMP3{1YY(4 ze~f?`mnvIMzte4QfglFL=2_flW9cS@VSa6%Vk$niG5XJg6}+|$7bsz2;jqG|Qf8%v zC(>3I8S z9QRJ}w0$#2f;^_9VZG-$Zi&Wlgi}v}EMg0M0V*uk+QhnhO(hiniR{hK)LJ$8_jo8t z91A+LwFrNPWs0mC_j$i6GHf0zPfoULwd1aJmIm?PUvSyVWEiKI({L%u)8XsL{+c6P zue>h?ttST%VT4(~M=`k^OElNHe|C8m{;gGJX5hfn@(zDkD;BlGypw+vvG@YJ^9n*A zoU!v0qM<*k8{$OXb_@4gF6H;c_m`m8o@DjFeK^7q(i;Yc2fehNPNNt|=r(Iaqvb=p z;ZD2oZ*vgZA0B_kP#;A)!UoG{FVD>6+0%YQJPS|UlY(k|YnB)SN@`PC~ zJfUwttCH}IcV4NguJyLw(}kz6(#+U<6{)BJ$G}gG3;$o-mp={g?%@_uuS$Q#W4%jh z`&{k$0f~L7-R&#sFXwJi4dIKbq1=&so8@W>(T*Q~^#B|;AW)J%A?tufXzW?tl74yW z)l=UJ;Syqa#H>9-aoGp1Xr~7MLHs^<{P|tJt)z|f-Dz`hBBWa9L}NCXiwTv=A1Ju?lsN}DAV?E2cd^@eXP*l1$d+El5(Tn z3~=CE37wuB=6UeK_CZ@WDox92lt13el}fo*?W)=hc%bMih|*l`s?W<*R6Rej(7_sp zorQ_b!bHI?H?OyI@6Tb{4&2e41!RfAc{IwM;oBXvly}=$3vz{~Ok9Y}4Xl0LPdh|D zCR_4*C8DccLj~o!3(B(ea(YNNq$0}?Nd<#_*Cd$ldQfEy4#D?RAc3s^;5_VPcK_v8XEDH<;mOp?(O zt{QKxiaWr#3!pm}Qt+AGqWxgcHpOA$gxdM~c-qfU5~Ae| zCBRF2t&DEU#8}Tf@CN}DHz9Jb)`{&BSXrIdG(xc3akD;G>Wd7lQcm)nJ>`I8Cg7yIyG!+H115$G02X01!a2ptrukRNxTIc z8`HcLiAA@^sr)5US-|ovypCaPf-7uL-4sMi@^Y+iGCW|eh_SHHXgTru?NqcwH?zgH z2zFUK8*YMY!pt5Nf(KD zn^d~}j9k!VP+8B&@tEKOS_Z|z_!^A4#az)!Gs={+E=%INpbG1vByYwR(tp|%Pl@o) zB+2;{gX!M=R?h<+j|rV^vh`erul7Il$?P0GUxM!t`o%A2Cg$NoobWJias7_c_GnvZ z`hq-hulVY1Zvliz5q_RM1K5#$1ci9zz6EbVykeTNBdB>JUdz`;h)kh4iPy;tymo1V zK@4c_MU8vLkWLB0DanYTw6z)Gn&V=AeOylfI$3IAL}xG}idkUvTSN)aqma-jI4S#| z9kR6k2Z9{IfS>0>obc%5?{^ii-J&Bl^#p-3@bsD65RG6O$$*~_&43(TqDb=b`VT%{ z6`2nDG=;fa{y#1Pub7_(XWd$|6XEqt7G7g4yd%8Q%Lp#uHWRO(*%@B{f#MbUwd*N; z+7@b_*GcdGH{TX<=OFXO<-l`3UTFr2qnP%+m6ij4K1>c|;k85cI8^@Km>7uhW(>85 z4Dl90xJ5K}gjag#e=8HO-;CpJ2yXwQ`B3Ijy_Q=-WHQ0$*5Zi-4> z5P!%f2o$#a7%n0ZbwP9v3bGRU!?BG8nhW$gy7D1denATffZaD%tJ@tk(NZn{Hm2BJ zp%cY5fd1c%*6{t+|GE0UWaEDawZwyT#u(JkU)rMSUq5$lEz$ZcnqGhLG!3e90#ogb zo(~2&W5_tPe7_t7ct$idXjK2zH0uFt6>Y&T(CTg2?uc~f8N_GDrCHQI%q6lw zbFK!`Y8w6bg}|Y=jKO4H(5|q7%8JVx)M0Mk)t)3y0kFzO`Tg0I2Zar>3QE#9Ls;XVeDy?6!;Nvw>>POQh#7+T9u7t+U*> zbPX(~#l}duF&OaQvR@__`9`#wq*;Y;K?}AYMtHLc{W^)l8Fzs<&!^!KYftQ$NuL?S z$+!%grv0rKPy1oH+mDi+k^UZsE|+uY5;#A42xaOR~ojkYloIifhqmkK&aNhYKK#KD`+HY4De@P89>U+YcKOUK(hCMCPCY zhrQ2MzThVYUSbfPXOQp5*339Rh93xGU6IZTq9}Y)S~z`rlL1>|Q)vY|c^abuW`SR# zb28VZX@EgBURYo|pv5sVCM|49_-*-Dk?TT=SifHQ!blX^5F`yH42%uRpVx6Nih|mNJrDm+XnDt|&(E*HKSwjiqUpT< z-a^N@ z^mBpvkGajezPqm9>GhlV+)A(8!KB)*hfxAbe~Hf%*Xup&G|J`1UYyK$M>Uw40@0E) z6*F(>lFplXT`_XDWb!#(mQ+)b|3@@sZs3JQw@`4Ob_<4zHH3&Y>A_Le_FuQRQC^?$ zXSya97BqvXDltns&$~p^3{4}ZR**=A*Q$a7=xp+;Bops1Xu3Xl0xUOt{|VjvfNI=9 z@?|+!nNTZ{PK>@V#m^!ctjBZ0*rhhG`z$l#Fs(5d-I#yZbvo2d*6P|cdI_WMW*p~V zvoyLaFY%h+tb+RjO&-YTf0iW@)OB^U0FYS}JT5+WtI|rh!8+wS*#d$-LV&plXIwJu zb$5wR5gGu5xK+>0)m{n}E>1JBA#%uQ18IZr7PXGQ`>TocqMO7a72B;=UAqE@rf%eN_iJ#qTJow@uT+I=nwiVR^2);n zzF3~DR@vsa&g$NY-=!<%{kx#i56wmYC(s^app~zO z7MZD5X6L6Tr9$2+8X9l;tt;}HnRPAYZ`w~|_{Yjxzjgbfoc6yua+Bhbm-mg{kZ64# z`pu5`m8L$!{VvC)vh{Z7v)9D#sD=GY`0lu??!xyYFXEd<#^u!)`+~@ys6HRMD?c+T zRj#|3AIJLP1m^-xF*1fqlxCwXE0~V2kJEvy6An~636r9t=-BJJ^#g)POrgZ;xIF92 zRzFCW30&+94lKCSb#0C{$!6C?JxA?zi?-T{r0Cb_p~TA__IRU^T9|{)$H9iutk)24Y>_ zOn^Me-tmxXN`aiH>@Rwb$xBBxxzH-tSEr{}uUM@UP$G53_Wj}5HYcwCQJ86jLf_qt zpb$&|;y~TCV=u4Ocu6h9Ylh&vn#10f%&M62Za1;mJmX8}vvMdR&(QV!LvTEtCJA`f z1`(XgBE*9UAdhCDww*zPug5`;t+gm|lVFwXPtPl0#`tc3IIsI%{41)|6U|I6VzUmP zvRrsVR6fr%BbDt!|C%Xhiii3P;{et2o{Xz4;A6ObwA^X$&#;H#yp*zFvXsv zeifm4G6AT+L*a+4-1;t^r}!sDgy&srlO=pZph;>U&u3Z+$FVqkt@u}QoQb_Pn)hJ8 zpUHefGF?LAeW~0I$+xd(w3n{MDktOR`XeV@R3e%NAW5(*c46>RLN?SvyY6LEDQ2`NLyi-4Igt@n z@uVN2B#TKp{O@cEVi`~Z|CU)uNi@e0;C-1^bsGuu13@663n_6n6!Xt+0XuAlBORL! zjoBw)OJrdwipAv#_o5S3eV@q>VFxUP)?9}(Vi$t zz>XMH-%3V@j9*)k zdAVMe6}vo-<1-A>7TgrDt{h(q>h%F8s+|!!=#8>w+lnp_8OLlGxa;NC>v$sZrso7W zfU#RLe-%2X1)bAJMA<9n2d;2&S%fPU(RZD)Lokx1+s+s#!=UxR5-NO^cGXOsH8q~6 zhQv}ZqDS$`i80-dLDQw4IX}j~6|Mc)a!jX=jjvGFFEGyk3YuRt zw1iGN*)J2}9fZqX{H#v==dg-V3PGRec|{OQ!1zQkL{&rip(vunUl$xpA};5xBz`nH$@o41zrSc>>tR{&Di)Cj_sphc*L=N2<|s7$H<$_;;P9|iLxj_pG*U)t@Folmr5lokwuY>QDn;?W@1Vo*nG z_@5ZTj9b#BIk_ayN&1rIZf(t}%ZhS9ajo@CgD%p~D%=XqT=~klW`j}FOVMh-ew^)A z#RLel2o!21WS!sOR7?681NSMH2P8Fu3KG|3!fwj#z5`w?@z->@au@6?P;bcP*T zlL7p9j%ZMd33^ff0<7@YjBl;BM_bl1vau>} z(YAF_8re?${o!k0_(Z$MZt=)X85!1)kMrEOSv{c@VH&_WQCp%dqhw~;Ffe+OwOm`+%c{J4nG5*OsqriHykDL)m9^WKKG3z z{(a4eO&i-0oZlh|SVFx>;r^DhC`K`hS+sodpG451#D4|vybAGl=zH*H@th=Hjh}iM z$0c>XfY^; zEPObf;F)0k(%*9bE5MS#8Gh$kin8dPNrnsKZ~lR<4VxQW3(#rzy^yop9#9`B@prfa z^!=sT4D&H;U^bcU<BMI3z+@h5ewEKjcB|7pP}lR#gOfDycez$uekX$deyp~MMHjdb zHj7mO?MLNl*eDgFYtIi*YNsJwGm1rHlL~h~h#r6|8m~Q<0IgOuo;HebCrDCFH%9TM zb8(O&pOOM}DuN^!T+}NHhS5l(QNJJi-hUDBPWXY3G0h{R%>!Q;#KKP7e4ij(eKlr8gs0%<&B@b+M4P$qQJCs} z%@IGy8za1XEA1eoHA;#@xQ>Q6>L$K?%)x5>hf*tY?hIH=BtXNcN> z=Pd3yy83ZjntfZqQy7YXL|84gBV}qc;Iaq5lqbbFLeYw2ZXdnARQIy!$zYD~EAK&0<{B zW}0+NiDpXkh3`kNOxOhbFycS>F=|PP)OM|8`ZKq_dStauH~)8?u2&ExU9-&d7%STl zp04{h>#GOpJxQz+p@BEy2`#2qqm8hIg^+CyWUK#Nw03Gg)uRt3J@rg;cA{3byGKb! z8K@i*q)_$Jwb&m-_}6G?HfUmNSXy2ZmocSZ;c491ljXJY>>& zuJuh+z+q$CwVM6jfjaF`TP#0IV@9R+LEr}x682LK?xqluF5&*uu?ErXPETW;y?rLu z<`565s_tiEjWSeBJ%pQD)M`7zMYygepw%_ptGPQaie7>Kj4h|@OgtygGO)&!l+lQI zKU>XpHppJK9wbE_iI`_t`Yf!_xz3VgVNQF@l?(eriVa{UQkNL`Umi}ua+R!N@oSRXf8HX2y6fa;^pF~vgK$_7` zD2`H%e;Prh@X8xLsIX}#IqUTg=Z{xK%ShuDE>@LOpL~d>#5n3 zk=XCFR-7t2w(YCp(ZF;LlAPL9JhzgosNm8W-s zeiG9@wSm9^7b-gDVUWh1l5Vq48Y1z-M&W?&rnl;m<-R7CO?n! zoTOahO`(~i*_~!}VL@Q| zGSd8h^F{IduoA`Ih~q z4AI^wp$}B_b1vRzgzGU$(KL9_22JZj2`hq?o>XN?)Ua(Dyg<|~^LYdpHo%Hzv1n@2 z`(x&VOzoba9gCbt>%U{Z^|G5pG>C~Hv28DqOY!Eg$<$s*4@n@_54J#9ky~8gPooJjYEz?&Z&y8BL=XX!FqS;q*yDVaZsuiNhn7c>{nAcG8FbS=&Yn*TDCKNZ_B1U5Qet+JY`Xq z3K;6%=Q^kO2mwx(FDUo(OQ|Le1F9*_5E1*%=kV0 z5DhKyYvYdIsUHj*m88X1ytW-J2GVpz_Rom4$ufXOBhp<_2CSI|frbAc_G<0nLlB$+Qcp)E*pG+r0~l5Y$WsY8RunkN&+V3J2(brJo3s2w;WR}3`- zN8^KsGb|?G5KQvG#xC(ddssp@Wqh)4WSNX`JQk(jooO@5La3MR=N7qZ25kMfvJk0Z zfwIsa$_^(6G=)$-^Becz0O0{$L-m8H0Wx!3GUl(Aj`{P;or66@v;D>+{;*V)bb>}i z9f{35F5t`0NWwhND+=G_IOE0t{^F16`$bOYiohXtZjM{v4uZCL1GQ-y&2GnQwfi9C zaO)`^+xaJ}uyd4N*OQgD((7Xe0@y0;21aecQJyRbNBNF|=mpV`Ct#Q&!#yEM#+;^! zhHi_ZrmMz;q~rl6o-ay5QRZ#lAvO{0f+QA2xgiJz^`5Ejd_kY>ysYQsDo0PetYwxK z4mSW*M+9C}gcFiXs&-A}OT0KO@I_fEOe(6WYIBmPYKGj>;cG@+l6b?AnyRMiT22&9 z^&czy*A5++l5BXZD>Zt@k9TToviQa(qKKatuvUE{zORP0HTx;#J45q~#YquS;!DvC z=ns-a`FMyQQ#}n z_N@KIVy!ss@{z%`m~136o~~*FTi!o zvh>L`Xo8n-*wuwe-kpX9d=VNlUEvF!ZmQ*py8FdawOZ2LIcNF}gOCbm%$&Q&6KB0* z&4PAS=VjBAw6dlVeyUxsHmX{=>2TxVnaO%z(ep)qZ^ave=R`XY>BI2+hBV|Y>T<}y za}=Wx2cm!Z@cd^Pcs{ukJntKkpSNP91O(u`c^CyJdeM zo^ouA{-Gcwz`1uceEz;bV@?D34vvIMp4#|}w7%gg9pB=349gq__!MHjv+1y&8OP`~ zzyq%cusTBll2v|hX)g|@WHD#zo+-5|_6)86C7!Wrme&vfwHLla8!ZWYjvn2^!jNLH zU4iirb{dbZNabLNQ(_49mF@u7_7Jgha~!uTAWVf$h|r2*P!!{`6LGJP_mg3xpsB1` zwwd$V6`|olYd~IC0JToDT-F>-1zhi$Lfx@6V^>;|>0S6y(9X{z0zMzKReJHo7cY<{ zQll|3Ep7$Ff_oHDDM(Q9(IaI zbfO%EJFpAx;A4iu!?Q(s|B;?qnsxZ%wEdJjBh=P;1%11)of1S6KdBSk3G|Z4q}!YPLDCUMG#%wX9`Ze>8xhWfqRyV1d$K^BY;8heqyi`1vrR?_WI*1OaKoB>4ep zM+9vc@wNo{iq@1Mxzlb$l_?|%YX|oN@Gi~(Q+0H~mp-kw@4RUB{R3dxqvY|%s_fQ; z8J9X1zNtxHLP&p`=O4xMk81OdvHZfqtk77T1~^m$WQV4qKh_Z@ro*viiTh_7aejp6 zSN&)AAq+wokC5FoD-760;xc&j*_yG$Zi-gSKANbt+K=^PZ{&+C)r?hva4Y%#}nDYm%TrHx*8fbm_w>K3BuG7wO7(%o2_H>+gZqkIL1; z#i8lHjm-bYcZ$I84DTwMNW02~3p>Rq7s`rde~eg5$%+JPd&2|=npEo%|E~EFsIUM< zK)Sz~-%3`TV!~iHAsYU2dap7)1?`=iEs<#$#{4ytaTs5{Vx%iMW{Dpe@;;wb%plw4!FbFy-NxU!N2AO=D{SdS7PV5+jE!pA4IXYf?eiMZR)r z=4uL1AxOTCT2K=gjifl}VL>iQGA|WmNu1{uNg%QX=bsp0k6Yn81w&dA2rr8hs`MLa z#+JkHvzXL_U?biZ>SwKC>e=9p_Gpl=P!)_xm9NDWwU5WtvEPX+Z66-Bt*5C_p*oj9 z@K_K9s-I28q)l)`7U9I(4m)&g3-RLt-z{^;x!bvSWMZf_1VQw;J*p5;G7;GyL>xOF zz#Fdv4->^0SyTww2p&MEe>{Lq|M*w77cPI0!Z$~2j{Eq<@$*D-)Z7W4Mjs7_wEM4j z)Q-4cVt%+^qCjHPuGub$`Dm7Ph&SR4ThAZ!K~z8kU!YMYABOl}6bH+3U<1yeJ9Io(ZxswNII;@v}?QlkM7X@Up}c zy*o_=d)~C$(1nvxN?y39#$t`p$Hup{&Tr% zNmrztTQr`~i@H(L1sF=^?isgPo4Q@e1N#COTY9Nn(nP_jt&QK-IKOtc@}q4rHJ#1B zTE&EP;+YpAaU2GX4w#P=}`)5*Zg4gUB(P&K#Ab`ysVYpm@+v#{yGF|-+uh3y+YY`~)kk$6oCT0QJ|7&eC3 z3uF8EvQ93-$H&+oPXhiAbjPhbz{oznL)5KzDCO|mqHkpT_yXCM=XBsD%=RLO61U&( z^#e&JEA77bGM-Su`q2|#nV4qssWA0??)g8HWF|)SuM~+##g8?)05`bU`)zIs?Y7wa z+f-;C6Ox~yVxGyyh8O>6>D_L9qO6jcT=?-^Ue8fkxcH$s7T_V6)M3#um6G`Up1^&Y`Em zRiY&fe$C;lCNQumhp%7J4YTa3s%AE3ZKrsXoQH8UFG|OvwGC>B5A+-L!9u)|yMucR z_pY%#NV|or5j{;8i^A<4Q5TKZC|}HCR*X^@JQv2Z#p0E^9V&nlF-m)bWPU7;CyZBW zl<0EtSdh|Pd;COxEM(`dC|v2kp1}F2IBXXmqvQ<<$-CS!N(pLu*Q^N611 zk^IU2oEgBgOf)|yR@9R)sjjz#b1e#;5yTNGAv-1~TZ)@g=2j+*y-Q8GIH?xS)j|8M z@s0g6WU@V(H!WeJWl4@B*F936tuwzc^_6O1voEolHMkTEdm(6NUHp8*|DM}M%usiw zg8mAM7C-_5*lf`_UpnjqfbdJQSTH5UFyyi!s=PBZW0)p|t2}kynXm8!JL(heEMNDu zh10VK_kzJC=p_TX^%H6ybazXUl*e0M zsDQ5V0^L5tt9TQ7&T*PPQ%Ie29G9r$G0h#sm3!M}dmRDd%nYy};rW#nJ``a4lcz%x z!eXYgm6b?B3aN80%0>4*824wxEUzqADP76ILSLfVKYq+URcj{!ibF?!} z>YeEa^ES!lczenc`8lG=xe`5{v;@9IG-Z!yDjMnYT3#n}4`e1eTlU`z8!dbkTHJ`6v5E`sXalC&<0>yl1>z!KlLm}>A`2$vxU%YqJn zlDr{BdGMRm4?WLy>3qb{_Is_MrrBy+iI)4)T)f?6`RGnIhE^qAM;L!IEEp|HVV=`C z%I+0pX+xGMv~Tu-hm8$y!PzKyRa`~{cxS{RlH8~2uaB;FXLJ}<61xC+Wl;`JP0-Q{AoO-ni7C&?1ZeJE_(1p4WILhXXy#n zkFUWISz`}fPvSpWC+uyd_4QKtD_pNu!#ed|k;Uo%7{=TETp6R5=gWD1i9ZU%0Odoa z&bJGs4=p`>^7vxT>oj;nYiR~wU!J_`bocb5b4T{bwf@PMAJnu$K~wjv?dzWI`r|m* zQ*HX*S&XIty&j}iC$s9-%x#_h7et9=mp%XquvE-({8@=Z~2!A_M%a zlI{WSt=yxrI9w$twbU8B)b2PPrwNSK>~`9%9*9M-E>}F{Qb4f_3bf~f7Ta#MVc>;L zLqSAfeKa`fALaYFa8LBGxH0~?k12RT*n^F_((f&ajpvx8srj`${Gt>!CMVxx!+)jH zBoW0qQ6Z(hwj$00?nJ?`O^h-ssD-?!sitA=vkX(!#5`PqCy8krf;3;TO6X{mG)+{r ze7?L|&gV5n)HDfaQcBi=qhDt+cQZ`TX-qE9Fx0J;@bgDN)zkq1o)>ZQP!$EiSXgx@ zELA0-?-`(RYnq%_bty-Ps#+87>VhGH25s%xzi3KC6IIO^YtHgn&U8N1kRglkt?|HigAT}FlZ=hn$<{YSEjdkk4 z@Zo!X*D2F_JD}Fc_haYwtXrU$RxC>(7M>Q#{NAP{)*JlHp_A9Fdd9vhD@H}qjrOdn z3As{Hbjr4nFBTM0b}P|EQF3few)N8E27QZVYWUWQbpp>(96aanf^+QJ6AL+~bJcY( zo4xSQvT71XES7SDrp~q}57?TnSw&fmt`!TKtl4D)L}P3%70a!4I3rVGS~HHHcbs^- z4riTKWT6#WXj;n6P&kK`TU@IY*4DwgT(qtk-d;D60de-Ab%&4-Y&O+0D`8QQE^;xxPQw%$^D)`rgnm5 zYpMN;8wN2A*@LAJ#1;+N0~ZEiM?>~79KiRKG^=jI${XU2kiQ*HNiMjEW)it%I%3TrP+yyKf+pX3dq7LW(n^G2$~(})LKD7t@mPkR3kPzs&q;G5dBXvlt3lo?6o4q>%(RQXXrb5j<72t3={Ab};{`d?}&}W;z zwpS;Q1J!4G4W8zw(fLMiX5hjDd~InGu1+r1c$OX{ec=q?cLr!o6TS?2i+|z4;cp2p zEIBjqIw!JS+1yK)JIbBpUWqe&ls3>lpFGe$pF+?+pFV&G90%c62W-I(_0aKc&{Gu$ zZed;bCcL1}kg(DN%x{AQi2`a1%Z*ZFS+Eh-Q*eS89|$fiQ!K#W;x<@-3oZNs{4o8F z;H75~r;Zc&wGVJFa4zOi3D)M|{B~Pmvpir4v5Hf?AijXJq^_s6TtS$y-d?PV)8wBD z6~)T`S5c8la(l5V8rT&ck>1G{r>e9YvUO!>8#vq)cNKRJ_p|UN%#y<<^p3HxsD7{2 zRvOJd{dTiJQ;2w=^cQ#<;l{6mS#}WTVUF=Q5utPr7KoeiOgDPQJDB~N*drQrnrX3G ze7iLv2yRQSxHuK834)a`h|ZUZC}2#vh_UI4Lcmx9(@9W+(?eiJk?_6@7!rsepvPR| zVT|a}iEDZnPx<8Cr@`iX1d(Nk)y1}40#on7>qM_s`b$|6cuf|u*tUWb>nctu@{%YS zYT`=9GXfd+AwRY#pii5-iF+6K+3hH#v^ze3^j{*h`cG4TRpTw~?RsJQUxaGa4}MTL z%?p>Ac2tI84yPHgxsP(kLFc*-uDEi6M^w_%tF)SEe!Ex~vX2Gf zmvLDK7OU;{6}f%jVCSF$wC?nX1lZfB7>ZsZns=h2l9H~N-b}d&*8h^I++Y>!jx0-x zQ@8S9?#_5>fe^cA6H8U^e;Dh+19UAwQgIG&sC~&$EK4!Iq$#2x@%u#HCc@3UOn^WV zDGD;bDUe)_2%9`V!3#v?!@0>oMzyw~(cy>#9_4iYJL4Uhu@wFk6tB%yvKN#pN z9M)mFk-G(RKlPoMVICZT_OMD*WclI7zGJ-^9fewNSjUz6-LV{vQ;rO^GXig8%nxh@ zGS&1-g<`!*=tV=|ix}%72t2Otmh*UYO^5OAGGuPWCHZ1eKfW@n1|{POhh@!nJCAPw(hR;b5rG+`N^rA zRTd`sxmtO$F;M};3iI_+VFHX7`_4)oL7AQKCKd4{Z<%f#SXG$y%2Tqi&KGmnDqha! zk2fUCv~2#QU%%*kpvz&!B^YgiXS=|&t#$_;dEF*X)_Yy7Dy=lp!M9$PItx}ISE|oR z>o?qRy*yVd`}XV?D#FZE$tz7x2^DdnRr0v7UhER+0*An6c_UUW>6Tp& zYoxa6SGpbg9fy7g-H7mqaVq^KKF>=DXYF|NcMG#b%N2MH{u3u0RZ*2(QJ9;bpA)RY z!6~V}u-t}0zqY(~U~=-n+H&pZh+Wi+NH=OD@hZ3A7T@E_{Oej5yK!j56$D$t63nX$y;85=Vys3%?XC2 z@&|dv)X0oai|2tBSOc@;BGDa04l)VSqt(WyQF63or|dP?=Y_KUsWXNy9DO+m(#d_c z?Kbx)GmqqR2HoWck)MZ^G4}e|-z&$O(|rH0Ll#WXz*Pdp?!Oq1T3rW_lH~CQ`k# zgSEs%mkb~p4n1W<63e!#mK;Y@nap8K2r+&F8uoocy)j_`i6{r~wokxaiXiG_F15b?TaIIil)lP$ss zW^yI2Li6kG;|_2=u%AzG*K)4_S&RMf4EJ{Ko!kT5L)=HWN9d{w%)RIJJQ%1H55zo- zQ?A#i+csWd*ZUp3GED}qOZ19VcKWTpwAxi%#gpjorCuMNW5*sIgUS*+j$esiU+J{v zWfJpXY{HnMX{4=dAfm6=bU{`3s+y`Qk7%l{sCyM9FUx?i+)zT}VT3my9M$LNQu^rI&!0CTzy&>RY9 zNXa6;RG{z7u}{)>P0;sB^o_9>R%0*B(HC0ug&J$5O)t6hb|v3x8=km}STyBEKgzV>5=`8fi!8Too9&t0+>$h`v zaCd4yTCMi}fDpAMou3;;r=CAj6vQTQBw3juCTN z5(Qap7K@Eyu~{lL=)nZ&HGU2vJyZ z9?kS1em!FTA+c34e)jdX4E|q_UK4vh@YPMg^Lw~^fvdSrB8q8?_1SIEJ-Ok$ zEkuu{V_uz~t=bh-kaA7^r@GA3hT?H`otrBb~)T`W#d+Bg+$ zvq}Pzh?4+CP0bg292ZoxSn^M9d&JDuUJb|o z&i_KQUfQ5@4Aj}`f9MubuIL((Uzu~%d|q{O=W~uy;1xY5<>aa?7IZBq=Oj4F6Jlxt zoX8bP%CEsb2meg?Bc_~7;C2c|(|4qCtI*7|ET1FV*q0ii2diREDqyId?&1o;y}ORh zQ+s7z%44QTV;&RW-f<~#S>av}dPx$O?O12+Ut%;GhmbFESg-Cn0@vBR$Gw*VZ*yQ* zJwVqCkZ_3i`eE`)#8X%s{!+7Ih1N1Pp{XWDX4ZJHopuM8=O`ZOXYQNA_)>F~t}0kH zF}!w)|J-h&){pT*+`gPU1^xRz&-0?Q)%k~Xk$NM*QQ7=1CD>$u;%WZvkan6tmF%L@7>bDIm;yQ$bKRy z^n}r(xYd~RyMWLMhF9F3E$FIcsd~ZGWZNYL#W{j!c|dr%WhsV5QJ;^^qp&e%39PqQ zV)V~8$Nwev0#8U5`A`sU72 z@`+(GoK$y&iCezifj*Y_AkS9KpUTbBuF})(~@~aD{OdP5Ouh05W>?{z&d*d zy>EgfijpAH6MC87TV(N)JEXdd%kFR!b{nrgI+G)6zGIQa;vm`qUB^5psemzusT2x7s1C|^+xT1FGzJ5QGb zU_Cus)u|kK@yEbU6QJ=K@lj;HmFK-auI*{Vu*ze2`YsG0M9j}t1ns6Pa}7_t!)!LH znqF#*(DoF{Bv9u8y(0I+jFo z^FCVc0EQ9?M-tR-YQmE{97yDhapa!ekdIyx+q4cvMiJfK%0-C1Ya>)krin}IOdMEY z%Lm6hlw?+f?c3>l_<{Ea{wam7qiF!2U5l$O!8GFO+&V6jz%WiQmHHUG#wOg`o)e%o zc1ez30&KUh3oRww+W~$|iW`cH_^JO~cy8q5jb6vrpFJJ;QZn)kE^?7r@mpg23jn_1)v#W?du7U0I%ZC zV2ob;TQcZiSd_u|FXv3OVV?O567#!)B}c&&8K$FRh8uj9Br)riS+|+J(gdy zd#H`!miYlcaH(YYsKfnkiRP!aANzMp+WzGT%77Hp1!h4PI7xE?B~Y~5^Drt#j<5(w zT}{vcB_&bT&LnUo#G)cwi1{_ zG5M91iJq&pgN2ywsC*_{ zj#8EpUl{)uEY)PYvfK}Dc{EQ9hG8A00e?;T^JPz(**7D*<#|Ek6@wNr-w0MExR%XU zVY2O0%=5y6@d8I$A?42sTLvHS?P41nOE4(Dmv-;=ni)J-z{>p{_m$@)< z>@7d`ul{ecSyXr}*X>T^mJYQrQLGl?1lQMMB;6u+0!G?9X+Hg+mCnG*)bN%UUBR|0 zvDRZo8f6uiKvJ|8Fynr@oOgO^_xTVJuzif-BF`?YvDV&PZj?(R!;9ybdnd}xvOTrX zR2h1WlJ}&K*UezLA#Q%mF!H~!Y1|x}d;Si)_%=oo8{Py6q&PB{S7zYUnH4AYwJ5Sn z()9iQ+6uSuy;3x(9OEloi(ljBxh1X-J?)J&V#`T0krHxBa6qw&I!U+ywVhf~!d4PC zyL2sZ>~FQVarRuqNt+CB=L1%vt@|1~`^5(_0uwjJSegh;XIMN>2f_bo@VzA-OeZwEXU~XBi^SC7A1D3`xHk@yxe;jxkiglWKe{ zznou!zx?y6d;(ttoAtG|Gl7$k?tU$~(CU1|D9=CdhbK@CZQd{fj0N#^|37W-0_8|{ z9fsAb->V<03ZFs&-Dse@(Ez4rdb+0@jYjwUXLe_Q*blio`{V8oX_4ZPT<&s)ACVl! zup>>Nq)$R&vZE zEpzXC^?3yp&^;@_@4owa_r81IAe7aWxR>P~gnf`dFx}cgU)W3&Sr{y0 zqjv|C-^Zz;V-N40w5Kn;zv??B)}wcW;dqGwy5abHMZ1if|H^jpDm$|G-{XyZOAZJk zzJWHSEPf5{8YpLx+6)W9sc17ay)mAHg{wtz$taA04nJqqjB5t`XD?(WImMT>Z^athyC{{@3RJu#R{Uk{ zzaRaT8RE;AROOm1UsF`^3*n;=!8HRuiuQWNd12#Fogvxh^s-QXnSDp}Rq`0jFC-t} z3xc2Kb9$K1Ig!^En|Zt8(o%Q}50`i?2eKBuhr?^U41<`CJ3uki1`!Cy!{7snBYNL)ViB;lYHU$=*dEjj22uf%o5K{wm?vG(MlD`GY?kst?~9`47a_xucLWIn5o53wOlliD;lRghejr zXGf=TuzAqVjHNI}#*{I7{I4}igNfl9+~IKLT)LAniw5h-3Hg-DaYqWkm)INMPZ94+ z@9|2_fafyX(YLk3G#Zw?Wt;nPbynPPaV6S;eib}M;Y7{F(nK{edk+!^+FdXp3D&4opxs>{o&N){IywxyEgRbo)$ z*o0_g<>3{g*#&Bl)n#Jte8u+t(DR>$m#XjoxvLREP4MFkxYs?rcIfDw;}nQSiCQeG zgleSVICIZE{F9}6Dfu7g^0PV`N73er3q(XMp|NHYZYai`uiXt~8Z4N`Vnr=-RddlC zzJdo=d(iQ*yt-}ZRJ&bB&h=5*^VhMP3^n5 z3)|5D*to4I$^C^Z?2Z%xe)T2U)UFtKzjhUSG{yG3^!rkYS*~2hv`BWF$D~_dHf&vO zsp_BLO2_wJXI}U%ToifTHcsfK?8&w#~<0rKvWueDGYNg-c!fAt%R>IL=O@(&O$u_fYtgWesu< zFxiRUhR+S8X12ylk{#R+tC6d4+pyCTr48G-N^RS-ZQNe-247fvgW6vsd?{7HDPVFk ztsf^oK^e5e*e}{;%WlFW$~SIY!Y6n(-{KQLDOoQ~H~w)^Y|;~BBeIX`%86o-5P zHBsno;Xy?k{OOk!?S=)k+lbcnqDA@dIlcuXEbGc&y#cIs$>QiGacQg{*pb#)4ff=_ zhaAluY7TdB(=LjipkKThJ!(y{q6H}qkEXn=`c_%{*{fIiqLUILrEww9RnKUOgSbbo|M=>Aoj4e2Gr#eb&MGCUC)(|ET zTlB`(^SHvPeQ~0`{f9Mm1KEt#x7tAC0M1sX)Ul6iz8;k}q!XY^AH&r!ZnGs72O^G7 zAQfg_my08|GQf*Vg}rW6Z6T@A%@7+>ogs!x2w;HeDzCt%>Z~A|_;!)##3QoO#7(Tp z3DF;^$#PBBw10vJI3sKMe;>bH&9@E6P79^3T~H=s$?gBcaNM6foGyPj8U&DqVW^K5OcsN2CpFz+3j zt9DkaCB3s=oZmR4>DuAtqU{%73Ra7T-&!XnvvyQg4XfS&xwIe}yBCV9RYg|RdZA?P z6+P1|*}WCjS?OA;+}yaVg06SW0&&}=QfcjdZow-q`WstTwNPp;sH&{YuZinc6ewfk zuK6JiX>ZsY2E&jJ;5CHzH%8+>-#W&B{^hY_8y||!BYA_hUP4@rLL+y`3hf|07@hQh zMdk4nsdWQOw7W)a&Z(HCpjdZ{&AwjHP1`Ekj@8_5RjP%#h2lc1R1KFJD~;xM^A8HT zQ!E=nF|G%~;!joZnXqOl4oLJbs4|aYfP=yx9rEM?xX>coQ2||wA2WD<+@K(JOIEdJ z6r%F(o!VN-uNAPKtml>dpjIlnwoxS&yLbWMqYP5AU{K4fhhA;2P_4AKn*ikMUZ-3M zT62q`rYfp#C^GPG(W#TF8$Jb~Q-(wa{v)gd@GST_a}MqZ^7`7=TK&#I-aJyTADPR6 zHtoT&0;78htN09$ox&o+tjsX{3mD*0y_;SaKL}aI980O=cWv?-IB4~P(MyM0*eayE zd`VVy%U|(9G0TT*b22exOaH!Z$p(?bXZu}2!VkF_iw6jIG&<_COv@u~H z{@++!DHH%HMOR6ouy}T{0M3r7XvY+VOcLNQQFI5$<6Hn5kWPolDz$4)`&7{|2{HaZ zaGFe`c^gWYny7Lx^(2oQnjI) zHm?Wxm&Am*Tn0~(Nk`_PV09+Uc3dZI8ZaNHNf;F(ui&&$6A;yNys5i}iQ&`v-aNecVG&EnG+wT)7-4nJv5tj%+s(^;oIQ$4L6m9gDhl+g z*pCIxdc^__!0MDEoNEAQ4|`STLb{Ev*cMCX)OkZv9_`r|ftz7B43-vjOS8JJ7W8T# z02q~p&AMLd7@BDw+Gt+3i&Ib{^=dDCxj3i!e%&h^D{UOET|{zh?}f)KXRaC=E48os z&OSIIPyQ9_wPS;vXt5gh(y$63_m0dKf3E zykyiC%4M=(g2QgB205l%^QDC@)fK~a;P?DKpMPiJkfEuM&8gs@!!18k28?O(Zc?2u zsX?Q7WcJ62-#*9eK&gzaw7j$c71i1BCAFDh>R^6tKQ?G?5>S-Heip6HrO@EqwX@Y7=L2JQoip{NgY6ZK*29<1J%^dXQFSdK-tFIyzZ#|Wz|<2MOP zQr^zC9UDs6B@it98wvpQ96q<51JE*7D|pT(+6%YI+89i{EUySt3vB1>*W()eJic>; z(Fx7-c3c+pNL+X%CRa)(wDyMm@V}59nLY&;7FbD7{T;-8$0sT5fiG+NuEc!hG zdZNPsIi59w8YD%9+stojFR^9BrJFiD&;eldOPpG)KIxnPhE?8}8wH9}ptRs9f$zNX zisRo(YwM=Z;vVUs9~E1Rzx)JY4t;>Lk`;_kDze?Y6yeXG0|;M=!T1cT!?FX9`zn7F zU>F1OzkU_({%SIZ(BATs71TkT5E&54Y=Pza{LXxR`D&!*pK7#Pji**|9T4Ou_5(Hm z^7{loa)=F^Xcv>XSkoq+Jq+SQud*!#E)KH{!i0@7mRv-k0@4O0%Z+epX?Lus}64Y!)VuQj)|s|hv*o#7#cH%_x^Bb$m5Q!7y4xrdP^kbqHXN^_{1dvbe_SJ$@qZf@(G1&o10@+82w?UZ z4c9=l3r13&R~5e7mlm|_4&;~%dIPoi(UAw13b%xCtJ2bM}= zeRl`w*2l<7c0cfG!h2Hic*77=Z`V;6f}vAoDWa@X;1CzUhrE+T#lr@Bf=9F@V}l8> z!EDdg%8H_coox5kd$yumirHLgnlgQ#0V6G|9c(kK*{S#QM+%k+G!>oVvWEe8ei^$F zhhbSWRlivD75Q=B0exk{ZJMo^MlBN?mk7CG z4`)k@HH+K<10AMB{>uIWNc;#d8lfu7U*M>D49~~G3{aHhZT>?4T{19#vE<>VZ-%l; ze<{W>!5NHP*)+rWLNh{@mss1|S7un^jir(zu7)PO?!n$u2YRflYe#N}wsG=02!`RjLFPLzltsH1xt8U+)|7mmg7OQ(sunO+b8I z;FD!V*U&;z3`%Uu8li%MrG^S8woDamI}?6-NHujZI*4wnq0qyO$8U}R&KFq^vsp2m z@reCSC{O`gf^LH42=CAfU>#QA&fX?|F4Cf%&jr;C(jP9kDOE7u( z4QXW>nV$EN7}c?Hud%L0)9XK^^|H3Xs*5Z8Z|?|WTjvGd;qW8L**lV|U@6GA#8mi^ z(6b;rK3&j2XZNj-7eg`-LCn6RR_GqYUYD3uze(gG{T*ND#rrZB8Rq2j_%1z#@~EKP$e>=^2X3;%0|?y^^x|HQ9A zvSKp+*r#k+Is`nh4L;pz>AZB0^nmoR^r-ZN^bVlhM}>VM0YHq3rRotNNRzeI zZU;joA#Q^JmoFS(QOC5rBIfA#gx~CbEs_7OXUVpU6e|>!=;fvs%GMW=Tp^O{GkDf0 zFEBDS7|D|JB_ZP@<w6;52nK^u1?4h9go0|jwyJm)?{6e$zpkjq z?>-LFNY;zpZhN(;%jCV`VNX7M-(lH1EHEM(_oj*46l{aVgiQ;>b@nPa(qLDq1xHqi zCOZZ7$w~>Wf>K3{necqyC22!C1sw7utH6)TN(uBmu!8u$Fx(}^GI(|dJYy$3ErYzE zDb~~b!2Vg~%=u%w?3l;z+A{$nZ}09sMPGe%Rj;m`Tq(3y+HXg+6(qp(Nm zsJq9Ou{Vki_=0Pq7qEEnqN2c1zuU0Agc!C+lmB_zILEpCTu&b2J<)~85yjSV7%S>x zPjOrf$EEO{C~283HRAiKFsAR-YQCaY767oy=XFE1dq;b?udiBf&IMLQvkMCqRrW(s zraWQECBGb6o)cOhgb9Gc5vBkrtPki`=y+CG_Dk}FoL>b?=iF>NCj;`ZmqAAWKUdIS z9)tcz16#UTM52DdbkKk=m>@$ip-dyP;nr>RfeHp#--@Dv&9A@(wOA>Fhh%Gp zWn82o)+e4bs1?#1?bC<7;@X)Dr&bH)uvD?Drt5%%tQjj@^}S7I>-*?FTdoF}Y2XCI z4K{^qvaTrx9NJH5mTFp-samF{Z5vv}E&6`Zt!M_L;}0S_E`Zd(!1~Luu249y<r&X+Fgor08&1{jVH9dG>yt&RU=^)V?9Gv(e|5{ z)-WnLZu{YS)27a)Aovo|eB&XCs`z1$wE-1PHvt&H_dSZ@tZl7<8Eubr7yjv9_O#yn%jXVvqYTxc7LLeVyhp zxnwx8!m_X5vU>n)`f{|T^WO2q_AI?tv9rb$dhMVCfRWCvL`}?cS7N(gv2-Oe`#&^= zeivj=^reyqOi`&;D~i!deU)s!FyGCPsmGU;F3a;$LjKuycLso>V-i6qYTGdwRRWWL z3`$LaG4ZD|mO)PhndU-zz;Qo-KSk=fEbz%m3{GUZA>z=E&davBO>MJc+D6~BL0JR^ z!>tlCFi6!k3W2gVjv1vX2ES{%wjslhVY_C{@hh&Xx)t9!l|f4(8Qw1fPuZD?2j8Y&;{r+Dt3D; zDLkc3{wSC2P@sZ=t-tF?ol<7>8@f_zf?WwzsW_^>p{XK~@|ofZHKmDHD050ZnBkN) zRZnQ73g=^UYnAO=%hjP6-^~aY^rSGUB)STx@^YRo%?aK;#}pLzab#+siJsvm4)al& z>mn{QJXJo4>wVn1rmD;rRVVe*eQ#Ya?KI`B({l2`9jm7$?rwnF7JD0arm4`C(KM5A z-%O!GY>om~WBo4di*XmLQ-caBq`hEBhv6{9Ky?Vb*a-kt+RHAVv0Pyc%tpn{Sipi3 zrBe8Ap`v{G#tZNNR2Wj%*FI*K$%@nN7U>b8%oM1cKxHkM44q;G;olaD#lkc9eE$3s zBiB`(<&x(*fA2ZZH#PRHw`O6-`r=;1q>K1lvh#%#Q%7^^C{b>J}zF_c4D0K!t$Krs$9X734+0CWkF zU({9ER>S`UW0sHFos8K8c6Tynxkyfq*|S)awG47S1Tojv1}(xcWDW3oG#r3#WI6#A zK--NIzfdvs2kB0wC<`C!m2C|JJx!zsH=YKSExx0u>%x$J8OHX_|M)`bQ)=1zG0k^r zc;f|H>@Ayc>R|0eYCE7vO+t#QLF)mj&bx(xxCZq}qrI{~8p{t>scI7n1N}^)_}_f~ zE_-A-u2))iRF^z=mtqvp_*JUwy6aeuM>T6zQ40mRRG+UYHP=>LWvQtyw3ljz>bVrl zQz!c};<10f^pRvQZQNlQ2mtJyZqD+^DLLj2I#!(n$uK}N^b$Ix8_3%0ajqW*4Ei9h z2irX1ZW)^h`J5@JC4ZoPoozh%rKec4_v;^X{pAK(SZOziPYsw?1$Vwmf;#AyBBsD1 z;V2fEbb7W*tKep_Zs5QrhJMa_DVZ-Tus(jRVw9-_ntJm!||St(d==& zF$1Rq4BCUUk;@ySy*nHuD(=EN;P715)VP_!fd-}+g^VZ1;-0_8SY#kS@GuCl-`M~Z z)3`Uyq5H0M{s5HEb}otcmkOKNgIPl$=)-w2pJ4hR2&(W>T&iC?sp_n}PqIHN9ghpr zBX=qd_r+-T&|I8?(*XwOOEZxZ))e?SRk4Q8YWuh$*+0yGiQ5J6%HJwnXYa(UGx zKS?f*$P)|xGiuqs4X`}pFIab(WOVVoIaiS#x7BhTxiZJVJ0_Q1({#)7Hj(?EU-us< zS9UFj5XaiBl2*73hw&_*zl6IBtdj6BGgK;a0B5eB0>^dtWn4 z<`vWabglMj+pIkQJORrjaK7sVZ+;uztf=Zqtz_vBxb6eGRnktKJ{dgr82B$sCr?YP zA93_N?0J2J(@J_Vdr*_%i1Z08c=$zlA*i{I$+ij0|1vxbHIWsRB1FSMMKHHuhG$5?3j4NX0V8&{A!k4zV}~v)ky%VexMXTtxpZ$B-ph9G|9%PdQC4#O zbe2H~MadVK;>eqUhD>7Hhh6vZdvU+aGd6OIRuiy%MqnKtryj!@qbqks8kymimc-e> z{p)Sc$DZ7yF+&CH>^FC$7-ullwrSRMc1&Isr3!+Rgx$+b)Gzf<1U2+Q$8(s z+n^U|cL#K#E6*COcNAFl{JABpa{sKe9z zW3+SPDZJ(>_8UYTr#|m%@SRV-`$=7Y&(sHhMAz{SPyb8`0mpHkAe{${yDHUwQ+Abg zo{|v2WQTLg875}Bq$<)^Rb5jTj?I(i)`|Y2jH9n~PF^^^EVuSfDO6Y9$+}65c-l!F z4)S9E1aRa0u?1Dr)#bgGynOt^$&{U%V+)COn`T^Xr5s0&t$hPt!G_a;NboDwsqOZse{D#ay zOWrKyUHpI2;_scfle&@A^rgIiR3t}RtnmXJ5m8=98R?@hV{eEaTMB30c5t6P)>-R% zthfx-t32^wxU->$?kC((_hgNlvQ8`jzN_eKr`Ool3ezIGY*J1Bl0x=~EQb!!KH8zCTWGXSy?+-uCub;ZCZi(tF;VAm9;q{pOn>AMV3$COI%+J@F@a5 z@53G#4y^_x7{42WPg1yB$;XE>0zjHb#|p!6$8M zS+s5I3SHC;+b4=rv<+>MD!MJDb*+cPqYJ_1R=Nr>d&1Qgc^TOa=a{H(9Z3)38TTMXyWvb(i4Y z|GsGX)|oS#n~9#8V>#{fAYu1SGbD$oq2h#!y}AOqfb1EhdZznbU1jOCMHZV}tv3e$*n<+=2*6_AL1NJD_9G%jG}|jBX02ko@{pI(*0YC`cYMRRDu7|$9n}RNcdm%S8U3}_IYYwv11{o3eS%DWjpKxyLhC%)b4f9$m77|ljX~Vkk8_Nz&GE-<7X@5 z(EZv3iFCN{4~b0R{~uZcpdknTlPVHPJul4HSEcWQWzFVmE)WyLkSih6{ttD~oKjJ! z^qDe58?9<)k%Qwf0Ef$~cA4Jxs~x|3`#LyhsKD@2hh43DUEoaHxQ?YtGd(8eb2z*Y zsuX?$_}!??&sSc@!{5Ac>C%OB=g3<09uD6OZUjdvqD;5p`>;}r@D2M}_b>79eS7kt z@A=N_s9E9gF7|+%=@U1i4}2%parj*H@V43RD_&nScbSW(mPNal*;kfmMbMBp!PVlM zlarHOZU$g^qf`z4!&K|t#*aFB`gi&zZX~=e=x`wyHDYyzVQT~{c(_rU0Unn^R+s?ipM)$)ZT|024fJLN+xcg?<)7Rx;j}?B7YwKc)JhRFkP6*u8-r`1JVg!tLWt zcDYyZZO4ou{$~jerephs9{c(s{)yZh;1_%f{!+jJ`K2$t9cxoEa;K%`!ks<`A8|s^ zDP}YRdWdNVSg^u$9Krq;T#3d77kw}Q2iSeTQZ&_={)4((sx;=RLD5wm&#E)vJr0@2 z!1NKm$25)I5LD+H<+3|QiPr)8r%Rz@BqQYNt{oHut>l^Y^jqwnpML*4RgK*cu$wdV z`7NYIqIZA~m!&=FJjUTWVwF9b9oUF9I|6?StT~Lgf@EeBSc|Yb3T1MWy2f$u`JTWc4N{+r+4#7vXRaJl!43^?2#T=MXQk&ilt_dX&2(< zynbd$4@35}{e8VmPq0!C!53s7bLjkKRsKSit+Sn=^!wLq*K1^v;!TRBR=*&t%RVN{ z`SKS6w!n9Smi1e3S0V@g7mx#6Y(8Nby=C0Jhe^S4y>;Bi675;TA~BIPW4nEqleTvw z@Hkk7{&U7sdrr1d64^?7Z2?ry!dhG57v#D2l3_Pr;_30X_>1lPv|a*fSDjZEt7sQg z7u9)iA+=JS`o7(bYTsjDqbQ!&X8S?OGB52EGCvOU_F5$1YKgXk({kj)EFE9z^_p{5 z!7dk^!?e9}eCf-p7gpha=j>tq{cB5&7LhvzyRr6u{qR{S?xPs*_wE2~&PWePkAWZg z0;@ycr5GWGc^ZTjx^o8C4}cA;0UlboS^_7_JpiLRtPXK%ZVzB|o4D3D#Nx4V+(7y! zJMP1&p3yC@;F)t~I9Dza(pt3CdPy;>hOE1O%PCff(>_c#Yxz5xZoq1Dk&KVAMF3B<}(V*)%?W&D?<>yPfcc==!B%SX#ln}?5Yj$M0 zM5}PmO4X{HG`?w`+ZI=HJuzYZ$&F?%o2H$# zz(7&YY1T>2x_u*QlDMKMN7}lkY$z7|YI^$!94_gZT#o=oaDY2&Slw%844gsD%)Pzw z(ps4;$DP5ivL{;6^Z!k{04>_Ezn4B)OX0aIS&F`qG_Fi*${}wpkMCXzbI2f8UMY)Y zuu=;DULFy&%wDPbY!AGbKL%5>=dwLeJCZk+k_ zgTnVdntdDP;cSp~X&tPlv#77w+97KI!OG0F2rCkW8mii7-6@dA!YW@w?QMg7#dKDC z8SY>jp4I>54JA;mkwdCyl*9SCX1`o4Dx@0V<_ftS7?xK&w7MY6ZcS62T3OZA|7&|t zt@c)2TmH|who~8v%`>|@>qn{Km5$BVY93iuH9|Da@zxgVTP2IittHIGR9j7z80D=6 zaQ|JED1~}xf;;m2_iTjWMv?wRvt(JJrJkAJI&#vjgyG!bf~_gBzLtI;N9T#&n9oD-Cc4!zKABi1efKl3VaeV_|{ReslSSLM2=ZuPVym z4C;q714X$SE>)CDL2t+pEkBml_(Nae5InD)Z4^n9{Q~h43NEMsCksO28C9!d$f5)I zcCg!aRTEv}OPYFbfO@nm%Ux8I!M&;`)NjU05W7)@{k$hlw1gcCH{6(f{Jlb#*F-qH zo(IRJ6wb2Hr8Y~K-XvWR#%{czn`Y_{1hTwm94aG2mQPQ>qN$RUM;CZtWTf!LE3{mI z6Mk59$sM29r_n_f=&}eh?`#gwjE5X)ejJIvcS&0y+92xe2=gy(6FExzkBSuh_ElEz z7Y`X749;RUL_apPg6u52zaX0Oa`br+nM=6vd zh3g!cHeCwN3J8Yrkw|uJ1#Bgr4#0DNpTD5g6x;hiO7$1Kc@O^I zw+9zO=hIECTG%Kwwf`vvtiu-YtC>xHV;wCoFB!5!Lf zOkv(sUz-eKsT_5R#!_rafUd{O+OlPY5j^pB5Zq=V`UbCP%Z|W?*I)Lkw>xa@rK=~k z*F>9O5%<8N-Mqv)oh&VPqeY!$f?!$Su$?@*9R+{}@pG`cEzXWIL%3XxPD+dvmwER1 zzd%rMS@2~B5bKAdm&ZPq>|dH9uSGD;bn_mdJTDmYk)qXHoZm{%S= zO$0)GRI#yKGCFo$MR^K-yXXmG0p-lX?+4Hsg!^KFn@C-_(^9f>vlY#iaVR49v=T>3 zCi=g(vukaCGYebh-EX8lx^E=}{2#`E%)b3Ve#iDKJ&$01=L9|DIA&bvJ1JhhRTYaI z3UqyR0h7xXKq>MxdpKDi;U$!YB4IB!^z~yr4Cb?Ho(U}&N{LQ6}2aT$&@Ua z=#oB8UC^K7FdhLp9l>}mkG{7txgZPewWzkqe>sJ?;@k-*c@?YE(*bUP#Et=z#?e;w z*WVq}lxP=pb+?0ZV!Gw=>xOoZcD}o7-+gZt6Nowr-l!|pdjV)E+ZSX7SLBCrMcjy^b!CE3>b+UH7lIEwjMjNik%`A2h*()brVxu+8}|m$Bxj;1 z_*fpXv<$7#lDuy^y}~hzt+$`WmP1G@vD`E=+jL9l`de3cN50sAixQsH4qoo?ywMa7 zpV=6vabN8)n;s&?xj@kAO*mrm5*>~$qXQkal@6U?epj}+IT!iX_}??ZY0GY2OkIP>7VD=d+?$0 zb}+CSU24BFX7!~uUzx=nqz(|I&2^8?pM8Ra>2v$BnI{53Xt`?_FEiur^7%4@fLnWi zn!@qz#~=5dPHgHiD44-FN(|7fjGXXXg*i`?vH(o6qUZ=X^JOi zTRtE?8(F47JKn;CwS}^Mk9Lx_M^sEpU_?2HNfsd`Q#%Kzb16Yy%^%ELIMxwrSdB9W zvqnmli}?ebmFHVCW>v`c(g`K@mwAo-Tmg3Xp+f)#Q4SxL0kq_es^*BV?PJFjjVfDx zg=z{v?{BG=EWn0Un{ltQ=)s0nma#KDn7{C%Vyo&HH0;gQeB%CwDqCt6BzFGvlzAd& z=$P0A)kMm2>wud9Bodrx3~<%|>ycPQ^*=Tyn={6wAGX)!BdlpQm;@M-!*1*}&whUF zMPkaD?P{96ZEKoqYqFUm&bqd#ypyWLvWQCGshC+Fsq>ET!#3@omKlYyzZRyM_klOU z{%{|)@_RWz?B!{ZTN7}c&(j>De5wGKv~k5UrhQcSLdUMTv2hkx(rTsLF%0>j^!1{) zvZNKX0UMW#ysX)=a}2z@kMVJOe_tnbtD+EX@H>38%DimUp>u~3KK-r*kzNMt9+|FM zh8gm(MXMpRkXZF3CJ>{-Tfdl4LJBcV0?%a7^f+hJTZd&L*LGE+ z^ezK=GJXvO9$E!!=|YrQwm@QG6-G2TL#Ekq!Pt&twjzLuXx$QajzzhG{aa7vxNC-0 zw0G^IWd@5?R@}T?!>Z*+WmT2`aGdRqR}{xMis=?d4M(YXRiWk|;t+tncT_ro9dU-a zFj3aXc^UUXFjh;79_{CtiD2$^0W%S?znw1|UY&r}E0^JuK11#(pqVcvRAEf&V2KUV z5t*h#XN#WeA~rM3`xR2KbsVyys(IfcL%h=DQP4? z8^BlKxfcAhZT4aywwOi%hi;P0m>$mOkM1|{vl$rM@X>u)WIK5SpVf!$S^9A10G^v% z08U2ciO9oEpM|+YYl*cR)uG-;zg-qA@I1A4og3Rv=j*a8o=0Z*)&Y%b)%01NTEm8EkV;k^SnoUhb)^yW$>l(dF z23|2`qL?d$R1Bk{Vh3dSX7U_`DQ6Kv=%>f6!+)r&dbJ3X$0fRDgY+SuUva5rDT->F zwL%c6o?!`eL!bXX=`rbP=|`mx;SSB&V~6!7crwd6;q3$}m=_naqMa^jW3x#{nIUU8 z8T5HpXSc_iD)YQBxMznYJi-lx<`4g~8d%j@-38A_mlc!R*oeWfojUk5AZLuSQ7)Mk zLj$6ix=dgU+NPyp6JAwUkp6`=h2SvAayN%@{#*tE8lD;iPTjOs1uRJFR(ubvN!7M= z;#sop)>XL+!(jr=O}(iQ!>~%40#+1^iF}?K02u)bbaMS+k?kdzHapWb)WpUVa$fT$ zDsQRDX`||<)PijJ8hryk->Jg@Vu+nTOZ6tZ+Iwt{x&y4V{iXV8T-U61#HeVv0b zHeW?}R2aCpji^BMUl-ue{*N5La+b{QCRuC4Jef@_?Yyd<*I+hG5Mx)k+TDR3r3rTTwOOtv51L~2{ewqz4W4AnhZOyb2Z$f_XW1sx$P9{!E$+gx*nSShE^Xk`HgL4 zo%VoHXsWgYqa7wg+W+_~VOS`apPkTL03pGhtl)SwgRAGt^X0FPYoM}iTw}>a%_B_# z7GJ7KT^?r|dsYwuw;zXH7oW}GdsiOuz9BsSB0_jMpS^?_6PMX&JKsNJRwlb>!eM5C zV26%z-wYdb!*C4v@7LS1vVy@!-Sa9@91?qpBjCHa7U-Iee`vIeZJCrs?j*tARqB>IopLur(>mCgE4-t7 zo~6WNZFJBN@Y!sgx6eA3!}G^2om-$ZuECSRq20R+%&C~~A#$8v)Ap-xEoYjJhS5%Fdnz~o; zap#9u*i$u=XdgR9NR22pLVkO4Azj66!YVJ=|^~ptYZ3z7#|01&aakBPhYoiZGk9v~VjQR&sBG-a~mxJjFwi0>EX1 z^^Fgv(>~?EmOUq$4{LjXq~V~hvp$$rY0_{l8Z z1h9YycXzMvPUX)I=TP{`uFG+~eT;Q1m`0(rD{VWIAQcK9kkgmBUjL&ApV!WHrrVUWqRb&{TEy0pF-+sKT8xyxbaU4SM&&ZmbdA6Z1wXP8 zzrmM=Y~+M$b|1cgy}T|wtg13qui*JT_u%o0P89*xmUNU!uXV!u-e9krkiYD#V|%(D z-*>&=)W1w@L(YQ5`ew&)zcR&A*Hl9nfm5lhsuAeJgT%pR#azNnUL~Cw$KM2R9MczA zDqIk-{H|(l4F43|iHQ&a%TKFf^ggJv%uZ?lIG9i~Y(J8Ib`lezv}-|CbEBdGOC|lU#+qA#dyVFLXgE% zJB95Af95D1q~B&V=qaXhXjP{2;i#|NGh;OXZ}b$R?$%@?A0Au#LErfFL8JP(iy|+k z8%&1tuL%3)#7OQf0LLiR;~+Qr7b&Dy0@*Q-+J%CB)O6$krHPcW2b#(LxOhuc$V16N zwnQ||-~b@*yA9C*Yh@iBSTh3kQB}aDo4ZvL&?r;8$Kb38kQe0$wWIP^^4U`5V@+4&Uxxnv7g$HUc?1$Sg&}NHq_{tNe-%3Nwz)Kh0b=L+ixe z<#=rVVd>IAWAmZ|DwY;Hh*^+>D8AX9L{Yt&XBvDvMK2FwcIEykB+pTOHQz!Ib=7>H zuF4&#mvXmay%Mc*iZS@cL=1jEUKV2TjXWl1OOTp2WqynJOhm1aS0^Ly0$%lvDB^DF z4I$zV&v6>~y03na=Ed4s^aJL>0?9sLxF5Q|W4h@>-;sy#zn5(@^YpV*W^1|* zYJnHrWV?FanT@nB(;XgaujYr^GbT=$gxLEB4zX+Mlo)$zE|m`yTz@}yhsWT$u|h1% zq!mTOa4~!txkOEBVsu@9DmA?RP*=3Ds40%C*_NiO#4A=@-Lhp_bkLO-|Tl%bj zHbu6GxJ_g>&EDZVdsnZB^Oejec&~u>eB?LIsPK0n)tmW#W#N-~>h;zHnD5(nf3C;J zWtIjVk9-T1`MYWU;bg=cNV6LU5>?cHco1zf)U!uf-lwQ(gF9WY7zxRb2^gI`0)3A! zdM`z=XzI83r4MEMOvOldR@qF6aHo3XJ~6!f3I>jErs97j2DLMGEA9*3!d2Jue(2L~ zLcEBL!-%oEc{KP00U^Xf-Pj8Sfh~l*=;j0+MurV=v8ci|1YFA09zmHonA{Py{T3qH z0!O`gr;%*nvbRMsY`-nbB{sO0W1q^{ky3W=XPw#2=h>R-bZFnIseC;T2QhFR;c+Ez zeEw*EWTqI!l4vKGQURZ{W`rzxwKK z;CFW62g&`w2-I1()GhB;{qAnbua4l27&r8#Ik4ZBfiI3p+nAFv$-6NW?b%=moZB_* zTP%zXKUWO7khdzuV$`L1y@CWq&rQLGO zi=%vo+>KchevmKi9KJlt`0}K5R=WF6xpNFmjCJFulbnjsvCzz3%kT&uAv zPUo-(U2epiN8*JKgdGD1VC)#mYXa;Cm9MvFA#r00gNt@#Uge#AqTmAIzj)B-H_-c; zhwsMV@!b!zRu5Ox(DGI6HJ{2htWI<;jZI7kWIv1h88wY^=fOwRLY^i5Eutz@K~?o9 z_FwbJ^S-7=yaj4r*)P%!&-@6xqGsaG_*YpUaGpiiq#>{Dl=t9$*MvW!MBh9f>CSau zep^xU08@+~o8rre>#sHN8Sg=D7RP?a&C-DCRbJQzcdJI*(uT2A>!-nB_=f(?5~0N+ zeLOW<&qNVnwS*C279%bv5nwou1-8+Yy*VDkw%-*8xXY!|L_B)~^9N_fv*rEd0O;w7 z==L=+p3R}}aO{ZSGQID7JPO8cg4Xna_9t_tLK4{?^PyY&ugc`Ep-fr!h?T_vv+%X&yWaU#hH7^6QonJ=IDc%D@4KjW_a4yFf{q=d+r)`23)o zU^qzXBf^NJ4IjY3x5#B49`gSN+aN=CwU%0o53?)rv%Gm^UC>{p@s`ztV`8toH!u{F|eksPKW)l z-)qxh*dB($Ip!Z=tRgOCQj-s(sx++s!H$2<4JyTVvje!I0M5QtsooY5uMXy=ka6YoFqP&Sg zKM!MtwgH3oh72gc{6G}0ToIA@ySfL!`MP2f^Q=1o;G5qok49y?**rQL34R6caM%W) z{UPaT={>V3u0%zO+k?|`4_Sj*B`)cqNyTjvF!jRzkclJOhU>#VuQ7}hd$_~+3C*u@ z>c7@999=b3MOTSqwY-9+D^#^y6<$pH94T5Q0!A+hyeFD)r|uY@*OMuA995r0^IMwf z7#hJHI;LgoR8xp8>xOP`t*&m3HaF2wb8T8bqNqBZQ`mfncyC_1pY3g$H45E9AD3E@ z7T7IJj+$#Azrk&oLfe!he(Z@n>dILb4Fk@iNQ}`)B*%-gOH>(*7qDn--BhVlbSNVR zCAw-;Q!@&t?$Cj(8o+QKm;({lQcE?6r|PCLNfzu5AJ2_`oZs227=b)u@v* z5lIcz))`I91AiZuC@B$E4 zlR>=&)Y5?KWt%Fh$>^7bmIR~sa`A={r?oST^gM@k+_CBspmL2=M~@r z>!eQ{`@@9yw#Rr6zB}T*VV?r~f!-Mc5B4)<%GOw~ zBX;npSN4E}6_0*y-T`8Iwrp7%mP0o`p%^F=67DM%xCx-VvskMYed7CJSn|lXuU$*o z?=LJJr=rfu>07{AF&X{A$SBr|=9w+vPu;NfnOu0d)19C1cIKtYJrL*inZs!Z!~T%z z-H`T~trH6Uk0z(&=ayQnrDMnL@qOZz!Vq5kVr>ns!1c*__OB~;#Tkv}=R4iGxlY{~ zITd?M-duoje{43abbDQnhfijmTrj1zpYp&CjJ}LDOoCwoJA%HuD}w$p7079MR5cu5 zvsJn2tJE?T7%EMb$szBEcWkLSfx};b;8#uGv}nPE@wPPGvo%hA%d&~0$%E0T*&I26 zgX=XBUS*I57kH1JJbtEn80>F{_M(j)Xc~#562jFCtI7(QW{G~(Yk6Ml$nxgq^5WtN zS7gK4wx>T@S^~UI7e-FmUIODUS&!m#w#DksotlE52swAlf=M$kVEdK?Jbr`$yXOUa z6;d)|^X*3$H#`yU?~E1~N3B-j^yxz3bZnkE&M02@E;0DJ;2UG)wJ_MRF+v>X&6#R&3349nI437i{P=pmTguEIuY&%S`@%4cw+^MAx?a zg@UTvk$v3+g|Zu+N3<5^$dl5$r59(<5>N(hHc@mz%rW+om)GTpyFgUJ9O8eEVWJ-9 zLF0ZMu6Ho=nSFmXn4J2GOgu%^fYU%IQq@~fsqGaEU^I|p#&0U1K^@oAY(;*!>3PiL z1~m#sjzj6hwEA}{m?2~X$evAl>cCavus6U;gXQyU^{8=M0j6r`zvv;ZQV6uIQB zTGtxTT-J2G-**ZMV{vYGR2ZM1lP-b>_EG7j>0JKTzSX9@IbM&p9A1&!+(HMg+jI!l>3^i~MBoEk4$WV@K2#dNRN*cxrY|H!`120RImRXa>Al48dmYE7U9$bRlkqo|rgR=nroKM)$_EcDl~W~( zWd%nE#$-Yw-II&ncQT_>PK1%ESyU-Sh>hcQisb>n1-!y2n*lfL&rovv;C7L@Y>g(H zdwhjmFBFtXEtf@Z7aTZrC6%&r4^JiRIC!_-6)^xDDrWOK8gj^E69 zI$s^9L5D0kF8toPlVfrT6S*~e{XS08yfMC)^|!rq-krkH+#^50@D9c=Y=d*YFXLu} z47%w_PMROB9UKPh>>P0JlT+3Y^7(NJn!1O9UYt|bSjRFkNT6bF=*R-)$=WS7dyZjF~860dn41YMP?)D z`0+K&t+f8t6rP{L4&1|tA_|u-WrBuH#7i9YJ+F>F(bNviYFvmVKKP z3I$^O6}ONxF&m9?dGx@70?6nqH5lTc*)+CCL--kOOJjO+mGx(Mkgr-O%M^PL`ScISYQ_gVM*PU!AsQ z((5Zp`LtpW~6@+M_R%BgZ+m3k?BkS8?#4V$0`*t^zON6 z?5TodZ)iM34c8`O)OWrFH#;++dk~#*K$gg^2k#@nrmTwQPQjrN%a{~k|L8yy2Z;A6 zW+=baHQ>9@SZ09%7Tp7LVi*D=u8hZe|>UYo)k+x)>S=q;`&>|us2}N9qTLt z?9A4L!zgewmX2d6ELN{s8e=vMgUSW3kcriQ1jM<)VyPaCv$m`nwgG6Xt|^0Gq>fta z-dnUR8ZJx$WG>UUOv^W9;}9C%1RQ%y16FegsEWc!T;E0dJt+Oy4~cphFWLkWRfG1r zvY$)xmWX#B%VsFP1RN);x@?$=34WospcsIep;8Yfd(N`Qfyft(PMj$0=dB2~56?YA zuX^8ANJJm!P?)R%&vKr>1pY<2jb0don{f(Xb7@-iJMr#WgiIm(=)jTqGvh=36Sk_(G!vmPI|%dJfP4O zixUna-!r=&y(tZN+W77C_EX?)e01>rtia4QLNW!L>8PSAT9 zUt|+oK-q)Fj}u#1MoW^|vI9S(!5}+v)l44clh|EiKh0e^m_^mgrnRuOuE}Y;CwnS0 zv~+Ezp|zJ`zR{w){+4w)awp8&`sq<($MT#7jFUVny=%%y-@yt&W+8;>>l3nYX)`n8 ztweA|+9%gTxR?o|Y=fr$86If#xEK@J;9zS3k??945;3L<^EAmWneJI>S*ayZh@{ni!xRAljQeY;<$HMyJ z;zlD2T!F!MlpK{j;HVI0RZG}|Hw2A+Mv{uWZ+lSWo!bZHXd9any;9+IIQAZ2ZLn=I z2mj6Q8}{hNjT^6b;-A~eS%=i)Tk!TPS8iM(dZ)A7DdX<8GTsUYw%cv5Blb6SSe?`@ zNs5@Avv*vC9T`8&Y#s%9Hs!Ls<-&x$rwjRk=T2Y9C1z?o3JU_)V8>_#+zMJ9j;)0MF|A zy{>APqY}3#GY`&rUI*9X+<12g-+C17RuSJ2swWR*&x#MPM^Bydz?5J3-pHM3zfHO^ zs2vw=nq---hWVQ6(gxFrX>WryqFh zI1X(FsC@Q8TnLS~vfgIq+{kBmIo@E7Cuf{zvIwNq;K+2jWB( z$8_A-h&30Hez^4&S08m`XI5mRLa`kAU}q4*_4Hnt29)oK?BcGt9`2Bg{%oD-tcoN2 z0nPjYenTa>0MiBj3a+_WWQ+X;wpZa5*Vy28d);liRn_?)b=ltx*`J7jz{8n489#iP z0=x(ud}VYI`?iSCvTqP!Lty?kkkhKOeVTPkTdLxcCm3HgmYa~z;fFOs4TaQ90^V{?;MWuVOO5lpOEAFm$96*%ETe)QcSx*Rsqd}%z~w|usqgjT*pLX5t!&kYrAPVbpmFr zMvI5%RbpDzVr5~wRa;c4Lv#(OQE?Sn^$lyWzP>m&zdUDoh9ZYMhqTZI3!&()*B968 z<@s8{Efz3>?JR_H$?_c<7HZ7*B+1^u0lcD^qrH&o?PY*>6DC6&iy3j2F7k?nL#!}X z4L7S{wT~IynjsAl4jPH;v)~OFV-A-eTF}7tP{=Qy_9?aH;$sDexVniNwJ==|^T8~A%B^wn?hmy4rFM;?uO9h{IZV1)bs=kDFZB)P8pu)1|`y`SCHRn;#yt zu6Lbt?(3X;&-tAIbjwbGxCFh7lagpD2-buhewVbDa+ns-x8q8JQ`Vvx7oeAZ<4*<6 z*MJbJFsQabIx(3dPf|uWS9KtrGq4v3eu%cSo6yf6tY2fwIov;|us>yVQceyY6wJK( zy>omg(@9o1PqPBEI24Gr*+>tBw=|@=$Eg=V!DuRg>in(bgZS}($Z;fqB;C4dB1M7+ zoAYzg)Nvkq+tSbP7V&9UIEH*5^^M?W<){id_A!xZA!@mPLjwE;L#=`FEYM{6y23kc z`=n%_R?<8!+q|K=eEuHomSfUDdZ+XO=~L2k(l1EACjGATN7A23|GV_p1mqhautAK2 zHfFY0HNFsuS}k^r?G8d5bohvjV`(2Xzdi=2#n3B8aZ?RJBpBI$O5SLrf9Dp4^mjQL zX1vx#)NdGFWdvN=?1;;F%(Z)H?pxUzHG<)LmB5aNZxblHVqe~B$9zGQpTIt%1KqNW zzwo8D+F#=|;DIn4;w?Pi#arcQi>C%mk4YzmdiyX7qJSAu#Uxe$L%V6)rpkBCN@QH` z;*xHGwGE@H4kcrKOe;kprD0UkFx4pmdq272Tklt)m}Clyp$^4pm=l`EpbH~%$+sC} zzojzG)3SRS!&etjE7eP-2}&nQrT>{Jng%K+m7(BO&1*B;FUbVToKoF1l>e47O)p%( zi+K*bB)w@~pb?Yk#@QUXNG)AUiP1G{PcRC$1~PhH2mvmk5VVC6;yOTFHK%QFn6~?e zul@*XTB&@`flR293&kIi=r4_2Zw-s|tbl1w*5sEt-Z=W=-6OqSdNR=g5??f7bcVw4 z?4b%!0hOiQ)Y=^ZSi7}>V2#4h07fn?TJLl8LV;bVR$@M+38>E~7T8yyFH~BU^zTT% zd!GwExb3@*)rRMJn&KF7qY)d9dQW;9v=UEMv-4e$t8ZDO?-9FKWvaR={3&qv=lx|L zv^jW%u4w7WSW&+p&cpDD=h-QImv0G-Dd{z^N_MzRo|Zl;eO~&q^fitXiVYG5>Ma36 zTtUoB7sqFg^ob1^6(r~axgr(u4DP6@chpehIN1m_0fIY8cw=ofv3QcURR_1Ud%g*PZfpM|I(h zWtJ-j=;7fk`YITevI&~)F{o3h0gIOT6!UN~7W7QVF+owEQazn%j^ij)(`0rxuY*hj z{gJU#xMNzLxI|Si1RWd~l0D1Bx@VZjMd9p$u01`e>lCyRv<5*(p}Iaf4a%QP6;MM> zMO-2wzowXQPNDaMiUE2zvup#E@Hq{&Zo@%DP3G+~=6axnKn-EE%F{#|CbS;MG@gOF zPl&ie8T$Z{p~rxhK&Wo%%6wA9**G>K&4KQMcs4Ol<8q9rDDNiF5~0@XZ=vGChc6hk zc!{N%odk#oiXQv=b%W@#jXuI31~tpJ^namSN?DO(f8fC~C+sHcAuazw4vKN$1?Q^-|l?W_cEvIf?^)h4u4Phx_4nOi{8yMfh;=;Dd2J}C-OS}I^*bKV z3EE#|JV|9SSL7i)d@j8ipAv~BQ-0F2#@XstN_3cV#`6xf1^vfh;FmR_XYu}oqwMw) zI5$EwLK99zeTct{B)@8 zGpzDLTv90*07yW$zt8eKHS+muq`M}qOJ{gy`vb}940Do~OPm&$sNJ1HIsGr=2>tdj zS9!5GysT_uX@3YM_efeuUl`B8y9=x$>swe{pVLfJ`@N*B3gv?JYyjM4%?>H{NUOh* zloB!)wnW?Ht#JxF`xteu1Ckt>Y4h~3*+LD=sQ>VXIcJ~dO%~ejLp)niNL5`P%3}1d zL>sR8oBf3LGB)i6Y|*m(clM=668q9{eLKQ2yGQuS`0Ydzk*bKstF5 zK;!wWq6;Q6Vv`QYNQ4coWL8CbGrGW*k)~3d+pV~_#gU`2#fllMgfz@iBaBW#RH%*6 z8u<2x9T~0zR)cN;Ws{|ElqP{v-3YF#>|7MM-Uj*yDz@yK-!OgIR+R68O+p;g^KF~? z#uMc@EU*7wR zuM$HxgFuHN{XQ7L^&l{1+-ViCFpQzZt0N zK(#;pY5Sf&b8(o{f_nlUODo2#vh;0`#~R1#6EX+|U{#XFc;h76EogAz_=-!+SxTgD z5U>oNd4?&J+(*chpqVQ?QQklS4gDG1d*)k22IFu`WdRKNeL~45y64b7@MX%|l>6zh zdzhM!p(_c_keItjdj8y=h!Yk8|@JEOJA)1_D|3yUFsC zs($Lc6;6d#wx+Sd*EA3}_lKm9k6CdUhr`h+Kwb+(;>}!&ViKYw&|%;f-U{=aR$(@y z&ha>tbd&4RnS@#3C}Ed6j%I+CYaR2Vf?#wDL}lXS1Y@C(rz}fmd>A)z?%R*NV9(Sq z!H}t`>9U)8Rj~cQDW=)F1Kiy&Ew`O%C%f%!*fs`@cEwoIoIC6W|U4__O|n? zKY!EgU$LO*&AnGL;P9sp69QHD2?6_;Yq?&9c6&uykWON3V32dqdEXLnB~emrQ9e7D zrEQ9mDxa-XZi&0pbbSeikdmG1-pZ3;C?=Y??JIx4e{kuCpL~H7?u3fEEbh{kTzSWZ z7`*3OLvQs8FM%^f-hzy`oTMz7YN5or6B6g5qfL|j3^#JooJ^-1x1eRhXMLLwACD%~ zsz{SUzQNQa0V|#*(@fk)_*IqElw1tF0u-;ZZzMa}%kwv@`5J}~x>a1n1okk2u*c^{ zJMGQ7%C1tCK1{$&RJ2DZ;XO*5(s#atDkLC^^1*jfnzVQEuGYbC>xWp&`OzV_;CuL9|-(q-w#r7uW7EB%7>OMIS~`+}j( zB6ydRJ#jByC%WQBL-F(wVr$ zCvp4mycT!VR>*OUX_Jt*(l)UwCwsWO0PUmT1@x=`85CmS?Z$F}sb?VGpez0zc< zG}*+>v0AeRfA=Xv&pffR!!<$xKH!yW5}dXsv#0M(%gPXpTE^zjYf`zOK-1S^f!X%FjXlbemo! z_~}6Hc0cAdpIA8mM4!wsHjp*?O~zi3RmxUYwzq?y`I%s4CHM^dmyF%GhP#OvH$j>x zKGk%zNZ9COCm~m5TxRTRtGvdYB;V$W26u0|T`x@sBN>Ehb9%h8RyujsS#6sW@Q>8E zGZxoRHctEVvmwPS3{$8D;A3stT3ZRt^2vt-xW8jetO$Cge-HH9JahPPyE-XP%hw}! zFJG4VP<3&AX_AIVY9fI=eva={I}xc>nhSW-LbEccE!E_BVQqOzZYP=KSr^D|%M*(Q ze~Sre2D9hwmmkJefShEM6A&u`EmuLgOL7M4>ixd%&39K@j@ei}8r=W+uo)8gelrZ4 zMB|QQTvb1Ne{giQVLGkV?!2e_4-7)Mr^0Vc=}6?#I8ZKvrUT>vpE{WLr@6IIPBL6nI`ZsKh9+tv)8Q7e0He*|c$*(e|vV*(vMf z#`SAlFkRA1HqIy74Jfk%HionFei?V5bpBml~M3tTCJ`sV#Le-we+f$djlgBeZt?4`=z*{@kesQ4~}ipATNU z`w8;Ha25RGZy`5>Io@S|jVFbJVF^!#==g;QVjbc2wG|D5#*t=3{h11u&wQ7$ip40dwwcv4 zRTJ0dD6=Xm)0NmQo4PZ3_oSnnWjAK()k?D>muEY3aZ;!0(%)v7*-*w8K&P!km(TMc zs+1t6J}BQ73=amF$hrkeI!pbH6TWn*&MlENam~Kg_PSWy6Ec7D7C0rfBun2L!Erht zw!-~1~RY>QLkq+)R9ew(FhA$xfZL zbLaUssr3D-PtNxV{9N?ybI;oT#aAkmlNJ1@FiQ_~ix6y=D!*6>{nyy&b+Hq3x7QQ8i$bSZE8a~oQC+|ljQqZ*}K@jSl&Iy z)X$w)*bqPSy7e3q{~X`l&r}@)47T?aX6!vD{QO8Z_jFW}<~z7j6NARD!3GB$((i<5 z6*SQ;XcG@LT;ajxovjVhzO4A_WK*+EN}HNz$X3Zw=!~W@$9H5+2j#cq*RUO|ZhOf;$%sk()e3!nJmW}2+R9}JHKCAk}wB090BJ|meqpcG}#VSvE zm5(Eya1-l0X6xi`8C&Zy)cs=wy?#ZTh(fIr^~J<020Ki2rxm5<>P&{(>FbOcu4&5p zj30W?6flU%a>|{uV?zB^i0noFvpKXP~m_YANoNU1|gij1hBbXBKFX$ZLNM{H;N~ngH2jjw;Mv)k=Qz z6eOgxfS3$q^5P^>HAP-9+{#6!vx^n?cgYVR;?B8qj8XRf>Y8_s(sSNgaqiT{sP5r$ zJmOxO@Ci)lDjYUrJPa$nlN37->}1pyLR+Hc5J4{^h64U0G?7Bc$j`HyJLwTcgXXU> z%VIjgd1Kve)>!P$s0xrMQzcZCvM&7OnPRJ+qZky1;jIS-U5YYIV>2H11Ji@XQpnm&9#d&v&BXn#@pTf1B zlV~AvqX-vVBkpS^rYbb3Sjj4_ii2EHUVUyhVV!StIe=Jr!Qg(ov$je$p~ZCC@Tz2u zSG+fwyF+hRG=9HT1!djREtwHx&D7vWrc{T2a>r0KT$!T^)d;;Um+UXQN?8pRPa&#o z>QhuUWM;^^Qqe#Pz_e0pTB@#_xF|&tCIUNO52M3X#g%Dwv)B2Dwrptd2pA3WCQ+bD z>eyGy=&rJ=$eIDqF^&9rF8_a8)u|dN@J-Jq%rzZmQA3p(6oZBk&hF}VT|pOHSp~h) zRH><&x(@fq#HQu>;(RvdsC;;|_EjPwA4EE7x3*Ba&`*k7JHq)S!ko&L8DYXEE9mgI zE|TiHaxq@%JqkfUI)j<8!^%^>rh}a&s{t5Xw4#_gg=Xo342WvLXi7Y4P>jna?uq;F zC|0{!hQ7c=Hoy)i)vq(zRPmiq0D-J3#HWg?7>q?ST~IVlS)g*nm~VS?E9(4kdwb6a z$GpCAdmEPo(a8x|7cSJ;rzK4gy0(h8rowNcbcyCB26rJ8o=BIQ0i+;-XQ6B?n{uxs zpe$e}LdC)u9@>$k>k6W~n9!?%7-l?6$0${q0eeslm>dFIL^CG3$8KAlM1SvGAYEIv zR0=hdsti4%2+?h5$3%7_yHr*%*)T{_a~##QND0&KP}Cm`8}wS0fy|-K1sa{+ns?p# z{_#z)Ow+k=TPjO6uyp32Wv=o_z}uy}I4a=VrFTi+FMU9gHnV9WjxYj!c(1j^(^^B{ z-cq%`D#p)^j#i2J9*m(Vp-ryCwxT|6W(dDo?S$OdtcOSZLfnbsUb_?Vo5P&x=PJI! zR&EDA)VZiilm%11Tiq^it3Rx+m)F&gGR3bfsL-poB4|@x*}O6rwcze9K39diyX2^B zE+{0{lvXr{&Bm`33hUR@DX4v}p}VtZYCQRPwcD-6r>k+d8`aKO#+2G$)eYC1?Zwqv zblRPTo7;VL%CLf{R$atr-sSkSuHH6HxEDoQlxqNENki&LD~VLkN)JH)|2Wi1%un(0 zadM3i!UFapjc2YFl5KL)@?_U2TpUn^bX5&=t!NRKal94dGfHvsL-!UO+2L={@wurkoL45N-(})$rry+bd@NbV zdhJy*NmfB)ba@^}X`auqX|dMPrsaNT6Q^6yzmixuQ`kFxytMNP*$woi4}S0yJ3poe z?hmV#iaNdBH#aVsj;yTw(R)92Y2#r6RaIg%&{P1sjUUR2X60wn$V9Byu+f$P*PmkT( zq!fP+eb02@Xa&a6QzG*~Kbw4nFLHw=S*47_%-OjPQ=3e=5Y$mYUY+br64<$PMrEr^9Spcn{GM=sJ|f=2 zCp)@4K!H!T{H1cX-mb%6H^6QE0(ZI(a9fy*SO(2u0h&~=)Ce2>e2o~_?6`K^!AUBi z4aAtrD-7bzZlw@a@QEI66DKGSJdJDaD3c;qfe5lDqvF#{<%1(wFGTd+`f3D~yWzy-;khac{9q+8z{dy84P<7#qw{ATC6 zSCMTy&;l z+i$e22lLzG=-w4lDoRZ32kpIE1I@4tT7J0Z8iSVT{Cgm+*PnRSgj z0%9M2CKwFPpGo$)D`3gqvq~lFt13G^*yUFSnCye!dm23ujBMV#SciXzM?a6|D88AR z+-VKp-)X5M_p5({HUB0Xhlq7=XEk7CZ##XdIa-zYi%4?Eb=yxllY8EN-U?dg1?l}D z{l5k6=Mzu{m!&UBUz2_dO5)JA6kVrnjk^A+QNLHbztGm;U)I)!+uaE=>UB3#nm5=E z_qE6arI@tMJ>E2v7MhjB&bX#Zw08Sy_Ko-E@B03%^nPpKW&CV@eHBw?@8YJtEn4!6 zc?Gzb6E|OM)oBiLfxQs%jNkJ~Ci)clWSoyLwC-av!m^}|9PO~Ag(F-N77$KsjT^KMk9`!**Xuev6yk zG3P|=)!6=NKfR*<#XUYB(r(53uZsxNbaRG9lFQ}{k5WxuVh*29ZvSe2HU&=^zPE5Tucs5zOWYorfSzZWuQ;O@ z*V{S51?sUITiH&0<7dENN_S$OZMAq0HZTv`i}<-+H%%Xo#Lw*_GE5gg;)s}f@_Tyd z$vuwmWo_fW2R}T1>&A{uk{@QWkX}e^vwgA%1mR$jr8^wjBRL~>v~l+wdgijAVMh?S z^E!_RMv;0L{+fssWF@3X4iKs-WNMnX4?S75Emk-Vk~A;oH^f{=Cr9k>6(_iMYbR^) zSC}bio;Uoy%>DI~i%Jh5!)R;?W5bbH}8OF4=++$>4YX@_?yKH&!yCLop1NtAaI{zv}E088%I=4 zS66Mf=hqZdCAv;Y#&h!RAna{n6bde$@IXd23*?d8+{cOs8$VAR$Ad3;2D30GO4cT* zt39K;H0~i5J=WPhC@^D9*DMD4H#xcHZ zy=NM$Oj&)9YK*QhMg4-RpXR0W?35JF_PepZ|irnUH=oL~T9h|Y~ z3$IVUk6Tc$w_)pTsnGov!xtWG*U++k>bd7?(BCOf5)MwwOy;TSdt)h$^Jv5WA% zzBRCYs#f%pT1xuP3iQ`IILqBvg;xaMoJe@!$WO<39={4sX5&A;I1Hp~YM1cepp`L{ z=wpJRn8$PRwZFKBtIqh&E>2Y;peFC-`s*N?f8az!1_rfqWctLj9aA+x-M0KQc3`6C z9Og@+gqSL|waTPnT5#{m8QZ|yG}~8HO__{zo8qFK!iep`uWXoAV3jaKRdK;kg({?K z8o?dkodE&pp#r5ku)tv{vlX()XSIZdEd~kT8V?;nlVUZ`59-Ulqm3Ip(R?r&HQ=fRe%`NP&Hmt;K#?BLMi3fKK;>QA_N2z!Nvpwe&ZAsMFJ0 zzlh|Rv7%amS+%T+fssIqP@r(OVykM&j4f3OOn%#9ebHPz1;Y-I(^C|)TfuBEj2&H~ zaE2W=2}tgj=E!zP{Dz ziLlF6grZM%@YMOSm+o*){At@4E^)qHwo8QXUm(8C!{YuYL2*OCHF79rFWN5I7#xQo zar}3O6TTxtHam(I?oUYDKJ8XMB&L$KEpw^;0V)%IrM7Q3<4+vIbaVG8&) zes(QEMy(1Iw(Ugl7m8e!b8atiaNVnk_J1)4V|`KZV2ZaXSSAN>o%!HdKbt%?sB#V+ub%Q zpnAqnYO9~+>kRK7SE9M;on5*CzJ)_%>NGhFn~D&mXr~UBZd(wUG%01QJc0x?HM8(= zZ+maJd_OPb;|PvlI6y}2yr};!pY!C$cX0XS=r zzq7w=*AF;e;~_scxH(;<)grX+L?Ekh97~!M-NuF_QTh=_L`5nv_BU8-hVq zMZ9DYstnKTV5ceiALFNBU;l0fj{KsfpHM-6h9Q#?T|KE;^LhPA=4#+u7JRGAzm`V+ zw~{*E@5SQF$>K*#X@oeb!eL6f8QS!Bkq5<9^napbi{$ITJpYyRPaOE*74gw|zRE*f zMR7sx+|jJ^j^a24pI{B@@}h`18-b8O$8<8>yKukS+Hx(aKISy~{#!|Hsx4o`OZY+4 z)OTksj_0wBUULD4XM?ZgluqKUW7ng z3hJ0f#!{GX^D6<|1Eh%(NeoqhL+_0KCQv-Rq2K<$B|#>g_DMO~^NuVwD}=cIY-?kqHS4>CRGN!NNZ?yqty7(tnwgzz zHs@w%rY5SLn!xOoUwakay9)1h_)K4z#Hn<67-ar(?nsh;bZ>QL(zOZE&4p#(*=WM2 zWUwoa9Pugjj~r)n{i~f{yPY zJ~_17GDpMV&Tqn#rO6>Np%nUjVhzKYz$8pvyF2I;TAzRP(fO`QC#Q*`Dr9DoDz|~v z*t@+-Y4!FV=)4;(er2jITeNj~8~#)8d>Y}7?_XrW;#{K>G8T3kbBm8rIQzakp>O|y4AqBJ_*GflT*Xei%jYqJ|0v$f7$cYV0P0s@w^GYXxY;U}jjsd@%a z9sdumuT&~tsS>qkry6pFv5MT7nr%mwl843cvvYHEt?ugTujhPX>afN8@%ZUGaXc8V z7d3(M#JLth0`U#i5zZ7?w6;4rvwDLShSTl`akXBboxS18BWMNF67+>>XdPOtr6lsG zS~wI_3qa$q&eiAZYt88reA%tfcUD{Vdb2w-2BVdy}qp;KC`L3bNe*G%Y^ zOTqNo`ckJ=jV%uepFX~(8>gFwQaw_ene806%$1eS+-w|rFjfO6^-$B-?tn2fR-;v9ZG%?kH|E4CQDNag)!@DX~ zkQP269Az`dI1}_m#x5~ZC-eczKE+@Q`;08f^0v%AsnDkwdx|QbWHQ!`{9UyJ-WK=z zT{8BSAGz(GiT90p@BeoGBfa5wPagDc?clfD6Zd?0{QKRHoabLC;+kW>kN%5dYB-H& z;lM=CGZS79t^ZQGLl!8#LpGGpD29ATzFWj1r%3aBsFnH$yp?E|jD0Wu=byQQsQ&nu z=kHdeDgN%x<|%UU+b>=m`~EvVbH@Q6Kwkyk)|bceNyS&l$2Vd!Yg&^g z=v`MR(Pc}Skm)v~KUewjvtMxu+%u`b-QU@migSAfea1^t1ah5~<^^r@S!R}XXgnb_ zn|`a^=|QK^3p*Qq*lgvSURYdF-MhoJ9{+%A*Xmp&+cQhHAM#l-ecX6J-Cl+7abQu_em zt~U8vDb`{QOi5POeI{=FfjGWN)P0P2!5H_$I z4){9=fAc&>4^h5Z%)a>c!VQbbRVr6=dayY1+(;#EnWJU3K(~omMK-kw|J&{o~^#ODLnH++{cVk=#=#Q zP`SK66S!Lte0K8NV@l1<54O1ra8dz;+bueewc9)8i-B+j8w}>RU)+9iY!S(Xjwykp zTn71P#+Ko~TIyiTN2!L=66mCW0&-QQ?%b8kTfRraF}^y%ch!CS5Jp7I4kO z#YLZmT3J}A!zTkp34&Rjd4|hFnGBEVv$*=5$FfgIeb8<0m)?n1>jAW1pXXKwbmSgX zH;rEmg+g{J3AmmS@9B=RG?wuz+B4b!S!7JnP1`NIwy7(iumk(S81BZfjB>aZc#h)* z9~0~{g{f2_$Bq#NbA2-|kkNAO7Z3wCvehXRLo%T)wEDCV6ER>4gH&9+T+{2Xt6b}2 ziuC{<)$;ygEf4YZ*c(w-lc#zkBDopvkg?CDJFlzeCft>W4hwa7nM5!iACd0BtR6#o z-1-NAUGN2fHutP4VD4s~ww;)Rx%0`1@0O>_<>}T;sWdYgAihNa)QTV&p!s3Y4?c;I z6rcPg0%I)mL2Uc6>Oxg^p0rEJgRSZEF0Z|OrapQ8zf=_d%qRKt%O~+#)p(4=i`|NE zKbWn#M4(^vrE`f+CJbK}Kh?O;Vi?3tS=n1NVh7%C6+Z@lAxERRT1=f(@_yW_|^eMtH2qwZVR zFO(ui6G)dCtqCcv z%km}4GcRWI_xRm;?t3uwZk|YJ389IDtyv#6=P=3*jz#^Zk3ZPF0QCPzpBA z=GJ9>aQ%vUnHMO3`Uj_YH@Lw)v^RJWPRXwv(#4PT7Z2WKe{lmsxQT9KKlg`q9R4Bf z=ea4pKGJ=U&QXb&I4TGIYoyv*hgDXk2&XM9Oq;;GvX5cb6fF;d~d zB>sDqe{WrSR=RwUEJdwv^R=v)gPf|Orr^oA^Twb#YHG6nJz4^sgMVz4p^YepWf_Y6 zUb}SZ?N(`y$fikPqfo_UlpulzSS)C2-~m4^6Jp}V68C_KtRi$JZe&^9W4Trd!?*X9 z9~W9lp_*DYWG`^3X@b};K1Qs{>-rAaNAG<+Zansdzpp5ZMd?G*58qsWlpyw}7`Rc2 zfk{%>TQvp1Bq@AMJ4L@FDY)%cKNc-ueXDa=Blwfo!|a&CS>WuK$YD*V`o@S`-4Z2j zr~Q8`=^r<)U-LWZqJC$yGc;{KwyOU1rHdkY-bG`gBHQlFjBCr4iSgAdyqL5`uP}8l z73p)NHJ)o@=)?Ve7D;DwpDB{{5&gX(N}_`0fpj`~#~~6??_Mbovs*AU((*`plG~rb zO7YBY)-SJcc^&~>;qF8FFW!+%30U}kI#F5(_Ci-nG=tI0aeNo|_Ue>um>2BQOMb-t zI|gXzMjj?vKWLPZ=VGO7&V#s>$P4m_!oZ8l=php5X71a-+u~{I-kWQS8$6><27b>k zc0?>2+VY3Btlu#8XeQzz`npMWQf98#INr(WFYvP?SmA5W3ipriCiQ$7`uUr%BHFGT z_qFJxjOmkQ1oAn|fcTegqe_hjZg-k7dzam6)(o@OY)t6-VdH*i&}zf&-EOkD*>nt} z)`Vwa+Yogt;X#osVNJ}BA?+p%3BnGdvwcYUyzd}7fBi74Vyr$rJZF;79A?lK2no9N zH=$4GI?WIAEN7rkDyUAPEnAnrdYCqStNQc}2;oiDr@wT4{>Rwj55CU%k_;)fFu>qq zHFOy_ZksE%z;+cFt^ybq_iw^df2S?*T=N&n4!&rAS-$mF%JN`tZ=yV}$LVfR$ zI(Lh&bKcyz`n5wx(xG{}gNILC=jLP14D@fu_tU}Ai_xKFTuFq(Mew6Q)DNHo6!mSB zXa;4n*;jm zq_oz-t{kMR!>DO;FMXbiwAgkJBl#4`y(T{hl-i7%%s$64pn*(m#J_SN10Ox7usuY5 zRaKjr6rOtqvz=fqpeXFe4rb-?bD{*KqMv;L`pX99>f)2P8R1+b$){j?83!Gnv2 zAFuA|Ryp+d(98V4D_i;=cR7Va9>^h5dtbBkZWp~dyItLS7Bi^gaTxmDdEp|OVe{eq z6H>A@E%Vvq4A*#C?yIYE0?|4x0)JNJJlwguwK@Uqps{^syHRc|gd@ju(JbN{|FtdG zyOT&#W4i%=VSCb49DWX@m7MELm``|!Y#ilSD$5dq{!o`p9&3C7C|v9BkZ?0x3)fn` z%^~o_Es>xeMrzVQSV;|`1Q9Y2Y+fGlwgx6*tim1#5JcZV3|vBAo;7rb+Ukc}JfLk2 z%*3B1gyhTePqyYQJM_z~kj!{2bSulgy0}xLvD@$}5wW$oiDuifD&h`bsd$y8(#Rcq zxQIi3u7IjoQmpAx+%{=_b2@6d6S_@|Qpxbz(+sT7`M_OXb?}~Y+%{N!YbtDcHN%q4 zvakE?8Is(zvLY2R7ImKeEpwOW5LsxHg`(!1AeSc*MtAZ-S(Wcvrz*Wuz#zRM;KQCE z^sx<@$d7RS?p)qSuW+1(CiYyT5h{5CGX5plX#KSQKwT1X65iD`9^!2J`g&##D7dQun+G&U*BuSoQIQUe*+#EIF~uSldPY{nL!>Vy$Ky-hm(tG- zl4$VAD-g40>ED7c!S~=}cPHe)2AbBh89B>WK-Fa#9lA6Pbet}DZ|6?iTfHH~992NS zB{M)sY(JUypW&Vv=WK2+{$AvN6J5|FUwmJ;uK1B=S^q}2)_}HfZ^cQB{f$s^&pA5LoS^4amHq`)|NHCHwTu1UQK~3(Z-hdc z<%vhR;Of*3N+uMJ6WML+#jA&ljk2ec>rXQ!J56fz?v(1gDS}Z^b_^3u9%FpA9WkGn zs-^U!-BqB!#a9uZ8qdRx$oRTE&7=qjeetH7Es*gXSH$hAczBrq^QAB>ttF*)eM#6y zaY_0pw(WFIdV<7K1ZBD@y&JPH23nYn7YXu06FVzttI;|~Gr<#Zx+hk}Q}3rd$wIsp zi%<+~<{2;`2EK}93jLuc-(ITKIjBXwR+1gPIu+}VOy!B&>Ie`!d3;iq<9Vh+TUM)t z;7EAd@<|X7-{K26vJ5>k^E?LK_4E8jUm@BF!femhb=a_zx-KhkC3Z%Y@!X zKzTvofCghK3`S!Y11ntg3s!<)ax$PqK>%9Vn=0I!%?m?I{f-o4hLpajIegNNXGuW? z3Z&7`Q4u$`wpI4&BdA7gW2$RVppJZ+soxM2)q6}?pcZ=PVOncYkrtE(IqoFiVB32I zeSM`rhrYDIV=7`z3|%pTN4ql5xC4XoNtyfp_64$L=lwG?{^IoX;<0IGes0n*CgB4?lT=su|Zr+<-nx1dD{5)KBTYR72>8{P;RWH}c(C2RoF+_*0Wldej#oAU=OlO`V zS%!&RN4TvldkSH`UQt|v*bX%T&yo-LzwwxfdGczfv7oex6s?98zFh+upnrBT7nC+c z3XhkDqUfR1xe5fOL;ZLNmD?6E_L;a!MfVv|Jh>teW(sI5L4iVOm4vd>HPmX&&x~Nm zNWTL*Ynkg8DHSp1wGx6!>G-dAWD9itK$|o}Rb~b=vN!Qby{h78s9ZL@^vDpU&h z>(FvT&y$ApJkD|i&QTp>AK&RJN*@3EtE0RUQ34_lB?n{qyF(0qFar$A%K&54j!HWi zy)fj&xG&PolMg6}u>oiAI-nei&@n*{RP)0J6oe>;E7D&|KKef&TpRYuBKh6{C7jCN zm(ECU;}{^AQxc;yg!30h7iDfXQ5+>_c_fF(u-V`0r}4C#9KXAryMcz86RNhEd#EO1 zLA_mtRRUcvhuAB4uEKaWP1v{|?u6xW*BqZIy9h0+4NwX4?;W64=iN8pV%Ml@DT;+z zqGa|EaQYBfc5pOul7UgTY3cWJ(+OS^z|Xy0O@%iX^i9+YHhA{l8)9gvcYNU>A}@)^ z$`=p%{s8PZZp2|fndb(nNyk7(d00BnSB@YEiO#Qwk+H6^uoD(chPYc13&aIX93Z@(62mFDI7MZ&m(S^X+9Rt zh2h*H#*&3j)q%foYKkn6zE12;idO~ahTr^Fekj*WY>{SInOmHzgssI^IO$X;s?OBn zRH2WkaS!O5%HrG~LRds|;5vDop#XlCPj4TR;(3ol3xc-2>qQx6Y=TjBN_s2UtDh*u z>E^z>dGz8C<-H-Q(>Vbxnd47dAA*zh;^A|=1>(68ufN`fGzFHxSLPUW&!(15VCpX* zFE8k35MhQ}gD23Hbmz^YnjIh-bi`JElTZ0 zg`MT0f^AuD^Ps}B(1G2u;0}=6)`@hUcxZC(|ATVd9VfS2uW-5COt9e7F%M_ja7b(S z-)u=;x@fY+Ma3jLwx2ck9itAeRzYP4~bka|!*@dSQPHT3#lfH(fmC zhN8>{LPp!SD5AZ~9||Z9K9maTD{q>dhC3?gx!!C!{Zm=qk#))!p`taaf8iEI^^drj zM)|r_v`#PHvZU04oDkRJonVJw<{kz`ixL!-WZ`j!h;9o}rQT%O{R-8gM}dAtS23nL z96o&X7A5(IH17rBbs8Nx{@|@wLM@XmYNw~A_evj^o|Aq#8#mL{u)+c-7xpRL&QZ^EmWoXmBb*%+)_ACmWfQ7(ecv75E z6z$LHMnANEfuDV`9Df5r-LPg9s=Jdyre3+sWouoA_U-x^C-wtJIQ-vB*Ve+Yi0b zExIUwd!PIToK!MrRh06<2XD6gcXJ7k>sa5oF7^Twz;cT$!3X0KPmUgYBW=W@buBb4 zoCMqF`SE5;_HV&}9)`@KEaG4=VaQ=(B6_PD>p!CK7Dg?Wy)k+FGq);5mdOxTiUx?9 z7re<*x>aGM_}#bEW^=x`q2dd?I;AG!$lSrM5%p}}ox>I=T( z_|a_WIiAO=QvrEFWuMT?`X`u5Kl-FB|B&bXkSss>QA#u?r0*g+jtn|^7u;KxBk!kX zRYN|>*h$$?XDR6gM+hZdP3ywXk)TJia@3@2S>HRXP2FIh+s05Ns4qM;DMKL}vzLTj z98Z6EmzMlUL-aV(L^4aojWzXh?|Q7I1Jax#Sd<-WG9Q@|MLlw*mjauh9d&(@&1VSOu1fKr1ilR z4?SNA+B^h(VKjfhXf~5qIP^f;SUDS)bK(d2?q0roz&cUNP_nt4Z8%ft^MUKDE$Pps z0Q1V>x+20`^)Txq{@-#*CtXN8Q=8W&y35v&*XuzLl!KtA&$h)1+PT@Ii*6<27vR5A z*cGcunQzBmz<9zVq%emjynib-@4HFbJhADt5TOon^QHyhcrtuvn@)=_z^7{L%v#s^ z1kOkBOa|yui5tGhOsBgxGYDtZ_(&>Ua(URXLJ8t=ts;t$0kyB)^w%`OYCPcv5 z61*k-N8-R)czAMQ&MpOtU%2E2idWhe{HJ+DrK@9dX+1CfSJLlGFG>GW`nS?+#Jiq< zlo&=v(K|+QX0vQI2VcJ~8puAhki(uIxqjI5H}QU4cIo6RwAXU{kUz>mI^rSZ4np>y zezJ)8lI)$qO`U_1`2EK?tKAU5RaFCG;9C8Ge7XLi9vbSg7Y!yC~ z?ofKj$@!ed=?l^?OTQ`of%MPd z+W$=mDUpUG%^$MHtqFT(7|`;@d%6=O9)7`QXE+U9XR~#aedp-)8#pcw9{aA3=D18O zxYY4_bL?V%d0%aWz1_TY+ey`eO^}~GPYPvKs0;IX1$;4oU3=t)>z&=szE=R@nNO?o z1)08>C$|ieYQ5`4A4y?!WVtIBs_g#F{Egn(-6xiV_GGf}GzT`S^5r{;22?Z z(h+Gn8Iwi$6J`qKb49`jtAqenJjGh}?;KMv3Kf|DxEGWENDXvjt|7nrSGjskG^V^f zAIt~say#*TdF?f#^R; !AecqWWwnu>dq_2UYMO7s#;oOKS7v(^z{gR}Q$;jJQk z8MzVsi(=&`K;??#vx(HW7g5^^DE&k34bH9VbK+;WcyJCcQ||sJ!`=25^LWQEf-V(+ zR(3bfvWV!)!t6v~ZINOz&r6)}7qkoMuu@ca;k?dGX^z3Pwb3c)J(vpt(cV{)KNWSS zu;mtmJl_ER5QOpi48l>);5^AV%T-4&rUhtFZYx3!tww!)Bn@of6@kH3#3nD#g9)j`G)qI|ANY?xt z`)!-l6;94D4KsCr_X@uI1tHl3z98M=H=chQzwzt^eBXrwzoBLRofh|OJ}TWV-HUiz z{o*uUaX&?aLj-fJaG^gc`#IeM?{<86qiXR{)J zhN@cHHK^VJ6kX!2SMyR1aOzsKw!f)cFG6GgW}#m0H8{Q} zH()TOC9=AGeSSWk^+3?=fW(0ztsOu)6&X@T_`zb`$4}9Zx+YCwoYC0)$VhW3D78xY zyunZ+WQCpC<@wHGXE^ooHOz5`SsPycUg8^@b*4gT7tEAJ9;ywZrbLb9? zYmCPPDg25#7l#wp$KpA2)0+5u@Gp$#esaRvg!3D5qp{j(<4U$G$4ljFdlkKD=#b$#Z{cKS}Et0DKj_9bfRgugVEk4?G{b-qOy_ zg(7wT4+h6vMbDpPtV22xD;N<;)etl5!Pk2{xR-C@G+!of3kLJJgx|2rwJkQMXuw_A`}~-T+-dqQCC!=5|Fl5SYKR zy*VpMBA=rK))&+&DZo``p7_+|25<|3$xo6$p)zTnQWdsGRW;uwOJHsOprt%7gCUyi zh`EI1ea!>ksPR*MessXwKf9@@a_#+mJMK%*>&ja{1phJ~{yls%&d_2?uq6I+Yo`TT_zxkmP-H2fp#t5Elo${?y_rgb94?w4#v4 z{%?KhCv@fROK>j3m|KQ^uqz!0tp+nxigcwSO(iB`*n+Af;|heoVKH4t3U>h^kS*Cm5*R+JS!4t5XY(2w9}E zOJr)v@(Ds_z&C z`)DS|eGd5`T!Zt(3d9z@r@xdGi(FPWWe z^T4UK%~qs^jzJ{Dag5hsdwwOdUE;*9YdtQ@wqaWIxKPtUHeW>Z`b||LBi? z*{Qg0#rg7m8fa|3clQI+GrD31`t7HXwA8;=OV)Z3kM^)ZL?wSn zhZYEw_k$EJNFSDdMEXhTE7I4c-@axS4C*(d-5u#H#WC zulgZ+!yB$2Y4Kmn3*=f}q{C;^A{{=P25aBQ+3{c7O(s+i|J;9)3X@m&IO^w;6UdHmEM>@KgPaPe{?vXwq{nU+*V_Qk) zNley+i&ZdQAQ_&5Yjp!CLRaL zPjVSHLAQ8!UN?b%Q8&B5|LGfVuc>=gyl>}_+O)0l;Cy}PXKcy40>@x5^dtH;p!zSz z_G<@I+|4_)ahn03-GomUf3kTX=^D=+KRqUM{BYrBS>d@CA8at^JBG<$9H4SONZb@) zldZR8?_NFh?V}Eb`@Z&>Y?ki8?*@s}1Z*TNS?`*F+J96!Aq}LrLGAy6%=%4Y&|5=M z=3y&YFi#Rs)6JGvga$y;HG%yW_BK1cY`K^Z=phee-%P!fq3&-p)v)~_nTzVybz3(~ z-!{wbwjqk)_j!_aV|SaQ0@CxoZNL*(44gaVSy|W_Je9b<28yb~fJi;#vhDBe<}<^A zfq>q&v9}k9Me?rg@A-Be{_WaaozjQoaa{U7>D|y{UzDCrR^yUI+c-@{lIMU;EhCYT z3=DPPww=PGZ}zA6WtQFI;XiRt3ww!lwNQ=t0=62)n6)a4^Y1dnw0+Y6!PI#wA`nyn zd;k;ec9O|?&-U9Wjy>GWm+W%A&HIVdM6mj~-DkPWH2Q{sur3=ORZ&bJE#aYy5u#t#J}P|jN+sB>m8;aav)qN<`0;s%X|4K_HHy9zOt1=nsg z0+$d)QE3TGPIn?OmD?4QC|#K%yH9E>PGA|XJz+Stsc6RW{gN8Fea8vq1_S$Ty6;A6 z$@iU^XsYHI6SiwufwQ7L$&_EEa6>~5r8K7n@`!UZqHr~ArF@=7OY&r>>h$B>%5Wjah%a)yn zh#<0NeBg%=#AyJ-)Sz|zUHd*sYOUjQ+uMAiYa4ESaX$&^_c8bD6i14Y`k?>k(L9|> zv$NL5`OT)lO$4=TIspuCZ6-OqlT?A2TwE2GzU5PqLV_{S>Onp9tzb~Ioy(25(yEBO zey|faE;gQfyHAsN(K`3X#XReG1lE*)=~CPX;I2!!#B~XFf<}zzq%4OB*kC$HZBAMT z8(rv@JS$mmA7L5IID%y3MVA13*wF~)21rl5SD^4NPBPor<*BV0{i&RvtAdze0u!pw zmAN`dmotV6ehVn;C61dvEa~e@_UKx)p1`WE_t&=8Qwi_x7wZhC4=F9k_QF_+KER1X z?AdJYlEa?|Z6NipaBg-0l{Bc=64`NAoUNlTymcLJvW$3V5(18X) zKot7wUuC=c%d-43A;iZGd0EE%&xvncHSsQ$2%p;ZNVC<^RPIiCimdnI{+8AW<6eK$ zBb!=C7N8qCFUyZV4xdkU-ZvPO2ZM_PvPjvhe?=AkO_dQX*`4=Z_TcZ&U-n)u_zHT! zb$^V{i%9t-)+N!MDoOmK^?-&Rs6s7m4ZD!syW-nS4Y6l!b07l@7*u|qOuCb#63@=Y zm8-miKoHE!2&sboWD!zj{=|vF#e43#DCJmF8ux8llTP9~<$<2!NrqA_nI6vPi-%CK zw9R3<$GShg6FTOZX^ePm%Lw?=6%#gJ$ho*?rBQPU*fHS<$RDPNsgQxhoJin~z*4z5 z$ob0KE9MF70#C&hJz58S2r<7qjA*z{!WSU>h;NtVJc*0xe9u*(I-P-%tUb<`TPK!JD!vCSruS8d^%c>PE-8r)~ zyEIb^s|aOT4QprFlpoHP?0V#zs_YQrpl_~Mjy7(aS+q=t1i$82efSHu2bEJt_Yj%PyIt26s34|l$hB9{x_A*ce=wnbSXSfN z50S{j+sLc|V(&`%ILh<7twWE07tf@YQ*eT`J8}BK)N?q^N)XjR_h_TXE^PcGsh|y;t6Xd z!=MkTvz-SpH83dRJAGuy%EmIxXul)fBi%1OEIlf{T{;hz=X;CuP{J*`;M=p$oGiwl zfB`kq^J*bz6bJm{af5Hu6%G0)P0>Grhp%u{HH^l5GTkHUW8w^&>|YPIgPmXyY?rs; zpXk9vnp0Ur*YF}ha8l^>34dq}TGv96_C@dJt z`S=p#j(9+6tQq;3WSrBNPVlG6+g&^HpEMpTQLtIw&8(Z zV+UoteqG$vSsG4#=5;aJ&6h4N-!#uF94Byz`~2MpHF*C&X1F>`F(v^A4aywjVZ~gNZI>c?tw3fs}O^ou~M@uQ24Nj{-XR|RSbILIngpkF2BLlZD&VX$mcreVf zclS7+weK9tGc=)An6tdIQ*Ng$x6kvil<_PlI{XT^lh;I)eTv`P;fs_|c;=xxI&a~TS-g>6364{}e zHleUe|M*=Lx`8=ao=}-y*e~RFnC4!s5~`CpV}l6MtC*?Bl@Z5_yG4Qa3pNMW!#OT5 zI^T9VxCp|>r+cQWtE=bN0}Q@I10+CVAOaAYBuMS>&l!mn$>9f- zh7v`IkVH^y?j9Wz)XI`ES}yIwvs`^JG$mOOy;=*{Bd?Z_kL;t7btEsi(y>f8#AGtjHHHB3`_B@!oy9_a3Y2PFH+1t$KC$kE)h4fAW@&GdZ!) zoow3en@_h@)w;>HqOf_i8H9#o*6)>rXeF*1VNgHPEcUH1Zen9ZUuS0wG8qRDyK+g6 zge}0ymSy~Mn|nmV2(7jbwW`o=Nw;=fxJjtW@me?0UPRm7HXa(Pf`%KkF|obI+QNj~ z;WJ7{o>-`{%;}jv?~)auZ5cF$Q_L<_)w}DQo>*TUq}q6b1nq+uJ)dEH%kuYh(?Rz| z)g$np?KE`b`Ur&vP=EJ(wE07mjr+Zcsh_@9xwhlGo^CKQw=1qUN+z$!l^=d@l;|_R zdVkBC@V*AW8m0Y|bQkk?zERrIUaDnP(D2(Es7RPhr9P{SYlglV-dK&I*T4cL_Iy?` zm&z7&zo@8Ru_uXh_-!KI^MJhtmYvJusdy+m@Y((P&&PQ>r4IMh|LXPoP=lFB*hI1+ zdfqk~Ts5JS9bvh2P$#EPZyt``OIg&l>H-1pZe6Nq9>ksg6ZZW-x%&Q2hxPpg4tyQbPQNuieL({ zpAUU=nPinso@2l!|q?@tPF*U=3zlNb%x}(Unp~LdDYDe4= zAi|Vd)5-AF|EcIONx^?RigWq$hG|)*WfDi%9aLI$RiV13SQcAv=JLJFlb6qtmr>h; z*Cdmf(sMv@v+&jsD~+C}i?HBLg4VAbK_#O+JIT#L`JKyl;Mq=y=4-mmkVZns_Aqmb z%6-k)hst-E#eO`l7oK%|+mtnyx?47Fc4I@tK=Z*Wl)9dPE7MB!ACcBshTHo}o(3@9 z&>F{hx{NS7gK-*fMt{8b$$41EjIC6$EVg)ccK_q*>#n+etI&Ext%hL$#Z@Vv!4X*T z-v(>`hglnOw}~u*d;B$MssYxJCnna5ls?d&py{W_dZ=Zz))Dk_&_n<6W%>J9nTCLc zYwWsUb^VeKN}lXE&FT7LZ?QhpbSgyGbz+!_`z|*&&pID>Ks3+AWC^N*t+l4IKi+aI z=UziYKpMAmw!b_vvD`n~@jOkd+IFK}Z`eN(O->wcLziz$gzY;_ur@|(uMQnZq^lUp^j!N)n-Z#9v@vz~j>AV^ z8$v5eLwhSt=`^!1?Dw8&rZrB9Oh2wr98rD4FoDfXs}ynTLah`q1cSY41VtHSysamc zCb|tP8@QCSOZjF(iArr(mR*~w<%@mlw$6WR5S183QQ76|c9$hC*xXR!$uj68@4O!O zdG~^;aG>$K>8rw~c(w~wZS*43TDU0^B0ZHjkPAYgflCfS9g6;fd&RWyJ6Zw8trZuVHVnt&2ZXbYc=p z&#`}Ssw;N_^T}E2Ajr<*du_eb(d{2sWryBO6gq=3O^7h1DKju}O=ADb>1o1h==i=g zbqDDfy5s?Fai;oi@;>{44}9S3V@Q0Ba+cDw%4_x_b+9rR93Mlj;noSMyHjP`3T6IW zcS`q5Zrq@2$u3vt^D&V$GHh!%foPs4uN9)!E@Z*X5p_Sgh97&z7*!!zc##oo{-wo~lKUUj9hcM>>mA_F6(Vag8XzgT>N!ae!Kxr|lTJjamR62&YI^PFY@nJ{jplt{ zPUfeQ&@t$H^R+V4gzLH`ko%~G>*%qGmWwHwQPl6EZ)HdCGxvZd>Be0i<){PIVjY70 z0lhV0Wx^irUj||=$973ZDj`7NjN;p&WuLnlvr>9%*zO%@aZ`txUL&>vwIO6FaMMLg zEh_L%q}cn>hpA?IetqUW54oMlvfey9;JiI%R1^}-M=CYdVAgXBtnfNpv&I}(CP&9F zVDkIDxQjRsNc%d}OuvXpkh_hic#`BWd@3@H9m9EggJ-5reD>j8xw3Qhs;pa}Mc76V z<@S^m-seb|;T^rii#PVmFY(C19PzIKAwW)KYR3(C`&m`tco=wieAht`_~oltL1U6_ zVw*_h5~-GfT~3TFkpe#3OP$CY37AIwEi}xYCv$HER#onsU_J|Pi7RMPw0vW}T#BrUQ zDT@A((>^*ejjpe^1jGj%q6-2g_9kut-r$yuH;cN!p_8LFy;$J&ZfsoPm5ORJSb@{r zobg<~$?%t90r`v7a&w>i2GnX*T9-~po6=e7c4k?9z4UKVq(%(S*>3e*#MZe-I2%*5X46ni1726!oJpJ_3TkO9_I-TR~_VHau<_GeO4NDEN zC5G3gLG@?2)j)f$6CMwvDEcHv8b%mm_McSFb6l0?q4uwn-omZ*%yYhpt1XwI|Mv&W zED5=WK1=JUY2$qaD4dqLZ&#OPhi?+@bYIdcB2agj6FJJa0fw3Xw`5(b&8dVCS#Krk zs{BS+m^m?~+l?JhBfn1#*&?!Hs!##TR;ocVi!zL;(>1j-qr=Her&mu@>ct2a5L7g$ zTHEHn6dq($c8CPQsnr9p?L-QK1=CF^AmaI#c8 zw7S@kJH8WPlfa=PHx^e9)!JH?AVS-zAFk7+TgL}N79mpaCKPTKF+jrh3h#HM!_YtP zKs#YM>m~sqBuilhA$n&C(rmR^_o`tDTP8W_XHHSGnad?(56>tH< z3{VJ#RXe=8I7#C}b)bs`Kps3^>n4w5qKl0G1PT>6ysi_$-l{;BlO zq<`UHS_~?E)U0mNd z>dU%D6dlxQg{p`!A5pbV^l9iKc?CN;SA`g5qk~@SLF#>UvaBp$JMV zj*KZfpc@+sCUc*heny0)^O|YtezhL`l5Z}IWpqUL;q+x*dEs>9@=`tV5)W+8*}A)*g*1z4vm zz*0o!MW!kk2Sru1Xi){<1ANrv@I)?y4}-pwGK5j|%|=6729AYMNXw)JGd_-Ov_EPO zsHS`~0!f?dCyLX#%G9LiSE@%+2gBShDprP5!A}0A?oCWh7`Aihh>)xJPE~433oI8( zs<*m>{$6kAqm5}5Iwn`(ZW(i(e|OVOpSbC!vGhD(J5Ex!11svRnk1ZVO$Whr3*^nk z3l}biy9xYZEt!Zby4jhv-r%>UL-@s1806SAIbj=R&7{-R31qK1c`9+P zlCP^lPyua7)pU5ut>Dfi47mx-Fe~n_Q_B6zJvv#bn6~9%Xq@cR$gSG?lB-Ts91Y!c zJz^-TVd>VVJH*r-(>5*Ja$()(!^|@&>n03SyVALKM+gJe)D0a03N%9=$eQBOSl1Oj zk4^eZwx2u@v#r=k7S=H_X>x5vTouzO6WV+DtrpjqnXP{@g5|`<(_9x(A`Ca;XPWYT zK6njgyDY=2WM0EpI-Sn8s<3&J!XQ&_Rv1#+io!6?;8R`U9?Hc5jgW;;G1PH|)$d`L zRo^$XYGO&m3%ZMVUhW~4ndsnKp;|CSv(JWRf49$FZ&%InUSp`1-`~ZBj;5HF>sn?+ zwHH_xm4Xpb)Gk;NZ9G3xbL0!~LslpTercFqK5{|#Xi_iqXtR;?WCf$CbKb0QpKFra zRMGZ?J3K&l4sZx{2Z7N0Hwt|{g@4NXvlFs3bjeO~ENCpNSs<*B6ga?Gqi*Zm=+Eir z*6+Dz9i8V!O8$d;-hIzd+0%QLeTL{Pl&QPB^hfT2V(uAJ{8_vYZ{T}C-y;iTL9)43 z1)&JnI$b@9bskpHTTNjJ=7I{kKIm$#7rnOYdv4czq`o*Yu~=^=?WsF&Uk$?5+wYue z*CwBssI{XbM~_rH^~pyjaPQUcq*iTk#~p*3opwCFZzp6O>VO!NBn`6sR4LbhRzZ1X zvG&;E5VRw!I*X-=6RkC*8trhy!eO4s=8~cYaU2lZk(Ey>a)-X#a0xfnr>k=dLT#4#x;3XghV{fI^CwAiOG7?qU}hXv z5m;no!h>iG~OhbSZAZWV@TmEw^K?hwa_uL;500bcK&*+t(uILp6 zbE_1mvx;n^NU~++r;F3KQx=~5I{ra7I>68uP1BE>r<#$Uoq%TK`V(stK5n=26H3|| zZL;kKmX=hU-H&*?Wejp2&z2zK#!x(47pUdXcsdu+aXEbLnc8$RQBRbL>sA`2K()D@ z{^a81-R`72D8&*x%znCvV?7%_FqG7x*JUfp)2YMr|CREr%*z4Yddq&|^M*Vg!} z=fxwfQ}ZP%fQJ5EjEGV_mtgiyS?>{V*p-JUr{R}b;Sc7Kg-?o?ejdyGLSaPQ!WR{G z3tVHGAYW#g9dlQWMj>lP@z&1|Rqe6D7rdOj>sns7A1y3>Sumtg(4vzz^If_Rb2JVx z3{Q)(yE60y4i#~RfW&1sRy+MjT3wldHB=n&~t{Zmn z!S{o@6nIo~H$iLHtV5Bd+uA$Oie-5=A(5xpha%IkwZl%uwN#l}zDJ>VyIxg+r}c+H zm-pMILf!|OzZQg!X<4v>_)igNVWwj^)%s}-w7uw%trAUTpxl6A|{Y1Foi=#Zts z?TTHkR0Gid@2OW5YST(R*5NDVVWOCAA65;Is4AgmSaAr|^r(ahicx+?rQ-}~mc=jj zbAV*@K3MA>>-1rSW8@w4Lq`9u%=p~R*4_D?f1g;sX^F155O_qELF=s;(Hk5Lee>_M zgCGrpe+&l#0?y=j-=|?H+ho>>JZ zY55`k@m@}##VcrEwM^eiBBP=j$OA9PDz~Gnn4hO&dS*qdL>T-ai&6Y6ua&4O+KAx# zqk;k3lNiXUX}}ZHH{+_|dD-GyCMwJ{=A@5Ff6!4LR)%gS9GDLxv;8iC#xyG(mX@Kt zS4(jpc|!SeuBS7Ib($#$X}_h@_&Cq(aSt`KEx_^HYDNX%n-gWn* z42Dj5>pc`6GUR)hC2=-U;Gy^M3QcTn5&zqnUMM|JT1;Y;<1EE_9#WZ~XMVxB$9O+X zrobi+LJS4N9F5itoUvbo89QR;@xn*o3Py`u!7undHZg~}ek#2P>((jenc3~Pa@!v3 z4B5;Icb@^p7L7B)clbQpbjF?KZ-1LvPnqHZWW1oLr9I1-p^RW=P?)J(#nuieCxzr) z7DmR*-T5kdc&;!r-&5SExsw40mcky%5{9K0K}g%eVZDjd z7QpygWpXsvM7dC0CPO^tnXn z=(nFO?Vmw4Px5u(@5;XQ$3S=DKWzo7SqbD-k?Qtop0hJs^BiI5w^FpsqWD{L=pmqU zZ8@&uPIfxQEH}N?P5Cr#?%;$8qEKGUqGZ-`5QDE9)daX3*j3+fbko!w!>_{S_}dz$ z1!|(5D_*6#MjD2JsmS;FMfvuRY#=7Cp~}fB)eNb$h6|)0!x?Q9f_DJ3ImWR!u|^10 z5m#NP1hZ1Fut@jQq`S;Ea{FtWP;ri^q@%wq8v-mz59?QH9x}y1esERs`#j50UL84f z56TCA+qI^wu;#^~WreX<3x_U$o9AK5>U%TH<_F~yyImPqXntAJi3dC%>C5R2I=Za$ z_@B;tnk_SLtV^si-ylQNp^x*`*bVlI72CKOWzEfoeSuiG5G&`(!M%_~`VgCQIDx`_ zC1!gB{a3e(T;>ZySurd_!CLlT(LS<`m@)8%52>aK{}>xCyuux2L~h*jGJ8sCuDh}R z@k3j3Pp2K&WDZqS#?a>9|`JA&@`>bC!Rn70M_551x-FZ{*c^@=xkxvk&uGTVBe zecl^u`vtzD7uzzRdl~8tc7pqdevHKp^@oP^ap9@A7s;<~|A1y3t>Vfn+E1PtVIRD0 z;}!2S<+hqUr8^H`Ifsxd5JmbyT$$ zxv@fts_InrOj{3OF=5_dfBGt$qKGx6Tbf%7(~7M*x)s2ej%UfBloa#MwDc3w&tmV| zw?eOO|I)Kb?+Yf`g9Wc_e|v!Q`$Nti{Q0R@w(~tHCO~NjC#)eYNYW^R&7d4R+ACia z=BE!>6-*+rVPPVP%GOSX1opX#br!xFJ{0kj9E%&#cBH-Eay^^a@VkF+yiM%cafC!U zU|GIEFotZN4AXen=D8=CW!vX(4v|zcetP@!qwuE(eq^u20N-*#u5KxMyc|hB-q7js zb7dtVdS&eC8{tMz$q*?A}bc)@or;39SCkn2LyGpxLc{mScI z95!gbPzF564q49R!@#pPt|r^-9R|I?VqH$c;7<4^I_o@q%evd?>f-8{fWhTI5FLvc zFw&#m!>Ud?M5SvAlyX!viKWPTw`Lm^YJ{5k^OQ~=o@kny;%Ry*sj$l}NiC@-osw>sUXQle9J6Lj zX4>9fuC9C$&GtC>NxxfC9fuM)Fua;`+eMDrNA72Kh0L6w{wp<4po>iLjv1!!o4`r6rrBC)Jqc=Y;e?9)pSiiF_Y7 zGg9Q%if-8|Q?^`m%WPx07K;dvosu&xr=wj&#&V;<`NFdCIAajACp4J(<~*t6uMsTM zHq4=V{bymO5m18l0J(sLZ!u0pY=4f|Rk|wby39QOhTFEK^JZhCfm@7+vuBoCGb);H zr5yZ9)c;&mLdlv+zFKM|UTc1|_-|`6w1*-~MIQ7cWjdiZB2H!=6-!qW?yT0!2ri+z zER!;w+j*YC^TIJn1nDjoWSV*JB1;*Ev1%`Uw@m5_qJFj9U{~PKRbU3W1y_u=%&pC*9x;sGFO3bt9NMBQgbH>i)xoeb^tsUxH}V)Db2%- zaE2i`{Ub>_0~OmdqE;FeO_#R~!s<%>vK@HZESkEik>u0t9 zdBdR8b?HxvAZ<-lTKOiGJx{Gr+oqL@tn1WODID9j5?8S@)mX7tfC(#9Gq+d;e?_0y z_E1y((NN2vufTUPA2W*;vLzoqHrmYTJ5IYXjN86Gg}NuG zuQAaZ?(FT04?R?0dFY{V<+V+`>dl;c-70+bQpA1r2hQm2cz-PL&LvBw^2+;!XH z|9jNX8RzA$RUhaiUylJm0P0mSYz~hI73)O=`zDDP1jeyPZh^8 zP^ufm_&r(P(sU9L@-?c_(~3=%O(QXlm^4xB8;%2yrN-|OctqE>Wch0{kv9=5b`yTB zXYs%M{YMW-0V?$}OW1xeS`@0&Z+IuZLFvJ$ie>p5C%kXS2E~~7mjq6dDa{~O4$CE< z@@QK=EBEpg1MHx$iKxT!p~W&)VjAg;MSDG##P2!jHsHI`T}Jvi*)C0pANcdSC30v?t0J@ zFhDHh@L$Qy2K;o+gWp)JEozIGIB(U{a`R3ZbJAeM8uAm((N}X0{{lRG@8Ts@aJDYr z*^~)JegRi=Kdr++qoA&YJ~H@4=xINv%4_iaSD@@QStVUrzNl!whWNa{#$4fYJIY~( zMJ`3DC}OZKQ13G*(810}RCx)?dd)A%>dy@qO{#BGFn0T&Xv)Rn4Ov_PqpvlNLUq?m zkme8Y_dEdwF9FTo?$>#;{3iB7N*_l!j-j`f*K}2>$@~gH!)akmKFcM66H<(Rc->W$ zVd$Wap=bl1zYw>e(!!hlvP@M&x1#h`Sg>MdjIG)XnO&KkJ*PxL7|w~iH&-!&Zn7gA zM#ZZ-p667(iebnXW>?tb7YwV~uBiEK?ph=jxkZrHIfjpk_=peVo_Kq;w@G+BWQnl3 zV{0sH1gk}N*t32UeIz>FxvU~5`DQqrwpi7B-CQ-#cDz6o!;;>BmH4e`Wa$XwLa1U? z@2lzx-Qod&ch0hqvrpQNuCWS7uT!deGuWVtUhUq*zMT~zbGtYYYPxNvq-NT>c9BPY zwbNO~mfF1vVULA|HB~pXiD?WDPS1(0H2$zu?Aal{QB~mFh@GNkhC!igxLt%fcXKy_ zIh^y#=se$pF{oA)^=ZZWHQe&|N#O8C`+~#v>jOK&Hkte$492HbrJ_DfZ(;XSKjO`G zQS9u8JYF)NAJKMz(SRqUbE6rn_c5b(vnI(Xn~1=?%ciO6mI)n# zSh}3Gr6jQVr2oYHH`Ypi8ydYQsA><%F2o*aF}oZqK5lS4Hbqn$lcpmuEfK z3l}H8G`PZ>WzECbbx&b7oq{f#MfR=bNI;B?JmzMXyH`fMAn#H^3xCU{Xp&Ldh`toq zpR@zrn0j=|&~aZ5X}QQLer&S(Ev(JAs*@`?_x+Koc%Gt`ah4wm2P zldfv5vY&KEgc5dmuBXB+oc&<7;5MJR8T7(fQJf8ihKRLfRl5XLWOF&whM!TiY>@&t z$&`{k25T1WZ%|GfcG7qNI=gAAsu&X(1Cjp**O}!X{T~0w-&cCs#;6>7N(_+PR*pWd z0mvfI4BNYQt<~}KP3FmzP4o@Q_nnQG{sR-kPSQBnNF1C|9>Mp`&ZhrUv4;##%1`Yz z!<6)Olt)}j-Zd(ZST-R+C87+zTp@I<4g%7{U2`jeg_pc}qY~);1x;36+!(jpR95sK zKcM_6?+M2&&s!cZHtbuB@mpe^#93arTa*KPIycRlDRBJt!12_az3FO=ar|^CO6t(9 zTT_wk63>pNwr)Knm2K3HG|Rk1hw|U;-|Wv8$mdV*)!t8XOUMTf*v>WPA$HqHJD2Tk zgO}OF_HmqN7$)P5Htv=P$2wq}mg_UmP~h&vnI&sWOdvDJbAq5VPM7C(N>*QP_pLRk zrc;cXad2EUWMk%Fb-c{#$4Yr`6C>uFHHPZ3=1>jYNS;1mm2-K^ef%+7#qBI||3)e_ z*mFA|pUs{wHD>y3 z&VvK#L{DMdqw2Y$t_M+pz5-RMc;T$WDmX$v%GHg7OV#~|-b04&N%3AHb6ulnK>w`R6sXM-szfCMlCd5{$3hKTrE1Hb8go7-@8USwFm^8)01AhhEc3WQHj@V>8Yu0x?PhQr0*SV{>Bjx>gg7LF1Yz)Kv?00f@rfch2O1yGhph%V1 zDe-2TcwW{=Z6lsZFj!*Cus005W0z}}ROc%~0NW8lW<|EaQ1iD5tj{CE;(hf8-$zJt zII}ZJ(C)Z$I?$6%8DXYbvZeim08!l88Z}>gQ)Mny-sH6A>ZVnno1HL>>9H;P4wKeq z-QG=>lFrRlOtU@*zkuWHyT%WxG4fzowx(#WSjnaaL_ERp!&g`y6hrO3%vlq}fr`=q zg>!>GvWGNKMr6S)`;Mt}xLP88n5dqpR~ILd@k8Ygidw0TgL%Uo6jpGQv-9!2|F)uX z53|SQT|dw5fV!}m?PV_$itNVdVr!ePF84Hl@xGYJAJli=&%Cy7NZWa}WYYDNqyOer z5>or>ROem=nN_S?4XFXEhLPSX4_O-rXi$R_xQ4mw3ODjyfrZM`YH8u}eIxN@%bBP< zwj3no4p{CAKWBJ#H-P`#x|h$P%Vd(-Kn{Vvk9!yE#q0C~)5U-g7!<+tYG9~Z6zQrF zEF6g1mSSs0#W8?yv8H%d#c?W@r`&UZN-Qd}<(Z~ujp*_wLn0cm?6k}_#@BsgmxV*< zXS))|r@dXV9v8(5@sZJ`W3j5VvM7^0P`rHD$&AsX!}Jft&V2zPLU4;*0C(s3a(wJA zN;jijVa(W#anqewv$vXRdUuZFC&ax2&41ZA^tV+mT^2pp)ZAv`+aS9y?l~Qbada`v zs)bN>1{+e^o|9v-j;}(SoxGmJ>+S1c8tt{1e_Y{S9Stq_-`rD1ZVWxf+(Cx)O;ZYC z?Xk|{d`ls5S(F@*yC@IUK<7}3ovao1twPqhI-HqXqeCa6ieU%w$vChLg}$)6URmc7 z`vAW_GI}aP#))>>8CO~1=S7Y%#3N~t<>*^yK$R%5`7!J9)^$rtH}W4k#Uaa!#6+Uba&CYBV`Uk%Q6#Y*h*+0*IPS0 zeEkA<@Zp#aPvNJgDkk3i<%(w9d#|e+zf7oAaaB7^&!(ZRx)qC(pX5M>UqHlGo0L)P zE#sP&`>=!(p$w7<4^fLZ&x`s4Lx-|H%r`rMae=L49N@Ssr6eP!O3y1HzaWU04qvEaI&ro)61`A>jK!j}r-WL*_3i z{XN@5IaQ8*?Q?|TZok)s)kC(Cf?Zs=6XshiO``K>#a;>xv7bjFO!*YFAInzdsyYQK z3WmVYStr zjb&o%KS{*&QRH8~q;OqA?eS=rUIuj54yFU#0yNdf_>58bpmOYxIgqP2p&w=e`<7`; zI!x6=S=xr+6Z`qd&eAoP8I#3>>)ZUb4_~KtpU=nqcUaOhTYnSb72e@>W!{!p$wgkn zMXpRKUn=En&M;9`mDhS$7q8(S(&+qAP~Tzjo_Ya7#O0KjCLYP@ON^*~cRex^6i19w zF&F$)iIV41w@M;6Epkg|{(VQ7e_vgik&a0lBKKBCQ*SIw<5nut(Ibs5BoYBunY&`Y z*N4BW5!+#phM3sd*t(+Inigx>&wA!cxbskI%6KF?3}xv~b9)us#@KWs-9FPjntcd=WH+4=EVw=SAz0XJ{9Y z__r$By9HliEGGUX?iz7P*D$#{3{%Iq9LMsVzhlg{Ou^tMbeO*3hOim^;3erLHWw|x zTy&F&FlQ96i8hqTrm>SWX-G^*XG4?onu<(tC9%;j1n`tRNHJH<`rsO;LsP94J=7Of*{G=PpcBr!)o^7__NoDgC;TCZjRaZbRy38T)C{va+0tJ>I7|3@Tg|USj33EobPj;yFt6pjoQtw zHwAz7;D)q)=i$zQ>}r|62d_W#L&;ZfIST3l7H#ABZ!bQBQC-`Fd z#uj6eRL%>D{`RB3GCZdOss$T~kMa-?7kQjm$?pY&0eqfEO%;A^OVT9hCvTQMB7F)o z(~Y{56iy^*?l#gHR?O#ELd0dlI|RqD(vcPpOW8sDUyCDMLC0|!%r(QmV#&{VzISA1 z$&&IctgSHRAl3rrYMX}!lh^b7a$CG;BPZF}-Nb;>5dN_O4Pvu# z)TRb)qvLOEsp!uiBkm+oRCp^j6`~o6YQhpd(zUl0*dfB7Q+kQF<6uN-=w^O@9kEDB z{E$cNpG`cZ5)T)6%DGJ5u(GD5L%VV1TO&zI)U208LIJ_`kC^x|3Qp%e=6U?;B62~z zF!2y)&chf$Eys`Z7{>mFbUV`l_v(*b^e{tgGY0wFS!?4Ongth3VYaw6eZ3>TUPmaj zk#DyWe+!Ab%TKmBZJ&~{t%HD};d;d2pB}&aw=!mq!n9Gc{!NTGAi7SduFFQD@J0s0 z+}j^hbcNE{yJistRB4=Ti_eC*4^xG#Ru5NI*;M`clv1iG{=Bbfa8^BB*5J*uLrIo`r2Iv&sWGf z)#knB0xh@#y!s9;cm{X>L_y97X6aw2I{Ostda+PFqmp8JmFEZeyjXVlFN}$|xHPjq_p>Z2W2F>nk-g6c9q2ac ze(4eP`$J3AoN&xWAT|-in5+&s63z8e_1y}u5s6NA+T3PB5jc`fO}{Q=8Z z;NnJp4(R>)$zv^;d2FJ}o~@V_7i4D#B&Zp7LtEB5u;%vwaX^m0{7?stP*r4j2oaTa zRc-a&0jf47RK9|6)Y0KcQJ~GkRtMBl_(!~GKB<_Kmg_ppib3gws!o8ETyfh~G-*(V zwnZ77m*T3l-c9a=JD?j|m{dm9P^8L;vW?}HbQhnk(H@X~Li%($uL@4oo7^9hp^E=Q zSf+2vB1yCk1+?%BbeToi1{N*a;V$zmy&PxmHm`IX%m<2wLtufiqw{ik`$?s_RBs-g z^gUH};8C4c7pjU*tk5By{_1uKqhOg**V}CBK%`!3PH~@IYHGG3Yym8!!I5_ zjL7pVD%}7!z4X_hGQB36Jv5h4f4YjO8SRG@mi7!3C1p#sEcH*Sb5%K<>CUI}+ffI5 zJ6&WkRXIH!X6@XMqCr$3husiqzr@w~NB5_YSYk;tj?!|zvIS`ovyU9S?XW|pF?@@9 za<9Ws72zwGs#;TIzlNPbOBe30DNiVtZfb;Bs{C$QJ5YnysP>3PRn3I|G?i-G8i+2L zoBe+9|Nh`VlVebqTiNWxGCANd>htJc78th5Avj!&GsQq9jV;#^f|*T(&^leHPO=G0 zsh#=F#Y(g?OO-&DeH)fJDs}DZWUEn~_B9ow*c3NNk4#S-u2<(1y9#=?d-&YRO8YLd zG`(^At!tHrw*?~3kDV}y?4Ua}ITua^W&{)m3eo4n+Cn`!w7OWgjCrqCsh$0y`;O+h zR6uX@*}Ofho$0M~Bv`)TaM2dH%g!C>=ay3=4uRtjLdH zKEbn!QXq0X0X<m!|&J|Nn@}sLJM&ej)%`MF&i5ELx|e3*cpFJ*=tuA z2~sZC|5Ex};HfmwHP+$qJ%9E=!}E*}8lS#RHO-$jP4zY<%xwVI;CWec;TPSQ2U&4c zhkyN^j~K=Wb>G)_&V2lCSm0(q#@x&BvK3~R!dz8STl3^TEGU>GC$7JzT35K zEQ7nvh78N4u!(B`)p8eJqg${T`TE(6|ksMbn+fV&{;Ok+Tn zRAq%lZm(#{28a*O2&{@jDwb25~ zc|+80tspe(is0!Fz6UbtDD!~BiIBQ7VlRX4E0Tu{*3l`eD?YGapx&!tUjS(hkF%}B zsJ?vS#7cwIjvPN(165@%Iu=e)T4|ycq&eACWLs&vptDYd)SEMj)i`^0ZBm|IKYO;{ zgjsWEs^4)d^Zk?SUC#=MPUk!&n1tsmQ`Dx)6qI07wOIkZG&okBHETxI370l+J-y)i zi>K!>sJ||9X7jaI2(n-b`t)JxDD>-7&?SNw2jm$6W`_3=>`TmTbZx)nMg4FTz&b1NJn4Us%yLTg#WP80`QMvK~Kji={Dkd5( zUE+zB*LQ+UzDXk?GLwJ#JvhUEGomP=HTSf0uCmA5qIeE0E^pQ zY1^Jv@;rdELMKC+VZqE9N{KW9ce~ONX-zsQodLOchqMKf;|(m^%$uaQO7D~|N*|Oy zCVdiQ$1g~qlfEGRvh<|%G|CVioyU73<<7|8Niyi9Oi;AB&{*s0Q0+EmoIZ`HjeWJ> ziq-OGuisL4-LIyD(*#bNBwa5_8IU9J?nRQqvJ{g6z;9Fd>%s3*alT)NUQrdQ8Lc3g z3xZY{&asmT!_cTQry7=`{6I2PPfs(KWXm;Rjn zn($x$jiN%4|CYV$%j^|%VZc6n`4vTE`an=qJxSW36XNr^&7{Y#V+`%9_auNo_P3ORxG{)F_4Ilfhq zi5=mEu;&gRW0uHp=*YH^#CePDMU6T3*{0H-#~$~TD({rspX0*s0F!Lr4l(tN?b!_k zLo~)68u0DNlg#mK=&xbRg?0VKV)@n{ek>}L6(aZ|yD?f=`KhRQsC^Z~*{>S5ElEWj z4Dz}uJudxMySXh~wNvi6&0MZP2C-1`p(8E}vhyBx{&B}XgZs*lu=XE1ws`5KBOTcR zD_DPa+I8gWglSGxWygKX-aH*;JXD|k?cG3)A_sEO2s_nk&f6i)b}qy-~V}>d;bgf^>nED&%S#7eS4@qK@7bbeg2E3MjY+`5zOYlG^YOpTmFkn z9OgoK2@mRp3!ixvg^rVVOe^TdsBZH1PGdUZ$?-wRb1Rv+}tT#2zNT|-0JjrE`Ba% zo{=+r_g=s!-jShGaD2DIClYOKn4|L+>E2y-#a3o^W}yJ+aK!^;WMTb7$few6lH)H8 zT@-4@1s?Np)<}F}IrRz0B0=&S9F0!RQ?FSM79$`a|aZY8ykne@tI^V}U}s(Ghxc1=f2M z?aUF({yL($gNT%I<5lMY36F>8CsJ#6Dm;Dn>3C|^jB1)cb9iaKO6r#{KT%(*_~9LQ zt&rur?udN5y>xim(I>l-RNzV-ft4C&0=KEE__p zpS9vlw}uu;b1BjVsdS#zPi^O}acbr=SGQdP3Ih+P*%C83L+~-IHe=S6t5>fI|Kvt{ z#KR7XsmVd&5yU>Y%p8jh`x!LeKLe7KEk>SUzOv<RAvYc-*OffK-;QVx;T3qh5 z+wkv^y{PQ8JDv94RAhbz+|L+MhIzln7_e46f`B?Se*2lhpE(z2-Wo8Fu7bqMd^Y}F z=Fr4EH$q={X2XIc@uJ8}b`W+J=8)sM-9ewD4d|Kp*-8Aih;+;Gaaml?5=h&7rMHwl z(1)N}bKVT$o#sQcC4gN!!y6_;fbgK z5*EVjGFArb#e?1wf5XEnve38A1`C7B(RbnYalsAT0TDR?rE4q`bdPy|3shh(BT%Ve zpCkDPSyIw0i@Qh45{5|=jJPxG3pO6HKHn0K_Nw~lA|CcH)Xe!_y~aq+G=aoB4peg4 z*<^97#CO7M*2w)cfM%0r>^g%{m+d^Eec9u0D4$cQuP2!!8~-fN6G`S4F39{=MtA9O zNpv}4=asa|GsBY^)y<(90K46AMYmYrgkqpM5cgEf13!ZMU>UU@!~9zvU>bq0=sN2O zW}?C!Qtr70y=@U5)4IIdogu=9)FW}4&lYE}3*%-f^ZJ6{o+Kwo;2cr3KqfLZCrk>T zfuZ{KNa1nxt~7v5Vn&pJe=63J8n>S zJKRA)xSirpdHEs?4aE- z)P*HQhtD)ikdF7@kA0%L!e&@RvhJ~f7}T-gS-1tWZj8$nv8%oUQsEju$CZHkJlkXA zHxTJAf9&5z(Z(Z>Y#l$|iJ~?;*@2Vo?Py~=iaKG`IUYvQ7JO`Vwm=PQWd#;K1gsSP z#?npp&`xxGdkYHMfO4;}^NsB`6pQa_hZ|8ChL1#&6z6tD%n@(1m2V0f+BD0Xy8_xf zTD$L)eyFrdCPj=Ttv<3!M|R;kW=2PLF;+1}gefE#2&wl4+qjA%{(5l=2mF1XF&RUU zke_%11Cn@IEoi)0ysy^>jb-cN_SP2Ep>r|Xx(qtXg=lMonQJ$ITiaX5!!0;{5zWKx zXbWnK72b$8;37I6ZEauKXcN7&bpd{M8Onk}wyy9?D73Tj2o%hI!~Vn5P8)c|?agqu zf%i5T8;5dwFzleA-6E7AEICY!a!W5OL?QtViw7vOqzzG@^cNdzvn(B;vO^vDQ#ub^$P1C|U zka>8#_*FpV#5Uu&V(EcpqU*D)IF{}!m|(#%izX2{;xpU+9n2<><5M#v$}?oNHaFTb zKPd>~AD^cNy(G(*_{YCENc)s)2Osare~lllgEo`!i}+t)?#Go2#xx8zWnP7%O*-o= zf!Q4Mj>yMH?|zucl=fzK*0)u~qZ;u7*QriL6ehhz!*K$~G5=6i>QiKHvK5=YLr@|r zLCrG#$=1|cpt!& zb!o9USQT14CQlsnSg6@txAR|HM#a}P!>GB5@7PXjtJP{dNf6AP4y)Dh^sVqQnd*Mk zCRM6B-ci4DwrW&lUpFixs2}e4`|n(f)w$;M)^u|YJ~}gNp###%astbB3OV>9{GT!e z^vvq8wkh}eb0WE3YwTUtXcN?^SV7I#ZDUJk*QR6nb#`qV%erk<1FPxQr-GaC@sS(S zknS=8n)ZmN3o2`Aue-^uATjd^XbmYS^_j`$wBt8wvrX6c%h|~0c21nwR1!a~SNoL- zw~$Xf_gRVYxvG|b8@C$=VXjkK<4VP zpD3FrPW&VzsE{Q(aKDY{H2f{QfVzih`2>5zhYGn-y!?-`+&7gr$g>w_witL<1$1p5 zGdi}0*ULwDezdAz9Pc1|ZK$p%3LNuHP8h`jYp`O~RK;>EMMZ?1+4WgvVwI$-+g@+t3_jJHCXHjK*5>3$ZZ57ar1HdJ=0#Pw z(noZDsVUDUc-M<**sRkkbug;Np&!GWmOQt9^NB+xY;^34m>-Pc6GdF%nkHZ`?2jb{^!_4aHH&*HgibuPxU z+HA)*@B{}KexeL>#Mqh_KG|sLyjyys^fu{&^ik=n(w~kXdhfk|!Y-!B_??xphR30E zmy9<~vUEbizX}twakDZ9HDr#nV-9jEb}9Baz%qCPQ`~4bbof#p$9&Mke@`tLQxF2L z32PvWn6iZt@fZ+K^<8JaC9`Wot~k5TEPCyEZtWf3C7Kf%+{ERt4rS33Ce}8GzRE8D zloBAO54EQ4Jbb4W7v8u2Q10bnrZ(8*Nq^%RuveG0?_YUX>EG}ldEMt6QWLttLrr=cCz zGp^Gc@`pe{zD~!W`S(s`_t}BF_|8H5HffFTEe`Kj*XZ6Iia$cHVV|q3f3EJ?zxMp< z(0+s91N(iM`=@|zo5{NjCu&Sf?|o6gNN!#4RBUA_<30*{wgq<8`fl8+-YZVh{n&~O zXJIT+8BJecYc9kn*^Q-jU>aW*S$X2gQFi6DJtyM5PFHD9p+sgk9Ow9 z=^MR%#YlV>zkQZ_(v)M?YGY#7GJ{c}APdBmB3`Y#Ypl17($DqTxqagXvS|15izHFxcss11AdfGG{~hF2 zsrVhx{_0Dsc-Ro1a475q{5SReDBP*Gs!Vr;&!V&~aSIO7P{A}W7cu6hSUf-1$A{~k znS8Etox4*MT^EcMO7(k-;zi1d(mM{qU$Gh(Ta7dP?c-~+ovHP_Jr9u49RajTR6Xzt^h>H?ggR437+y9vAaMb)Oqk(Vn`Su|dAt_4A)^JEfhu;tLMwiS z&d9Q6$TQTUM{BA<)n%#^n4v9M`}N|QD7sFxqf}EjaU5>y6+`(RwN*L;x8C7kTvtOR zH*(&AUy>@q5)Bkxk?Dr2zClB11}H{3f@Rja8qwJ`h2mv}*6wEsVU3EXZ>W}X99D#i zEz_oqaEb`Ygx{2W1sG=86wBN2Cg$P5?Mf-j%guls(8@EXF`S`1;qy?U6@5(SC zS<5j^TbJ8}+O4`4fO@2-hmIbq!IHVM!+&%u0i8)9D1?cu5S@}W%{1Y6RxvaqEg&np zW)gT_RdgcDYb4Mt&!xKG2!e*MQ%g51Y)vTk)>SEFR=J0OGq^lq7+YQJp9r(f_qo~b zH8X>)p*c+F`Iq5a?ts=s0H$f8bNn|E9l~HTRxmXR_NL=#4nz3NI89^4qW_ZeQ>tr} zef1dOm@3=QursV9%*|oG6J-_``qap77Ts@TE)A62x_i_w?SZYcqr7ey`EYPOd(#(|w+|Z`nOF5*F zD>Kg?F<6*S(5BpFH*!w&pVj0g8UAS(>W3#}o51Tp+pW%3|DZU%F!anP9c2~=NdUaK zHc2UT3zf8GN+)Xz#}WpL6Le>z+5BwunMqBB5@1LKcd&_2F4YaOXZx%+93*H{W*ggi zBr?JQVZB(EW(JtbcEzDyo%LrgpdrO1z)WJJZ6&AsPC9xgd-M+{quFl2pnZ~K3$+rd zMBa6aiiagh_O=}ypUr2&h@PkQS)ZF8+-X_s$R!Sa5sm#!i_4F1p3By#c@ zDk-iDt9klF94!1gVfhQz5YX};6U14tBY)1T&j%53A7mpXP>n}rnfP83Bo!I@z83kl z$$8CkRE}w?I+k`fNJU;x#gbL5IVI16V2EM0AS+hVt0Cls1#%^p$p)cEh@v@Oor0jJ z$7Uz}fH)efylGoldCk%uqlAiUMYSpXXoGThUhZ$m+HBtzd*1_^_JCfghtqMxbVEP# za7(VTXFKFJ`$+H{Ij+Zu^ftfPP#!{4$4i;2-Z@+Dds$=J;x#RZk&m$SF&`Sy66QujLN7$-Jz! z76mlHVoTr?tWc?}%Vw75^)as*Tu-t6lxmgUef!=x47 z6z7pa`BMLK4*l?hy+9ydKY|I7`OzMcD$!8EVIh!yQ9T;h=F9H|k; zDq1dCx)-Kwv^1SrJDC>2buC1KX^LLh%bjt>J`4`;MN)FK-9$H5P~R>REsxCDXhzG+ zQPa@d_qTQ9oGb@nfNZi3Z}yC za4IBO(yljzHS~n5g$ZV_#jLe$A_oMMSEH|^J0lZ0L|`VoLA)9HN3uvvS{DCD_Ca z-L#=*-Fw0{d5Jv(i?5;8T zL0YrS@ElgShgd07grySaIfvmN=r5acqUlMB{vT{te~|puhNHry2;{127!OV#37jRk z)M(4Fe65{;-V9%9@)1YY>_(uZ4PW^MFEne>0{jB8Q9pcUJq}^Qq%xvBtCe+Cc9vk} z0#&41+ExQgpQjp>dBhHW%u#|y3V(0+&@mC4FRGc5#4s&I-3+MPO`uV}S$Ypt~Jx_7TSKdEE-s zcB*lH(ZzpwFuiQmcEl4{-5`hNnA8I%2p{xBH zd%6nk1FHo`XQp^9@B4Oz5o^cy)EL$18ym#M9XrWs!>d1Dua&ODobBHM<1&!HMXDwqQ zNQq}yv#P28uLPPenOPX54*Zv{ADT%$>pxN)dXi)cIXwYuzd7k%=|SM%yQKF^ACrC> zxX7IyV5Nfw1r`jGBI@BPdN$9oYxo8M3o}(fr~_H7Kpq$|SZ7#?+yfHon6Fu6H8Uvigp2wf|`jp z7H1KLwDsdl++KNa7Hh|3b8TqL=p2u8`i=$vDb!Z%O2wvzS~CoU!FFNctQ}UVslLs3 zI(8szph{qO9RF>qN!535u!tr@HHGzE9k~|y8z0S#^VSgW7nwgOW`X^f^tiNhAnq6Z zSCH<$v)hI24|)%*+MW%HALRb$0mqkjV+{TsR-ky|RdjRjTJRc4M?G4i%@4hwGckD?{ z!G>+@Ri`~1#{~BO=M1}4zgrEvRKI*JiMsh3<9-|<{e6*RV(70I@BTwqAS`WrYpc`Y zf9RXd|7?RSVF*3wSW$L&YpdPne~+-h%%Tt2&;uUAc+3IMU4Tv6EyJOVewG=HgIA!} zCpgV80DGpJF${ZLWpy^0#+pU){-z#PUC>1A>Ev^c&-T@=^3ivYfzDG^Z{B70v#MoP znQ6_P_o`@A#T$xj|0*ATAAw2Qtwx5GO#PbgU;?hQD*Mwi7{dEm2{5dn$fAV&hGNmf zneMEW`dgRfpm`7T^B-O*76=|ApJTB{vZ{AcIXwWo)>4cGU1x!rk>JL)ahzh|mDlhP zaUuLgnN?{Yw$a0!Te=MjfuF-Pmbumz5(*BF6pM-mrTcS{f*#Ks)|o=599!^lg5}-{ zV4c^5HRuA%D$6y+7OESA?)o6s2K^+}JLw=vTb;BAI^envI&Xhnk2~E#0%}XQmlRXz zo_%xBi$_FQzOemBlLE1RwGyZ`-;I^9YRL^5{#jMok6mA_1(m7_cWILZ94dZ$pWb;9 z7A$FZxs#@yo#Kb&dN1*Gh6w*lzGDK%F|9QI5lb}jM%q~xO9G()B@K8^j2dl)@UL*GXIG*QJAo9k1(s1Z3(CI^7ls(Xty@w!Lt` zuKCp_fsT?^RW+DbmDruE%A6-M+>I60Z>egvGEt?#yriiA{hU+Z7jM8h6&NO%7HPcf zYl?QU_%*%WnGH|vsk3#=~xr)Q#W@^A6 zjE7YmS(&$?mpJ|t$ME)9Sw4%;9n0UzG6RpyyxamMWCRa-K)KN$M;U{aDFQRk!HhFZ zNaCH#sa(#IH(bkq@abW?K3(`odI_dpD0nl!H*Xj^IO7b^KEjudrYb8y%?erfAjZ5B zcMf^_r3l`pR1SYS*t(?ZpzQKTnwq`zO zVtladQP@qoDNCEemJ-o%Lw#4ETFMz!ozgt@3@kR)cd`Uf{|xh;Y{&+#$fE_#ly&W$ zXy87hdfJoBPp@W-Wm2L`qLXMM= z!YsTZ-OMtsmXSyfaE>17dd#ECp}y$Iw^jrT@fFtxIME#>**4olS0DUHj>Aldam4tn zrT~|ZPzEIR!mjF!Kb#jT%QtOf*??(AUZ(V$+#Lq@)I@)Y(Y`)d9UK!V7g>TlhDuz{ zwS4K&%w4K)t6R0%jk6oGvm3JyknLa4Odq*Vh+oml`XL#>&Rg$;qS7 zm)^aS5gu6X{OVwJ)~U3PT^0{+tTdRv$q&BA_;FOKBAz2!nbCIxGD4qP%z3PoG$*gi9w+9Ziggk@-YHS-#gGU1O26%^{B|6gM1ekzrn- zqkplPa&c?xDO*2&T(_^XTr6yVC)(QR==PSK?c<}JF_I=h#=(q+0Hy4AQv0 zuAf113_@XOM}^H7m>^xi4YNsACkrYagmaUgOwFl(q!5+VwJVRC$>Ta9KU&I$2{T8m zC>-8L$N7;gDB90byEYp-RC8BuqKfHxy~}dxDj#V#`~F(k*}((%B;++ z>ZQ+A`S#p=&w4S!w!Y|1WLAMQ-E${f%8ZfMz@i0t#mt~O60Co?|;t{*} z>>%I_UK^HS+Q2SrA7D5upPk*ooEc_zb@rTLkhK4QZ$xBdR#sI@Z5X8Lc;~(U|KI<< z|Nr~1l#MGYAs-qA&T1-3MKxuW&Y@bibVNkS=3B@|ELEfqM=mV$*zTtYs0h%SvNB}J z4RW!8D-H`+Y6`WK#sx-n5@^42WpUz0%VHl+Zm=+R zGjdRA?7_sSJVFWQ2-|Q6T@ZCK)FOJAox~W&xJrDABon~zUOu4Z##3ZjF|=3zZz|Jw z&l-yC)mveVl4MuPwGka1mC0oj(Rn=Ts8v}eP0dg)%C>TP)zuU`oUd5QlUR7_7323t zY`e0obS%^%m&)1_8b3_Re^{Vh1P31C5gl<^cY4;1etod*dvqmoX@vd?ScUeZ*?s$yY86=$n`@jhZ*9A#e@3rFI(pI~48 z_ah!Jh_LR^BHjWQ46d_r;Yh}7IDgqo%E^tAKULhnyC3;e<^ARTX_xc;I~zs^1*vml zxxfq3#3uHhRFWf!y&GQrf2pjd)s5S3xJ}vZ?ug%n3V(T(_XwBRIjFS0(I=QSI}%MEt4brw^%SKgaP77x!XR8 zk#0AWAxv%eDFNp2xc9Yr3}F9Od)_@`C?y`(en08|jFbJO+M2f&Th&q+h zE9AbiU(2;0xl^V5pZ6zss(?@LN$eZfckIEYU4zQIzQcT5nM6b!AFySG>L% z-9MPE19g9Yz7DDZdvm4aJUNn&u?$I>DK5!IddaZI5*)|z9MbXIwT(xeKfNCZX@YJs zJo}CN|I~SOL(1*UO6lIzDvuL_a+pcyRfCz-m-Yk^{`84B^)id@C9Yxj zdbu@YTeI`l$5i!W*21hFw&p$hF=M741oau?WAZCOO$+Ac0?j$@y2o7_x92Q(J~(DE zvoc#TnRP51@1^29`EjE{B@87#NP&n{jO3wOs4qVIX}-EXG*rq$Fi>0qjF6JI`= z?Vx6Q+5|mqNXMkRfCFJ#!wozJXkZD-J}7BTd8R)2M|fd*QH@L`p$Zd z66RRduxjXx=>}X_4kNTtU1%)z=6aP`9Rn)c^-|p^*(C$cw#SI2*FP=G+rq1XDdjaq zCoY33y}8<(s|E~h$5>FE>#c6W6p7(ZIWuKPKi*$%*GigcYNc9xxqn=DWaA!~TWzI2 z7xB8Bw_zF2w@UZl9M>a54&fcncbEq^!TKo?npakJQ&*V=72%EY{vx7ULt-DM28F*f zsuuwxS7l7?;;znQzj61?wV@%l-tjrN;ghzR_A6oPErG-tqzOL0W^pln>Qy8oi;Vksin0)^yYpe z3^QspL$_acUjBc!)|OhLx;y^zZ%}Fp0*ii{H?zVcBw(1%HgZ(DND7gib8{)FiF0XJJ{ZT2O7YmX7p%s+l?I^X}|? zZ&^t6FE|?$y8YnI>9!c%PU(;~ZbGxs9${K{rM&TxuPjgN$rQcN{|b5Bj5Kb7(eR%oa61Z_qUs)a!;8l_HHFjCws_ z4|rt{T3UY8yx5c1KEEcz8CuH|s`e7R;znJs{$Jd*iyp!_FuKOQ+B5xJW$J(i6+`1gLf4tg7;{W3sBI&$c!7qCl<@<6O8lsd^S2jnuQ~5p-6>Khwr! z`a$U#>4&BN`mal_V&i&G31jrYNxYAC+<(I&4tex~OOt}`Z*5)R?os@()#-d!gna=~ z5+9!s`Lq0~h$OL{wxfqg41K|!()nyJpSK*m&FII7D!{O{fJ@#^@U|sG5?{wg$q@@W`ea+U>l|tmZ~$AIG8of*&wdWR7;^{8g@{sHH0}~5{LLMj1#zjnaYO= zIV{uc{2djlVaf44r(}7NZMLGQW!ll`8L*i>rE_l{xnuu);Tl=aaMV^LD(RBTBR?OK zHl>r&ZPInhadcbKqI3lMkK3ekAcZHSivlNd zqb->4=cej$f5Ho!TKY96K)3*_c(z3dI^yq;lo`597lZ~J_h_Sltmxd4l5N? z5v+p_RI*q11VRFVriHW(PoaUf;xXBcqdmXa?P_(Knp)R1K^D~a6MVA8CE}wz>YYw! zu3rE7F#(PPK1+VO=8EzPxQ#PLRX)q{_nwg6FMUY*nDnF4=cF&9#WV7n3`QnZ!@_mU zPSEAw zGFrAhx4rDE&;P&-EI-ozt|scrXtGOe(_ww7WIJ zJd=V#c?oN{!_u~NJIrn$mEIw}5BinopuBz(%IkkXB#DuZ7H#-gu?(jc$>bNjcnbBP z_$%=?DZcF&%12bCU68Ef$UX%uo?D@KQ1{bPVWJ3Y#ga;&RiMEB+n`WlRVXk$^2csff>yn7cjR zmhuL4ct9KYgOFx*pXThPtB}F1`!!WJzzdhqI4@tnc&Kq`f|rHHlTYr!3+Lvb_WS}Q zxv&o}*CGAJLpRJzWeP6|Hij@89cSik(MDq?%$xEe44AXwx6bO-F_XqvN%P)Z4Cdz zv(^}D4XzO2*l?n9C5kLB$SVAkm84--iPJEdIwAj%3Q!$NF5co)iCcF~eY`BH(h^59 zk2&@*WW$FKo2d&lnzSDz6_uF{hg8kR7)7o9#s`sZ0x6{G+;S-=@ICtptthjlDKd+3 z0L^g!w>=n>-?-2|F`d>)p-m%is?7Gv^&px3>~uQzQ?1u8Gv&4a{MvseYh(>Z+Z|rt zj*ycwx`XxFIrbFHG)~GG8B&evKt;feWoW)wbMDJ%}QYt{4*DIcXic_v|DOtP9F{3wm6kf z$vN3`K&G0@32B@|{Yw2c6OK_Yz}c2b3>UMq)`P(~4j<9F>^})fRL@rCo_fG`s^zVX znVmOp#laV>TBqT-W+uxsPY>>XfF@qK?rp%MtvB!7XOV@_bu72w7m4{FlKO~pI*wp7 zK>{m~m(v2H(IW4+adLX&oNrX-D5vYNWff$4J5Bt!?)Ao{y7Ba&EJzgbMtA8`2d&=G zv8{jumZYR1)C!dADUu8btL~vt)i>*UWEB)jzA=4TDeBX>Ek;k{dYp#++#F6Ju?Hlr z6gA2Yzsnkx#b(7a)nK-ZJ`;z4+HL7gY1@?y6H#pKAvU^D?}~u^gBUu-^7;@|ZJkF) zKsTdOGUUr8={MN0_3yaDG*oJkJMQS~dS5qTLT?#{iMJK~2Mt|S75=JS(oId_@35_d z-#y|}MZZma$Z*t3N@2MEA^!Cjd|jcBiFd1p&0hgKMjk^5;|#Qbqhrz;=}zfh5la~u zC>ICTNO-SEarSUHE$|QsgbSj_Qq~2_|655n2&JZ_8>XonRQ;zTPD}&tH+Kac>K{8+ zI(Dot%Xh#L?jPhg|19J25HhEyT=AQaPDUL{Q^wr<)bukVz%P6ji+KNA=;2#XNdf8Vrh+ropVJFM}! z$rw5hD8FVKR0G*5it3xTWx#ZS>as$8(>Z(kv}Kh|KMZ|51a9os&W&QCu1JOy@=@0D z0>Vl^&aqZ9>)c(vWp{i9@T#ye(8Z}P%sa?fU-`?#(z%ObS2the;<2{Gceu#so93^N z&ln2OVR_7K99vX5vW7r$oSf6 z9JJUQ(rM|O^nmnU=>t42*6Y{8vB`I?kq0XLu%E=N-8+5*n&}ATE~g4w-$TiNO$2xP z{u|cLTCV8>2lRAd4|RWnhnyN4Z}xVLH+yUx;u53x4iGRey%DXhS_Qv15o-%Q)X|%87g{Lh+uJ{aTkm?k)W}J&{phZJ0<>L;8d(?C zfuU$4uvWjmPc*j4b%ALz8gT5G_F!Xk3@3D4Mju7O3Up422nksoqivde#&b9!P-~`l zGzAJTOvq>9Z&p4?6(X#l19p;*zq_jwI`ofajg(}0TTzH(n|7#clR*IMva%_wrmB>g zR<>7GbX#RpWVBay2gvBN-Yx>F`-tgUZ8tTaI!I21*o3`ZaS4Zl6cIX!Lj{ZNqv3eC z!JpVo=R`O`GKI7$a!RJ>c2HgWsonW|-(@+m6pI&eKM;$&#XSy=Wvkyjz!=bSgtX^d z=&sGzpOYa%cnpe5pyE2=3$S0)G;;^zddZ(u6-$5hRozn5cQVIdhOVG5x!iHiR-~E763iQ$i ze*EXQ=2EL9yQ=ES|GOTPl=3~|#)Rj#{oztcE|(v+eGuHDZ`*G8b$T?u=lR?F zW|+%lOP^VAs7YOFoGd9`5GhgkrunV;$X;)p-fk%~^;xpW)71F!WT^}kyva0`q%4~s z;^}?HG+|<|m`6BmcL5oydTSw9L4n1|6mMVs4{S!6(Jh&6sHG6{3=UIAF@Os5FXp#y zn_ag9GCMrI9Y!O2298M^2|ppRs2{hpiVD~L5pEe=rGriETaOU!N3_RrjP>|=Lknd& z)Qt08+`45K&YKvsC8XwgW?H1F=_Vh{g?dHNehOj%|}xeQ3U*Ui&DzMDPFEEmM(?gfKJ$ej5&@bb8c zHxV@-f3ZNe{#43RzK@P+FYpzc+@c_Druj^%oi^5+(6qFn${;?+Wk`OMS2xe;;ziH9 zc*%7yU3&_%GIgFWd+`FR%1FRgCkh{rqO4y>na!ZbM6qQ1)64MkF1Y~>Pc@rgBf+HP z;KQ9xcV{%$L~IESX50a^q)llJX53=D6Spxl;FyW#6G!5`n1`(A8(OnOfMJtz1;m2D!?#r0=}@&1b;B8zcDq!a`PCFE z;`eO$bSto)vjTod@gZwGwt6I$p`C0{kt*a>Ox`hnDt0y^&$lHg} zNd9F!kcD851lGH{U$y;r)!x!p+OxF?$nfp2cHd%8Kg@aQO)#^buy%}pXyAmKB={$=J9aV0k#`0HZg?=xoD(SObE+01caEZj zwb^#$+s{ToYsmS2UQryuW~ix`Rl0g+l1V3!sruyzxZEQA_rTn7o&a!vhB(M@^ktP^ zhf?ia#6taVMl7duMg}~GP`8$)b!n6HeLh1f;^?xa6s%+%0!u7!aOP4hy+mw__fZPa zv%~ax5*)mXoPr*u_$4#xeyFmbsBZ)ALMTJy;>A_aP%O@dP)a-?>=CN!?{VlBBSlyH zJyltdw~(_=L#11w+VJ}>FnJ|a(!j#86ps5=Nkb|@E$&LI(0^Z$E{Rx`Y>hh`Z61-) zFmaRR?nh+=lXgj&Wf#M>G`OpVCT=)RJSn4@U%8K15^!edLW$5I!y_Wf1tgDgR)(A1 z-;Eb%3`Pt?B~*(W9?VqlD^KMJ2?HBUL%>S1q+PJ6E-7 zY4*L0$%KL4D9kjNqN-+TH1`qllUAq1PhtaskDf0kq^RjBbovOxE@-rXRi8$h8V7+dtZJnA@CTvR{{bSkkJ0n|-pKVA zIBC=9+n$PGKkj3=G8rxR0D%=3v>)3gvcd|sdt)*av7V0Y8;eNLvo}%GV?cdBrIYkc zj{s3XuD=KMuarIHCuq&_<)nYdZMmn*WkjODcKt!!`;hK=`iDII2et2{fxk}NMh#Ygl(i!$fJ!>7KXXD?4eD#jLi~5>JMk>%y+c(Nmc()_{LnV85vQ`|~e!{^-6sznOyt6=c($ zuIbPrjYLBBQSwQdNU3g1e-3&V=V)T%d=I`ubt-fjE?&y@_(yYf%G;DQoyuM*^%BMt z^5D3D0nZ=_*Y3VHB${lI*n zX(sWokXzoizxwji&8H8@GX5Ag><72&Vt<9jg`TW98v2z!R8Imj-Zc=~)voRpt7q5H z=b+m0D_rdaEY9VF>cxnR>9t|sc6}=I#TxLTBKzZmntk}ck#;>B#*Ak^UDLmZ(gGbf z)vk}mo_Vnhc7%S3QNs(f$#amZL=SN3VwIiBGmD3>|uQH)ESY@*9jTw*Z2apiWa zr=e}mU;{B)PZIQJQey7AB{o9K!!ky#-xR?!dKl9laXL9v33@BEd2IMcs&Vsp62-)F zs&hdlZk{NYV&dwtJy)ZKRdWrmWSG>}87;-WhhUbLVcQBkGYIib<}t-!x}%wfR}aaG zqr~N?-!RNl63kT{TaA;bU$@Na@si_QHZ*22Lo-a3D$LR`R! z6A;@cM6A%%k^NLyiz27#ti{M)x*kUJuECo6l>qZh#hkY4~42{pljSEJWSNL?*8>H%>Wn6rq{Bklr*zT%JeGs zhlBnvE2G$-3;FXi4%cj0S7?+6`--0TQn9SA@r8Zwv zyImDd%0D@81wjIDj)~iUB3{DBK76}9_9UAyJ;>r|0p-^V-}f^vJWSc=&l9MP>B-g~IoQ7JiV*p*AUp zNN6eg_KjT4$NcPB(J9?cwV4&a;QPuvlE7e(G`=<>>+^I98_$zzd{DCc7o^H%N@(VV zzM96gFL<}_D49^_37sa@(Hvi_Ss#l+PK-k@Q@1GxHOQ@llpIkt48ROCpwM~53H>szN2o@6Yh(-P0S`jH#UsIef~htCIlrbdXv-bE zIm;P0(?{LHy1V?^D||iku=F13e}?v4ghA_d2RtBH4`Z<~^hd_Nm^&DvyE633+-tc> z*2^N+RSuD{KC2|<{u(+a;u0suJ6=QYM07tq1>E;H`IENBT%|3bHCh5pqjf~a?w>m| z4*DBBJQ@6u=h7SS(SryL41X-v`sjHN*+AZMoJQR&lVxbIV_T7l?CPpU;Ygv6mNhl7 z{5sJcdFJpzM(tHKgouAAgM-o4}A%V9=0_s_3+J`cxYvt*Svx4H{FTo3e4bhT9!B)NThmH29%x>XW}a-AaF_Vg%^? zmlznzh6-49(80fYuG3aju3kJ!xvfGWlfDk6FDI>~Hv7n|G z*hIliFTaUmoK~DXz5y>)J~xxprl>Th$6VAPtd?;%ghI^=5GF7=^P^a>wHnEZZU>kVxqPIY`b0>7MI3IEo^afq_F$O$E%!Z=dXBeQFI!n0;e7L{-v4`U zZS{_|^-aChO6Fr-wTb;SFj>Z6R~?u#bvP8=HRpB`IBz1)R^RcCs<*iKOE^^dN{scR z3*B9pgQQ4BdKmWuMtWFILsB4ZFM58hK*+kF?fKpG{ATr?@2q-DOTS>hiTLpEw+^I7 z$mhsj^6~NoK-6&&2?d+6y~KmzPWBd06N~sO95iN(oL%xcvZs95bb9s@&p17k;$eHy zBRZm*^l}=()NpM2 zl8yK`xD`VQrmmyw^!XHa&Wz|aM_i0^#u>$!J?hVKc%qJinye}19~V>~5)0?s>B3^l zTdFIs67(vb6R{yuyL~jMfJr8wX02m?+snNY(C~>3hI`enKlB0;5uI8VG%JQ1mRhET zQT|NNG;0w_Dxcb2*S_eQDlK`M9yTM(8Pxk`V8Y-1@3_wogCCe)@iN*`&zpkwC?$;@ z#KT^+{~6Lp_F>?oyJ;uRJMRZ7|7^rUXpUI;`KiQD%Kg;qkoz9B_Qu3MUWfM;`(t}l z=t;SsdL44#gZ3K}`#A0Ui+yoA@zdL)jHq-8E2HXfxGlmZgUQ9KtEC|wiUBV5->vUeb_y?^t3x~?NuZ0=P> zY~H8E)1MTluZWT1ze!($Y}Mm0cO}2St3cayo&!OJPcY%|)QhP<0mTz^qDNplTM)#FaJq9#xT zEj{0uWd7~i1CN}IU2WbU+&1v%HT~+`c1Jgr&>Ef_TA^aWS6queuDixx5vSC}1WqrVORG7GTV5lHFx={(ju&kNr;QxG3>BeOv zu-FnM(9k;Ss;2r{`>bNWwNi3QiNV$`d%96_EZcHjM|Yf(uGwb--*ZgH48QJ&%w{Gt zEW2ixDkWFb9rzN2YO5D0p{q1dwT1gB$?+y|53(*D=3`E=wEtSY~A&=i#T9EZFm6g!62sL2ZZ^ep1mw_pw%a#urG2K@zQz^uX z^&}~nu+}ITWUxHIYH@E9_wuA+koKtUxETAjRPJBBgxihzFC(JyhAbMTJGM{SJa{*A z>IUW>?PIFP0mnJAcznYI_hN?w;TtyW4>&+Vj|UME|NgB0AM3Rr`k@cU_r*W{WbkDF zS?eP+m+9sDeeZkUef8R(`0w*q9*Q5lZ>zHPaJ|+T+4_(pk}nYZJ0jA8=!ZGjK;}Bi z9S-T_YhuhP%8ya{V~R5OPUf=`zZ4IMHvaBupD_6j8UBF#HC6o!ae0TL+yO88{^;6Y zS5=9mzH)7D#i1btaCh^R3~ih&@Nt2R+cblCXJL5omLRFE%+5@J{*dwQ? zO`Q8R?S6;Y^wcAa$q2S2r%a4Q%b?%l@=%PZTG~*I7B@CE^U(2m-h|$F>ymQ6<#bxB z^M+rx2E+{G$dMa%#WX5*WHLQ8LVAB02TSFy9Rx63dT;Y+oj0AG)4h2{Het}#O6=G- zI#y^ax^Kp+S*e(+u7)8~bn7F~vNVmo~E*!?iHE$A;R1u^t>++io(utl3MK1vjD z1zpxo_p8y9d|>HR{c}tImhGQKYb4+PfMvW@_wDN!E&Ty#?!Q;oi2p6!BHvM|ZuxOw zU$=ezt%mghJ0Q>NmIhxaN)ZPM>DUl4CV0D<5rY%ENlIAO*b9Gl4E4&tZrFZG*bC!S znS9!F-u9nVwdbgMA6fD3oVv~!aeP4Yq;H?6D!otDGMh4P7ZC9140*er(vy+H1+$7i zHy^Nd%=Ut%e-F${P!?5RYys@^}I zUx6j0JIJzfl*bFx z?JBR2GK{7h7Z>fg8k2ThlO1zmAo4<>~eMl=pBFOL{^iXGg!~%EPgnuV*RS&!$f<^7^6X z^UgIM_vkLJ#c>-=7RHWQ251A(9u$t*Y#Fy^^VpP3+?TXVez^lJm^V7W#M3K#macS0 zhq7;oX=FN?OoLdhz;n}~9Wy&b9uDWIW15}(;FZs&mR1k*v;RSU1MTD}4m-~MYrxxE z3z$6#UO+*okUci&-o|? zwVNOALiOK4^NQ=Dq2EE1Fh2=aQ~th)wdr7igckb-B6EL(Sy^401sN=*?K8Lg!Z3)~ z2?7h)*FndQXauZ_xNCetF3t=;kBhy|XSrq1{GdS>j_jPV=R$O_gSTNw2+v7#=XD zJzm(~DA+9J%b{@@M$KX`mT#vr=&BW592gF8nXxcC!d;|o4iB%=PPPOF)Zijv9rr*P zD|tq%e{5^9#AerEM%!riXJ`8-`^{$mtN8UMF2<=>`J$XfYw%O1DK(WdUf$kbo1yWc z;qmo3)uQvw{)vs**^LwZW>#-sO|gTei1mj_e~tCp$?#*3Y%DBn)M~vmXUWPh+;-c> z#wR~HHYeHMZM(@@aVa%j;{KWKR&RjI-h+)a;t#s$t|##kGP3M^f552Y>n<}E=V$6p z(=O?BR(CX`J6Eq*jiR~dyDXTv1E0*a!+O(RV}{Kr7M5Xqjiz~2W25#nl3wO>n+}e` z`$@moW{7bvT&zkkT#PyNC|XNl9h)I1!dt`2>EzT-ZL|IZn#m}gzjdJmL*K9&o*fKc zc;R#R-uuIZGJMr?LlWyM(`}CgHYx7oD;#}8>deRUG#(}=2wafrtA9zfSO4dSHfLeT{w=R&I)Os9a~f3w$2+_f z*_}jlTZdY%7B(XiHqY8tqed-If<|bR53MvvX|YmSERmquZiZrR@K=0pfGE*Vh+&D^A?D!tNo5N6Ccdfsp$M30)bcIf`C&@S|YHcNE2MRCK1wmVS?pf#g{E z$h_q(B&58svQQ@Rd?=R}Vh@HNjew~dq*Gh!mGnSH{Vo9GGoGOUx|CFy;=g%*s}|6UUvhM&(Lpsa?v-LMC(A@12?e=sEJJ7HW^GsyKb& z8OENWHWjCQJRsIa+f#5-ah*1s$F%q)W%!R|Q+|k$hs5cFs%_iqgPQhWc0poQ{fMF| z9}%a&ix|_->Y@H@c9Hkh+_n~RBvA6{KtW554O_zakPjesO6^jqz1S{!o^jMkN{X(O z66dJld8Ia~mgYiPJH3 zI&U#P598qz*196sLXZVPn8w!7KQO>>2+6!3#jB0RY8?6V2@jnhsDinL3uG;Zu8q*z zwi_bdF3dTcY5bl z+zQ8L#af0AJ))GHQ2!UIhP(5 zXDO?oSiG_5;nUg)JxMP$KSdc|1%eW{Mk|IFG#5e_Diu4πR(XEyYV3az{Ot$Y*f93mYq^Lnu{qbYp!X!TA9&! zE-IItGEKZ{gMP4Nd#xGUa1=;JG3Pv}=~igMHBlVHo@se@2@*-F)x;^M`yc7LKu=nh zhA_grH$yzgP~Jdm()hD&SH=^MgaTh61QR<#GK=rQaO4x6U2~|tOMDBiVFfUVF-$`{ zM<|?NloMDpTixy!w|>^OBf`pPm2YOj_yE1m)YZVcW_SuUG!acvGpOPj*Q}t^SxvY6 zMw@@dD@iJ>i?)HcRjHqjUAt+&$qDU?<9a&##C}v@AjXWNIrQVpFoMK^u?a-Ih|y&6 z=4{#968MJCMOP#2CpnTs0ELJ9iK@U9fx#`V3x4B8_-}*}d01MIR-{eoG)8!ivO(o$ zI%4N8Hf?cCy{r4fzL-U^tjot~B7zSB-3Tyoq3m^2DlydUix~QaQyJ}W_{9hLb_FiV zBRa%Yv1%%yC)6>536NXkNE9!=fCo(j!nIUK4)ZxtPr6&WU;5sO9g6)()bis7tAirkm@kH)(n*}lhV+HnJ;M8R_7%gBj^6CN-l#Q*Co`X z5m#ya<-R7)lZ>Gz!2p@$Re;__w5$p=INcYnLKWXz+c`xSqe!e*aXLCMV(+K%gI}k7 z`@Iytabxq@8<6JJ%XqLjfd@+L68t6%Ie4-$HkTgln?EUi5Vfc18dX%7q-*)=uW4GkCT3cDubQN#OR zQkYUl8^)UQOVC~N2}@nxNz;YHOH&iOFqYxFClW#9k-B_nJVP`sf%|OSFMUHAV2d#< z%z4sjcNT_9%mw#BwMTz9EML17-HIKcWd9??}rG#6vLb&&H3?O}N$|=*M5^lwJ^cA=P>aYVnbJ!tJ*?!H zs{4qfr2C6{o(}>QV&IY?8aWQRaa}%?O5*V1j$Nm0joSqXTM=I~87EN$?E`=T+CI9Vj2(a|=eUl1b5h`w-Aby?L z=j)~`VlYY)MqH!xXCpM2mC%gX$YS44jR~T3m5v)ah=iva zY6&XRJV!QS2U>?I*;@BLsqSIK@akU*$nw#CQ^@zZa-Z@7uzefnk9^rbhWQe`toigI z3Mbv<>)6~*;vrqTOyRK)r!$$ubUud*xqo(;qF&~ywKJLZ`o;AkfnhT2wJ(YELt)vu z^Q7kdZ=rFaISnee&R&wX(84(Z zE~gM9Hd$Q4a;h-uO)i}N)^iVDerl4k)QnUW6y8ZcLx8^LKvIM~1d)(A|!u(Me?xuPj>HcX<)2BWg4C9Z1e z@BL9t31v-lwpv?`rpcj#ErV~pC@SBzbpPd?&Z|Y_J1vU1luZgVxstZP{hJ8keohNo z3FcC?sXK~7TaF(wYl|*WgUB*5-~wl<9;8LGGvnvcxCdp2u^BJ|DkhuIB} zQw6-SgLog_ytu{ESd%-r3vcHW@{k7(KS|z#lIm^sxSX_iYSCV@ie6V4eD8;KS9Phy zppCZ9+<)5g;L4(&;{GonK2=5GJw9D{Uw#8+V(4v4Q`j6@G7v=}Xk;+Q6wPYu#>8Ip z>SWv<6e~&y9mLDrlN?QEhU?rB94EJ0ar^o2m(N%P#!kLxoKR&lZ!y{EX}XGrbec?5 zJuYlZ%SMATActy8L{^)oX3!dppuFmA$5((gPS$I$y!HxTPr~(Q?DhHH0T3h%?1cp* z-~8DewyhZhBqN(LJwn+M^R#7KwjyiB-MLhw%pxsIwwE;zUcm?O8A!;Ofe#q1UD|PH zaIdhC-`0US78mhxUY=qj^tu}dk@Bwd}P31uP0{8|0Axx#4&@?q= zj!ROY`4nIA6*jUwH2G%QLE*4$mHT)?)q0~`-L6_RVyaSo?;U!`B9$&f+3A6HL_=!T zTi+1V5mh4=>UX@is;DfYmeNu&1xPf|mo$3p4awy7mE*93+=`e+ZCv_2NmAF=168W3 zD0golD;%;yr}rrOfyG#pbp^x3k_@|I<8EcF94kQcBPrg^G^*Im74VQO?WX$MH&?b~ zX$n)-n=9Ihay)!+IgUY+3=S&1UrZ@QAskd@9pR6nj+K)GG~Jz#d(&KdH(59@j;Q+3 z&6UY_Qks`;x)@$}yEvK&6g;A!Avvf>eqCVX=-S=rhIP-z4U|kN6_%!M+=KJ>yS2ZT zHgPYGZn90B!thNth*RZJEWcZBp!|x6Ksk00PU;66n+KKQAE{cSfXKsvd=4x{bNqV_ z{IjbZ-}+rB$Nf0F$+Dcv_)V7P9&&konZ)JIZgTVl;m(*XG)kBu!XdNV2i|Z4 z5WY;x{q-UKLug72qneb5>xhH}GQm{=t-Z#9s|F`Ye{H?oO@!YJ zFc~ypC!{b0g1-;8b$X6PWDD@**ph+lz!Ow#!l;tCqoBe31Dnj!Zktokn6xf#k9@Ox8M>uFNNpCNuV2^_?%104QQ>{9aOdmh%V?nbA|4(T zD@qzZ77q1L-{3u%Hym`BYYacZz3$1NPFYuQWEJ1-+g!o zDd+K7Ydl`dDo3zwaZsgR(*zY_Xwl+(6Jh!6z{iJn!E^oAoN!O1Tp_n{X z^>B1%+e#N`<6SWj^$hOY*nAhqhc7t)czAiF5<;lqQ@Ggu9~H%;mg@7pC0o|lQ)7=! zl!VQ9ntW)cX9TqTYOXZju=E#o^QD(eI9Y#lx+0{;m7Sygu4b`%pi#alU3rUwg5*4> zLQMto#x+J)cBjU#bNi?o%++S4Bhtw{{_AMAR^SxboG>{~CN>x@5mCqSu*mCoGp+4+ zj=UmsPsz*a6zna$rZ=;S|3q50a0q$vW`&#jB1kXi_9Wx8%if;*mSb;rMu-RIu8>VNx>g_>LcC|ya?7g-h zN$NOFj#QHtIV%2mJ>Qd#RWi1jQpok(RAMMOw@X$Wgk?k-Zy>m|l!C0*c+P|T5Dt)c`B{zIq!n-KrR$|SKX5-k?t29z>Md0EEoiP4#XwTv@Ga!x zxu{M^J^K6z`u1U{5nI@@Zp&+MY2c;F#Ys~iXtWg{N~fhaOYbP`J@c`B?yYnL?d$sK zvy^WBEVUeqS+?Wd&n|jx);}o^F+LqyK;sHQe^yTVjlg=*3XqTdBEkbzUxXGcyD-Fd z%^!)=)+c0LX1>RmbJAhV^O>x_g5Tb%lxijA*3qT7$8t+w@zN9fOyX~=V_PbDMyEvA zVVdv^Q7v0icgf)bMzz(d8ioyOs94Ob%vMZhDgIf@SDZLf9zseUQrs6% zTdz2+dHA+E-*T?`_Ep(zGKG(xvpEJysv@u_OxJnaijC^)mQtvx6+SqwErc9A)VF1s<=~-VXvn(70brRd z+djt*4Hs&BxLZkkPi!L%E^9xR^%?0NXeBR7e@FV!H!k(udU?z&ncKpnD;|c(;PWaN zP>qfH#*lrA3B8^|KyjW|6bE}bSJoe*YGr<&vy5{EmBOG=%sf@C4E=?JLUiT6_~GlW zO;8SELW}rEd1`Hy&L5eFjy|3%(`8}iyf&gKqS=o|zMQ;18XU7m8fK;{{QxD5C`K6E zd4NDwya2e$wm1ZD=0+P8s$c_Aw+fZ8OVXGLY>b&JX`fr*sNnN$!uSa1%^UsogvYn+ zvi>-B%orzEGJ&vj1$*&ol0DviCa!&R)R)%@la=`r>X`~b*C280ypw? zx58k=_3@Hi(lz}Vkq{n!%`$5hMb#6hG#3%ePU`p7Dz;?>%XH2)R*x5&yc zuBJhBUs1Fi3taPUNhFtxjY{>?7sJY2ZsqWgcWm>ADlO;nd zYg9Mus+5jHrC%m~>IXi;e;e$&c%kTrF8;QJTloV*DIX94JftjLNcETVbTc%z{;rFu zi9EYIvyr{s3XGd0^miO)=4M4)i3#L@NVh1|&9Cd)9JTaseklz%iwjXdqSHAFe{f-K zjcRsIKjz~J{EA&z4^wic^D%4p&Sn{?-yF*sU2x~VK6h<|KDjeaLG&YYbE7%SVaU6e zw$R1#wy;*7SbSLDJi-w)hQhKk9l4E`Rb4VDuCelH&fMC~R%v#F!JuJ6GYvg)}Wj&!&5p0WAP5yGc3vm=a-X)AI2 z^DV49r;TCTQ#p!Kek}d^KEi0ggE;nipkZ_kDCe{R=aOM|_nAB{KbMFQvp5xTG!h|rD3D&aS4p4rz@b7DTm(D8%ElMwb zKY;&Qc$m+xKD~D#HpVn4yUf}|QMR|fj*{G`&b+QVv3JSst^6ZjXha_BLqFS(v5SrK zwdN#7;-PQ7)}di}HYo*Ob-BM>tuEJKfVVnNR+37iW9t4VYWT3fTq7NPJXaa@KZnzG zpJnt%;3ziBqTE;!*``ebEDT!(UHfId*sa9@LCk@B=hsh)e&2z>T;FTglI2RPgY?h8;!DwMwyTE z6G*d&t1lYsZZ9ieFvk z8xnjI;UauT8t_kp-x0VmD)ov952De|#b_-VBxCX@TYZk)p4yW@v9QeDpq~I$C*@T0 zMsh<*&XWF6h>w5p&yL~@=BQ!_ai1 zszlcevJxF*+WI;)O^NF_Tv~4WYaz@f)svLYLh5LJtc7a|^(zizi)?;T)#Dj&eVyvW z)Sg!$Wtg)KVJ<(Jw1F84Uue+J!_uA7=cHf2nZkyEm`G;|BC1v*79P?lTN<~P<`4;k zu7HW^im+OF^vqs&n8w25YZh&-$8D^|#9jm^s1Dt1JvCHio)mrk)ahihGY z#*Nj7-PB6L<8UeK_#&1Km{Tk~wGdjGuF4pXhA5g0a@TAa;yHHRDVegaDjuUU8ZJ1i+_wL=fBRQ=F3EK5;zeU?D#x{h9A=~>GB!m#`?Vj`kOoRn^d8uPI91deJW zZjLiUhIuE9Ur`?w4<{V8hi9f#osB_KjSM;)=OJk83g?M4uP_VzN#KF#9qWNilvWFi;?T) z)YWN4nN=PADQg=Wm2K-O-BD+i|FLI!!hW3f~O(JSr~!myChw&&MrpM%Ua>LY3w`~V7>IEQe9`NZ}0d@X9vbO z=N11cLT{0k^NM_n7I6VbXHkA$4HjK&OE__rE|8gbL}xClM3`Sx7pT6uKC zI9oAsdQ5sJ=-wx|&pB_cXL46jY)6OFCAUjDsS?GR z10Kw*ds7TV*k~A@8Ij~F`kq?17S5Qaz)c~hIdgGBm>(+&F4Zc2ZT(%8*LKLoR@fFh zn=2;qL6$x(*-|T2|WSNT<+b=i#MuW*RYrsX>w=0XL70KG=u-tCPk<6HUfvAu?{HZ@S z2A?r;lB8Yb@uYM~dJaY>|M-T>11ka(FnKVv>xz(}O~kCk0mKpB><%}f&a^j&I3PKW z;9AEC+DA^7LBcCUT17U~*glix*zV=!$l^VVsCCS+h;5L(G}iMnBZf^ZH7UD+pw%HSuI;8 z`X-CDTA$awBhqmmmn18YA}Ed6N6B{7#cI+Nz^Ek7g5a!|SFtRNvVYMp<5s$UhQnE9 z%dCB&Rkvh_Vd#^qTi0-&ea+G%W^u&SY2Z&r{z%IFZT%GAsv}|K`-f9}tLYRLz|DrK zvqY|p!nQEQ5QCq^-be_m1QhYf>C~ScWAv;57dxX{UzPbHt^DQd*T1GImyint#>%gZ z{N~y&-YwQ8UqS=AFOew9@e*oM1SN$LefShR=D>*DOipzFY3$=}7lvpEb4upq*nP;2 z<)55=WY*R+Tb%xbEQ_#Kvi$29toe5=m>*FUN(WlxiM%>_9;+nH7SYp_K28Bq#_(yD z%Uqi6zibeTJ;W^1@K-liUruxR^)%P{FEO1Eoxw?$QXD(p{x_vV*^WUJr$auL306qN{&hf~5(ipO{qhF%HiBd$(yo3A01Jq+!j z`P|rS7xnvDU}c9s!a1A9^NerlKcHLw5d}EZH3RoMfNN7*Nx4PeM&Pa?_)IzXehWGO zIx|i7^^o&Q;HYw^NFfB3j`1zlM|Fu{Kj%?gUp8roYN%YFxHz@l6UNU|lE8;C4{t%!2I3A$gXX^cUCFLOF zmUblvL!tkJ$mEaBVzPyFISzWXfopDM4^nIQx~FjY7uTU?Nq>I*BCMk%-8jzfmyD8P3)3TT{gSEFK!`ElTU~)bwUzY9>CB{eady^PhV)8u*HU z%k*3&nwd>Zr2}p zkeigweXcWT&$t#<*ECaR#4rexO>IrpOn0U|aNI(?Je~U;WH|B|iVESQ(>+AV%kk2DIKOpv3yo`PM>Z?P`})zX(Hi!%&5e1b8}l9jIF-fkl|Uq3(w}^kNaUBZOo+0=u53qzTf_BzM{8*8a)(4ZKy)KfJr%s zB=EA^EHZ6^_;OV|OTMMj$kiK~Z{u?N1t3nhu4_LfCf;8VQ~HXhQn?}1$P8Y>;X_+D z7op#XWBw1uG8p%wXbwr$MOAJq=ZIO{E5ZGSTcq2i`}5If5@%RP{c)g^v4sf{9Zg{7 z;8J65lF{p@yYZmqXG?XAn~mNY7twJ;)6IJ61->rk>PI$?=x!vK`7v>NH=jv#aY8^= z>ZNNIbhEtYoZ)b1TFJUrs&C;pZ-)6DV=$3>0%57d0v8;+WVF_m#h(;$3TB|iA432C zp4?6a#!>lVl}oY(mdsg0gnLV^LSkTcyBN7*WCPnSSi=@=nR|oHZu^3ee7bsdNiYY8 z3pxKFi>pV6t6O~jYU)}pDi|58+JRW)A%T5?3y7HMN=wEvxmpm#n{_LCGh+|nJakfY zEV91l+t;`yx9#Wl&gk#6nXW?P?r*~Jba!j7OOD7xU@$>PNBC%%51mTGS-#?$Y42{` zhHP!WsLoap2PTa7Dl{ww^eGtnsMl0_-3(}^($~f`{X0Sgje?4sp-IfpQd~m^WdW(s zkMo&{=EF^@=#Nj@0_Xkz63kS72K0c#o1VhB^rIt3n-i|E*%2m{H~i(0dzH4jn*#1< zGqw7{FbX|afQX6JR9rHFnJDAG;<55D*&*MR;h^O3KOsz=H?1fLBh!q+AhOJPYRGgR zAHZXL0FUQYMZV!L`#Li$g;63Kj4>VBiAH z0G@p$v^)c&+v~RJmuB2fsZuh^Ny%1JquxO8J=cl-c?bFu*^n7ia6tsR6{gyHV7am1 za_R+pFCKq(QJV01>Zhx?eA#xHaK!l&xRQI4h(1-=p}$0#rdxz4s&Buf{r|;%3y>vO zd0wA$y8HC&cK7YR-F@HlxO4B_-I<-)o!Pnf&aQT}TCIe%gQNv52us>UDiaDWM>ximPmEsR~KqGImP1pb}KBkg8QBPMHwOHXBz=#UlTI zPQUIvRx5)l(rkC%ex3K}|3Clte}8_wA_eyUB7RgJDK4bPrFcIM%&;eSq&{Bj(oSw? zK8cp*H8kSliWy9~C@H{*!v3=^*4s)s`X1`MAW*(2cE;7K6<>w#v~9q{SDpMg&EU5P z+|}2 z;f{Nk-+AfHx7^fxszti*`@);w{41Zm?+bsHW1HYJh4@w>>7e0L=lE|KEu_n2sK*H+ zKH>!9b%1P&IGka8adc=9)q+YjsPVAo9qd=N{;i2)*StzQG7MeQXKMa|n!y*tR^#A- zLq;Vus1w_&$7_Qco$Ev^E~wP;Jk&{0uehX@;~f7?`D+Cud<%X`Oq4Nns`y;_y4JrRPGtMO*ikS=+9$=)~}3H z0!WE8>T!5|^r^;$M&rV#8;2LkD|5}+FJ;dj5YG;$pUuLr@jduDKiPPo z(Rko|&<(k2-S+-_SAET#U7wl!-raZq-ud(Yh`3?Zb!=|mcnWZbsaS+l) z2FhcK((k1x;k6Vt9Lai4F~Tv=7Rt+cAPaTMO*gC))vg4wAM{#&%dCXe*?RZQ@mvIw z@mOT#PYjI@7Hn>MeycNAapS>itKN8P5Z8va`0g}QGN#tIq2EUUd_aT0$ODT@PCd|P zWLU$s@iN`+5YwZtp_WNVhZ=YYO5p20YHAd1<{JN~p%cr3qYNXh{BIaTeU!kG-az!v zM6ePjGSI8osIqfm3UC^Z8%-pJLqNxay_;={>1ABrv7DB^jO>Ce0(wk39YKUp>|x47!iK zKW??+w}(o$KHF9PT&%12a5kEX%2UL~-OOUqA!2TrN5?%B+!7?4$>!PSdh;tJYArWt zM7*ZgOB#)^71@5JG9QkQ9sAnX{_)*+U#?!L)sw(-+=?45#DN3XWo$KF$Z9L89E%q5 zRpe*MBW~pf9OuO$@_DQchPl0ZEEGx}!{2a}NNc6OSZy?VjmCcn8jXc|{pO@^L%ogW zJl`Rk^3q*_XZeO-p`QO@&3BiY#5s7!2OA6UK;t6b&})22gGp7LJuFPG&ejnJ9sK&bV{wR9HlL>+r=hpUX<{wE^K0&*;mPopE)f?om}TI5ouJf2u_nj`t{22~`nV zrs6`Y%5?e&wQH_hbBG8TXmL=iD#jyJXBw{4N*Ed;ps)3gFHlR>a^LJFfo^$^^1)ZJ z29OPDw2HvPWF#D%a7|Re7UAbI`MFh4GMsRK5TKG290+tXNlg6~A0Dg@s(kYEtiA($ zb>1}NxP7N()oSxWFkibPY)6S{&aY;&$2H|e&=?j(#6>i5AnH{{SVIgf8biup|JzMs_M^5s2EhxK@15w$voH(YWEZ#DM~5sd!xiKzsuks``ccO6Q%!I zKkjF7;QQhyOrEijHwt|HQIJE|hfz7k`8to*g=&$m5FM4V)Mf8e}f2*W}BYs7u9HyEnH zNkk0z#|_mazI1@Q&q%>5#5nz!s#8sUhYEih)z!z+cIByE5PROv={g zre4C$#krMPe0NM5DEj!~yMED+B}yNM%$66IV+-`sxM44w%1$|C&s2X$#7IJc>3Zp3 zwhg4X#*I>rqZC4YpHyBi@MiBmPJd~+N!3bbGAU@J+7-0^u^W%@y9n+xtAwNSIuslz%&0NMLVW| zh<^4ncO0G|%G40%<@_CnZcV-98*-PYUrPM(T^?{Rw@K{_V*ayX2E@K_vydHrrV5(e zU_oDaIvF!7L&E19YoRgy&$w= z2bC+V*u&xIDM~kl-1`)sed+){QChzQ4IJxGDT6@EnA{1DfGfCpHuq0`UdlNu5>==a z{yzAwy7(fM-?oGOKEF`7qy8XG0ydMJMeIrWdQ%ErCu5{7jMKSVc~SVNS3qN(E5#V; z<(_prM*SthP<#Ph^xl9@qcDUuRhl2SZb6s5ElqtEtL|BW(Utw{YAKDS8%c$)<<^=~ zf?Ect+FOnfsa}xG&E<4$<4J^Le39G17X@&3x@~0a@YEl0E>CB=%a{VFETSF#?F%5| z&=)AB&uc11H^WVv(Ev}wMoHtAqD?XNQ%*w=q;D6IL3TRk8QL61oY0}xW_9DKyk}p< zpXadN&Y>sqq;Me4;&Wg+`}!&Gm2wizt)I_F&QsGV|KT6bzVwrloAP8j{c!f&xx9SW zpjT(!t9&}0^->-36dVRxdXW-xuQXlXSHqN{w-3xxI05(9rowW&1uH&@v*pn&lNaYkx_xJ-D9Na zz9(#kp0Dp3FAv&QQWu_|og}gB2i25&Z7S`JSC%@~2|}=YD58v~2ayq47Eic|kt<** zskKT-oSH^<45!z-PR9#%%hE%yBE;oeyDPlDqR9=f#2mvAzthBfo zBs6CcjRVmXNk%9FiiUJ)+QB<gzR!%I87o<+d9BvPKu_)I5yyMsIgt?89JArHkGie*fmy=MEwNtC%)kdMOW@_UEb= zVtnpr7!C1yNLf3bO+d-n%5`{@nUSY(MLDIsPI)UxK#B-z%n{a$ak^6-1TFj$_O_O@ zdFEFCWs>JoXfitk$oEC{qx4_SI*gocvst5#J2T@twATDZe94|Xh}=UYY5jPqfB#y8cIX>A~JKj zhUCKK`tYa-f)OWW*#<`1bOoI(a(%ui9Q~NsiW;havRu~Zh{c~V9E|6Jg$k}bYmsWV z8r5nM?8qd2NYrytv0s&Ysre@94bTMNH{fZ4@Yiej!fV&ArTw)>dSXRvkjGr~D2}T! z+5{3*_R&_!Q;jV0$RAOIfl{>KQOo$oacc8TdXq+uen}(VzkOI3_3t5M7IY_O(1lHI z)8qf1Tht3ZqJ8No(QbP0J!rKz9;Suv*Cc+yAvfOXhqQA>-B*@Q#- zj?D|PFPCEdIJEP%+S8I?_4`?L!7Oh}`TA>$FWn<=*=X8%ecHXEw^t6Y>~Ri*Cui%% zVQFc3J6$%0(?MyKSy9|vA97L;#5LuFa;sR^y8ylZ-O8iFyKY}~xrmpP9gKBJea+MT zSQoe&s2jP@nOl0qM5 zf9bXN9QlPKZZK>Tb!}2vKHQG98ng)Lup-LZ6?wK=r^HoAq+Lhnz} zSw%}+Ejffsfqz2+Y{H`c4oBm zQtVY&G;vrIBhCAu6xnzu=M2={CzQ`B|4jLp%D>5C0>(nf5Kd@<`&q2mxTIJe(1lon zS%zj6_9Z+P(o3=4Fwo`F4!l6D2x3);7Y~XB1@Q=00K8(82*Zqc^(c3wz|XS?BadI9 z!rCXz6RV?b!`4k&Q9V~xD@--in0toG6P0LM6X%4crV%y4u5M{DTxUr7X_>Gyb*PCQ z55ph;;r4n@s|XMh4=>A_-%2rRDa7xsDNv6rWlwX}@c7P$Wy;L7ka_evNtYhpmGAP? zQ>D&ObRC(cTcuy*Byajs+h^X!AIa8=#H!pfh=v7@SBgKP6G*P-P3e>@#ez*4(8Y0#LcR6c|j*kXrXi(GhHI!L7h*6%#xMM_EA(7#5rg@s} zX>i>$p)lf3&9k-Z-PV=uv>|ID%<80Qrt}Gr4Y*~oSM=_^Zo6nm*y7>5LmFU96U{pq0K-)N`w8)y>yq+2)r zm7yCPT<&Ic{gTonlxDabGw`DF!<3`s*uX2i1d>?zE%Bk?ff;wnGq!qo5tY8h!>T=T zoQi2#mg_iIK^N=kY)jQa^U=4eGmdN4n|0H5W-=WhO`|1|X**LHj-^xo+G?_IdTX<@ zRP7JgyZ1}?9nJSN=%hWBdWJRnA;@#f$R3E3(n{ffHI_t-JENVXR^bn8mbQe>D(cdb z_Hia@%2{^?4XkiXZFQ#0jK84zw#bOO#ULYxSVl;Vx8pGy$KhB}3NB;JPg{H!cIOBN zm*78uEZk_`43I7Rea2>g>jpE~ZPE#C{Nlb@&9E?-&%N^at#ax+-kq-(rO&rtrj*~> zvm|?FIQ`BWgs1DQBY|o~mLkDwGu-cZcls|R^?FjNMR8cE20^vr`o8Nrm5S(GX1$!J zescWO@x%>}ZLGn~hmRbtR=ob9zE^Q(=CjWBYrE?}o673~|;`6@(|F&==>wO$pn za}`+&jg=L_ytA@m*pIKEp0OephPR}hdJBmoMBwGnwu49>AZmV6*8lT$NW^j1MTA|< z20BmHgfF7Z8%R<;ttY5m2E$$?Rgv|!Gf)@ z6~b24ehj*&arLTUUlY+E`eNy|Rr~a(Awf-ja$wj4J72dXhm@Mq6r~2WI@+OCjYYw| zosk#*TO}fbl>iFp+jo6}YyUA<`pAG)D~Z6zBU0WcAl{HQflU{iV!o0bxacjZ>{<%p z(iLE{#5aOa5ZMb{q;Ek(Qzqetq9mht$pzI9QFWkF&EzZc-)X#^H>tW|mI|clj{2sQ@Zc&U124%8A4cVKHo7cLl2=m1o~G(r zRyI&ZwAkCiwHTy3*x+_MmAic`UhJt^Y!1CNr_U=(%2^n(50*7%j3S`VkQ%xzED}U~ zigj_lmgGl6^dj&?S;r&vbr>KL=LA9eMi-Uo6n&c&_dAV4_4=Wshw4>VrO=ho7M6Db-}HiM3Sa?yo#g| zKaIwn1GgQhMfc1NV4r+=zN0NWES#UrHxBngGPlu-42HDq8ub&CBDn~zqGHfJLsvDX zaaA+zC^nOd?rVgqM2V6EXU_HRih=`Y4s^$VT4j}Gt$W+XT-ZC@nA@0p(56&3ahi!d z=w~`*&{Nt_$+~7FF7%s<9h)krwqr4x$&uexo=CX}GQySQD1Pq+0|76Qu&j>1&4}7O z-c$*roJB_>#%UjtFl#1kE6iYTXP_{H?hJDhXlI1=;SNoMn=6PgmAcCRRj$DIZb2aa z@$I@Gau*(QtNdlN@P8nsrC(ZNMB{9Dame`a&S} z-&d3k!9}5r2g0WY*OahVBz!*2_c$5HiCl%`;t09}2uC;L#385^xmekxc(4CJTC$2L=L3l2{bStx zNKayFLNRL*o9~DMhZ^^|B@XRFRVcbB_XDnBiyNIsWx*?03BQY~%^%|?UngIHdA+9e zMI9*p5weRHm4Kw=qr7!)ya{owzWbW3tl+nuYB4@|#m)NrP?$K$3mnxbh+GEibZ)Gn ziI8ECvlO}JSJ#rL2JP$78G)?p4MFgt;-o7Y4}@K@u8j2RAd-#o5{!IF9{iWEt9~=`n{7kWZI#?g7&ocWYS6CU zM*PKU^ak%%qj^YsjyI`iVe7jK4@MZ1tpw&e*WX&x-mR|rg5=H49~ys_}D9gXMu4j+V7ZhVhSBR-me9V zj*ImL-EXwU*VmA!GFeBMST8O4!RZz~S&qmEeUJxR6T`mvw9T)|Vwuy;Iu(@>Bcgu$ ziEYc;e!?hm6#W0q|Ko2n>`y%Yv*dqCaMFZI8^+FQ<+UOTO5R6HN12rarh@VUQ8pn6 z9j+8JCS#vq*}3y+D7=m|zpH(j$1NWb!~Sz}7x~ZF#&ghnnznHTRkSOHePxOkHRC}$ z2lpc&KHWWk*^jZ)Z5#I1MKrTt3`HmG@B2-9HOAugVx;~|V{zXYsej)QxqpPzLWeE) z>&;iztE0J$ZVYR0?nZiai2eCRZvR+*7hbMI_eFr>|7;mgh~8ZI!(=fbgbzGV)_XJb zBq(TWzaswo82R#-zf1!Et?#QoMjlH(^@Zevd3l$VBg#my>Yh_B2(Gw+QM`Zz|Q-6qwht>7gi{r>_jk$}SJm^3(CpFJL! zl?YTw=B>1A74)Q;ck#FCF4x!#2j({I3xk8hcN1&anI|v(MPUo)gVT4P9*E5sEK4`3 zrGf(P`oT<#fb{+G^J9tvFdY8o8LNM@|8!&fk$>oZlk0KgQuX+m*^(80n7(IlS}E6O zB35cn2<_1$$rv8JnTXAh%TrUXa>#HVCwvB7h=zP1OabHChpDQznP{H-vnLoW$?+0(~gqyEhC>O)0y^}Nh6ut1LIRa&C2?ijgFUl74Rp^#uL9>7=B8F~@ zG3OW(FX8$C3xk^>oXU|TWU1=a$K-tAH^Mt=C)aBB`)ot6HJj!`u4#L!N^Os|4Li7|7${gByg)^x*upZ@x)23nD?nHF?&aa`3*lW5Nt96uR% z*@`HI66#$FW2Z|oveq)?!x3x}Xoj^J=4mTzeK=mf8I(UNnEO9aruu)B@wnq2;B()# zG|AhK9R7Kr07BhP%-N$w*ntmtoybrR%<*5_i|t=4_(u*){*nIFG(Qz0dU~QKOGW4S zBb-uKS8>{2T`e7N7mXk9x+srJ@!1e}GrAt;W|({V?zXQU+Z%BcvprK?WqSi|{uA4) z7;r55V#>>-D;1>%Eh%{fVHU(G@z{_LIW9>I(a)@w{41kwjLx2|oIN`>j5BA?j^Ot@ z#SgMz7-MmzIG5g#+8@(&e3+5CN*{d&*75+kX~b!U{%nJJu^g~MusWcDusWc*wjJYf z1ODoA7miMz95ExfX~fv*EFQAamiSTJgF6zBZi3U7%Xg%=izZ5KiX2NmE_qzm_1b zW4wsN%I#<&7~`rR5|0bIvMv(Y!rxHX0gz&Ali(ttJR1*j`EW&YKZ&S~aSd6a==yM( z>M}q}mmuFf*Lxpbm~o7D)1A}TDz&PrF8J>3hb#w;0IcR}8uuHvUK^MyW8^PsWf&P| zwW3vYM-LFR#hIl(VKqFLTGhbmB~1gSo1Q}mL(1#Qa?9(GRlhzkd911GZT>ubgT30p z3P^ccV)4eQ*ojQ4+6Qj|<;FLd<`}J6YrzTvt*Vnh(M(3DW`JC1YLrxU5!d>sKUMw; zzK@Br0y62ll#dA(lTEA)>0}C;R8&j4^k$S(;S_=sDVoo22I+Hs#L=%7=Lop!QMegv zF8v#?jmBI+7zGM)Mi|~!$7`GLGI$^nvaeW!7nnJ`9a*jDvB5nR%5{x$^|%J2DkbQw zW1HX7(blG0+M@8fw)9QYV&uKZb<50_Wi_FA_`lxQkp!2hOl6h^GErYeKs=>k!r(tB zJ0s+ss*-Rc%2m z;ld~UvX1d}bhA=|oUSF@pZUCTYvYSC8P9>lIRpTRk2V7HpByWuNHh)TV% zYJ>p|Lp7|q3>Uwt?$+Q}NCV%lh91;2At&!YoXQSMDF^w2uw+kxiKis>9FM6FQ}_6k zg*^3-7jT)u=<)VSyS*}jY#!MbgrQ=yO2{3WZ);ojeX6#Sf-v-DaX|E~^nuAr`)zaS z6LXWxgxsmwzIN98ZCzak?X&!xqA0uafAmK4U-oHux%~dNj5vdvm&@jTQvLsbQoMRf z0C=2ZU}Rum0OE?8jfdm;ZN4&aGwJ|E7;02EG{ETpKmR{w^kg&!ayb~7K&k;!1`J04 z0C=2ZU}Rum)L~!%k^g`Gf6VB~z{r3CI2ZwDk_3tX0C=43S=$bSAPjZ?v;Y6MiNc(V zQIOIW4vGm6jfsO^PHS%)hGBTUpGwXyz%Vj!@oM88@XJcTxl zxmYX3n)Bl(zlsi1J~p}bQnsP(tI505HProfJvRM&iC`kklSk~r+(YFf?!EL}D&L`V zVGfTN9#WpI#v^5mipPxC$%_w$KU}`O-(S=>fzE9dFHL{W#Zd2II!TDi`>}IUep>l= z*j!!4e3%8Ne3{PNA0u#V%>>9*-gxJ8y?X+hyGDgH#D;p%BEDm+5+Zb z{Xy7Pir2PB2z&n2lltu{ogutT{F#au3JcG-iky$ydn9Xxa-R;Ly^Wxj+5L%>O<|Bb zM|gQt_#a7#Z5Ea6auRyfz*>qWtFt|m#I{;Gm0*8IZ>!k@hW$X6JZ0WH%lQH#J$Z!y z0C=1|*L%2EWAg^^`L4qjLJ>kQAtWIxIv0vi*$7cO5Q<7~Qqe(_3hAtNN{S>2QAk3O zN-9MNQFM^R8;THqAOHOJbCt`oG`%jKIpfVd3abQIzwscdrGU6aU2bW?CBMyOICS(6z z=SP%vU$$q&q3{mf8*$joh;joX4lm949|7ZteGx~>UEcjsgCmYc`DnS1fn8xs#D6-n zf%_BZ#~-7$EUs=4fLj= zJPpM*DrWMX*OK9NzIx7|9&v%|1+ya>$do`)35gG>0ll@z`cR*jWBQ2*N)C_vc8FSH`DGG2|B5#6D>N|WBA@` zhHiC!n_9cz+tmzqb>B^G-Eh90KDXo9-F|oL|I(?4Ts`>QVMgwtVNbog(|#}9d*jnv zUwW(QE_L6HLtnW4aO~&4zu5j}Xn@#z)G*K--P*s--QSPj{qrJ*z!-x2 zP%%Tz^Dwy{AkG8sAENbebNev8MyP$HT1V4uw6ig48f#7-f%yoW@%T-^VS<n8F!ruG( zxso=ka9J&8HGXSgtQGSi+>cy8!uw;IeB%5QHGQhS^?JHNuQvF7e5vlQCb$2)B9Jmvsa!!aN1}8Z}!i=C?x%&khO|JQMD+P zst|<(%17bA^-(CjJqia`jlv<7qfn-M6v|p3+9?W$m1e`EP_9N44!1sHWfaQKj>6Fk zqfi0PvEq-N6NTeiMxmnE<4dvSQ8-~-6i%$j_*HVP#OI`DY+V#ihI7iWC{%WKs{1O= ztH3gj;v z4bE=l+fgrWf_F2YTUe(yQRuAKo$t{4bmy zxb_s+6URH%)=PXZ+>YJ4 zQQNz;e;2={@+?#1axu%*{T{#f-LHhblD4bxTBVlNus=}y8qbflc&_F55v+CUS?4+M zvHefkXEfR%-&eS9a{jg7`8T+IV|F*|$!6CrW@@Xmt>U)9-=+uO>dST-Z5Q{Q{T=3e z2jB1I-Kpjurhm}! z&n;2#tStN`=AY@2#IQ&TrP!`W68GLcldK%;$JRxXmuJP16qR9ZA}Q5{EsDfDXR?2% zNDl1C=0{T6y0rB{OCmXhZ<(f%l!fn|GAUO%lEbZ!Xc@_ogCp^5O^$|h%FWI%AZQ7obSA`*d~qHs7Nl9_d@zyBu`WIUQDw~;9jD(OJO#H z-E31N&7HTvsRcc}%O#iLU5r<;JjHx37k35RE9Gu!|0-Bl^SP!O+Ym{sl1Q$#z7BS4 z*EZrjN0YWaBWcIK9gZFFzhPV?H{#Y&u8xx(;;NQ&OdtB1Vey1&wbf(>{G{1Fs zB>tTzU8^#)&`ob{7uTKc-r15KINgCmPkHW?x0m={bnLD6KCL3T%N*P#=iRXT>SJGX z)KAX-6`1-5;4(mtdvF-2ANQ*NK3WWtZ;+l0R@?n%V2JvM&~d05hT3~T&Ie&UB!0NO z4_iO%e1x1M_>YulBp##W9i{fs`ZUH&je$QF_E_^V7S1^L@W-3e@nR>azeGwZfM;k*I!&410@zNMFM zxh~S5#eCm31MldoSFU8qzgIQ9OTVS&X(_*DG+U-`%k6m&OjgLZ0`B{8-j{zRpH=o& zsdY83AHe+p#u_}=%DLA4hxmPj^Ex%GQ{%_#_(V;gT7N3`Q+lk&bG@_Ae7wC}tC%Z)p1s?9KRWHji8McMF}jdj4$H^KJNSGc%sG$#%2! zojSi$=MH{5aQxnk>@>4Gar!|Yew6=5zk&a$ahKljQrAy@3qSMw8NXlf`~{cY_V@7p z)%^S>@9%v7(1Sna+^6QhJmdZr^ADeY_D1S^KP_yDG}#nsRxi@LC9_|&F4Fx5Mp~*k z(*3JOdO)j453CVs>5OfN^q~2X9=s^hL&il~hF@9hL)%1p7~gW`B0U`Dk-H-;&-dsG zksc%d80!k`KRqKowhR-0-0Vmzvg5^{(4Os!^u&3QR%#mQNphXU_as;+%W+C$#;*#_ zr*)6iH+Xt_u<4PW(TBl4Q|#GrtFMo==E6wN>Bn|PdTvRiwK_#wyJDnu#ME(K7e+nn zdgAM;xqdY!wt+eu(xK6)NY8_NKD)r$vo&puM`L(R*hMfd=HpqKHltlLd(Gu*fp-ho zmknd~iYG^UxjL@s80nSe8J;c0UB&0Bm62Y}TB+AFG`)@nt<`vaBQ`bCwzO-T=R2C8qA1X@3jfPW0@I@2%>(ZBC?J@asyeuDEwy6KOZG-PC!z ze7DQhU5|YKrak!etjy@$OMI{Gk@lV$sb^{0$KG8yd+$v9>T^GQ`imdXEYf@Q@*eAf zrI_oz^t~7N`^?UL;s?=n(DFzJ%XxnnMzm^#vrN>;H=338FulLCGWxQU|k5}P%k4#^4zCiu22l^ zR-}vkzTS3yhn7q5TPo)=G2Rc;_vpC-*84D5(rG14J@e94;#bq^1A9Kn(+~CFW14-8 z_b1LirT2O{*W3FHzt3s&x!5n{{6dZmt{ddt;5YH5^DpK3$}DY^XOp_VHX~oF^&2z2 znZ}!GvPJ*4>ho4Ho^9ziv-B;l->PvtO}>NkowFTk{9f!2&i_ZVU9|m4?LXu83)^ju z_u#fi+^@L*hRa@fznkqp%-^4$OZ(*Cr>4Ke{q6Vhw;0c}^q=*SMKRkMSz$?JNqe?1 zvUGN2S!FgevV34Tsi6k{nx&Z>=cw!4Mr?XywfNTB9a(MhwfWbZ6d4Bw}HG3@N0lyL+eK3 z8maxf$&sDU_X4<$heg(8U1S%EyJ%5lP2pY)^HRB+(a5teYtE-RPAzb4AbR{E)2l9UyTa@W zr(4U&Zr79U=H|b6_7K-&OJsMLiJoe_Q_P+Gdg)bfK7E|`(Z9RoyW4qR`TDB0AMX9l z*8sc*=+!-DVW9rp`>%<=Pwxkr%fV_MtS9%=#rtJ8)SL~a|493g z)AnK5Bh0`^{q+r=jgn)O^(eTbX*F6+qxEqN{$ptFT{9c!ew^3|t`o$U$X^0`qV**D zOcFC0{$w1cRE_L$+@`rcp)SwFY&tEUf-^&(W~k?B`ps0|OqkEeI}7Hsc+WN)&(mWL zPA}5>CHlO?f38`Xr*|)_0dm0%r^8;QcUr9o9nEH^jf8hBw(_ zeS3%QOT;Xp$Gdnf#c?Sv%j8=o_cAlLTs__iv*lvmGso}Yvx1Lz!fcgU^*)%b#^nRC zYv`~>jce7m7LO0beW;#~V1EQ_o%4^ye?s3+;jTBYpYi*mQ)FNIoqcKMzJj$8&rN3N zYdU?ye~VhSz}TvvTlHvLEoQF1^?cZ_Z@#Ou@940DhCAf@-Yk6&Yp1$@!1+hmKYB*| z55_J%-G%#4>igMz{vy{e=4`j#?bhc#wExxqZ|d2rKHu5dUf93uyR7A}`t<`F`^vFBPmy4jp%*eoXF3Y=K|+VoL^Kg@{7e@IxzBPe49;;yg3b<^YMJmFKZKdvD%91 za=G;t%_6^&o>$`6QZKH8do`Zd!0~RGUyI9i!y|9qp2^#qPa9`#;9l=~y*ye%H> z#I{#!2R-iK{svdi*8B$A-`J0>kGvx-JHqRzS2y8#GrwEp=+v0GcE+u<^Ult0H5a$h z={D;wX2UZ#?`p5BI=hLxosQkjV0YaAt4}@j;0`%^^7G8idpYZEZu-FWtj+J%v%B%Q zTd(`lt1k`u=|?{`^w;11W}!c<0qVcU{y z1A67XGk-|E!^J%;&j{L%gf|L?Z~1(TI>zepIJG^3(|9$FSH}diUjnPdyicUVM72E1 zZ<6{Z%k`K(K1SauwD640rUv6_X6X0RdiS*1nF;$DeVzq( z7QAQ8*R%GX-52?6JfEY(HP`ISOUmv155H|X<* zvp3cC7LDKXyI6$7Vlj)&#bTPi?fz}pOYmRf{9SpM@?YkUS9wd-oV^G=$7K%WoH(i(AV+^^N&wbmc;Sx5Je_2(0uKBe<|c)q>!&(!fb z?w_me3pu|qzZ=B+{?5OWcOyMEnwyQZ+eEWX`tda$U&HuDf4r;an_V~4WQ+Z+YT7D( zn>^p@$#xvJtL;13-#h!>41I4_cFOxB-n;xZcDeop<0lwD)8c3I`!n9Z;O*Tt->uF) z?)T94SAF```Zt_@H&1_9|0(Z2dH&M(zvTQ|KmKVGMNuz`3XP&DsT4)&zcw$5vQbf# zSB;{g;waj$3|kXLrRGP`{@bJIfXQrq6dkxTib~IpqJxG-(ZT!`9s(eAR$pk+klWzoF7r8p-Vc7 z6zOee?KrZ%)_M~u4JY6voPZN>1Wv*Mm@HelAp7L?_h#PgS~7qee8IzMdAPRwX?1YH z?vJ~qJI6ipz2iOtJUbpxe{t;N39pU=+~UX+yxt|1A>JK#aD@-YUFx5Xd*pA&ect-x zcz~hjJNB{m9vugG@ZMsjOk;FZkMcxS%}QqbBGN6j)vl#(a#e|GIB7XcSxFrkxe@VE zG>2?vOe#{XO0iItkwu|It<_E@CfpiR&&T7`>0zQu#851QhL1*s8YARLs8!TfkjSt{ zK}VmN{oh^lB+Ykjdx0rJOwMGM%v3fP(U;gT7xVuJdIx^jjH*G(KIM!;Nm|(KX}Vx3 zDz)`?R1)eTwl-B`jxj53&4>2(@)y9?b&vo60C=2rT?KUGMgr~d*p4BzP-afsO}5O; z+$)o8D~TK1axFWsWoBk(zA`g2Gcz+Y-H@b_o!j?f{r?9wjM~}YZ2BLXZPI@n00m>bLk<^}VC`N0BU zL9h^57%T!71&e{j!4hCe&VWf~~;TU>oosur1gQY!7w-JA$3S z&R`d?E7%R}4jhmN1yBSo7z9IL7?i*sU<8yw1yq3tYG6-L2R>+kCKv@{U>r<}?I0PID4g-gSBfyd1C~!151{@2H1IL3Cz=_}_a56XroC;0@ zr-L)VncysNHaG{I3(f=QgA2fg;39A_xCC4ZE(4c?E5McDD)3)$HMj;`3$6p#gB!q& z;3jZ0xCPt_ZUeW2JHVabE^s%v2iyzp1NVamz=Pl+@Gy7;JPIBIkAo+`li(@vG%ev4dT@QX0o)L71UH78z)j(1aC5i?+!AgDw}#um|G;hGc5r*R1Kbhr1b2qJz+K^P zaChjyJS@N>bm1Tzg2S)`_kbg?3@fk-Jy?T#!aDR}12*9(9E0O<0?vYa!M))=a9_9| z+#enQ4}=H7gW)0YPFFN7Dti{T~kQg|7>99{vhgjd1;!mHsm@LG5sydK^FZ-h6&o8c|+ zR(Kn{9o_-&gm=Na;XUwPcptnUJ^&wt55b4wBk)o97+04 zUxY8gm*Fe$Rrnfw9linIgm1yO;XCkM_#S*8egHp&AHk2|C-77F8T=f60l$P_!LQ*r z@LTvD{2u-Qe}q55pW!d?SNI$J9sU9Tgnz-m;Xm+SG#dg4B7`s^h$4nKN}wc4p$?Qr z8I(mi)QP%KH|jyXXbPH&rlIL*b~Fc?6U~L@M)RO~(R^rrv;bNVErb?Ei=ai(VrX%+ z1X>dHp{3B$Xc;sE^`ika6D^CDL(8KT(28g!v@%)+t%_DdtD`m0nrJPwHd+U*i`GNy zqYco8Xd|>S+5~NiHba}EEzp)|E3`G*2K@(Zi?&1CqaDzWXeYEY+6C>3c0;=(2jx)# z6_JYu(GVI&CA0?`L1k1yRpg->+7s20j~b|nM$s4=M-ylk+6(QC_Cfoi{m}mC0CXTa z2px(KS+26Q933EhltLARpY(Cz3B zbSJtC-Hq-+_oDmI{pbPoAbJQrj2=OcqQ}tV=n3>BdI~*_oy^Y>M@1pn6`{)DoA^He?j6Ol1qR-Ih=nM2E`U-uGzCquj@6h+? z2lONQ3H^+ILBFEk(C_FE^e6fY{f+)X|Kiy&zz`#hF~Jlw%y9xIaSC_fG|u2G&f!kn zg}ZSN?!{B^R6Gq&$Ft)(@SJ!qJU5;P&x_~7^Wz2Zf_NdkFkS>NiWkF+<0bHtxDPLd zm&VKB8Mq%0;F)+?yc}L0uYgy?E8&&#DtJ}A8eSc*f!D-q;kEHPcwM|6ULS9OH^dv^ zjqxUUQ@k189B+ZQ#9QI5@izEBcw4+3-X8COcf>p4o$)SsSG*hE9XmLW3%H0~Jcx(z zFfQRe@CYvB3a(-g*YKXWj(yy~O+1Rn@Hn2pv+!PcZ@drQ7w?Dn#|Pj8@j>`td*zlLAO zZ{RoaTlj7K4t^KEhu_B^;1BUf_+$JD{uFBuP@FgQQ7@WJ!*6k}lFsdPpys zLZ*^wWICCh%t7WPbCJ2pJY-%nADN#lKo%qmk%h@3WKpshS)43EmLz>-DY7(KhRh)S zWPr>h%aY~D@?-_FB3X&7OjaSQlGVuSWDT+=S&OVq)*_J9I znN&!Xc%(-5Bz5AG25FK}GDgP91erzlB72j4$i8GhvOhV197ql#2a`j{q2w@fI5~nG zNsb~%lVixSRBHiXxJGq10N$w(dlY7X$r{B2SZN$g|`*@;rHgyhvUmFOyfutK>EEI(dVIf0KX6zjQVVD5QvDN+_j_a+;t?nxY*vO*1r0bF`Co(Qev9d+8K9 zl}@A6>Fjh4Iwzfr&Q0f`^V0d~{B!}jAYF(qOc$Yx(#7cFbP2j7?W0T4rRg$s2JNQ< zbS7PvE=QNAE6^3`N_1tq3SE`1Mpvh6&^75=bZxp0U6-y$*QXoM4e3U7W4a05lx{{h zr(4i1=~i@Wx()pg-Ii`gx2HSM9qCSVXSxgBmF`A&rw+~20xeRP4$>hyOiOeRIzr2| zLaWrHHM%FQQ=c|ylaA6cI!-6(EV>uno9;vRrTfwS=>haWdJsLB9zqYLhtb375%frU z6g`?ALyx7$(c|d}^hA0RJ(-?DPo<~P)9D%XOnMeQo1R0@rRUM}=>_ycdJ(;tUP3RW zm(k1V74%Aa75y*0nqEV%rPtBx=?(NodK0~w-a>Dsx6#|_9rR9m7rmR_L+_>c(fjEG z^g;R%eV9H%AEl4c$LSOFN%|Chnm$9HrO(ml=?nBl`VxJazCvH6uhG}(8}v>37JZw( zL*J$E(f8>G^h5d){g{42Kc%11&*>NROZpZ4ntnsSrQgx-=@0Zr`V;+`{z8AHztP|6 zAM{W97yX<5L;q#7F~A^03^T$gV~n!|OR^N}U}=_NS(am+tc!KC9@fjIu&Hbso6cru zbFewtTx@PO51W_G$L41Xum#ydY+<$tTa+!v7H3PaC0QR^iY?8SVKZ1i8(=fpvTQlF zJX?XS$W~%2vsKutY&EtzTZ661)?#b3b=bOWJ+?mEfNjV&VjHtf*rseVwmI8^ZOOJ` zTeEH0f7rHcJGMRBf$hk4Vmq^4*sg3hwmWlJo)uV;xonUPv0+wXd$18!W))Ut9;>lE zS)KW;!J2H8jj?ey!Dg|&*xqa(wlCX{?avNi2eO0M!R!!rC_9WD&W>P5vZL71>=>hS6yN}(^9$*i$huFjH z5%ws1j6KetU{A8A*wgG8_AGmjJ>c(ldyl=( zK42fRkJ!iT6ZR?ljD60&U|+JY*w^eE_AUF4eb0ViKeC_L&+HfWEBlT8&i-J3vcK5h z>>u_o7xO<3IpUZTPC4V8CwP*lcn44O4A1f$@8n&)oA>ZuK7~)^)A)2gJD-Ek$>-v8 z^LhBZd_F!uUw|*j7vc-^Mfjq8F}^rof-lMY_)>gnz6_ti`}qK$$(QBJ@#Xmnd_}$z zUzxAMSLLhm)%hBHO}-Xio3F#y@4|QGyYbz*!}Gkri`?ade25S865oT5@G`IPD))Ge@5$@j=MCQE zqkN2y^9eqS@5T4#`|y4Fetds^06&l)#1H0&@I(1w{BV8*KawBCkLJhlWBGCXczyyu zk)Om*=BMye`Dy%geg;32pT*DS=kRm+dHj5S0l$!6#4qNT@Jsn+{BnK;zmi|Y|I4rD z*YIokb^LmM1HX~q#Bb)e@LTz9{C0i^zmwm^@8+)1OJi##DC_$@L&0F{CEBb|C9g4|K|Vje-pDM zKmyK&X7mrFm+32%>V>k~H&`l{dBBA1@7Z+fp{!YYM$C4=glyXmSh_!EJ77Y#Z3iqp z5VIXHA=|bCmYx~29WWu=wgZ-4HfB3uLbh!OEWKRJcEE&e+YVTI`Izm13E8$Cu=ENs z+W`}@Z98D;6=SvoCS==oz_?RrltxR9iC(8vua%vu+viq?N>$fa_HwOiIuw*Q0ZTe% zr(RJSQBeH4<4%WDE)7-t@?N9iRSYS()rMP7XyR6jMy`~K#j=~y#BVtDhOyG{YE+<_ zGtuRgYr{_7ZS*y3HMd@Hd=Y&kA*bA+PQ{t!RgqIEGN)Rsd!-^b&;GPitM!$t#Ztj( zcy%Ng5r1X3!>JdBOQZUAm?1f*UiZfOR$Qj&4)qniv1&{xyMv8RTd0?Yh8r1MY1RzQ zJ9XuOMWyp>M3v)?h&OA-uu%32BV#4sonpAxlnK`=OW*Ab?`)IjuoM}%ZF|b(W^GQa zqSNL?n`K+%IW4Z<(GGU%|1oTLWCh&rNE_x_bzAUp<3nrm zb+*YlOR*!PQ_6}=YqEB>$;n7D<)iM_Tqh`db+^&1>$L8QDJoc#SZyia)vkBil8R!? zu@%Rzc0FZD(==`j*S+S@aNn>iDzS3cJ&8e&)|xdtcG(tjddOQ-zGpI%7VB2bdnPkU z$Hdt~)|P0!lNz-;u!3uKpp7zdHKHofqbOP)Wm`lZa2sC`nsd%Gq;AP;J zYToJiHMbxtgwrT_>b*K_g*(1z*h>BgbQ(!#%&8YmM}7tl0v5v{x8ZG2Nn+vG&3h&UF9+`fTg5J%07JafdBXO0+o zg_yiTAUiQnoWK*&J=k*H$c2I}7Yarmj(IX1c;d%oKad+0TW(a0JnGreatRPZ#sIM^Wnv6??G%Zol@rMKZnkgU^6pX}6MkwJ!i%c#qFQuHI?0$JqDWRpi2RWStuEduZ0I6dE}1b> zCaz^8DoTCLPlP;`cl;4odqg$v(2xEgctwmjV2cB}ywebsXhL}cM%y^ys|9uu`?^ z)>DSatP8B^(RyIbYg%sffYuPdF;RAdK*dNt(8o%}#xT{SCoe{}MNx$MrF~`Yusa=#vr05)$#_is~zd7Ggda^wLyw z@hFL|FC!lApqz`DG8@ooc@;e|XB1A$jlN;QOm%BFnA)P1#oOpsyG`%0q|nc7i)e=t z_?3xkNkPlyl57Ff`MT#6MWh>jwNf<^GT}muUSzEhBiD*3?uNRecgqH3uvB*kWgRr! zcLtq$N%-D0O%G8pm2VcJ)?HzqZw{HBrYYL%W~r-R|MyT31MmPD2Nij!B&s zo6tjUTZw`Y!&vjCnYb4Drz&m8tUfZXMOG@Ms_7&%am}(K5_GuLiqxVvi+b9a6!}pX z(;Tyu`q3{+V9l4!r)jhd>yV%+TDY1V zT^b@@qHZ^cA(aM2T@T77ztN$nD0#9yO)65VI76}}6j0jGNRIABLe)iQsK#DuzHM=P zQLIf)MvC!6E$CQ&v@NW)$;n8`X{c9er0uD;U@v{O>nTf0Yuu~_1rGfR{iI8T*+*D>=BZz81HPVSBku@TXc(;No8$&NL zam}JS8$xO~l5x?pq-UfpmXv6PElY1}*lNBSQtdeMEE#bfm@Y)&OJrL_o9pTx@#sBr zt*UJ;3Ov`U+EEDKCEFquqJ*w9DOdYhh3YuTm4C==npdsAjLNqVle*Rc+RC zkz`h&1EJ_O^JP~B(WsJ# zEH`d6%gsfw-+n74^k`gG%QL~Ge|oD}cS_ZuI<=c*TSOCJRE|=XU@TXH&4FaZjZs*z zk`XsXVLW;*E(-AIgq`P+nv4Wv7Ok+SEFm;>%`#ES5=_{B)huQuBW^O$Z&vM06tq*L zW-Tl#9kxOg(Si78n5eLpCM-$3gI9FT3X6uS*~AiKIdaU(T|~DamxW9oMZ8uv^WJQW zn2fmawcM;!{k|cm#tatEN<}sFvcK_l9GM|Ptcqwf>ZO`n#F8XcA0&OO(}L%Xlw{0m z6TDDsDwjxrsfD^*EQ!&zZ2kKC^1+s3SGztfE=3cd?nw-Cwx;tg5^$mJ)e_>z_eCwK zCqvZF3#JX|kYLzrm{-&!A)j*Dehd|4yU?uH-D+W?FJEftBoBn5+`+Aqq-tR_Vsc;;GJ9b(6lGXyVKlDj)wQ^$ z7DihnxiA`+?1j;|iCP$qOKM>>F6lNPu8GNETo_Nsc*NAgXvoyUXvlQ64QaEM4DmP* zV7BOvmI`v8SQp@A!~-MWj~fY|DVCg}x>M;hJMbY54F=){104cYysBxB0;2XM4M`QH z=QDKkqp_CyEva8i1C}(PrJ0sAQ%lQQ(z04w&XSfBvGeuLHI|6UAFo~%vGc>Wiy4wL z&zfh3F)2&v6`3SKl=ah9zVa_G+$a(L;(v zrQtzGpD5N$vyLU=qI=Kh^Rl*y<|glrcgSbi^d%wDDXmGW*c==*^_6POU9;ee1YqJX zFFJ&zD+-A2?TLaZ^=tA&V=WC>(g1gd%(y~5O~Ra8@%AXmLo0Qi z)+tNqHCT+bswIEeq*ks~H9}F0aAJNaVY6nxanHgI|+`Nk(0=pBz8Ov7H_%Kp3kxWLsTf?%`92yP=N}0H3B3N~s zqUR{v5j2ts&##nB*3W4R&6-~-y3r7J>i;oJS-N>IG2|F3%O#@Ndqrw@Ak=I1l4-#* zam~DXBPfN*h#RA^Qgy^Ol6;z59d*m1g0zmmyC*T2(xRCjxU)^pMT)8EmJs=D?a{=w zu8>Bj5Mt8wkXe0)DVCF%M2_RHW^KsCwI~8%Q!*_sSx59HF-XU>$VSbnxjK8Mw`h@n zJ(HPa;$jrPXsahCML|X*=1g46hScojM4SgO<<=eF#F%PKUB4irz}?2MTd%s}RY$E6 z9uHVn0KXCCOETh9?L4y&ShnlaY{~Bax+gKn*jjlg=GH4ToFT8;?$#K@;$$ygx9ihw zNpw#7#GuZ(Nla3f$RutS-Lz;m%cVjoNHfDE@I-wUi8~S0@d-Nz6Cp(cCB>iYjzoEo z&@>f%P_(4-&6{9QDyt4CwY>Gz|6@4&B)Un3-bsz-h^g^ZnKHTAw749l zQuibV@rXvL*43`ZtwyQX)vm{57N%-vn;f?orgCSS91lDiYjw5jEmp@1lUtQ~Je>A4 z9SmB#&New7irU1RBow8`{S24LI@{!_ZA$+neky%>Oscr@(uRJ`p2}RuTyKp>u|kP7!Eg2dM7oCr)a%dHUspoc0Ha{ep!qp{YjEa8_X5g#PHlHigCV~ z%}o1$rt$O$uwi>J)2Qf-p76>5hqWDN=GdNSh1D6HGb zi0c+Qib7b26Cu^EqdJ?6xONlP(L_kIA?ml>D6SL4u7e%6qFqLHE*WuS6xOk1#C4|_ z)F~b?onlrUN?C%Ad{}1^Aq@OjmEzs5SoK^f!$!xAWm>Kr9eNabW>Le6KL zLMkGq$RJ;-MFs`SMZu4e(TEg1oxcGYkBr=LHzGr&!N}gQTe4gYH!9_b?ct0%k+VH& zLs5+O@GWbikXY7yE8G!xA|jQU)+<$tmO;^SQt_-;s?-K-GBYAxV=yA32wP;hW|8WU zMQV+-O{`FBeldz$&5Cs08H)_+`N+L5hRYTc*%I0Fha(UCJk=3pt&)7x-_H;~28Ky468LaoC z4Y6iA>6k<{6CPBDT)DtdZD4s^H!)Z?_e`)vsX;MIteO1|jXU(iT)Z$uKF8ep4D$@Q zC>vf`ot>A%!;~Sqsnl4thk=2b*c$AMLf>A?tKk5t5xG6)i^N}tlM-e zG$t2|3Z5`3G~8k$)UZTo$gSjt+^V{cP|25unqJdS8)49`I3ni_lQ=Mui&!Ex3~SV# zsxOGAPKT@aH-rzF({dslFCiKmZHy&CL!|~4f5XkZe3YGhW~l7tMblStMPu*yJ%;)v zr_X81Etqo2nWjZ~LqaaB`ChXztgLiv1G(!Wo6kY%1yLGRzx}Bp&l@t`71fvz)tYK^ zD5vK6O8Tt@PMUbn>##Ubl9ngw9XF8n}#KkmAVt_wYbQgN?sS& zRy7$3+J#bmYu~+9?Y4zr-#xB%NE+NfV}{^ic`Gg06Uj+XbsM7ZHCywRke0X}-cbx# zMgn!BPFJmvB7p>}lynM9l$3`jYr|gE^%eBRP+_#r3{2_OHC;%oBXSzbb^V-%(RqiI zB@l(P>epI9h&WZyPY=7bXqhQuG5{X1j$wB^v=b7ww_r$0Uc*qk@oqgCV&S{z*GdgD zmgE7;4SUVHTKh5gk+PBC*UF_vI^qqlmIzr!AiXtck~g3^jjUr7mXOsrT$fEoJTUTt zbNLYujZ7&^Mtq8ft?Rg*ZL)DA4UKnUo0*KbiF}mFDN8W!!f|{u;>MkIzQ7XF8k^G3 z1Jc z+)W}1cBo(DJ2NCvsusMVYN_E-S-qHbz!G<_Yj4xDoU(V&NnMvAqyA2a&f6y>kWk1HN#x1 z8hWhCWJk!nqMHqfnP-Jo)led|D#sF`x4|?eG*!n^12WDG;^yfKFyV`~TZAmSxYFQ+ zK1df3HN;|urAC};a4(i>%*Ci$cd!Da#b0#ZjR%aDMNM?;2~qlWslyVb%1%vGV(pp6 z8PPM!yNIG)l!KSFre-LUQq0V&43N2w87*Xi8laHpk*x)lB>-RwATWUSUqEG3(4_ zi>~4$T>gl1T20DB{^p#ZhUQR@dGiiiOerF|Ix#e43VUVkfxIs3ClqWr{)jegin1fG z5QNPhRu>k^&7q;7y19W=Tu~m?3HN>{lue zm;k!SA_3B}{)Qa^4_HzHIV=@3?uv-IFz_2*(W_EfkDHZD#T5fA*}>~{4XH4%c=d^N z#jQ5`>UT{$zt6}RE=idm>h zOHgSBhyDYG1jvfNy61c9%)3+Z6CoESVwA5gxqD90E%JaTE223wUj|Z;S3HrAO)(1# zkKbh#QrWJ1w1{H~b0Td7i5i%cB?v>gLlZL$1>sZB-4X>;>erlH&{#_YmNd|*m#wPu zFnV6Rs9VfhiY$l8h#Si_(`Ly5k*y@E?wGIkJF`{Ur-=IA=Z}>dh2d;fZXQ^RXA#dR z7%ggrRJf5_=XJN(ROjY+wW&)q5`b1mOU06tsE$_5)kBFo>}|u4sIi(M89Ap6&f<-_ zU0zKM>BZEiXuj8xj!9H9QK&`hBqsCe*e6_gz|yhXFFar!HAkdEpS}SrNIAS-!VKZ& z*`H9UCXe6>RCmwD1Th?Q$|E9x zz}vB5*DV+1QQqK{Wlhqb12V$6X_*Y88YH7ZKmbKE*P~%syoEZRqC3YHu}kyOQobHu z{fIjnmNqYAwe(@Vum33(S(|s zFNxMo*frxM0n(~P3Ys|{u$%(+WX=*2;U*83NEw+!H^Rt#G673OcjB9F|BQsNG|r4;Uv2gLfyP)uTmDK#vV-669MbHz0t zP*RhN&K+_xP^gzwN1V1ve}`J=HbW6+NTyczUDtwrn&xqZwj*Q%yMp*$2hv4<(SRy7LVzEayF@_>^)n_k@^>e^sBwza?m zmX7Tk@PLuJQ*`Pn@muoLr!ie7FK*<$u}s}9xFU)B3eAR?Q!ztR@~INOZy5{EuyDVH z2P`}@E3juBX-Y=C%RqZqBqpT{Q~9QGhklq%3q#~nexym*DHcl&Qg?^kajw54*f)b} zAl|K3o{%>db?FFcQX|#*D=4BYr>u6A1Kwp|Jj#}oGR#C-Vp8|=o=8J4{5DFr!3}4` z4Q8{MxJESjO7qdkTtMy@ zO1|&aedZTDPi`m4{g1I?U6hS_hhL2Dd@w^geOG=+)T+xJwn8;Y`|eOher-vNz?{(@ zF%xUMK9+3}yDT1@FN;aqfprKh;u!^_tK=c=Rj73|oNHCJ1C<*JMRSvo>d>vvhebT4 zpxLR`7|RFM3mVKHcEk(%N%1r_k|@~W50~7sd4(=R?E4%>ipEt_ZRP*jRIPo^R%HCs zwlJQuSYS0=d`MYB5J$bsXNc{ed^xumL?B9^4qM@dj8hFnQUrTeL_y)RS2OEHSYnZA z>d1bVFF%u8be&>fkVWa3G(|H{&Q|-}uxsdSleNWg;WH=;bF|BTu;ws{6KOWBT{hKw z5`#%BPy9d26P;~Zk5VeGT+Isa{%2dnUW-Rp>vOHDex0gk?)A&hsYXd<%RPZ2W~L*- zI$5?woEmU*vp(>yt6kTU=xWOK;IdviCS`p6VPvyz+8a^5v0}ZCr6xi_r)BubSW}Z@ zT2DlyB+9mkvq#)lVMN~bPHHqqn;LmOWpXne=0sTik`bp8IyzSBXitA+L-TY9!y=@Z zTE>lDJJNVS1*ilTD)xcpkRpLZP*taI%q``;DgKBU>jsO~VV~I9CQpwm_IGS2GwF(p zx-i(14#Bnh;SO8r35h*cYZ22SR|BAc^(xSI*t%7n78C5l){_`?#Cf9w6oHf;5reqUWKYnb-*Ds?`%`MV~P$T+oGiu*JjM%gjzHj69Xn;+N>8`k+(yl`xc|i zkzgufNJ>22qE~U{ISvbpM5?*vvg*Z!T~F;h*)y-;t08jh$9&&IZ>)PFz2#XPqG%%g z0;fjm%b^kxwW2J3U8j;(J6|QUc)Rm3_! z5OHnf*BsNiCnKJgF#O76E@b5)^YW3v1Dpv!e-uMSd2m-f8C?z&ajb^7!k8h#TeX>| zvqNDa$t4t(7Tx|tMHHR7z2?~&YC$C=4JR)qAL`e1R0hWvT5_!_)dFvrLm^0jg!nV- z&k|)D&UneXIh2ezZ@6Vw?j&at8EsI+!HC*mqS{_sSy`b zrO3OkcD*~2qK}NkwOmBaM@1|l5#nUSt;$8*zCHI$iyAH>;^@WBh^fvkWa`{*$W-^7 z4Cy!zU`p+s>TlKN6xOE&^mlMDIf$>KjZ!*-l29 z2%ss?#N|D65-w#4J+dj2-%WEHVmxWiFK1iCl;OIRYAouSD2`6U4GLeYOtm5&BMomP z+3<$s@}b;x4xo55h5DtM3~`ld=yUVzCk@Xl`$Dc)#cXg|Lw{(a?&{%U^!>8^Ex2`^05?bq>)F`2j6_&;8btojti~KS|Qjp-At_r5quh~r0SW5$zG$4F) z%>si&LKVH7myTV!iRxSlBJfS(jC`oAIQjLNig4JJb5ar6yj#o}W+y`^ z5QSMolr^VPVvSK{12#r!Lv2SUS8Pa-#nWh>Vg{>6AMNSW?=|H>-_irdiSxd0$?cE+#@M4b-w+WT0uf zS;@;J)!!oG0prc8ZUcw_URC}!CZ>vCc@#nJWEKkY7P#5#Y1LEBYB<@a8uMnYpq50D z091cNCE4`zeR|uRD43DIYHdjOc_HNzsg_g%wQnBTP&BPkwPfDIFeQiU-aKF`WYO1& z+(7~+M&+j^8}f8Ui29SGdd0WqRuiKocTDYEcPONW5N?r=mgG5zhD%0E71v9SmZ}rx zqQ8RTx8C%r`t47QdZmIZ&qL%!khKLCO-c1_w)f$%tnRG%H()kiyY= zYRoAIy*JgE=|?|N!zKAEhL&S)zF@w2O*Iw|IoRf7;>UMtH9A%rEcMOMkAAKmB5*80 zVyrYGKPOXiuv}+JnR7d`!^#BM^+h{Z3ytJ%o59x6Xrrj!%;4ZqQ9xza7802m+>mjq z0n-mZA#Zx9&lAiwCYzz*KBp*8Wy!ILJ^q~b|4cjE45(Jp z2~&HaJ`qyko4ueOFffkC^WHd~aLYA5A==sr(Xuglu&J4M*(}eih_0Her_g4b?SHsI F?~0aZ)an2L literal 0 HcmV?d00001 diff --git a/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap.min.css b/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap.min.css new file mode 100644 index 0000000..3beee0f --- /dev/null +++ b/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap.min.css @@ -0,0 +1,12 @@ +/*! + * Bootstrap v5.3.1 (https://getbootstrap.com/) + * Copyright 2011-2023 The Bootstrap Authors + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) + */:root,[data-bs-theme=light]{--bs-blue: #0d6efd;--bs-indigo: #6610f2;--bs-purple: #6f42c1;--bs-pink: #d63384;--bs-red: #dc3545;--bs-orange: #fd7e14;--bs-yellow: #ffc107;--bs-green: #198754;--bs-teal: #20c997;--bs-cyan: #0dcaf0;--bs-black: #000;--bs-white: #ffffff;--bs-gray: #6c757d;--bs-gray-dark: #343a40;--bs-gray-100: #f8f9fa;--bs-gray-200: #e9ecef;--bs-gray-300: #dee2e6;--bs-gray-400: #ced4da;--bs-gray-500: #adb5bd;--bs-gray-600: #6c757d;--bs-gray-700: #495057;--bs-gray-800: #343a40;--bs-gray-900: #212529;--bs-default: #dee2e6;--bs-primary: #0d6efd;--bs-secondary: #6c757d;--bs-success: #198754;--bs-info: #0dcaf0;--bs-warning: #ffc107;--bs-danger: #dc3545;--bs-light: #f8f9fa;--bs-dark: #212529;--bs-default-rgb: 222, 226, 230;--bs-primary-rgb: 13, 110, 253;--bs-secondary-rgb: 108, 117, 125;--bs-success-rgb: 25, 135, 84;--bs-info-rgb: 13, 202, 240;--bs-warning-rgb: 255, 193, 7;--bs-danger-rgb: 220, 53, 69;--bs-light-rgb: 248, 249, 250;--bs-dark-rgb: 33, 37, 41;--bs-primary-text-emphasis: #052c65;--bs-secondary-text-emphasis: #2b2f32;--bs-success-text-emphasis: #0a3622;--bs-info-text-emphasis: #055160;--bs-warning-text-emphasis: #664d03;--bs-danger-text-emphasis: #58151c;--bs-light-text-emphasis: #495057;--bs-dark-text-emphasis: #495057;--bs-primary-bg-subtle: #cfe2ff;--bs-secondary-bg-subtle: #e2e3e5;--bs-success-bg-subtle: #d1e7dd;--bs-info-bg-subtle: #cff4fc;--bs-warning-bg-subtle: #fff3cd;--bs-danger-bg-subtle: #f8d7da;--bs-light-bg-subtle: #fcfcfd;--bs-dark-bg-subtle: #ced4da;--bs-primary-border-subtle: #9ec5fe;--bs-secondary-border-subtle: #c4c8cb;--bs-success-border-subtle: #a3cfbb;--bs-info-border-subtle: #9eeaf9;--bs-warning-border-subtle: #ffe69c;--bs-danger-border-subtle: #f1aeb5;--bs-light-border-subtle: #e9ecef;--bs-dark-border-subtle: #adb5bd;--bs-white-rgb: 255, 255, 255;--bs-black-rgb: 0, 0, 0;--bs-font-sans-serif: system-ui, -apple-system, "Segoe UI", Roboto, "Helvetica Neue", "Noto Sans", "Liberation Sans", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";--bs-font-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;--bs-gradient: linear-gradient(180deg, rgba(255, 255, 255, 0.15), rgba(255, 255, 255, 0));--bs-root-font-size: 17px;--bs-body-font-family: system-ui, -apple-system, "Segoe UI", Roboto, "Helvetica Neue", "Noto Sans", "Liberation Sans", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";--bs-body-font-size:1rem;--bs-body-font-weight: 400;--bs-body-line-height: 1.5;--bs-body-color: #212529;--bs-body-color-rgb: 33, 37, 41;--bs-body-bg: #ffffff;--bs-body-bg-rgb: 255, 255, 255;--bs-emphasis-color: #000;--bs-emphasis-color-rgb: 0, 0, 0;--bs-secondary-color: rgba(33, 37, 41, 0.75);--bs-secondary-color-rgb: 33, 37, 41;--bs-secondary-bg: #e9ecef;--bs-secondary-bg-rgb: 233, 236, 239;--bs-tertiary-color: rgba(33, 37, 41, 0.5);--bs-tertiary-color-rgb: 33, 37, 41;--bs-tertiary-bg: #f8f9fa;--bs-tertiary-bg-rgb: 248, 249, 250;--bs-heading-color: inherit;--bs-link-color: #0d6efd;--bs-link-color-rgb: 13, 110, 253;--bs-link-decoration: underline;--bs-link-hover-color: #0a58ca;--bs-link-hover-color-rgb: 10, 88, 202;--bs-code-color: #7d12ba;--bs-highlight-bg: #fff3cd;--bs-border-width: 1px;--bs-border-style: solid;--bs-border-color: #dee2e6;--bs-border-color-translucent: rgba(0, 0, 0, 0.175);--bs-border-radius: 0.375rem;--bs-border-radius-sm: 0.25rem;--bs-border-radius-lg: 0.5rem;--bs-border-radius-xl: 1rem;--bs-border-radius-xxl: 2rem;--bs-border-radius-2xl: var(--bs-border-radius-xxl);--bs-border-radius-pill: 50rem;--bs-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-box-shadow-sm: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-box-shadow-lg: 0 1rem 3rem rgba(0, 0, 0, 0.175);--bs-box-shadow-inset: inset 0 1px 2px rgba(0, 0, 0, 0.075);--bs-focus-ring-width: 0.25rem;--bs-focus-ring-opacity: 0.25;--bs-focus-ring-color: rgba(13, 110, 253, 0.25);--bs-form-valid-color: #198754;--bs-form-valid-border-color: #198754;--bs-form-invalid-color: #dc3545;--bs-form-invalid-border-color: #dc3545}[data-bs-theme=dark]{color-scheme:dark;--bs-body-color: #dee2e6;--bs-body-color-rgb: 222, 226, 230;--bs-body-bg: #212529;--bs-body-bg-rgb: 33, 37, 41;--bs-emphasis-color: #ffffff;--bs-emphasis-color-rgb: 255, 255, 255;--bs-secondary-color: rgba(222, 226, 230, 0.75);--bs-secondary-color-rgb: 222, 226, 230;--bs-secondary-bg: #343a40;--bs-secondary-bg-rgb: 52, 58, 64;--bs-tertiary-color: rgba(222, 226, 230, 0.5);--bs-tertiary-color-rgb: 222, 226, 230;--bs-tertiary-bg: #2b3035;--bs-tertiary-bg-rgb: 43, 48, 53;--bs-primary-text-emphasis: #6ea8fe;--bs-secondary-text-emphasis: #a7acb1;--bs-success-text-emphasis: #75b798;--bs-info-text-emphasis: #6edff6;--bs-warning-text-emphasis: #ffda6a;--bs-danger-text-emphasis: #ea868f;--bs-light-text-emphasis: #f8f9fa;--bs-dark-text-emphasis: #dee2e6;--bs-primary-bg-subtle: #031633;--bs-secondary-bg-subtle: #161719;--bs-success-bg-subtle: #051b11;--bs-info-bg-subtle: #032830;--bs-warning-bg-subtle: #332701;--bs-danger-bg-subtle: #2c0b0e;--bs-light-bg-subtle: #343a40;--bs-dark-bg-subtle: #1a1d20;--bs-primary-border-subtle: #084298;--bs-secondary-border-subtle: #41464b;--bs-success-border-subtle: #0f5132;--bs-info-border-subtle: #087990;--bs-warning-border-subtle: #997404;--bs-danger-border-subtle: #842029;--bs-light-border-subtle: #495057;--bs-dark-border-subtle: #343a40;--bs-heading-color: inherit;--bs-link-color: #6ea8fe;--bs-link-hover-color: #8bb9fe;--bs-link-color-rgb: 110, 168, 254;--bs-link-hover-color-rgb: 139, 185, 254;--bs-code-color: white;--bs-border-color: #495057;--bs-border-color-translucent: rgba(255, 255, 255, 0.15);--bs-form-valid-color: #75b798;--bs-form-valid-border-color: #75b798;--bs-form-invalid-color: #ea868f;--bs-form-invalid-border-color: #ea868f}*,*::before,*::after{box-sizing:border-box}:root{font-size:var(--bs-root-font-size)}body{margin:0;font-family:var(--bs-body-font-family);font-size:var(--bs-body-font-size);font-weight:var(--bs-body-font-weight);line-height:var(--bs-body-line-height);color:var(--bs-body-color);text-align:var(--bs-body-text-align);background-color:var(--bs-body-bg);-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:rgba(0,0,0,0)}hr{margin:1rem 0;color:inherit;border:0;border-top:1px solid;opacity:.25}h6,.h6,h5,.h5,h4,.h4,h3,.h3,h2,.h2,h1,.h1{margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2;color:var(--bs-heading-color)}h1,.h1{font-size:calc(1.325rem + 0.9vw)}@media(min-width: 1200px){h1,.h1{font-size:2rem}}h2,.h2{font-size:calc(1.29rem + 0.48vw)}@media(min-width: 1200px){h2,.h2{font-size:1.65rem}}h3,.h3{font-size:calc(1.27rem + 0.24vw)}@media(min-width: 1200px){h3,.h3{font-size:1.45rem}}h4,.h4{font-size:1.25rem}h5,.h5{font-size:1.1rem}h6,.h6{font-size:1rem}p{margin-top:0;margin-bottom:1rem}abbr[title]{text-decoration:underline dotted;-webkit-text-decoration:underline dotted;-moz-text-decoration:underline dotted;-ms-text-decoration:underline dotted;-o-text-decoration:underline dotted;cursor:help;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}ol,ul{padding-left:2rem}ol,ul,dl{margin-top:0;margin-bottom:1rem}ol ol,ul ul,ol ul,ul ol{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem;padding:.625rem 1.25rem;border-left:.25rem solid #e9ecef}blockquote p:last-child,blockquote ul:last-child,blockquote ol:last-child{margin-bottom:0}b,strong{font-weight:bolder}small,.small{font-size:0.875em}mark,.mark{padding:.1875em;background-color:var(--bs-highlight-bg)}sub,sup{position:relative;font-size:0.75em;line-height:0;vertical-align:baseline}sub{bottom:-0.25em}sup{top:-0.5em}a{color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 1));text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}a:hover{--bs-link-color-rgb: var(--bs-link-hover-color-rgb)}a:not([href]):not([class]),a:not([href]):not([class]):hover{color:inherit;text-decoration:none}pre,code,kbd,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;font-size:1em}pre{display:block;margin-top:0;margin-bottom:1rem;overflow:auto;font-size:0.875em;color:#000;background-color:#f8f9fa;padding:.5rem;border:1px solid var(--bs-border-color, #dee2e6);border-radius:.375rem}pre code{background-color:rgba(0,0,0,0);font-size:inherit;color:inherit;word-break:normal}code{font-size:0.875em;color:var(--bs-code-color);background-color:#f8f9fa;border-radius:.375rem;padding:.125rem .25rem;word-wrap:break-word}a>code{color:inherit}kbd{padding:.4rem .4rem;font-size:0.875em;color:#fff;background-color:#212529;border-radius:.25rem}kbd kbd{padding:0;font-size:1em}figure{margin:0 0 1rem}img,svg{vertical-align:middle}table{caption-side:bottom;border-collapse:collapse}caption{padding-top:.5rem;padding-bottom:.5rem;color:rgba(33,37,41,.75);text-align:left}th{text-align:inherit;text-align:-webkit-match-parent}thead,tbody,tfoot,tr,td,th{border-color:inherit;border-style:solid;border-width:0}label{display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}input,button,select,optgroup,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}select:disabled{opacity:1}[list]:not([type=date]):not([type=datetime-local]):not([type=month]):not([type=week]):not([type=time])::-webkit-calendar-picker-indicator{display:none !important}button,[type=button],[type=reset],[type=submit]{-webkit-appearance:button}button:not(:disabled),[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled){cursor:pointer}::-moz-focus-inner{padding:0;border-style:none}textarea{resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{float:left;width:100%;padding:0;margin-bottom:.5rem;font-size:calc(1.275rem + 0.3vw);line-height:inherit}@media(min-width: 1200px){legend{font-size:1.5rem}}legend+*{clear:left}::-webkit-datetime-edit-fields-wrapper,::-webkit-datetime-edit-text,::-webkit-datetime-edit-minute,::-webkit-datetime-edit-hour-field,::-webkit-datetime-edit-day-field,::-webkit-datetime-edit-month-field,::-webkit-datetime-edit-year-field{padding:0}::-webkit-inner-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-color-swatch-wrapper{padding:0}::file-selector-button{font:inherit;-webkit-appearance:button}output{display:inline-block}iframe{border:0}summary{display:list-item;cursor:pointer}progress{vertical-align:baseline}[hidden]{display:none !important}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:calc(1.625rem + 4.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-1{font-size:5rem}}.display-2{font-size:calc(1.575rem + 3.9vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-2{font-size:4.5rem}}.display-3{font-size:calc(1.525rem + 3.3vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-3{font-size:4rem}}.display-4{font-size:calc(1.475rem + 2.7vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-4{font-size:3.5rem}}.display-5{font-size:calc(1.425rem + 2.1vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-5{font-size:3rem}}.display-6{font-size:calc(1.375rem + 1.5vw);font-weight:300;line-height:1.2}@media(min-width: 1200px){.display-6{font-size:2.5rem}}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:0.875em;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote>:last-child{margin-bottom:0}.blockquote-footer{margin-top:-1rem;margin-bottom:1rem;font-size:0.875em;color:#6c757d}.blockquote-footer::before{content:"— "}.img-fluid{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;border-radius:.375rem;max-width:100%;height:auto}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:0.875em;color:rgba(33,37,41,.75)}.container,.container-fluid,.container-xxl,.container-xl,.container-lg,.container-md,.container-sm{--bs-gutter-x: 1.5rem;--bs-gutter-y: 0;width:100%;padding-right:calc(var(--bs-gutter-x)*.5);padding-left:calc(var(--bs-gutter-x)*.5);margin-right:auto;margin-left:auto}@media(min-width: 576px){.container-sm,.container{max-width:540px}}@media(min-width: 768px){.container-md,.container-sm,.container{max-width:720px}}@media(min-width: 992px){.container-lg,.container-md,.container-sm,.container{max-width:960px}}@media(min-width: 1200px){.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1140px}}@media(min-width: 1400px){.container-xxl,.container-xl,.container-lg,.container-md,.container-sm,.container{max-width:1320px}}:root{--bs-breakpoint-xs: 0;--bs-breakpoint-sm: 576px;--bs-breakpoint-md: 768px;--bs-breakpoint-lg: 992px;--bs-breakpoint-xl: 1200px;--bs-breakpoint-xxl: 1400px}.grid{display:grid;grid-template-rows:repeat(var(--bs-rows, 1), 1fr);grid-template-columns:repeat(var(--bs-columns, 12), 1fr);gap:var(--bs-gap, 1.5rem)}.grid .g-col-1{grid-column:auto/span 1}.grid .g-col-2{grid-column:auto/span 2}.grid .g-col-3{grid-column:auto/span 3}.grid .g-col-4{grid-column:auto/span 4}.grid .g-col-5{grid-column:auto/span 5}.grid .g-col-6{grid-column:auto/span 6}.grid .g-col-7{grid-column:auto/span 7}.grid .g-col-8{grid-column:auto/span 8}.grid .g-col-9{grid-column:auto/span 9}.grid .g-col-10{grid-column:auto/span 10}.grid .g-col-11{grid-column:auto/span 11}.grid .g-col-12{grid-column:auto/span 12}.grid .g-start-1{grid-column-start:1}.grid .g-start-2{grid-column-start:2}.grid .g-start-3{grid-column-start:3}.grid .g-start-4{grid-column-start:4}.grid .g-start-5{grid-column-start:5}.grid .g-start-6{grid-column-start:6}.grid .g-start-7{grid-column-start:7}.grid .g-start-8{grid-column-start:8}.grid .g-start-9{grid-column-start:9}.grid .g-start-10{grid-column-start:10}.grid .g-start-11{grid-column-start:11}@media(min-width: 576px){.grid .g-col-sm-1{grid-column:auto/span 1}.grid .g-col-sm-2{grid-column:auto/span 2}.grid .g-col-sm-3{grid-column:auto/span 3}.grid .g-col-sm-4{grid-column:auto/span 4}.grid .g-col-sm-5{grid-column:auto/span 5}.grid .g-col-sm-6{grid-column:auto/span 6}.grid .g-col-sm-7{grid-column:auto/span 7}.grid .g-col-sm-8{grid-column:auto/span 8}.grid .g-col-sm-9{grid-column:auto/span 9}.grid .g-col-sm-10{grid-column:auto/span 10}.grid .g-col-sm-11{grid-column:auto/span 11}.grid .g-col-sm-12{grid-column:auto/span 12}.grid .g-start-sm-1{grid-column-start:1}.grid .g-start-sm-2{grid-column-start:2}.grid .g-start-sm-3{grid-column-start:3}.grid .g-start-sm-4{grid-column-start:4}.grid .g-start-sm-5{grid-column-start:5}.grid .g-start-sm-6{grid-column-start:6}.grid .g-start-sm-7{grid-column-start:7}.grid .g-start-sm-8{grid-column-start:8}.grid .g-start-sm-9{grid-column-start:9}.grid .g-start-sm-10{grid-column-start:10}.grid .g-start-sm-11{grid-column-start:11}}@media(min-width: 768px){.grid .g-col-md-1{grid-column:auto/span 1}.grid .g-col-md-2{grid-column:auto/span 2}.grid .g-col-md-3{grid-column:auto/span 3}.grid .g-col-md-4{grid-column:auto/span 4}.grid .g-col-md-5{grid-column:auto/span 5}.grid .g-col-md-6{grid-column:auto/span 6}.grid .g-col-md-7{grid-column:auto/span 7}.grid .g-col-md-8{grid-column:auto/span 8}.grid .g-col-md-9{grid-column:auto/span 9}.grid .g-col-md-10{grid-column:auto/span 10}.grid .g-col-md-11{grid-column:auto/span 11}.grid .g-col-md-12{grid-column:auto/span 12}.grid .g-start-md-1{grid-column-start:1}.grid .g-start-md-2{grid-column-start:2}.grid .g-start-md-3{grid-column-start:3}.grid .g-start-md-4{grid-column-start:4}.grid .g-start-md-5{grid-column-start:5}.grid .g-start-md-6{grid-column-start:6}.grid .g-start-md-7{grid-column-start:7}.grid .g-start-md-8{grid-column-start:8}.grid .g-start-md-9{grid-column-start:9}.grid .g-start-md-10{grid-column-start:10}.grid .g-start-md-11{grid-column-start:11}}@media(min-width: 992px){.grid .g-col-lg-1{grid-column:auto/span 1}.grid .g-col-lg-2{grid-column:auto/span 2}.grid .g-col-lg-3{grid-column:auto/span 3}.grid .g-col-lg-4{grid-column:auto/span 4}.grid .g-col-lg-5{grid-column:auto/span 5}.grid .g-col-lg-6{grid-column:auto/span 6}.grid .g-col-lg-7{grid-column:auto/span 7}.grid .g-col-lg-8{grid-column:auto/span 8}.grid .g-col-lg-9{grid-column:auto/span 9}.grid .g-col-lg-10{grid-column:auto/span 10}.grid .g-col-lg-11{grid-column:auto/span 11}.grid .g-col-lg-12{grid-column:auto/span 12}.grid .g-start-lg-1{grid-column-start:1}.grid .g-start-lg-2{grid-column-start:2}.grid .g-start-lg-3{grid-column-start:3}.grid .g-start-lg-4{grid-column-start:4}.grid .g-start-lg-5{grid-column-start:5}.grid .g-start-lg-6{grid-column-start:6}.grid .g-start-lg-7{grid-column-start:7}.grid .g-start-lg-8{grid-column-start:8}.grid .g-start-lg-9{grid-column-start:9}.grid .g-start-lg-10{grid-column-start:10}.grid .g-start-lg-11{grid-column-start:11}}@media(min-width: 1200px){.grid .g-col-xl-1{grid-column:auto/span 1}.grid .g-col-xl-2{grid-column:auto/span 2}.grid .g-col-xl-3{grid-column:auto/span 3}.grid .g-col-xl-4{grid-column:auto/span 4}.grid .g-col-xl-5{grid-column:auto/span 5}.grid .g-col-xl-6{grid-column:auto/span 6}.grid .g-col-xl-7{grid-column:auto/span 7}.grid .g-col-xl-8{grid-column:auto/span 8}.grid .g-col-xl-9{grid-column:auto/span 9}.grid .g-col-xl-10{grid-column:auto/span 10}.grid .g-col-xl-11{grid-column:auto/span 11}.grid .g-col-xl-12{grid-column:auto/span 12}.grid .g-start-xl-1{grid-column-start:1}.grid .g-start-xl-2{grid-column-start:2}.grid .g-start-xl-3{grid-column-start:3}.grid .g-start-xl-4{grid-column-start:4}.grid .g-start-xl-5{grid-column-start:5}.grid .g-start-xl-6{grid-column-start:6}.grid .g-start-xl-7{grid-column-start:7}.grid .g-start-xl-8{grid-column-start:8}.grid .g-start-xl-9{grid-column-start:9}.grid .g-start-xl-10{grid-column-start:10}.grid .g-start-xl-11{grid-column-start:11}}@media(min-width: 1400px){.grid .g-col-xxl-1{grid-column:auto/span 1}.grid .g-col-xxl-2{grid-column:auto/span 2}.grid .g-col-xxl-3{grid-column:auto/span 3}.grid .g-col-xxl-4{grid-column:auto/span 4}.grid .g-col-xxl-5{grid-column:auto/span 5}.grid .g-col-xxl-6{grid-column:auto/span 6}.grid .g-col-xxl-7{grid-column:auto/span 7}.grid .g-col-xxl-8{grid-column:auto/span 8}.grid .g-col-xxl-9{grid-column:auto/span 9}.grid .g-col-xxl-10{grid-column:auto/span 10}.grid .g-col-xxl-11{grid-column:auto/span 11}.grid .g-col-xxl-12{grid-column:auto/span 12}.grid .g-start-xxl-1{grid-column-start:1}.grid .g-start-xxl-2{grid-column-start:2}.grid .g-start-xxl-3{grid-column-start:3}.grid .g-start-xxl-4{grid-column-start:4}.grid .g-start-xxl-5{grid-column-start:5}.grid .g-start-xxl-6{grid-column-start:6}.grid .g-start-xxl-7{grid-column-start:7}.grid .g-start-xxl-8{grid-column-start:8}.grid .g-start-xxl-9{grid-column-start:9}.grid .g-start-xxl-10{grid-column-start:10}.grid .g-start-xxl-11{grid-column-start:11}}.table{--bs-table-color-type: initial;--bs-table-bg-type: initial;--bs-table-color-state: initial;--bs-table-bg-state: initial;--bs-table-color: #212529;--bs-table-bg: #ffffff;--bs-table-border-color: #dee2e6;--bs-table-accent-bg: transparent;--bs-table-striped-color: #212529;--bs-table-striped-bg: rgba(0, 0, 0, 0.05);--bs-table-active-color: #212529;--bs-table-active-bg: rgba(0, 0, 0, 0.1);--bs-table-hover-color: #212529;--bs-table-hover-bg: rgba(0, 0, 0, 0.075);width:100%;margin-bottom:1rem;vertical-align:top;border-color:var(--bs-table-border-color)}.table>:not(caption)>*>*{padding:.5rem .5rem;color:var(--bs-table-color-state, var(--bs-table-color-type, var(--bs-table-color)));background-color:var(--bs-table-bg);border-bottom-width:1px;box-shadow:inset 0 0 0 9999px var(--bs-table-bg-state, var(--bs-table-bg-type, var(--bs-table-accent-bg)))}.table>tbody{vertical-align:inherit}.table>thead{vertical-align:bottom}.table-group-divider{border-top:calc(1px*2) solid #9ba5ae}.caption-top{caption-side:top}.table-sm>:not(caption)>*>*{padding:.25rem .25rem}.table-bordered>:not(caption)>*{border-width:1px 0}.table-bordered>:not(caption)>*>*{border-width:0 1px}.table-borderless>:not(caption)>*>*{border-bottom-width:0}.table-borderless>:not(:first-child){border-top-width:0}.table-striped>tbody>tr:nth-of-type(odd)>*{--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-striped-columns>:not(caption)>tr>:nth-child(even){--bs-table-color-type: var(--bs-table-striped-color);--bs-table-bg-type: var(--bs-table-striped-bg)}.table-active{--bs-table-color-state: var(--bs-table-active-color);--bs-table-bg-state: var(--bs-table-active-bg)}.table-hover>tbody>tr:hover>*{--bs-table-color-state: var(--bs-table-hover-color);--bs-table-bg-state: var(--bs-table-hover-bg)}.table-primary{--bs-table-color: #000;--bs-table-bg: #cfe2ff;--bs-table-border-color: #bacbe6;--bs-table-striped-bg: #c5d7f2;--bs-table-striped-color: #000;--bs-table-active-bg: #bacbe6;--bs-table-active-color: #000;--bs-table-hover-bg: #bfd1ec;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-secondary{--bs-table-color: #000;--bs-table-bg: #e2e3e5;--bs-table-border-color: #cbccce;--bs-table-striped-bg: #d7d8da;--bs-table-striped-color: #000;--bs-table-active-bg: #cbccce;--bs-table-active-color: #000;--bs-table-hover-bg: #d1d2d4;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-success{--bs-table-color: #000;--bs-table-bg: #d1e7dd;--bs-table-border-color: #bcd0c7;--bs-table-striped-bg: #c7dbd2;--bs-table-striped-color: #000;--bs-table-active-bg: #bcd0c7;--bs-table-active-color: #000;--bs-table-hover-bg: #c1d6cc;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-info{--bs-table-color: #000;--bs-table-bg: #cff4fc;--bs-table-border-color: #badce3;--bs-table-striped-bg: #c5e8ef;--bs-table-striped-color: #000;--bs-table-active-bg: #badce3;--bs-table-active-color: #000;--bs-table-hover-bg: #bfe2e9;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-warning{--bs-table-color: #000;--bs-table-bg: #fff3cd;--bs-table-border-color: #e6dbb9;--bs-table-striped-bg: #f2e7c3;--bs-table-striped-color: #000;--bs-table-active-bg: #e6dbb9;--bs-table-active-color: #000;--bs-table-hover-bg: #ece1be;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-danger{--bs-table-color: #000;--bs-table-bg: #f8d7da;--bs-table-border-color: #dfc2c4;--bs-table-striped-bg: #eccccf;--bs-table-striped-color: #000;--bs-table-active-bg: #dfc2c4;--bs-table-active-color: #000;--bs-table-hover-bg: #e5c7ca;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-light{--bs-table-color: #000;--bs-table-bg: #f8f9fa;--bs-table-border-color: #dfe0e1;--bs-table-striped-bg: #ecedee;--bs-table-striped-color: #000;--bs-table-active-bg: #dfe0e1;--bs-table-active-color: #000;--bs-table-hover-bg: #e5e6e7;--bs-table-hover-color: #000;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-dark{--bs-table-color: #ffffff;--bs-table-bg: #212529;--bs-table-border-color: #373b3e;--bs-table-striped-bg: #2c3034;--bs-table-striped-color: #ffffff;--bs-table-active-bg: #373b3e;--bs-table-active-color: #ffffff;--bs-table-hover-bg: #323539;--bs-table-hover-color: #ffffff;color:var(--bs-table-color);border-color:var(--bs-table-border-color)}.table-responsive{overflow-x:auto;-webkit-overflow-scrolling:touch}@media(max-width: 575.98px){.table-responsive-sm{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 767.98px){.table-responsive-md{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 991.98px){.table-responsive-lg{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1199.98px){.table-responsive-xl{overflow-x:auto;-webkit-overflow-scrolling:touch}}@media(max-width: 1399.98px){.table-responsive-xxl{overflow-x:auto;-webkit-overflow-scrolling:touch}}.form-label,.shiny-input-container .control-label{margin-bottom:.5rem}.col-form-label{padding-top:calc(0.375rem + 1px);padding-bottom:calc(0.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(0.5rem + 1px);padding-bottom:calc(0.5rem + 1px);font-size:1.25rem}.col-form-label-sm{padding-top:calc(0.25rem + 1px);padding-bottom:calc(0.25rem + 1px);font-size:0.875rem}.form-text{margin-top:.25rem;font-size:0.875em;color:rgba(33,37,41,.75)}.form-control{display:block;width:100%;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#212529;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#fff;background-clip:padding-box;border:1px solid #dee2e6;border-radius:.375rem;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control{transition:none}}.form-control[type=file]{overflow:hidden}.form-control[type=file]:not(:disabled):not([readonly]){cursor:pointer}.form-control:focus{color:#212529;background-color:#fff;border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,.25)}.form-control::-webkit-date-and-time-value{min-width:85px;height:1.5em;margin:0}.form-control::-webkit-datetime-edit{display:block;padding:0}.form-control::placeholder{color:rgba(33,37,41,.75);opacity:1}.form-control:disabled{background-color:#e9ecef;opacity:1}.form-control::file-selector-button{padding:.375rem .75rem;margin:-0.375rem -0.75rem;margin-inline-end:.75rem;color:#212529;background-color:#f8f9fa;pointer-events:none;border-color:inherit;border-style:solid;border-width:0;border-inline-end-width:1px;border-radius:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-control::file-selector-button{transition:none}}.form-control:hover:not(:disabled):not([readonly])::file-selector-button{background-color:#e9ecef}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;line-height:1.5;color:#212529;background-color:rgba(0,0,0,0);border:solid rgba(0,0,0,0);border-width:1px 0}.form-control-plaintext:focus{outline:0}.form-control-plaintext.form-control-sm,.form-control-plaintext.form-control-lg{padding-right:0;padding-left:0}.form-control-sm{min-height:calc(1.5em + 0.5rem + calc(1px * 2));padding:.25rem .5rem;font-size:0.875rem;border-radius:.25rem}.form-control-sm::file-selector-button{padding:.25rem .5rem;margin:-0.25rem -0.5rem;margin-inline-end:.5rem}.form-control-lg{min-height:calc(1.5em + 1rem + calc(1px * 2));padding:.5rem 1rem;font-size:1.25rem;border-radius:.5rem}.form-control-lg::file-selector-button{padding:.5rem 1rem;margin:-0.5rem -1rem;margin-inline-end:1rem}textarea.form-control{min-height:calc(1.5em + 0.75rem + calc(1px * 2))}textarea.form-control-sm{min-height:calc(1.5em + 0.5rem + calc(1px * 2))}textarea.form-control-lg{min-height:calc(1.5em + 1rem + calc(1px * 2))}.form-control-color{width:3rem;height:calc(1.5em + 0.75rem + calc(1px * 2));padding:.375rem}.form-control-color:not(:disabled):not([readonly]){cursor:pointer}.form-control-color::-moz-color-swatch{border:0 !important;border-radius:.375rem}.form-control-color::-webkit-color-swatch{border:0 !important;border-radius:.375rem}.form-control-color.form-control-sm{height:calc(1.5em + 0.5rem + calc(1px * 2))}.form-control-color.form-control-lg{height:calc(1.5em + 1rem + calc(1px * 2))}.form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23343a40' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e");display:block;width:100%;padding:.375rem 2.25rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#212529;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#fff;background-image:var(--bs-form-select-bg-img),var(--bs-form-select-bg-icon, none);background-repeat:no-repeat;background-position:right .75rem center;background-size:16px 12px;border:1px solid #dee2e6;border-radius:.375rem;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-select{transition:none}}.form-select:focus{border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,.25)}.form-select[multiple],.form-select[size]:not([size="1"]){padding-right:.75rem;background-image:none}.form-select:disabled{background-color:#e9ecef}.form-select:-moz-focusring{color:rgba(0,0,0,0);text-shadow:0 0 0 #212529}.form-select-sm{padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:0.875rem;border-radius:.25rem}.form-select-lg{padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem;border-radius:.5rem}[data-bs-theme=dark] .form-select{--bs-form-select-bg-img: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23dee2e6' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='m2 5 6 6 6-6'/%3e%3c/svg%3e")}.form-check,.shiny-input-container .checkbox,.shiny-input-container .radio{display:block;min-height:1.5rem;padding-left:0;margin-bottom:.125rem}.form-check .form-check-input,.form-check .shiny-input-container .checkbox input,.form-check .shiny-input-container .radio input,.shiny-input-container .checkbox .form-check-input,.shiny-input-container .checkbox .shiny-input-container .checkbox input,.shiny-input-container .checkbox .shiny-input-container .radio input,.shiny-input-container .radio .form-check-input,.shiny-input-container .radio .shiny-input-container .checkbox input,.shiny-input-container .radio .shiny-input-container .radio input{float:left;margin-left:0}.form-check-reverse{padding-right:0;padding-left:0;text-align:right}.form-check-reverse .form-check-input{float:right;margin-right:0;margin-left:0}.form-check-input,.shiny-input-container .checkbox input,.shiny-input-container .checkbox-inline input,.shiny-input-container .radio input,.shiny-input-container .radio-inline input{--bs-form-check-bg: #ffffff;width:1em;height:1em;margin-top:.25em;vertical-align:top;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:var(--bs-form-check-bg);background-image:var(--bs-form-check-bg-image);background-repeat:no-repeat;background-position:center;background-size:contain;border:1px solid #dee2e6;print-color-adjust:exact}.form-check-input[type=checkbox],.shiny-input-container .checkbox input[type=checkbox],.shiny-input-container .checkbox-inline input[type=checkbox],.shiny-input-container .radio input[type=checkbox],.shiny-input-container .radio-inline input[type=checkbox]{border-radius:.25em}.form-check-input[type=radio],.shiny-input-container .checkbox input[type=radio],.shiny-input-container .checkbox-inline input[type=radio],.shiny-input-container .radio input[type=radio],.shiny-input-container .radio-inline input[type=radio]{border-radius:50%}.form-check-input:active,.shiny-input-container .checkbox input:active,.shiny-input-container .checkbox-inline input:active,.shiny-input-container .radio input:active,.shiny-input-container .radio-inline input:active{filter:brightness(90%)}.form-check-input:focus,.shiny-input-container .checkbox input:focus,.shiny-input-container .checkbox-inline input:focus,.shiny-input-container .radio input:focus,.shiny-input-container .radio-inline input:focus{border-color:#86b7fe;outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,.25)}.form-check-input:checked,.shiny-input-container .checkbox input:checked,.shiny-input-container .checkbox-inline input:checked,.shiny-input-container .radio input:checked,.shiny-input-container .radio-inline input:checked{background-color:#0d6efd;border-color:#0d6efd}.form-check-input:checked[type=checkbox],.shiny-input-container .checkbox input:checked[type=checkbox],.shiny-input-container .checkbox-inline input:checked[type=checkbox],.shiny-input-container .radio input:checked[type=checkbox],.shiny-input-container .radio-inline input:checked[type=checkbox]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23ffffff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='m6 10 3 3 6-6'/%3e%3c/svg%3e")}.form-check-input:checked[type=radio],.shiny-input-container .checkbox input:checked[type=radio],.shiny-input-container .checkbox-inline input:checked[type=radio],.shiny-input-container .radio input:checked[type=radio],.shiny-input-container .radio-inline input:checked[type=radio]{--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='2' fill='%23ffffff'/%3e%3c/svg%3e")}.form-check-input[type=checkbox]:indeterminate,.shiny-input-container .checkbox input[type=checkbox]:indeterminate,.shiny-input-container .checkbox-inline input[type=checkbox]:indeterminate,.shiny-input-container .radio input[type=checkbox]:indeterminate,.shiny-input-container .radio-inline input[type=checkbox]:indeterminate{background-color:#0d6efd;border-color:#0d6efd;--bs-form-check-bg-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23ffffff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10h8'/%3e%3c/svg%3e")}.form-check-input:disabled,.shiny-input-container .checkbox input:disabled,.shiny-input-container .checkbox-inline input:disabled,.shiny-input-container .radio input:disabled,.shiny-input-container .radio-inline input:disabled{pointer-events:none;filter:none;opacity:.5}.form-check-input[disabled]~.form-check-label,.form-check-input[disabled]~span,.form-check-input:disabled~.form-check-label,.form-check-input:disabled~span,.shiny-input-container .checkbox input[disabled]~.form-check-label,.shiny-input-container .checkbox input[disabled]~span,.shiny-input-container .checkbox input:disabled~.form-check-label,.shiny-input-container .checkbox input:disabled~span,.shiny-input-container .checkbox-inline input[disabled]~.form-check-label,.shiny-input-container .checkbox-inline input[disabled]~span,.shiny-input-container .checkbox-inline input:disabled~.form-check-label,.shiny-input-container .checkbox-inline input:disabled~span,.shiny-input-container .radio input[disabled]~.form-check-label,.shiny-input-container .radio input[disabled]~span,.shiny-input-container .radio input:disabled~.form-check-label,.shiny-input-container .radio input:disabled~span,.shiny-input-container .radio-inline input[disabled]~.form-check-label,.shiny-input-container .radio-inline input[disabled]~span,.shiny-input-container .radio-inline input:disabled~.form-check-label,.shiny-input-container .radio-inline input:disabled~span{cursor:default;opacity:.5}.form-check-label,.shiny-input-container .checkbox label,.shiny-input-container .checkbox-inline label,.shiny-input-container .radio label,.shiny-input-container .radio-inline label{cursor:pointer}.form-switch{padding-left:2.5em}.form-switch .form-check-input{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%280, 0, 0, 0.25%29'/%3e%3c/svg%3e");width:2em;margin-left:-2.5em;background-image:var(--bs-form-switch-bg);background-position:left center;border-radius:2em;transition:background-position .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-switch .form-check-input{transition:none}}.form-switch .form-check-input:focus{--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%2386b7fe'/%3e%3c/svg%3e")}.form-switch .form-check-input:checked{background-position:right center;--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23ffffff'/%3e%3c/svg%3e")}.form-switch.form-check-reverse{padding-right:2.5em;padding-left:0}.form-switch.form-check-reverse .form-check-input{margin-right:-2.5em;margin-left:0}.form-check-inline{display:inline-block;margin-right:1rem}.btn-check{position:absolute;clip:rect(0, 0, 0, 0);pointer-events:none}.btn-check[disabled]+.btn,.btn-check:disabled+.btn{pointer-events:none;filter:none;opacity:.65}[data-bs-theme=dark] .form-switch .form-check-input:not(:checked):not(:focus){--bs-form-switch-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%28255, 255, 255, 0.25%29'/%3e%3c/svg%3e")}.form-range{width:100%;height:1.5rem;padding:0;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:rgba(0,0,0,0)}.form-range:focus{outline:0}.form-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(13,110,253,.25)}.form-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .25rem rgba(13,110,253,.25)}.form-range::-moz-focus-outer{border:0}.form-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-0.25rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#0d6efd;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-range::-webkit-slider-thumb{transition:none}}.form-range::-webkit-slider-thumb:active{background-color:#b6d4fe}.form-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#f8f9fa;border-color:rgba(0,0,0,0);border-radius:1rem}.form-range::-moz-range-thumb{width:1rem;height:1rem;appearance:none;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;-o-appearance:none;background-color:#0d6efd;border:0;border-radius:1rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.form-range::-moz-range-thumb{transition:none}}.form-range::-moz-range-thumb:active{background-color:#b6d4fe}.form-range::-moz-range-track{width:100%;height:.5rem;color:rgba(0,0,0,0);cursor:pointer;background-color:#f8f9fa;border-color:rgba(0,0,0,0);border-radius:1rem}.form-range:disabled{pointer-events:none}.form-range:disabled::-webkit-slider-thumb{background-color:rgba(33,37,41,.75)}.form-range:disabled::-moz-range-thumb{background-color:rgba(33,37,41,.75)}.form-floating{position:relative}.form-floating>.form-control,.form-floating>.form-control-plaintext,.form-floating>.form-select{height:calc(3.5rem + calc(1px * 2));min-height:calc(3.5rem + calc(1px * 2));line-height:1.25}.form-floating>label{position:absolute;top:0;left:0;z-index:2;height:100%;padding:1rem .75rem;overflow:hidden;text-align:start;text-overflow:ellipsis;white-space:nowrap;pointer-events:none;border:1px solid rgba(0,0,0,0);transform-origin:0 0;transition:opacity .1s ease-in-out,transform .1s ease-in-out}@media(prefers-reduced-motion: reduce){.form-floating>label{transition:none}}.form-floating>.form-control,.form-floating>.form-control-plaintext{padding:1rem .75rem}.form-floating>.form-control::placeholder,.form-floating>.form-control-plaintext::placeholder{color:rgba(0,0,0,0)}.form-floating>.form-control:focus,.form-floating>.form-control:not(:placeholder-shown),.form-floating>.form-control-plaintext:focus,.form-floating>.form-control-plaintext:not(:placeholder-shown){padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:-webkit-autofill,.form-floating>.form-control-plaintext:-webkit-autofill{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-select{padding-top:1.625rem;padding-bottom:.625rem}.form-floating>.form-control:focus~label,.form-floating>.form-control:not(:placeholder-shown)~label,.form-floating>.form-control-plaintext~label,.form-floating>.form-select~label{color:rgba(var(--bs-body-color-rgb), 0.65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control:focus~label::after,.form-floating>.form-control:not(:placeholder-shown)~label::after,.form-floating>.form-control-plaintext~label::after,.form-floating>.form-select~label::after{position:absolute;inset:1rem .375rem;z-index:-1;height:1.5em;content:"";background-color:#fff;border-radius:.375rem}.form-floating>.form-control:-webkit-autofill~label{color:rgba(var(--bs-body-color-rgb), 0.65);transform:scale(0.85) translateY(-0.5rem) translateX(0.15rem)}.form-floating>.form-control-plaintext~label{border-width:1px 0}.form-floating>:disabled~label,.form-floating>.form-control:disabled~label{color:#6c757d}.form-floating>:disabled~label::after,.form-floating>.form-control:disabled~label::after{background-color:#e9ecef}.input-group{position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:stretch;-webkit-align-items:stretch;width:100%}.input-group>.form-control,.input-group>.form-select,.input-group>.form-floating{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;width:1%;min-width:0}.input-group>.form-control:focus,.input-group>.form-select:focus,.input-group>.form-floating:focus-within{z-index:5}.input-group .btn{position:relative;z-index:2}.input-group .btn:focus{z-index:5}.input-group-text{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#212529;text-align:center;white-space:nowrap;background-color:#f8f9fa;border:1px solid #dee2e6;border-radius:.375rem}.input-group-lg>.form-control,.input-group-lg>.form-select,.input-group-lg>.input-group-text,.input-group-lg>.btn{padding:.5rem 1rem;font-size:1.25rem;border-radius:.5rem}.input-group-sm>.form-control,.input-group-sm>.form-select,.input-group-sm>.input-group-text,.input-group-sm>.btn{padding:.25rem .5rem;font-size:0.875rem;border-radius:.25rem}.input-group-lg>.form-select,.input-group-sm>.form-select{padding-right:3rem}.input-group:not(.has-validation)>:not(:last-child):not(.dropdown-toggle):not(.dropdown-menu):not(.form-floating),.input-group:not(.has-validation)>.dropdown-toggle:nth-last-child(n+3),.input-group:not(.has-validation)>.form-floating:not(:last-child)>.form-control,.input-group:not(.has-validation)>.form-floating:not(:last-child)>.form-select{border-top-right-radius:0;border-bottom-right-radius:0}.input-group.has-validation>:nth-last-child(n+3):not(.dropdown-toggle):not(.dropdown-menu):not(.form-floating),.input-group.has-validation>.dropdown-toggle:nth-last-child(n+4),.input-group.has-validation>.form-floating:nth-last-child(n+3)>.form-control,.input-group.has-validation>.form-floating:nth-last-child(n+3)>.form-select{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>:not(:first-child):not(.dropdown-menu):not(.valid-tooltip):not(.valid-feedback):not(.invalid-tooltip):not(.invalid-feedback){margin-left:calc(1px*-1);border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.form-floating:not(:first-child)>.form-control,.input-group>.form-floating:not(:first-child)>.form-select{border-top-left-radius:0;border-bottom-left-radius:0}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#198754}.valid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:#198754;border-radius:.375rem}.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip,.is-valid~.valid-feedback,.is-valid~.valid-tooltip{display:block}.was-validated .form-control:valid,.form-control.is-valid{border-color:#198754;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:valid:focus,.form-control.is-valid:focus{border-color:#198754;box-shadow:0 0 0 .25rem rgba(25,135,84,.25)}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:valid,.form-select.is-valid{border-color:#198754}.was-validated .form-select:valid:not([multiple]):not([size]),.was-validated .form-select:valid:not([multiple])[size="1"],.form-select.is-valid:not([multiple]):not([size]),.form-select.is-valid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:valid:focus,.form-select.is-valid:focus{border-color:#198754;box-shadow:0 0 0 .25rem rgba(25,135,84,.25)}.was-validated .form-control-color:valid,.form-control-color.is-valid{width:calc(3rem + calc(1.5em + 0.75rem))}.was-validated .form-check-input:valid,.form-check-input.is-valid{border-color:#198754}.was-validated .form-check-input:valid:checked,.form-check-input.is-valid:checked{background-color:#198754}.was-validated .form-check-input:valid:focus,.form-check-input.is-valid:focus{box-shadow:0 0 0 .25rem rgba(25,135,84,.25)}.was-validated .form-check-input:valid~.form-check-label,.form-check-input.is-valid~.form-check-label{color:#198754}.form-check-inline .form-check-input~.valid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):valid,.input-group>.form-control:not(:focus).is-valid,.was-validated .input-group>.form-select:not(:focus):valid,.input-group>.form-select:not(:focus).is-valid,.was-validated .input-group>.form-floating:not(:focus-within):valid,.input-group>.form-floating:not(:focus-within).is-valid{z-index:3}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:0.875em;color:#dc3545}.invalid-tooltip{position:absolute;top:100%;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:0.875rem;color:#fff;background-color:#dc3545;border-radius:.375rem}.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip,.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip{display:block}.was-validated .form-control:invalid,.form-control.is-invalid{border-color:#dc3545;padding-right:calc(1.5em + 0.75rem);background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(0.375em + 0.1875rem) center;background-size:calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-control:invalid:focus,.form-control.is-invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .25rem rgba(220,53,69,.25)}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + 0.75rem);background-position:top calc(0.375em + 0.1875rem) right calc(0.375em + 0.1875rem)}.was-validated .form-select:invalid,.form-select.is-invalid{border-color:#dc3545}.was-validated .form-select:invalid:not([multiple]):not([size]),.was-validated .form-select:invalid:not([multiple])[size="1"],.form-select.is-invalid:not([multiple]):not([size]),.form-select.is-invalid:not([multiple])[size="1"]{--bs-form-select-bg-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");padding-right:4.125rem;background-position:right .75rem center,center right 2.25rem;background-size:16px 12px,calc(0.75em + 0.375rem) calc(0.75em + 0.375rem)}.was-validated .form-select:invalid:focus,.form-select.is-invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .25rem rgba(220,53,69,.25)}.was-validated .form-control-color:invalid,.form-control-color.is-invalid{width:calc(3rem + calc(1.5em + 0.75rem))}.was-validated .form-check-input:invalid,.form-check-input.is-invalid{border-color:#dc3545}.was-validated .form-check-input:invalid:checked,.form-check-input.is-invalid:checked{background-color:#dc3545}.was-validated .form-check-input:invalid:focus,.form-check-input.is-invalid:focus{box-shadow:0 0 0 .25rem rgba(220,53,69,.25)}.was-validated .form-check-input:invalid~.form-check-label,.form-check-input.is-invalid~.form-check-label{color:#dc3545}.form-check-inline .form-check-input~.invalid-feedback{margin-left:.5em}.was-validated .input-group>.form-control:not(:focus):invalid,.input-group>.form-control:not(:focus).is-invalid,.was-validated .input-group>.form-select:not(:focus):invalid,.input-group>.form-select:not(:focus).is-invalid,.was-validated .input-group>.form-floating:not(:focus-within):invalid,.input-group>.form-floating:not(:focus-within).is-invalid{z-index:4}.btn{--bs-btn-padding-x: 0.75rem;--bs-btn-padding-y: 0.375rem;--bs-btn-font-family: ;--bs-btn-font-size:1rem;--bs-btn-font-weight: 400;--bs-btn-line-height: 1.5;--bs-btn-color: #212529;--bs-btn-bg: transparent;--bs-btn-border-width: 1px;--bs-btn-border-color: transparent;--bs-btn-border-radius: 0.375rem;--bs-btn-hover-border-color: transparent;--bs-btn-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.15), 0 1px 1px rgba(0, 0, 0, 0.075);--bs-btn-disabled-opacity: 0.65;--bs-btn-focus-box-shadow: 0 0 0 0.25rem rgba(var(--bs-btn-focus-shadow-rgb), .5);display:inline-block;padding:var(--bs-btn-padding-y) var(--bs-btn-padding-x);font-family:var(--bs-btn-font-family);font-size:var(--bs-btn-font-size);font-weight:var(--bs-btn-font-weight);line-height:var(--bs-btn-line-height);color:var(--bs-btn-color);text-align:center;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;vertical-align:middle;cursor:pointer;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;border:var(--bs-btn-border-width) solid var(--bs-btn-border-color);border-radius:var(--bs-btn-border-radius);background-color:var(--bs-btn-bg);transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.btn{transition:none}}.btn:hover{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color)}.btn-check+.btn:hover{color:var(--bs-btn-color);background-color:var(--bs-btn-bg);border-color:var(--bs-btn-border-color)}.btn:focus-visible{color:var(--bs-btn-hover-color);background-color:var(--bs-btn-hover-bg);border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:focus-visible+.btn{border-color:var(--bs-btn-hover-border-color);outline:0;box-shadow:var(--bs-btn-focus-box-shadow)}.btn-check:checked+.btn,:not(.btn-check)+.btn:active,.btn:first-child:active,.btn.active,.btn.show{color:var(--bs-btn-active-color);background-color:var(--bs-btn-active-bg);border-color:var(--bs-btn-active-border-color)}.btn-check:checked+.btn:focus-visible,:not(.btn-check)+.btn:active:focus-visible,.btn:first-child:active:focus-visible,.btn.active:focus-visible,.btn.show:focus-visible{box-shadow:var(--bs-btn-focus-box-shadow)}.btn:disabled,.btn.disabled,fieldset:disabled .btn{color:var(--bs-btn-disabled-color);pointer-events:none;background-color:var(--bs-btn-disabled-bg);border-color:var(--bs-btn-disabled-border-color);opacity:var(--bs-btn-disabled-opacity)}.btn-default{--bs-btn-color: #000;--bs-btn-bg: #dee2e6;--bs-btn-border-color: #dee2e6;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #e3e6ea;--bs-btn-hover-border-color: #e1e5e9;--bs-btn-focus-shadow-rgb: 189, 192, 196;--bs-btn-active-color: #000;--bs-btn-active-bg: #e5e8eb;--bs-btn-active-border-color: #e1e5e9;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #dee2e6;--bs-btn-disabled-border-color: #dee2e6}.btn-primary{--bs-btn-color: #ffffff;--bs-btn-bg: #0d6efd;--bs-btn-border-color: #0d6efd;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #0b5ed7;--bs-btn-hover-border-color: #0a58ca;--bs-btn-focus-shadow-rgb: 49, 132, 253;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #0a58ca;--bs-btn-active-border-color: #0a53be;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #0d6efd;--bs-btn-disabled-border-color: #0d6efd}.btn-secondary{--bs-btn-color: #ffffff;--bs-btn-bg: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #5c636a;--bs-btn-hover-border-color: #565e64;--bs-btn-focus-shadow-rgb: 130, 138, 145;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #565e64;--bs-btn-active-border-color: #51585e;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #6c757d;--bs-btn-disabled-border-color: #6c757d}.btn-success{--bs-btn-color: #ffffff;--bs-btn-bg: #198754;--bs-btn-border-color: #198754;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #157347;--bs-btn-hover-border-color: #146c43;--bs-btn-focus-shadow-rgb: 60, 153, 110;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #146c43;--bs-btn-active-border-color: #13653f;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #198754;--bs-btn-disabled-border-color: #198754}.btn-info{--bs-btn-color: #000;--bs-btn-bg: #0dcaf0;--bs-btn-border-color: #0dcaf0;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #31d2f2;--bs-btn-hover-border-color: #25cff2;--bs-btn-focus-shadow-rgb: 11, 172, 204;--bs-btn-active-color: #000;--bs-btn-active-bg: #3dd5f3;--bs-btn-active-border-color: #25cff2;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #0dcaf0;--bs-btn-disabled-border-color: #0dcaf0}.btn-warning{--bs-btn-color: #000;--bs-btn-bg: #ffc107;--bs-btn-border-color: #ffc107;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #ffca2c;--bs-btn-hover-border-color: #ffc720;--bs-btn-focus-shadow-rgb: 217, 164, 6;--bs-btn-active-color: #000;--bs-btn-active-bg: #ffcd39;--bs-btn-active-border-color: #ffc720;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #ffc107;--bs-btn-disabled-border-color: #ffc107}.btn-danger{--bs-btn-color: #ffffff;--bs-btn-bg: #dc3545;--bs-btn-border-color: #dc3545;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #bb2d3b;--bs-btn-hover-border-color: #b02a37;--bs-btn-focus-shadow-rgb: 225, 83, 97;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #b02a37;--bs-btn-active-border-color: #a52834;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #dc3545;--bs-btn-disabled-border-color: #dc3545}.btn-light{--bs-btn-color: #000;--bs-btn-bg: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #d3d4d5;--bs-btn-hover-border-color: #c6c7c8;--bs-btn-focus-shadow-rgb: 211, 212, 213;--bs-btn-active-color: #000;--bs-btn-active-bg: #c6c7c8;--bs-btn-active-border-color: #babbbc;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #000;--bs-btn-disabled-bg: #f8f9fa;--bs-btn-disabled-border-color: #f8f9fa}.btn-dark{--bs-btn-color: #ffffff;--bs-btn-bg: #212529;--bs-btn-border-color: #212529;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #424649;--bs-btn-hover-border-color: #373b3e;--bs-btn-focus-shadow-rgb: 66, 70, 73;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #4d5154;--bs-btn-active-border-color: #373b3e;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #212529;--bs-btn-disabled-border-color: #212529}.btn-outline-default{--bs-btn-color: #dee2e6;--bs-btn-border-color: #dee2e6;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #dee2e6;--bs-btn-hover-border-color: #dee2e6;--bs-btn-focus-shadow-rgb: 222, 226, 230;--bs-btn-active-color: #000;--bs-btn-active-bg: #dee2e6;--bs-btn-active-border-color: #dee2e6;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #dee2e6;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #dee2e6;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-primary{--bs-btn-color: #0d6efd;--bs-btn-border-color: #0d6efd;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #0d6efd;--bs-btn-hover-border-color: #0d6efd;--bs-btn-focus-shadow-rgb: 13, 110, 253;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #0d6efd;--bs-btn-active-border-color: #0d6efd;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #0d6efd;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #0d6efd;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-secondary{--bs-btn-color: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #6c757d;--bs-btn-hover-border-color: #6c757d;--bs-btn-focus-shadow-rgb: 108, 117, 125;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #6c757d;--bs-btn-active-border-color: #6c757d;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #6c757d;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-success{--bs-btn-color: #198754;--bs-btn-border-color: #198754;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #198754;--bs-btn-hover-border-color: #198754;--bs-btn-focus-shadow-rgb: 25, 135, 84;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #198754;--bs-btn-active-border-color: #198754;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #198754;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #198754;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-info{--bs-btn-color: #0dcaf0;--bs-btn-border-color: #0dcaf0;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #0dcaf0;--bs-btn-hover-border-color: #0dcaf0;--bs-btn-focus-shadow-rgb: 13, 202, 240;--bs-btn-active-color: #000;--bs-btn-active-bg: #0dcaf0;--bs-btn-active-border-color: #0dcaf0;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #0dcaf0;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #0dcaf0;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-warning{--bs-btn-color: #ffc107;--bs-btn-border-color: #ffc107;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #ffc107;--bs-btn-hover-border-color: #ffc107;--bs-btn-focus-shadow-rgb: 255, 193, 7;--bs-btn-active-color: #000;--bs-btn-active-bg: #ffc107;--bs-btn-active-border-color: #ffc107;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffc107;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #ffc107;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-danger{--bs-btn-color: #dc3545;--bs-btn-border-color: #dc3545;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #dc3545;--bs-btn-hover-border-color: #dc3545;--bs-btn-focus-shadow-rgb: 220, 53, 69;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #dc3545;--bs-btn-active-border-color: #dc3545;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #dc3545;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #dc3545;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-light{--bs-btn-color: #f8f9fa;--bs-btn-border-color: #f8f9fa;--bs-btn-hover-color: #000;--bs-btn-hover-bg: #f8f9fa;--bs-btn-hover-border-color: #f8f9fa;--bs-btn-focus-shadow-rgb: 248, 249, 250;--bs-btn-active-color: #000;--bs-btn-active-bg: #f8f9fa;--bs-btn-active-border-color: #f8f9fa;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #f8f9fa;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #f8f9fa;--bs-btn-bg: transparent;--bs-gradient: none}.btn-outline-dark{--bs-btn-color: #212529;--bs-btn-border-color: #212529;--bs-btn-hover-color: #ffffff;--bs-btn-hover-bg: #212529;--bs-btn-hover-border-color: #212529;--bs-btn-focus-shadow-rgb: 33, 37, 41;--bs-btn-active-color: #ffffff;--bs-btn-active-bg: #212529;--bs-btn-active-border-color: #212529;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #212529;--bs-btn-disabled-bg: transparent;--bs-btn-disabled-border-color: #212529;--bs-btn-bg: transparent;--bs-gradient: none}.btn-link{--bs-btn-font-weight: 400;--bs-btn-color: #0d6efd;--bs-btn-bg: transparent;--bs-btn-border-color: transparent;--bs-btn-hover-color: #0a58ca;--bs-btn-hover-border-color: transparent;--bs-btn-active-color: #0a58ca;--bs-btn-active-border-color: transparent;--bs-btn-disabled-color: #6c757d;--bs-btn-disabled-border-color: transparent;--bs-btn-box-shadow: 0 0 0 #000;--bs-btn-focus-shadow-rgb: 49, 132, 253;text-decoration:underline;-webkit-text-decoration:underline;-moz-text-decoration:underline;-ms-text-decoration:underline;-o-text-decoration:underline}.btn-link:focus-visible{color:var(--bs-btn-color)}.btn-link:hover{color:var(--bs-btn-hover-color)}.btn-lg,.btn-group-lg>.btn{--bs-btn-padding-y: 0.5rem;--bs-btn-padding-x: 1rem;--bs-btn-font-size:1.25rem;--bs-btn-border-radius: 0.5rem}.btn-sm,.btn-group-sm>.btn{--bs-btn-padding-y: 0.25rem;--bs-btn-padding-x: 0.5rem;--bs-btn-font-size:0.875rem;--bs-btn-border-radius: 0.25rem}.fade{transition:opacity .15s linear}@media(prefers-reduced-motion: reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{height:0;overflow:hidden;transition:height .2s ease}@media(prefers-reduced-motion: reduce){.collapsing{transition:none}}.collapsing.collapse-horizontal{width:0;height:auto;transition:width .35s ease}@media(prefers-reduced-motion: reduce){.collapsing.collapse-horizontal{transition:none}}.dropup,.dropend,.dropdown,.dropstart,.dropup-center,.dropdown-center{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid rgba(0,0,0,0);border-bottom:0;border-left:.3em solid rgba(0,0,0,0)}.dropdown-toggle:empty::after{margin-left:0}.dropdown-menu{--bs-dropdown-zindex: 1000;--bs-dropdown-min-width: 10rem;--bs-dropdown-padding-x: 0;--bs-dropdown-padding-y: 0.5rem;--bs-dropdown-spacer: 0.125rem;--bs-dropdown-font-size:1rem;--bs-dropdown-color: #212529;--bs-dropdown-bg: #ffffff;--bs-dropdown-border-color: rgba(0, 0, 0, 0.175);--bs-dropdown-border-radius: 0.375rem;--bs-dropdown-border-width: 1px;--bs-dropdown-inner-border-radius: calc(0.375rem - 1px);--bs-dropdown-divider-bg: rgba(0, 0, 0, 0.175);--bs-dropdown-divider-margin-y: 0.5rem;--bs-dropdown-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-dropdown-link-color: #212529;--bs-dropdown-link-hover-color: #212529;--bs-dropdown-link-hover-bg: #f8f9fa;--bs-dropdown-link-active-color: #ffffff;--bs-dropdown-link-active-bg: #0d6efd;--bs-dropdown-link-disabled-color: rgba(33, 37, 41, 0.5);--bs-dropdown-item-padding-x: 1rem;--bs-dropdown-item-padding-y: 0.25rem;--bs-dropdown-header-color: #6c757d;--bs-dropdown-header-padding-x: 1rem;--bs-dropdown-header-padding-y: 0.5rem;position:absolute;z-index:var(--bs-dropdown-zindex);display:none;min-width:var(--bs-dropdown-min-width);padding:var(--bs-dropdown-padding-y) var(--bs-dropdown-padding-x);margin:0;font-size:var(--bs-dropdown-font-size);color:var(--bs-dropdown-color);text-align:left;list-style:none;background-color:var(--bs-dropdown-bg);background-clip:padding-box;border:var(--bs-dropdown-border-width) solid var(--bs-dropdown-border-color);border-radius:var(--bs-dropdown-border-radius)}.dropdown-menu[data-bs-popper]{top:100%;left:0;margin-top:var(--bs-dropdown-spacer)}.dropdown-menu-start{--bs-position: start}.dropdown-menu-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-end{--bs-position: end}.dropdown-menu-end[data-bs-popper]{right:0;left:auto}@media(min-width: 576px){.dropdown-menu-sm-start{--bs-position: start}.dropdown-menu-sm-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-sm-end{--bs-position: end}.dropdown-menu-sm-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 768px){.dropdown-menu-md-start{--bs-position: start}.dropdown-menu-md-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-md-end{--bs-position: end}.dropdown-menu-md-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 992px){.dropdown-menu-lg-start{--bs-position: start}.dropdown-menu-lg-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-lg-end{--bs-position: end}.dropdown-menu-lg-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1200px){.dropdown-menu-xl-start{--bs-position: start}.dropdown-menu-xl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xl-end{--bs-position: end}.dropdown-menu-xl-end[data-bs-popper]{right:0;left:auto}}@media(min-width: 1400px){.dropdown-menu-xxl-start{--bs-position: start}.dropdown-menu-xxl-start[data-bs-popper]{right:auto;left:0}.dropdown-menu-xxl-end{--bs-position: end}.dropdown-menu-xxl-end[data-bs-popper]{right:0;left:auto}}.dropup .dropdown-menu[data-bs-popper]{top:auto;bottom:100%;margin-top:0;margin-bottom:var(--bs-dropdown-spacer)}.dropup .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid rgba(0,0,0,0);border-bottom:.3em solid;border-left:.3em solid rgba(0,0,0,0)}.dropup .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-menu[data-bs-popper]{top:0;right:auto;left:100%;margin-top:0;margin-left:var(--bs-dropdown-spacer)}.dropend .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:0;border-bottom:.3em solid rgba(0,0,0,0);border-left:.3em solid}.dropend .dropdown-toggle:empty::after{margin-left:0}.dropend .dropdown-toggle::after{vertical-align:0}.dropstart .dropdown-menu[data-bs-popper]{top:0;right:100%;left:auto;margin-top:0;margin-right:var(--bs-dropdown-spacer)}.dropstart .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:""}.dropstart .dropdown-toggle::after{display:none}.dropstart .dropdown-toggle::before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid rgba(0,0,0,0);border-right:.3em solid;border-bottom:.3em solid rgba(0,0,0,0)}.dropstart .dropdown-toggle:empty::after{margin-left:0}.dropstart .dropdown-toggle::before{vertical-align:0}.dropdown-divider{height:0;margin:var(--bs-dropdown-divider-margin-y) 0;overflow:hidden;border-top:1px solid var(--bs-dropdown-divider-bg);opacity:1}.dropdown-item{display:block;width:100%;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);clear:both;font-weight:400;color:var(--bs-dropdown-link-color);text-align:inherit;text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap;background-color:rgba(0,0,0,0);border:0;border-radius:var(--bs-dropdown-item-border-radius, 0)}.dropdown-item:hover,.dropdown-item:focus{color:var(--bs-dropdown-link-hover-color);background-color:var(--bs-dropdown-link-hover-bg)}.dropdown-item.active,.dropdown-item:active{color:var(--bs-dropdown-link-active-color);text-decoration:none;background-color:var(--bs-dropdown-link-active-bg)}.dropdown-item.disabled,.dropdown-item:disabled{color:var(--bs-dropdown-link-disabled-color);pointer-events:none;background-color:rgba(0,0,0,0)}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:var(--bs-dropdown-header-padding-y) var(--bs-dropdown-header-padding-x);margin-bottom:0;font-size:0.875rem;color:var(--bs-dropdown-header-color);white-space:nowrap}.dropdown-item-text{display:block;padding:var(--bs-dropdown-item-padding-y) var(--bs-dropdown-item-padding-x);color:var(--bs-dropdown-link-color)}.dropdown-menu-dark{--bs-dropdown-color: #dee2e6;--bs-dropdown-bg: #343a40;--bs-dropdown-border-color: rgba(0, 0, 0, 0.175);--bs-dropdown-box-shadow: ;--bs-dropdown-link-color: #dee2e6;--bs-dropdown-link-hover-color: #ffffff;--bs-dropdown-divider-bg: rgba(0, 0, 0, 0.175);--bs-dropdown-link-hover-bg: rgba(255, 255, 255, 0.15);--bs-dropdown-link-active-color: #ffffff;--bs-dropdown-link-active-bg: #0d6efd;--bs-dropdown-link-disabled-color: #adb5bd;--bs-dropdown-header-color: #adb5bd}.btn-group,.btn-group-vertical{position:relative;display:inline-flex;vertical-align:middle}.btn-group>.btn,.btn-group-vertical>.btn{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto}.btn-group>.btn-check:checked+.btn,.btn-group>.btn-check:focus+.btn,.btn-group>.btn:hover,.btn-group>.btn:focus,.btn-group>.btn:active,.btn-group>.btn.active,.btn-group-vertical>.btn-check:checked+.btn,.btn-group-vertical>.btn-check:focus+.btn,.btn-group-vertical>.btn:hover,.btn-group-vertical>.btn:focus,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn.active{z-index:1}.btn-toolbar{display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;justify-content:flex-start;-webkit-justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group{border-radius:.375rem}.btn-group>:not(.btn-check:first-child)+.btn,.btn-group>.btn-group:not(:first-child){margin-left:calc(1px*-1)}.btn-group>.btn:not(:last-child):not(.dropdown-toggle),.btn-group>.btn.dropdown-toggle-split:first-child,.btn-group>.btn-group:not(:last-child)>.btn{border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn:nth-child(n+3),.btn-group>:not(.btn-check)+.btn,.btn-group>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split::after,.dropup .dropdown-toggle-split::after,.dropend .dropdown-toggle-split::after{margin-left:0}.dropstart .dropdown-toggle-split::before{margin-right:0}.btn-sm+.dropdown-toggle-split,.btn-group-sm>.btn+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-lg+.dropdown-toggle-split,.btn-group-lg>.btn+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{flex-direction:column;-webkit-flex-direction:column;align-items:flex-start;-webkit-align-items:flex-start;justify-content:center;-webkit-justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn:not(:first-child),.btn-group-vertical>.btn-group:not(:first-child){margin-top:calc(1px*-1)}.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle),.btn-group-vertical>.btn-group:not(:last-child)>.btn{border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn~.btn,.btn-group-vertical>.btn-group:not(:first-child)>.btn{border-top-left-radius:0;border-top-right-radius:0}.nav{--bs-nav-link-padding-x: 1rem;--bs-nav-link-padding-y: 0.5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: #0d6efd;--bs-nav-link-hover-color: #0a58ca;--bs-nav-link-disabled-color: rgba(33, 37, 41, 0.75);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:var(--bs-nav-link-padding-y) var(--bs-nav-link-padding-x);font-size:var(--bs-nav-link-font-size);font-weight:var(--bs-nav-link-font-weight);color:var(--bs-nav-link-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background:none;border:0;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out}@media(prefers-reduced-motion: reduce){.nav-link{transition:none}}.nav-link:hover,.nav-link:focus{color:var(--bs-nav-link-hover-color)}.nav-link:focus-visible{outline:0;box-shadow:0 0 0 .25rem rgba(13,110,253,.25)}.nav-link.disabled,.nav-link:disabled{color:var(--bs-nav-link-disabled-color);pointer-events:none;cursor:default}.nav-tabs{--bs-nav-tabs-border-width: 1px;--bs-nav-tabs-border-color: #dee2e6;--bs-nav-tabs-border-radius: 0.375rem;--bs-nav-tabs-link-hover-border-color: #e9ecef #e9ecef #dee2e6;--bs-nav-tabs-link-active-color: #000;--bs-nav-tabs-link-active-bg: #ffffff;--bs-nav-tabs-link-active-border-color: #dee2e6 #dee2e6 #ffffff;border-bottom:var(--bs-nav-tabs-border-width) solid var(--bs-nav-tabs-border-color)}.nav-tabs .nav-link{margin-bottom:calc(-1*var(--bs-nav-tabs-border-width));border:var(--bs-nav-tabs-border-width) solid rgba(0,0,0,0);border-top-left-radius:var(--bs-nav-tabs-border-radius);border-top-right-radius:var(--bs-nav-tabs-border-radius)}.nav-tabs .nav-link:hover,.nav-tabs .nav-link:focus{isolation:isolate;border-color:var(--bs-nav-tabs-link-hover-border-color)}.nav-tabs .nav-link.active,.nav-tabs .nav-item.show .nav-link{color:var(--bs-nav-tabs-link-active-color);background-color:var(--bs-nav-tabs-link-active-bg);border-color:var(--bs-nav-tabs-link-active-border-color)}.nav-tabs .dropdown-menu{margin-top:calc(-1*var(--bs-nav-tabs-border-width));border-top-left-radius:0;border-top-right-radius:0}.nav-pills{--bs-nav-pills-border-radius: 0.375rem;--bs-nav-pills-link-active-color: #ffffff;--bs-nav-pills-link-active-bg: #0d6efd}.nav-pills .nav-link{border-radius:var(--bs-nav-pills-border-radius)}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:var(--bs-nav-pills-link-active-color);background-color:var(--bs-nav-pills-link-active-bg)}.nav-underline{--bs-nav-underline-gap: 1rem;--bs-nav-underline-border-width: 0.125rem;--bs-nav-underline-link-active-color: #000;gap:var(--bs-nav-underline-gap)}.nav-underline .nav-link{padding-right:0;padding-left:0;border-bottom:var(--bs-nav-underline-border-width) solid rgba(0,0,0,0)}.nav-underline .nav-link:hover,.nav-underline .nav-link:focus{border-bottom-color:currentcolor}.nav-underline .nav-link.active,.nav-underline .show>.nav-link{font-weight:700;color:var(--bs-nav-underline-link-active-color);border-bottom-color:currentcolor}.nav-fill>.nav-link,.nav-fill .nav-item{flex:1 1 auto;-webkit-flex:1 1 auto;text-align:center}.nav-justified>.nav-link,.nav-justified .nav-item{flex-basis:0;-webkit-flex-basis:0;flex-grow:1;-webkit-flex-grow:1;text-align:center}.nav-fill .nav-item .nav-link,.nav-justified .nav-item .nav-link{width:100%}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{--bs-navbar-padding-x: 0;--bs-navbar-padding-y: 0.5rem;--bs-navbar-color: #fdfefe;--bs-navbar-hover-color: rgba(253, 254, 255, 0.8);--bs-navbar-disabled-color: rgba(253, 254, 254, 0.75);--bs-navbar-active-color: #fdfeff;--bs-navbar-brand-padding-y: 0.3125rem;--bs-navbar-brand-margin-end: 1rem;--bs-navbar-brand-font-size: 1.25rem;--bs-navbar-brand-color: #fdfefe;--bs-navbar-brand-hover-color: #fdfeff;--bs-navbar-nav-link-padding-x: 0.5rem;--bs-navbar-toggler-padding-y: 0.25;--bs-navbar-toggler-padding-x: 0;--bs-navbar-toggler-font-size: 1.25rem;--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23fdfefe' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e");--bs-navbar-toggler-border-color: rgba(253, 254, 254, 0);--bs-navbar-toggler-border-radius: 0.375rem;--bs-navbar-toggler-focus-width: 0.25rem;--bs-navbar-toggler-transition: box-shadow 0.15s ease-in-out;position:relative;display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-navbar-padding-y) var(--bs-navbar-padding-x)}.navbar>.container,.navbar>.container-fluid,.navbar>.container-sm,.navbar>.container-md,.navbar>.container-lg,.navbar>.container-xl,.navbar>.container-xxl{display:flex;display:-webkit-flex;flex-wrap:inherit;-webkit-flex-wrap:inherit;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between}.navbar-brand{padding-top:var(--bs-navbar-brand-padding-y);padding-bottom:var(--bs-navbar-brand-padding-y);margin-right:var(--bs-navbar-brand-margin-end);font-size:var(--bs-navbar-brand-font-size);color:var(--bs-navbar-brand-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;white-space:nowrap}.navbar-brand:hover,.navbar-brand:focus{color:var(--bs-navbar-brand-hover-color)}.navbar-nav{--bs-nav-link-padding-x: 0;--bs-nav-link-padding-y: 0.5rem;--bs-nav-link-font-weight: ;--bs-nav-link-color: var(--bs-navbar-color);--bs-nav-link-hover-color: var(--bs-navbar-hover-color);--bs-nav-link-disabled-color: var(--bs-navbar-disabled-color);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link.active,.navbar-nav .nav-link.show{color:var(--bs-navbar-active-color)}.navbar-nav .dropdown-menu{position:static}.navbar-text{padding-top:.5rem;padding-bottom:.5rem;color:var(--bs-navbar-color)}.navbar-text a,.navbar-text a:hover,.navbar-text a:focus{color:var(--bs-navbar-active-color)}.navbar-collapse{flex-basis:100%;-webkit-flex-basis:100%;flex-grow:1;-webkit-flex-grow:1;align-items:center;-webkit-align-items:center}.navbar-toggler{padding:var(--bs-navbar-toggler-padding-y) var(--bs-navbar-toggler-padding-x);font-size:var(--bs-navbar-toggler-font-size);line-height:1;color:var(--bs-navbar-color);background-color:rgba(0,0,0,0);border:var(--bs-border-width) solid var(--bs-navbar-toggler-border-color);border-radius:var(--bs-navbar-toggler-border-radius);transition:var(--bs-navbar-toggler-transition)}@media(prefers-reduced-motion: reduce){.navbar-toggler{transition:none}}.navbar-toggler:hover{text-decoration:none}.navbar-toggler:focus{text-decoration:none;outline:0;box-shadow:0 0 0 var(--bs-navbar-toggler-focus-width)}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;background-image:var(--bs-navbar-toggler-icon-bg);background-repeat:no-repeat;background-position:center;background-size:100%}.navbar-nav-scroll{max-height:var(--bs-scroll-height, 75vh);overflow-y:auto}@media(min-width: 576px){.navbar-expand-sm{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}.navbar-expand-sm .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-sm .offcanvas .offcanvas-header{display:none}.navbar-expand-sm .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 768px){.navbar-expand-md{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}.navbar-expand-md .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-md .offcanvas .offcanvas-header{display:none}.navbar-expand-md .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 992px){.navbar-expand-lg{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}.navbar-expand-lg .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-lg .offcanvas .offcanvas-header{display:none}.navbar-expand-lg .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1200px){.navbar-expand-xl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}.navbar-expand-xl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xl .offcanvas .offcanvas-header{display:none}.navbar-expand-xl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}@media(min-width: 1400px){.navbar-expand-xxl{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand-xxl .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand-xxl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xxl .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand-xxl .navbar-nav-scroll{overflow:visible}.navbar-expand-xxl .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand-xxl .navbar-toggler{display:none}.navbar-expand-xxl .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand-xxl .offcanvas .offcanvas-header{display:none}.navbar-expand-xxl .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}}.navbar-expand{flex-wrap:nowrap;-webkit-flex-wrap:nowrap;justify-content:flex-start;-webkit-justify-content:flex-start}.navbar-expand .navbar-nav{flex-direction:row;-webkit-flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:var(--bs-navbar-nav-link-padding-x);padding-left:var(--bs-navbar-nav-link-padding-x)}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{display:flex !important;display:-webkit-flex !important;flex-basis:auto;-webkit-flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-expand .offcanvas{position:static;z-index:auto;flex-grow:1;-webkit-flex-grow:1;width:auto !important;height:auto !important;visibility:visible !important;background-color:rgba(0,0,0,0) !important;border:0 !important;transform:none !important;transition:none}.navbar-expand .offcanvas .offcanvas-header{display:none}.navbar-expand .offcanvas .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible}.navbar-dark,.navbar[data-bs-theme=dark]{--bs-navbar-color: #fdfefe;--bs-navbar-hover-color: rgba(253, 254, 255, 0.8);--bs-navbar-disabled-color: rgba(253, 254, 254, 0.75);--bs-navbar-active-color: #fdfeff;--bs-navbar-brand-color: #fdfefe;--bs-navbar-brand-hover-color: #fdfeff;--bs-navbar-toggler-border-color: rgba(253, 254, 254, 0);--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23fdfefe' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}[data-bs-theme=dark] .navbar-toggler-icon{--bs-navbar-toggler-icon-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='%23fdfefe' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.card{--bs-card-spacer-y: 1rem;--bs-card-spacer-x: 1rem;--bs-card-title-spacer-y: 0.5rem;--bs-card-title-color: ;--bs-card-subtitle-color: ;--bs-card-border-width: 1px;--bs-card-border-color: rgba(0, 0, 0, 0.175);--bs-card-border-radius: 0.375rem;--bs-card-box-shadow: ;--bs-card-inner-border-radius: calc(0.375rem - 1px);--bs-card-cap-padding-y: 0.5rem;--bs-card-cap-padding-x: 1rem;--bs-card-cap-bg: rgba(33, 37, 41, 0.03);--bs-card-cap-color: ;--bs-card-height: ;--bs-card-color: ;--bs-card-bg: #ffffff;--bs-card-img-overlay-padding: 1rem;--bs-card-group-margin: 0.75rem;position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;min-width:0;height:var(--bs-card-height);color:var(--bs-body-color);word-wrap:break-word;background-color:var(--bs-card-bg);background-clip:border-box;border:var(--bs-card-border-width) solid var(--bs-card-border-color);border-radius:var(--bs-card-border-radius)}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:var(--bs-card-inner-border-radius);border-top-right-radius:var(--bs-card-inner-border-radius)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-right-radius:var(--bs-card-inner-border-radius);border-bottom-left-radius:var(--bs-card-inner-border-radius)}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-card-spacer-y) var(--bs-card-spacer-x);color:var(--bs-card-color)}.card-title{margin-bottom:var(--bs-card-title-spacer-y);color:var(--bs-card-title-color)}.card-subtitle{margin-top:calc(-0.5*var(--bs-card-title-spacer-y));margin-bottom:0;color:var(--bs-card-subtitle-color)}.card-text:last-child{margin-bottom:0}.card-link+.card-link{margin-left:var(--bs-card-spacer-x)}.card-header{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);margin-bottom:0;color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-bottom:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-header:first-child{border-radius:var(--bs-card-inner-border-radius) var(--bs-card-inner-border-radius) 0 0}.card-footer{padding:var(--bs-card-cap-padding-y) var(--bs-card-cap-padding-x);color:var(--bs-card-cap-color);background-color:var(--bs-card-cap-bg);border-top:var(--bs-card-border-width) solid var(--bs-card-border-color)}.card-footer:last-child{border-radius:0 0 var(--bs-card-inner-border-radius) var(--bs-card-inner-border-radius)}.card-header-tabs{margin-right:calc(-0.5*var(--bs-card-cap-padding-x));margin-bottom:calc(-1*var(--bs-card-cap-padding-y));margin-left:calc(-0.5*var(--bs-card-cap-padding-x));border-bottom:0}.card-header-tabs .nav-link.active{background-color:var(--bs-card-bg);border-bottom-color:var(--bs-card-bg)}.card-header-pills{margin-right:calc(-0.5*var(--bs-card-cap-padding-x));margin-left:calc(-0.5*var(--bs-card-cap-padding-x))}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:var(--bs-card-img-overlay-padding);border-radius:var(--bs-card-inner-border-radius)}.card-img,.card-img-top,.card-img-bottom{width:100%}.card-img,.card-img-top{border-top-left-radius:var(--bs-card-inner-border-radius);border-top-right-radius:var(--bs-card-inner-border-radius)}.card-img,.card-img-bottom{border-bottom-right-radius:var(--bs-card-inner-border-radius);border-bottom-left-radius:var(--bs-card-inner-border-radius)}.card-group>.card{margin-bottom:var(--bs-card-group-margin)}@media(min-width: 576px){.card-group{display:flex;display:-webkit-flex;flex-flow:row wrap;-webkit-flex-flow:row wrap}.card-group>.card{flex:1 0 0%;-webkit-flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-img-top,.card-group>.card:not(:last-child) .card-header{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-img-bottom,.card-group>.card:not(:last-child) .card-footer{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-img-top,.card-group>.card:not(:first-child) .card-header{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-img-bottom,.card-group>.card:not(:first-child) .card-footer{border-bottom-left-radius:0}}.accordion{--bs-accordion-color: #212529;--bs-accordion-bg: #ffffff;--bs-accordion-transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out, border-radius 0.15s ease;--bs-accordion-border-color: #dee2e6;--bs-accordion-border-width: 1px;--bs-accordion-border-radius: 0.375rem;--bs-accordion-inner-border-radius: calc(0.375rem - 1px);--bs-accordion-btn-padding-x: 1.25rem;--bs-accordion-btn-padding-y: 1rem;--bs-accordion-btn-color: #212529;--bs-accordion-btn-bg: #ffffff;--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23212529'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-icon-width: 1.25rem;--bs-accordion-btn-icon-transform: rotate(-180deg);--bs-accordion-btn-icon-transition: transform 0.2s ease-in-out;--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23052c65'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-focus-border-color: #86b7fe;--bs-accordion-btn-focus-box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25);--bs-accordion-body-padding-x: 1.25rem;--bs-accordion-body-padding-y: 1rem;--bs-accordion-active-color: #052c65;--bs-accordion-active-bg: #cfe2ff}.accordion-button{position:relative;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;width:100%;padding:var(--bs-accordion-btn-padding-y) var(--bs-accordion-btn-padding-x);font-size:1rem;color:var(--bs-accordion-btn-color);text-align:left;background-color:var(--bs-accordion-btn-bg);border:0;border-radius:0;overflow-anchor:none;transition:var(--bs-accordion-transition)}@media(prefers-reduced-motion: reduce){.accordion-button{transition:none}}.accordion-button:not(.collapsed){color:var(--bs-accordion-active-color);background-color:var(--bs-accordion-active-bg);box-shadow:inset 0 calc(-1*var(--bs-accordion-border-width)) 0 var(--bs-accordion-border-color)}.accordion-button:not(.collapsed)::after{background-image:var(--bs-accordion-btn-active-icon);transform:var(--bs-accordion-btn-icon-transform)}.accordion-button::after{flex-shrink:0;-webkit-flex-shrink:0;width:var(--bs-accordion-btn-icon-width);height:var(--bs-accordion-btn-icon-width);margin-left:auto;content:"";background-image:var(--bs-accordion-btn-icon);background-repeat:no-repeat;background-size:var(--bs-accordion-btn-icon-width);transition:var(--bs-accordion-btn-icon-transition)}@media(prefers-reduced-motion: reduce){.accordion-button::after{transition:none}}.accordion-button:hover{z-index:2}.accordion-button:focus{z-index:3;border-color:var(--bs-accordion-btn-focus-border-color);outline:0;box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.accordion-header{margin-bottom:0}.accordion-item{color:var(--bs-accordion-color);background-color:var(--bs-accordion-bg);border:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.accordion-item:first-of-type{border-top-left-radius:var(--bs-accordion-border-radius);border-top-right-radius:var(--bs-accordion-border-radius)}.accordion-item:first-of-type .accordion-button{border-top-left-radius:var(--bs-accordion-inner-border-radius);border-top-right-radius:var(--bs-accordion-inner-border-radius)}.accordion-item:not(:first-of-type){border-top:0}.accordion-item:last-of-type{border-bottom-right-radius:var(--bs-accordion-border-radius);border-bottom-left-radius:var(--bs-accordion-border-radius)}.accordion-item:last-of-type .accordion-button.collapsed{border-bottom-right-radius:var(--bs-accordion-inner-border-radius);border-bottom-left-radius:var(--bs-accordion-inner-border-radius)}.accordion-item:last-of-type .accordion-collapse{border-bottom-right-radius:var(--bs-accordion-border-radius);border-bottom-left-radius:var(--bs-accordion-border-radius)}.accordion-body{padding:var(--bs-accordion-body-padding-y) var(--bs-accordion-body-padding-x)}.accordion-flush .accordion-collapse{border-width:0}.accordion-flush .accordion-item{border-right:0;border-left:0;border-radius:0}.accordion-flush .accordion-item:first-child{border-top:0}.accordion-flush .accordion-item:last-child{border-bottom:0}.accordion-flush .accordion-item .accordion-button,.accordion-flush .accordion-item .accordion-button.collapsed{border-radius:0}[data-bs-theme=dark] .accordion-button::after{--bs-accordion-btn-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%236ea8fe'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e");--bs-accordion-btn-active-icon: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%236ea8fe'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.breadcrumb{--bs-breadcrumb-padding-x: 0;--bs-breadcrumb-padding-y: 0;--bs-breadcrumb-margin-bottom: 1rem;--bs-breadcrumb-bg: ;--bs-breadcrumb-border-radius: ;--bs-breadcrumb-divider-color: rgba(33, 37, 41, 0.75);--bs-breadcrumb-item-padding-x: 0.5rem;--bs-breadcrumb-item-active-color: rgba(33, 37, 41, 0.75);display:flex;display:-webkit-flex;flex-wrap:wrap;-webkit-flex-wrap:wrap;padding:var(--bs-breadcrumb-padding-y) var(--bs-breadcrumb-padding-x);margin-bottom:var(--bs-breadcrumb-margin-bottom);font-size:var(--bs-breadcrumb-font-size);list-style:none;background-color:var(--bs-breadcrumb-bg);border-radius:var(--bs-breadcrumb-border-radius)}.breadcrumb-item+.breadcrumb-item{padding-left:var(--bs-breadcrumb-item-padding-x)}.breadcrumb-item+.breadcrumb-item::before{float:left;padding-right:var(--bs-breadcrumb-item-padding-x);color:var(--bs-breadcrumb-divider-color);content:var(--bs-breadcrumb-divider, ">") /* rtl: var(--bs-breadcrumb-divider, ">") */}.breadcrumb-item.active{color:var(--bs-breadcrumb-item-active-color)}.pagination{--bs-pagination-padding-x: 0.75rem;--bs-pagination-padding-y: 0.375rem;--bs-pagination-font-size:1rem;--bs-pagination-color: #0d6efd;--bs-pagination-bg: #ffffff;--bs-pagination-border-width: 1px;--bs-pagination-border-color: #dee2e6;--bs-pagination-border-radius: 0.375rem;--bs-pagination-hover-color: #0a58ca;--bs-pagination-hover-bg: #f8f9fa;--bs-pagination-hover-border-color: #dee2e6;--bs-pagination-focus-color: #0a58ca;--bs-pagination-focus-bg: #e9ecef;--bs-pagination-focus-box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25);--bs-pagination-active-color: #ffffff;--bs-pagination-active-bg: #0d6efd;--bs-pagination-active-border-color: #0d6efd;--bs-pagination-disabled-color: rgba(33, 37, 41, 0.75);--bs-pagination-disabled-bg: #e9ecef;--bs-pagination-disabled-border-color: #dee2e6;display:flex;display:-webkit-flex;padding-left:0;list-style:none}.page-link{position:relative;display:block;padding:var(--bs-pagination-padding-y) var(--bs-pagination-padding-x);font-size:var(--bs-pagination-font-size);color:var(--bs-pagination-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-pagination-bg);border:var(--bs-pagination-border-width) solid var(--bs-pagination-border-color);transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media(prefers-reduced-motion: reduce){.page-link{transition:none}}.page-link:hover{z-index:2;color:var(--bs-pagination-hover-color);background-color:var(--bs-pagination-hover-bg);border-color:var(--bs-pagination-hover-border-color)}.page-link:focus{z-index:3;color:var(--bs-pagination-focus-color);background-color:var(--bs-pagination-focus-bg);outline:0;box-shadow:var(--bs-pagination-focus-box-shadow)}.page-link.active,.active>.page-link{z-index:3;color:var(--bs-pagination-active-color);background-color:var(--bs-pagination-active-bg);border-color:var(--bs-pagination-active-border-color)}.page-link.disabled,.disabled>.page-link{color:var(--bs-pagination-disabled-color);pointer-events:none;background-color:var(--bs-pagination-disabled-bg);border-color:var(--bs-pagination-disabled-border-color)}.page-item:not(:first-child) .page-link{margin-left:calc(1px*-1)}.page-item:first-child .page-link{border-top-left-radius:var(--bs-pagination-border-radius);border-bottom-left-radius:var(--bs-pagination-border-radius)}.page-item:last-child .page-link{border-top-right-radius:var(--bs-pagination-border-radius);border-bottom-right-radius:var(--bs-pagination-border-radius)}.pagination-lg{--bs-pagination-padding-x: 1.5rem;--bs-pagination-padding-y: 0.75rem;--bs-pagination-font-size:1.25rem;--bs-pagination-border-radius: 0.5rem}.pagination-sm{--bs-pagination-padding-x: 0.5rem;--bs-pagination-padding-y: 0.25rem;--bs-pagination-font-size:0.875rem;--bs-pagination-border-radius: 0.25rem}.badge{--bs-badge-padding-x: 0.65em;--bs-badge-padding-y: 0.35em;--bs-badge-font-size:0.75em;--bs-badge-font-weight: 700;--bs-badge-color: #ffffff;--bs-badge-border-radius: 0.375rem;display:inline-block;padding:var(--bs-badge-padding-y) var(--bs-badge-padding-x);font-size:var(--bs-badge-font-size);font-weight:var(--bs-badge-font-weight);line-height:1;color:var(--bs-badge-color);text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:var(--bs-badge-border-radius)}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.alert{--bs-alert-bg: transparent;--bs-alert-padding-x: 1rem;--bs-alert-padding-y: 1rem;--bs-alert-margin-bottom: 1rem;--bs-alert-color: inherit;--bs-alert-border-color: transparent;--bs-alert-border: 1px solid var(--bs-alert-border-color);--bs-alert-border-radius: 0.375rem;--bs-alert-link-color: inherit;position:relative;padding:var(--bs-alert-padding-y) var(--bs-alert-padding-x);margin-bottom:var(--bs-alert-margin-bottom);color:var(--bs-alert-color);background-color:var(--bs-alert-bg);border:var(--bs-alert-border);border-radius:var(--bs-alert-border-radius)}.alert-heading{color:inherit}.alert-link{font-weight:700;color:var(--bs-alert-link-color)}.alert-dismissible{padding-right:3rem}.alert-dismissible .btn-close{position:absolute;top:0;right:0;z-index:2;padding:1.25rem 1rem}.alert-default{--bs-alert-color: var(--bs-default-text-emphasis);--bs-alert-bg: var(--bs-default-bg-subtle);--bs-alert-border-color: var(--bs-default-border-subtle);--bs-alert-link-color: var(--bs-default-text-emphasis)}.alert-primary{--bs-alert-color: var(--bs-primary-text-emphasis);--bs-alert-bg: var(--bs-primary-bg-subtle);--bs-alert-border-color: var(--bs-primary-border-subtle);--bs-alert-link-color: var(--bs-primary-text-emphasis)}.alert-secondary{--bs-alert-color: var(--bs-secondary-text-emphasis);--bs-alert-bg: var(--bs-secondary-bg-subtle);--bs-alert-border-color: var(--bs-secondary-border-subtle);--bs-alert-link-color: var(--bs-secondary-text-emphasis)}.alert-success{--bs-alert-color: var(--bs-success-text-emphasis);--bs-alert-bg: var(--bs-success-bg-subtle);--bs-alert-border-color: var(--bs-success-border-subtle);--bs-alert-link-color: var(--bs-success-text-emphasis)}.alert-info{--bs-alert-color: var(--bs-info-text-emphasis);--bs-alert-bg: var(--bs-info-bg-subtle);--bs-alert-border-color: var(--bs-info-border-subtle);--bs-alert-link-color: var(--bs-info-text-emphasis)}.alert-warning{--bs-alert-color: var(--bs-warning-text-emphasis);--bs-alert-bg: var(--bs-warning-bg-subtle);--bs-alert-border-color: var(--bs-warning-border-subtle);--bs-alert-link-color: var(--bs-warning-text-emphasis)}.alert-danger{--bs-alert-color: var(--bs-danger-text-emphasis);--bs-alert-bg: var(--bs-danger-bg-subtle);--bs-alert-border-color: var(--bs-danger-border-subtle);--bs-alert-link-color: var(--bs-danger-text-emphasis)}.alert-light{--bs-alert-color: var(--bs-light-text-emphasis);--bs-alert-bg: var(--bs-light-bg-subtle);--bs-alert-border-color: var(--bs-light-border-subtle);--bs-alert-link-color: var(--bs-light-text-emphasis)}.alert-dark{--bs-alert-color: var(--bs-dark-text-emphasis);--bs-alert-bg: var(--bs-dark-bg-subtle);--bs-alert-border-color: var(--bs-dark-border-subtle);--bs-alert-link-color: var(--bs-dark-text-emphasis)}@keyframes progress-bar-stripes{0%{background-position-x:1rem}}.progress,.progress-stacked{--bs-progress-height: 1rem;--bs-progress-font-size:0.75rem;--bs-progress-bg: #e9ecef;--bs-progress-border-radius: 0.375rem;--bs-progress-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.075);--bs-progress-bar-color: #ffffff;--bs-progress-bar-bg: #0d6efd;--bs-progress-bar-transition: width 0.6s ease;display:flex;display:-webkit-flex;height:var(--bs-progress-height);overflow:hidden;font-size:var(--bs-progress-font-size);background-color:var(--bs-progress-bg);border-radius:var(--bs-progress-border-radius)}.progress-bar{display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;justify-content:center;-webkit-justify-content:center;overflow:hidden;color:var(--bs-progress-bar-color);text-align:center;white-space:nowrap;background-color:var(--bs-progress-bar-bg);transition:var(--bs-progress-bar-transition)}@media(prefers-reduced-motion: reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);background-size:var(--bs-progress-height) var(--bs-progress-height)}.progress-stacked>.progress{overflow:visible}.progress-stacked>.progress>.progress-bar{width:100%}.progress-bar-animated{animation:1s linear infinite progress-bar-stripes}@media(prefers-reduced-motion: reduce){.progress-bar-animated{animation:none}}.list-group{--bs-list-group-color: #212529;--bs-list-group-bg: #ffffff;--bs-list-group-border-color: #dee2e6;--bs-list-group-border-width: 1px;--bs-list-group-border-radius: 0.375rem;--bs-list-group-item-padding-x: 1rem;--bs-list-group-item-padding-y: 0.5rem;--bs-list-group-action-color: rgba(33, 37, 41, 0.75);--bs-list-group-action-hover-color: #000;--bs-list-group-action-hover-bg: #f8f9fa;--bs-list-group-action-active-color: #212529;--bs-list-group-action-active-bg: #e9ecef;--bs-list-group-disabled-color: rgba(33, 37, 41, 0.75);--bs-list-group-disabled-bg: #ffffff;--bs-list-group-active-color: #ffffff;--bs-list-group-active-bg: #0d6efd;--bs-list-group-active-border-color: #0d6efd;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;padding-left:0;margin-bottom:0;border-radius:var(--bs-list-group-border-radius)}.list-group-numbered{list-style-type:none;counter-reset:section}.list-group-numbered>.list-group-item::before{content:counters(section, ".") ". ";counter-increment:section}.list-group-item-action{width:100%;color:var(--bs-list-group-action-color);text-align:inherit}.list-group-item-action:hover,.list-group-item-action:focus{z-index:1;color:var(--bs-list-group-action-hover-color);text-decoration:none;background-color:var(--bs-list-group-action-hover-bg)}.list-group-item-action:active{color:var(--bs-list-group-action-active-color);background-color:var(--bs-list-group-action-active-bg)}.list-group-item{position:relative;display:block;padding:var(--bs-list-group-item-padding-y) var(--bs-list-group-item-padding-x);color:var(--bs-list-group-color);text-decoration:none;-webkit-text-decoration:none;-moz-text-decoration:none;-ms-text-decoration:none;-o-text-decoration:none;background-color:var(--bs-list-group-bg);border:var(--bs-list-group-border-width) solid var(--bs-list-group-border-color)}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:var(--bs-list-group-disabled-color);pointer-events:none;background-color:var(--bs-list-group-disabled-bg)}.list-group-item.active{z-index:2;color:var(--bs-list-group-active-color);background-color:var(--bs-list-group-active-bg);border-color:var(--bs-list-group-active-border-color)}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:calc(-1*var(--bs-list-group-border-width));border-top-width:var(--bs-list-group-border-width)}.list-group-horizontal{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}@media(min-width: 576px){.list-group-horizontal-sm{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-sm>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 768px){.list-group-horizontal-md{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-md>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 992px){.list-group-horizontal-lg{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-lg>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 1200px){.list-group-horizontal-xl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-xl>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}@media(min-width: 1400px){.list-group-horizontal-xxl{flex-direction:row;-webkit-flex-direction:row}.list-group-horizontal-xxl>.list-group-item:first-child:not(:last-child){border-bottom-left-radius:var(--bs-list-group-border-radius);border-top-right-radius:0}.list-group-horizontal-xxl>.list-group-item:last-child:not(:first-child){border-top-right-radius:var(--bs-list-group-border-radius);border-bottom-left-radius:0}.list-group-horizontal-xxl>.list-group-item.active{margin-top:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item{border-top-width:var(--bs-list-group-border-width);border-left-width:0}.list-group-horizontal-xxl>.list-group-item+.list-group-item.active{margin-left:calc(-1*var(--bs-list-group-border-width));border-left-width:var(--bs-list-group-border-width)}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 var(--bs-list-group-border-width)}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-default{--bs-list-group-color: var(--bs-default-text-emphasis);--bs-list-group-bg: var(--bs-default-bg-subtle);--bs-list-group-border-color: var(--bs-default-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-default-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-default-border-subtle);--bs-list-group-active-color: var(--bs-default-bg-subtle);--bs-list-group-active-bg: var(--bs-default-text-emphasis);--bs-list-group-active-border-color: var(--bs-default-text-emphasis)}.list-group-item-primary{--bs-list-group-color: var(--bs-primary-text-emphasis);--bs-list-group-bg: var(--bs-primary-bg-subtle);--bs-list-group-border-color: var(--bs-primary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-primary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-primary-border-subtle);--bs-list-group-active-color: var(--bs-primary-bg-subtle);--bs-list-group-active-bg: var(--bs-primary-text-emphasis);--bs-list-group-active-border-color: var(--bs-primary-text-emphasis)}.list-group-item-secondary{--bs-list-group-color: var(--bs-secondary-text-emphasis);--bs-list-group-bg: var(--bs-secondary-bg-subtle);--bs-list-group-border-color: var(--bs-secondary-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-secondary-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-secondary-border-subtle);--bs-list-group-active-color: var(--bs-secondary-bg-subtle);--bs-list-group-active-bg: var(--bs-secondary-text-emphasis);--bs-list-group-active-border-color: var(--bs-secondary-text-emphasis)}.list-group-item-success{--bs-list-group-color: var(--bs-success-text-emphasis);--bs-list-group-bg: var(--bs-success-bg-subtle);--bs-list-group-border-color: var(--bs-success-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-success-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-success-border-subtle);--bs-list-group-active-color: var(--bs-success-bg-subtle);--bs-list-group-active-bg: var(--bs-success-text-emphasis);--bs-list-group-active-border-color: var(--bs-success-text-emphasis)}.list-group-item-info{--bs-list-group-color: var(--bs-info-text-emphasis);--bs-list-group-bg: var(--bs-info-bg-subtle);--bs-list-group-border-color: var(--bs-info-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-info-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-info-border-subtle);--bs-list-group-active-color: var(--bs-info-bg-subtle);--bs-list-group-active-bg: var(--bs-info-text-emphasis);--bs-list-group-active-border-color: var(--bs-info-text-emphasis)}.list-group-item-warning{--bs-list-group-color: var(--bs-warning-text-emphasis);--bs-list-group-bg: var(--bs-warning-bg-subtle);--bs-list-group-border-color: var(--bs-warning-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-warning-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-warning-border-subtle);--bs-list-group-active-color: var(--bs-warning-bg-subtle);--bs-list-group-active-bg: var(--bs-warning-text-emphasis);--bs-list-group-active-border-color: var(--bs-warning-text-emphasis)}.list-group-item-danger{--bs-list-group-color: var(--bs-danger-text-emphasis);--bs-list-group-bg: var(--bs-danger-bg-subtle);--bs-list-group-border-color: var(--bs-danger-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-danger-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-danger-border-subtle);--bs-list-group-active-color: var(--bs-danger-bg-subtle);--bs-list-group-active-bg: var(--bs-danger-text-emphasis);--bs-list-group-active-border-color: var(--bs-danger-text-emphasis)}.list-group-item-light{--bs-list-group-color: var(--bs-light-text-emphasis);--bs-list-group-bg: var(--bs-light-bg-subtle);--bs-list-group-border-color: var(--bs-light-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-light-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-light-border-subtle);--bs-list-group-active-color: var(--bs-light-bg-subtle);--bs-list-group-active-bg: var(--bs-light-text-emphasis);--bs-list-group-active-border-color: var(--bs-light-text-emphasis)}.list-group-item-dark{--bs-list-group-color: var(--bs-dark-text-emphasis);--bs-list-group-bg: var(--bs-dark-bg-subtle);--bs-list-group-border-color: var(--bs-dark-border-subtle);--bs-list-group-action-hover-color: var(--bs-emphasis-color);--bs-list-group-action-hover-bg: var(--bs-dark-border-subtle);--bs-list-group-action-active-color: var(--bs-emphasis-color);--bs-list-group-action-active-bg: var(--bs-dark-border-subtle);--bs-list-group-active-color: var(--bs-dark-bg-subtle);--bs-list-group-active-bg: var(--bs-dark-text-emphasis);--bs-list-group-active-border-color: var(--bs-dark-text-emphasis)}.btn-close{--bs-btn-close-color: #000;--bs-btn-close-bg: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23000'%3e%3cpath d='M.293.293a1 1 0 0 1 1.414 0L8 6.586 14.293.293a1 1 0 1 1 1.414 1.414L9.414 8l6.293 6.293a1 1 0 0 1-1.414 1.414L8 9.414l-6.293 6.293a1 1 0 0 1-1.414-1.414L6.586 8 .293 1.707a1 1 0 0 1 0-1.414z'/%3e%3c/svg%3e");--bs-btn-close-opacity: 0.5;--bs-btn-close-hover-opacity: 0.75;--bs-btn-close-focus-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25);--bs-btn-close-focus-opacity: 1;--bs-btn-close-disabled-opacity: 0.25;--bs-btn-close-white-filter: invert(1) grayscale(100%) brightness(200%);box-sizing:content-box;width:1em;height:1em;padding:.25em .25em;color:var(--bs-btn-close-color);background:rgba(0,0,0,0) var(--bs-btn-close-bg) center/1em auto no-repeat;border:0;border-radius:.375rem;opacity:var(--bs-btn-close-opacity)}.btn-close:hover{color:var(--bs-btn-close-color);text-decoration:none;opacity:var(--bs-btn-close-hover-opacity)}.btn-close:focus{outline:0;box-shadow:var(--bs-btn-close-focus-shadow);opacity:var(--bs-btn-close-focus-opacity)}.btn-close:disabled,.btn-close.disabled{pointer-events:none;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none;opacity:var(--bs-btn-close-disabled-opacity)}.btn-close-white{filter:var(--bs-btn-close-white-filter)}[data-bs-theme=dark] .btn-close{filter:var(--bs-btn-close-white-filter)}.toast{--bs-toast-zindex: 1090;--bs-toast-padding-x: 0.75rem;--bs-toast-padding-y: 0.5rem;--bs-toast-spacing: 1.5rem;--bs-toast-max-width: 350px;--bs-toast-font-size:0.875rem;--bs-toast-color: ;--bs-toast-bg: rgba(255, 255, 255, 0.85);--bs-toast-border-width: 1px;--bs-toast-border-color: rgba(0, 0, 0, 0.175);--bs-toast-border-radius: 0.375rem;--bs-toast-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-toast-header-color: rgba(33, 37, 41, 0.75);--bs-toast-header-bg: rgba(255, 255, 255, 0.85);--bs-toast-header-border-color: rgba(0, 0, 0, 0.175);width:var(--bs-toast-max-width);max-width:100%;font-size:var(--bs-toast-font-size);color:var(--bs-toast-color);pointer-events:auto;background-color:var(--bs-toast-bg);background-clip:padding-box;border:var(--bs-toast-border-width) solid var(--bs-toast-border-color);box-shadow:var(--bs-toast-box-shadow);border-radius:var(--bs-toast-border-radius)}.toast.showing{opacity:0}.toast:not(.show){display:none}.toast-container{--bs-toast-zindex: 1090;position:absolute;z-index:var(--bs-toast-zindex);width:max-content;width:-webkit-max-content;width:-moz-max-content;width:-ms-max-content;width:-o-max-content;max-width:100%;pointer-events:none}.toast-container>:not(:last-child){margin-bottom:var(--bs-toast-spacing)}.toast-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;padding:var(--bs-toast-padding-y) var(--bs-toast-padding-x);color:var(--bs-toast-header-color);background-color:var(--bs-toast-header-bg);background-clip:padding-box;border-bottom:var(--bs-toast-border-width) solid var(--bs-toast-header-border-color);border-top-left-radius:calc(var(--bs-toast-border-radius) - var(--bs-toast-border-width));border-top-right-radius:calc(var(--bs-toast-border-radius) - var(--bs-toast-border-width))}.toast-header .btn-close{margin-right:calc(-0.5*var(--bs-toast-padding-x));margin-left:var(--bs-toast-padding-x)}.toast-body{padding:var(--bs-toast-padding-x);word-wrap:break-word}.modal{--bs-modal-zindex: 1055;--bs-modal-width: 500px;--bs-modal-padding: 1rem;--bs-modal-margin: 0.5rem;--bs-modal-color: ;--bs-modal-bg: #ffffff;--bs-modal-border-color: rgba(0, 0, 0, 0.175);--bs-modal-border-width: 1px;--bs-modal-border-radius: 0.5rem;--bs-modal-box-shadow: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-modal-inner-border-radius: calc(0.5rem - 1px);--bs-modal-header-padding-x: 1rem;--bs-modal-header-padding-y: 1rem;--bs-modal-header-padding: 1rem 1rem;--bs-modal-header-border-color: #dee2e6;--bs-modal-header-border-width: 1px;--bs-modal-title-line-height: 1.5;--bs-modal-footer-gap: 0.5rem;--bs-modal-footer-bg: ;--bs-modal-footer-border-color: #dee2e6;--bs-modal-footer-border-width: 1px;position:fixed;top:0;left:0;z-index:var(--bs-modal-zindex);display:none;width:100%;height:100%;overflow-x:hidden;overflow-y:auto;outline:0}.modal-dialog{position:relative;width:auto;margin:var(--bs-modal-margin);pointer-events:none}.modal.fade .modal-dialog{transition:transform .3s ease-out;transform:translate(0, -50px)}@media(prefers-reduced-motion: reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{transform:none}.modal.modal-static .modal-dialog{transform:scale(1.02)}.modal-dialog-scrollable{height:calc(100% - var(--bs-modal-margin)*2)}.modal-dialog-scrollable .modal-content{max-height:100%;overflow:hidden}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;min-height:calc(100% - var(--bs-modal-margin)*2)}.modal-content{position:relative;display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;width:100%;color:var(--bs-modal-color);pointer-events:auto;background-color:var(--bs-modal-bg);background-clip:padding-box;border:var(--bs-modal-border-width) solid var(--bs-modal-border-color);border-radius:var(--bs-modal-border-radius);outline:0}.modal-backdrop{--bs-backdrop-zindex: 1050;--bs-backdrop-bg: #000;--bs-backdrop-opacity: 0.5;position:fixed;top:0;left:0;z-index:var(--bs-backdrop-zindex);width:100vw;height:100vh;background-color:var(--bs-backdrop-bg)}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:var(--bs-backdrop-opacity)}.modal-header{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-modal-header-padding);border-bottom:var(--bs-modal-header-border-width) solid var(--bs-modal-header-border-color);border-top-left-radius:var(--bs-modal-inner-border-radius);border-top-right-radius:var(--bs-modal-inner-border-radius)}.modal-header .btn-close{padding:calc(var(--bs-modal-header-padding-y)*.5) calc(var(--bs-modal-header-padding-x)*.5);margin:calc(-0.5*var(--bs-modal-header-padding-y)) calc(-0.5*var(--bs-modal-header-padding-x)) calc(-0.5*var(--bs-modal-header-padding-y)) auto}.modal-title{margin-bottom:0;line-height:var(--bs-modal-title-line-height)}.modal-body{position:relative;flex:1 1 auto;-webkit-flex:1 1 auto;padding:var(--bs-modal-padding)}.modal-footer{display:flex;display:-webkit-flex;flex-shrink:0;-webkit-flex-shrink:0;flex-wrap:wrap;-webkit-flex-wrap:wrap;align-items:center;-webkit-align-items:center;justify-content:flex-end;-webkit-justify-content:flex-end;padding:calc(var(--bs-modal-padding) - var(--bs-modal-footer-gap)*.5);background-color:var(--bs-modal-footer-bg);border-top:var(--bs-modal-footer-border-width) solid var(--bs-modal-footer-border-color);border-bottom-right-radius:var(--bs-modal-inner-border-radius);border-bottom-left-radius:var(--bs-modal-inner-border-radius)}.modal-footer>*{margin:calc(var(--bs-modal-footer-gap)*.5)}@media(min-width: 576px){.modal{--bs-modal-margin: 1.75rem;--bs-modal-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15)}.modal-dialog{max-width:var(--bs-modal-width);margin-right:auto;margin-left:auto}.modal-sm{--bs-modal-width: 300px}}@media(min-width: 992px){.modal-lg,.modal-xl{--bs-modal-width: 800px}}@media(min-width: 1200px){.modal-xl{--bs-modal-width: 1140px}}.modal-fullscreen{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen .modal-header,.modal-fullscreen .modal-footer{border-radius:0}.modal-fullscreen .modal-body{overflow-y:auto}@media(max-width: 575.98px){.modal-fullscreen-sm-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-sm-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-sm-down .modal-header,.modal-fullscreen-sm-down .modal-footer{border-radius:0}.modal-fullscreen-sm-down .modal-body{overflow-y:auto}}@media(max-width: 767.98px){.modal-fullscreen-md-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-md-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-md-down .modal-header,.modal-fullscreen-md-down .modal-footer{border-radius:0}.modal-fullscreen-md-down .modal-body{overflow-y:auto}}@media(max-width: 991.98px){.modal-fullscreen-lg-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-lg-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-lg-down .modal-header,.modal-fullscreen-lg-down .modal-footer{border-radius:0}.modal-fullscreen-lg-down .modal-body{overflow-y:auto}}@media(max-width: 1199.98px){.modal-fullscreen-xl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xl-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-xl-down .modal-header,.modal-fullscreen-xl-down .modal-footer{border-radius:0}.modal-fullscreen-xl-down .modal-body{overflow-y:auto}}@media(max-width: 1399.98px){.modal-fullscreen-xxl-down{width:100vw;max-width:none;height:100%;margin:0}.modal-fullscreen-xxl-down .modal-content{height:100%;border:0;border-radius:0}.modal-fullscreen-xxl-down .modal-header,.modal-fullscreen-xxl-down .modal-footer{border-radius:0}.modal-fullscreen-xxl-down .modal-body{overflow-y:auto}}.tooltip{--bs-tooltip-zindex: 1080;--bs-tooltip-max-width: 200px;--bs-tooltip-padding-x: 0.5rem;--bs-tooltip-padding-y: 0.25rem;--bs-tooltip-margin: ;--bs-tooltip-font-size:0.875rem;--bs-tooltip-color: #ffffff;--bs-tooltip-bg: #000;--bs-tooltip-border-radius: 0.375rem;--bs-tooltip-opacity: 0.9;--bs-tooltip-arrow-width: 0.8rem;--bs-tooltip-arrow-height: 0.4rem;z-index:var(--bs-tooltip-zindex);display:block;margin:var(--bs-tooltip-margin);font-family:system-ui,-apple-system,"Segoe UI",Roboto,"Helvetica Neue","Noto Sans","Liberation Sans",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-tooltip-font-size);word-wrap:break-word;opacity:0}.tooltip.show{opacity:var(--bs-tooltip-opacity)}.tooltip .tooltip-arrow{display:block;width:var(--bs-tooltip-arrow-width);height:var(--bs-tooltip-arrow-height)}.tooltip .tooltip-arrow::before{position:absolute;content:"";border-color:rgba(0,0,0,0);border-style:solid}.bs-tooltip-top .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow{bottom:calc(-1*var(--bs-tooltip-arrow-height))}.bs-tooltip-top .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow::before{top:-1px;border-width:var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width)*.5) 0;border-top-color:var(--bs-tooltip-bg)}.bs-tooltip-end .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow{left:calc(-1*var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-end .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow::before{right:-1px;border-width:calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height) calc(var(--bs-tooltip-arrow-width)*.5) 0;border-right-color:var(--bs-tooltip-bg)}.bs-tooltip-bottom .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow{top:calc(-1*var(--bs-tooltip-arrow-height))}.bs-tooltip-bottom .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow::before{bottom:-1px;border-width:0 calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height);border-bottom-color:var(--bs-tooltip-bg)}.bs-tooltip-start .tooltip-arrow,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow{right:calc(-1*var(--bs-tooltip-arrow-height));width:var(--bs-tooltip-arrow-height);height:var(--bs-tooltip-arrow-width)}.bs-tooltip-start .tooltip-arrow::before,.bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow::before{left:-1px;border-width:calc(var(--bs-tooltip-arrow-width)*.5) 0 calc(var(--bs-tooltip-arrow-width)*.5) var(--bs-tooltip-arrow-height);border-left-color:var(--bs-tooltip-bg)}.tooltip-inner{max-width:var(--bs-tooltip-max-width);padding:var(--bs-tooltip-padding-y) var(--bs-tooltip-padding-x);color:var(--bs-tooltip-color);text-align:center;background-color:var(--bs-tooltip-bg);border-radius:var(--bs-tooltip-border-radius)}.popover{--bs-popover-zindex: 1070;--bs-popover-max-width: 276px;--bs-popover-font-size:0.875rem;--bs-popover-bg: #ffffff;--bs-popover-border-width: 1px;--bs-popover-border-color: rgba(0, 0, 0, 0.175);--bs-popover-border-radius: 0.5rem;--bs-popover-inner-border-radius: calc(0.5rem - 1px);--bs-popover-box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15);--bs-popover-header-padding-x: 1rem;--bs-popover-header-padding-y: 0.5rem;--bs-popover-header-font-size:1rem;--bs-popover-header-color: inherit;--bs-popover-header-bg: #e9ecef;--bs-popover-body-padding-x: 1rem;--bs-popover-body-padding-y: 1rem;--bs-popover-body-color: #212529;--bs-popover-arrow-width: 1rem;--bs-popover-arrow-height: 0.5rem;--bs-popover-arrow-border: var(--bs-popover-border-color);z-index:var(--bs-popover-zindex);display:block;max-width:var(--bs-popover-max-width);font-family:system-ui,-apple-system,"Segoe UI",Roboto,"Helvetica Neue","Noto Sans","Liberation Sans",Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:var(--bs-popover-font-size);word-wrap:break-word;background-color:var(--bs-popover-bg);background-clip:padding-box;border:var(--bs-popover-border-width) solid var(--bs-popover-border-color);border-radius:var(--bs-popover-border-radius)}.popover .popover-arrow{display:block;width:var(--bs-popover-arrow-width);height:var(--bs-popover-arrow-height)}.popover .popover-arrow::before,.popover .popover-arrow::after{position:absolute;display:block;content:"";border-color:rgba(0,0,0,0);border-style:solid;border-width:0}.bs-popover-top>.popover-arrow,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow{bottom:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::before,.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::after{border-width:var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width)*.5) 0}.bs-popover-top>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::before{bottom:0;border-top-color:var(--bs-popover-arrow-border)}.bs-popover-top>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=top]>.popover-arrow::after{bottom:var(--bs-popover-border-width);border-top-color:var(--bs-popover-bg)}.bs-popover-end>.popover-arrow,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow{left:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::before,.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height) calc(var(--bs-popover-arrow-width)*.5) 0}.bs-popover-end>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::before{left:0;border-right-color:var(--bs-popover-arrow-border)}.bs-popover-end>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=right]>.popover-arrow::after{left:var(--bs-popover-border-width);border-right-color:var(--bs-popover-bg)}.bs-popover-bottom>.popover-arrow,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow{top:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width))}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::before,.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::after{border-width:0 calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height)}.bs-popover-bottom>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::before{top:0;border-bottom-color:var(--bs-popover-arrow-border)}.bs-popover-bottom>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=bottom]>.popover-arrow::after{top:var(--bs-popover-border-width);border-bottom-color:var(--bs-popover-bg)}.bs-popover-bottom .popover-header::before,.bs-popover-auto[data-popper-placement^=bottom] .popover-header::before{position:absolute;top:0;left:50%;display:block;width:var(--bs-popover-arrow-width);margin-left:calc(-0.5*var(--bs-popover-arrow-width));content:"";border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-header-bg)}.bs-popover-start>.popover-arrow,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow{right:calc(-1*(var(--bs-popover-arrow-height)) - var(--bs-popover-border-width));width:var(--bs-popover-arrow-height);height:var(--bs-popover-arrow-width)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::before,.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::after{border-width:calc(var(--bs-popover-arrow-width)*.5) 0 calc(var(--bs-popover-arrow-width)*.5) var(--bs-popover-arrow-height)}.bs-popover-start>.popover-arrow::before,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::before{right:0;border-left-color:var(--bs-popover-arrow-border)}.bs-popover-start>.popover-arrow::after,.bs-popover-auto[data-popper-placement^=left]>.popover-arrow::after{right:var(--bs-popover-border-width);border-left-color:var(--bs-popover-bg)}.popover-header{padding:var(--bs-popover-header-padding-y) var(--bs-popover-header-padding-x);margin-bottom:0;font-size:var(--bs-popover-header-font-size);color:var(--bs-popover-header-color);background-color:var(--bs-popover-header-bg);border-bottom:var(--bs-popover-border-width) solid var(--bs-popover-border-color);border-top-left-radius:var(--bs-popover-inner-border-radius);border-top-right-radius:var(--bs-popover-inner-border-radius)}.popover-header:empty{display:none}.popover-body{padding:var(--bs-popover-body-padding-y) var(--bs-popover-body-padding-x);color:var(--bs-popover-body-color)}.carousel{position:relative}.carousel.pointer-event{touch-action:pan-y;-webkit-touch-action:pan-y;-moz-touch-action:pan-y;-ms-touch-action:pan-y;-o-touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner::after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden;transition:transform .6s ease-in-out}@media(prefers-reduced-motion: reduce){.carousel-item{transition:none}}.carousel-item.active,.carousel-item-next,.carousel-item-prev{display:block}.carousel-item-next:not(.carousel-item-start),.active.carousel-item-end{transform:translateX(100%)}.carousel-item-prev:not(.carousel-item-end),.active.carousel-item-start{transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;transform:none}.carousel-fade .carousel-item.active,.carousel-fade .carousel-item-next.carousel-item-start,.carousel-fade .carousel-item-prev.carousel-item-end{z-index:1;opacity:1}.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{z-index:0;opacity:0;transition:opacity 0s .6s}@media(prefers-reduced-motion: reduce){.carousel-fade .active.carousel-item-start,.carousel-fade .active.carousel-item-end{transition:none}}.carousel-control-prev,.carousel-control-next{position:absolute;top:0;bottom:0;z-index:1;display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:center;-webkit-justify-content:center;width:15%;padding:0;color:#fff;text-align:center;background:none;border:0;opacity:.5;transition:opacity .15s ease}@media(prefers-reduced-motion: reduce){.carousel-control-prev,.carousel-control-next{transition:none}}.carousel-control-prev:hover,.carousel-control-prev:focus,.carousel-control-next:hover,.carousel-control-next:focus{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-prev-icon,.carousel-control-next-icon{display:inline-block;width:2rem;height:2rem;background-repeat:no-repeat;background-position:50%;background-size:100% 100%}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23ffffff'%3e%3cpath d='M11.354 1.646a.5.5 0 0 1 0 .708L5.707 8l5.647 5.646a.5.5 0 0 1-.708.708l-6-6a.5.5 0 0 1 0-.708l6-6a.5.5 0 0 1 .708 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23ffffff'%3e%3cpath d='M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:2;display:flex;display:-webkit-flex;justify-content:center;-webkit-justify-content:center;padding:0;margin-right:15%;margin-bottom:1rem;margin-left:15%}.carousel-indicators [data-bs-target]{box-sizing:content-box;flex:0 1 auto;-webkit-flex:0 1 auto;width:30px;height:3px;padding:0;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border:0;border-top:10px solid rgba(0,0,0,0);border-bottom:10px solid rgba(0,0,0,0);opacity:.5;transition:opacity .6s ease}@media(prefers-reduced-motion: reduce){.carousel-indicators [data-bs-target]{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:1.25rem;left:15%;padding-top:1.25rem;padding-bottom:1.25rem;color:#fff;text-align:center}.carousel-dark .carousel-control-prev-icon,.carousel-dark .carousel-control-next-icon{filter:invert(1) grayscale(100)}.carousel-dark .carousel-indicators [data-bs-target]{background-color:#000}.carousel-dark .carousel-caption{color:#000}[data-bs-theme=dark] .carousel .carousel-control-prev-icon,[data-bs-theme=dark] .carousel .carousel-control-next-icon,[data-bs-theme=dark].carousel .carousel-control-prev-icon,[data-bs-theme=dark].carousel .carousel-control-next-icon{filter:invert(1) grayscale(100)}[data-bs-theme=dark] .carousel .carousel-indicators [data-bs-target],[data-bs-theme=dark].carousel .carousel-indicators [data-bs-target]{background-color:#000}[data-bs-theme=dark] .carousel .carousel-caption,[data-bs-theme=dark].carousel .carousel-caption{color:#000}.spinner-grow,.spinner-border{display:inline-block;width:var(--bs-spinner-width);height:var(--bs-spinner-height);vertical-align:var(--bs-spinner-vertical-align);border-radius:50%;animation:var(--bs-spinner-animation-speed) linear infinite var(--bs-spinner-animation-name)}@keyframes spinner-border{to{transform:rotate(360deg) /* rtl:ignore */}}.spinner-border{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -0.125em;--bs-spinner-border-width: 0.25em;--bs-spinner-animation-speed: 0.75s;--bs-spinner-animation-name: spinner-border;border:var(--bs-spinner-border-width) solid currentcolor;border-right-color:rgba(0,0,0,0)}.spinner-border-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem;--bs-spinner-border-width: 0.2em}@keyframes spinner-grow{0%{transform:scale(0)}50%{opacity:1;transform:none}}.spinner-grow{--bs-spinner-width: 2rem;--bs-spinner-height: 2rem;--bs-spinner-vertical-align: -0.125em;--bs-spinner-animation-speed: 0.75s;--bs-spinner-animation-name: spinner-grow;background-color:currentcolor;opacity:0}.spinner-grow-sm{--bs-spinner-width: 1rem;--bs-spinner-height: 1rem}@media(prefers-reduced-motion: reduce){.spinner-border,.spinner-grow{--bs-spinner-animation-speed: 1.5s}}.offcanvas,.offcanvas-xxl,.offcanvas-xl,.offcanvas-lg,.offcanvas-md,.offcanvas-sm{--bs-offcanvas-zindex: 1045;--bs-offcanvas-width: 400px;--bs-offcanvas-height: 30vh;--bs-offcanvas-padding-x: 1rem;--bs-offcanvas-padding-y: 1rem;--bs-offcanvas-color: #212529;--bs-offcanvas-bg: #ffffff;--bs-offcanvas-border-width: 1px;--bs-offcanvas-border-color: rgba(0, 0, 0, 0.175);--bs-offcanvas-box-shadow: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075);--bs-offcanvas-transition: transform 0.3s ease-in-out;--bs-offcanvas-title-line-height: 1.5}@media(max-width: 575.98px){.offcanvas-sm{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 575.98px)and (prefers-reduced-motion: reduce){.offcanvas-sm{transition:none}}@media(max-width: 575.98px){.offcanvas-sm.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-sm.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-sm.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-sm.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-sm.showing,.offcanvas-sm.show:not(.hiding){transform:none}.offcanvas-sm.showing,.offcanvas-sm.hiding,.offcanvas-sm.show{visibility:visible}}@media(min-width: 576px){.offcanvas-sm{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-sm .offcanvas-header{display:none}.offcanvas-sm .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 767.98px){.offcanvas-md{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 767.98px)and (prefers-reduced-motion: reduce){.offcanvas-md{transition:none}}@media(max-width: 767.98px){.offcanvas-md.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-md.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-md.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-md.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-md.showing,.offcanvas-md.show:not(.hiding){transform:none}.offcanvas-md.showing,.offcanvas-md.hiding,.offcanvas-md.show{visibility:visible}}@media(min-width: 768px){.offcanvas-md{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-md .offcanvas-header{display:none}.offcanvas-md .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 991.98px){.offcanvas-lg{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 991.98px)and (prefers-reduced-motion: reduce){.offcanvas-lg{transition:none}}@media(max-width: 991.98px){.offcanvas-lg.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-lg.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-lg.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-lg.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-lg.showing,.offcanvas-lg.show:not(.hiding){transform:none}.offcanvas-lg.showing,.offcanvas-lg.hiding,.offcanvas-lg.show{visibility:visible}}@media(min-width: 992px){.offcanvas-lg{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-lg .offcanvas-header{display:none}.offcanvas-lg .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 1199.98px){.offcanvas-xl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 1199.98px)and (prefers-reduced-motion: reduce){.offcanvas-xl{transition:none}}@media(max-width: 1199.98px){.offcanvas-xl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xl.showing,.offcanvas-xl.show:not(.hiding){transform:none}.offcanvas-xl.showing,.offcanvas-xl.hiding,.offcanvas-xl.show{visibility:visible}}@media(min-width: 1200px){.offcanvas-xl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-xl .offcanvas-header{display:none}.offcanvas-xl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}@media(max-width: 1399.98px){.offcanvas-xxl{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}}@media(max-width: 1399.98px)and (prefers-reduced-motion: reduce){.offcanvas-xxl{transition:none}}@media(max-width: 1399.98px){.offcanvas-xxl.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas-xxl.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas-xxl.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas-xxl.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas-xxl.showing,.offcanvas-xxl.show:not(.hiding){transform:none}.offcanvas-xxl.showing,.offcanvas-xxl.hiding,.offcanvas-xxl.show{visibility:visible}}@media(min-width: 1400px){.offcanvas-xxl{--bs-offcanvas-height: auto;--bs-offcanvas-border-width: 0;background-color:rgba(0,0,0,0) !important}.offcanvas-xxl .offcanvas-header{display:none}.offcanvas-xxl .offcanvas-body{display:flex;display:-webkit-flex;flex-grow:0;-webkit-flex-grow:0;padding:0;overflow-y:visible;background-color:rgba(0,0,0,0) !important}}.offcanvas{position:fixed;bottom:0;z-index:var(--bs-offcanvas-zindex);display:flex;display:-webkit-flex;flex-direction:column;-webkit-flex-direction:column;max-width:100%;color:var(--bs-offcanvas-color);visibility:hidden;background-color:var(--bs-offcanvas-bg);background-clip:padding-box;outline:0;transition:var(--bs-offcanvas-transition)}@media(prefers-reduced-motion: reduce){.offcanvas{transition:none}}.offcanvas.offcanvas-start{top:0;left:0;width:var(--bs-offcanvas-width);border-right:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(-100%)}.offcanvas.offcanvas-end{top:0;right:0;width:var(--bs-offcanvas-width);border-left:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateX(100%)}.offcanvas.offcanvas-top{top:0;right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-bottom:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(-100%)}.offcanvas.offcanvas-bottom{right:0;left:0;height:var(--bs-offcanvas-height);max-height:100%;border-top:var(--bs-offcanvas-border-width) solid var(--bs-offcanvas-border-color);transform:translateY(100%)}.offcanvas.showing,.offcanvas.show:not(.hiding){transform:none}.offcanvas.showing,.offcanvas.hiding,.offcanvas.show{visibility:visible}.offcanvas-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.offcanvas-backdrop.fade{opacity:0}.offcanvas-backdrop.show{opacity:.5}.offcanvas-header{display:flex;display:-webkit-flex;align-items:center;-webkit-align-items:center;justify-content:space-between;-webkit-justify-content:space-between;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x)}.offcanvas-header .btn-close{padding:calc(var(--bs-offcanvas-padding-y)*.5) calc(var(--bs-offcanvas-padding-x)*.5);margin-top:calc(-0.5*var(--bs-offcanvas-padding-y));margin-right:calc(-0.5*var(--bs-offcanvas-padding-x));margin-bottom:calc(-0.5*var(--bs-offcanvas-padding-y))}.offcanvas-title{margin-bottom:0;line-height:var(--bs-offcanvas-title-line-height)}.offcanvas-body{flex-grow:1;-webkit-flex-grow:1;padding:var(--bs-offcanvas-padding-y) var(--bs-offcanvas-padding-x);overflow-y:auto}.placeholder{display:inline-block;min-height:1em;vertical-align:middle;cursor:wait;background-color:currentcolor;opacity:.5}.placeholder.btn::before{display:inline-block;content:""}.placeholder-xs{min-height:.6em}.placeholder-sm{min-height:.8em}.placeholder-lg{min-height:1.2em}.placeholder-glow .placeholder{animation:placeholder-glow 2s ease-in-out infinite}@keyframes placeholder-glow{50%{opacity:.2}}.placeholder-wave{mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);-webkit-mask-image:linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%);mask-size:200% 100%;-webkit-mask-size:200% 100%;animation:placeholder-wave 2s linear infinite}@keyframes placeholder-wave{100%{mask-position:-200% 0%;-webkit-mask-position:-200% 0%}}.clearfix::after{display:block;clear:both;content:""}.text-bg-default{color:#000 !important;background-color:RGBA(var(--bs-default-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-primary{color:#fff !important;background-color:RGBA(var(--bs-primary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-secondary{color:#fff !important;background-color:RGBA(var(--bs-secondary-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-success{color:#fff !important;background-color:RGBA(var(--bs-success-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-info{color:#000 !important;background-color:RGBA(var(--bs-info-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-warning{color:#000 !important;background-color:RGBA(var(--bs-warning-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-danger{color:#fff !important;background-color:RGBA(var(--bs-danger-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-light{color:#000 !important;background-color:RGBA(var(--bs-light-rgb), var(--bs-bg-opacity, 1)) !important}.text-bg-dark{color:#fff !important;background-color:RGBA(var(--bs-dark-rgb), var(--bs-bg-opacity, 1)) !important}.link-default{color:RGBA(var(--bs-default-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-default-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-default:hover,.link-default:focus{color:RGBA(229, 232, 235, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(229, 232, 235, var(--bs-link-underline-opacity, 1)) !important}.link-primary{color:RGBA(var(--bs-primary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-primary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-primary:hover,.link-primary:focus{color:RGBA(10, 88, 202, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(10, 88, 202, var(--bs-link-underline-opacity, 1)) !important}.link-secondary{color:RGBA(var(--bs-secondary-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-secondary-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-secondary:hover,.link-secondary:focus{color:RGBA(86, 94, 100, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(86, 94, 100, var(--bs-link-underline-opacity, 1)) !important}.link-success{color:RGBA(var(--bs-success-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-success-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-success:hover,.link-success:focus{color:RGBA(20, 108, 67, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(20, 108, 67, var(--bs-link-underline-opacity, 1)) !important}.link-info{color:RGBA(var(--bs-info-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-info-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-info:hover,.link-info:focus{color:RGBA(61, 213, 243, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(61, 213, 243, var(--bs-link-underline-opacity, 1)) !important}.link-warning{color:RGBA(var(--bs-warning-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-warning-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-warning:hover,.link-warning:focus{color:RGBA(255, 205, 57, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(255, 205, 57, var(--bs-link-underline-opacity, 1)) !important}.link-danger{color:RGBA(var(--bs-danger-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-danger-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-danger:hover,.link-danger:focus{color:RGBA(176, 42, 55, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(176, 42, 55, var(--bs-link-underline-opacity, 1)) !important}.link-light{color:RGBA(var(--bs-light-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-light-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-light:hover,.link-light:focus{color:RGBA(249, 250, 251, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(249, 250, 251, var(--bs-link-underline-opacity, 1)) !important}.link-dark{color:RGBA(var(--bs-dark-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-dark-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-dark:hover,.link-dark:focus{color:RGBA(26, 30, 33, var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(26, 30, 33, var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 1)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-body-emphasis:hover,.link-body-emphasis:focus{color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-opacity, 0.75)) !important;text-decoration-color:RGBA(var(--bs-emphasis-color-rgb), var(--bs-link-underline-opacity, 0.75)) !important}.focus-ring:focus{outline:0;box-shadow:var(--bs-focus-ring-x, 0) var(--bs-focus-ring-y, 0) var(--bs-focus-ring-blur, 0) var(--bs-focus-ring-width) var(--bs-focus-ring-color)}.icon-link{display:inline-flex;gap:.375rem;align-items:center;-webkit-align-items:center;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-opacity, 0.5));text-underline-offset:.25em;backface-visibility:hidden;-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-o-backface-visibility:hidden}.icon-link>.bi{flex-shrink:0;-webkit-flex-shrink:0;width:1em;height:1em;fill:currentcolor;transition:.2s ease-in-out transform}@media(prefers-reduced-motion: reduce){.icon-link>.bi{transition:none}}.icon-link-hover:hover>.bi,.icon-link-hover:focus-visible>.bi{transform:var(--bs-icon-link-transform, translate3d(0.25em, 0, 0))}.ratio{position:relative;width:100%}.ratio::before{display:block;padding-top:var(--bs-aspect-ratio);content:""}.ratio>*{position:absolute;top:0;left:0;width:100%;height:100%}.ratio-1x1{--bs-aspect-ratio: 100%}.ratio-4x3{--bs-aspect-ratio: 75%}.ratio-16x9{--bs-aspect-ratio: 56.25%}.ratio-21x9{--bs-aspect-ratio: 42.8571428571%}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.fixed-bottom{position:fixed;right:0;bottom:0;left:0;z-index:1030}.sticky-top{position:sticky;top:0;z-index:1020}.sticky-bottom{position:sticky;bottom:0;z-index:1020}@media(min-width: 576px){.sticky-sm-top{position:sticky;top:0;z-index:1020}.sticky-sm-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 768px){.sticky-md-top{position:sticky;top:0;z-index:1020}.sticky-md-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 992px){.sticky-lg-top{position:sticky;top:0;z-index:1020}.sticky-lg-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 1200px){.sticky-xl-top{position:sticky;top:0;z-index:1020}.sticky-xl-bottom{position:sticky;bottom:0;z-index:1020}}@media(min-width: 1400px){.sticky-xxl-top{position:sticky;top:0;z-index:1020}.sticky-xxl-bottom{position:sticky;bottom:0;z-index:1020}}.hstack{display:flex;display:-webkit-flex;flex-direction:row;-webkit-flex-direction:row;align-items:center;-webkit-align-items:center;align-self:stretch;-webkit-align-self:stretch}.vstack{display:flex;display:-webkit-flex;flex:1 1 auto;-webkit-flex:1 1 auto;flex-direction:column;-webkit-flex-direction:column;align-self:stretch;-webkit-align-self:stretch}.visually-hidden,.visually-hidden-focusable:not(:focus):not(:focus-within){width:1px !important;height:1px !important;padding:0 !important;margin:-1px !important;overflow:hidden !important;clip:rect(0, 0, 0, 0) !important;white-space:nowrap !important;border:0 !important}.visually-hidden:not(caption),.visually-hidden-focusable:not(:focus):not(:focus-within):not(caption){position:absolute !important}.stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;content:""}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.vr{display:inline-block;align-self:stretch;-webkit-align-self:stretch;width:1px;min-height:1em;background-color:currentcolor;opacity:.25}.align-baseline{vertical-align:baseline !important}.align-top{vertical-align:top !important}.align-middle{vertical-align:middle !important}.align-bottom{vertical-align:bottom !important}.align-text-bottom{vertical-align:text-bottom !important}.align-text-top{vertical-align:text-top !important}.float-start{float:left !important}.float-end{float:right !important}.float-none{float:none !important}.object-fit-contain{object-fit:contain !important}.object-fit-cover{object-fit:cover !important}.object-fit-fill{object-fit:fill !important}.object-fit-scale{object-fit:scale-down !important}.object-fit-none{object-fit:none !important}.opacity-0{opacity:0 !important}.opacity-25{opacity:.25 !important}.opacity-50{opacity:.5 !important}.opacity-75{opacity:.75 !important}.opacity-100{opacity:1 !important}.overflow-auto{overflow:auto !important}.overflow-hidden{overflow:hidden !important}.overflow-visible{overflow:visible !important}.overflow-scroll{overflow:scroll !important}.overflow-x-auto{overflow-x:auto !important}.overflow-x-hidden{overflow-x:hidden !important}.overflow-x-visible{overflow-x:visible !important}.overflow-x-scroll{overflow-x:scroll !important}.overflow-y-auto{overflow-y:auto !important}.overflow-y-hidden{overflow-y:hidden !important}.overflow-y-visible{overflow-y:visible !important}.overflow-y-scroll{overflow-y:scroll !important}.d-inline{display:inline !important}.d-inline-block{display:inline-block !important}.d-block{display:block !important}.d-grid{display:grid !important}.d-inline-grid{display:inline-grid !important}.d-table{display:table !important}.d-table-row{display:table-row !important}.d-table-cell{display:table-cell !important}.d-flex{display:flex !important}.d-inline-flex{display:inline-flex !important}.d-none{display:none !important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15) !important}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075) !important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175) !important}.shadow-none{box-shadow:none !important}.focus-ring-default{--bs-focus-ring-color: rgba(var(--bs-default-rgb), var(--bs-focus-ring-opacity))}.focus-ring-primary{--bs-focus-ring-color: rgba(var(--bs-primary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-secondary{--bs-focus-ring-color: rgba(var(--bs-secondary-rgb), var(--bs-focus-ring-opacity))}.focus-ring-success{--bs-focus-ring-color: rgba(var(--bs-success-rgb), var(--bs-focus-ring-opacity))}.focus-ring-info{--bs-focus-ring-color: rgba(var(--bs-info-rgb), var(--bs-focus-ring-opacity))}.focus-ring-warning{--bs-focus-ring-color: rgba(var(--bs-warning-rgb), var(--bs-focus-ring-opacity))}.focus-ring-danger{--bs-focus-ring-color: rgba(var(--bs-danger-rgb), var(--bs-focus-ring-opacity))}.focus-ring-light{--bs-focus-ring-color: rgba(var(--bs-light-rgb), var(--bs-focus-ring-opacity))}.focus-ring-dark{--bs-focus-ring-color: rgba(var(--bs-dark-rgb), var(--bs-focus-ring-opacity))}.position-static{position:static !important}.position-relative{position:relative !important}.position-absolute{position:absolute !important}.position-fixed{position:fixed !important}.position-sticky{position:sticky !important}.top-0{top:0 !important}.top-50{top:50% !important}.top-100{top:100% !important}.bottom-0{bottom:0 !important}.bottom-50{bottom:50% !important}.bottom-100{bottom:100% !important}.start-0{left:0 !important}.start-50{left:50% !important}.start-100{left:100% !important}.end-0{right:0 !important}.end-50{right:50% !important}.end-100{right:100% !important}.translate-middle{transform:translate(-50%, -50%) !important}.translate-middle-x{transform:translateX(-50%) !important}.translate-middle-y{transform:translateY(-50%) !important}.border{border:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-0{border:0 !important}.border-top{border-top:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-top-0{border-top:0 !important}.border-end{border-right:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-end-0{border-right:0 !important}.border-bottom{border-bottom:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-bottom-0{border-bottom:0 !important}.border-start{border-left:var(--bs-border-width) var(--bs-border-style) var(--bs-border-color) !important}.border-start-0{border-left:0 !important}.border-default{--bs-border-opacity: 1;border-color:rgba(var(--bs-default-rgb), var(--bs-border-opacity)) !important}.border-primary{--bs-border-opacity: 1;border-color:rgba(var(--bs-primary-rgb), var(--bs-border-opacity)) !important}.border-secondary{--bs-border-opacity: 1;border-color:rgba(var(--bs-secondary-rgb), var(--bs-border-opacity)) !important}.border-success{--bs-border-opacity: 1;border-color:rgba(var(--bs-success-rgb), var(--bs-border-opacity)) !important}.border-info{--bs-border-opacity: 1;border-color:rgba(var(--bs-info-rgb), var(--bs-border-opacity)) !important}.border-warning{--bs-border-opacity: 1;border-color:rgba(var(--bs-warning-rgb), var(--bs-border-opacity)) !important}.border-danger{--bs-border-opacity: 1;border-color:rgba(var(--bs-danger-rgb), var(--bs-border-opacity)) !important}.border-light{--bs-border-opacity: 1;border-color:rgba(var(--bs-light-rgb), var(--bs-border-opacity)) !important}.border-dark{--bs-border-opacity: 1;border-color:rgba(var(--bs-dark-rgb), var(--bs-border-opacity)) !important}.border-black{--bs-border-opacity: 1;border-color:rgba(var(--bs-black-rgb), var(--bs-border-opacity)) !important}.border-white{--bs-border-opacity: 1;border-color:rgba(var(--bs-white-rgb), var(--bs-border-opacity)) !important}.border-primary-subtle{border-color:var(--bs-primary-border-subtle) !important}.border-secondary-subtle{border-color:var(--bs-secondary-border-subtle) !important}.border-success-subtle{border-color:var(--bs-success-border-subtle) !important}.border-info-subtle{border-color:var(--bs-info-border-subtle) !important}.border-warning-subtle{border-color:var(--bs-warning-border-subtle) !important}.border-danger-subtle{border-color:var(--bs-danger-border-subtle) !important}.border-light-subtle{border-color:var(--bs-light-border-subtle) !important}.border-dark-subtle{border-color:var(--bs-dark-border-subtle) !important}.border-1{border-width:1px !important}.border-2{border-width:2px !important}.border-3{border-width:3px !important}.border-4{border-width:4px !important}.border-5{border-width:5px !important}.border-opacity-10{--bs-border-opacity: 0.1}.border-opacity-25{--bs-border-opacity: 0.25}.border-opacity-50{--bs-border-opacity: 0.5}.border-opacity-75{--bs-border-opacity: 0.75}.border-opacity-100{--bs-border-opacity: 1}.w-25{width:25% !important}.w-50{width:50% !important}.w-75{width:75% !important}.w-100{width:100% !important}.w-auto{width:auto !important}.mw-100{max-width:100% !important}.vw-100{width:100vw !important}.min-vw-100{min-width:100vw !important}.h-25{height:25% !important}.h-50{height:50% !important}.h-75{height:75% !important}.h-100{height:100% !important}.h-auto{height:auto !important}.mh-100{max-height:100% !important}.vh-100{height:100vh !important}.min-vh-100{min-height:100vh !important}.flex-fill{flex:1 1 auto !important}.flex-row{flex-direction:row !important}.flex-column{flex-direction:column !important}.flex-row-reverse{flex-direction:row-reverse !important}.flex-column-reverse{flex-direction:column-reverse !important}.flex-grow-0{flex-grow:0 !important}.flex-grow-1{flex-grow:1 !important}.flex-shrink-0{flex-shrink:0 !important}.flex-shrink-1{flex-shrink:1 !important}.flex-wrap{flex-wrap:wrap !important}.flex-nowrap{flex-wrap:nowrap !important}.flex-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-start{justify-content:flex-start !important}.justify-content-end{justify-content:flex-end !important}.justify-content-center{justify-content:center !important}.justify-content-between{justify-content:space-between !important}.justify-content-around{justify-content:space-around !important}.justify-content-evenly{justify-content:space-evenly !important}.align-items-start{align-items:flex-start !important}.align-items-end{align-items:flex-end !important}.align-items-center{align-items:center !important}.align-items-baseline{align-items:baseline !important}.align-items-stretch{align-items:stretch !important}.align-content-start{align-content:flex-start !important}.align-content-end{align-content:flex-end !important}.align-content-center{align-content:center !important}.align-content-between{align-content:space-between !important}.align-content-around{align-content:space-around !important}.align-content-stretch{align-content:stretch !important}.align-self-auto{align-self:auto !important}.align-self-start{align-self:flex-start !important}.align-self-end{align-self:flex-end !important}.align-self-center{align-self:center !important}.align-self-baseline{align-self:baseline !important}.align-self-stretch{align-self:stretch !important}.order-first{order:-1 !important}.order-0{order:0 !important}.order-1{order:1 !important}.order-2{order:2 !important}.order-3{order:3 !important}.order-4{order:4 !important}.order-5{order:5 !important}.order-last{order:6 !important}.m-0{margin:0 !important}.m-1{margin:.25rem !important}.m-2{margin:.5rem !important}.m-3{margin:1rem !important}.m-4{margin:1.5rem !important}.m-5{margin:3rem !important}.m-auto{margin:auto !important}.mx-0{margin-right:0 !important;margin-left:0 !important}.mx-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-3{margin-right:1rem !important;margin-left:1rem !important}.mx-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-5{margin-right:3rem !important;margin-left:3rem !important}.mx-auto{margin-right:auto !important;margin-left:auto !important}.my-0{margin-top:0 !important;margin-bottom:0 !important}.my-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-0{margin-top:0 !important}.mt-1{margin-top:.25rem !important}.mt-2{margin-top:.5rem !important}.mt-3{margin-top:1rem !important}.mt-4{margin-top:1.5rem !important}.mt-5{margin-top:3rem !important}.mt-auto{margin-top:auto !important}.me-0{margin-right:0 !important}.me-1{margin-right:.25rem !important}.me-2{margin-right:.5rem !important}.me-3{margin-right:1rem !important}.me-4{margin-right:1.5rem !important}.me-5{margin-right:3rem !important}.me-auto{margin-right:auto !important}.mb-0{margin-bottom:0 !important}.mb-1{margin-bottom:.25rem !important}.mb-2{margin-bottom:.5rem !important}.mb-3{margin-bottom:1rem !important}.mb-4{margin-bottom:1.5rem !important}.mb-5{margin-bottom:3rem !important}.mb-auto{margin-bottom:auto !important}.ms-0{margin-left:0 !important}.ms-1{margin-left:.25rem !important}.ms-2{margin-left:.5rem !important}.ms-3{margin-left:1rem !important}.ms-4{margin-left:1.5rem !important}.ms-5{margin-left:3rem !important}.ms-auto{margin-left:auto !important}.p-0{padding:0 !important}.p-1{padding:.25rem !important}.p-2{padding:.5rem !important}.p-3{padding:1rem !important}.p-4{padding:1.5rem !important}.p-5{padding:3rem !important}.px-0{padding-right:0 !important;padding-left:0 !important}.px-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-3{padding-right:1rem !important;padding-left:1rem !important}.px-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-5{padding-right:3rem !important;padding-left:3rem !important}.py-0{padding-top:0 !important;padding-bottom:0 !important}.py-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-0{padding-top:0 !important}.pt-1{padding-top:.25rem !important}.pt-2{padding-top:.5rem !important}.pt-3{padding-top:1rem !important}.pt-4{padding-top:1.5rem !important}.pt-5{padding-top:3rem !important}.pe-0{padding-right:0 !important}.pe-1{padding-right:.25rem !important}.pe-2{padding-right:.5rem !important}.pe-3{padding-right:1rem !important}.pe-4{padding-right:1.5rem !important}.pe-5{padding-right:3rem !important}.pb-0{padding-bottom:0 !important}.pb-1{padding-bottom:.25rem !important}.pb-2{padding-bottom:.5rem !important}.pb-3{padding-bottom:1rem !important}.pb-4{padding-bottom:1.5rem !important}.pb-5{padding-bottom:3rem !important}.ps-0{padding-left:0 !important}.ps-1{padding-left:.25rem !important}.ps-2{padding-left:.5rem !important}.ps-3{padding-left:1rem !important}.ps-4{padding-left:1.5rem !important}.ps-5{padding-left:3rem !important}.gap-0{gap:0 !important}.gap-1{gap:.25rem !important}.gap-2{gap:.5rem !important}.gap-3{gap:1rem !important}.gap-4{gap:1.5rem !important}.gap-5{gap:3rem !important}.row-gap-0{row-gap:0 !important}.row-gap-1{row-gap:.25rem !important}.row-gap-2{row-gap:.5rem !important}.row-gap-3{row-gap:1rem !important}.row-gap-4{row-gap:1.5rem !important}.row-gap-5{row-gap:3rem !important}.column-gap-0{column-gap:0 !important}.column-gap-1{column-gap:.25rem !important}.column-gap-2{column-gap:.5rem !important}.column-gap-3{column-gap:1rem !important}.column-gap-4{column-gap:1.5rem !important}.column-gap-5{column-gap:3rem !important}.font-monospace{font-family:var(--bs-font-monospace) !important}.fs-1{font-size:calc(1.325rem + 0.9vw) !important}.fs-2{font-size:calc(1.29rem + 0.48vw) !important}.fs-3{font-size:calc(1.27rem + 0.24vw) !important}.fs-4{font-size:1.25rem !important}.fs-5{font-size:1.1rem !important}.fs-6{font-size:1rem !important}.fst-italic{font-style:italic !important}.fst-normal{font-style:normal !important}.fw-lighter{font-weight:lighter !important}.fw-light{font-weight:300 !important}.fw-normal{font-weight:400 !important}.fw-medium{font-weight:500 !important}.fw-semibold{font-weight:600 !important}.fw-bold{font-weight:700 !important}.fw-bolder{font-weight:bolder !important}.lh-1{line-height:1 !important}.lh-sm{line-height:1.25 !important}.lh-base{line-height:1.5 !important}.lh-lg{line-height:2 !important}.text-start{text-align:left !important}.text-end{text-align:right !important}.text-center{text-align:center !important}.text-decoration-none{text-decoration:none !important}.text-decoration-underline{text-decoration:underline !important}.text-decoration-line-through{text-decoration:line-through !important}.text-lowercase{text-transform:lowercase !important}.text-uppercase{text-transform:uppercase !important}.text-capitalize{text-transform:capitalize !important}.text-wrap{white-space:normal !important}.text-nowrap{white-space:nowrap !important}.text-break{word-wrap:break-word !important;word-break:break-word !important}.text-default{--bs-text-opacity: 1;color:rgba(var(--bs-default-rgb), var(--bs-text-opacity)) !important}.text-primary{--bs-text-opacity: 1;color:rgba(var(--bs-primary-rgb), var(--bs-text-opacity)) !important}.text-secondary{--bs-text-opacity: 1;color:rgba(var(--bs-secondary-rgb), var(--bs-text-opacity)) !important}.text-success{--bs-text-opacity: 1;color:rgba(var(--bs-success-rgb), var(--bs-text-opacity)) !important}.text-info{--bs-text-opacity: 1;color:rgba(var(--bs-info-rgb), var(--bs-text-opacity)) !important}.text-warning{--bs-text-opacity: 1;color:rgba(var(--bs-warning-rgb), var(--bs-text-opacity)) !important}.text-danger{--bs-text-opacity: 1;color:rgba(var(--bs-danger-rgb), var(--bs-text-opacity)) !important}.text-light{--bs-text-opacity: 1;color:rgba(var(--bs-light-rgb), var(--bs-text-opacity)) !important}.text-dark{--bs-text-opacity: 1;color:rgba(var(--bs-dark-rgb), var(--bs-text-opacity)) !important}.text-black{--bs-text-opacity: 1;color:rgba(var(--bs-black-rgb), var(--bs-text-opacity)) !important}.text-white{--bs-text-opacity: 1;color:rgba(var(--bs-white-rgb), var(--bs-text-opacity)) !important}.text-body{--bs-text-opacity: 1;color:rgba(var(--bs-body-color-rgb), var(--bs-text-opacity)) !important}.text-muted{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-black-50{--bs-text-opacity: 1;color:rgba(0,0,0,.5) !important}.text-white-50{--bs-text-opacity: 1;color:rgba(255,255,255,.5) !important}.text-body-secondary{--bs-text-opacity: 1;color:var(--bs-secondary-color) !important}.text-body-tertiary{--bs-text-opacity: 1;color:var(--bs-tertiary-color) !important}.text-body-emphasis{--bs-text-opacity: 1;color:var(--bs-emphasis-color) !important}.text-reset{--bs-text-opacity: 1;color:inherit !important}.text-opacity-25{--bs-text-opacity: 0.25}.text-opacity-50{--bs-text-opacity: 0.5}.text-opacity-75{--bs-text-opacity: 0.75}.text-opacity-100{--bs-text-opacity: 1}.text-primary-emphasis{color:var(--bs-primary-text-emphasis) !important}.text-secondary-emphasis{color:var(--bs-secondary-text-emphasis) !important}.text-success-emphasis{color:var(--bs-success-text-emphasis) !important}.text-info-emphasis{color:var(--bs-info-text-emphasis) !important}.text-warning-emphasis{color:var(--bs-warning-text-emphasis) !important}.text-danger-emphasis{color:var(--bs-danger-text-emphasis) !important}.text-light-emphasis{color:var(--bs-light-text-emphasis) !important}.text-dark-emphasis{color:var(--bs-dark-text-emphasis) !important}.link-opacity-10{--bs-link-opacity: 0.1}.link-opacity-10-hover:hover{--bs-link-opacity: 0.1}.link-opacity-25{--bs-link-opacity: 0.25}.link-opacity-25-hover:hover{--bs-link-opacity: 0.25}.link-opacity-50{--bs-link-opacity: 0.5}.link-opacity-50-hover:hover{--bs-link-opacity: 0.5}.link-opacity-75{--bs-link-opacity: 0.75}.link-opacity-75-hover:hover{--bs-link-opacity: 0.75}.link-opacity-100{--bs-link-opacity: 1}.link-opacity-100-hover:hover{--bs-link-opacity: 1}.link-offset-1{text-underline-offset:.125em !important}.link-offset-1-hover:hover{text-underline-offset:.125em !important}.link-offset-2{text-underline-offset:.25em !important}.link-offset-2-hover:hover{text-underline-offset:.25em !important}.link-offset-3{text-underline-offset:.375em !important}.link-offset-3-hover:hover{text-underline-offset:.375em !important}.link-underline-default{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-default-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-primary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-primary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-secondary{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-secondary-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-success{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-success-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-info{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-info-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-warning{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-warning-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-danger{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-danger-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-light{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-light-rgb), var(--bs-link-underline-opacity)) !important}.link-underline-dark{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-dark-rgb), var(--bs-link-underline-opacity)) !important}.link-underline{--bs-link-underline-opacity: 1;text-decoration-color:rgba(var(--bs-link-color-rgb), var(--bs-link-underline-opacity, 1)) !important}.link-underline-opacity-0{--bs-link-underline-opacity: 0}.link-underline-opacity-0-hover:hover{--bs-link-underline-opacity: 0}.link-underline-opacity-10{--bs-link-underline-opacity: 0.1}.link-underline-opacity-10-hover:hover{--bs-link-underline-opacity: 0.1}.link-underline-opacity-25{--bs-link-underline-opacity: 0.25}.link-underline-opacity-25-hover:hover{--bs-link-underline-opacity: 0.25}.link-underline-opacity-50{--bs-link-underline-opacity: 0.5}.link-underline-opacity-50-hover:hover{--bs-link-underline-opacity: 0.5}.link-underline-opacity-75{--bs-link-underline-opacity: 0.75}.link-underline-opacity-75-hover:hover{--bs-link-underline-opacity: 0.75}.link-underline-opacity-100{--bs-link-underline-opacity: 1}.link-underline-opacity-100-hover:hover{--bs-link-underline-opacity: 1}.bg-default{--bs-bg-opacity: 1;background-color:rgba(var(--bs-default-rgb), var(--bs-bg-opacity)) !important}.bg-primary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-primary-rgb), var(--bs-bg-opacity)) !important}.bg-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-rgb), var(--bs-bg-opacity)) !important}.bg-success{--bs-bg-opacity: 1;background-color:rgba(var(--bs-success-rgb), var(--bs-bg-opacity)) !important}.bg-info{--bs-bg-opacity: 1;background-color:rgba(var(--bs-info-rgb), var(--bs-bg-opacity)) !important}.bg-warning{--bs-bg-opacity: 1;background-color:rgba(var(--bs-warning-rgb), var(--bs-bg-opacity)) !important}.bg-danger{--bs-bg-opacity: 1;background-color:rgba(var(--bs-danger-rgb), var(--bs-bg-opacity)) !important}.bg-light{--bs-bg-opacity: 1;background-color:rgba(var(--bs-light-rgb), var(--bs-bg-opacity)) !important}.bg-dark{--bs-bg-opacity: 1;background-color:rgba(var(--bs-dark-rgb), var(--bs-bg-opacity)) !important}.bg-black{--bs-bg-opacity: 1;background-color:rgba(var(--bs-black-rgb), var(--bs-bg-opacity)) !important}.bg-white{--bs-bg-opacity: 1;background-color:rgba(var(--bs-white-rgb), var(--bs-bg-opacity)) !important}.bg-body{--bs-bg-opacity: 1;background-color:rgba(var(--bs-body-bg-rgb), var(--bs-bg-opacity)) !important}.bg-transparent{--bs-bg-opacity: 1;background-color:rgba(0,0,0,0) !important}.bg-body-secondary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-secondary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-body-tertiary{--bs-bg-opacity: 1;background-color:rgba(var(--bs-tertiary-bg-rgb), var(--bs-bg-opacity)) !important}.bg-opacity-10{--bs-bg-opacity: 0.1}.bg-opacity-25{--bs-bg-opacity: 0.25}.bg-opacity-50{--bs-bg-opacity: 0.5}.bg-opacity-75{--bs-bg-opacity: 0.75}.bg-opacity-100{--bs-bg-opacity: 1}.bg-primary-subtle{background-color:var(--bs-primary-bg-subtle) !important}.bg-secondary-subtle{background-color:var(--bs-secondary-bg-subtle) !important}.bg-success-subtle{background-color:var(--bs-success-bg-subtle) !important}.bg-info-subtle{background-color:var(--bs-info-bg-subtle) !important}.bg-warning-subtle{background-color:var(--bs-warning-bg-subtle) !important}.bg-danger-subtle{background-color:var(--bs-danger-bg-subtle) !important}.bg-light-subtle{background-color:var(--bs-light-bg-subtle) !important}.bg-dark-subtle{background-color:var(--bs-dark-bg-subtle) !important}.bg-gradient{background-image:var(--bs-gradient) !important}.user-select-all{user-select:all !important}.user-select-auto{user-select:auto !important}.user-select-none{user-select:none !important}.pe-none{pointer-events:none !important}.pe-auto{pointer-events:auto !important}.rounded{border-radius:var(--bs-border-radius) !important}.rounded-0{border-radius:0 !important}.rounded-1{border-radius:var(--bs-border-radius-sm) !important}.rounded-2{border-radius:var(--bs-border-radius) !important}.rounded-3{border-radius:var(--bs-border-radius-lg) !important}.rounded-4{border-radius:var(--bs-border-radius-xl) !important}.rounded-5{border-radius:var(--bs-border-radius-xxl) !important}.rounded-circle{border-radius:50% !important}.rounded-pill{border-radius:var(--bs-border-radius-pill) !important}.rounded-top{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-0{border-top-left-radius:0 !important;border-top-right-radius:0 !important}.rounded-top-1{border-top-left-radius:var(--bs-border-radius-sm) !important;border-top-right-radius:var(--bs-border-radius-sm) !important}.rounded-top-2{border-top-left-radius:var(--bs-border-radius) !important;border-top-right-radius:var(--bs-border-radius) !important}.rounded-top-3{border-top-left-radius:var(--bs-border-radius-lg) !important;border-top-right-radius:var(--bs-border-radius-lg) !important}.rounded-top-4{border-top-left-radius:var(--bs-border-radius-xl) !important;border-top-right-radius:var(--bs-border-radius-xl) !important}.rounded-top-5{border-top-left-radius:var(--bs-border-radius-xxl) !important;border-top-right-radius:var(--bs-border-radius-xxl) !important}.rounded-top-circle{border-top-left-radius:50% !important;border-top-right-radius:50% !important}.rounded-top-pill{border-top-left-radius:var(--bs-border-radius-pill) !important;border-top-right-radius:var(--bs-border-radius-pill) !important}.rounded-end{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-0{border-top-right-radius:0 !important;border-bottom-right-radius:0 !important}.rounded-end-1{border-top-right-radius:var(--bs-border-radius-sm) !important;border-bottom-right-radius:var(--bs-border-radius-sm) !important}.rounded-end-2{border-top-right-radius:var(--bs-border-radius) !important;border-bottom-right-radius:var(--bs-border-radius) !important}.rounded-end-3{border-top-right-radius:var(--bs-border-radius-lg) !important;border-bottom-right-radius:var(--bs-border-radius-lg) !important}.rounded-end-4{border-top-right-radius:var(--bs-border-radius-xl) !important;border-bottom-right-radius:var(--bs-border-radius-xl) !important}.rounded-end-5{border-top-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-right-radius:var(--bs-border-radius-xxl) !important}.rounded-end-circle{border-top-right-radius:50% !important;border-bottom-right-radius:50% !important}.rounded-end-pill{border-top-right-radius:var(--bs-border-radius-pill) !important;border-bottom-right-radius:var(--bs-border-radius-pill) !important}.rounded-bottom{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-0{border-bottom-right-radius:0 !important;border-bottom-left-radius:0 !important}.rounded-bottom-1{border-bottom-right-radius:var(--bs-border-radius-sm) !important;border-bottom-left-radius:var(--bs-border-radius-sm) !important}.rounded-bottom-2{border-bottom-right-radius:var(--bs-border-radius) !important;border-bottom-left-radius:var(--bs-border-radius) !important}.rounded-bottom-3{border-bottom-right-radius:var(--bs-border-radius-lg) !important;border-bottom-left-radius:var(--bs-border-radius-lg) !important}.rounded-bottom-4{border-bottom-right-radius:var(--bs-border-radius-xl) !important;border-bottom-left-radius:var(--bs-border-radius-xl) !important}.rounded-bottom-5{border-bottom-right-radius:var(--bs-border-radius-xxl) !important;border-bottom-left-radius:var(--bs-border-radius-xxl) !important}.rounded-bottom-circle{border-bottom-right-radius:50% !important;border-bottom-left-radius:50% !important}.rounded-bottom-pill{border-bottom-right-radius:var(--bs-border-radius-pill) !important;border-bottom-left-radius:var(--bs-border-radius-pill) !important}.rounded-start{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-0{border-bottom-left-radius:0 !important;border-top-left-radius:0 !important}.rounded-start-1{border-bottom-left-radius:var(--bs-border-radius-sm) !important;border-top-left-radius:var(--bs-border-radius-sm) !important}.rounded-start-2{border-bottom-left-radius:var(--bs-border-radius) !important;border-top-left-radius:var(--bs-border-radius) !important}.rounded-start-3{border-bottom-left-radius:var(--bs-border-radius-lg) !important;border-top-left-radius:var(--bs-border-radius-lg) !important}.rounded-start-4{border-bottom-left-radius:var(--bs-border-radius-xl) !important;border-top-left-radius:var(--bs-border-radius-xl) !important}.rounded-start-5{border-bottom-left-radius:var(--bs-border-radius-xxl) !important;border-top-left-radius:var(--bs-border-radius-xxl) !important}.rounded-start-circle{border-bottom-left-radius:50% !important;border-top-left-radius:50% !important}.rounded-start-pill{border-bottom-left-radius:var(--bs-border-radius-pill) !important;border-top-left-radius:var(--bs-border-radius-pill) !important}.visible{visibility:visible !important}.invisible{visibility:hidden !important}.z-n1{z-index:-1 !important}.z-0{z-index:0 !important}.z-1{z-index:1 !important}.z-2{z-index:2 !important}.z-3{z-index:3 !important}@media(min-width: 576px){.float-sm-start{float:left !important}.float-sm-end{float:right !important}.float-sm-none{float:none !important}.object-fit-sm-contain{object-fit:contain !important}.object-fit-sm-cover{object-fit:cover !important}.object-fit-sm-fill{object-fit:fill !important}.object-fit-sm-scale{object-fit:scale-down !important}.object-fit-sm-none{object-fit:none !important}.d-sm-inline{display:inline !important}.d-sm-inline-block{display:inline-block !important}.d-sm-block{display:block !important}.d-sm-grid{display:grid !important}.d-sm-inline-grid{display:inline-grid !important}.d-sm-table{display:table !important}.d-sm-table-row{display:table-row !important}.d-sm-table-cell{display:table-cell !important}.d-sm-flex{display:flex !important}.d-sm-inline-flex{display:inline-flex !important}.d-sm-none{display:none !important}.flex-sm-fill{flex:1 1 auto !important}.flex-sm-row{flex-direction:row !important}.flex-sm-column{flex-direction:column !important}.flex-sm-row-reverse{flex-direction:row-reverse !important}.flex-sm-column-reverse{flex-direction:column-reverse !important}.flex-sm-grow-0{flex-grow:0 !important}.flex-sm-grow-1{flex-grow:1 !important}.flex-sm-shrink-0{flex-shrink:0 !important}.flex-sm-shrink-1{flex-shrink:1 !important}.flex-sm-wrap{flex-wrap:wrap !important}.flex-sm-nowrap{flex-wrap:nowrap !important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-sm-start{justify-content:flex-start !important}.justify-content-sm-end{justify-content:flex-end !important}.justify-content-sm-center{justify-content:center !important}.justify-content-sm-between{justify-content:space-between !important}.justify-content-sm-around{justify-content:space-around !important}.justify-content-sm-evenly{justify-content:space-evenly !important}.align-items-sm-start{align-items:flex-start !important}.align-items-sm-end{align-items:flex-end !important}.align-items-sm-center{align-items:center !important}.align-items-sm-baseline{align-items:baseline !important}.align-items-sm-stretch{align-items:stretch !important}.align-content-sm-start{align-content:flex-start !important}.align-content-sm-end{align-content:flex-end !important}.align-content-sm-center{align-content:center !important}.align-content-sm-between{align-content:space-between !important}.align-content-sm-around{align-content:space-around !important}.align-content-sm-stretch{align-content:stretch !important}.align-self-sm-auto{align-self:auto !important}.align-self-sm-start{align-self:flex-start !important}.align-self-sm-end{align-self:flex-end !important}.align-self-sm-center{align-self:center !important}.align-self-sm-baseline{align-self:baseline !important}.align-self-sm-stretch{align-self:stretch !important}.order-sm-first{order:-1 !important}.order-sm-0{order:0 !important}.order-sm-1{order:1 !important}.order-sm-2{order:2 !important}.order-sm-3{order:3 !important}.order-sm-4{order:4 !important}.order-sm-5{order:5 !important}.order-sm-last{order:6 !important}.m-sm-0{margin:0 !important}.m-sm-1{margin:.25rem !important}.m-sm-2{margin:.5rem !important}.m-sm-3{margin:1rem !important}.m-sm-4{margin:1.5rem !important}.m-sm-5{margin:3rem !important}.m-sm-auto{margin:auto !important}.mx-sm-0{margin-right:0 !important;margin-left:0 !important}.mx-sm-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-sm-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-sm-3{margin-right:1rem !important;margin-left:1rem !important}.mx-sm-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-sm-5{margin-right:3rem !important;margin-left:3rem !important}.mx-sm-auto{margin-right:auto !important;margin-left:auto !important}.my-sm-0{margin-top:0 !important;margin-bottom:0 !important}.my-sm-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-sm-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-sm-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-sm-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-sm-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-sm-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-sm-0{margin-top:0 !important}.mt-sm-1{margin-top:.25rem !important}.mt-sm-2{margin-top:.5rem !important}.mt-sm-3{margin-top:1rem !important}.mt-sm-4{margin-top:1.5rem !important}.mt-sm-5{margin-top:3rem !important}.mt-sm-auto{margin-top:auto !important}.me-sm-0{margin-right:0 !important}.me-sm-1{margin-right:.25rem !important}.me-sm-2{margin-right:.5rem !important}.me-sm-3{margin-right:1rem !important}.me-sm-4{margin-right:1.5rem !important}.me-sm-5{margin-right:3rem !important}.me-sm-auto{margin-right:auto !important}.mb-sm-0{margin-bottom:0 !important}.mb-sm-1{margin-bottom:.25rem !important}.mb-sm-2{margin-bottom:.5rem !important}.mb-sm-3{margin-bottom:1rem !important}.mb-sm-4{margin-bottom:1.5rem !important}.mb-sm-5{margin-bottom:3rem !important}.mb-sm-auto{margin-bottom:auto !important}.ms-sm-0{margin-left:0 !important}.ms-sm-1{margin-left:.25rem !important}.ms-sm-2{margin-left:.5rem !important}.ms-sm-3{margin-left:1rem !important}.ms-sm-4{margin-left:1.5rem !important}.ms-sm-5{margin-left:3rem !important}.ms-sm-auto{margin-left:auto !important}.p-sm-0{padding:0 !important}.p-sm-1{padding:.25rem !important}.p-sm-2{padding:.5rem !important}.p-sm-3{padding:1rem !important}.p-sm-4{padding:1.5rem !important}.p-sm-5{padding:3rem !important}.px-sm-0{padding-right:0 !important;padding-left:0 !important}.px-sm-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-sm-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-sm-3{padding-right:1rem !important;padding-left:1rem !important}.px-sm-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-sm-5{padding-right:3rem !important;padding-left:3rem !important}.py-sm-0{padding-top:0 !important;padding-bottom:0 !important}.py-sm-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-sm-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-sm-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-sm-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-sm-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-sm-0{padding-top:0 !important}.pt-sm-1{padding-top:.25rem !important}.pt-sm-2{padding-top:.5rem !important}.pt-sm-3{padding-top:1rem !important}.pt-sm-4{padding-top:1.5rem !important}.pt-sm-5{padding-top:3rem !important}.pe-sm-0{padding-right:0 !important}.pe-sm-1{padding-right:.25rem !important}.pe-sm-2{padding-right:.5rem !important}.pe-sm-3{padding-right:1rem !important}.pe-sm-4{padding-right:1.5rem !important}.pe-sm-5{padding-right:3rem !important}.pb-sm-0{padding-bottom:0 !important}.pb-sm-1{padding-bottom:.25rem !important}.pb-sm-2{padding-bottom:.5rem !important}.pb-sm-3{padding-bottom:1rem !important}.pb-sm-4{padding-bottom:1.5rem !important}.pb-sm-5{padding-bottom:3rem !important}.ps-sm-0{padding-left:0 !important}.ps-sm-1{padding-left:.25rem !important}.ps-sm-2{padding-left:.5rem !important}.ps-sm-3{padding-left:1rem !important}.ps-sm-4{padding-left:1.5rem !important}.ps-sm-5{padding-left:3rem !important}.gap-sm-0{gap:0 !important}.gap-sm-1{gap:.25rem !important}.gap-sm-2{gap:.5rem !important}.gap-sm-3{gap:1rem !important}.gap-sm-4{gap:1.5rem !important}.gap-sm-5{gap:3rem !important}.row-gap-sm-0{row-gap:0 !important}.row-gap-sm-1{row-gap:.25rem !important}.row-gap-sm-2{row-gap:.5rem !important}.row-gap-sm-3{row-gap:1rem !important}.row-gap-sm-4{row-gap:1.5rem !important}.row-gap-sm-5{row-gap:3rem !important}.column-gap-sm-0{column-gap:0 !important}.column-gap-sm-1{column-gap:.25rem !important}.column-gap-sm-2{column-gap:.5rem !important}.column-gap-sm-3{column-gap:1rem !important}.column-gap-sm-4{column-gap:1.5rem !important}.column-gap-sm-5{column-gap:3rem !important}.text-sm-start{text-align:left !important}.text-sm-end{text-align:right !important}.text-sm-center{text-align:center !important}}@media(min-width: 768px){.float-md-start{float:left !important}.float-md-end{float:right !important}.float-md-none{float:none !important}.object-fit-md-contain{object-fit:contain !important}.object-fit-md-cover{object-fit:cover !important}.object-fit-md-fill{object-fit:fill !important}.object-fit-md-scale{object-fit:scale-down !important}.object-fit-md-none{object-fit:none !important}.d-md-inline{display:inline !important}.d-md-inline-block{display:inline-block !important}.d-md-block{display:block !important}.d-md-grid{display:grid !important}.d-md-inline-grid{display:inline-grid !important}.d-md-table{display:table !important}.d-md-table-row{display:table-row !important}.d-md-table-cell{display:table-cell !important}.d-md-flex{display:flex !important}.d-md-inline-flex{display:inline-flex !important}.d-md-none{display:none !important}.flex-md-fill{flex:1 1 auto !important}.flex-md-row{flex-direction:row !important}.flex-md-column{flex-direction:column !important}.flex-md-row-reverse{flex-direction:row-reverse !important}.flex-md-column-reverse{flex-direction:column-reverse !important}.flex-md-grow-0{flex-grow:0 !important}.flex-md-grow-1{flex-grow:1 !important}.flex-md-shrink-0{flex-shrink:0 !important}.flex-md-shrink-1{flex-shrink:1 !important}.flex-md-wrap{flex-wrap:wrap !important}.flex-md-nowrap{flex-wrap:nowrap !important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-md-start{justify-content:flex-start !important}.justify-content-md-end{justify-content:flex-end !important}.justify-content-md-center{justify-content:center !important}.justify-content-md-between{justify-content:space-between !important}.justify-content-md-around{justify-content:space-around !important}.justify-content-md-evenly{justify-content:space-evenly !important}.align-items-md-start{align-items:flex-start !important}.align-items-md-end{align-items:flex-end !important}.align-items-md-center{align-items:center !important}.align-items-md-baseline{align-items:baseline !important}.align-items-md-stretch{align-items:stretch !important}.align-content-md-start{align-content:flex-start !important}.align-content-md-end{align-content:flex-end !important}.align-content-md-center{align-content:center !important}.align-content-md-between{align-content:space-between !important}.align-content-md-around{align-content:space-around !important}.align-content-md-stretch{align-content:stretch !important}.align-self-md-auto{align-self:auto !important}.align-self-md-start{align-self:flex-start !important}.align-self-md-end{align-self:flex-end !important}.align-self-md-center{align-self:center !important}.align-self-md-baseline{align-self:baseline !important}.align-self-md-stretch{align-self:stretch !important}.order-md-first{order:-1 !important}.order-md-0{order:0 !important}.order-md-1{order:1 !important}.order-md-2{order:2 !important}.order-md-3{order:3 !important}.order-md-4{order:4 !important}.order-md-5{order:5 !important}.order-md-last{order:6 !important}.m-md-0{margin:0 !important}.m-md-1{margin:.25rem !important}.m-md-2{margin:.5rem !important}.m-md-3{margin:1rem !important}.m-md-4{margin:1.5rem !important}.m-md-5{margin:3rem !important}.m-md-auto{margin:auto !important}.mx-md-0{margin-right:0 !important;margin-left:0 !important}.mx-md-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-md-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-md-3{margin-right:1rem !important;margin-left:1rem !important}.mx-md-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-md-5{margin-right:3rem !important;margin-left:3rem !important}.mx-md-auto{margin-right:auto !important;margin-left:auto !important}.my-md-0{margin-top:0 !important;margin-bottom:0 !important}.my-md-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-md-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-md-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-md-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-md-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-md-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-md-0{margin-top:0 !important}.mt-md-1{margin-top:.25rem !important}.mt-md-2{margin-top:.5rem !important}.mt-md-3{margin-top:1rem !important}.mt-md-4{margin-top:1.5rem !important}.mt-md-5{margin-top:3rem !important}.mt-md-auto{margin-top:auto !important}.me-md-0{margin-right:0 !important}.me-md-1{margin-right:.25rem !important}.me-md-2{margin-right:.5rem !important}.me-md-3{margin-right:1rem !important}.me-md-4{margin-right:1.5rem !important}.me-md-5{margin-right:3rem !important}.me-md-auto{margin-right:auto !important}.mb-md-0{margin-bottom:0 !important}.mb-md-1{margin-bottom:.25rem !important}.mb-md-2{margin-bottom:.5rem !important}.mb-md-3{margin-bottom:1rem !important}.mb-md-4{margin-bottom:1.5rem !important}.mb-md-5{margin-bottom:3rem !important}.mb-md-auto{margin-bottom:auto !important}.ms-md-0{margin-left:0 !important}.ms-md-1{margin-left:.25rem !important}.ms-md-2{margin-left:.5rem !important}.ms-md-3{margin-left:1rem !important}.ms-md-4{margin-left:1.5rem !important}.ms-md-5{margin-left:3rem !important}.ms-md-auto{margin-left:auto !important}.p-md-0{padding:0 !important}.p-md-1{padding:.25rem !important}.p-md-2{padding:.5rem !important}.p-md-3{padding:1rem !important}.p-md-4{padding:1.5rem !important}.p-md-5{padding:3rem !important}.px-md-0{padding-right:0 !important;padding-left:0 !important}.px-md-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-md-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-md-3{padding-right:1rem !important;padding-left:1rem !important}.px-md-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-md-5{padding-right:3rem !important;padding-left:3rem !important}.py-md-0{padding-top:0 !important;padding-bottom:0 !important}.py-md-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-md-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-md-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-md-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-md-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-md-0{padding-top:0 !important}.pt-md-1{padding-top:.25rem !important}.pt-md-2{padding-top:.5rem !important}.pt-md-3{padding-top:1rem !important}.pt-md-4{padding-top:1.5rem !important}.pt-md-5{padding-top:3rem !important}.pe-md-0{padding-right:0 !important}.pe-md-1{padding-right:.25rem !important}.pe-md-2{padding-right:.5rem !important}.pe-md-3{padding-right:1rem !important}.pe-md-4{padding-right:1.5rem !important}.pe-md-5{padding-right:3rem !important}.pb-md-0{padding-bottom:0 !important}.pb-md-1{padding-bottom:.25rem !important}.pb-md-2{padding-bottom:.5rem !important}.pb-md-3{padding-bottom:1rem !important}.pb-md-4{padding-bottom:1.5rem !important}.pb-md-5{padding-bottom:3rem !important}.ps-md-0{padding-left:0 !important}.ps-md-1{padding-left:.25rem !important}.ps-md-2{padding-left:.5rem !important}.ps-md-3{padding-left:1rem !important}.ps-md-4{padding-left:1.5rem !important}.ps-md-5{padding-left:3rem !important}.gap-md-0{gap:0 !important}.gap-md-1{gap:.25rem !important}.gap-md-2{gap:.5rem !important}.gap-md-3{gap:1rem !important}.gap-md-4{gap:1.5rem !important}.gap-md-5{gap:3rem !important}.row-gap-md-0{row-gap:0 !important}.row-gap-md-1{row-gap:.25rem !important}.row-gap-md-2{row-gap:.5rem !important}.row-gap-md-3{row-gap:1rem !important}.row-gap-md-4{row-gap:1.5rem !important}.row-gap-md-5{row-gap:3rem !important}.column-gap-md-0{column-gap:0 !important}.column-gap-md-1{column-gap:.25rem !important}.column-gap-md-2{column-gap:.5rem !important}.column-gap-md-3{column-gap:1rem !important}.column-gap-md-4{column-gap:1.5rem !important}.column-gap-md-5{column-gap:3rem !important}.text-md-start{text-align:left !important}.text-md-end{text-align:right !important}.text-md-center{text-align:center !important}}@media(min-width: 992px){.float-lg-start{float:left !important}.float-lg-end{float:right !important}.float-lg-none{float:none !important}.object-fit-lg-contain{object-fit:contain !important}.object-fit-lg-cover{object-fit:cover !important}.object-fit-lg-fill{object-fit:fill !important}.object-fit-lg-scale{object-fit:scale-down !important}.object-fit-lg-none{object-fit:none !important}.d-lg-inline{display:inline !important}.d-lg-inline-block{display:inline-block !important}.d-lg-block{display:block !important}.d-lg-grid{display:grid !important}.d-lg-inline-grid{display:inline-grid !important}.d-lg-table{display:table !important}.d-lg-table-row{display:table-row !important}.d-lg-table-cell{display:table-cell !important}.d-lg-flex{display:flex !important}.d-lg-inline-flex{display:inline-flex !important}.d-lg-none{display:none !important}.flex-lg-fill{flex:1 1 auto !important}.flex-lg-row{flex-direction:row !important}.flex-lg-column{flex-direction:column !important}.flex-lg-row-reverse{flex-direction:row-reverse !important}.flex-lg-column-reverse{flex-direction:column-reverse !important}.flex-lg-grow-0{flex-grow:0 !important}.flex-lg-grow-1{flex-grow:1 !important}.flex-lg-shrink-0{flex-shrink:0 !important}.flex-lg-shrink-1{flex-shrink:1 !important}.flex-lg-wrap{flex-wrap:wrap !important}.flex-lg-nowrap{flex-wrap:nowrap !important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-lg-start{justify-content:flex-start !important}.justify-content-lg-end{justify-content:flex-end !important}.justify-content-lg-center{justify-content:center !important}.justify-content-lg-between{justify-content:space-between !important}.justify-content-lg-around{justify-content:space-around !important}.justify-content-lg-evenly{justify-content:space-evenly !important}.align-items-lg-start{align-items:flex-start !important}.align-items-lg-end{align-items:flex-end !important}.align-items-lg-center{align-items:center !important}.align-items-lg-baseline{align-items:baseline !important}.align-items-lg-stretch{align-items:stretch !important}.align-content-lg-start{align-content:flex-start !important}.align-content-lg-end{align-content:flex-end !important}.align-content-lg-center{align-content:center !important}.align-content-lg-between{align-content:space-between !important}.align-content-lg-around{align-content:space-around !important}.align-content-lg-stretch{align-content:stretch !important}.align-self-lg-auto{align-self:auto !important}.align-self-lg-start{align-self:flex-start !important}.align-self-lg-end{align-self:flex-end !important}.align-self-lg-center{align-self:center !important}.align-self-lg-baseline{align-self:baseline !important}.align-self-lg-stretch{align-self:stretch !important}.order-lg-first{order:-1 !important}.order-lg-0{order:0 !important}.order-lg-1{order:1 !important}.order-lg-2{order:2 !important}.order-lg-3{order:3 !important}.order-lg-4{order:4 !important}.order-lg-5{order:5 !important}.order-lg-last{order:6 !important}.m-lg-0{margin:0 !important}.m-lg-1{margin:.25rem !important}.m-lg-2{margin:.5rem !important}.m-lg-3{margin:1rem !important}.m-lg-4{margin:1.5rem !important}.m-lg-5{margin:3rem !important}.m-lg-auto{margin:auto !important}.mx-lg-0{margin-right:0 !important;margin-left:0 !important}.mx-lg-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-lg-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-lg-3{margin-right:1rem !important;margin-left:1rem !important}.mx-lg-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-lg-5{margin-right:3rem !important;margin-left:3rem !important}.mx-lg-auto{margin-right:auto !important;margin-left:auto !important}.my-lg-0{margin-top:0 !important;margin-bottom:0 !important}.my-lg-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-lg-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-lg-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-lg-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-lg-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-lg-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-lg-0{margin-top:0 !important}.mt-lg-1{margin-top:.25rem !important}.mt-lg-2{margin-top:.5rem !important}.mt-lg-3{margin-top:1rem !important}.mt-lg-4{margin-top:1.5rem !important}.mt-lg-5{margin-top:3rem !important}.mt-lg-auto{margin-top:auto !important}.me-lg-0{margin-right:0 !important}.me-lg-1{margin-right:.25rem !important}.me-lg-2{margin-right:.5rem !important}.me-lg-3{margin-right:1rem !important}.me-lg-4{margin-right:1.5rem !important}.me-lg-5{margin-right:3rem !important}.me-lg-auto{margin-right:auto !important}.mb-lg-0{margin-bottom:0 !important}.mb-lg-1{margin-bottom:.25rem !important}.mb-lg-2{margin-bottom:.5rem !important}.mb-lg-3{margin-bottom:1rem !important}.mb-lg-4{margin-bottom:1.5rem !important}.mb-lg-5{margin-bottom:3rem !important}.mb-lg-auto{margin-bottom:auto !important}.ms-lg-0{margin-left:0 !important}.ms-lg-1{margin-left:.25rem !important}.ms-lg-2{margin-left:.5rem !important}.ms-lg-3{margin-left:1rem !important}.ms-lg-4{margin-left:1.5rem !important}.ms-lg-5{margin-left:3rem !important}.ms-lg-auto{margin-left:auto !important}.p-lg-0{padding:0 !important}.p-lg-1{padding:.25rem !important}.p-lg-2{padding:.5rem !important}.p-lg-3{padding:1rem !important}.p-lg-4{padding:1.5rem !important}.p-lg-5{padding:3rem !important}.px-lg-0{padding-right:0 !important;padding-left:0 !important}.px-lg-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-lg-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-lg-3{padding-right:1rem !important;padding-left:1rem !important}.px-lg-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-lg-5{padding-right:3rem !important;padding-left:3rem !important}.py-lg-0{padding-top:0 !important;padding-bottom:0 !important}.py-lg-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-lg-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-lg-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-lg-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-lg-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-lg-0{padding-top:0 !important}.pt-lg-1{padding-top:.25rem !important}.pt-lg-2{padding-top:.5rem !important}.pt-lg-3{padding-top:1rem !important}.pt-lg-4{padding-top:1.5rem !important}.pt-lg-5{padding-top:3rem !important}.pe-lg-0{padding-right:0 !important}.pe-lg-1{padding-right:.25rem !important}.pe-lg-2{padding-right:.5rem !important}.pe-lg-3{padding-right:1rem !important}.pe-lg-4{padding-right:1.5rem !important}.pe-lg-5{padding-right:3rem !important}.pb-lg-0{padding-bottom:0 !important}.pb-lg-1{padding-bottom:.25rem !important}.pb-lg-2{padding-bottom:.5rem !important}.pb-lg-3{padding-bottom:1rem !important}.pb-lg-4{padding-bottom:1.5rem !important}.pb-lg-5{padding-bottom:3rem !important}.ps-lg-0{padding-left:0 !important}.ps-lg-1{padding-left:.25rem !important}.ps-lg-2{padding-left:.5rem !important}.ps-lg-3{padding-left:1rem !important}.ps-lg-4{padding-left:1.5rem !important}.ps-lg-5{padding-left:3rem !important}.gap-lg-0{gap:0 !important}.gap-lg-1{gap:.25rem !important}.gap-lg-2{gap:.5rem !important}.gap-lg-3{gap:1rem !important}.gap-lg-4{gap:1.5rem !important}.gap-lg-5{gap:3rem !important}.row-gap-lg-0{row-gap:0 !important}.row-gap-lg-1{row-gap:.25rem !important}.row-gap-lg-2{row-gap:.5rem !important}.row-gap-lg-3{row-gap:1rem !important}.row-gap-lg-4{row-gap:1.5rem !important}.row-gap-lg-5{row-gap:3rem !important}.column-gap-lg-0{column-gap:0 !important}.column-gap-lg-1{column-gap:.25rem !important}.column-gap-lg-2{column-gap:.5rem !important}.column-gap-lg-3{column-gap:1rem !important}.column-gap-lg-4{column-gap:1.5rem !important}.column-gap-lg-5{column-gap:3rem !important}.text-lg-start{text-align:left !important}.text-lg-end{text-align:right !important}.text-lg-center{text-align:center !important}}@media(min-width: 1200px){.float-xl-start{float:left !important}.float-xl-end{float:right !important}.float-xl-none{float:none !important}.object-fit-xl-contain{object-fit:contain !important}.object-fit-xl-cover{object-fit:cover !important}.object-fit-xl-fill{object-fit:fill !important}.object-fit-xl-scale{object-fit:scale-down !important}.object-fit-xl-none{object-fit:none !important}.d-xl-inline{display:inline !important}.d-xl-inline-block{display:inline-block !important}.d-xl-block{display:block !important}.d-xl-grid{display:grid !important}.d-xl-inline-grid{display:inline-grid !important}.d-xl-table{display:table !important}.d-xl-table-row{display:table-row !important}.d-xl-table-cell{display:table-cell !important}.d-xl-flex{display:flex !important}.d-xl-inline-flex{display:inline-flex !important}.d-xl-none{display:none !important}.flex-xl-fill{flex:1 1 auto !important}.flex-xl-row{flex-direction:row !important}.flex-xl-column{flex-direction:column !important}.flex-xl-row-reverse{flex-direction:row-reverse !important}.flex-xl-column-reverse{flex-direction:column-reverse !important}.flex-xl-grow-0{flex-grow:0 !important}.flex-xl-grow-1{flex-grow:1 !important}.flex-xl-shrink-0{flex-shrink:0 !important}.flex-xl-shrink-1{flex-shrink:1 !important}.flex-xl-wrap{flex-wrap:wrap !important}.flex-xl-nowrap{flex-wrap:nowrap !important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xl-start{justify-content:flex-start !important}.justify-content-xl-end{justify-content:flex-end !important}.justify-content-xl-center{justify-content:center !important}.justify-content-xl-between{justify-content:space-between !important}.justify-content-xl-around{justify-content:space-around !important}.justify-content-xl-evenly{justify-content:space-evenly !important}.align-items-xl-start{align-items:flex-start !important}.align-items-xl-end{align-items:flex-end !important}.align-items-xl-center{align-items:center !important}.align-items-xl-baseline{align-items:baseline !important}.align-items-xl-stretch{align-items:stretch !important}.align-content-xl-start{align-content:flex-start !important}.align-content-xl-end{align-content:flex-end !important}.align-content-xl-center{align-content:center !important}.align-content-xl-between{align-content:space-between !important}.align-content-xl-around{align-content:space-around !important}.align-content-xl-stretch{align-content:stretch !important}.align-self-xl-auto{align-self:auto !important}.align-self-xl-start{align-self:flex-start !important}.align-self-xl-end{align-self:flex-end !important}.align-self-xl-center{align-self:center !important}.align-self-xl-baseline{align-self:baseline !important}.align-self-xl-stretch{align-self:stretch !important}.order-xl-first{order:-1 !important}.order-xl-0{order:0 !important}.order-xl-1{order:1 !important}.order-xl-2{order:2 !important}.order-xl-3{order:3 !important}.order-xl-4{order:4 !important}.order-xl-5{order:5 !important}.order-xl-last{order:6 !important}.m-xl-0{margin:0 !important}.m-xl-1{margin:.25rem !important}.m-xl-2{margin:.5rem !important}.m-xl-3{margin:1rem !important}.m-xl-4{margin:1.5rem !important}.m-xl-5{margin:3rem !important}.m-xl-auto{margin:auto !important}.mx-xl-0{margin-right:0 !important;margin-left:0 !important}.mx-xl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xl-auto{margin-right:auto !important;margin-left:auto !important}.my-xl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xl-0{margin-top:0 !important}.mt-xl-1{margin-top:.25rem !important}.mt-xl-2{margin-top:.5rem !important}.mt-xl-3{margin-top:1rem !important}.mt-xl-4{margin-top:1.5rem !important}.mt-xl-5{margin-top:3rem !important}.mt-xl-auto{margin-top:auto !important}.me-xl-0{margin-right:0 !important}.me-xl-1{margin-right:.25rem !important}.me-xl-2{margin-right:.5rem !important}.me-xl-3{margin-right:1rem !important}.me-xl-4{margin-right:1.5rem !important}.me-xl-5{margin-right:3rem !important}.me-xl-auto{margin-right:auto !important}.mb-xl-0{margin-bottom:0 !important}.mb-xl-1{margin-bottom:.25rem !important}.mb-xl-2{margin-bottom:.5rem !important}.mb-xl-3{margin-bottom:1rem !important}.mb-xl-4{margin-bottom:1.5rem !important}.mb-xl-5{margin-bottom:3rem !important}.mb-xl-auto{margin-bottom:auto !important}.ms-xl-0{margin-left:0 !important}.ms-xl-1{margin-left:.25rem !important}.ms-xl-2{margin-left:.5rem !important}.ms-xl-3{margin-left:1rem !important}.ms-xl-4{margin-left:1.5rem !important}.ms-xl-5{margin-left:3rem !important}.ms-xl-auto{margin-left:auto !important}.p-xl-0{padding:0 !important}.p-xl-1{padding:.25rem !important}.p-xl-2{padding:.5rem !important}.p-xl-3{padding:1rem !important}.p-xl-4{padding:1.5rem !important}.p-xl-5{padding:3rem !important}.px-xl-0{padding-right:0 !important;padding-left:0 !important}.px-xl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xl-0{padding-top:0 !important}.pt-xl-1{padding-top:.25rem !important}.pt-xl-2{padding-top:.5rem !important}.pt-xl-3{padding-top:1rem !important}.pt-xl-4{padding-top:1.5rem !important}.pt-xl-5{padding-top:3rem !important}.pe-xl-0{padding-right:0 !important}.pe-xl-1{padding-right:.25rem !important}.pe-xl-2{padding-right:.5rem !important}.pe-xl-3{padding-right:1rem !important}.pe-xl-4{padding-right:1.5rem !important}.pe-xl-5{padding-right:3rem !important}.pb-xl-0{padding-bottom:0 !important}.pb-xl-1{padding-bottom:.25rem !important}.pb-xl-2{padding-bottom:.5rem !important}.pb-xl-3{padding-bottom:1rem !important}.pb-xl-4{padding-bottom:1.5rem !important}.pb-xl-5{padding-bottom:3rem !important}.ps-xl-0{padding-left:0 !important}.ps-xl-1{padding-left:.25rem !important}.ps-xl-2{padding-left:.5rem !important}.ps-xl-3{padding-left:1rem !important}.ps-xl-4{padding-left:1.5rem !important}.ps-xl-5{padding-left:3rem !important}.gap-xl-0{gap:0 !important}.gap-xl-1{gap:.25rem !important}.gap-xl-2{gap:.5rem !important}.gap-xl-3{gap:1rem !important}.gap-xl-4{gap:1.5rem !important}.gap-xl-5{gap:3rem !important}.row-gap-xl-0{row-gap:0 !important}.row-gap-xl-1{row-gap:.25rem !important}.row-gap-xl-2{row-gap:.5rem !important}.row-gap-xl-3{row-gap:1rem !important}.row-gap-xl-4{row-gap:1.5rem !important}.row-gap-xl-5{row-gap:3rem !important}.column-gap-xl-0{column-gap:0 !important}.column-gap-xl-1{column-gap:.25rem !important}.column-gap-xl-2{column-gap:.5rem !important}.column-gap-xl-3{column-gap:1rem !important}.column-gap-xl-4{column-gap:1.5rem !important}.column-gap-xl-5{column-gap:3rem !important}.text-xl-start{text-align:left !important}.text-xl-end{text-align:right !important}.text-xl-center{text-align:center !important}}@media(min-width: 1400px){.float-xxl-start{float:left !important}.float-xxl-end{float:right !important}.float-xxl-none{float:none !important}.object-fit-xxl-contain{object-fit:contain !important}.object-fit-xxl-cover{object-fit:cover !important}.object-fit-xxl-fill{object-fit:fill !important}.object-fit-xxl-scale{object-fit:scale-down !important}.object-fit-xxl-none{object-fit:none !important}.d-xxl-inline{display:inline !important}.d-xxl-inline-block{display:inline-block !important}.d-xxl-block{display:block !important}.d-xxl-grid{display:grid !important}.d-xxl-inline-grid{display:inline-grid !important}.d-xxl-table{display:table !important}.d-xxl-table-row{display:table-row !important}.d-xxl-table-cell{display:table-cell !important}.d-xxl-flex{display:flex !important}.d-xxl-inline-flex{display:inline-flex !important}.d-xxl-none{display:none !important}.flex-xxl-fill{flex:1 1 auto !important}.flex-xxl-row{flex-direction:row !important}.flex-xxl-column{flex-direction:column !important}.flex-xxl-row-reverse{flex-direction:row-reverse !important}.flex-xxl-column-reverse{flex-direction:column-reverse !important}.flex-xxl-grow-0{flex-grow:0 !important}.flex-xxl-grow-1{flex-grow:1 !important}.flex-xxl-shrink-0{flex-shrink:0 !important}.flex-xxl-shrink-1{flex-shrink:1 !important}.flex-xxl-wrap{flex-wrap:wrap !important}.flex-xxl-nowrap{flex-wrap:nowrap !important}.flex-xxl-wrap-reverse{flex-wrap:wrap-reverse !important}.justify-content-xxl-start{justify-content:flex-start !important}.justify-content-xxl-end{justify-content:flex-end !important}.justify-content-xxl-center{justify-content:center !important}.justify-content-xxl-between{justify-content:space-between !important}.justify-content-xxl-around{justify-content:space-around !important}.justify-content-xxl-evenly{justify-content:space-evenly !important}.align-items-xxl-start{align-items:flex-start !important}.align-items-xxl-end{align-items:flex-end !important}.align-items-xxl-center{align-items:center !important}.align-items-xxl-baseline{align-items:baseline !important}.align-items-xxl-stretch{align-items:stretch !important}.align-content-xxl-start{align-content:flex-start !important}.align-content-xxl-end{align-content:flex-end !important}.align-content-xxl-center{align-content:center !important}.align-content-xxl-between{align-content:space-between !important}.align-content-xxl-around{align-content:space-around !important}.align-content-xxl-stretch{align-content:stretch !important}.align-self-xxl-auto{align-self:auto !important}.align-self-xxl-start{align-self:flex-start !important}.align-self-xxl-end{align-self:flex-end !important}.align-self-xxl-center{align-self:center !important}.align-self-xxl-baseline{align-self:baseline !important}.align-self-xxl-stretch{align-self:stretch !important}.order-xxl-first{order:-1 !important}.order-xxl-0{order:0 !important}.order-xxl-1{order:1 !important}.order-xxl-2{order:2 !important}.order-xxl-3{order:3 !important}.order-xxl-4{order:4 !important}.order-xxl-5{order:5 !important}.order-xxl-last{order:6 !important}.m-xxl-0{margin:0 !important}.m-xxl-1{margin:.25rem !important}.m-xxl-2{margin:.5rem !important}.m-xxl-3{margin:1rem !important}.m-xxl-4{margin:1.5rem !important}.m-xxl-5{margin:3rem !important}.m-xxl-auto{margin:auto !important}.mx-xxl-0{margin-right:0 !important;margin-left:0 !important}.mx-xxl-1{margin-right:.25rem !important;margin-left:.25rem !important}.mx-xxl-2{margin-right:.5rem !important;margin-left:.5rem !important}.mx-xxl-3{margin-right:1rem !important;margin-left:1rem !important}.mx-xxl-4{margin-right:1.5rem !important;margin-left:1.5rem !important}.mx-xxl-5{margin-right:3rem !important;margin-left:3rem !important}.mx-xxl-auto{margin-right:auto !important;margin-left:auto !important}.my-xxl-0{margin-top:0 !important;margin-bottom:0 !important}.my-xxl-1{margin-top:.25rem !important;margin-bottom:.25rem !important}.my-xxl-2{margin-top:.5rem !important;margin-bottom:.5rem !important}.my-xxl-3{margin-top:1rem !important;margin-bottom:1rem !important}.my-xxl-4{margin-top:1.5rem !important;margin-bottom:1.5rem !important}.my-xxl-5{margin-top:3rem !important;margin-bottom:3rem !important}.my-xxl-auto{margin-top:auto !important;margin-bottom:auto !important}.mt-xxl-0{margin-top:0 !important}.mt-xxl-1{margin-top:.25rem !important}.mt-xxl-2{margin-top:.5rem !important}.mt-xxl-3{margin-top:1rem !important}.mt-xxl-4{margin-top:1.5rem !important}.mt-xxl-5{margin-top:3rem !important}.mt-xxl-auto{margin-top:auto !important}.me-xxl-0{margin-right:0 !important}.me-xxl-1{margin-right:.25rem !important}.me-xxl-2{margin-right:.5rem !important}.me-xxl-3{margin-right:1rem !important}.me-xxl-4{margin-right:1.5rem !important}.me-xxl-5{margin-right:3rem !important}.me-xxl-auto{margin-right:auto !important}.mb-xxl-0{margin-bottom:0 !important}.mb-xxl-1{margin-bottom:.25rem !important}.mb-xxl-2{margin-bottom:.5rem !important}.mb-xxl-3{margin-bottom:1rem !important}.mb-xxl-4{margin-bottom:1.5rem !important}.mb-xxl-5{margin-bottom:3rem !important}.mb-xxl-auto{margin-bottom:auto !important}.ms-xxl-0{margin-left:0 !important}.ms-xxl-1{margin-left:.25rem !important}.ms-xxl-2{margin-left:.5rem !important}.ms-xxl-3{margin-left:1rem !important}.ms-xxl-4{margin-left:1.5rem !important}.ms-xxl-5{margin-left:3rem !important}.ms-xxl-auto{margin-left:auto !important}.p-xxl-0{padding:0 !important}.p-xxl-1{padding:.25rem !important}.p-xxl-2{padding:.5rem !important}.p-xxl-3{padding:1rem !important}.p-xxl-4{padding:1.5rem !important}.p-xxl-5{padding:3rem !important}.px-xxl-0{padding-right:0 !important;padding-left:0 !important}.px-xxl-1{padding-right:.25rem !important;padding-left:.25rem !important}.px-xxl-2{padding-right:.5rem !important;padding-left:.5rem !important}.px-xxl-3{padding-right:1rem !important;padding-left:1rem !important}.px-xxl-4{padding-right:1.5rem !important;padding-left:1.5rem !important}.px-xxl-5{padding-right:3rem !important;padding-left:3rem !important}.py-xxl-0{padding-top:0 !important;padding-bottom:0 !important}.py-xxl-1{padding-top:.25rem !important;padding-bottom:.25rem !important}.py-xxl-2{padding-top:.5rem !important;padding-bottom:.5rem !important}.py-xxl-3{padding-top:1rem !important;padding-bottom:1rem !important}.py-xxl-4{padding-top:1.5rem !important;padding-bottom:1.5rem !important}.py-xxl-5{padding-top:3rem !important;padding-bottom:3rem !important}.pt-xxl-0{padding-top:0 !important}.pt-xxl-1{padding-top:.25rem !important}.pt-xxl-2{padding-top:.5rem !important}.pt-xxl-3{padding-top:1rem !important}.pt-xxl-4{padding-top:1.5rem !important}.pt-xxl-5{padding-top:3rem !important}.pe-xxl-0{padding-right:0 !important}.pe-xxl-1{padding-right:.25rem !important}.pe-xxl-2{padding-right:.5rem !important}.pe-xxl-3{padding-right:1rem !important}.pe-xxl-4{padding-right:1.5rem !important}.pe-xxl-5{padding-right:3rem !important}.pb-xxl-0{padding-bottom:0 !important}.pb-xxl-1{padding-bottom:.25rem !important}.pb-xxl-2{padding-bottom:.5rem !important}.pb-xxl-3{padding-bottom:1rem !important}.pb-xxl-4{padding-bottom:1.5rem !important}.pb-xxl-5{padding-bottom:3rem !important}.ps-xxl-0{padding-left:0 !important}.ps-xxl-1{padding-left:.25rem !important}.ps-xxl-2{padding-left:.5rem !important}.ps-xxl-3{padding-left:1rem !important}.ps-xxl-4{padding-left:1.5rem !important}.ps-xxl-5{padding-left:3rem !important}.gap-xxl-0{gap:0 !important}.gap-xxl-1{gap:.25rem !important}.gap-xxl-2{gap:.5rem !important}.gap-xxl-3{gap:1rem !important}.gap-xxl-4{gap:1.5rem !important}.gap-xxl-5{gap:3rem !important}.row-gap-xxl-0{row-gap:0 !important}.row-gap-xxl-1{row-gap:.25rem !important}.row-gap-xxl-2{row-gap:.5rem !important}.row-gap-xxl-3{row-gap:1rem !important}.row-gap-xxl-4{row-gap:1.5rem !important}.row-gap-xxl-5{row-gap:3rem !important}.column-gap-xxl-0{column-gap:0 !important}.column-gap-xxl-1{column-gap:.25rem !important}.column-gap-xxl-2{column-gap:.5rem !important}.column-gap-xxl-3{column-gap:1rem !important}.column-gap-xxl-4{column-gap:1.5rem !important}.column-gap-xxl-5{column-gap:3rem !important}.text-xxl-start{text-align:left !important}.text-xxl-end{text-align:right !important}.text-xxl-center{text-align:center !important}}.bg-default{color:#000}.bg-primary{color:#fff}.bg-secondary{color:#fff}.bg-success{color:#fff}.bg-info{color:#000}.bg-warning{color:#000}.bg-danger{color:#fff}.bg-light{color:#000}.bg-dark{color:#fff}@media(min-width: 1200px){.fs-1{font-size:2rem !important}.fs-2{font-size:1.65rem !important}.fs-3{font-size:1.45rem !important}}@media print{.d-print-inline{display:inline !important}.d-print-inline-block{display:inline-block !important}.d-print-block{display:block !important}.d-print-grid{display:grid !important}.d-print-inline-grid{display:inline-grid !important}.d-print-table{display:table !important}.d-print-table-row{display:table-row !important}.d-print-table-cell{display:table-cell !important}.d-print-flex{display:flex !important}.d-print-inline-flex{display:inline-flex !important}.d-print-none{display:none !important}}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}.bg-blue{--bslib-color-bg: #0d6efd;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #0d6efd;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #6f42c1;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #6f42c1;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #d63384;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #d63384;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #dc3545;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #dc3545;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #fd7e14;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #fd7e14;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ffc107;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ffc107;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #198754;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #198754;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #0dcaf0;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #dee2e6}.bg-default{--bslib-color-bg: #dee2e6;--bslib-color-fg: #000}.text-primary{--bslib-color-fg: #0d6efd}.bg-primary{--bslib-color-bg: #0d6efd;--bslib-color-fg: #ffffff}.text-secondary{--bslib-color-fg: #6c757d}.bg-secondary{--bslib-color-bg: #6c757d;--bslib-color-fg: #ffffff}.text-success{--bslib-color-fg: #198754}.bg-success{--bslib-color-bg: #198754;--bslib-color-fg: #ffffff}.text-info{--bslib-color-fg: #0dcaf0}.bg-info{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000}.text-warning{--bslib-color-fg: #ffc107}.bg-warning{--bslib-color-bg: #ffc107;--bslib-color-fg: #000}.text-danger{--bslib-color-fg: #dc3545}.bg-danger{--bslib-color-bg: #dc3545;--bslib-color-fg: #ffffff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #212529}.bg-dark{--bslib-color-bg: #212529;--bslib-color-fg: #ffffff}.bg-gradient-blue-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #3148f9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3148f9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #345ce5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #345ce5;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #5d56cd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d56cd;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #6057b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6057b3;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #6d74a0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6d74a0;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6e8f9b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6e8f9b;color:#000}.bg-gradient-blue-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #1278b9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1278b9;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #000;--bslib-color-bg: #1592d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1592d4;color:#000}.bg-gradient-blue-cyan{--bslib-color-fg: #000;--bslib-color-bg: #0d93f8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #0d93f8;color:#000}.bg-gradient-indigo-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #4236f6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4236f6;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #6a24de;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #6a24de;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #931ec6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #931ec6;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #951fad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #951fad;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #a23c99;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a23c99;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #ffffff;--bslib-color-bg: #a35794;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a35794;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #4740b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4740b3;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #ffffff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #ffffff;--bslib-color-bg: #425af1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #425af1;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #4854d9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4854d9;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #6b2ed5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #6b2ed5;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #983ca9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #983ca9;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #9b3d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #9b3d8f;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #a85a7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a85a7c;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #000;--bslib-color-bg: #a97577;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a97577;color:#000}.bg-gradient-purple-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #4d5e95;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4d5e95;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #ffffff;--bslib-color-bg: #4f78b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4f78b0;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #000;--bslib-color-bg: #4878d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #4878d4;color:#000}.bg-gradient-pink-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #864bb4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #864bb4;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #a925b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #a925b0;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #ad399c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #ad399c;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #d8346b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #d8346b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #000;--bslib-color-bg: #e65157;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e65157;color:#000}.bg-gradient-pink-yellow{--bslib-color-fg: #000;--bslib-color-bg: #e66c52;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #e66c52;color:#000}.bg-gradient-pink-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #8a5571;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8a5571;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #000;--bslib-color-bg: #8d6f8c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #8d6f8c;color:#000}.bg-gradient-pink-cyan{--bslib-color-fg: #000;--bslib-color-bg: #866faf;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #866faf;color:#000}.bg-gradient-red-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #894c8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #894c8f;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #ad268a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #ad268a;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #b03a77;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #b03a77;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #da345e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #da345e;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #000;--bslib-color-bg: #e95231;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e95231;color:#000}.bg-gradient-red-yellow{--bslib-color-fg: #000;--bslib-color-bg: #ea6d2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #ea6d2c;color:#000}.bg-gradient-red-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #8e564b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8e564b;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #000;--bslib-color-bg: #917066;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #917066;color:#000}.bg-gradient-red-cyan{--bslib-color-fg: #000;--bslib-color-bg: #897189;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #897189;color:#000}.bg-gradient-orange-blue{--bslib-color-fg: #000;--bslib-color-bg: #9d7871;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9d7871;color:#000}.bg-gradient-orange-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c1526d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c1526d;color:#000}.bg-gradient-orange-purple{--bslib-color-fg: #000;--bslib-color-bg: #c46659;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c46659;color:#000}.bg-gradient-orange-pink{--bslib-color-fg: #000;--bslib-color-bg: #ed6041;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ed6041;color:#000}.bg-gradient-orange-red{--bslib-color-fg: #000;--bslib-color-bg: #f06128;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f06128;color:#000}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #fe990f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #fe990f;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a2822e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a2822e;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #a59c48;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a59c48;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9d9c6c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9d9c6c;color:#000}.bg-gradient-yellow-blue{--bslib-color-fg: #000;--bslib-color-bg: #9ea069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9ea069;color:#000}.bg-gradient-yellow-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c27a65;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c27a65;color:#000}.bg-gradient-yellow-purple{--bslib-color-fg: #000;--bslib-color-bg: #c58e51;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c58e51;color:#000}.bg-gradient-yellow-pink{--bslib-color-fg: #000;--bslib-color-bg: #ef8839;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ef8839;color:#000}.bg-gradient-yellow-red{--bslib-color-fg: #000;--bslib-color-bg: #f18920;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f18920;color:#000}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #fea60c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #fea60c;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #000;--bslib-color-bg: #a3aa26;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a3aa26;color:#000}.bg-gradient-yellow-teal{--bslib-color-fg: #000;--bslib-color-bg: #a6c441;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6c441;color:#000}.bg-gradient-yellow-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9ec564;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9ec564;color:#000}.bg-gradient-green-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #147d98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #147d98;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #385793;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #385793;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #3b6b80;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3b6b80;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #656567;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #656567;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #67664e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #67664e;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #74833a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #74833a;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #000;--bslib-color-bg: #759e35;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #759e35;color:#000}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #1ca16f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1ca16f;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #000;--bslib-color-bg: #14a292;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #14a292;color:#000}.bg-gradient-teal-blue{--bslib-color-fg: #000;--bslib-color-bg: #18a5c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #18a5c0;color:#000}.bg-gradient-teal-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#000}.bg-gradient-teal-purple{--bslib-color-fg: #000;--bslib-color-bg: #4093a8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #4093a8;color:#000}.bg-gradient-teal-pink{--bslib-color-fg: #000;--bslib-color-bg: #698d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #698d8f;color:#000}.bg-gradient-teal-red{--bslib-color-fg: #000;--bslib-color-bg: #6b8e76;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6b8e76;color:#000}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #78ab63;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #78ab63;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #000;--bslib-color-bg: #79c65d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #79c65d;color:#000}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #1daf7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1daf7c;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #000;--bslib-color-bg: #18c9bb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #18c9bb;color:#000}.bg-gradient-cyan-blue{--bslib-color-fg: #000;--bslib-color-bg: #0da5f5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #0da5f5;color:#000}.bg-gradient-cyan-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3180f1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3180f1;color:#000}.bg-gradient-cyan-purple{--bslib-color-fg: #000;--bslib-color-bg: #3494dd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3494dd;color:#000}.bg-gradient-cyan-pink{--bslib-color-fg: #000;--bslib-color-bg: #5d8ec5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d8ec5;color:#000}.bg-gradient-cyan-red{--bslib-color-fg: #000;--bslib-color-bg: #608eac;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #608eac;color:#000}.bg-gradient-cyan-orange{--bslib-color-fg: #000;--bslib-color-bg: #6dac98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6dac98;color:#000}.bg-gradient-cyan-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6ec693;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6ec693;color:#000}.bg-gradient-cyan-green{--bslib-color-fg: #000;--bslib-color-bg: #12afb2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #12afb2;color:#000}.bg-gradient-cyan-teal{--bslib-color-fg: #000;--bslib-color-bg: #15cacc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #15cacc;color:#000}.bg-blue{--bslib-color-bg: #0d6efd;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-blue{--bslib-color-fg: #0d6efd;color:var(--bslib-color-fg)}.bg-indigo{--bslib-color-bg: #6610f2;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-indigo{--bslib-color-fg: #6610f2;color:var(--bslib-color-fg)}.bg-purple{--bslib-color-bg: #6f42c1;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-purple{--bslib-color-fg: #6f42c1;color:var(--bslib-color-fg)}.bg-pink{--bslib-color-bg: #d63384;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-pink{--bslib-color-fg: #d63384;color:var(--bslib-color-fg)}.bg-red{--bslib-color-bg: #dc3545;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-red{--bslib-color-fg: #dc3545;color:var(--bslib-color-fg)}.bg-orange{--bslib-color-bg: #fd7e14;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-orange{--bslib-color-fg: #fd7e14;color:var(--bslib-color-fg)}.bg-yellow{--bslib-color-bg: #ffc107;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-yellow{--bslib-color-fg: #ffc107;color:var(--bslib-color-fg)}.bg-green{--bslib-color-bg: #198754;--bslib-color-fg: #ffffff;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-green{--bslib-color-fg: #198754;color:var(--bslib-color-fg)}.bg-teal{--bslib-color-bg: #20c997;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-teal{--bslib-color-fg: #20c997;color:var(--bslib-color-fg)}.bg-cyan{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000;background-color:var(--bslib-color-bg);color:var(--bslib-color-fg)}.text-cyan{--bslib-color-fg: #0dcaf0;color:var(--bslib-color-fg)}.text-default{--bslib-color-fg: #dee2e6}.bg-default{--bslib-color-bg: #dee2e6;--bslib-color-fg: #000}.text-primary{--bslib-color-fg: #0d6efd}.bg-primary{--bslib-color-bg: #0d6efd;--bslib-color-fg: #ffffff}.text-secondary{--bslib-color-fg: #6c757d}.bg-secondary{--bslib-color-bg: #6c757d;--bslib-color-fg: #ffffff}.text-success{--bslib-color-fg: #198754}.bg-success{--bslib-color-bg: #198754;--bslib-color-fg: #ffffff}.text-info{--bslib-color-fg: #0dcaf0}.bg-info{--bslib-color-bg: #0dcaf0;--bslib-color-fg: #000}.text-warning{--bslib-color-fg: #ffc107}.bg-warning{--bslib-color-bg: #ffc107;--bslib-color-fg: #000}.text-danger{--bslib-color-fg: #dc3545}.bg-danger{--bslib-color-bg: #dc3545;--bslib-color-fg: #ffffff}.text-light{--bslib-color-fg: #f8f9fa}.bg-light{--bslib-color-bg: #f8f9fa;--bslib-color-fg: #000}.text-dark{--bslib-color-fg: #212529}.bg-dark{--bslib-color-bg: #212529;--bslib-color-fg: #ffffff}.bg-gradient-blue-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #3148f9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3148f9;color:#fff}.bg-gradient-blue-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #345ce5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #345ce5;color:#fff}.bg-gradient-blue-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #5d56cd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d56cd;color:#fff}.bg-gradient-blue-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #6057b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6057b3;color:#fff}.bg-gradient-blue-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #6d74a0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6d74a0;color:#fff}.bg-gradient-blue-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6e8f9b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6e8f9b;color:#000}.bg-gradient-blue-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #1278b9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1278b9;color:#fff}.bg-gradient-blue-teal{--bslib-color-fg: #000;--bslib-color-bg: #1592d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1592d4;color:#000}.bg-gradient-blue-cyan{--bslib-color-fg: #000;--bslib-color-bg: #0d93f8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0d6efd var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #0d93f8;color:#000}.bg-gradient-indigo-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #4236f6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4236f6;color:#fff}.bg-gradient-indigo-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #6a24de;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #6a24de;color:#fff}.bg-gradient-indigo-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #931ec6;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #931ec6;color:#fff}.bg-gradient-indigo-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #951fad;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #951fad;color:#fff}.bg-gradient-indigo-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #a23c99;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a23c99;color:#fff}.bg-gradient-indigo-yellow{--bslib-color-fg: #ffffff;--bslib-color-bg: #a35794;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a35794;color:#fff}.bg-gradient-indigo-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #4740b3;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4740b3;color:#fff}.bg-gradient-indigo-teal{--bslib-color-fg: #ffffff;--bslib-color-bg: #4a5ace;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4a5ace;color:#fff}.bg-gradient-indigo-cyan{--bslib-color-fg: #ffffff;--bslib-color-bg: #425af1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6610f2 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #425af1;color:#fff}.bg-gradient-purple-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #4854d9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #4854d9;color:#fff}.bg-gradient-purple-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #6b2ed5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #6b2ed5;color:#fff}.bg-gradient-purple-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #983ca9;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #983ca9;color:#fff}.bg-gradient-purple-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #9b3d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #9b3d8f;color:#fff}.bg-gradient-purple-orange{--bslib-color-fg: #ffffff;--bslib-color-bg: #a85a7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #a85a7c;color:#fff}.bg-gradient-purple-yellow{--bslib-color-fg: #000;--bslib-color-bg: #a97577;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #a97577;color:#000}.bg-gradient-purple-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #4d5e95;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #4d5e95;color:#fff}.bg-gradient-purple-teal{--bslib-color-fg: #ffffff;--bslib-color-bg: #4f78b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #4f78b0;color:#fff}.bg-gradient-purple-cyan{--bslib-color-fg: #000;--bslib-color-bg: #4878d4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #6f42c1 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #4878d4;color:#000}.bg-gradient-pink-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #864bb4;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #864bb4;color:#fff}.bg-gradient-pink-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #a925b0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #a925b0;color:#fff}.bg-gradient-pink-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #ad399c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #ad399c;color:#fff}.bg-gradient-pink-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #d8346b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #d8346b;color:#fff}.bg-gradient-pink-orange{--bslib-color-fg: #000;--bslib-color-bg: #e65157;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e65157;color:#000}.bg-gradient-pink-yellow{--bslib-color-fg: #000;--bslib-color-bg: #e66c52;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #e66c52;color:#000}.bg-gradient-pink-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #8a5571;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8a5571;color:#fff}.bg-gradient-pink-teal{--bslib-color-fg: #000;--bslib-color-bg: #8d6f8c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #8d6f8c;color:#000}.bg-gradient-pink-cyan{--bslib-color-fg: #000;--bslib-color-bg: #866faf;background:linear-gradient(var(--bg-gradient-deg, 140deg), #d63384 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #866faf;color:#000}.bg-gradient-red-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #894c8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #894c8f;color:#fff}.bg-gradient-red-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #ad268a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #ad268a;color:#fff}.bg-gradient-red-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #b03a77;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #b03a77;color:#fff}.bg-gradient-red-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #da345e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #da345e;color:#fff}.bg-gradient-red-orange{--bslib-color-fg: #000;--bslib-color-bg: #e95231;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #e95231;color:#000}.bg-gradient-red-yellow{--bslib-color-fg: #000;--bslib-color-bg: #ea6d2c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #ea6d2c;color:#000}.bg-gradient-red-green{--bslib-color-fg: #ffffff;--bslib-color-bg: #8e564b;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #8e564b;color:#fff}.bg-gradient-red-teal{--bslib-color-fg: #000;--bslib-color-bg: #917066;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #917066;color:#000}.bg-gradient-red-cyan{--bslib-color-fg: #000;--bslib-color-bg: #897189;background:linear-gradient(var(--bg-gradient-deg, 140deg), #dc3545 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #897189;color:#000}.bg-gradient-orange-blue{--bslib-color-fg: #000;--bslib-color-bg: #9d7871;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9d7871;color:#000}.bg-gradient-orange-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c1526d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c1526d;color:#000}.bg-gradient-orange-purple{--bslib-color-fg: #000;--bslib-color-bg: #c46659;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c46659;color:#000}.bg-gradient-orange-pink{--bslib-color-fg: #000;--bslib-color-bg: #ed6041;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ed6041;color:#000}.bg-gradient-orange-red{--bslib-color-fg: #000;--bslib-color-bg: #f06128;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f06128;color:#000}.bg-gradient-orange-yellow{--bslib-color-fg: #000;--bslib-color-bg: #fe990f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #fe990f;color:#000}.bg-gradient-orange-green{--bslib-color-fg: #000;--bslib-color-bg: #a2822e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a2822e;color:#000}.bg-gradient-orange-teal{--bslib-color-fg: #000;--bslib-color-bg: #a59c48;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a59c48;color:#000}.bg-gradient-orange-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9d9c6c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #fd7e14 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9d9c6c;color:#000}.bg-gradient-yellow-blue{--bslib-color-fg: #000;--bslib-color-bg: #9ea069;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #9ea069;color:#000}.bg-gradient-yellow-indigo{--bslib-color-fg: #000;--bslib-color-bg: #c27a65;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #c27a65;color:#000}.bg-gradient-yellow-purple{--bslib-color-fg: #000;--bslib-color-bg: #c58e51;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #c58e51;color:#000}.bg-gradient-yellow-pink{--bslib-color-fg: #000;--bslib-color-bg: #ef8839;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #ef8839;color:#000}.bg-gradient-yellow-red{--bslib-color-fg: #000;--bslib-color-bg: #f18920;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #f18920;color:#000}.bg-gradient-yellow-orange{--bslib-color-fg: #000;--bslib-color-bg: #fea60c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #fea60c;color:#000}.bg-gradient-yellow-green{--bslib-color-fg: #000;--bslib-color-bg: #a3aa26;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #a3aa26;color:#000}.bg-gradient-yellow-teal{--bslib-color-fg: #000;--bslib-color-bg: #a6c441;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #a6c441;color:#000}.bg-gradient-yellow-cyan{--bslib-color-fg: #000;--bslib-color-bg: #9ec564;background:linear-gradient(var(--bg-gradient-deg, 140deg), #ffc107 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #9ec564;color:#000}.bg-gradient-green-blue{--bslib-color-fg: #ffffff;--bslib-color-bg: #147d98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #147d98;color:#fff}.bg-gradient-green-indigo{--bslib-color-fg: #ffffff;--bslib-color-bg: #385793;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #385793;color:#fff}.bg-gradient-green-purple{--bslib-color-fg: #ffffff;--bslib-color-bg: #3b6b80;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3b6b80;color:#fff}.bg-gradient-green-pink{--bslib-color-fg: #ffffff;--bslib-color-bg: #656567;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #656567;color:#fff}.bg-gradient-green-red{--bslib-color-fg: #ffffff;--bslib-color-bg: #67664e;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #67664e;color:#fff}.bg-gradient-green-orange{--bslib-color-fg: #000;--bslib-color-bg: #74833a;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #74833a;color:#000}.bg-gradient-green-yellow{--bslib-color-fg: #000;--bslib-color-bg: #759e35;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #759e35;color:#000}.bg-gradient-green-teal{--bslib-color-fg: #000;--bslib-color-bg: #1ca16f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #1ca16f;color:#000}.bg-gradient-green-cyan{--bslib-color-fg: #000;--bslib-color-bg: #14a292;background:linear-gradient(var(--bg-gradient-deg, 140deg), #198754 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #14a292;color:#000}.bg-gradient-teal-blue{--bslib-color-fg: #000;--bslib-color-bg: #18a5c0;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #18a5c0;color:#000}.bg-gradient-teal-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3c7fbb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3c7fbb;color:#000}.bg-gradient-teal-purple{--bslib-color-fg: #000;--bslib-color-bg: #4093a8;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #4093a8;color:#000}.bg-gradient-teal-pink{--bslib-color-fg: #000;--bslib-color-bg: #698d8f;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #698d8f;color:#000}.bg-gradient-teal-red{--bslib-color-fg: #000;--bslib-color-bg: #6b8e76;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #6b8e76;color:#000}.bg-gradient-teal-orange{--bslib-color-fg: #000;--bslib-color-bg: #78ab63;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #78ab63;color:#000}.bg-gradient-teal-yellow{--bslib-color-fg: #000;--bslib-color-bg: #79c65d;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #79c65d;color:#000}.bg-gradient-teal-green{--bslib-color-fg: #000;--bslib-color-bg: #1daf7c;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #1daf7c;color:#000}.bg-gradient-teal-cyan{--bslib-color-fg: #000;--bslib-color-bg: #18c9bb;background:linear-gradient(var(--bg-gradient-deg, 140deg), #20c997 var(--bg-gradient-start, 36%), #0dcaf0 var(--bg-gradient-end, 180%)) #18c9bb;color:#000}.bg-gradient-cyan-blue{--bslib-color-fg: #000;--bslib-color-bg: #0da5f5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #0d6efd var(--bg-gradient-end, 180%)) #0da5f5;color:#000}.bg-gradient-cyan-indigo{--bslib-color-fg: #000;--bslib-color-bg: #3180f1;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6610f2 var(--bg-gradient-end, 180%)) #3180f1;color:#000}.bg-gradient-cyan-purple{--bslib-color-fg: #000;--bslib-color-bg: #3494dd;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #6f42c1 var(--bg-gradient-end, 180%)) #3494dd;color:#000}.bg-gradient-cyan-pink{--bslib-color-fg: #000;--bslib-color-bg: #5d8ec5;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #d63384 var(--bg-gradient-end, 180%)) #5d8ec5;color:#000}.bg-gradient-cyan-red{--bslib-color-fg: #000;--bslib-color-bg: #608eac;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #dc3545 var(--bg-gradient-end, 180%)) #608eac;color:#000}.bg-gradient-cyan-orange{--bslib-color-fg: #000;--bslib-color-bg: #6dac98;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #fd7e14 var(--bg-gradient-end, 180%)) #6dac98;color:#000}.bg-gradient-cyan-yellow{--bslib-color-fg: #000;--bslib-color-bg: #6ec693;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #ffc107 var(--bg-gradient-end, 180%)) #6ec693;color:#000}.bg-gradient-cyan-green{--bslib-color-fg: #000;--bslib-color-bg: #12afb2;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #198754 var(--bg-gradient-end, 180%)) #12afb2;color:#000}.bg-gradient-cyan-teal{--bslib-color-fg: #000;--bslib-color-bg: #15cacc;background:linear-gradient(var(--bg-gradient-deg, 140deg), #0dcaf0 var(--bg-gradient-start, 36%), #20c997 var(--bg-gradient-end, 180%)) #15cacc;color:#000}:root{--bslib-spacer: 1rem;--bslib-mb-spacer: var(--bslib-spacer, 1rem)}.bslib-mb-spacing{margin-bottom:var(--bslib-mb-spacer)}.bslib-gap-spacing{gap:var(--bslib-mb-spacer)}.bslib-gap-spacing>.bslib-mb-spacing,.bslib-gap-spacing>.form-group,.bslib-gap-spacing>p,.bslib-gap-spacing>pre{margin-bottom:0}.html-fill-container>.html-fill-item.bslib-mb-spacing{margin-bottom:0}.tab-content>.tab-pane.html-fill-container{display:none}.tab-content>.active.html-fill-container{display:flex}.tab-content.html-fill-container{padding:0}.accordion .accordion-header{font-size:calc(1.29rem + 0.48vw);margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2;color:var(--bs-heading-color);margin-bottom:0}@media(min-width: 1200px){.accordion .accordion-header{font-size:1.65rem}}.accordion .accordion-icon:not(:empty){margin-right:.75rem;display:flex}.accordion .accordion-button:not(.collapsed){box-shadow:none}.accordion .accordion-button:not(.collapsed):focus{box-shadow:var(--bs-accordion-btn-focus-box-shadow)}.bslib-card{overflow:auto}.bslib-card .card-body+.card-body{padding-top:0}.bslib-card .card-body{overflow:auto}.bslib-card .card-body p{margin-top:0}.bslib-card .card-body p:last-child{margin-bottom:0}.bslib-card .card-body{max-height:var(--bslib-card-body-max-height, none)}.bslib-card[data-full-screen=true]>.card-body{max-height:var(--bslib-card-body-max-height-full-screen, none)}.bslib-card .card-header .form-group{margin-bottom:0}.bslib-card .card-header .selectize-control{margin-bottom:0}.bslib-card .card-header .selectize-control .item{margin-right:1.15rem}.bslib-card .card-footer{margin-top:auto}.bslib-card .bslib-navs-card-title{display:flex;flex-wrap:wrap;justify-content:space-between;align-items:center}.bslib-card .bslib-navs-card-title .nav{margin-left:auto}.bslib-card .bslib-sidebar-layout:not([data-bslib-sidebar-border=true]){border:none}.bslib-card .bslib-sidebar-layout:not([data-bslib-sidebar-border-radius=true]){border-top-left-radius:0;border-top-right-radius:0}[data-full-screen=true]{position:fixed;inset:3.5rem 1rem 1rem;height:auto !important;max-height:none !important;width:auto !important;z-index:1070}.bslib-full-screen-enter{display:none;position:absolute;bottom:var(--bslib-full-screen-enter-bottom, 0.2rem);right:var(--bslib-full-screen-enter-right, 0);top:var(--bslib-full-screen-enter-top);left:var(--bslib-full-screen-enter-left);color:var(--bslib-color-fg, var(--bs-card-color));background-color:var(--bslib-color-bg, var(--bs-card-bg, var(--bs-body-bg)));border:var(--bs-card-border-width) solid var(--bslib-color-fg, var(--bs-card-border-color));box-shadow:0 2px 4px rgba(0,0,0,.15);margin:.2rem .4rem;padding:.55rem !important;font-size:.8rem;cursor:pointer;opacity:.7;z-index:1070}.bslib-full-screen-enter:hover{opacity:1}.card[data-full-screen=false]:hover>*>.bslib-full-screen-enter{display:block}.bslib-has-full-screen .card:hover>*>.bslib-full-screen-enter{display:none}@media(max-width: 575.98px){.bslib-full-screen-enter{display:none !important}}.bslib-full-screen-exit{position:relative;top:1.35rem;font-size:.9rem;cursor:pointer;text-decoration:none;display:flex;float:right;margin-right:2.15rem;align-items:center;color:rgba(var(--bs-body-bg-rgb), 0.8)}.bslib-full-screen-exit:hover{color:rgba(var(--bs-body-bg-rgb), 1)}.bslib-full-screen-exit svg{margin-left:.5rem;font-size:1.5rem}#bslib-full-screen-overlay{position:fixed;inset:0;background-color:rgba(var(--bs-body-color-rgb), 0.6);backdrop-filter:blur(2px);-webkit-backdrop-filter:blur(2px);z-index:1069;animation:bslib-full-screen-overlay-enter 400ms cubic-bezier(0.6, 0.02, 0.65, 1) forwards}@keyframes bslib-full-screen-overlay-enter{0%{opacity:0}100%{opacity:1}}.bslib-grid{display:grid !important;gap:var(--bslib-spacer, 1rem);height:var(--bslib-grid-height)}.bslib-grid.grid{grid-template-columns:repeat(var(--bs-columns, 12), minmax(0, 1fr));grid-template-rows:unset;grid-auto-rows:var(--bslib-grid--row-heights);--bslib-grid--row-heights--xs: unset;--bslib-grid--row-heights--sm: unset;--bslib-grid--row-heights--md: unset;--bslib-grid--row-heights--lg: unset;--bslib-grid--row-heights--xl: unset;--bslib-grid--row-heights--xxl: unset}.bslib-grid.grid.bslib-grid--row-heights--xs{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xs)}@media(min-width: 576px){.bslib-grid.grid.bslib-grid--row-heights--sm{--bslib-grid--row-heights: var(--bslib-grid--row-heights--sm)}}@media(min-width: 768px){.bslib-grid.grid.bslib-grid--row-heights--md{--bslib-grid--row-heights: var(--bslib-grid--row-heights--md)}}@media(min-width: 992px){.bslib-grid.grid.bslib-grid--row-heights--lg{--bslib-grid--row-heights: var(--bslib-grid--row-heights--lg)}}@media(min-width: 1200px){.bslib-grid.grid.bslib-grid--row-heights--xl{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xl)}}@media(min-width: 1400px){.bslib-grid.grid.bslib-grid--row-heights--xxl{--bslib-grid--row-heights: var(--bslib-grid--row-heights--xxl)}}.bslib-grid>*>.shiny-input-container{width:100%}.bslib-grid-item{grid-column:auto/span 1}@media(max-width: 767.98px){.bslib-grid-item{grid-column:1/-1}}@media(max-width: 575.98px){.bslib-grid{grid-template-columns:1fr !important;height:var(--bslib-grid-height-mobile)}.bslib-grid.grid{height:unset !important;grid-auto-rows:var(--bslib-grid--row-heights--xs, auto)}}@media(min-width: 576px){.nav:not(.nav-hidden){display:flex !important;display:-webkit-flex !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column){float:none !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column)>.bslib-nav-spacer{margin-left:auto !important}.nav:not(.nav-hidden):not(.nav-stacked):not(.flex-column)>.form-inline{margin-top:auto;margin-bottom:auto}.nav:not(.nav-hidden).nav-stacked{flex-direction:column;-webkit-flex-direction:column;height:100%}.nav:not(.nav-hidden).nav-stacked>.bslib-nav-spacer{margin-top:auto !important}}html{height:100%}.bslib-page-fill{width:100%;height:100%;margin:0;padding:var(--bslib-spacer, 1rem);gap:var(--bslib-spacer, 1rem)}@media(max-width: 575.98px){.bslib-page-fill{height:var(--bslib-page-fill-mobile-height, auto)}}.navbar+.container-fluid:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-sm:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-md:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-lg:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-xl:has(>.tab-content>.tab-pane.active.html-fill-container),.navbar+.container-xxl:has(>.tab-content>.tab-pane.active.html-fill-container){padding-left:0;padding-right:0}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container,.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container{padding:var(--bslib-spacer, 1rem);gap:var(--bslib-spacer, 1rem)}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container:has(>.bslib-sidebar-layout:only-child){padding:0}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border=true]){border-left:none;border-right:none;border-bottom:none}.navbar+.container-fluid>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-sm>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-md>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-lg>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-xl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]),.navbar+.container-xxl>.tab-content>.tab-pane.active.html-fill-container>.bslib-sidebar-layout:only-child:not([data-bslib-sidebar-border-radius=true]){border-radius:0}.navbar+div>.bslib-sidebar-layout{border-top:var(--bslib-sidebar-border)}:root{--bslib-page-sidebar-title-bg: #517699;--bslib-page-sidebar-title-color: #ffffff}.bslib-page-title{background-color:var(--bslib-page-sidebar-title-bg);color:var(--bslib-page-sidebar-title-color);font-size:1.25rem;font-weight:300;padding:var(--bslib-spacer, 1rem);padding-left:1.5rem;margin-bottom:0;border-bottom:1px solid #dee2e6}.bslib-sidebar-layout{--bslib-sidebar-transition-duration: 500ms;--bslib-sidebar-transition-easing-x: cubic-bezier(0.8, 0.78, 0.22, 1.07);--bslib-sidebar-border: var(--bs-card-border-width, 1px) solid var(--bs-card-border-color, rgba(0, 0, 0, 0.175));--bslib-sidebar-border-radius: var(--bs-border-radius);--bslib-sidebar-vert-border: var(--bs-card-border-width, 1px) solid var(--bs-card-border-color, rgba(0, 0, 0, 0.175));--bslib-sidebar-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.05);--bslib-sidebar-fg: var(--bs-emphasis-color, black);--bslib-sidebar-main-fg: var(--bs-card-color, var(--bs-body-color));--bslib-sidebar-main-bg: var(--bs-card-bg, var(--bs-body-bg));--bslib-sidebar-toggle-bg: rgba(var(--bs-emphasis-color-rgb, 0, 0, 0), 0.1);--bslib-sidebar-padding: calc(var(--bslib-spacer) * 1.5);--bslib-sidebar-icon-size: var(--bslib-spacer, 1rem);--bslib-sidebar-icon-button-size: calc(var(--bslib-sidebar-icon-size, 1rem) * 2);--bslib-sidebar-padding-icon: calc(var(--bslib-sidebar-icon-button-size, 2rem) * 1.5);--bslib-collapse-toggle-border-radius: var(--bs-border-radius, 0.375rem);--bslib-collapse-toggle-transform: 0deg;--bslib-sidebar-toggle-transition-easing: cubic-bezier(1, 0, 0, 1);--bslib-collapse-toggle-right-transform: 180deg;--bslib-sidebar-column-main: minmax(0, 1fr);display:grid !important;grid-template-columns:min(100% - var(--bslib-sidebar-icon-size),var(--bslib-sidebar-width, 250px)) var(--bslib-sidebar-column-main);position:relative;transition:grid-template-columns ease-in-out var(--bslib-sidebar-transition-duration);border:var(--bslib-sidebar-border);border-radius:var(--bslib-sidebar-border-radius)}@media(prefers-reduced-motion: reduce){.bslib-sidebar-layout{transition:none}}.bslib-sidebar-layout[data-bslib-sidebar-border=false]{border:none}.bslib-sidebar-layout[data-bslib-sidebar-border-radius=false]{border-radius:initial}.bslib-sidebar-layout>.main,.bslib-sidebar-layout>.sidebar{grid-row:1/2;border-radius:inherit;overflow:auto}.bslib-sidebar-layout>.main{grid-column:2/3;border-top-left-radius:0;border-bottom-left-radius:0;padding:var(--bslib-sidebar-padding);transition:padding var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration);color:var(--bslib-sidebar-main-fg);background-color:var(--bslib-sidebar-main-bg)}.bslib-sidebar-layout>.sidebar{grid-column:1/2;width:100%;height:100%;border-right:var(--bslib-sidebar-vert-border);border-top-right-radius:0;border-bottom-right-radius:0;color:var(--bslib-sidebar-fg);background-color:var(--bslib-sidebar-bg);backdrop-filter:blur(5px)}.bslib-sidebar-layout>.sidebar>.sidebar-content{display:flex;flex-direction:column;gap:var(--bslib-spacer, 1rem);padding:var(--bslib-sidebar-padding);padding-top:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout>.sidebar>.sidebar-content>:last-child:not(.sidebar-title){margin-bottom:0}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion{margin-left:calc(-1*var(--bslib-sidebar-padding));margin-right:calc(-1*var(--bslib-sidebar-padding))}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:last-child{margin-bottom:calc(-1*var(--bslib-sidebar-padding))}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:last-child){margin-bottom:1rem}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion .accordion-body{display:flex;flex-direction:column}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:first-child) .accordion-item:first-child{border-top:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.bslib-sidebar-layout>.sidebar>.sidebar-content>.accordion:not(:last-child) .accordion-item:last-child{border-bottom:var(--bs-accordion-border-width) solid var(--bs-accordion-border-color)}.bslib-sidebar-layout>.sidebar>.sidebar-content.has-accordion>.sidebar-title{border-bottom:none;padding-bottom:0}.bslib-sidebar-layout>.sidebar .shiny-input-container{width:100%}.bslib-sidebar-layout[data-bslib-sidebar-open=always]>.sidebar>.sidebar-content{padding-top:var(--bslib-sidebar-padding)}.bslib-sidebar-layout>.collapse-toggle{grid-row:1/2;grid-column:1/2;display:inline-flex;align-items:center;position:absolute;right:calc(var(--bslib-sidebar-icon-size));top:calc(var(--bslib-sidebar-icon-size, 1rem)/2);border:none;border-radius:var(--bslib-collapse-toggle-border-radius);height:var(--bslib-sidebar-icon-button-size, 2rem);width:var(--bslib-sidebar-icon-button-size, 2rem);display:flex;align-items:center;justify-content:center;padding:0;color:var(--bslib-sidebar-fg);background-color:unset;transition:color var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),top var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),right var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration),left var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout>.collapse-toggle:hover{background-color:var(--bslib-sidebar-toggle-bg)}.bslib-sidebar-layout>.collapse-toggle>.collapse-icon{opacity:.8;width:var(--bslib-sidebar-icon-size);height:var(--bslib-sidebar-icon-size);transform:rotateY(var(--bslib-collapse-toggle-transform));transition:transform var(--bslib-sidebar-toggle-transition-easing) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout>.collapse-toggle:hover>.collapse-icon{opacity:1}.bslib-sidebar-layout .sidebar-title{font-size:1.25rem;line-height:1.25;margin-top:0;margin-bottom:1rem;padding-bottom:1rem;border-bottom:var(--bslib-sidebar-border)}.bslib-sidebar-layout.sidebar-right{grid-template-columns:var(--bslib-sidebar-column-main) min(100% - var(--bslib-sidebar-icon-size),var(--bslib-sidebar-width, 250px))}.bslib-sidebar-layout.sidebar-right>.main{grid-column:1/2;border-top-right-radius:0;border-bottom-right-radius:0;border-top-left-radius:inherit;border-bottom-left-radius:inherit}.bslib-sidebar-layout.sidebar-right>.sidebar{grid-column:2/3;border-right:none;border-left:var(--bslib-sidebar-vert-border);border-top-left-radius:0;border-bottom-left-radius:0}.bslib-sidebar-layout.sidebar-right>.collapse-toggle{grid-column:2/3;left:var(--bslib-sidebar-icon-size);right:unset;border:var(--bslib-collapse-toggle-border)}.bslib-sidebar-layout.sidebar-right>.collapse-toggle>.collapse-icon{transform:rotateY(var(--bslib-collapse-toggle-right-transform))}.bslib-sidebar-layout.sidebar-collapsed{--bslib-collapse-toggle-transform: 180deg;--bslib-collapse-toggle-right-transform: 0deg;--bslib-sidebar-vert-border: none;grid-template-columns:0 minmax(0, 1fr)}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right{grid-template-columns:minmax(0, 1fr) 0}.bslib-sidebar-layout.sidebar-collapsed:not(.transitioning)>.sidebar>*{display:none}.bslib-sidebar-layout.sidebar-collapsed>.main{border-radius:inherit}.bslib-sidebar-layout.sidebar-collapsed:not(.sidebar-right)>.main{padding-left:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right>.main{padding-right:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout.sidebar-collapsed>.collapse-toggle{color:var(--bslib-sidebar-main-fg);top:calc(var(--bslib-sidebar-overlap-counter, 0)*(var(--bslib-sidebar-icon-size) + var(--bslib-sidebar-padding)) + var(--bslib-sidebar-icon-size, 1rem)/2);right:calc(-2.5*var(--bslib-sidebar-icon-size) - var(--bs-card-border-width, 1px))}.bslib-sidebar-layout.sidebar-collapsed.sidebar-right>.collapse-toggle{left:calc(-2.5*var(--bslib-sidebar-icon-size) - var(--bs-card-border-width, 1px));right:unset}@media(min-width: 576px){.bslib-sidebar-layout.transitioning>.sidebar>.sidebar-content{display:none}}@media(max-width: 575.98px){.bslib-sidebar-layout[data-bslib-sidebar-open=desktop]{--bslib-sidebar-js-init-collapsed: true}.bslib-sidebar-layout>.sidebar,.bslib-sidebar-layout.sidebar-right>.sidebar{border:none}.bslib-sidebar-layout>.main,.bslib-sidebar-layout.sidebar-right>.main{grid-column:1/3}.bslib-sidebar-layout[data-bslib-sidebar-open=always]{display:block !important}.bslib-sidebar-layout[data-bslib-sidebar-open=always]>.sidebar{max-height:var(--bslib-sidebar-max-height-mobile);overflow-y:auto;border-top:var(--bslib-sidebar-vert-border)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]){grid-template-columns:100% 0}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-collapsed)>.sidebar{z-index:1}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-collapsed)>.collapse-toggle{z-index:1}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-right{grid-template-columns:0 100%}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed{grid-template-columns:0 100%}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed.sidebar-right{grid-template-columns:100% 0}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]):not(.sidebar-right)>.main{padding-left:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-right>.main{padding-right:var(--bslib-sidebar-padding-icon)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always])>.main{opacity:0;transition:opacity var(--bslib-sidebar-transition-easing-x) var(--bslib-sidebar-transition-duration)}.bslib-sidebar-layout:not([data-bslib-sidebar-open=always]).sidebar-collapsed>.main{opacity:1}}:root{--bslib-value-box-shadow: none;--bslib-value-box-border-width-auto-yes: var(--bslib-value-box-border-width-baseline);--bslib-value-box-border-width-auto-no: 0;--bslib-value-box-border-width-baseline: 1px}.bslib-value-box{border-width:var(--bslib-value-box-border-width-auto-no, var(--bslib-value-box-border-width-baseline));container-name:bslib-value-box;container-type:inline-size}.bslib-value-box.card{box-shadow:var(--bslib-value-box-shadow)}.bslib-value-box.border-auto{border-width:var(--bslib-value-box-border-width-auto-yes, var(--bslib-value-box-border-width-baseline))}.bslib-value-box.default{--bslib-value-box-bg-default: var(--bs-card-bg, #ffffff);--bslib-value-box-border-color-default: var(--bs-card-border-color, rgba(0, 0, 0, 0.175));color:var(--bslib-value-box-color);background-color:var(--bslib-value-box-bg, var(--bslib-value-box-bg-default));border-color:var(--bslib-value-box-border-color, var(--bslib-value-box-border-color-default))}.bslib-value-box .value-box-grid{display:grid;grid-template-areas:"left right";align-items:center;overflow:hidden}.bslib-value-box .value-box-showcase{height:100%;max-height:var(---bslib-value-box-showcase-max-h, 100%)}.bslib-value-box .value-box-showcase,.bslib-value-box .value-box-showcase>.html-fill-item{width:100%}.bslib-value-box[data-full-screen=true] .value-box-showcase{max-height:var(---bslib-value-box-showcase-max-h-fs, 100%)}@media screen and (min-width: 575.98px){@container bslib-value-box (max-width: 300px){.bslib-value-box:not(.showcase-bottom) .value-box-grid{grid-template-columns:1fr !important;grid-template-rows:auto auto;grid-template-areas:"top" "bottom"}.bslib-value-box:not(.showcase-bottom) .value-box-grid .value-box-showcase{grid-area:top !important}.bslib-value-box:not(.showcase-bottom) .value-box-grid .value-box-area{grid-area:bottom !important;justify-content:end}}}.bslib-value-box .value-box-area{justify-content:center;padding:1.5rem 1rem;font-size:.9rem;font-weight:500}.bslib-value-box .value-box-area *{margin-bottom:0;margin-top:0}.bslib-value-box .value-box-title{font-size:1rem;margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2}.bslib-value-box .value-box-title:empty::after{content:" "}.bslib-value-box .value-box-value{font-size:calc(1.29rem + 0.48vw);margin-top:0;margin-bottom:.5rem;font-weight:500;line-height:1.2}@media(min-width: 1200px){.bslib-value-box .value-box-value{font-size:1.65rem}}.bslib-value-box .value-box-value:empty::after{content:" "}.bslib-value-box .value-box-showcase{align-items:center;justify-content:center;margin-top:auto;margin-bottom:auto;padding:1rem}.bslib-value-box .value-box-showcase .bi,.bslib-value-box .value-box-showcase .fa,.bslib-value-box .value-box-showcase .fab,.bslib-value-box .value-box-showcase .fas,.bslib-value-box .value-box-showcase .far{opacity:.85;min-width:50px;max-width:125%}.bslib-value-box .value-box-showcase .bi,.bslib-value-box .value-box-showcase .fa,.bslib-value-box .value-box-showcase .fab,.bslib-value-box .value-box-showcase .fas,.bslib-value-box .value-box-showcase .far{font-size:4rem}.bslib-value-box.showcase-top-right .value-box-grid{grid-template-columns:1fr var(---bslib-value-box-showcase-w, 50%)}.bslib-value-box.showcase-top-right .value-box-grid .value-box-showcase{grid-area:right;margin-left:auto;align-self:start;align-items:end;padding-left:0;padding-bottom:0}.bslib-value-box.showcase-top-right .value-box-grid .value-box-area{grid-area:left;align-self:end}.bslib-value-box.showcase-top-right[data-full-screen=true] .value-box-grid{grid-template-columns:auto var(---bslib-value-box-showcase-w-fs, 1fr)}.bslib-value-box.showcase-top-right[data-full-screen=true] .value-box-grid>div{align-self:center}.bslib-value-box.showcase-top-right:not([data-full-screen=true]) .value-box-showcase{margin-top:0}@container bslib-value-box (max-width: 300px){.bslib-value-box.showcase-top-right:not([data-full-screen=true]) .value-box-grid .value-box-showcase{padding-left:1rem}}.bslib-value-box.showcase-left-center .value-box-grid{grid-template-columns:var(---bslib-value-box-showcase-w, 30%) auto}.bslib-value-box.showcase-left-center[data-full-screen=true] .value-box-grid{grid-template-columns:var(---bslib-value-box-showcase-w-fs, 1fr) auto}.bslib-value-box.showcase-left-center:not([data-fill-screen=true]) .value-box-grid .value-box-showcase{grid-area:left}.bslib-value-box.showcase-left-center:not([data-fill-screen=true]) .value-box-grid .value-box-area{grid-area:right}.bslib-value-box.showcase-bottom .value-box-grid{grid-template-columns:1fr;grid-template-rows:1fr var(---bslib-value-box-showcase-h, auto);grid-template-areas:"top" "bottom";overflow:hidden}.bslib-value-box.showcase-bottom .value-box-grid .value-box-showcase{grid-area:bottom;padding:0;margin:0}.bslib-value-box.showcase-bottom .value-box-grid .value-box-area{grid-area:top}.bslib-value-box.showcase-bottom[data-full-screen=true] .value-box-grid{grid-template-rows:1fr var(---bslib-value-box-showcase-h-fs, 2fr)}.bslib-value-box.showcase-bottom[data-full-screen=true] .value-box-grid .value-box-showcase{padding:1rem}[data-bs-theme=dark] .bslib-value-box{--bslib-value-box-shadow: 0 0.5rem 1rem rgb(0 0 0 / 50%)}.html-fill-container{display:flex;flex-direction:column;min-height:0;min-width:0}.html-fill-container>.html-fill-item{flex:1 1 auto;min-height:0;min-width:0}.html-fill-container>:not(.html-fill-item){flex:0 0 auto}.tippy-box[data-theme~=quarto]{background-color:#fff;border:solid 1px #dee2e6;border-radius:.375rem;color:#212529;font-size:.875rem}.tippy-box[data-theme~=quarto]>.tippy-backdrop{background-color:#fff}.tippy-box[data-theme~=quarto]>.tippy-arrow:after,.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{content:"";position:absolute;z-index:-1}.tippy-box[data-theme~=quarto]>.tippy-arrow:after{border-color:rgba(0,0,0,0);border-style:solid}.tippy-box[data-placement^=top]>.tippy-arrow:before{bottom:-6px}.tippy-box[data-placement^=bottom]>.tippy-arrow:before{top:-6px}.tippy-box[data-placement^=right]>.tippy-arrow:before{left:-6px}.tippy-box[data-placement^=left]>.tippy-arrow:before{right:-6px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:before{border-top-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-arrow:after{border-top-color:#dee2e6;border-width:7px 7px 0;top:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow>svg{top:16px}.tippy-box[data-theme~=quarto][data-placement^=top]>.tippy-svg-arrow:after{top:17px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:before{border-bottom-color:#fff;bottom:16px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-arrow:after{border-bottom-color:#dee2e6;border-width:0 7px 7px;bottom:17px;left:1px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow>svg{bottom:15px}.tippy-box[data-theme~=quarto][data-placement^=bottom]>.tippy-svg-arrow:after{bottom:17px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:before{border-left-color:#fff}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-arrow:after{border-left-color:#dee2e6;border-width:7px 0 7px 7px;left:17px;top:1px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow>svg{left:11px}.tippy-box[data-theme~=quarto][data-placement^=left]>.tippy-svg-arrow:after{left:12px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:before{border-right-color:#fff;right:16px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-arrow:after{border-width:7px 7px 7px 0;right:17px;top:1px;border-right-color:#dee2e6}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow>svg{right:11px}.tippy-box[data-theme~=quarto][data-placement^=right]>.tippy-svg-arrow:after{right:12px}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow{fill:#212529}.tippy-box[data-theme~=quarto]>.tippy-svg-arrow:after{background-image:url();background-size:16px 6px;width:16px;height:6px}.top-right{position:absolute;top:1em;right:1em}.visually-hidden{border:0;clip:rect(0 0 0 0);height:auto;margin:0;overflow:hidden;padding:0;position:absolute;width:1px;white-space:nowrap}.hidden{display:none !important}.zindex-bottom{z-index:-1 !important}figure.figure{display:block}.quarto-layout-panel{margin-bottom:1em}.quarto-layout-panel>figure{width:100%}.quarto-layout-panel>figure>figcaption,.quarto-layout-panel>.panel-caption{margin-top:10pt}.quarto-layout-panel>.table-caption{margin-top:0px}.table-caption p{margin-bottom:.5em}.quarto-layout-row{display:flex;flex-direction:row;align-items:flex-start}.quarto-layout-valign-top{align-items:flex-start}.quarto-layout-valign-bottom{align-items:flex-end}.quarto-layout-valign-center{align-items:center}.quarto-layout-cell{position:relative;margin-right:20px}.quarto-layout-cell:last-child{margin-right:0}.quarto-layout-cell figure,.quarto-layout-cell>p{margin:.2em}.quarto-layout-cell img{max-width:100%}.quarto-layout-cell .html-widget{width:100% !important}.quarto-layout-cell div figure p{margin:0}.quarto-layout-cell figure{display:block;margin-inline-start:0;margin-inline-end:0}.quarto-layout-cell table{display:inline-table}.quarto-layout-cell-subref figcaption,figure .quarto-layout-row figure figcaption{text-align:center;font-style:italic}.quarto-figure{position:relative;margin-bottom:1em}.quarto-figure>figure{width:100%;margin-bottom:0}.quarto-figure-left>figure>p,.quarto-figure-left>figure>div{text-align:left}.quarto-figure-center>figure>p,.quarto-figure-center>figure>div{text-align:center}.quarto-figure-right>figure>p,.quarto-figure-right>figure>div{text-align:right}.quarto-figure>figure>div.cell-annotation,.quarto-figure>figure>div code{text-align:left}figure>p:empty{display:none}figure>p:first-child{margin-top:0;margin-bottom:0}figure>figcaption.quarto-float-caption-bottom{margin-bottom:.5em}figure>figcaption.quarto-float-caption-top{margin-top:.5em}div[id^=tbl-]{position:relative}.quarto-figure>.anchorjs-link{position:absolute;top:.6em;right:.5em}div[id^=tbl-]>.anchorjs-link{position:absolute;top:.7em;right:.3em}.quarto-figure:hover>.anchorjs-link,div[id^=tbl-]:hover>.anchorjs-link,h2:hover>.anchorjs-link,.h2:hover>.anchorjs-link,h3:hover>.anchorjs-link,.h3:hover>.anchorjs-link,h4:hover>.anchorjs-link,.h4:hover>.anchorjs-link,h5:hover>.anchorjs-link,.h5:hover>.anchorjs-link,h6:hover>.anchorjs-link,.h6:hover>.anchorjs-link,.reveal-anchorjs-link>.anchorjs-link{opacity:1}#title-block-header{margin-block-end:1rem;position:relative;margin-top:-1px}#title-block-header .abstract{margin-block-start:1rem}#title-block-header .abstract .abstract-title{font-weight:600}#title-block-header a{text-decoration:none}#title-block-header .author,#title-block-header .date,#title-block-header .doi{margin-block-end:.2rem}#title-block-header .quarto-title-block>div{display:flex}#title-block-header .quarto-title-block>div>h1,#title-block-header .quarto-title-block>div>.h1{flex-grow:1}#title-block-header .quarto-title-block>div>button{flex-shrink:0;height:2.25rem;margin-top:0}@media(min-width: 992px){#title-block-header .quarto-title-block>div>button{margin-top:5px}}tr.header>th>p:last-of-type{margin-bottom:0px}table,table.table{margin-top:.5rem;margin-bottom:.5rem}caption,.table-caption{padding-top:.5rem;padding-bottom:.5rem;text-align:center}figure.quarto-float-tbl figcaption.quarto-float-caption-top{margin-top:.5rem;margin-bottom:.25rem;text-align:center}figure.quarto-float-tbl figcaption.quarto-float-caption-bottom{padding-top:.25rem;margin-bottom:.5rem;text-align:center}.utterances{max-width:none;margin-left:-8px}iframe{margin-bottom:1em}details{margin-bottom:1em}details[show]{margin-bottom:0}details>summary{color:rgba(33,37,41,.75)}details>summary>p:only-child{display:inline}pre.sourceCode,code.sourceCode{position:relative}dd code:not(.sourceCode),p code:not(.sourceCode){white-space:pre-wrap}code{white-space:pre}@media print{code{white-space:pre-wrap}}pre>code{display:block}pre>code.sourceCode{white-space:pre}pre>code.sourceCode>span>a:first-child::before{text-decoration:none}pre.code-overflow-wrap>code.sourceCode{white-space:pre-wrap}pre.code-overflow-scroll>code.sourceCode{white-space:pre}code a:any-link{color:inherit;text-decoration:none}code a:hover{color:inherit;text-decoration:underline}ul.task-list{padding-left:1em}[data-tippy-root]{display:inline-block}.tippy-content .footnote-back{display:none}.footnote-back{margin-left:.2em}.tippy-content{overflow-x:auto}.quarto-embedded-source-code{display:none}.quarto-unresolved-ref{font-weight:600}.quarto-cover-image{max-width:35%;float:right;margin-left:30px}.cell-output-display .widget-subarea{margin-bottom:1em}.cell-output-display:not(.no-overflow-x),.knitsql-table:not(.no-overflow-x){overflow-x:auto}.panel-input{margin-bottom:1em}.panel-input>div,.panel-input>div>div{display:inline-block;vertical-align:top;padding-right:12px}.panel-input>p:last-child{margin-bottom:0}.layout-sidebar{margin-bottom:1em}.layout-sidebar .tab-content{border:none}.tab-content>.page-columns.active{display:grid}div.sourceCode>iframe{width:100%;height:300px;margin-bottom:-0.5em}a{text-underline-offset:3px}div.ansi-escaped-output{font-family:monospace;display:block}/*! +* +* ansi colors from IPython notebook's +* +* we also add `bright-[color]-` synonyms for the `-[color]-intense` classes since +* that seems to be what ansi_up emits +* +*/.ansi-black-fg{color:#3e424d}.ansi-black-bg{background-color:#3e424d}.ansi-black-intense-black,.ansi-bright-black-fg{color:#282c36}.ansi-black-intense-black,.ansi-bright-black-bg{background-color:#282c36}.ansi-red-fg{color:#e75c58}.ansi-red-bg{background-color:#e75c58}.ansi-red-intense-red,.ansi-bright-red-fg{color:#b22b31}.ansi-red-intense-red,.ansi-bright-red-bg{background-color:#b22b31}.ansi-green-fg{color:#00a250}.ansi-green-bg{background-color:#00a250}.ansi-green-intense-green,.ansi-bright-green-fg{color:#007427}.ansi-green-intense-green,.ansi-bright-green-bg{background-color:#007427}.ansi-yellow-fg{color:#ddb62b}.ansi-yellow-bg{background-color:#ddb62b}.ansi-yellow-intense-yellow,.ansi-bright-yellow-fg{color:#b27d12}.ansi-yellow-intense-yellow,.ansi-bright-yellow-bg{background-color:#b27d12}.ansi-blue-fg{color:#208ffb}.ansi-blue-bg{background-color:#208ffb}.ansi-blue-intense-blue,.ansi-bright-blue-fg{color:#0065ca}.ansi-blue-intense-blue,.ansi-bright-blue-bg{background-color:#0065ca}.ansi-magenta-fg{color:#d160c4}.ansi-magenta-bg{background-color:#d160c4}.ansi-magenta-intense-magenta,.ansi-bright-magenta-fg{color:#a03196}.ansi-magenta-intense-magenta,.ansi-bright-magenta-bg{background-color:#a03196}.ansi-cyan-fg{color:#60c6c8}.ansi-cyan-bg{background-color:#60c6c8}.ansi-cyan-intense-cyan,.ansi-bright-cyan-fg{color:#258f8f}.ansi-cyan-intense-cyan,.ansi-bright-cyan-bg{background-color:#258f8f}.ansi-white-fg{color:#c5c1b4}.ansi-white-bg{background-color:#c5c1b4}.ansi-white-intense-white,.ansi-bright-white-fg{color:#a1a6b2}.ansi-white-intense-white,.ansi-bright-white-bg{background-color:#a1a6b2}.ansi-default-inverse-fg{color:#fff}.ansi-default-inverse-bg{background-color:#000}.ansi-bold{font-weight:bold}.ansi-underline{text-decoration:underline}:root{--quarto-body-bg: #ffffff;--quarto-body-color: #212529;--quarto-text-muted: rgba(33, 37, 41, 0.75);--quarto-border-color: #dee2e6;--quarto-border-width: 1px;--quarto-border-radius: 0.375rem}table.gt_table{color:var(--quarto-body-color);font-size:1em;width:100%;background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_column_spanner_outer{color:var(--quarto-body-color);background-color:rgba(0,0,0,0);border-top-width:inherit;border-bottom-width:inherit;border-color:var(--quarto-border-color)}table.gt_table th.gt_col_heading{color:var(--quarto-body-color);font-weight:bold;background-color:rgba(0,0,0,0)}table.gt_table thead.gt_col_headings{border-bottom:1px solid currentColor;border-top-width:inherit;border-top-color:var(--quarto-border-color)}table.gt_table thead.gt_col_headings:not(:first-child){border-top-width:1px;border-top-color:var(--quarto-border-color)}table.gt_table td.gt_row{border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-width:0px}table.gt_table tbody.gt_table_body{border-top-width:1px;border-bottom-width:1px;border-bottom-color:var(--quarto-border-color);border-top-color:currentColor}div.columns{display:initial;gap:initial}div.column{display:inline-block;overflow-x:initial;vertical-align:top;width:50%}.code-annotation-tip-content{word-wrap:break-word}.code-annotation-container-hidden{display:none !important}dl.code-annotation-container-grid{display:grid;grid-template-columns:min-content auto}dl.code-annotation-container-grid dt{grid-column:1}dl.code-annotation-container-grid dd{grid-column:2}pre.sourceCode.code-annotation-code{padding-right:0}code.sourceCode .code-annotation-anchor{z-index:100;position:relative;float:right;background-color:rgba(0,0,0,0)}input[type=checkbox]{margin-right:.5ch}:root{--mermaid-bg-color: #ffffff;--mermaid-edge-color: #6c757d;--mermaid-node-fg-color: #212529;--mermaid-fg-color: #212529;--mermaid-fg-color--lighter: #383f45;--mermaid-fg-color--lightest: #4e5862;--mermaid-font-family: system-ui, -apple-system, Segoe UI, Roboto, Helvetica Neue, Noto Sans, Liberation Sans, Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji;--mermaid-label-bg-color: #ffffff;--mermaid-label-fg-color: #0d6efd;--mermaid-node-bg-color: rgba(13, 110, 253, 0.1);--mermaid-node-fg-color: #212529}@media print{:root{font-size:11pt}#quarto-sidebar,#TOC,.nav-page{display:none}.page-columns .content{grid-column-start:page-start}.fixed-top{position:relative}.panel-caption,.figure-caption,figcaption{color:#666}}.code-copy-button{position:absolute;top:0;right:0;border:0;margin-top:5px;margin-right:5px;background-color:rgba(0,0,0,0);z-index:3}.code-copy-button:focus{outline:none}.code-copy-button-tooltip{font-size:.75em}pre.sourceCode:hover>.code-copy-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,');background-repeat:no-repeat;background-size:1rem 1rem}pre.sourceCode:hover>.code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,')}pre.sourceCode:hover>.code-copy-button:hover>.bi::before{background-image:url('data:image/svg+xml,')}pre.sourceCode:hover>.code-copy-button-checked:hover>.bi::before{background-image:url('data:image/svg+xml,')}main ol ol,main ul ul,main ol ul,main ul ol{margin-bottom:1em}ul>li:not(:has(>p))>ul,ol>li:not(:has(>p))>ul,ul>li:not(:has(>p))>ol,ol>li:not(:has(>p))>ol{margin-bottom:0}ul>li:not(:has(>p))>ul>li:has(>p),ol>li:not(:has(>p))>ul>li:has(>p),ul>li:not(:has(>p))>ol>li:has(>p),ol>li:not(:has(>p))>ol>li:has(>p){margin-top:1rem}body{margin:0}main.page-columns>header>h1.title,main.page-columns>header>.title.h1{margin-bottom:0}@media(min-width: 992px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] 35px [page-end-inset page-end] 5fr [screen-end-inset] 1.5em}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset] 35px [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(850px - 3em)) [body-content-end] 3em [body-end] 50px [body-end-outset] minmax(0px, 250px) [page-end-inset] minmax(50px, 100px) [page-end] 1fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 175px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 100px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start] minmax(50px, 100px) [page-start-inset] 50px [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(0px, 200px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 50px [page-start-inset] minmax(50px, 150px) [body-start-outset] 50px [body-start] 1.5em [body-content-start] minmax(450px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(50px, 150px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] minmax(25px, 50px) [page-start-inset] minmax(50px, 150px) [body-start-outset] minmax(25px, 50px) [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] minmax(25px, 50px) [body-end-outset] minmax(50px, 150px) [page-end-inset] minmax(25px, 50px) [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 991.98px){body .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.fullcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.slimcontent:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.listing:not(.floating):not(.docked) .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset] 5fr [body-start] 1.5em [body-content-start] minmax(500px, calc(1250px - 3em)) [body-content-end body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start] 35px [page-start-inset] minmax(0px, 145px) [body-start-outset] 35px [body-start] 1.5em [body-content-start] minmax(450px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1.5em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(1000px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(800px - 3em)) [body-content-end] 1.5em [body-end body-end-outset page-end-inset page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.docked.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.docked.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(25px, 50px) [page-end-inset] 50px [page-end] 5fr [screen-end-inset] 1.5em [screen-end]}body.floating.slimcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 35px [body-end-outset] minmax(75px, 145px) [page-end-inset] 35px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}body.floating.listing .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset] 5fr [page-start page-start-inset body-start-outset body-start] 1em [body-content-start] minmax(500px, calc(750px - 3em)) [body-content-end] 1.5em [body-end] 50px [body-end-outset] minmax(75px, 150px) [page-end-inset] 25px [page-end] 4fr [screen-end-inset] 1.5em [screen-end]}}@media(max-width: 767.98px){body .page-columns,body.fullcontent:not(.floating):not(.docked) .page-columns,body.slimcontent:not(.floating):not(.docked) .page-columns,body.docked .page-columns,body.docked.slimcontent .page-columns,body.docked.fullcontent .page-columns,body.floating .page-columns,body.floating.slimcontent .page-columns,body.floating.fullcontent .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}body:not(.floating):not(.docked) .page-columns.toc-left .page-columns{display:grid;gap:0;grid-template-columns:[screen-start] 1.5em [screen-start-inset page-start page-start-inset body-start-outset body-start body-content-start] minmax(0px, 1fr) [body-content-end body-end body-end-outset page-end-inset page-end screen-end-inset] 1.5em [screen-end]}nav[role=doc-toc]{display:none}}body,.page-row-navigation{grid-template-rows:[page-top] max-content [contents-top] max-content [contents-bottom] max-content [page-bottom]}.page-rows-contents{grid-template-rows:[content-top] minmax(max-content, 1fr) [content-bottom] minmax(60px, max-content) [page-bottom]}.page-full{grid-column:screen-start/screen-end !important}.page-columns>*{grid-column:body-content-start/body-content-end}.page-columns.column-page>*{grid-column:page-start/page-end}.page-columns.column-page-left .page-columns.page-full>*,.page-columns.column-page-left>*{grid-column:page-start/body-content-end}.page-columns.column-page-right .page-columns.page-full>*,.page-columns.column-page-right>*{grid-column:body-content-start/page-end}.page-rows{grid-auto-rows:auto}.header{grid-column:screen-start/screen-end;grid-row:page-top/contents-top}#quarto-content{padding:0;grid-column:screen-start/screen-end;grid-row:contents-top/contents-bottom}body.floating .sidebar.sidebar-navigation{grid-column:page-start/body-start;grid-row:content-top/page-bottom}body.docked .sidebar.sidebar-navigation{grid-column:screen-start/body-start;grid-row:content-top/page-bottom}.sidebar.toc-left{grid-column:page-start/body-start;grid-row:content-top/page-bottom}.sidebar.margin-sidebar{grid-column:body-end/page-end;grid-row:content-top/page-bottom}.page-columns .content{grid-column:body-content-start/body-content-end;grid-row:content-top/content-bottom;align-content:flex-start}.page-columns .page-navigation{grid-column:body-content-start/body-content-end;grid-row:content-bottom/page-bottom}.page-columns .footer{grid-column:screen-start/screen-end;grid-row:contents-bottom/page-bottom}.page-columns .column-body{grid-column:body-content-start/body-content-end}.page-columns .column-body-fullbleed{grid-column:body-start/body-end}.page-columns .column-body-outset{grid-column:body-start-outset/body-end-outset;z-index:998;opacity:.999}.page-columns .column-body-outset table{background:#fff}.page-columns .column-body-outset-left{grid-column:body-start-outset/body-content-end;z-index:998;opacity:.999}.page-columns .column-body-outset-left table{background:#fff}.page-columns .column-body-outset-right{grid-column:body-content-start/body-end-outset;z-index:998;opacity:.999}.page-columns .column-body-outset-right table{background:#fff}.page-columns .column-page{grid-column:page-start/page-end;z-index:998;opacity:.999}.page-columns .column-page table{background:#fff}.page-columns .column-page-inset{grid-column:page-start-inset/page-end-inset;z-index:998;opacity:.999}.page-columns .column-page-inset table{background:#fff}.page-columns .column-page-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-page-inset-left table{background:#fff}.page-columns .column-page-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;opacity:.999}.page-columns .column-page-inset-right figcaption table{background:#fff}.page-columns .column-page-left{grid-column:page-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-page-left table{background:#fff}.page-columns .column-page-right{grid-column:body-content-start/page-end;z-index:998;opacity:.999}.page-columns .column-page-right figcaption table{background:#fff}#quarto-content.page-columns #quarto-margin-sidebar,#quarto-content.page-columns #quarto-sidebar{z-index:1}@media(max-width: 991.98px){#quarto-content.page-columns #quarto-margin-sidebar.collapse,#quarto-content.page-columns #quarto-sidebar.collapse,#quarto-content.page-columns #quarto-margin-sidebar.collapsing,#quarto-content.page-columns #quarto-sidebar.collapsing{z-index:1055}}#quarto-content.page-columns main.column-page,#quarto-content.page-columns main.column-page-right,#quarto-content.page-columns main.column-page-left{z-index:0}.page-columns .column-screen-inset{grid-column:screen-start-inset/screen-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:screen-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/screen-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:screen-start/screen-end;z-index:998;opacity:.999}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:screen-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/screen-end;z-index:998;opacity:.999}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:screen-start/screen-end;padding:1em;background:#f8f9fa;z-index:998;opacity:.999;margin-bottom:1em}.zindex-content{z-index:998;opacity:.999}.zindex-modal{z-index:1055;opacity:.999}.zindex-over-content{z-index:999;opacity:.999}img.img-fluid.column-screen,img.img-fluid.column-screen-inset-shaded,img.img-fluid.column-screen-inset,img.img-fluid.column-screen-inset-left,img.img-fluid.column-screen-inset-right,img.img-fluid.column-screen-left,img.img-fluid.column-screen-right{width:100%}@media(min-width: 992px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-end/page-end !important;z-index:998}.column-sidebar{grid-column:page-start/body-start !important;z-index:998}.column-leftmargin{grid-column:screen-start-inset/body-start !important;z-index:998}.no-row-height{height:1em;overflow:visible}}@media(max-width: 991.98px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-end/page-end !important;z-index:998}.no-row-height{height:1em;overflow:visible}.page-columns.page-full{overflow:visible}.page-columns.toc-left .margin-caption,.page-columns.toc-left div.aside,.page-columns.toc-left aside:not(.footnotes):not(.sidebar),.page-columns.toc-left .column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;opacity:.999}.page-columns.toc-left .no-row-height{height:initial;overflow:initial}}@media(max-width: 767.98px){.margin-caption,div.aside,aside:not(.footnotes):not(.sidebar),.column-margin{grid-column:body-content-start/body-content-end !important;z-index:998;opacity:.999}.no-row-height{height:initial;overflow:initial}#quarto-margin-sidebar{display:none}#quarto-sidebar-toc-left{display:none}.hidden-sm{display:none}}.panel-grid{display:grid;grid-template-rows:repeat(1, 1fr);grid-template-columns:repeat(24, 1fr);gap:1em}.panel-grid .g-col-1{grid-column:auto/span 1}.panel-grid .g-col-2{grid-column:auto/span 2}.panel-grid .g-col-3{grid-column:auto/span 3}.panel-grid .g-col-4{grid-column:auto/span 4}.panel-grid .g-col-5{grid-column:auto/span 5}.panel-grid .g-col-6{grid-column:auto/span 6}.panel-grid .g-col-7{grid-column:auto/span 7}.panel-grid .g-col-8{grid-column:auto/span 8}.panel-grid .g-col-9{grid-column:auto/span 9}.panel-grid .g-col-10{grid-column:auto/span 10}.panel-grid .g-col-11{grid-column:auto/span 11}.panel-grid .g-col-12{grid-column:auto/span 12}.panel-grid .g-col-13{grid-column:auto/span 13}.panel-grid .g-col-14{grid-column:auto/span 14}.panel-grid .g-col-15{grid-column:auto/span 15}.panel-grid .g-col-16{grid-column:auto/span 16}.panel-grid .g-col-17{grid-column:auto/span 17}.panel-grid .g-col-18{grid-column:auto/span 18}.panel-grid .g-col-19{grid-column:auto/span 19}.panel-grid .g-col-20{grid-column:auto/span 20}.panel-grid .g-col-21{grid-column:auto/span 21}.panel-grid .g-col-22{grid-column:auto/span 22}.panel-grid .g-col-23{grid-column:auto/span 23}.panel-grid .g-col-24{grid-column:auto/span 24}.panel-grid .g-start-1{grid-column-start:1}.panel-grid .g-start-2{grid-column-start:2}.panel-grid .g-start-3{grid-column-start:3}.panel-grid .g-start-4{grid-column-start:4}.panel-grid .g-start-5{grid-column-start:5}.panel-grid .g-start-6{grid-column-start:6}.panel-grid .g-start-7{grid-column-start:7}.panel-grid .g-start-8{grid-column-start:8}.panel-grid .g-start-9{grid-column-start:9}.panel-grid .g-start-10{grid-column-start:10}.panel-grid .g-start-11{grid-column-start:11}.panel-grid .g-start-12{grid-column-start:12}.panel-grid .g-start-13{grid-column-start:13}.panel-grid .g-start-14{grid-column-start:14}.panel-grid .g-start-15{grid-column-start:15}.panel-grid .g-start-16{grid-column-start:16}.panel-grid .g-start-17{grid-column-start:17}.panel-grid .g-start-18{grid-column-start:18}.panel-grid .g-start-19{grid-column-start:19}.panel-grid .g-start-20{grid-column-start:20}.panel-grid .g-start-21{grid-column-start:21}.panel-grid .g-start-22{grid-column-start:22}.panel-grid .g-start-23{grid-column-start:23}@media(min-width: 576px){.panel-grid .g-col-sm-1{grid-column:auto/span 1}.panel-grid .g-col-sm-2{grid-column:auto/span 2}.panel-grid .g-col-sm-3{grid-column:auto/span 3}.panel-grid .g-col-sm-4{grid-column:auto/span 4}.panel-grid .g-col-sm-5{grid-column:auto/span 5}.panel-grid .g-col-sm-6{grid-column:auto/span 6}.panel-grid .g-col-sm-7{grid-column:auto/span 7}.panel-grid .g-col-sm-8{grid-column:auto/span 8}.panel-grid .g-col-sm-9{grid-column:auto/span 9}.panel-grid .g-col-sm-10{grid-column:auto/span 10}.panel-grid .g-col-sm-11{grid-column:auto/span 11}.panel-grid .g-col-sm-12{grid-column:auto/span 12}.panel-grid .g-col-sm-13{grid-column:auto/span 13}.panel-grid .g-col-sm-14{grid-column:auto/span 14}.panel-grid .g-col-sm-15{grid-column:auto/span 15}.panel-grid .g-col-sm-16{grid-column:auto/span 16}.panel-grid .g-col-sm-17{grid-column:auto/span 17}.panel-grid .g-col-sm-18{grid-column:auto/span 18}.panel-grid .g-col-sm-19{grid-column:auto/span 19}.panel-grid .g-col-sm-20{grid-column:auto/span 20}.panel-grid .g-col-sm-21{grid-column:auto/span 21}.panel-grid .g-col-sm-22{grid-column:auto/span 22}.panel-grid .g-col-sm-23{grid-column:auto/span 23}.panel-grid .g-col-sm-24{grid-column:auto/span 24}.panel-grid .g-start-sm-1{grid-column-start:1}.panel-grid .g-start-sm-2{grid-column-start:2}.panel-grid .g-start-sm-3{grid-column-start:3}.panel-grid .g-start-sm-4{grid-column-start:4}.panel-grid .g-start-sm-5{grid-column-start:5}.panel-grid .g-start-sm-6{grid-column-start:6}.panel-grid .g-start-sm-7{grid-column-start:7}.panel-grid .g-start-sm-8{grid-column-start:8}.panel-grid .g-start-sm-9{grid-column-start:9}.panel-grid .g-start-sm-10{grid-column-start:10}.panel-grid .g-start-sm-11{grid-column-start:11}.panel-grid .g-start-sm-12{grid-column-start:12}.panel-grid .g-start-sm-13{grid-column-start:13}.panel-grid .g-start-sm-14{grid-column-start:14}.panel-grid .g-start-sm-15{grid-column-start:15}.panel-grid .g-start-sm-16{grid-column-start:16}.panel-grid .g-start-sm-17{grid-column-start:17}.panel-grid .g-start-sm-18{grid-column-start:18}.panel-grid .g-start-sm-19{grid-column-start:19}.panel-grid .g-start-sm-20{grid-column-start:20}.panel-grid .g-start-sm-21{grid-column-start:21}.panel-grid .g-start-sm-22{grid-column-start:22}.panel-grid .g-start-sm-23{grid-column-start:23}}@media(min-width: 768px){.panel-grid .g-col-md-1{grid-column:auto/span 1}.panel-grid .g-col-md-2{grid-column:auto/span 2}.panel-grid .g-col-md-3{grid-column:auto/span 3}.panel-grid .g-col-md-4{grid-column:auto/span 4}.panel-grid .g-col-md-5{grid-column:auto/span 5}.panel-grid .g-col-md-6{grid-column:auto/span 6}.panel-grid .g-col-md-7{grid-column:auto/span 7}.panel-grid .g-col-md-8{grid-column:auto/span 8}.panel-grid .g-col-md-9{grid-column:auto/span 9}.panel-grid .g-col-md-10{grid-column:auto/span 10}.panel-grid .g-col-md-11{grid-column:auto/span 11}.panel-grid .g-col-md-12{grid-column:auto/span 12}.panel-grid .g-col-md-13{grid-column:auto/span 13}.panel-grid .g-col-md-14{grid-column:auto/span 14}.panel-grid .g-col-md-15{grid-column:auto/span 15}.panel-grid .g-col-md-16{grid-column:auto/span 16}.panel-grid .g-col-md-17{grid-column:auto/span 17}.panel-grid .g-col-md-18{grid-column:auto/span 18}.panel-grid .g-col-md-19{grid-column:auto/span 19}.panel-grid .g-col-md-20{grid-column:auto/span 20}.panel-grid .g-col-md-21{grid-column:auto/span 21}.panel-grid .g-col-md-22{grid-column:auto/span 22}.panel-grid .g-col-md-23{grid-column:auto/span 23}.panel-grid .g-col-md-24{grid-column:auto/span 24}.panel-grid .g-start-md-1{grid-column-start:1}.panel-grid .g-start-md-2{grid-column-start:2}.panel-grid .g-start-md-3{grid-column-start:3}.panel-grid .g-start-md-4{grid-column-start:4}.panel-grid .g-start-md-5{grid-column-start:5}.panel-grid .g-start-md-6{grid-column-start:6}.panel-grid .g-start-md-7{grid-column-start:7}.panel-grid .g-start-md-8{grid-column-start:8}.panel-grid .g-start-md-9{grid-column-start:9}.panel-grid .g-start-md-10{grid-column-start:10}.panel-grid .g-start-md-11{grid-column-start:11}.panel-grid .g-start-md-12{grid-column-start:12}.panel-grid .g-start-md-13{grid-column-start:13}.panel-grid .g-start-md-14{grid-column-start:14}.panel-grid .g-start-md-15{grid-column-start:15}.panel-grid .g-start-md-16{grid-column-start:16}.panel-grid .g-start-md-17{grid-column-start:17}.panel-grid .g-start-md-18{grid-column-start:18}.panel-grid .g-start-md-19{grid-column-start:19}.panel-grid .g-start-md-20{grid-column-start:20}.panel-grid .g-start-md-21{grid-column-start:21}.panel-grid .g-start-md-22{grid-column-start:22}.panel-grid .g-start-md-23{grid-column-start:23}}@media(min-width: 992px){.panel-grid .g-col-lg-1{grid-column:auto/span 1}.panel-grid .g-col-lg-2{grid-column:auto/span 2}.panel-grid .g-col-lg-3{grid-column:auto/span 3}.panel-grid .g-col-lg-4{grid-column:auto/span 4}.panel-grid .g-col-lg-5{grid-column:auto/span 5}.panel-grid .g-col-lg-6{grid-column:auto/span 6}.panel-grid .g-col-lg-7{grid-column:auto/span 7}.panel-grid .g-col-lg-8{grid-column:auto/span 8}.panel-grid .g-col-lg-9{grid-column:auto/span 9}.panel-grid .g-col-lg-10{grid-column:auto/span 10}.panel-grid .g-col-lg-11{grid-column:auto/span 11}.panel-grid .g-col-lg-12{grid-column:auto/span 12}.panel-grid .g-col-lg-13{grid-column:auto/span 13}.panel-grid .g-col-lg-14{grid-column:auto/span 14}.panel-grid .g-col-lg-15{grid-column:auto/span 15}.panel-grid .g-col-lg-16{grid-column:auto/span 16}.panel-grid .g-col-lg-17{grid-column:auto/span 17}.panel-grid .g-col-lg-18{grid-column:auto/span 18}.panel-grid .g-col-lg-19{grid-column:auto/span 19}.panel-grid .g-col-lg-20{grid-column:auto/span 20}.panel-grid .g-col-lg-21{grid-column:auto/span 21}.panel-grid .g-col-lg-22{grid-column:auto/span 22}.panel-grid .g-col-lg-23{grid-column:auto/span 23}.panel-grid .g-col-lg-24{grid-column:auto/span 24}.panel-grid .g-start-lg-1{grid-column-start:1}.panel-grid .g-start-lg-2{grid-column-start:2}.panel-grid .g-start-lg-3{grid-column-start:3}.panel-grid .g-start-lg-4{grid-column-start:4}.panel-grid .g-start-lg-5{grid-column-start:5}.panel-grid .g-start-lg-6{grid-column-start:6}.panel-grid .g-start-lg-7{grid-column-start:7}.panel-grid .g-start-lg-8{grid-column-start:8}.panel-grid .g-start-lg-9{grid-column-start:9}.panel-grid .g-start-lg-10{grid-column-start:10}.panel-grid .g-start-lg-11{grid-column-start:11}.panel-grid .g-start-lg-12{grid-column-start:12}.panel-grid .g-start-lg-13{grid-column-start:13}.panel-grid .g-start-lg-14{grid-column-start:14}.panel-grid .g-start-lg-15{grid-column-start:15}.panel-grid .g-start-lg-16{grid-column-start:16}.panel-grid .g-start-lg-17{grid-column-start:17}.panel-grid .g-start-lg-18{grid-column-start:18}.panel-grid .g-start-lg-19{grid-column-start:19}.panel-grid .g-start-lg-20{grid-column-start:20}.panel-grid .g-start-lg-21{grid-column-start:21}.panel-grid .g-start-lg-22{grid-column-start:22}.panel-grid .g-start-lg-23{grid-column-start:23}}@media(min-width: 1200px){.panel-grid .g-col-xl-1{grid-column:auto/span 1}.panel-grid .g-col-xl-2{grid-column:auto/span 2}.panel-grid .g-col-xl-3{grid-column:auto/span 3}.panel-grid .g-col-xl-4{grid-column:auto/span 4}.panel-grid .g-col-xl-5{grid-column:auto/span 5}.panel-grid .g-col-xl-6{grid-column:auto/span 6}.panel-grid .g-col-xl-7{grid-column:auto/span 7}.panel-grid .g-col-xl-8{grid-column:auto/span 8}.panel-grid .g-col-xl-9{grid-column:auto/span 9}.panel-grid .g-col-xl-10{grid-column:auto/span 10}.panel-grid .g-col-xl-11{grid-column:auto/span 11}.panel-grid .g-col-xl-12{grid-column:auto/span 12}.panel-grid .g-col-xl-13{grid-column:auto/span 13}.panel-grid .g-col-xl-14{grid-column:auto/span 14}.panel-grid .g-col-xl-15{grid-column:auto/span 15}.panel-grid .g-col-xl-16{grid-column:auto/span 16}.panel-grid .g-col-xl-17{grid-column:auto/span 17}.panel-grid .g-col-xl-18{grid-column:auto/span 18}.panel-grid .g-col-xl-19{grid-column:auto/span 19}.panel-grid .g-col-xl-20{grid-column:auto/span 20}.panel-grid .g-col-xl-21{grid-column:auto/span 21}.panel-grid .g-col-xl-22{grid-column:auto/span 22}.panel-grid .g-col-xl-23{grid-column:auto/span 23}.panel-grid .g-col-xl-24{grid-column:auto/span 24}.panel-grid .g-start-xl-1{grid-column-start:1}.panel-grid .g-start-xl-2{grid-column-start:2}.panel-grid .g-start-xl-3{grid-column-start:3}.panel-grid .g-start-xl-4{grid-column-start:4}.panel-grid .g-start-xl-5{grid-column-start:5}.panel-grid .g-start-xl-6{grid-column-start:6}.panel-grid .g-start-xl-7{grid-column-start:7}.panel-grid .g-start-xl-8{grid-column-start:8}.panel-grid .g-start-xl-9{grid-column-start:9}.panel-grid .g-start-xl-10{grid-column-start:10}.panel-grid .g-start-xl-11{grid-column-start:11}.panel-grid .g-start-xl-12{grid-column-start:12}.panel-grid .g-start-xl-13{grid-column-start:13}.panel-grid .g-start-xl-14{grid-column-start:14}.panel-grid .g-start-xl-15{grid-column-start:15}.panel-grid .g-start-xl-16{grid-column-start:16}.panel-grid .g-start-xl-17{grid-column-start:17}.panel-grid .g-start-xl-18{grid-column-start:18}.panel-grid .g-start-xl-19{grid-column-start:19}.panel-grid .g-start-xl-20{grid-column-start:20}.panel-grid .g-start-xl-21{grid-column-start:21}.panel-grid .g-start-xl-22{grid-column-start:22}.panel-grid .g-start-xl-23{grid-column-start:23}}@media(min-width: 1400px){.panel-grid .g-col-xxl-1{grid-column:auto/span 1}.panel-grid .g-col-xxl-2{grid-column:auto/span 2}.panel-grid .g-col-xxl-3{grid-column:auto/span 3}.panel-grid .g-col-xxl-4{grid-column:auto/span 4}.panel-grid .g-col-xxl-5{grid-column:auto/span 5}.panel-grid .g-col-xxl-6{grid-column:auto/span 6}.panel-grid .g-col-xxl-7{grid-column:auto/span 7}.panel-grid .g-col-xxl-8{grid-column:auto/span 8}.panel-grid .g-col-xxl-9{grid-column:auto/span 9}.panel-grid .g-col-xxl-10{grid-column:auto/span 10}.panel-grid .g-col-xxl-11{grid-column:auto/span 11}.panel-grid .g-col-xxl-12{grid-column:auto/span 12}.panel-grid .g-col-xxl-13{grid-column:auto/span 13}.panel-grid .g-col-xxl-14{grid-column:auto/span 14}.panel-grid .g-col-xxl-15{grid-column:auto/span 15}.panel-grid .g-col-xxl-16{grid-column:auto/span 16}.panel-grid .g-col-xxl-17{grid-column:auto/span 17}.panel-grid .g-col-xxl-18{grid-column:auto/span 18}.panel-grid .g-col-xxl-19{grid-column:auto/span 19}.panel-grid .g-col-xxl-20{grid-column:auto/span 20}.panel-grid .g-col-xxl-21{grid-column:auto/span 21}.panel-grid .g-col-xxl-22{grid-column:auto/span 22}.panel-grid .g-col-xxl-23{grid-column:auto/span 23}.panel-grid .g-col-xxl-24{grid-column:auto/span 24}.panel-grid .g-start-xxl-1{grid-column-start:1}.panel-grid .g-start-xxl-2{grid-column-start:2}.panel-grid .g-start-xxl-3{grid-column-start:3}.panel-grid .g-start-xxl-4{grid-column-start:4}.panel-grid .g-start-xxl-5{grid-column-start:5}.panel-grid .g-start-xxl-6{grid-column-start:6}.panel-grid .g-start-xxl-7{grid-column-start:7}.panel-grid .g-start-xxl-8{grid-column-start:8}.panel-grid .g-start-xxl-9{grid-column-start:9}.panel-grid .g-start-xxl-10{grid-column-start:10}.panel-grid .g-start-xxl-11{grid-column-start:11}.panel-grid .g-start-xxl-12{grid-column-start:12}.panel-grid .g-start-xxl-13{grid-column-start:13}.panel-grid .g-start-xxl-14{grid-column-start:14}.panel-grid .g-start-xxl-15{grid-column-start:15}.panel-grid .g-start-xxl-16{grid-column-start:16}.panel-grid .g-start-xxl-17{grid-column-start:17}.panel-grid .g-start-xxl-18{grid-column-start:18}.panel-grid .g-start-xxl-19{grid-column-start:19}.panel-grid .g-start-xxl-20{grid-column-start:20}.panel-grid .g-start-xxl-21{grid-column-start:21}.panel-grid .g-start-xxl-22{grid-column-start:22}.panel-grid .g-start-xxl-23{grid-column-start:23}}main{margin-top:1em;margin-bottom:1em}h1,.h1,h2,.h2{color:inherit;margin-top:2rem;margin-bottom:1rem;font-weight:600}h1.title,.title.h1{margin-top:0}main.content>section:first-of-type>h2:first-child,main.content>section:first-of-type>.h2:first-child{margin-top:0}h2,.h2{border-bottom:1px solid #dee2e6;padding-bottom:.5rem}h3,.h3{font-weight:600}h3,.h3,h4,.h4{opacity:.9;margin-top:1.5rem}h5,.h5,h6,.h6{opacity:.9}.header-section-number{color:#5a6570}.nav-link.active .header-section-number{color:inherit}mark,.mark{padding:0em}.panel-caption,.figure-caption,.subfigure-caption,.table-caption,figcaption,caption{font-size:.9rem;color:#5a6570}.quarto-layout-cell[data-ref-parent] caption{color:#5a6570}.column-margin figcaption,.margin-caption,div.aside,aside,.column-margin{color:#5a6570;font-size:.825rem}.panel-caption.margin-caption{text-align:inherit}.column-margin.column-container p{margin-bottom:0}.column-margin.column-container>*:not(.collapse):first-child{padding-bottom:.5em;display:block}.column-margin.column-container>*:not(.collapse):not(:first-child){padding-top:.5em;padding-bottom:.5em;display:block}.column-margin.column-container>*.collapse:not(.show){display:none}@media(min-width: 768px){.column-margin.column-container .callout-margin-content:first-child{margin-top:4.5em}.column-margin.column-container .callout-margin-content-simple:first-child{margin-top:3.5em}}.margin-caption>*{padding-top:.5em;padding-bottom:.5em}@media(max-width: 767.98px){.quarto-layout-row{flex-direction:column}}.nav-tabs .nav-item{margin-top:1px;cursor:pointer}.tab-content{margin-top:0px;border-left:#dee2e6 1px solid;border-right:#dee2e6 1px solid;border-bottom:#dee2e6 1px solid;margin-left:0;padding:1em;margin-bottom:1em}@media(max-width: 767.98px){.layout-sidebar{margin-left:0;margin-right:0}}.panel-sidebar,.panel-sidebar .form-control,.panel-input,.panel-input .form-control,.selectize-dropdown{font-size:.9rem}.panel-sidebar .form-control,.panel-input .form-control{padding-top:.1rem}.tab-pane div.sourceCode{margin-top:0px}.tab-pane>p{padding-top:0}.tab-pane>p:nth-child(1){padding-top:0}.tab-pane>p:last-child{margin-bottom:0}.tab-pane>pre:last-child{margin-bottom:0}.tab-content>.tab-pane:not(.active){display:none !important}div.sourceCode{background-color:rgba(233,236,239,.65);border:1px solid rgba(233,236,239,.65);border-radius:.375rem}pre.sourceCode{background-color:rgba(0,0,0,0)}pre.sourceCode{border:none;font-size:.875em;overflow:visible !important;padding:.4em}.callout pre.sourceCode{padding-left:0}div.sourceCode{overflow-y:hidden}.callout div.sourceCode{margin-left:initial}.blockquote{font-size:inherit;padding-left:1rem;padding-right:1.5rem;color:#5a6570}.blockquote h1:first-child,.blockquote .h1:first-child,.blockquote h2:first-child,.blockquote .h2:first-child,.blockquote h3:first-child,.blockquote .h3:first-child,.blockquote h4:first-child,.blockquote .h4:first-child,.blockquote h5:first-child,.blockquote .h5:first-child{margin-top:0}pre{background-color:initial;padding:initial;border:initial}p pre code:not(.sourceCode),li pre code:not(.sourceCode),pre code:not(.sourceCode){background-color:initial}p code:not(.sourceCode),li code:not(.sourceCode),td code:not(.sourceCode){background-color:#f8f9fa;padding:.2em}nav p code:not(.sourceCode),nav li code:not(.sourceCode),nav td code:not(.sourceCode){background-color:rgba(0,0,0,0);padding:0}td code:not(.sourceCode){white-space:pre-wrap}#quarto-embedded-source-code-modal>.modal-dialog{max-width:1000px;padding-left:1.75rem;padding-right:1.75rem}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body{padding:0}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-body div.sourceCode{margin:0;padding:.2rem .2rem;border-radius:0px;border:none}#quarto-embedded-source-code-modal>.modal-dialog>.modal-content>.modal-header{padding:.7rem}.code-tools-button{font-size:1rem;padding:.15rem .15rem;margin-left:5px;color:rgba(33,37,41,.75);background-color:rgba(0,0,0,0);transition:initial;cursor:pointer}.code-tools-button>.bi::before{display:inline-block;height:1rem;width:1rem;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,');background-repeat:no-repeat;background-size:1rem 1rem}.code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml,')}#quarto-embedded-source-code-modal .code-copy-button>.bi::before{background-image:url('data:image/svg+xml,')}#quarto-embedded-source-code-modal .code-copy-button-checked>.bi::before{background-image:url('data:image/svg+xml,')}.sidebar{will-change:top;transition:top 200ms linear;position:sticky;overflow-y:auto;padding-top:1.2em;max-height:100vh}.sidebar.toc-left,.sidebar.margin-sidebar{top:0px;padding-top:1em}.sidebar.quarto-banner-title-block-sidebar>*{padding-top:1.65em}figure .quarto-notebook-link{margin-top:.5em}.quarto-notebook-link{font-size:.75em;color:rgba(33,37,41,.75);margin-bottom:1em;text-decoration:none;display:block}.quarto-notebook-link:hover{text-decoration:underline;color:#0d6efd}.quarto-notebook-link::before{display:inline-block;height:.75rem;width:.75rem;margin-bottom:0em;margin-right:.25em;content:"";vertical-align:-0.125em;background-image:url('data:image/svg+xml,');background-repeat:no-repeat;background-size:.75rem .75rem}.toc-actions i.bi,.quarto-code-links i.bi,.quarto-other-links i.bi,.quarto-alternate-notebooks i.bi,.quarto-alternate-formats i.bi{margin-right:.4em;font-size:.8rem}.quarto-other-links-text-target .quarto-code-links i.bi,.quarto-other-links-text-target .quarto-other-links i.bi{margin-right:.2em}.quarto-other-formats-text-target .quarto-alternate-formats i.bi{margin-right:.1em}.toc-actions i.bi.empty,.quarto-code-links i.bi.empty,.quarto-other-links i.bi.empty,.quarto-alternate-notebooks i.bi.empty,.quarto-alternate-formats i.bi.empty{padding-left:1em}.quarto-notebook h2,.quarto-notebook .h2{border-bottom:none}.quarto-notebook .cell-container{display:flex}.quarto-notebook .cell-container .cell{flex-grow:4}.quarto-notebook .cell-container .cell-decorator{padding-top:1.5em;padding-right:1em;text-align:right}.quarto-notebook .cell-container.code-fold .cell-decorator{padding-top:3em}.quarto-notebook .cell-code code{white-space:pre-wrap}.quarto-notebook .cell .cell-output-stderr pre code,.quarto-notebook .cell .cell-output-stdout pre code{white-space:pre-wrap;overflow-wrap:anywhere}.toc-actions,.quarto-alternate-formats,.quarto-other-links,.quarto-code-links,.quarto-alternate-notebooks{padding-left:0em}.sidebar .toc-actions a,.sidebar .quarto-alternate-formats a,.sidebar .quarto-other-links a,.sidebar .quarto-code-links a,.sidebar .quarto-alternate-notebooks a,.sidebar nav[role=doc-toc] a{text-decoration:none}.sidebar .toc-actions a:hover,.sidebar .quarto-other-links a:hover,.sidebar .quarto-code-links a:hover,.sidebar .quarto-alternate-formats a:hover,.sidebar .quarto-alternate-notebooks a:hover{color:#0d6efd}.sidebar .toc-actions h2,.sidebar .toc-actions .h2,.sidebar .quarto-code-links h2,.sidebar .quarto-code-links .h2,.sidebar .quarto-other-links h2,.sidebar .quarto-other-links .h2,.sidebar .quarto-alternate-notebooks h2,.sidebar .quarto-alternate-notebooks .h2,.sidebar .quarto-alternate-formats h2,.sidebar .quarto-alternate-formats .h2,.sidebar nav[role=doc-toc]>h2,.sidebar nav[role=doc-toc]>.h2{font-weight:500;margin-bottom:.2rem;margin-top:.3rem;font-family:inherit;border-bottom:0;padding-bottom:0;padding-top:0px}.sidebar .toc-actions>h2,.sidebar .toc-actions>.h2,.sidebar .quarto-code-links>h2,.sidebar .quarto-code-links>.h2,.sidebar .quarto-other-links>h2,.sidebar .quarto-other-links>.h2,.sidebar .quarto-alternate-notebooks>h2,.sidebar .quarto-alternate-notebooks>.h2,.sidebar .quarto-alternate-formats>h2,.sidebar .quarto-alternate-formats>.h2{font-size:.8rem}.sidebar nav[role=doc-toc]>h2,.sidebar nav[role=doc-toc]>.h2{font-size:.875rem}.sidebar nav[role=doc-toc]>ul a{border-left:1px solid #e9ecef;padding-left:.6rem}.sidebar .toc-actions h2>ul a,.sidebar .toc-actions .h2>ul a,.sidebar .quarto-code-links h2>ul a,.sidebar .quarto-code-links .h2>ul a,.sidebar .quarto-other-links h2>ul a,.sidebar .quarto-other-links .h2>ul a,.sidebar .quarto-alternate-notebooks h2>ul a,.sidebar .quarto-alternate-notebooks .h2>ul a,.sidebar .quarto-alternate-formats h2>ul a,.sidebar .quarto-alternate-formats .h2>ul a{border-left:none;padding-left:.6rem}.sidebar .toc-actions ul a:empty,.sidebar .quarto-code-links ul a:empty,.sidebar .quarto-other-links ul a:empty,.sidebar .quarto-alternate-notebooks ul a:empty,.sidebar .quarto-alternate-formats ul a:empty,.sidebar nav[role=doc-toc]>ul a:empty{display:none}.sidebar .toc-actions ul,.sidebar .quarto-code-links ul,.sidebar .quarto-other-links ul,.sidebar .quarto-alternate-notebooks ul,.sidebar .quarto-alternate-formats ul{padding-left:0;list-style:none}.sidebar nav[role=doc-toc] ul{list-style:none;padding-left:0;list-style:none}.sidebar nav[role=doc-toc]>ul{margin-left:.45em}.quarto-margin-sidebar nav[role=doc-toc]{padding-left:.5em}.sidebar .toc-actions>ul,.sidebar .quarto-code-links>ul,.sidebar .quarto-other-links>ul,.sidebar .quarto-alternate-notebooks>ul,.sidebar .quarto-alternate-formats>ul{font-size:.8rem}.sidebar nav[role=doc-toc]>ul{font-size:.875rem}.sidebar .toc-actions ul li a,.sidebar .quarto-code-links ul li a,.sidebar .quarto-other-links ul li a,.sidebar .quarto-alternate-notebooks ul li a,.sidebar .quarto-alternate-formats ul li a,.sidebar nav[role=doc-toc]>ul li a{line-height:1.1rem;padding-bottom:.2rem;padding-top:.2rem;color:inherit}.sidebar nav[role=doc-toc] ul>li>ul>li>a{padding-left:1.2em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>a{padding-left:2.4em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>a{padding-left:3.6em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:4.8em}.sidebar nav[role=doc-toc] ul>li>ul>li>ul>li>ul>li>ul>li>ul>li>a{padding-left:6em}.sidebar nav[role=doc-toc] ul>li>a.active,.sidebar nav[role=doc-toc] ul>li>ul>li>a.active{border-left:1px solid #0d6efd;color:#0d6efd !important}.sidebar nav[role=doc-toc] ul>li>a:hover,.sidebar nav[role=doc-toc] ul>li>ul>li>a:hover{color:#0d6efd !important}kbd,.kbd{color:#212529;background-color:#f8f9fa;border:1px solid;border-radius:5px;border-color:#dee2e6}.quarto-appendix-contents div.hanging-indent{margin-left:0em}.quarto-appendix-contents div.hanging-indent div.csl-entry{margin-left:1em;text-indent:-1em}.citation a,.footnote-ref{text-decoration:none}.footnotes ol{padding-left:1em}.tippy-content>*{margin-bottom:.7em}.tippy-content>*:last-child{margin-bottom:0}.callout{margin-top:1.25rem;margin-bottom:1.25rem;border-radius:.375rem;overflow-wrap:break-word}.callout .callout-title-container{overflow-wrap:anywhere}.callout.callout-style-simple{padding:.4em .7em;border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout.callout-style-default{border-left:5px solid;border-right:1px solid #dee2e6;border-top:1px solid #dee2e6;border-bottom:1px solid #dee2e6}.callout .callout-body-container{flex-grow:1}.callout.callout-style-simple .callout-body{font-size:.9rem;font-weight:400}.callout.callout-style-default .callout-body{font-size:.9rem;font-weight:400}.callout:not(.no-icon).callout-titled.callout-style-simple .callout-body{padding-left:1.6em}.callout.callout-titled>.callout-header{padding-top:.2em;margin-bottom:-0.2em}.callout.callout-style-simple>div.callout-header{border-bottom:none;font-size:.9rem;font-weight:600;opacity:75%}.callout.callout-style-default>div.callout-header{border-bottom:none;font-weight:600;opacity:85%;font-size:.9rem;padding-left:.5em;padding-right:.5em}.callout.callout-style-default .callout-body{padding-left:.5em;padding-right:.5em}.callout.callout-style-default .callout-body>:first-child{padding-top:.5rem;margin-top:0}.callout>div.callout-header[data-bs-toggle=collapse]{cursor:pointer}.callout.callout-style-default .callout-header[aria-expanded=false],.callout.callout-style-default .callout-header[aria-expanded=true]{padding-top:0px;margin-bottom:0px;align-items:center}.callout.callout-titled .callout-body>:last-child:not(.sourceCode),.callout.callout-titled .callout-body>div>:last-child:not(.sourceCode){padding-bottom:.5rem;margin-bottom:0}.callout:not(.callout-titled) .callout-body>:first-child,.callout:not(.callout-titled) .callout-body>div>:first-child{margin-top:.25rem}.callout:not(.callout-titled) .callout-body>:last-child,.callout:not(.callout-titled) .callout-body>div>:last-child{margin-bottom:.2rem}.callout.callout-style-simple .callout-icon::before,.callout.callout-style-simple .callout-toggle::before{height:1rem;width:1rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.callout.callout-style-default .callout-icon::before,.callout.callout-style-default .callout-toggle::before{height:.9rem;width:.9rem;display:inline-block;content:"";background-repeat:no-repeat;background-size:.9rem .9rem}.callout.callout-style-default .callout-toggle::before{margin-top:5px}.callout .callout-btn-toggle .callout-toggle::before{transition:transform .2s linear}.callout .callout-header[aria-expanded=false] .callout-toggle::before{transform:rotate(-90deg)}.callout .callout-header[aria-expanded=true] .callout-toggle::before{transform:none}.callout.callout-style-simple:not(.no-icon) div.callout-icon-container{padding-top:.2em;padding-right:.55em}.callout.callout-style-default:not(.no-icon) div.callout-icon-container{padding-top:.1em;padding-right:.35em}.callout.callout-style-default:not(.no-icon) div.callout-title-container{margin-top:-1px}.callout.callout-style-default.callout-caution:not(.no-icon) div.callout-icon-container{padding-top:.3em;padding-right:.35em}.callout>.callout-body>.callout-icon-container>.no-icon,.callout>.callout-header>.callout-icon-container>.no-icon{display:none}div.callout.callout{border-left-color:rgba(33,37,41,.75)}div.callout.callout-style-default>.callout-header{background-color:rgba(33,37,41,.75)}div.callout-note.callout{border-left-color:#0d6efd}div.callout-note.callout-style-default>.callout-header{background-color:#e7f1ff}div.callout-note:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-note.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-note .callout-toggle::before{background-image:url('data:image/svg+xml,')}div.callout-tip.callout{border-left-color:#198754}div.callout-tip.callout-style-default>.callout-header{background-color:#e8f3ee}div.callout-tip:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-tip.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-tip .callout-toggle::before{background-image:url('data:image/svg+xml,')}div.callout-warning.callout{border-left-color:#ffc107}div.callout-warning.callout-style-default>.callout-header{background-color:#fff9e6}div.callout-warning:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-warning.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-warning .callout-toggle::before{background-image:url('data:image/svg+xml,')}div.callout-caution.callout{border-left-color:#fd7e14}div.callout-caution.callout-style-default>.callout-header{background-color:#fff2e8}div.callout-caution:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-caution.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-caution .callout-toggle::before{background-image:url('data:image/svg+xml,')}div.callout-important.callout{border-left-color:#dc3545}div.callout-important.callout-style-default>.callout-header{background-color:#fcebec}div.callout-important:not(.callout-titled) .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-important.callout-titled .callout-icon::before{background-image:url('data:image/svg+xml,');}div.callout-important .callout-toggle::before{background-image:url('data:image/svg+xml,')}.quarto-toggle-container{display:flex;align-items:center}.quarto-reader-toggle .bi::before,.quarto-color-scheme-toggle .bi::before{display:inline-block;height:1rem;width:1rem;content:"";background-repeat:no-repeat;background-size:1rem 1rem}.sidebar-navigation{padding-left:20px}.navbar{background-color:#517699;color:#fdfefe}.navbar .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml,')}.navbar .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml,')}.sidebar-navigation .quarto-color-scheme-toggle:not(.alternate) .bi::before{background-image:url('data:image/svg+xml,')}.sidebar-navigation .quarto-color-scheme-toggle.alternate .bi::before{background-image:url('data:image/svg+xml,')}.quarto-sidebar-toggle{border-color:#dee2e6;border-bottom-left-radius:.375rem;border-bottom-right-radius:.375rem;border-style:solid;border-width:1px;overflow:hidden;border-top-width:0px;padding-top:0px !important}.quarto-sidebar-toggle-title{cursor:pointer;padding-bottom:2px;margin-left:.25em;text-align:center;font-weight:400;font-size:.775em}#quarto-content .quarto-sidebar-toggle{background:#fafafa}#quarto-content .quarto-sidebar-toggle-title{color:#212529}.quarto-sidebar-toggle-icon{color:#dee2e6;margin-right:.5em;float:right;transition:transform .2s ease}.quarto-sidebar-toggle-icon::before{padding-top:5px}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-icon{transform:rotate(-180deg)}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-title{border-bottom:solid #dee2e6 1px}.quarto-sidebar-toggle-contents{background-color:#fff;padding-right:10px;padding-left:10px;margin-top:0px !important;transition:max-height .5s ease}.quarto-sidebar-toggle.expanded .quarto-sidebar-toggle-contents{padding-top:1em;padding-bottom:10px}@media(max-width: 767.98px){.sidebar-menu-container{padding-bottom:5em}}.quarto-sidebar-toggle:not(.expanded) .quarto-sidebar-toggle-contents{padding-top:0px !important;padding-bottom:0px}nav[role=doc-toc]{z-index:1020}#quarto-sidebar>*,nav[role=doc-toc]>*{transition:opacity .1s ease,border .1s ease}#quarto-sidebar.slow>*,nav[role=doc-toc].slow>*{transition:opacity .4s ease,border .4s ease}.quarto-color-scheme-toggle:not(.alternate).top-right .bi::before{background-image:url('data:image/svg+xml,')}.quarto-color-scheme-toggle.alternate.top-right .bi::before{background-image:url('data:image/svg+xml,')}#quarto-appendix.default{border-top:1px solid #dee2e6}#quarto-appendix.default{background-color:#fff;padding-top:1.5em;margin-top:2em;z-index:998}#quarto-appendix.default .quarto-appendix-heading{margin-top:0;line-height:1.4em;font-weight:600;opacity:.9;border-bottom:none;margin-bottom:0}#quarto-appendix.default .footnotes ol,#quarto-appendix.default .footnotes ol li>p:last-of-type,#quarto-appendix.default .quarto-appendix-contents>p:last-of-type{margin-bottom:0}#quarto-appendix.default .footnotes ol{margin-left:.5em}#quarto-appendix.default .quarto-appendix-secondary-label{margin-bottom:.4em}#quarto-appendix.default .quarto-appendix-bibtex{font-size:.7em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-bibtex code.sourceCode{white-space:pre-wrap}#quarto-appendix.default .quarto-appendix-citeas{font-size:.9em;padding:1em;border:solid 1px #dee2e6;margin-bottom:1em}#quarto-appendix.default .quarto-appendix-heading{font-size:1em !important}#quarto-appendix.default *[role=doc-endnotes]>ol,#quarto-appendix.default .quarto-appendix-contents>*:not(h2):not(.h2){font-size:.9em}#quarto-appendix.default section{padding-bottom:1.5em}#quarto-appendix.default section *[role=doc-endnotes],#quarto-appendix.default section>*:not(a){opacity:.9;word-wrap:break-word}.btn.btn-quarto,div.cell-output-display .btn-quarto{--bs-btn-color: #fefefe;--bs-btn-bg: #6c757d;--bs-btn-border-color: #6c757d;--bs-btn-hover-color: #fefefe;--bs-btn-hover-bg: #828a91;--bs-btn-hover-border-color: #7b838a;--bs-btn-focus-shadow-rgb: 130, 138, 144;--bs-btn-active-color: #000;--bs-btn-active-bg: #899197;--bs-btn-active-border-color: #7b838a;--bs-btn-active-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);--bs-btn-disabled-color: #ffffff;--bs-btn-disabled-bg: #6c757d;--bs-btn-disabled-border-color: #6c757d}nav.quarto-secondary-nav.color-navbar{background-color:#517699;color:#fdfefe}nav.quarto-secondary-nav.color-navbar h1,nav.quarto-secondary-nav.color-navbar .h1,nav.quarto-secondary-nav.color-navbar .quarto-btn-toggle{color:#fdfefe}@media(max-width: 991.98px){body.nav-sidebar .quarto-title-banner{margin-bottom:0;padding-bottom:1em}body.nav-sidebar #title-block-header{margin-block-end:0}}p.subtitle{margin-top:.25em;margin-bottom:.5em}code a:any-link{color:inherit;text-decoration-color:#6c757d}/*! light */div.observablehq table thead tr th{background-color:var(--bs-body-bg)}input,button,select,optgroup,textarea{background-color:var(--bs-body-bg)}.code-annotated .code-copy-button{margin-right:1.25em;margin-top:0;padding-bottom:0;padding-top:3px}.code-annotation-gutter-bg{background-color:#fff}.code-annotation-gutter{background-color:rgba(233,236,239,.65)}.code-annotation-gutter,.code-annotation-gutter-bg{height:100%;width:calc(20px + .5em);position:absolute;top:0;right:0}dl.code-annotation-container-grid dt{margin-right:1em;margin-top:.25rem}dl.code-annotation-container-grid dt{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;color:#383f45;border:solid #383f45 1px;border-radius:50%;height:22px;width:22px;line-height:22px;font-size:11px;text-align:center;vertical-align:middle;text-decoration:none}dl.code-annotation-container-grid dt[data-target-cell]{cursor:pointer}dl.code-annotation-container-grid dt[data-target-cell].code-annotation-active{color:#fff;border:solid #aaa 1px;background-color:#aaa}pre.code-annotation-code{padding-top:0;padding-bottom:0}pre.code-annotation-code code{z-index:3}#code-annotation-line-highlight-gutter{width:100%;border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}#code-annotation-line-highlight{margin-left:-4em;width:calc(100% + 4em);border-top:solid rgba(170,170,170,.2666666667) 1px;border-bottom:solid rgba(170,170,170,.2666666667) 1px;z-index:2;background-color:rgba(170,170,170,.1333333333)}code.sourceCode .code-annotation-anchor.code-annotation-active{background-color:var(--quarto-hl-normal-color, #aaaaaa);border:solid var(--quarto-hl-normal-color, #aaaaaa) 1px;color:#e9ecef;font-weight:bolder}code.sourceCode .code-annotation-anchor{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;color:var(--quarto-hl-co-color);border:solid var(--quarto-hl-co-color) 1px;border-radius:50%;height:18px;width:18px;font-size:9px;margin-top:2px}code.sourceCode button.code-annotation-anchor{padding:2px;user-select:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;-o-user-select:none}code.sourceCode a.code-annotation-anchor{line-height:18px;text-align:center;vertical-align:middle;cursor:default;text-decoration:none}@media print{.page-columns .column-screen-inset{grid-column:page-start-inset/page-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset table{background:#fff}.page-columns .column-screen-inset-left{grid-column:page-start-inset/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-inset-left table{background:#fff}.page-columns .column-screen-inset-right{grid-column:body-content-start/page-end-inset;z-index:998;opacity:.999}.page-columns .column-screen-inset-right table{background:#fff}.page-columns .column-screen{grid-column:page-start/page-end;z-index:998;opacity:.999}.page-columns .column-screen table{background:#fff}.page-columns .column-screen-left{grid-column:page-start/body-content-end;z-index:998;opacity:.999}.page-columns .column-screen-left table{background:#fff}.page-columns .column-screen-right{grid-column:body-content-start/page-end;z-index:998;opacity:.999}.page-columns .column-screen-right table{background:#fff}.page-columns .column-screen-inset-shaded{grid-column:page-start-inset/page-end-inset;padding:1em;background:#f8f9fa;z-index:998;opacity:.999;margin-bottom:1em}}.quarto-video{margin-bottom:1em}.table{border-top:1px solid #d3d8dc;border-bottom:1px solid #d3d8dc}.table>thead{border-top-width:0;border-bottom:1px solid #9ba5ae}.table a{word-break:break-word}.table>:not(caption)>*>*{background-color:unset;color:unset}#quarto-document-content .crosstalk-input .checkbox input[type=checkbox],#quarto-document-content .crosstalk-input .checkbox-inline input[type=checkbox]{position:unset;margin-top:unset;margin-left:unset}#quarto-document-content .row{margin-left:unset;margin-right:unset}.quarto-xref{white-space:nowrap}#quarto-draft-alert{margin-top:0px;margin-bottom:0px;padding:.3em;text-align:center;font-size:.9em}#quarto-draft-alert i{margin-right:.3em}a.external:after{content:"";background-image:url('data:image/svg+xml,');background-size:contain;background-repeat:no-repeat;background-position:center center;margin-left:.2em;padding-right:.75em}div.sourceCode code a.external:after{content:none}a.external:after:hover{cursor:pointer}.quarto-ext-icon{display:inline-block;font-size:.75em;padding-left:.3em}.code-with-filename .code-with-filename-file{margin-bottom:0;padding-bottom:2px;padding-top:2px;padding-left:.7em;border:var(--quarto-border-width) solid var(--quarto-border-color);border-radius:var(--quarto-border-radius);border-bottom:0;border-bottom-left-radius:0%;border-bottom-right-radius:0%}.code-with-filename div.sourceCode,.reveal .code-with-filename div.sourceCode{margin-top:0;border-top-left-radius:0%;border-top-right-radius:0%}.code-with-filename .code-with-filename-file pre{margin-bottom:0}.code-with-filename .code-with-filename-file{background-color:rgba(219,219,219,.8)}.quarto-dark .code-with-filename .code-with-filename-file{background-color:#555}.code-with-filename .code-with-filename-file strong{font-weight:400}.quarto-title-banner{margin-bottom:1em;color:#fdfefe;background:#517699}.quarto-title-banner a{color:#fdfefe}.quarto-title-banner h1,.quarto-title-banner .h1,.quarto-title-banner h2,.quarto-title-banner .h2{color:#fdfefe}.quarto-title-banner .code-tools-button{color:#b9dcdc}.quarto-title-banner .code-tools-button:hover{color:#fdfefe}.quarto-title-banner .code-tools-button>.bi::before{background-image:url('data:image/svg+xml,')}.quarto-title-banner .code-tools-button:hover>.bi::before{background-image:url('data:image/svg+xml,')}.quarto-title-banner .quarto-title .title{font-weight:600}.quarto-title-banner .quarto-categories{margin-top:.75em}@media(min-width: 992px){.quarto-title-banner{padding-top:2.5em;padding-bottom:2.5em}}@media(max-width: 991.98px){.quarto-title-banner{padding-top:1em;padding-bottom:1em}}@media(max-width: 767.98px){body.hypothesis-enabled #title-block-header>*{padding-right:20px}}main.quarto-banner-title-block>section:first-child>h2,main.quarto-banner-title-block>section:first-child>.h2,main.quarto-banner-title-block>section:first-child>h3,main.quarto-banner-title-block>section:first-child>.h3,main.quarto-banner-title-block>section:first-child>h4,main.quarto-banner-title-block>section:first-child>.h4{margin-top:0}.quarto-title .quarto-categories{display:flex;flex-wrap:wrap;row-gap:.5em;column-gap:.4em;padding-bottom:.5em;margin-top:.75em}.quarto-title .quarto-categories .quarto-category{padding:.25em .75em;font-size:.65em;text-transform:uppercase;border:solid 1px;border-radius:.375rem;opacity:.6}.quarto-title .quarto-categories .quarto-category a{color:inherit}.quarto-title-meta-container{display:grid;grid-template-columns:1fr auto}.quarto-title-meta-column-end{display:flex;flex-direction:column;padding-left:1em}.quarto-title-meta-column-end a .bi{margin-right:.3em}#title-block-header.quarto-title-block.default .quarto-title-meta{display:grid;grid-template-columns:repeat(2, 1fr);grid-column-gap:1em}#title-block-header.quarto-title-block.default .quarto-title .title{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-author-orcid img{margin-top:-0.2em;height:.8em;width:.8em}#title-block-header.quarto-title-block.default .quarto-title-author-email{opacity:.7}#title-block-header.quarto-title-block.default .quarto-description p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p,#title-block-header.quarto-title-block.default .quarto-title-authors p,#title-block-header.quarto-title-block.default .quarto-title-affiliations p{margin-bottom:.1em}#title-block-header.quarto-title-block.default .quarto-title-meta-heading{text-transform:uppercase;margin-top:1em;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-contents{font-size:.9em}#title-block-header.quarto-title-block.default .quarto-title-meta-contents p.affiliation:last-of-type{margin-bottom:.1em}#title-block-header.quarto-title-block.default p.affiliation{margin-bottom:.1em}#title-block-header.quarto-title-block.default .keywords,#title-block-header.quarto-title-block.default .description,#title-block-header.quarto-title-block.default .abstract{margin-top:0}#title-block-header.quarto-title-block.default .keywords>p,#title-block-header.quarto-title-block.default .description>p,#title-block-header.quarto-title-block.default .abstract>p{font-size:.9em}#title-block-header.quarto-title-block.default .keywords>p:last-of-type,#title-block-header.quarto-title-block.default .description>p:last-of-type,#title-block-header.quarto-title-block.default .abstract>p:last-of-type{margin-bottom:0}#title-block-header.quarto-title-block.default .keywords .block-title,#title-block-header.quarto-title-block.default .description .block-title,#title-block-header.quarto-title-block.default .abstract .block-title{margin-top:1em;text-transform:uppercase;font-size:.8em;opacity:.8;font-weight:400}#title-block-header.quarto-title-block.default .quarto-title-meta-author{display:grid;grid-template-columns:minmax(max-content, 1fr) 1fr;grid-column-gap:1em}.quarto-title-tools-only{display:flex;justify-content:right} diff --git a/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap.min.js b/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap.min.js new file mode 100644 index 0000000..e8f21f7 --- /dev/null +++ b/complementos/EstadMat-AllChap(ES)_files/libs/bootstrap/bootstrap.min.js @@ -0,0 +1,7 @@ +/*! + * Bootstrap v5.3.1 (https://getbootstrap.com/) + * Copyright 2011-2023 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors) + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) + */ +!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).bootstrap=e()}(this,(function(){"use strict";const t=new Map,e={set(e,i,n){t.has(e)||t.set(e,new Map);const s=t.get(e);s.has(i)||0===s.size?s.set(i,n):console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(s.keys())[0]}.`)},get:(e,i)=>t.has(e)&&t.get(e).get(i)||null,remove(e,i){if(!t.has(e))return;const n=t.get(e);n.delete(i),0===n.size&&t.delete(e)}},i="transitionend",n=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),s=t=>{t.dispatchEvent(new Event(i))},o=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),r=t=>o(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(n(t)):null,a=t=>{if(!o(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},l=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),c=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?c(t.parentNode):null},h=()=>{},d=t=>{t.offsetHeight},u=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,f=[],p=()=>"rtl"===document.documentElement.dir,m=t=>{var e;e=()=>{const e=u();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(f.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of f)t()})),f.push(e)):e()},g=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,_=(t,e,n=!0)=>{if(!n)return void g(t);const o=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let r=!1;const a=({target:n})=>{n===e&&(r=!0,e.removeEventListener(i,a),g(t))};e.addEventListener(i,a),setTimeout((()=>{r||s(e)}),o)},b=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},v=/[^.]*(?=\..*)\.|.*/,y=/\..*/,w=/::\d+$/,A={};let E=1;const T={mouseenter:"mouseover",mouseleave:"mouseout"},C=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function O(t,e){return e&&`${e}::${E++}`||t.uidEvent||E++}function x(t){const e=O(t);return t.uidEvent=e,A[e]=A[e]||{},A[e]}function k(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function L(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=I(t);return C.has(o)||(o=t),[n,s,o]}function S(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=L(e,i,n);if(e in T){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=x(t),c=l[a]||(l[a]={}),h=k(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=O(r,e.replace(v,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return P(s,{delegateTarget:r}),n.oneOff&&N.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return P(n,{delegateTarget:t}),i.oneOff&&N.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function D(t,e,i,n,s){const o=k(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function $(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&D(t,e,i,r.callable,r.delegationSelector)}function I(t){return t=t.replace(y,""),T[t]||t}const N={on(t,e,i,n){S(t,e,i,n,!1)},one(t,e,i,n){S(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=L(e,i,n),a=r!==e,l=x(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))$(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(w,"");a&&!e.includes(s)||D(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;D(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=u();let s=null,o=!0,r=!0,a=!1;e!==I(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=P(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function P(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function M(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function j(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const F={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${j(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${j(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=M(t.dataset[n])}return e},getDataAttribute:(t,e)=>M(t.getAttribute(`data-bs-${j(e)}`))};class H{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=o(e)?F.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...o(e)?F.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],r=o(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(r))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${r}" but expected type "${s}".`)}var i}}class W extends H{constructor(t,i){super(),(t=r(t))&&(this._element=t,this._config=this._getConfig(i),e.set(this._element,this.constructor.DATA_KEY,this))}dispose(){e.remove(this._element,this.constructor.DATA_KEY),N.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){_(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return e.get(r(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.1"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const B=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return n(e)},z={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!l(t)&&a(t)))},getSelectorFromElement(t){const e=B(t);return e&&z.findOne(e)?e:null},getElementFromSelector(t){const e=B(t);return e?z.findOne(e):null},getMultipleElementsFromSelector(t){const e=B(t);return e?z.find(e):[]}},R=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;N.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),l(this))return;const s=z.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},q=".bs.alert",V=`close${q}`,K=`closed${q}`;class Q extends W{static get NAME(){return"alert"}close(){if(N.trigger(this._element,V).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),N.trigger(this._element,K),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Q.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}R(Q,"close"),m(Q);const X='[data-bs-toggle="button"]';class Y extends W{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=Y.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}N.on(document,"click.bs.button.data-api",X,(t=>{t.preventDefault();const e=t.target.closest(X);Y.getOrCreateInstance(e).toggle()})),m(Y);const U=".bs.swipe",G=`touchstart${U}`,J=`touchmove${U}`,Z=`touchend${U}`,tt=`pointerdown${U}`,et=`pointerup${U}`,it={endCallback:null,leftCallback:null,rightCallback:null},nt={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class st extends H{constructor(t,e){super(),this._element=t,t&&st.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return it}static get DefaultType(){return nt}static get NAME(){return"swipe"}dispose(){N.off(this._element,U)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),g(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&g(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(N.on(this._element,tt,(t=>this._start(t))),N.on(this._element,et,(t=>this._end(t))),this._element.classList.add("pointer-event")):(N.on(this._element,G,(t=>this._start(t))),N.on(this._element,J,(t=>this._move(t))),N.on(this._element,Z,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const ot=".bs.carousel",rt=".data-api",at="next",lt="prev",ct="left",ht="right",dt=`slide${ot}`,ut=`slid${ot}`,ft=`keydown${ot}`,pt=`mouseenter${ot}`,mt=`mouseleave${ot}`,gt=`dragstart${ot}`,_t=`load${ot}${rt}`,bt=`click${ot}${rt}`,vt="carousel",yt="active",wt=".active",At=".carousel-item",Et=wt+At,Tt={ArrowLeft:ht,ArrowRight:ct},Ct={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},Ot={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class xt extends W{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=z.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===vt&&this.cycle()}static get Default(){return Ct}static get DefaultType(){return Ot}static get NAME(){return"carousel"}next(){this._slide(at)}nextWhenVisible(){!document.hidden&&a(this._element)&&this.next()}prev(){this._slide(lt)}pause(){this._isSliding&&s(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?N.one(this._element,ut,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void N.one(this._element,ut,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?at:lt;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&N.on(this._element,ft,(t=>this._keydown(t))),"hover"===this._config.pause&&(N.on(this._element,pt,(()=>this.pause())),N.on(this._element,mt,(()=>this._maybeEnableCycle()))),this._config.touch&&st.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of z.find(".carousel-item img",this._element))N.on(t,gt,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(ct)),rightCallback:()=>this._slide(this._directionToOrder(ht)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new st(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=Tt[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=z.findOne(wt,this._indicatorsElement);e.classList.remove(yt),e.removeAttribute("aria-current");const i=z.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(yt),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===at,s=e||b(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>N.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(dt).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),d(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(yt),i.classList.remove(yt,c,l),this._isSliding=!1,r(ut)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return z.findOne(Et,this._element)}_getItems(){return z.find(At,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return p()?t===ct?lt:at:t===ct?at:lt}_orderToDirection(t){return p()?t===lt?ct:ht:t===lt?ht:ct}static jQueryInterface(t){return this.each((function(){const e=xt.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}N.on(document,bt,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=z.getElementFromSelector(this);if(!e||!e.classList.contains(vt))return;t.preventDefault();const i=xt.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===F.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),N.on(window,_t,(()=>{const t=z.find('[data-bs-ride="carousel"]');for(const e of t)xt.getOrCreateInstance(e)})),m(xt);const kt=".bs.collapse",Lt=`show${kt}`,St=`shown${kt}`,Dt=`hide${kt}`,$t=`hidden${kt}`,It=`click${kt}.data-api`,Nt="show",Pt="collapse",Mt="collapsing",jt=`:scope .${Pt} .${Pt}`,Ft='[data-bs-toggle="collapse"]',Ht={parent:null,toggle:!0},Wt={parent:"(null|element)",toggle:"boolean"};class Bt extends W{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=z.find(Ft);for(const t of i){const e=z.getSelectorFromElement(t),i=z.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return Ht}static get DefaultType(){return Wt}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>Bt.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(N.trigger(this._element,Lt).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(Pt),this._element.classList.add(Mt),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt,Nt),this._element.style[e]="",N.trigger(this._element,St)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(N.trigger(this._element,Dt).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,d(this._element),this._element.classList.add(Mt),this._element.classList.remove(Pt,Nt);for(const t of this._triggerArray){const e=z.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(Mt),this._element.classList.add(Pt),N.trigger(this._element,$t)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(Nt)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=r(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(Ft);for(const e of t){const t=z.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=z.find(jt,this._config.parent);return z.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=Bt.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}N.on(document,It,Ft,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of z.getMultipleElementsFromSelector(this))Bt.getOrCreateInstance(t,{toggle:!1}).toggle()})),m(Bt);var zt="top",Rt="bottom",qt="right",Vt="left",Kt="auto",Qt=[zt,Rt,qt,Vt],Xt="start",Yt="end",Ut="clippingParents",Gt="viewport",Jt="popper",Zt="reference",te=Qt.reduce((function(t,e){return t.concat([e+"-"+Xt,e+"-"+Yt])}),[]),ee=[].concat(Qt,[Kt]).reduce((function(t,e){return t.concat([e,e+"-"+Xt,e+"-"+Yt])}),[]),ie="beforeRead",ne="read",se="afterRead",oe="beforeMain",re="main",ae="afterMain",le="beforeWrite",ce="write",he="afterWrite",de=[ie,ne,se,oe,re,ae,le,ce,he];function ue(t){return t?(t.nodeName||"").toLowerCase():null}function fe(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function pe(t){return t instanceof fe(t).Element||t instanceof Element}function me(t){return t instanceof fe(t).HTMLElement||t instanceof HTMLElement}function ge(t){return"undefined"!=typeof ShadowRoot&&(t instanceof fe(t).ShadowRoot||t instanceof ShadowRoot)}const _e={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];me(s)&&ue(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});me(n)&&ue(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function be(t){return t.split("-")[0]}var ve=Math.max,ye=Math.min,we=Math.round;function Ae(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function Ee(){return!/^((?!chrome|android).)*safari/i.test(Ae())}function Te(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&me(t)&&(s=t.offsetWidth>0&&we(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&we(n.height)/t.offsetHeight||1);var r=(pe(t)?fe(t):window).visualViewport,a=!Ee()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function Ce(t){var e=Te(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function Oe(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&ge(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function xe(t){return fe(t).getComputedStyle(t)}function ke(t){return["table","td","th"].indexOf(ue(t))>=0}function Le(t){return((pe(t)?t.ownerDocument:t.document)||window.document).documentElement}function Se(t){return"html"===ue(t)?t:t.assignedSlot||t.parentNode||(ge(t)?t.host:null)||Le(t)}function De(t){return me(t)&&"fixed"!==xe(t).position?t.offsetParent:null}function $e(t){for(var e=fe(t),i=De(t);i&&ke(i)&&"static"===xe(i).position;)i=De(i);return i&&("html"===ue(i)||"body"===ue(i)&&"static"===xe(i).position)?e:i||function(t){var e=/firefox/i.test(Ae());if(/Trident/i.test(Ae())&&me(t)&&"fixed"===xe(t).position)return null;var i=Se(t);for(ge(i)&&(i=i.host);me(i)&&["html","body"].indexOf(ue(i))<0;){var n=xe(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Ie(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function Ne(t,e,i){return ve(t,ye(e,i))}function Pe(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function Me(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const je={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,n=t.name,s=t.options,o=i.elements.arrow,r=i.modifiersData.popperOffsets,a=be(i.placement),l=Ie(a),c=[Vt,qt].indexOf(a)>=0?"height":"width";if(o&&r){var h=function(t,e){return Pe("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:Me(t,Qt))}(s.padding,i),d=Ce(o),u="y"===l?zt:Vt,f="y"===l?Rt:qt,p=i.rects.reference[c]+i.rects.reference[l]-r[l]-i.rects.popper[c],m=r[l]-i.rects.reference[l],g=$e(o),_=g?"y"===l?g.clientHeight||0:g.clientWidth||0:0,b=p/2-m/2,v=h[u],y=_-d[c]-h[f],w=_/2-d[c]/2+b,A=Ne(v,w,y),E=l;i.modifiersData[n]=((e={})[E]=A,e.centerOffset=A-w,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&Oe(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Fe(t){return t.split("-")[1]}var He={top:"auto",right:"auto",bottom:"auto",left:"auto"};function We(t){var e,i=t.popper,n=t.popperRect,s=t.placement,o=t.variation,r=t.offsets,a=t.position,l=t.gpuAcceleration,c=t.adaptive,h=t.roundOffsets,d=t.isFixed,u=r.x,f=void 0===u?0:u,p=r.y,m=void 0===p?0:p,g="function"==typeof h?h({x:f,y:m}):{x:f,y:m};f=g.x,m=g.y;var _=r.hasOwnProperty("x"),b=r.hasOwnProperty("y"),v=Vt,y=zt,w=window;if(c){var A=$e(i),E="clientHeight",T="clientWidth";A===fe(i)&&"static"!==xe(A=Le(i)).position&&"absolute"===a&&(E="scrollHeight",T="scrollWidth"),(s===zt||(s===Vt||s===qt)&&o===Yt)&&(y=Rt,m-=(d&&A===w&&w.visualViewport?w.visualViewport.height:A[E])-n.height,m*=l?1:-1),s!==Vt&&(s!==zt&&s!==Rt||o!==Yt)||(v=qt,f-=(d&&A===w&&w.visualViewport?w.visualViewport.width:A[T])-n.width,f*=l?1:-1)}var C,O=Object.assign({position:a},c&&He),x=!0===h?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:we(i*s)/s||0,y:we(n*s)/s||0}}({x:f,y:m},fe(i)):{x:f,y:m};return f=x.x,m=x.y,l?Object.assign({},O,((C={})[y]=b?"0":"",C[v]=_?"0":"",C.transform=(w.devicePixelRatio||1)<=1?"translate("+f+"px, "+m+"px)":"translate3d("+f+"px, "+m+"px, 0)",C)):Object.assign({},O,((e={})[y]=b?m+"px":"",e[v]=_?f+"px":"",e.transform="",e))}const Be={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:be(e.placement),variation:Fe(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,We(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,We(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var ze={passive:!0};const Re={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=fe(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,ze)})),a&&l.addEventListener("resize",i.update,ze),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,ze)})),a&&l.removeEventListener("resize",i.update,ze)}},data:{}};var qe={left:"right",right:"left",bottom:"top",top:"bottom"};function Ve(t){return t.replace(/left|right|bottom|top/g,(function(t){return qe[t]}))}var Ke={start:"end",end:"start"};function Qe(t){return t.replace(/start|end/g,(function(t){return Ke[t]}))}function Xe(t){var e=fe(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function Ye(t){return Te(Le(t)).left+Xe(t).scrollLeft}function Ue(t){var e=xe(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function Ge(t){return["html","body","#document"].indexOf(ue(t))>=0?t.ownerDocument.body:me(t)&&Ue(t)?t:Ge(Se(t))}function Je(t,e){var i;void 0===e&&(e=[]);var n=Ge(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=fe(n),r=s?[o].concat(o.visualViewport||[],Ue(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(Je(Se(r)))}function Ze(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function ti(t,e,i){return e===Gt?Ze(function(t,e){var i=fe(t),n=Le(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=Ee();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+Ye(t),y:l}}(t,i)):pe(e)?function(t,e){var i=Te(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):Ze(function(t){var e,i=Le(t),n=Xe(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=ve(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=ve(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+Ye(t),l=-n.scrollTop;return"rtl"===xe(s||i).direction&&(a+=ve(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(Le(t)))}function ei(t){var e,i=t.reference,n=t.element,s=t.placement,o=s?be(s):null,r=s?Fe(s):null,a=i.x+i.width/2-n.width/2,l=i.y+i.height/2-n.height/2;switch(o){case zt:e={x:a,y:i.y-n.height};break;case Rt:e={x:a,y:i.y+i.height};break;case qt:e={x:i.x+i.width,y:l};break;case Vt:e={x:i.x-n.width,y:l};break;default:e={x:i.x,y:i.y}}var c=o?Ie(o):null;if(null!=c){var h="y"===c?"height":"width";switch(r){case Xt:e[c]=e[c]-(i[h]/2-n[h]/2);break;case Yt:e[c]=e[c]+(i[h]/2-n[h]/2)}}return e}function ii(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=void 0===n?t.placement:n,o=i.strategy,r=void 0===o?t.strategy:o,a=i.boundary,l=void 0===a?Ut:a,c=i.rootBoundary,h=void 0===c?Gt:c,d=i.elementContext,u=void 0===d?Jt:d,f=i.altBoundary,p=void 0!==f&&f,m=i.padding,g=void 0===m?0:m,_=Pe("number"!=typeof g?g:Me(g,Qt)),b=u===Jt?Zt:Jt,v=t.rects.popper,y=t.elements[p?b:u],w=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=Je(Se(t)),i=["absolute","fixed"].indexOf(xe(t).position)>=0&&me(t)?$e(t):t;return pe(i)?e.filter((function(t){return pe(t)&&Oe(t,i)&&"body"!==ue(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=ti(t,i,n);return e.top=ve(s.top,e.top),e.right=ye(s.right,e.right),e.bottom=ye(s.bottom,e.bottom),e.left=ve(s.left,e.left),e}),ti(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(pe(y)?y:y.contextElement||Le(t.elements.popper),l,h,r),A=Te(t.elements.reference),E=ei({reference:A,element:v,strategy:"absolute",placement:s}),T=Ze(Object.assign({},v,E)),C=u===Jt?T:A,O={top:w.top-C.top+_.top,bottom:C.bottom-w.bottom+_.bottom,left:w.left-C.left+_.left,right:C.right-w.right+_.right},x=t.modifiersData.offset;if(u===Jt&&x){var k=x[s];Object.keys(O).forEach((function(t){var e=[qt,Rt].indexOf(t)>=0?1:-1,i=[zt,Rt].indexOf(t)>=0?"y":"x";O[t]+=k[i]*e}))}return O}function ni(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,l=i.allowedAutoPlacements,c=void 0===l?ee:l,h=Fe(n),d=h?a?te:te.filter((function(t){return Fe(t)===h})):Qt,u=d.filter((function(t){return c.indexOf(t)>=0}));0===u.length&&(u=d);var f=u.reduce((function(e,i){return e[i]=ii(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[be(i)],e}),{});return Object.keys(f).sort((function(t,e){return f[t]-f[e]}))}const si={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name;if(!e.modifiersData[n]._skip){for(var s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0===r||r,l=i.fallbackPlacements,c=i.padding,h=i.boundary,d=i.rootBoundary,u=i.altBoundary,f=i.flipVariations,p=void 0===f||f,m=i.allowedAutoPlacements,g=e.options.placement,_=be(g),b=l||(_!==g&&p?function(t){if(be(t)===Kt)return[];var e=Ve(t);return[Qe(t),e,Qe(e)]}(g):[Ve(g)]),v=[g].concat(b).reduce((function(t,i){return t.concat(be(i)===Kt?ni(e,{placement:i,boundary:h,rootBoundary:d,padding:c,flipVariations:p,allowedAutoPlacements:m}):i)}),[]),y=e.rects.reference,w=e.rects.popper,A=new Map,E=!0,T=v[0],C=0;C=0,S=L?"width":"height",D=ii(e,{placement:O,boundary:h,rootBoundary:d,altBoundary:u,padding:c}),$=L?k?qt:Vt:k?Rt:zt;y[S]>w[S]&&($=Ve($));var I=Ve($),N=[];if(o&&N.push(D[x]<=0),a&&N.push(D[$]<=0,D[I]<=0),N.every((function(t){return t}))){T=O,E=!1;break}A.set(O,N)}if(E)for(var P=function(t){var e=v.find((function(e){var i=A.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return T=e,"break"},M=p?3:1;M>0&&"break"!==P(M);M--);e.placement!==T&&(e.modifiersData[n]._skip=!0,e.placement=T,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function oi(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function ri(t){return[zt,qt,Rt,Vt].some((function(e){return t[e]>=0}))}const ai={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=ii(e,{elementContext:"reference"}),a=ii(e,{altBoundary:!0}),l=oi(r,n),c=oi(a,s,o),h=ri(l),d=ri(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},li={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.offset,o=void 0===s?[0,0]:s,r=ee.reduce((function(t,i){return t[i]=function(t,e,i){var n=be(t),s=[Vt,zt].indexOf(n)>=0?-1:1,o="function"==typeof i?i(Object.assign({},e,{placement:t})):i,r=o[0],a=o[1];return r=r||0,a=(a||0)*s,[Vt,qt].indexOf(n)>=0?{x:a,y:r}:{x:r,y:a}}(i,e.rects,o),t}),{}),a=r[e.placement],l=a.x,c=a.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=l,e.modifiersData.popperOffsets.y+=c),e.modifiersData[n]=r}},ci={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=ei({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},hi={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,n=t.name,s=i.mainAxis,o=void 0===s||s,r=i.altAxis,a=void 0!==r&&r,l=i.boundary,c=i.rootBoundary,h=i.altBoundary,d=i.padding,u=i.tether,f=void 0===u||u,p=i.tetherOffset,m=void 0===p?0:p,g=ii(e,{boundary:l,rootBoundary:c,padding:d,altBoundary:h}),_=be(e.placement),b=Fe(e.placement),v=!b,y=Ie(_),w="x"===y?"y":"x",A=e.modifiersData.popperOffsets,E=e.rects.reference,T=e.rects.popper,C="function"==typeof m?m(Object.assign({},e.rects,{placement:e.placement})):m,O="number"==typeof C?{mainAxis:C,altAxis:C}:Object.assign({mainAxis:0,altAxis:0},C),x=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,k={x:0,y:0};if(A){if(o){var L,S="y"===y?zt:Vt,D="y"===y?Rt:qt,$="y"===y?"height":"width",I=A[y],N=I+g[S],P=I-g[D],M=f?-T[$]/2:0,j=b===Xt?E[$]:T[$],F=b===Xt?-T[$]:-E[$],H=e.elements.arrow,W=f&&H?Ce(H):{width:0,height:0},B=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},z=B[S],R=B[D],q=Ne(0,E[$],W[$]),V=v?E[$]/2-M-q-z-O.mainAxis:j-q-z-O.mainAxis,K=v?-E[$]/2+M+q+R+O.mainAxis:F+q+R+O.mainAxis,Q=e.elements.arrow&&$e(e.elements.arrow),X=Q?"y"===y?Q.clientTop||0:Q.clientLeft||0:0,Y=null!=(L=null==x?void 0:x[y])?L:0,U=I+K-Y,G=Ne(f?ye(N,I+V-Y-X):N,I,f?ve(P,U):P);A[y]=G,k[y]=G-I}if(a){var J,Z="x"===y?zt:Vt,tt="x"===y?Rt:qt,et=A[w],it="y"===w?"height":"width",nt=et+g[Z],st=et-g[tt],ot=-1!==[zt,Vt].indexOf(_),rt=null!=(J=null==x?void 0:x[w])?J:0,at=ot?nt:et-E[it]-T[it]-rt+O.altAxis,lt=ot?et+E[it]+T[it]-rt-O.altAxis:st,ct=f&&ot?function(t,e,i){var n=Ne(t,e,i);return n>i?i:n}(at,et,lt):Ne(f?at:nt,et,f?lt:st);A[w]=ct,k[w]=ct-et}e.modifiersData[n]=k}},requiresIfExists:["offset"]};function di(t,e,i){void 0===i&&(i=!1);var n,s,o=me(e),r=me(e)&&function(t){var e=t.getBoundingClientRect(),i=we(e.width)/t.offsetWidth||1,n=we(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=Le(e),l=Te(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==ue(e)||Ue(a))&&(c=(n=e)!==fe(n)&&me(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:Xe(n)),me(e)?((h=Te(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=Ye(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function ui(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var fi={placement:"bottom",modifiers:[],strategy:"absolute"};function pi(){for(var t=arguments.length,e=new Array(t),i=0;iNumber.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(F.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...g(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=z.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>a(t)));i.length&&b(i,e,t===Ti,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=qi.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=z.find(Ni);for(const i of e){const e=qi.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Ei,Ti].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Ii)?this:z.prev(this,Ii)[0]||z.next(this,Ii)[0]||z.findOne(Ii,t.delegateTarget.parentNode),o=qi.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}N.on(document,Si,Ii,qi.dataApiKeydownHandler),N.on(document,Si,Pi,qi.dataApiKeydownHandler),N.on(document,Li,qi.clearMenus),N.on(document,Di,qi.clearMenus),N.on(document,Li,Ii,(function(t){t.preventDefault(),qi.getOrCreateInstance(this).toggle()})),m(qi);const Vi="backdrop",Ki="show",Qi=`mousedown.bs.${Vi}`,Xi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Yi={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Ui extends H{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Xi}static get DefaultType(){return Yi}static get NAME(){return Vi}show(t){if(!this._config.isVisible)return void g(t);this._append();const e=this._getElement();this._config.isAnimated&&d(e),e.classList.add(Ki),this._emulateAnimation((()=>{g(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Ki),this._emulateAnimation((()=>{this.dispose(),g(t)}))):g(t)}dispose(){this._isAppended&&(N.off(this._element,Qi),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=r(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),N.on(t,Qi,(()=>{g(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){_(t,this._getElement(),this._config.isAnimated)}}const Gi=".bs.focustrap",Ji=`focusin${Gi}`,Zi=`keydown.tab${Gi}`,tn="backward",en={autofocus:!0,trapElement:null},nn={autofocus:"boolean",trapElement:"element"};class sn extends H{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return en}static get DefaultType(){return nn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),N.off(document,Gi),N.on(document,Ji,(t=>this._handleFocusin(t))),N.on(document,Zi,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,N.off(document,Gi))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=z.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===tn?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?tn:"forward")}}const on=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",rn=".sticky-top",an="padding-right",ln="margin-right";class cn{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,an,(e=>e+t)),this._setElementAttributes(on,an,(e=>e+t)),this._setElementAttributes(rn,ln,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,an),this._resetElementAttributes(on,an),this._resetElementAttributes(rn,ln)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&F.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=F.getDataAttribute(t,e);null!==i?(F.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(o(t))e(t);else for(const i of z.find(t,this._element))e(i)}}const hn=".bs.modal",dn=`hide${hn}`,un=`hidePrevented${hn}`,fn=`hidden${hn}`,pn=`show${hn}`,mn=`shown${hn}`,gn=`resize${hn}`,_n=`click.dismiss${hn}`,bn=`mousedown.dismiss${hn}`,vn=`keydown.dismiss${hn}`,yn=`click${hn}.data-api`,wn="modal-open",An="show",En="modal-static",Tn={backdrop:!0,focus:!0,keyboard:!0},Cn={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class On extends W{constructor(t,e){super(t,e),this._dialog=z.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new cn,this._addEventListeners()}static get Default(){return Tn}static get DefaultType(){return Cn}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||N.trigger(this._element,pn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(wn),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(N.trigger(this._element,dn).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(An),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){N.off(window,hn),N.off(this._dialog,hn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Ui({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=z.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),d(this._element),this._element.classList.add(An),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,N.trigger(this._element,mn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){N.on(this._element,vn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),N.on(window,gn,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),N.on(this._element,bn,(t=>{N.one(this._element,_n,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(wn),this._resetAdjustments(),this._scrollBar.reset(),N.trigger(this._element,fn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(N.trigger(this._element,un).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(En)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(En),this._queueCallback((()=>{this._element.classList.remove(En),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=p()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=p()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=On.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}N.on(document,yn,'[data-bs-toggle="modal"]',(function(t){const e=z.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),N.one(e,pn,(t=>{t.defaultPrevented||N.one(e,fn,(()=>{a(this)&&this.focus()}))}));const i=z.findOne(".modal.show");i&&On.getInstance(i).hide(),On.getOrCreateInstance(e).toggle(this)})),R(On),m(On);const xn=".bs.offcanvas",kn=".data-api",Ln=`load${xn}${kn}`,Sn="show",Dn="showing",$n="hiding",In=".offcanvas.show",Nn=`show${xn}`,Pn=`shown${xn}`,Mn=`hide${xn}`,jn=`hidePrevented${xn}`,Fn=`hidden${xn}`,Hn=`resize${xn}`,Wn=`click${xn}${kn}`,Bn=`keydown.dismiss${xn}`,zn={backdrop:!0,keyboard:!0,scroll:!1},Rn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class qn extends W{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return zn}static get DefaultType(){return Rn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||N.trigger(this._element,Nn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new cn).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add(Dn),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(Sn),this._element.classList.remove(Dn),N.trigger(this._element,Pn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(N.trigger(this._element,Mn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add($n),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(Sn,$n),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new cn).reset(),N.trigger(this._element,Fn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Ui({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():N.trigger(this._element,jn)}:null})}_initializeFocusTrap(){return new sn({trapElement:this._element})}_addEventListeners(){N.on(this._element,Bn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():N.trigger(this._element,jn))}))}static jQueryInterface(t){return this.each((function(){const e=qn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}N.on(document,Wn,'[data-bs-toggle="offcanvas"]',(function(t){const e=z.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this))return;N.one(e,Fn,(()=>{a(this)&&this.focus()}));const i=z.findOne(In);i&&i!==e&&qn.getInstance(i).hide(),qn.getOrCreateInstance(e).toggle(this)})),N.on(window,Ln,(()=>{for(const t of z.find(In))qn.getOrCreateInstance(t).show()})),N.on(window,Hn,(()=>{for(const t of z.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&qn.getOrCreateInstance(t).hide()})),R(qn),m(qn);const Vn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],div:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Kn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Qn=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Xn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Kn.has(i)||Boolean(Qn.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Yn={allowList:Vn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"

"},Un={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},Gn={entry:"(string|element|function|null)",selector:"(string|element)"};class Jn extends H{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Yn}static get DefaultType(){return Un}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},Gn)}_setContent(t,e,i){const n=z.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?o(e)?this._putElementInTemplate(r(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Xn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return g(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const Zn=new Set(["sanitize","allowList","sanitizeFn"]),ts="fade",es="show",is=".modal",ns="hide.bs.modal",ss="hover",os="focus",rs={AUTO:"auto",TOP:"top",RIGHT:p()?"left":"right",BOTTOM:"bottom",LEFT:p()?"right":"left"},as={allowList:Vn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'',title:"",trigger:"hover focus"},ls={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class cs extends W{constructor(t,e){if(void 0===vi)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,e),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return as}static get DefaultType(){return ls}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),N.off(this._element.closest(is),ns,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=N.trigger(this._element,this.constructor.eventName("show")),e=(c(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),N.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.on(t,"mouseover",h);this._queueCallback((()=>{N.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!N.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(es),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))N.off(t,"mouseover",h);this._activeTrigger.click=!1,this._activeTrigger[os]=!1,this._activeTrigger[ss]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),N.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(ts,es),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(ts),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new Jn({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{".tooltip-inner":this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(ts)}_isShown(){return this.tip&&this.tip.classList.contains(es)}_createPopper(t){const e=g(this._config.placement,[this,t,this._element]),i=rs[e.toUpperCase()];return bi(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return g(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...g(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)N.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===ss?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===ss?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");N.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?os:ss]=!0,e._enter()})),N.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?os:ss]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},N.on(this._element.closest(is),ns,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=F.getDataAttributes(this._element);for(const t of Object.keys(e))Zn.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:r(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=cs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(cs);const hs={...cs.Default,content:"",offset:[0,8],placement:"right",template:'',trigger:"click"},ds={...cs.DefaultType,content:"(null|string|element|function)"};class us extends cs{static get Default(){return hs}static get DefaultType(){return ds}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{".popover-header":this._getTitle(),".popover-body":this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=us.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}m(us);const fs=".bs.scrollspy",ps=`activate${fs}`,ms=`click${fs}`,gs=`load${fs}.data-api`,_s="active",bs="[href]",vs=".nav-link",ys=`${vs}, .nav-item > ${vs}, .list-group-item`,ws={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},As={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Es extends W{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return ws}static get DefaultType(){return As}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=r(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(N.off(this._config.target,ms),N.on(this._config.target,ms,bs,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=z.find(bs,this._config.target);for(const e of t){if(!e.hash||l(e))continue;const t=z.findOne(decodeURI(e.hash),this._element);a(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(_s),this._activateParents(t),N.trigger(this._element,ps,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))z.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(_s);else for(const e of z.parents(t,".nav, .list-group"))for(const t of z.prev(e,ys))t.classList.add(_s)}_clearActiveClass(t){t.classList.remove(_s);const e=z.find(`${bs}.${_s}`,t);for(const t of e)t.classList.remove(_s)}static jQueryInterface(t){return this.each((function(){const e=Es.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(window,gs,(()=>{for(const t of z.find('[data-bs-spy="scroll"]'))Es.getOrCreateInstance(t)})),m(Es);const Ts=".bs.tab",Cs=`hide${Ts}`,Os=`hidden${Ts}`,xs=`show${Ts}`,ks=`shown${Ts}`,Ls=`click${Ts}`,Ss=`keydown${Ts}`,Ds=`load${Ts}`,$s="ArrowLeft",Is="ArrowRight",Ns="ArrowUp",Ps="ArrowDown",Ms="Home",js="End",Fs="active",Hs="fade",Ws="show",Bs=":not(.dropdown-toggle)",zs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Rs=`.nav-link${Bs}, .list-group-item${Bs}, [role="tab"]${Bs}, ${zs}`,qs=`.${Fs}[data-bs-toggle="tab"], .${Fs}[data-bs-toggle="pill"], .${Fs}[data-bs-toggle="list"]`;class Vs extends W{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),N.on(this._element,Ss,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?N.trigger(e,Cs,{relatedTarget:t}):null;N.trigger(t,xs,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(Fs),this._activate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),N.trigger(t,ks,{relatedTarget:e})):t.classList.add(Ws)}),t,t.classList.contains(Hs)))}_deactivate(t,e){t&&(t.classList.remove(Fs),t.blur(),this._deactivate(z.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),N.trigger(t,Os,{relatedTarget:e})):t.classList.remove(Ws)}),t,t.classList.contains(Hs)))}_keydown(t){if(![$s,Is,Ns,Ps,Ms,js].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!l(t)));let i;if([Ms,js].includes(t.key))i=e[t.key===Ms?0:e.length-1];else{const n=[Is,Ps].includes(t.key);i=b(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Vs.getOrCreateInstance(i).show())}_getChildren(){return z.find(Rs,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=z.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=z.findOne(t,i);s&&s.classList.toggle(n,e)};n(".dropdown-toggle",Fs),n(".dropdown-menu",Ws),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(Fs)}_getInnerElement(t){return t.matches(Rs)?t:z.findOne(Rs,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Vs.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}N.on(document,Ls,zs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),l(this)||Vs.getOrCreateInstance(this).show()})),N.on(window,Ds,(()=>{for(const t of z.find(qs))Vs.getOrCreateInstance(t)})),m(Vs);const Ks=".bs.toast",Qs=`mouseover${Ks}`,Xs=`mouseout${Ks}`,Ys=`focusin${Ks}`,Us=`focusout${Ks}`,Gs=`hide${Ks}`,Js=`hidden${Ks}`,Zs=`show${Ks}`,to=`shown${Ks}`,eo="hide",io="show",no="showing",so={animation:"boolean",autohide:"boolean",delay:"number"},oo={animation:!0,autohide:!0,delay:5e3};class ro extends W{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return oo}static get DefaultType(){return so}static get NAME(){return"toast"}show(){N.trigger(this._element,Zs).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(eo),d(this._element),this._element.classList.add(io,no),this._queueCallback((()=>{this._element.classList.remove(no),N.trigger(this._element,to),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(N.trigger(this._element,Gs).defaultPrevented||(this._element.classList.add(no),this._queueCallback((()=>{this._element.classList.add(eo),this._element.classList.remove(no,io),N.trigger(this._element,Js)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(io),super.dispose()}isShown(){return this._element.classList.contains(io)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){N.on(this._element,Qs,(t=>this._onInteraction(t,!0))),N.on(this._element,Xs,(t=>this._onInteraction(t,!1))),N.on(this._element,Ys,(t=>this._onInteraction(t,!0))),N.on(this._element,Us,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=ro.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}return R(ro),m(ro),{Alert:Q,Button:Y,Carousel:xt,Collapse:Bt,Dropdown:qi,Modal:On,Offcanvas:qn,Popover:us,ScrollSpy:Es,Tab:Vs,Toast:ro,Tooltip:cs}})); +//# sourceMappingURL=bootstrap.bundle.min.js.map \ No newline at end of file diff --git a/complementos/EstadMat-AllChap(ES)_files/libs/clipboard/clipboard.min.js b/complementos/EstadMat-AllChap(ES)_files/libs/clipboard/clipboard.min.js new file mode 100644 index 0000000..1103f81 --- /dev/null +++ b/complementos/EstadMat-AllChap(ES)_files/libs/clipboard/clipboard.min.js @@ -0,0 +1,7 @@ +/*! + * clipboard.js v2.0.11 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */ +!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return b}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),r=n.n(e);function c(t){try{return document.execCommand(t)}catch(t){return}}var a=function(t){t=r()(t);return c("cut"),t};function o(t,e){var n,o,t=(n=t,o="rtl"===document.documentElement.getAttribute("dir"),(t=document.createElement("textarea")).style.fontSize="12pt",t.style.border="0",t.style.padding="0",t.style.margin="0",t.style.position="absolute",t.style[o?"right":"left"]="-9999px",o=window.pageYOffset||document.documentElement.scrollTop,t.style.top="".concat(o,"px"),t.setAttribute("readonly",""),t.value=n,t);return e.container.appendChild(t),e=r()(t),c("copy"),t.remove(),e}var f=function(t){var e=1.anchorjs-link,.anchorjs-link:focus{opacity:1}",A.sheet.cssRules.length),A.sheet.insertRule("[data-anchorjs-icon]::after{content:attr(data-anchorjs-icon)}",A.sheet.cssRules.length),A.sheet.insertRule('@font-face{font-family:anchorjs-icons;src:url(data:n/a;base64,AAEAAAALAIAAAwAwT1MvMg8yG2cAAAE4AAAAYGNtYXDp3gC3AAABpAAAAExnYXNwAAAAEAAAA9wAAAAIZ2x5ZlQCcfwAAAH4AAABCGhlYWQHFvHyAAAAvAAAADZoaGVhBnACFwAAAPQAAAAkaG10eASAADEAAAGYAAAADGxvY2EACACEAAAB8AAAAAhtYXhwAAYAVwAAARgAAAAgbmFtZQGOH9cAAAMAAAAAunBvc3QAAwAAAAADvAAAACAAAQAAAAEAAHzE2p9fDzz1AAkEAAAAAADRecUWAAAAANQA6R8AAAAAAoACwAAAAAgAAgAAAAAAAAABAAADwP/AAAACgAAA/9MCrQABAAAAAAAAAAAAAAAAAAAAAwABAAAAAwBVAAIAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAMCQAGQAAUAAAKZAswAAACPApkCzAAAAesAMwEJAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAQAAg//0DwP/AAEADwABAAAAAAQAAAAAAAAAAAAAAIAAAAAAAAAIAAAACgAAxAAAAAwAAAAMAAAAcAAEAAwAAABwAAwABAAAAHAAEADAAAAAIAAgAAgAAACDpy//9//8AAAAg6cv//f///+EWNwADAAEAAAAAAAAAAAAAAAAACACEAAEAAAAAAAAAAAAAAAAxAAACAAQARAKAAsAAKwBUAAABIiYnJjQ3NzY2MzIWFxYUBwcGIicmNDc3NjQnJiYjIgYHBwYUFxYUBwYGIwciJicmNDc3NjIXFhQHBwYUFxYWMzI2Nzc2NCcmNDc2MhcWFAcHBgYjARQGDAUtLXoWOR8fORYtLTgKGwoKCjgaGg0gEhIgDXoaGgkJBQwHdR85Fi0tOAobCgoKOBoaDSASEiANehoaCQkKGwotLXoWOR8BMwUFLYEuehYXFxYugC44CQkKGwo4GkoaDQ0NDXoaShoKGwoFBe8XFi6ALjgJCQobCjgaShoNDQ0NehpKGgobCgoKLYEuehYXAAAADACWAAEAAAAAAAEACAAAAAEAAAAAAAIAAwAIAAEAAAAAAAMACAAAAAEAAAAAAAQACAAAAAEAAAAAAAUAAQALAAEAAAAAAAYACAAAAAMAAQQJAAEAEAAMAAMAAQQJAAIABgAcAAMAAQQJAAMAEAAMAAMAAQQJAAQAEAAMAAMAAQQJAAUAAgAiAAMAAQQJAAYAEAAMYW5jaG9yanM0MDBAAGEAbgBjAGgAbwByAGoAcwA0ADAAMABAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAH//wAP) format("truetype")}',A.sheet.cssRules.length)),h=document.querySelectorAll("[id]"),t=[].map.call(h,function(A){return A.id}),i=0;i\]./()*\\\n\t\b\v\u00A0]/g,"-").replace(/-{2,}/g,"-").substring(0,this.options.truncate).replace(/^-+|-+$/gm,"").toLowerCase()},this.hasAnchorJSLink=function(A){var e=A.firstChild&&-1<(" "+A.firstChild.className+" ").indexOf(" anchorjs-link "),A=A.lastChild&&-1<(" "+A.lastChild.className+" ").indexOf(" anchorjs-link ");return e||A||!1}}}); +// @license-end \ No newline at end of file diff --git a/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/popper.min.js b/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/popper.min.js new file mode 100644 index 0000000..e3726d7 --- /dev/null +++ b/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/popper.min.js @@ -0,0 +1,6 @@ +/** + * @popperjs/core v2.11.7 - MIT License + */ + +!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?t(exports):"function"==typeof define&&define.amd?define(["exports"],t):t((e="undefined"!=typeof globalThis?globalThis:e||self).Popper={})}(this,(function(e){"use strict";function t(e){if(null==e)return window;if("[object Window]"!==e.toString()){var t=e.ownerDocument;return t&&t.defaultView||window}return e}function n(e){return e instanceof t(e).Element||e instanceof Element}function r(e){return e instanceof t(e).HTMLElement||e instanceof HTMLElement}function o(e){return"undefined"!=typeof ShadowRoot&&(e instanceof t(e).ShadowRoot||e instanceof ShadowRoot)}var i=Math.max,a=Math.min,s=Math.round;function f(){var e=navigator.userAgentData;return null!=e&&e.brands&&Array.isArray(e.brands)?e.brands.map((function(e){return e.brand+"/"+e.version})).join(" "):navigator.userAgent}function c(){return!/^((?!chrome|android).)*safari/i.test(f())}function p(e,o,i){void 0===o&&(o=!1),void 0===i&&(i=!1);var a=e.getBoundingClientRect(),f=1,p=1;o&&r(e)&&(f=e.offsetWidth>0&&s(a.width)/e.offsetWidth||1,p=e.offsetHeight>0&&s(a.height)/e.offsetHeight||1);var u=(n(e)?t(e):window).visualViewport,l=!c()&&i,d=(a.left+(l&&u?u.offsetLeft:0))/f,h=(a.top+(l&&u?u.offsetTop:0))/p,m=a.width/f,v=a.height/p;return{width:m,height:v,top:h,right:d+m,bottom:h+v,left:d,x:d,y:h}}function u(e){var n=t(e);return{scrollLeft:n.pageXOffset,scrollTop:n.pageYOffset}}function l(e){return e?(e.nodeName||"").toLowerCase():null}function d(e){return((n(e)?e.ownerDocument:e.document)||window.document).documentElement}function h(e){return p(d(e)).left+u(e).scrollLeft}function m(e){return t(e).getComputedStyle(e)}function v(e){var t=m(e),n=t.overflow,r=t.overflowX,o=t.overflowY;return/auto|scroll|overlay|hidden/.test(n+o+r)}function y(e,n,o){void 0===o&&(o=!1);var i,a,f=r(n),c=r(n)&&function(e){var t=e.getBoundingClientRect(),n=s(t.width)/e.offsetWidth||1,r=s(t.height)/e.offsetHeight||1;return 1!==n||1!==r}(n),m=d(n),y=p(e,c,o),g={scrollLeft:0,scrollTop:0},b={x:0,y:0};return(f||!f&&!o)&&(("body"!==l(n)||v(m))&&(g=(i=n)!==t(i)&&r(i)?{scrollLeft:(a=i).scrollLeft,scrollTop:a.scrollTop}:u(i)),r(n)?((b=p(n,!0)).x+=n.clientLeft,b.y+=n.clientTop):m&&(b.x=h(m))),{x:y.left+g.scrollLeft-b.x,y:y.top+g.scrollTop-b.y,width:y.width,height:y.height}}function g(e){var t=p(e),n=e.offsetWidth,r=e.offsetHeight;return Math.abs(t.width-n)<=1&&(n=t.width),Math.abs(t.height-r)<=1&&(r=t.height),{x:e.offsetLeft,y:e.offsetTop,width:n,height:r}}function b(e){return"html"===l(e)?e:e.assignedSlot||e.parentNode||(o(e)?e.host:null)||d(e)}function x(e){return["html","body","#document"].indexOf(l(e))>=0?e.ownerDocument.body:r(e)&&v(e)?e:x(b(e))}function w(e,n){var r;void 0===n&&(n=[]);var o=x(e),i=o===(null==(r=e.ownerDocument)?void 0:r.body),a=t(o),s=i?[a].concat(a.visualViewport||[],v(o)?o:[]):o,f=n.concat(s);return i?f:f.concat(w(b(s)))}function O(e){return["table","td","th"].indexOf(l(e))>=0}function j(e){return r(e)&&"fixed"!==m(e).position?e.offsetParent:null}function E(e){for(var n=t(e),i=j(e);i&&O(i)&&"static"===m(i).position;)i=j(i);return i&&("html"===l(i)||"body"===l(i)&&"static"===m(i).position)?n:i||function(e){var t=/firefox/i.test(f());if(/Trident/i.test(f())&&r(e)&&"fixed"===m(e).position)return null;var n=b(e);for(o(n)&&(n=n.host);r(n)&&["html","body"].indexOf(l(n))<0;){var i=m(n);if("none"!==i.transform||"none"!==i.perspective||"paint"===i.contain||-1!==["transform","perspective"].indexOf(i.willChange)||t&&"filter"===i.willChange||t&&i.filter&&"none"!==i.filter)return n;n=n.parentNode}return null}(e)||n}var D="top",A="bottom",L="right",P="left",M="auto",k=[D,A,L,P],W="start",B="end",H="viewport",T="popper",R=k.reduce((function(e,t){return e.concat([t+"-"+W,t+"-"+B])}),[]),S=[].concat(k,[M]).reduce((function(e,t){return e.concat([t,t+"-"+W,t+"-"+B])}),[]),V=["beforeRead","read","afterRead","beforeMain","main","afterMain","beforeWrite","write","afterWrite"];function q(e){var t=new Map,n=new Set,r=[];function o(e){n.add(e.name),[].concat(e.requires||[],e.requiresIfExists||[]).forEach((function(e){if(!n.has(e)){var r=t.get(e);r&&o(r)}})),r.push(e)}return e.forEach((function(e){t.set(e.name,e)})),e.forEach((function(e){n.has(e.name)||o(e)})),r}function C(e){return e.split("-")[0]}function N(e,t){var n=t.getRootNode&&t.getRootNode();if(e.contains(t))return!0;if(n&&o(n)){var r=t;do{if(r&&e.isSameNode(r))return!0;r=r.parentNode||r.host}while(r)}return!1}function I(e){return Object.assign({},e,{left:e.x,top:e.y,right:e.x+e.width,bottom:e.y+e.height})}function _(e,r,o){return r===H?I(function(e,n){var r=t(e),o=d(e),i=r.visualViewport,a=o.clientWidth,s=o.clientHeight,f=0,p=0;if(i){a=i.width,s=i.height;var u=c();(u||!u&&"fixed"===n)&&(f=i.offsetLeft,p=i.offsetTop)}return{width:a,height:s,x:f+h(e),y:p}}(e,o)):n(r)?function(e,t){var n=p(e,!1,"fixed"===t);return n.top=n.top+e.clientTop,n.left=n.left+e.clientLeft,n.bottom=n.top+e.clientHeight,n.right=n.left+e.clientWidth,n.width=e.clientWidth,n.height=e.clientHeight,n.x=n.left,n.y=n.top,n}(r,o):I(function(e){var t,n=d(e),r=u(e),o=null==(t=e.ownerDocument)?void 0:t.body,a=i(n.scrollWidth,n.clientWidth,o?o.scrollWidth:0,o?o.clientWidth:0),s=i(n.scrollHeight,n.clientHeight,o?o.scrollHeight:0,o?o.clientHeight:0),f=-r.scrollLeft+h(e),c=-r.scrollTop;return"rtl"===m(o||n).direction&&(f+=i(n.clientWidth,o?o.clientWidth:0)-a),{width:a,height:s,x:f,y:c}}(d(e)))}function F(e,t,o,s){var f="clippingParents"===t?function(e){var t=w(b(e)),o=["absolute","fixed"].indexOf(m(e).position)>=0&&r(e)?E(e):e;return n(o)?t.filter((function(e){return n(e)&&N(e,o)&&"body"!==l(e)})):[]}(e):[].concat(t),c=[].concat(f,[o]),p=c[0],u=c.reduce((function(t,n){var r=_(e,n,s);return t.top=i(r.top,t.top),t.right=a(r.right,t.right),t.bottom=a(r.bottom,t.bottom),t.left=i(r.left,t.left),t}),_(e,p,s));return u.width=u.right-u.left,u.height=u.bottom-u.top,u.x=u.left,u.y=u.top,u}function U(e){return e.split("-")[1]}function z(e){return["top","bottom"].indexOf(e)>=0?"x":"y"}function X(e){var t,n=e.reference,r=e.element,o=e.placement,i=o?C(o):null,a=o?U(o):null,s=n.x+n.width/2-r.width/2,f=n.y+n.height/2-r.height/2;switch(i){case D:t={x:s,y:n.y-r.height};break;case A:t={x:s,y:n.y+n.height};break;case L:t={x:n.x+n.width,y:f};break;case P:t={x:n.x-r.width,y:f};break;default:t={x:n.x,y:n.y}}var c=i?z(i):null;if(null!=c){var p="y"===c?"height":"width";switch(a){case W:t[c]=t[c]-(n[p]/2-r[p]/2);break;case B:t[c]=t[c]+(n[p]/2-r[p]/2)}}return t}function Y(e){return Object.assign({},{top:0,right:0,bottom:0,left:0},e)}function G(e,t){return t.reduce((function(t,n){return t[n]=e,t}),{})}function J(e,t){void 0===t&&(t={});var r=t,o=r.placement,i=void 0===o?e.placement:o,a=r.strategy,s=void 0===a?e.strategy:a,f=r.boundary,c=void 0===f?"clippingParents":f,u=r.rootBoundary,l=void 0===u?H:u,h=r.elementContext,m=void 0===h?T:h,v=r.altBoundary,y=void 0!==v&&v,g=r.padding,b=void 0===g?0:g,x=Y("number"!=typeof b?b:G(b,k)),w=m===T?"reference":T,O=e.rects.popper,j=e.elements[y?w:m],E=F(n(j)?j:j.contextElement||d(e.elements.popper),c,l,s),P=p(e.elements.reference),M=X({reference:P,element:O,strategy:"absolute",placement:i}),W=I(Object.assign({},O,M)),B=m===T?W:P,R={top:E.top-B.top+x.top,bottom:B.bottom-E.bottom+x.bottom,left:E.left-B.left+x.left,right:B.right-E.right+x.right},S=e.modifiersData.offset;if(m===T&&S){var V=S[i];Object.keys(R).forEach((function(e){var t=[L,A].indexOf(e)>=0?1:-1,n=[D,A].indexOf(e)>=0?"y":"x";R[e]+=V[n]*t}))}return R}var K={placement:"bottom",modifiers:[],strategy:"absolute"};function Q(){for(var e=arguments.length,t=new Array(e),n=0;n=0?-1:1,i="function"==typeof n?n(Object.assign({},t,{placement:e})):n,a=i[0],s=i[1];return a=a||0,s=(s||0)*o,[P,L].indexOf(r)>=0?{x:s,y:a}:{x:a,y:s}}(n,t.rects,i),e}),{}),s=a[t.placement],f=s.x,c=s.y;null!=t.modifiersData.popperOffsets&&(t.modifiersData.popperOffsets.x+=f,t.modifiersData.popperOffsets.y+=c),t.modifiersData[r]=a}},se={left:"right",right:"left",bottom:"top",top:"bottom"};function fe(e){return e.replace(/left|right|bottom|top/g,(function(e){return se[e]}))}var ce={start:"end",end:"start"};function pe(e){return e.replace(/start|end/g,(function(e){return ce[e]}))}function ue(e,t){void 0===t&&(t={});var n=t,r=n.placement,o=n.boundary,i=n.rootBoundary,a=n.padding,s=n.flipVariations,f=n.allowedAutoPlacements,c=void 0===f?S:f,p=U(r),u=p?s?R:R.filter((function(e){return U(e)===p})):k,l=u.filter((function(e){return c.indexOf(e)>=0}));0===l.length&&(l=u);var d=l.reduce((function(t,n){return t[n]=J(e,{placement:n,boundary:o,rootBoundary:i,padding:a})[C(n)],t}),{});return Object.keys(d).sort((function(e,t){return d[e]-d[t]}))}var le={name:"flip",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name;if(!t.modifiersData[r]._skip){for(var o=n.mainAxis,i=void 0===o||o,a=n.altAxis,s=void 0===a||a,f=n.fallbackPlacements,c=n.padding,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.flipVariations,h=void 0===d||d,m=n.allowedAutoPlacements,v=t.options.placement,y=C(v),g=f||(y===v||!h?[fe(v)]:function(e){if(C(e)===M)return[];var t=fe(e);return[pe(e),t,pe(t)]}(v)),b=[v].concat(g).reduce((function(e,n){return e.concat(C(n)===M?ue(t,{placement:n,boundary:p,rootBoundary:u,padding:c,flipVariations:h,allowedAutoPlacements:m}):n)}),[]),x=t.rects.reference,w=t.rects.popper,O=new Map,j=!0,E=b[0],k=0;k=0,S=R?"width":"height",V=J(t,{placement:B,boundary:p,rootBoundary:u,altBoundary:l,padding:c}),q=R?T?L:P:T?A:D;x[S]>w[S]&&(q=fe(q));var N=fe(q),I=[];if(i&&I.push(V[H]<=0),s&&I.push(V[q]<=0,V[N]<=0),I.every((function(e){return e}))){E=B,j=!1;break}O.set(B,I)}if(j)for(var _=function(e){var t=b.find((function(t){var n=O.get(t);if(n)return n.slice(0,e).every((function(e){return e}))}));if(t)return E=t,"break"},F=h?3:1;F>0;F--){if("break"===_(F))break}t.placement!==E&&(t.modifiersData[r]._skip=!0,t.placement=E,t.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function de(e,t,n){return i(e,a(t,n))}var he={name:"preventOverflow",enabled:!0,phase:"main",fn:function(e){var t=e.state,n=e.options,r=e.name,o=n.mainAxis,s=void 0===o||o,f=n.altAxis,c=void 0!==f&&f,p=n.boundary,u=n.rootBoundary,l=n.altBoundary,d=n.padding,h=n.tether,m=void 0===h||h,v=n.tetherOffset,y=void 0===v?0:v,b=J(t,{boundary:p,rootBoundary:u,padding:d,altBoundary:l}),x=C(t.placement),w=U(t.placement),O=!w,j=z(x),M="x"===j?"y":"x",k=t.modifiersData.popperOffsets,B=t.rects.reference,H=t.rects.popper,T="function"==typeof y?y(Object.assign({},t.rects,{placement:t.placement})):y,R="number"==typeof T?{mainAxis:T,altAxis:T}:Object.assign({mainAxis:0,altAxis:0},T),S=t.modifiersData.offset?t.modifiersData.offset[t.placement]:null,V={x:0,y:0};if(k){if(s){var q,N="y"===j?D:P,I="y"===j?A:L,_="y"===j?"height":"width",F=k[j],X=F+b[N],Y=F-b[I],G=m?-H[_]/2:0,K=w===W?B[_]:H[_],Q=w===W?-H[_]:-B[_],Z=t.elements.arrow,$=m&&Z?g(Z):{width:0,height:0},ee=t.modifiersData["arrow#persistent"]?t.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},te=ee[N],ne=ee[I],re=de(0,B[_],$[_]),oe=O?B[_]/2-G-re-te-R.mainAxis:K-re-te-R.mainAxis,ie=O?-B[_]/2+G+re+ne+R.mainAxis:Q+re+ne+R.mainAxis,ae=t.elements.arrow&&E(t.elements.arrow),se=ae?"y"===j?ae.clientTop||0:ae.clientLeft||0:0,fe=null!=(q=null==S?void 0:S[j])?q:0,ce=F+ie-fe,pe=de(m?a(X,F+oe-fe-se):X,F,m?i(Y,ce):Y);k[j]=pe,V[j]=pe-F}if(c){var ue,le="x"===j?D:P,he="x"===j?A:L,me=k[M],ve="y"===M?"height":"width",ye=me+b[le],ge=me-b[he],be=-1!==[D,P].indexOf(x),xe=null!=(ue=null==S?void 0:S[M])?ue:0,we=be?ye:me-B[ve]-H[ve]-xe+R.altAxis,Oe=be?me+B[ve]+H[ve]-xe-R.altAxis:ge,je=m&&be?function(e,t,n){var r=de(e,t,n);return r>n?n:r}(we,me,Oe):de(m?we:ye,me,m?Oe:ge);k[M]=je,V[M]=je-me}t.modifiersData[r]=V}},requiresIfExists:["offset"]};var me={name:"arrow",enabled:!0,phase:"main",fn:function(e){var t,n=e.state,r=e.name,o=e.options,i=n.elements.arrow,a=n.modifiersData.popperOffsets,s=C(n.placement),f=z(s),c=[P,L].indexOf(s)>=0?"height":"width";if(i&&a){var p=function(e,t){return Y("number"!=typeof(e="function"==typeof e?e(Object.assign({},t.rects,{placement:t.placement})):e)?e:G(e,k))}(o.padding,n),u=g(i),l="y"===f?D:P,d="y"===f?A:L,h=n.rects.reference[c]+n.rects.reference[f]-a[f]-n.rects.popper[c],m=a[f]-n.rects.reference[f],v=E(i),y=v?"y"===f?v.clientHeight||0:v.clientWidth||0:0,b=h/2-m/2,x=p[l],w=y-u[c]-p[d],O=y/2-u[c]/2+b,j=de(x,O,w),M=f;n.modifiersData[r]=((t={})[M]=j,t.centerOffset=j-O,t)}},effect:function(e){var t=e.state,n=e.options.element,r=void 0===n?"[data-popper-arrow]":n;null!=r&&("string"!=typeof r||(r=t.elements.popper.querySelector(r)))&&N(t.elements.popper,r)&&(t.elements.arrow=r)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function ve(e,t,n){return void 0===n&&(n={x:0,y:0}),{top:e.top-t.height-n.y,right:e.right-t.width+n.x,bottom:e.bottom-t.height+n.y,left:e.left-t.width-n.x}}function ye(e){return[D,L,A,P].some((function(t){return e[t]>=0}))}var ge={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(e){var t=e.state,n=e.name,r=t.rects.reference,o=t.rects.popper,i=t.modifiersData.preventOverflow,a=J(t,{elementContext:"reference"}),s=J(t,{altBoundary:!0}),f=ve(a,r),c=ve(s,o,i),p=ye(f),u=ye(c);t.modifiersData[n]={referenceClippingOffsets:f,popperEscapeOffsets:c,isReferenceHidden:p,hasPopperEscaped:u},t.attributes.popper=Object.assign({},t.attributes.popper,{"data-popper-reference-hidden":p,"data-popper-escaped":u})}},be=Z({defaultModifiers:[ee,te,oe,ie]}),xe=[ee,te,oe,ie,ae,le,he,me,ge],we=Z({defaultModifiers:xe});e.applyStyles=ie,e.arrow=me,e.computeStyles=oe,e.createPopper=we,e.createPopperLite=be,e.defaultModifiers=xe,e.detectOverflow=J,e.eventListeners=ee,e.flip=le,e.hide=ge,e.offset=ae,e.popperGenerator=Z,e.popperOffsets=te,e.preventOverflow=he,Object.defineProperty(e,"__esModule",{value:!0})})); + diff --git a/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/quarto-syntax-highlighting.css b/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/quarto-syntax-highlighting.css new file mode 100644 index 0000000..b30ce57 --- /dev/null +++ b/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/quarto-syntax-highlighting.css @@ -0,0 +1,205 @@ +/* quarto syntax highlight colors */ +:root { + --quarto-hl-ot-color: #003B4F; + --quarto-hl-at-color: #657422; + --quarto-hl-ss-color: #20794D; + --quarto-hl-an-color: #5E5E5E; + --quarto-hl-fu-color: #4758AB; + --quarto-hl-st-color: #20794D; + --quarto-hl-cf-color: #003B4F; + --quarto-hl-op-color: #5E5E5E; + --quarto-hl-er-color: #AD0000; + --quarto-hl-bn-color: #AD0000; + --quarto-hl-al-color: #AD0000; + --quarto-hl-va-color: #111111; + --quarto-hl-bu-color: inherit; + --quarto-hl-ex-color: inherit; + --quarto-hl-pp-color: #AD0000; + --quarto-hl-in-color: #5E5E5E; + --quarto-hl-vs-color: #20794D; + --quarto-hl-wa-color: #5E5E5E; + --quarto-hl-do-color: #5E5E5E; + --quarto-hl-im-color: #00769E; + --quarto-hl-ch-color: #20794D; + --quarto-hl-dt-color: #AD0000; + --quarto-hl-fl-color: #AD0000; + --quarto-hl-co-color: #5E5E5E; + --quarto-hl-cv-color: #5E5E5E; + --quarto-hl-cn-color: #8f5902; + --quarto-hl-sc-color: #5E5E5E; + --quarto-hl-dv-color: #AD0000; + --quarto-hl-kw-color: #003B4F; +} + +/* other quarto variables */ +:root { + --quarto-font-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; +} + +pre > code.sourceCode > span { + color: #003B4F; +} + +code span { + color: #003B4F; +} + +code.sourceCode > span { + color: #003B4F; +} + +div.sourceCode, +div.sourceCode pre.sourceCode { + color: #003B4F; +} + +code span.ot { + color: #003B4F; + font-style: inherit; +} + +code span.at { + color: #657422; + font-style: inherit; +} + +code span.ss { + color: #20794D; + font-style: inherit; +} + +code span.an { + color: #5E5E5E; + font-style: inherit; +} + +code span.fu { + color: #4758AB; + font-style: inherit; +} + +code span.st { + color: #20794D; + font-style: inherit; +} + +code span.cf { + color: #003B4F; + font-weight: bold; + font-style: inherit; +} + +code span.op { + color: #5E5E5E; + font-style: inherit; +} + +code span.er { + color: #AD0000; + font-style: inherit; +} + +code span.bn { + color: #AD0000; + font-style: inherit; +} + +code span.al { + color: #AD0000; + font-style: inherit; +} + +code span.va { + color: #111111; + font-style: inherit; +} + +code span.bu { + font-style: inherit; +} + +code span.ex { + font-style: inherit; +} + +code span.pp { + color: #AD0000; + font-style: inherit; +} + +code span.in { + color: #5E5E5E; + font-style: inherit; +} + +code span.vs { + color: #20794D; + font-style: inherit; +} + +code span.wa { + color: #5E5E5E; + font-style: italic; +} + +code span.do { + color: #5E5E5E; + font-style: italic; +} + +code span.im { + color: #00769E; + font-style: inherit; +} + +code span.ch { + color: #20794D; + font-style: inherit; +} + +code span.dt { + color: #AD0000; + font-style: inherit; +} + +code span.fl { + color: #AD0000; + font-style: inherit; +} + +code span.co { + color: #5E5E5E; + font-style: inherit; +} + +code span.cv { + color: #5E5E5E; + font-style: italic; +} + +code span.cn { + color: #8f5902; + font-style: inherit; +} + +code span.sc { + color: #5E5E5E; + font-style: inherit; +} + +code span.dv { + color: #AD0000; + font-style: inherit; +} + +code span.kw { + color: #003B4F; + font-weight: bold; + font-style: inherit; +} + +.prevent-inlining { + content: " { + // Find any conflicting margin elements and add margins to the + // top to prevent overlap + const marginChildren = window.document.querySelectorAll( + ".column-margin.column-container > *, .margin-caption, .aside" + ); + + let lastBottom = 0; + for (const marginChild of marginChildren) { + if (marginChild.offsetParent !== null) { + // clear the top margin so we recompute it + marginChild.style.marginTop = null; + const top = marginChild.getBoundingClientRect().top + window.scrollY; + if (top < lastBottom) { + const marginChildStyle = window.getComputedStyle(marginChild); + const marginBottom = parseFloat(marginChildStyle["marginBottom"]); + const margin = lastBottom - top + marginBottom; + marginChild.style.marginTop = `${margin}px`; + } + const styles = window.getComputedStyle(marginChild); + const marginTop = parseFloat(styles["marginTop"]); + lastBottom = top + marginChild.getBoundingClientRect().height + marginTop; + } + } +}; + +window.document.addEventListener("DOMContentLoaded", function (_event) { + // Recompute the position of margin elements anytime the body size changes + if (window.ResizeObserver) { + const resizeObserver = new window.ResizeObserver( + throttle(() => { + layoutMarginEls(); + if ( + window.document.body.getBoundingClientRect().width < 990 && + isReaderMode() + ) { + quartoToggleReader(); + } + }, 50) + ); + resizeObserver.observe(window.document.body); + } + + const tocEl = window.document.querySelector('nav.toc-active[role="doc-toc"]'); + const sidebarEl = window.document.getElementById("quarto-sidebar"); + const leftTocEl = window.document.getElementById("quarto-sidebar-toc-left"); + const marginSidebarEl = window.document.getElementById( + "quarto-margin-sidebar" + ); + // function to determine whether the element has a previous sibling that is active + const prevSiblingIsActiveLink = (el) => { + const sibling = el.previousElementSibling; + if (sibling && sibling.tagName === "A") { + return sibling.classList.contains("active"); + } else { + return false; + } + }; + + // fire slideEnter for bootstrap tab activations (for htmlwidget resize behavior) + function fireSlideEnter(e) { + const event = window.document.createEvent("Event"); + event.initEvent("slideenter", true, true); + window.document.dispatchEvent(event); + } + const tabs = window.document.querySelectorAll('a[data-bs-toggle="tab"]'); + tabs.forEach((tab) => { + tab.addEventListener("shown.bs.tab", fireSlideEnter); + }); + + // fire slideEnter for tabby tab activations (for htmlwidget resize behavior) + document.addEventListener("tabby", fireSlideEnter, false); + + // Track scrolling and mark TOC links as active + // get table of contents and sidebar (bail if we don't have at least one) + const tocLinks = tocEl + ? [...tocEl.querySelectorAll("a[data-scroll-target]")] + : []; + const makeActive = (link) => tocLinks[link].classList.add("active"); + const removeActive = (link) => tocLinks[link].classList.remove("active"); + const removeAllActive = () => + [...Array(tocLinks.length).keys()].forEach((link) => removeActive(link)); + + // activate the anchor for a section associated with this TOC entry + tocLinks.forEach((link) => { + link.addEventListener("click", () => { + if (link.href.indexOf("#") !== -1) { + const anchor = link.href.split("#")[1]; + const heading = window.document.querySelector( + `[data-anchor-id="${anchor}"]` + ); + if (heading) { + // Add the class + heading.classList.add("reveal-anchorjs-link"); + + // function to show the anchor + const handleMouseout = () => { + heading.classList.remove("reveal-anchorjs-link"); + heading.removeEventListener("mouseout", handleMouseout); + }; + + // add a function to clear the anchor when the user mouses out of it + heading.addEventListener("mouseout", handleMouseout); + } + } + }); + }); + + const sections = tocLinks.map((link) => { + const target = link.getAttribute("data-scroll-target"); + if (target.startsWith("#")) { + return window.document.getElementById(decodeURI(`${target.slice(1)}`)); + } else { + return window.document.querySelector(decodeURI(`${target}`)); + } + }); + + const sectionMargin = 200; + let currentActive = 0; + // track whether we've initialized state the first time + let init = false; + + const updateActiveLink = () => { + // The index from bottom to top (e.g. reversed list) + let sectionIndex = -1; + if ( + window.innerHeight + window.pageYOffset >= + window.document.body.offsetHeight + ) { + // This is the no-scroll case where last section should be the active one + sectionIndex = 0; + } else { + // This finds the last section visible on screen that should be made active + sectionIndex = [...sections].reverse().findIndex((section) => { + if (section) { + return window.pageYOffset >= section.offsetTop - sectionMargin; + } else { + return false; + } + }); + } + if (sectionIndex > -1) { + const current = sections.length - sectionIndex - 1; + if (current !== currentActive) { + removeAllActive(); + currentActive = current; + makeActive(current); + if (init) { + window.dispatchEvent(sectionChanged); + } + init = true; + } + } + }; + + const inHiddenRegion = (top, bottom, hiddenRegions) => { + for (const region of hiddenRegions) { + if (top <= region.bottom && bottom >= region.top) { + return true; + } + } + return false; + }; + + const categorySelector = "header.quarto-title-block .quarto-category"; + const activateCategories = (href) => { + // Find any categories + // Surround them with a link pointing back to: + // #category=Authoring + try { + const categoryEls = window.document.querySelectorAll(categorySelector); + for (const categoryEl of categoryEls) { + const categoryText = categoryEl.textContent; + if (categoryText) { + const link = `${href}#category=${encodeURIComponent(categoryText)}`; + const linkEl = window.document.createElement("a"); + linkEl.setAttribute("href", link); + for (const child of categoryEl.childNodes) { + linkEl.append(child); + } + categoryEl.appendChild(linkEl); + } + } + } catch { + // Ignore errors + } + }; + function hasTitleCategories() { + return window.document.querySelector(categorySelector) !== null; + } + + function offsetRelativeUrl(url) { + const offset = getMeta("quarto:offset"); + return offset ? offset + url : url; + } + + function offsetAbsoluteUrl(url) { + const offset = getMeta("quarto:offset"); + const baseUrl = new URL(offset, window.location); + + const projRelativeUrl = url.replace(baseUrl, ""); + if (projRelativeUrl.startsWith("/")) { + return projRelativeUrl; + } else { + return "/" + projRelativeUrl; + } + } + + // read a meta tag value + function getMeta(metaName) { + const metas = window.document.getElementsByTagName("meta"); + for (let i = 0; i < metas.length; i++) { + if (metas[i].getAttribute("name") === metaName) { + return metas[i].getAttribute("content"); + } + } + return ""; + } + + async function findAndActivateCategories() { + const currentPagePath = offsetAbsoluteUrl(window.location.href); + const response = await fetch(offsetRelativeUrl("listings.json")); + if (response.status == 200) { + return response.json().then(function (listingPaths) { + const listingHrefs = []; + for (const listingPath of listingPaths) { + const pathWithoutLeadingSlash = listingPath.listing.substring(1); + for (const item of listingPath.items) { + if ( + item === currentPagePath || + item === currentPagePath + "index.html" + ) { + // Resolve this path against the offset to be sure + // we already are using the correct path to the listing + // (this adjusts the listing urls to be rooted against + // whatever root the page is actually running against) + const relative = offsetRelativeUrl(pathWithoutLeadingSlash); + const baseUrl = window.location; + const resolvedPath = new URL(relative, baseUrl); + listingHrefs.push(resolvedPath.pathname); + break; + } + } + } + + // Look up the tree for a nearby linting and use that if we find one + const nearestListing = findNearestParentListing( + offsetAbsoluteUrl(window.location.pathname), + listingHrefs + ); + if (nearestListing) { + activateCategories(nearestListing); + } else { + // See if the referrer is a listing page for this item + const referredRelativePath = offsetAbsoluteUrl(document.referrer); + const referrerListing = listingHrefs.find((listingHref) => { + const isListingReferrer = + listingHref === referredRelativePath || + listingHref === referredRelativePath + "index.html"; + return isListingReferrer; + }); + + if (referrerListing) { + // Try to use the referrer if possible + activateCategories(referrerListing); + } else if (listingHrefs.length > 0) { + // Otherwise, just fall back to the first listing + activateCategories(listingHrefs[0]); + } + } + }); + } + } + if (hasTitleCategories()) { + findAndActivateCategories(); + } + + const findNearestParentListing = (href, listingHrefs) => { + if (!href || !listingHrefs) { + return undefined; + } + // Look up the tree for a nearby linting and use that if we find one + const relativeParts = href.substring(1).split("/"); + while (relativeParts.length > 0) { + const path = relativeParts.join("/"); + for (const listingHref of listingHrefs) { + if (listingHref.startsWith(path)) { + return listingHref; + } + } + relativeParts.pop(); + } + + return undefined; + }; + + const manageSidebarVisiblity = (el, placeholderDescriptor) => { + let isVisible = true; + let elRect; + + return (hiddenRegions) => { + if (el === null) { + return; + } + + // Find the last element of the TOC + const lastChildEl = el.lastElementChild; + + if (lastChildEl) { + // Converts the sidebar to a menu + const convertToMenu = () => { + for (const child of el.children) { + child.style.opacity = 0; + child.style.overflow = "hidden"; + child.style.pointerEvents = "none"; + } + + nexttick(() => { + const toggleContainer = window.document.createElement("div"); + toggleContainer.style.width = "100%"; + toggleContainer.classList.add("zindex-over-content"); + toggleContainer.classList.add("quarto-sidebar-toggle"); + toggleContainer.classList.add("headroom-target"); // Marks this to be managed by headeroom + toggleContainer.id = placeholderDescriptor.id; + toggleContainer.style.position = "fixed"; + + const toggleIcon = window.document.createElement("i"); + toggleIcon.classList.add("quarto-sidebar-toggle-icon"); + toggleIcon.classList.add("bi"); + toggleIcon.classList.add("bi-caret-down-fill"); + + const toggleTitle = window.document.createElement("div"); + const titleEl = window.document.body.querySelector( + placeholderDescriptor.titleSelector + ); + if (titleEl) { + toggleTitle.append( + titleEl.textContent || titleEl.innerText, + toggleIcon + ); + } + toggleTitle.classList.add("zindex-over-content"); + toggleTitle.classList.add("quarto-sidebar-toggle-title"); + toggleContainer.append(toggleTitle); + + const toggleContents = window.document.createElement("div"); + toggleContents.classList = el.classList; + toggleContents.classList.add("zindex-over-content"); + toggleContents.classList.add("quarto-sidebar-toggle-contents"); + for (const child of el.children) { + if (child.id === "toc-title") { + continue; + } + + const clone = child.cloneNode(true); + clone.style.opacity = 1; + clone.style.pointerEvents = null; + clone.style.display = null; + toggleContents.append(clone); + } + toggleContents.style.height = "0px"; + const positionToggle = () => { + // position the element (top left of parent, same width as parent) + if (!elRect) { + elRect = el.getBoundingClientRect(); + } + toggleContainer.style.left = `${elRect.left}px`; + toggleContainer.style.top = `${elRect.top}px`; + toggleContainer.style.width = `${elRect.width}px`; + }; + positionToggle(); + + toggleContainer.append(toggleContents); + el.parentElement.prepend(toggleContainer); + + // Process clicks + let tocShowing = false; + // Allow the caller to control whether this is dismissed + // when it is clicked (e.g. sidebar navigation supports + // opening and closing the nav tree, so don't dismiss on click) + const clickEl = placeholderDescriptor.dismissOnClick + ? toggleContainer + : toggleTitle; + + const closeToggle = () => { + if (tocShowing) { + toggleContainer.classList.remove("expanded"); + toggleContents.style.height = "0px"; + tocShowing = false; + } + }; + + // Get rid of any expanded toggle if the user scrolls + window.document.addEventListener( + "scroll", + throttle(() => { + closeToggle(); + }, 50) + ); + + // Handle positioning of the toggle + window.addEventListener( + "resize", + throttle(() => { + elRect = undefined; + positionToggle(); + }, 50) + ); + + window.addEventListener("quarto-hrChanged", () => { + elRect = undefined; + }); + + // Process the click + clickEl.onclick = () => { + if (!tocShowing) { + toggleContainer.classList.add("expanded"); + toggleContents.style.height = null; + tocShowing = true; + } else { + closeToggle(); + } + }; + }); + }; + + // Converts a sidebar from a menu back to a sidebar + const convertToSidebar = () => { + for (const child of el.children) { + child.style.opacity = 1; + child.style.overflow = null; + child.style.pointerEvents = null; + } + + const placeholderEl = window.document.getElementById( + placeholderDescriptor.id + ); + if (placeholderEl) { + placeholderEl.remove(); + } + + el.classList.remove("rollup"); + }; + + if (isReaderMode()) { + convertToMenu(); + isVisible = false; + } else { + // Find the top and bottom o the element that is being managed + const elTop = el.offsetTop; + const elBottom = + elTop + lastChildEl.offsetTop + lastChildEl.offsetHeight; + + if (!isVisible) { + // If the element is current not visible reveal if there are + // no conflicts with overlay regions + if (!inHiddenRegion(elTop, elBottom, hiddenRegions)) { + convertToSidebar(); + isVisible = true; + } + } else { + // If the element is visible, hide it if it conflicts with overlay regions + // and insert a placeholder toggle (or if we're in reader mode) + if (inHiddenRegion(elTop, elBottom, hiddenRegions)) { + convertToMenu(); + isVisible = false; + } + } + } + } + }; + }; + + const tabEls = document.querySelectorAll('a[data-bs-toggle="tab"]'); + for (const tabEl of tabEls) { + const id = tabEl.getAttribute("data-bs-target"); + if (id) { + const columnEl = document.querySelector( + `${id} .column-margin, .tabset-margin-content` + ); + if (columnEl) + tabEl.addEventListener("shown.bs.tab", function (event) { + const el = event.srcElement; + if (el) { + const visibleCls = `${el.id}-margin-content`; + // walk up until we find a parent tabset + let panelTabsetEl = el.parentElement; + while (panelTabsetEl) { + if (panelTabsetEl.classList.contains("panel-tabset")) { + break; + } + panelTabsetEl = panelTabsetEl.parentElement; + } + + if (panelTabsetEl) { + const prevSib = panelTabsetEl.previousElementSibling; + if ( + prevSib && + prevSib.classList.contains("tabset-margin-container") + ) { + const childNodes = prevSib.querySelectorAll( + ".tabset-margin-content" + ); + for (const childEl of childNodes) { + if (childEl.classList.contains(visibleCls)) { + childEl.classList.remove("collapse"); + } else { + childEl.classList.add("collapse"); + } + } + } + } + } + + layoutMarginEls(); + }); + } + } + + // Manage the visibility of the toc and the sidebar + const marginScrollVisibility = manageSidebarVisiblity(marginSidebarEl, { + id: "quarto-toc-toggle", + titleSelector: "#toc-title", + dismissOnClick: true, + }); + const sidebarScrollVisiblity = manageSidebarVisiblity(sidebarEl, { + id: "quarto-sidebarnav-toggle", + titleSelector: ".title", + dismissOnClick: false, + }); + let tocLeftScrollVisibility; + if (leftTocEl) { + tocLeftScrollVisibility = manageSidebarVisiblity(leftTocEl, { + id: "quarto-lefttoc-toggle", + titleSelector: "#toc-title", + dismissOnClick: true, + }); + } + + // Find the first element that uses formatting in special columns + const conflictingEls = window.document.body.querySelectorAll( + '[class^="column-"], [class*=" column-"], aside, [class*="margin-caption"], [class*=" margin-caption"], [class*="margin-ref"], [class*=" margin-ref"]' + ); + + // Filter all the possibly conflicting elements into ones + // the do conflict on the left or ride side + const arrConflictingEls = Array.from(conflictingEls); + const leftSideConflictEls = arrConflictingEls.filter((el) => { + if (el.tagName === "ASIDE") { + return false; + } + return Array.from(el.classList).find((className) => { + return ( + className !== "column-body" && + className.startsWith("column-") && + !className.endsWith("right") && + !className.endsWith("container") && + className !== "column-margin" + ); + }); + }); + const rightSideConflictEls = arrConflictingEls.filter((el) => { + if (el.tagName === "ASIDE") { + return true; + } + + const hasMarginCaption = Array.from(el.classList).find((className) => { + return className == "margin-caption"; + }); + if (hasMarginCaption) { + return true; + } + + return Array.from(el.classList).find((className) => { + return ( + className !== "column-body" && + !className.endsWith("container") && + className.startsWith("column-") && + !className.endsWith("left") + ); + }); + }); + + const kOverlapPaddingSize = 10; + function toRegions(els) { + return els.map((el) => { + const boundRect = el.getBoundingClientRect(); + const top = + boundRect.top + + document.documentElement.scrollTop - + kOverlapPaddingSize; + return { + top, + bottom: top + el.scrollHeight + 2 * kOverlapPaddingSize, + }; + }); + } + + let hasObserved = false; + const visibleItemObserver = (els) => { + let visibleElements = [...els]; + const intersectionObserver = new IntersectionObserver( + (entries, _observer) => { + entries.forEach((entry) => { + if (entry.isIntersecting) { + if (visibleElements.indexOf(entry.target) === -1) { + visibleElements.push(entry.target); + } + } else { + visibleElements = visibleElements.filter((visibleEntry) => { + return visibleEntry !== entry; + }); + } + }); + + if (!hasObserved) { + hideOverlappedSidebars(); + } + hasObserved = true; + }, + {} + ); + els.forEach((el) => { + intersectionObserver.observe(el); + }); + + return { + getVisibleEntries: () => { + return visibleElements; + }, + }; + }; + + const rightElementObserver = visibleItemObserver(rightSideConflictEls); + const leftElementObserver = visibleItemObserver(leftSideConflictEls); + + const hideOverlappedSidebars = () => { + marginScrollVisibility(toRegions(rightElementObserver.getVisibleEntries())); + sidebarScrollVisiblity(toRegions(leftElementObserver.getVisibleEntries())); + if (tocLeftScrollVisibility) { + tocLeftScrollVisibility( + toRegions(leftElementObserver.getVisibleEntries()) + ); + } + }; + + window.quartoToggleReader = () => { + // Applies a slow class (or removes it) + // to update the transition speed + const slowTransition = (slow) => { + const manageTransition = (id, slow) => { + const el = document.getElementById(id); + if (el) { + if (slow) { + el.classList.add("slow"); + } else { + el.classList.remove("slow"); + } + } + }; + + manageTransition("TOC", slow); + manageTransition("quarto-sidebar", slow); + }; + const readerMode = !isReaderMode(); + setReaderModeValue(readerMode); + + // If we're entering reader mode, slow the transition + if (readerMode) { + slowTransition(readerMode); + } + highlightReaderToggle(readerMode); + hideOverlappedSidebars(); + + // If we're exiting reader mode, restore the non-slow transition + if (!readerMode) { + slowTransition(!readerMode); + } + }; + + const highlightReaderToggle = (readerMode) => { + const els = document.querySelectorAll(".quarto-reader-toggle"); + if (els) { + els.forEach((el) => { + if (readerMode) { + el.classList.add("reader"); + } else { + el.classList.remove("reader"); + } + }); + } + }; + + const setReaderModeValue = (val) => { + if (window.location.protocol !== "file:") { + window.localStorage.setItem("quarto-reader-mode", val); + } else { + localReaderMode = val; + } + }; + + const isReaderMode = () => { + if (window.location.protocol !== "file:") { + return window.localStorage.getItem("quarto-reader-mode") === "true"; + } else { + return localReaderMode; + } + }; + let localReaderMode = null; + + const tocOpenDepthStr = tocEl?.getAttribute("data-toc-expanded"); + const tocOpenDepth = tocOpenDepthStr ? Number(tocOpenDepthStr) : 1; + + // Walk the TOC and collapse/expand nodes + // Nodes are expanded if: + // - they are top level + // - they have children that are 'active' links + // - they are directly below an link that is 'active' + const walk = (el, depth) => { + // Tick depth when we enter a UL + if (el.tagName === "UL") { + depth = depth + 1; + } + + // It this is active link + let isActiveNode = false; + if (el.tagName === "A" && el.classList.contains("active")) { + isActiveNode = true; + } + + // See if there is an active child to this element + let hasActiveChild = false; + for (child of el.children) { + hasActiveChild = walk(child, depth) || hasActiveChild; + } + + // Process the collapse state if this is an UL + if (el.tagName === "UL") { + if (tocOpenDepth === -1 && depth > 1) { + // toc-expand: false + el.classList.add("collapse"); + } else if ( + depth <= tocOpenDepth || + hasActiveChild || + prevSiblingIsActiveLink(el) + ) { + el.classList.remove("collapse"); + } else { + el.classList.add("collapse"); + } + + // untick depth when we leave a UL + depth = depth - 1; + } + return hasActiveChild || isActiveNode; + }; + + // walk the TOC and expand / collapse any items that should be shown + if (tocEl) { + updateActiveLink(); + walk(tocEl, 0); + } + + // Throttle the scroll event and walk peridiocally + window.document.addEventListener( + "scroll", + throttle(() => { + if (tocEl) { + updateActiveLink(); + walk(tocEl, 0); + } + if (!isReaderMode()) { + hideOverlappedSidebars(); + } + }, 5) + ); + window.addEventListener( + "resize", + throttle(() => { + if (tocEl) { + updateActiveLink(); + walk(tocEl, 0); + } + if (!isReaderMode()) { + hideOverlappedSidebars(); + } + }, 10) + ); + hideOverlappedSidebars(); + highlightReaderToggle(isReaderMode()); +}); + +// grouped tabsets +window.addEventListener("pageshow", (_event) => { + function getTabSettings() { + const data = localStorage.getItem("quarto-persistent-tabsets-data"); + if (!data) { + localStorage.setItem("quarto-persistent-tabsets-data", "{}"); + return {}; + } + if (data) { + return JSON.parse(data); + } + } + + function setTabSettings(data) { + localStorage.setItem( + "quarto-persistent-tabsets-data", + JSON.stringify(data) + ); + } + + function setTabState(groupName, groupValue) { + const data = getTabSettings(); + data[groupName] = groupValue; + setTabSettings(data); + } + + function toggleTab(tab, active) { + const tabPanelId = tab.getAttribute("aria-controls"); + const tabPanel = document.getElementById(tabPanelId); + if (active) { + tab.classList.add("active"); + tabPanel.classList.add("active"); + } else { + tab.classList.remove("active"); + tabPanel.classList.remove("active"); + } + } + + function toggleAll(selectedGroup, selectorsToSync) { + for (const [thisGroup, tabs] of Object.entries(selectorsToSync)) { + const active = selectedGroup === thisGroup; + for (const tab of tabs) { + toggleTab(tab, active); + } + } + } + + function findSelectorsToSyncByLanguage() { + const result = {}; + const tabs = Array.from( + document.querySelectorAll(`div[data-group] a[id^='tabset-']`) + ); + for (const item of tabs) { + const div = item.parentElement.parentElement.parentElement; + const group = div.getAttribute("data-group"); + if (!result[group]) { + result[group] = {}; + } + const selectorsToSync = result[group]; + const value = item.innerHTML; + if (!selectorsToSync[value]) { + selectorsToSync[value] = []; + } + selectorsToSync[value].push(item); + } + return result; + } + + function setupSelectorSync() { + const selectorsToSync = findSelectorsToSyncByLanguage(); + Object.entries(selectorsToSync).forEach(([group, tabSetsByValue]) => { + Object.entries(tabSetsByValue).forEach(([value, items]) => { + items.forEach((item) => { + item.addEventListener("click", (_event) => { + setTabState(group, value); + toggleAll(value, selectorsToSync[group]); + }); + }); + }); + }); + return selectorsToSync; + } + + const selectorsToSync = setupSelectorSync(); + for (const [group, selectedName] of Object.entries(getTabSettings())) { + const selectors = selectorsToSync[group]; + // it's possible that stale state gives us empty selections, so we explicitly check here. + if (selectors) { + toggleAll(selectedName, selectors); + } + } +}); + +function throttle(func, wait) { + let waiting = false; + return function () { + if (!waiting) { + func.apply(this, arguments); + waiting = true; + setTimeout(function () { + waiting = false; + }, wait); + } + }; +} + +function nexttick(func) { + return setTimeout(func, 0); +} diff --git a/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/tippy.css b/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/tippy.css new file mode 100644 index 0000000..e6ae635 --- /dev/null +++ b/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/tippy.css @@ -0,0 +1 @@ +.tippy-box[data-animation=fade][data-state=hidden]{opacity:0}[data-tippy-root]{max-width:calc(100vw - 10px)}.tippy-box{position:relative;background-color:#333;color:#fff;border-radius:4px;font-size:14px;line-height:1.4;white-space:normal;outline:0;transition-property:transform,visibility,opacity}.tippy-box[data-placement^=top]>.tippy-arrow{bottom:0}.tippy-box[data-placement^=top]>.tippy-arrow:before{bottom:-7px;left:0;border-width:8px 8px 0;border-top-color:initial;transform-origin:center top}.tippy-box[data-placement^=bottom]>.tippy-arrow{top:0}.tippy-box[data-placement^=bottom]>.tippy-arrow:before{top:-7px;left:0;border-width:0 8px 8px;border-bottom-color:initial;transform-origin:center bottom}.tippy-box[data-placement^=left]>.tippy-arrow{right:0}.tippy-box[data-placement^=left]>.tippy-arrow:before{border-width:8px 0 8px 8px;border-left-color:initial;right:-7px;transform-origin:center left}.tippy-box[data-placement^=right]>.tippy-arrow{left:0}.tippy-box[data-placement^=right]>.tippy-arrow:before{left:-7px;border-width:8px 8px 8px 0;border-right-color:initial;transform-origin:center right}.tippy-box[data-inertia][data-state=visible]{transition-timing-function:cubic-bezier(.54,1.5,.38,1.11)}.tippy-arrow{width:16px;height:16px;color:#333}.tippy-arrow:before{content:"";position:absolute;border-color:transparent;border-style:solid}.tippy-content{position:relative;padding:5px 9px;z-index:1} \ No newline at end of file diff --git a/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/tippy.umd.min.js b/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/tippy.umd.min.js new file mode 100644 index 0000000..ca292be --- /dev/null +++ b/complementos/EstadMat-AllChap(ES)_files/libs/quarto-html/tippy.umd.min.js @@ -0,0 +1,2 @@ +!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?module.exports=t(require("@popperjs/core")):"function"==typeof define&&define.amd?define(["@popperjs/core"],t):(e=e||self).tippy=t(e.Popper)}(this,(function(e){"use strict";var t={passive:!0,capture:!0},n=function(){return document.body};function r(e,t,n){if(Array.isArray(e)){var r=e[t];return null==r?Array.isArray(n)?n[t]:n:r}return e}function o(e,t){var n={}.toString.call(e);return 0===n.indexOf("[object")&&n.indexOf(t+"]")>-1}function i(e,t){return"function"==typeof e?e.apply(void 0,t):e}function a(e,t){return 0===t?e:function(r){clearTimeout(n),n=setTimeout((function(){e(r)}),t)};var n}function s(e,t){var n=Object.assign({},e);return t.forEach((function(e){delete n[e]})),n}function u(e){return[].concat(e)}function c(e,t){-1===e.indexOf(t)&&e.push(t)}function p(e){return e.split("-")[0]}function f(e){return[].slice.call(e)}function l(e){return Object.keys(e).reduce((function(t,n){return void 0!==e[n]&&(t[n]=e[n]),t}),{})}function d(){return document.createElement("div")}function v(e){return["Element","Fragment"].some((function(t){return o(e,t)}))}function m(e){return o(e,"MouseEvent")}function g(e){return!(!e||!e._tippy||e._tippy.reference!==e)}function h(e){return v(e)?[e]:function(e){return o(e,"NodeList")}(e)?f(e):Array.isArray(e)?e:f(document.querySelectorAll(e))}function b(e,t){e.forEach((function(e){e&&(e.style.transitionDuration=t+"ms")}))}function y(e,t){e.forEach((function(e){e&&e.setAttribute("data-state",t)}))}function w(e){var t,n=u(e)[0];return null!=n&&null!=(t=n.ownerDocument)&&t.body?n.ownerDocument:document}function E(e,t,n){var r=t+"EventListener";["transitionend","webkitTransitionEnd"].forEach((function(t){e[r](t,n)}))}function O(e,t){for(var n=t;n;){var r;if(e.contains(n))return!0;n=null==n.getRootNode||null==(r=n.getRootNode())?void 0:r.host}return!1}var x={isTouch:!1},C=0;function T(){x.isTouch||(x.isTouch=!0,window.performance&&document.addEventListener("mousemove",A))}function A(){var e=performance.now();e-C<20&&(x.isTouch=!1,document.removeEventListener("mousemove",A)),C=e}function L(){var e=document.activeElement;if(g(e)){var t=e._tippy;e.blur&&!t.state.isVisible&&e.blur()}}var D=!!("undefined"!=typeof window&&"undefined"!=typeof document)&&!!window.msCrypto,R=Object.assign({appendTo:n,aria:{content:"auto",expanded:"auto"},delay:0,duration:[300,250],getReferenceClientRect:null,hideOnClick:!0,ignoreAttributes:!1,interactive:!1,interactiveBorder:2,interactiveDebounce:0,moveTransition:"",offset:[0,10],onAfterUpdate:function(){},onBeforeUpdate:function(){},onCreate:function(){},onDestroy:function(){},onHidden:function(){},onHide:function(){},onMount:function(){},onShow:function(){},onShown:function(){},onTrigger:function(){},onUntrigger:function(){},onClickOutside:function(){},placement:"top",plugins:[],popperOptions:{},render:null,showOnCreate:!1,touch:!0,trigger:"mouseenter focus",triggerTarget:null},{animateFill:!1,followCursor:!1,inlinePositioning:!1,sticky:!1},{allowHTML:!1,animation:"fade",arrow:!0,content:"",inertia:!1,maxWidth:350,role:"tooltip",theme:"",zIndex:9999}),k=Object.keys(R);function P(e){var t=(e.plugins||[]).reduce((function(t,n){var r,o=n.name,i=n.defaultValue;o&&(t[o]=void 0!==e[o]?e[o]:null!=(r=R[o])?r:i);return t}),{});return Object.assign({},e,t)}function j(e,t){var n=Object.assign({},t,{content:i(t.content,[e])},t.ignoreAttributes?{}:function(e,t){return(t?Object.keys(P(Object.assign({},R,{plugins:t}))):k).reduce((function(t,n){var r=(e.getAttribute("data-tippy-"+n)||"").trim();if(!r)return t;if("content"===n)t[n]=r;else try{t[n]=JSON.parse(r)}catch(e){t[n]=r}return t}),{})}(e,t.plugins));return n.aria=Object.assign({},R.aria,n.aria),n.aria={expanded:"auto"===n.aria.expanded?t.interactive:n.aria.expanded,content:"auto"===n.aria.content?t.interactive?null:"describedby":n.aria.content},n}function M(e,t){e.innerHTML=t}function V(e){var t=d();return!0===e?t.className="tippy-arrow":(t.className="tippy-svg-arrow",v(e)?t.appendChild(e):M(t,e)),t}function I(e,t){v(t.content)?(M(e,""),e.appendChild(t.content)):"function"!=typeof t.content&&(t.allowHTML?M(e,t.content):e.textContent=t.content)}function S(e){var t=e.firstElementChild,n=f(t.children);return{box:t,content:n.find((function(e){return e.classList.contains("tippy-content")})),arrow:n.find((function(e){return e.classList.contains("tippy-arrow")||e.classList.contains("tippy-svg-arrow")})),backdrop:n.find((function(e){return e.classList.contains("tippy-backdrop")}))}}function N(e){var t=d(),n=d();n.className="tippy-box",n.setAttribute("data-state","hidden"),n.setAttribute("tabindex","-1");var r=d();function o(n,r){var o=S(t),i=o.box,a=o.content,s=o.arrow;r.theme?i.setAttribute("data-theme",r.theme):i.removeAttribute("data-theme"),"string"==typeof r.animation?i.setAttribute("data-animation",r.animation):i.removeAttribute("data-animation"),r.inertia?i.setAttribute("data-inertia",""):i.removeAttribute("data-inertia"),i.style.maxWidth="number"==typeof r.maxWidth?r.maxWidth+"px":r.maxWidth,r.role?i.setAttribute("role",r.role):i.removeAttribute("role"),n.content===r.content&&n.allowHTML===r.allowHTML||I(a,e.props),r.arrow?s?n.arrow!==r.arrow&&(i.removeChild(s),i.appendChild(V(r.arrow))):i.appendChild(V(r.arrow)):s&&i.removeChild(s)}return r.className="tippy-content",r.setAttribute("data-state","hidden"),I(r,e.props),t.appendChild(n),n.appendChild(r),o(e.props,e.props),{popper:t,onUpdate:o}}N.$$tippy=!0;var B=1,H=[],U=[];function _(o,s){var v,g,h,C,T,A,L,k,M=j(o,Object.assign({},R,P(l(s)))),V=!1,I=!1,N=!1,_=!1,F=[],W=a(we,M.interactiveDebounce),X=B++,Y=(k=M.plugins).filter((function(e,t){return k.indexOf(e)===t})),$={id:X,reference:o,popper:d(),popperInstance:null,props:M,state:{isEnabled:!0,isVisible:!1,isDestroyed:!1,isMounted:!1,isShown:!1},plugins:Y,clearDelayTimeouts:function(){clearTimeout(v),clearTimeout(g),cancelAnimationFrame(h)},setProps:function(e){if($.state.isDestroyed)return;ae("onBeforeUpdate",[$,e]),be();var t=$.props,n=j(o,Object.assign({},t,l(e),{ignoreAttributes:!0}));$.props=n,he(),t.interactiveDebounce!==n.interactiveDebounce&&(ce(),W=a(we,n.interactiveDebounce));t.triggerTarget&&!n.triggerTarget?u(t.triggerTarget).forEach((function(e){e.removeAttribute("aria-expanded")})):n.triggerTarget&&o.removeAttribute("aria-expanded");ue(),ie(),J&&J(t,n);$.popperInstance&&(Ce(),Ae().forEach((function(e){requestAnimationFrame(e._tippy.popperInstance.forceUpdate)})));ae("onAfterUpdate",[$,e])},setContent:function(e){$.setProps({content:e})},show:function(){var e=$.state.isVisible,t=$.state.isDestroyed,o=!$.state.isEnabled,a=x.isTouch&&!$.props.touch,s=r($.props.duration,0,R.duration);if(e||t||o||a)return;if(te().hasAttribute("disabled"))return;if(ae("onShow",[$],!1),!1===$.props.onShow($))return;$.state.isVisible=!0,ee()&&(z.style.visibility="visible");ie(),de(),$.state.isMounted||(z.style.transition="none");if(ee()){var u=re(),p=u.box,f=u.content;b([p,f],0)}A=function(){var e;if($.state.isVisible&&!_){if(_=!0,z.offsetHeight,z.style.transition=$.props.moveTransition,ee()&&$.props.animation){var t=re(),n=t.box,r=t.content;b([n,r],s),y([n,r],"visible")}se(),ue(),c(U,$),null==(e=$.popperInstance)||e.forceUpdate(),ae("onMount",[$]),$.props.animation&&ee()&&function(e,t){me(e,t)}(s,(function(){$.state.isShown=!0,ae("onShown",[$])}))}},function(){var e,t=$.props.appendTo,r=te();e=$.props.interactive&&t===n||"parent"===t?r.parentNode:i(t,[r]);e.contains(z)||e.appendChild(z);$.state.isMounted=!0,Ce()}()},hide:function(){var e=!$.state.isVisible,t=$.state.isDestroyed,n=!$.state.isEnabled,o=r($.props.duration,1,R.duration);if(e||t||n)return;if(ae("onHide",[$],!1),!1===$.props.onHide($))return;$.state.isVisible=!1,$.state.isShown=!1,_=!1,V=!1,ee()&&(z.style.visibility="hidden");if(ce(),ve(),ie(!0),ee()){var i=re(),a=i.box,s=i.content;$.props.animation&&(b([a,s],o),y([a,s],"hidden"))}se(),ue(),$.props.animation?ee()&&function(e,t){me(e,(function(){!$.state.isVisible&&z.parentNode&&z.parentNode.contains(z)&&t()}))}(o,$.unmount):$.unmount()},hideWithInteractivity:function(e){ne().addEventListener("mousemove",W),c(H,W),W(e)},enable:function(){$.state.isEnabled=!0},disable:function(){$.hide(),$.state.isEnabled=!1},unmount:function(){$.state.isVisible&&$.hide();if(!$.state.isMounted)return;Te(),Ae().forEach((function(e){e._tippy.unmount()})),z.parentNode&&z.parentNode.removeChild(z);U=U.filter((function(e){return e!==$})),$.state.isMounted=!1,ae("onHidden",[$])},destroy:function(){if($.state.isDestroyed)return;$.clearDelayTimeouts(),$.unmount(),be(),delete o._tippy,$.state.isDestroyed=!0,ae("onDestroy",[$])}};if(!M.render)return $;var q=M.render($),z=q.popper,J=q.onUpdate;z.setAttribute("data-tippy-root",""),z.id="tippy-"+$.id,$.popper=z,o._tippy=$,z._tippy=$;var G=Y.map((function(e){return e.fn($)})),K=o.hasAttribute("aria-expanded");return he(),ue(),ie(),ae("onCreate",[$]),M.showOnCreate&&Le(),z.addEventListener("mouseenter",(function(){$.props.interactive&&$.state.isVisible&&$.clearDelayTimeouts()})),z.addEventListener("mouseleave",(function(){$.props.interactive&&$.props.trigger.indexOf("mouseenter")>=0&&ne().addEventListener("mousemove",W)})),$;function Q(){var e=$.props.touch;return Array.isArray(e)?e:[e,0]}function Z(){return"hold"===Q()[0]}function ee(){var e;return!(null==(e=$.props.render)||!e.$$tippy)}function te(){return L||o}function ne(){var e=te().parentNode;return e?w(e):document}function re(){return S(z)}function oe(e){return $.state.isMounted&&!$.state.isVisible||x.isTouch||C&&"focus"===C.type?0:r($.props.delay,e?0:1,R.delay)}function ie(e){void 0===e&&(e=!1),z.style.pointerEvents=$.props.interactive&&!e?"":"none",z.style.zIndex=""+$.props.zIndex}function ae(e,t,n){var r;(void 0===n&&(n=!0),G.forEach((function(n){n[e]&&n[e].apply(n,t)})),n)&&(r=$.props)[e].apply(r,t)}function se(){var e=$.props.aria;if(e.content){var t="aria-"+e.content,n=z.id;u($.props.triggerTarget||o).forEach((function(e){var r=e.getAttribute(t);if($.state.isVisible)e.setAttribute(t,r?r+" "+n:n);else{var o=r&&r.replace(n,"").trim();o?e.setAttribute(t,o):e.removeAttribute(t)}}))}}function ue(){!K&&$.props.aria.expanded&&u($.props.triggerTarget||o).forEach((function(e){$.props.interactive?e.setAttribute("aria-expanded",$.state.isVisible&&e===te()?"true":"false"):e.removeAttribute("aria-expanded")}))}function ce(){ne().removeEventListener("mousemove",W),H=H.filter((function(e){return e!==W}))}function pe(e){if(!x.isTouch||!N&&"mousedown"!==e.type){var t=e.composedPath&&e.composedPath()[0]||e.target;if(!$.props.interactive||!O(z,t)){if(u($.props.triggerTarget||o).some((function(e){return O(e,t)}))){if(x.isTouch)return;if($.state.isVisible&&$.props.trigger.indexOf("click")>=0)return}else ae("onClickOutside",[$,e]);!0===$.props.hideOnClick&&($.clearDelayTimeouts(),$.hide(),I=!0,setTimeout((function(){I=!1})),$.state.isMounted||ve())}}}function fe(){N=!0}function le(){N=!1}function de(){var e=ne();e.addEventListener("mousedown",pe,!0),e.addEventListener("touchend",pe,t),e.addEventListener("touchstart",le,t),e.addEventListener("touchmove",fe,t)}function ve(){var e=ne();e.removeEventListener("mousedown",pe,!0),e.removeEventListener("touchend",pe,t),e.removeEventListener("touchstart",le,t),e.removeEventListener("touchmove",fe,t)}function me(e,t){var n=re().box;function r(e){e.target===n&&(E(n,"remove",r),t())}if(0===e)return t();E(n,"remove",T),E(n,"add",r),T=r}function ge(e,t,n){void 0===n&&(n=!1),u($.props.triggerTarget||o).forEach((function(r){r.addEventListener(e,t,n),F.push({node:r,eventType:e,handler:t,options:n})}))}function he(){var e;Z()&&(ge("touchstart",ye,{passive:!0}),ge("touchend",Ee,{passive:!0})),(e=$.props.trigger,e.split(/\s+/).filter(Boolean)).forEach((function(e){if("manual"!==e)switch(ge(e,ye),e){case"mouseenter":ge("mouseleave",Ee);break;case"focus":ge(D?"focusout":"blur",Oe);break;case"focusin":ge("focusout",Oe)}}))}function be(){F.forEach((function(e){var t=e.node,n=e.eventType,r=e.handler,o=e.options;t.removeEventListener(n,r,o)})),F=[]}function ye(e){var t,n=!1;if($.state.isEnabled&&!xe(e)&&!I){var r="focus"===(null==(t=C)?void 0:t.type);C=e,L=e.currentTarget,ue(),!$.state.isVisible&&m(e)&&H.forEach((function(t){return t(e)})),"click"===e.type&&($.props.trigger.indexOf("mouseenter")<0||V)&&!1!==$.props.hideOnClick&&$.state.isVisible?n=!0:Le(e),"click"===e.type&&(V=!n),n&&!r&&De(e)}}function we(e){var t=e.target,n=te().contains(t)||z.contains(t);"mousemove"===e.type&&n||function(e,t){var n=t.clientX,r=t.clientY;return e.every((function(e){var t=e.popperRect,o=e.popperState,i=e.props.interactiveBorder,a=p(o.placement),s=o.modifiersData.offset;if(!s)return!0;var u="bottom"===a?s.top.y:0,c="top"===a?s.bottom.y:0,f="right"===a?s.left.x:0,l="left"===a?s.right.x:0,d=t.top-r+u>i,v=r-t.bottom-c>i,m=t.left-n+f>i,g=n-t.right-l>i;return d||v||m||g}))}(Ae().concat(z).map((function(e){var t,n=null==(t=e._tippy.popperInstance)?void 0:t.state;return n?{popperRect:e.getBoundingClientRect(),popperState:n,props:M}:null})).filter(Boolean),e)&&(ce(),De(e))}function Ee(e){xe(e)||$.props.trigger.indexOf("click")>=0&&V||($.props.interactive?$.hideWithInteractivity(e):De(e))}function Oe(e){$.props.trigger.indexOf("focusin")<0&&e.target!==te()||$.props.interactive&&e.relatedTarget&&z.contains(e.relatedTarget)||De(e)}function xe(e){return!!x.isTouch&&Z()!==e.type.indexOf("touch")>=0}function Ce(){Te();var t=$.props,n=t.popperOptions,r=t.placement,i=t.offset,a=t.getReferenceClientRect,s=t.moveTransition,u=ee()?S(z).arrow:null,c=a?{getBoundingClientRect:a,contextElement:a.contextElement||te()}:o,p=[{name:"offset",options:{offset:i}},{name:"preventOverflow",options:{padding:{top:2,bottom:2,left:5,right:5}}},{name:"flip",options:{padding:5}},{name:"computeStyles",options:{adaptive:!s}},{name:"$$tippy",enabled:!0,phase:"beforeWrite",requires:["computeStyles"],fn:function(e){var t=e.state;if(ee()){var n=re().box;["placement","reference-hidden","escaped"].forEach((function(e){"placement"===e?n.setAttribute("data-placement",t.placement):t.attributes.popper["data-popper-"+e]?n.setAttribute("data-"+e,""):n.removeAttribute("data-"+e)})),t.attributes.popper={}}}}];ee()&&u&&p.push({name:"arrow",options:{element:u,padding:3}}),p.push.apply(p,(null==n?void 0:n.modifiers)||[]),$.popperInstance=e.createPopper(c,z,Object.assign({},n,{placement:r,onFirstUpdate:A,modifiers:p}))}function Te(){$.popperInstance&&($.popperInstance.destroy(),$.popperInstance=null)}function Ae(){return f(z.querySelectorAll("[data-tippy-root]"))}function Le(e){$.clearDelayTimeouts(),e&&ae("onTrigger",[$,e]),de();var t=oe(!0),n=Q(),r=n[0],o=n[1];x.isTouch&&"hold"===r&&o&&(t=o),t?v=setTimeout((function(){$.show()}),t):$.show()}function De(e){if($.clearDelayTimeouts(),ae("onUntrigger",[$,e]),$.state.isVisible){if(!($.props.trigger.indexOf("mouseenter")>=0&&$.props.trigger.indexOf("click")>=0&&["mouseleave","mousemove"].indexOf(e.type)>=0&&V)){var t=oe(!1);t?g=setTimeout((function(){$.state.isVisible&&$.hide()}),t):h=requestAnimationFrame((function(){$.hide()}))}}else ve()}}function F(e,n){void 0===n&&(n={});var r=R.plugins.concat(n.plugins||[]);document.addEventListener("touchstart",T,t),window.addEventListener("blur",L);var o=Object.assign({},n,{plugins:r}),i=h(e).reduce((function(e,t){var n=t&&_(t,o);return n&&e.push(n),e}),[]);return v(e)?i[0]:i}F.defaultProps=R,F.setDefaultProps=function(e){Object.keys(e).forEach((function(t){R[t]=e[t]}))},F.currentInput=x;var W=Object.assign({},e.applyStyles,{effect:function(e){var t=e.state,n={popper:{position:t.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};Object.assign(t.elements.popper.style,n.popper),t.styles=n,t.elements.arrow&&Object.assign(t.elements.arrow.style,n.arrow)}}),X={mouseover:"mouseenter",focusin:"focus",click:"click"};var Y={name:"animateFill",defaultValue:!1,fn:function(e){var t;if(null==(t=e.props.render)||!t.$$tippy)return{};var n=S(e.popper),r=n.box,o=n.content,i=e.props.animateFill?function(){var e=d();return e.className="tippy-backdrop",y([e],"hidden"),e}():null;return{onCreate:function(){i&&(r.insertBefore(i,r.firstElementChild),r.setAttribute("data-animatefill",""),r.style.overflow="hidden",e.setProps({arrow:!1,animation:"shift-away"}))},onMount:function(){if(i){var e=r.style.transitionDuration,t=Number(e.replace("ms",""));o.style.transitionDelay=Math.round(t/10)+"ms",i.style.transitionDuration=e,y([i],"visible")}},onShow:function(){i&&(i.style.transitionDuration="0ms")},onHide:function(){i&&y([i],"hidden")}}}};var $={clientX:0,clientY:0},q=[];function z(e){var t=e.clientX,n=e.clientY;$={clientX:t,clientY:n}}var J={name:"followCursor",defaultValue:!1,fn:function(e){var t=e.reference,n=w(e.props.triggerTarget||t),r=!1,o=!1,i=!0,a=e.props;function s(){return"initial"===e.props.followCursor&&e.state.isVisible}function u(){n.addEventListener("mousemove",f)}function c(){n.removeEventListener("mousemove",f)}function p(){r=!0,e.setProps({getReferenceClientRect:null}),r=!1}function f(n){var r=!n.target||t.contains(n.target),o=e.props.followCursor,i=n.clientX,a=n.clientY,s=t.getBoundingClientRect(),u=i-s.left,c=a-s.top;!r&&e.props.interactive||e.setProps({getReferenceClientRect:function(){var e=t.getBoundingClientRect(),n=i,r=a;"initial"===o&&(n=e.left+u,r=e.top+c);var s="horizontal"===o?e.top:r,p="vertical"===o?e.right:n,f="horizontal"===o?e.bottom:r,l="vertical"===o?e.left:n;return{width:p-l,height:f-s,top:s,right:p,bottom:f,left:l}}})}function l(){e.props.followCursor&&(q.push({instance:e,doc:n}),function(e){e.addEventListener("mousemove",z)}(n))}function d(){0===(q=q.filter((function(t){return t.instance!==e}))).filter((function(e){return e.doc===n})).length&&function(e){e.removeEventListener("mousemove",z)}(n)}return{onCreate:l,onDestroy:d,onBeforeUpdate:function(){a=e.props},onAfterUpdate:function(t,n){var i=n.followCursor;r||void 0!==i&&a.followCursor!==i&&(d(),i?(l(),!e.state.isMounted||o||s()||u()):(c(),p()))},onMount:function(){e.props.followCursor&&!o&&(i&&(f($),i=!1),s()||u())},onTrigger:function(e,t){m(t)&&($={clientX:t.clientX,clientY:t.clientY}),o="focus"===t.type},onHidden:function(){e.props.followCursor&&(p(),c(),i=!0)}}}};var G={name:"inlinePositioning",defaultValue:!1,fn:function(e){var t,n=e.reference;var r=-1,o=!1,i=[],a={name:"tippyInlinePositioning",enabled:!0,phase:"afterWrite",fn:function(o){var a=o.state;e.props.inlinePositioning&&(-1!==i.indexOf(a.placement)&&(i=[]),t!==a.placement&&-1===i.indexOf(a.placement)&&(i.push(a.placement),e.setProps({getReferenceClientRect:function(){return function(e){return function(e,t,n,r){if(n.length<2||null===e)return t;if(2===n.length&&r>=0&&n[0].left>n[1].right)return n[r]||t;switch(e){case"top":case"bottom":var o=n[0],i=n[n.length-1],a="top"===e,s=o.top,u=i.bottom,c=a?o.left:i.left,p=a?o.right:i.right;return{top:s,bottom:u,left:c,right:p,width:p-c,height:u-s};case"left":case"right":var f=Math.min.apply(Math,n.map((function(e){return e.left}))),l=Math.max.apply(Math,n.map((function(e){return e.right}))),d=n.filter((function(t){return"left"===e?t.left===f:t.right===l})),v=d[0].top,m=d[d.length-1].bottom;return{top:v,bottom:m,left:f,right:l,width:l-f,height:m-v};default:return t}}(p(e),n.getBoundingClientRect(),f(n.getClientRects()),r)}(a.placement)}})),t=a.placement)}};function s(){var t;o||(t=function(e,t){var n;return{popperOptions:Object.assign({},e.popperOptions,{modifiers:[].concat(((null==(n=e.popperOptions)?void 0:n.modifiers)||[]).filter((function(e){return e.name!==t.name})),[t])})}}(e.props,a),o=!0,e.setProps(t),o=!1)}return{onCreate:s,onAfterUpdate:s,onTrigger:function(t,n){if(m(n)){var o=f(e.reference.getClientRects()),i=o.find((function(e){return e.left-2<=n.clientX&&e.right+2>=n.clientX&&e.top-2<=n.clientY&&e.bottom+2>=n.clientY})),a=o.indexOf(i);r=a>-1?a:r}},onHidden:function(){r=-1}}}};var K={name:"sticky",defaultValue:!1,fn:function(e){var t=e.reference,n=e.popper;function r(t){return!0===e.props.sticky||e.props.sticky===t}var o=null,i=null;function a(){var s=r("reference")?(e.popperInstance?e.popperInstance.state.elements.reference:t).getBoundingClientRect():null,u=r("popper")?n.getBoundingClientRect():null;(s&&Q(o,s)||u&&Q(i,u))&&e.popperInstance&&e.popperInstance.update(),o=s,i=u,e.state.isMounted&&requestAnimationFrame(a)}return{onMount:function(){e.props.sticky&&a()}}}};function Q(e,t){return!e||!t||(e.top!==t.top||e.right!==t.right||e.bottom!==t.bottom||e.left!==t.left)}return F.setDefaultProps({plugins:[Y,J,G,K],render:N}),F.createSingleton=function(e,t){var n;void 0===t&&(t={});var r,o=e,i=[],a=[],c=t.overrides,p=[],f=!1;function l(){a=o.map((function(e){return u(e.props.triggerTarget||e.reference)})).reduce((function(e,t){return e.concat(t)}),[])}function v(){i=o.map((function(e){return e.reference}))}function m(e){o.forEach((function(t){e?t.enable():t.disable()}))}function g(e){return o.map((function(t){var n=t.setProps;return t.setProps=function(o){n(o),t.reference===r&&e.setProps(o)},function(){t.setProps=n}}))}function h(e,t){var n=a.indexOf(t);if(t!==r){r=t;var s=(c||[]).concat("content").reduce((function(e,t){return e[t]=o[n].props[t],e}),{});e.setProps(Object.assign({},s,{getReferenceClientRect:"function"==typeof s.getReferenceClientRect?s.getReferenceClientRect:function(){var e;return null==(e=i[n])?void 0:e.getBoundingClientRect()}}))}}m(!1),v(),l();var b={fn:function(){return{onDestroy:function(){m(!0)},onHidden:function(){r=null},onClickOutside:function(e){e.props.showOnCreate&&!f&&(f=!0,r=null)},onShow:function(e){e.props.showOnCreate&&!f&&(f=!0,h(e,i[0]))},onTrigger:function(e,t){h(e,t.currentTarget)}}}},y=F(d(),Object.assign({},s(t,["overrides"]),{plugins:[b].concat(t.plugins||[]),triggerTarget:a,popperOptions:Object.assign({},t.popperOptions,{modifiers:[].concat((null==(n=t.popperOptions)?void 0:n.modifiers)||[],[W])})})),w=y.show;y.show=function(e){if(w(),!r&&null==e)return h(y,i[0]);if(!r||null!=e){if("number"==typeof e)return i[e]&&h(y,i[e]);if(o.indexOf(e)>=0){var t=e.reference;return h(y,t)}return i.indexOf(e)>=0?h(y,e):void 0}},y.showNext=function(){var e=i[0];if(!r)return y.show(0);var t=i.indexOf(r);y.show(i[t+1]||e)},y.showPrevious=function(){var e=i[i.length-1];if(!r)return y.show(e);var t=i.indexOf(r),n=i[t-1]||e;y.show(n)};var E=y.setProps;return y.setProps=function(e){c=e.overrides||c,E(e)},y.setInstances=function(e){m(!0),p.forEach((function(e){return e()})),o=e,m(!1),v(),l(),p=g(y),y.setProps({triggerTarget:a})},p=g(y),y},F.delegate=function(e,n){var r=[],o=[],i=!1,a=n.target,c=s(n,["target"]),p=Object.assign({},c,{trigger:"manual",touch:!1}),f=Object.assign({touch:R.touch},c,{showOnCreate:!0}),l=F(e,p);function d(e){if(e.target&&!i){var t=e.target.closest(a);if(t){var r=t.getAttribute("data-tippy-trigger")||n.trigger||R.trigger;if(!t._tippy&&!("touchstart"===e.type&&"boolean"==typeof f.touch||"touchstart"!==e.type&&r.indexOf(X[e.type])<0)){var s=F(t,f);s&&(o=o.concat(s))}}}}function v(e,t,n,o){void 0===o&&(o=!1),e.addEventListener(t,n,o),r.push({node:e,eventType:t,handler:n,options:o})}return u(l).forEach((function(e){var n=e.destroy,a=e.enable,s=e.disable;e.destroy=function(e){void 0===e&&(e=!0),e&&o.forEach((function(e){e.destroy()})),o=[],r.forEach((function(e){var t=e.node,n=e.eventType,r=e.handler,o=e.options;t.removeEventListener(n,r,o)})),r=[],n()},e.enable=function(){a(),o.forEach((function(e){return e.enable()})),i=!1},e.disable=function(){s(),o.forEach((function(e){return e.disable()})),i=!0},function(e){var n=e.reference;v(n,"touchstart",d,t),v(n,"mouseover",d),v(n,"focusin",d),v(n,"click",d)}(e)})),l},F.hideAll=function(e){var t=void 0===e?{}:e,n=t.exclude,r=t.duration;U.forEach((function(e){var t=!1;if(n&&(t=g(n)?e.reference===n:e.popper===n.popper),!t){var o=e.props.duration;e.setProps({duration:r}),e.hide(),e.state.isDestroyed||e.setProps({duration:o})}}))},F.roundArrow='',F})); + diff --git a/complementos/EstadMat-AllChap-ES-.pdf b/complementos/EstadMat-AllChap-ES-.pdf new file mode 100644 index 0000000000000000000000000000000000000000..58c6b043e24e67a5a59634aae08419b01ee4cac8 GIT binary patch literal 212398 zcma&NLzFH+lWu*=Rd3n0ZPzK=wr$(CZQHhO+vX|T|JQ5XLI3ympl7*OjB*mO_Y;|< z^1`CDjC8C3(&M}9HvkJ80Rw@Zp(TKahhEge+S$aBUewya*+kgH$j;b=UfRUg%-NiP ziHU)OmlxpV>}X;V^|~y$^`k^r zIF?@?WVyKgLIfUalu5|WkZWQd;se1h|1=5;6`+=i#?}3C)%&{C^>gX_ed76ggU0qp zD&dEldlf)7eYQv9Z(kjHypAK61aqpxE}85^FHvrMj9`8R+1^3FfoLC1`!h*53GWJ$ z>`J^Y)rnO4HN2AyI86RWIz4QBpOZy7t-kFSLHu2}{Y|x9XFKWnlsDH0%g1K~{N4|G zAQ(U{53G<0OJ1|hjZbO3)-J%;fMzQZf1@>Wm`D`w4t~P!i!au(F!&gVUL1m`SwdYq zJK8kyNHd3gt7b4|K`K7HAfArHiFX628eTbiHM@h6s7_j=0EG*1A4ORZg(GJehQxqU zwvBJS&)ITN46pOvImV;za08YK#*~$IFszYm%4!NJQ%K}#Sd^l($-E*FqZrRJ&gfs+ z4Zy)5P1Qtm?dLF<7D(2Rz>q_F8kRr~=U@adEYi%plLWg*20r|gnU1?MR8_^mdu7@S z0uyYhZrfi=O!jS{ez9?@k3c`j1%YZsOYL;!hb=#zq>8mMRj|><9AkY z?)M4~XA9-Kn_8K+0QgLsaFfUswaBR5XPs4yea-_q+?gn8>bEBA9prBy;Nab;&fw_zyH?atxFH@3PUVRm&@qvH zZC{LrIh{>!OuEd?r#!PY5QMP-hG#G_T_Ld!g$7|%c75y)YAiP1p#B<+; zdhaAal66f^V|;xS0+~lna`^|*uqP3B0H$nvrhpm+EQA@Hxs*+A!iaJq(b0Upw0+LX zm$pQhO852vvJ`*5(E!n*S5L;F6l%p1yxybTB=aDZ&L-*A>7$1@w+55iX4iB-g$BFy zpx*kEASitm3{zI3+>M1$NmQd0)x={wT9uk}n6knrhdlLB9FllUFLPGewO|=9406e# z-xS{(VQJVZj@C(ldWm^EJsTp`1+Tq&-P{w-VG+eZFRjqpJ=2~AOoO8_Pm&ga5qWv$ zuZJeLz;~<^aGmtW1`wNSt)SlFe z;A`J62<=4L6`9L*DTI>h12q1#i^%MO80jgw!m+DwioKl0j-!K~t-@Q2QX|gYPX(%Y z*rw|0_4Jq-2BxqM;x)LGyaUqRz8KTQi+sT43FMW`!+VT#?2r|DtghS`1DYGY`aW3uV$8 zzlK!O25et^+%5DW>cUpPczAS$9l&mg|-IJ6ew#=Xau2AO$PHv)WDj-%%pR7 zJBWQqf+SZceMFUapOK8D5|4)vWmaYu>;c1@gWR+5$8{{EQmg<6LkJq!(%C(g?CDWh zj6Spj?QdJ?RBTK$m*lce$I>V33Fa6I08$vDlD_`rPchbb7{4gdCas)kfRhY z@ldhtgs)`70oLiX1z9h=NcD(esmCmfwxcUxj(|m7}>UO5`RRz z<`ub^gs+`%h1rnb=#!R!$PEk2oCv9~YO5yu;OjFWh9jKF{P!@J~`855?=e!+ZS1qH^Ew9X;fgQUk!m*7*OR%70G(1vjjW{~O9- zW@Y94@08PnJr#T0ew|xaj&EMK3!l#z_GjZy2UxmRyik{wr5xw+FMWcr0*Oh-m&3=ap5LzTr_NsUZsY6e%cFxA zvxn2gDVx^M@8eIMTZy6SWZA>mm%9^Z8o5E8+$Ft=uZLDHMM*WKANJeU&Q#wN*LOuS z<@_wgH{#_Z{_oFw+}572B+{2m6>U{DCY0T%?IZ!BYT5{D$-_z7mcdnIVSx&)h!?ng z0g`I|V2|KFGJ##U8}*=H`djQUG4Ds(hF|wZr>d0t+FGewe+P&A#sIFxyl~HsLtZC1 zA(zT`n$-8PQP|{Vt5oh@I)owcqV3RX4N-w7FBfla3vJGaLh9^-x)@(S8>%)ziAs-40~! zvfC+ob$Qn^yA1XV^DM@I(af833~@6afjRxsGvzkKS?B!$T#RH){kOC<8=c!hG{|P_ z1-T6}YB?tsR;3UrNcfma5QEhfy%0@pG0X9Ib*<=1l(1PxKwAsy=sLdLOm6nocoRu^ zj#U80yYfNU(^gjKVt{x1^B`awmPYc14a2C@8S^j2{fk}5)m?dT53fb^6`WG9hy`O# zIsu*d+~{O|}?i3>zbeAxL!dmX-w(^HR1F$)+2XsTDJP}v#yR_pp$z!8$ zvX>?qA=!|yMsoxX7}5#tj7@NupR$KhNrW9a&_UrvD=XZ?{-5JHGU!sM_C7{jUa@Zr zO{pA^vImSu7`{vEP322>h_p|(kUrVSxUsk>Fk0*odvmg(w`RVOAwKq&GyCdp+<$SZ zNy4bM%az6v8+F={PluO_JGc=k4`fE_AWg>N1lQFJX{DS`Zz>q`v=FU54tppmE#!Gn z1>+7Va1AUg_?;^%q;+ne21~hF$76%*O$`YDy?rt^2pVV%QTFR7=!ha2t454*bP+Wa zxU})0X?u-mn={gmnQ*6)UyxM%QJ*O!Ed>%v#szj8SaRC4c2#s$)>9Ar3eX!dQyOf4 z)KRe2Mub*QYaCwuVxc$ydEM{LqmWZ18_yV4;}i-NeiHBONO&QKpnqQ$GF+}H7t7TG zksK!?DYpeCCYBph2FoWv$)`dL@QHy0N5V7cATL0emzgzM>8DKA0Lerh^?+=NJi)KW z_N3s#{jLNAoQc#)P$NbeGypy71SS&V=hZ&Q9IoAcTq--C{{?PJH?^YOa>|Pyh~NIl z)NuL2zkvTBh}T9~(TVTsIsSwmw?oWWD`m{+YDUGH$VhXP$@J712c4U*_A|1rX4k;4 zPrisl{xNSvDQRMOW^C4}ki`mjv>1}y#c8<0(t-4%&>~BsO6fY&NTW6)#Nvp4*Fq|f z4fZUzet#iGLM9eQT~%b0F{*Ql2ur0>KEDMZuCcl5PV-pw^zkU282J#EE#-X#dTsj~ zo?wYE2W-rNyXegT^e;OryK$27V0@)Q2hyRN2n~>}r&L+KIsrZhUriCyN#|Q|7mTV` z1KLFgU0t{0xPhw4S{m7VRWqDk!LFiG`&!EDZU+!idn;{_IP@y95Sm(>iT(tJJ+VW* zmL7sw)MqXmu()$$`}6xVuUy22(PtydH8D)^jCavZ|MRs+<%`#}H$V3PrQpQAlZO zW@$!Ddgf*=1LxNCnQ_@LeiTgO9wu1)g3<|HsVZcMsPcv?j%g{XX)-C(#mWvcSS%af~vy*H@ z`rW!s2)leRT?6;@8h99F7k#Os-We(pJPkWy`Zt>~H9idK_KS3r&x9J==wY2Z%% zB$}t6MBZG`NvZBJcThj(i<2^Wq>iY7%c5JPU~VTOFx;cg1-Jzu9&kZeXM7@?&KcT6WbRW?g6O zSMAKwYLAgjkP^-ndVLiPJpF1X5(WWT2NMw4tv=!1Cr_=n>Z4kmq3o(3Dh<}uWAHy5 z_MFjGyW8UILeJlx5u9s-P|d2#TANHjbz!DVB&NQRY6}Pk&Nr&|HV;{$AFkM0WbdNg zWYJEq8hPq{$!6ZjH(d8t;>igjHG^a^kYweSw9 zH4^penu=r-`TqM)XVd=1neHd(D&juDu*=N#=saedvKrA&ZY4|evR2oY@pY_0V7w|^ z$kHn}CPsEN!SK&+Iz=gk9y;SFpnH?kS^o8c||d`%>_CCg;fv}rjhT2V>g zm5R z(R9{>6rDSv-*@L#TmKGMsiK3z83+&hORlO7m*bKHmvo@HZD_G!n~U}!KKz$i#u##8 z<~4MDge>UIx-jWOM(0|2v|{4CU9nm3szZ91F}i->!GLdQ)Oj`(Dtz?@oaL09Kj|)2 zfkaB7RN!jy&uTt84)dns-n$gS37iP@TLS~r+eJBs=+V?X`6N4ndCr%T>} z+?)0;R1lHmOCDBqvkL*QqSdhH6K1JhqW+8*#0v+q8Z4{lZi@rue0sVt0H6_IJtgYk3dzEbf^9YYG!`eO9=dfpeC)`00Ao_|kPJO4^mOg&GHiR`}E^e{2AK|4!KkCxK=n4TZu zT)1XdO!~~|GvZo-z>qR>l({5$UOA(ulVf&$2#Oaua~fFLf?ys9pd&a6z24jqwd9#kS;yadt2RG z8>(SM&w4zTrb{myFi*r}1vJtAyr=yFO(>2w{|~ar^1qTrW{&?$7Q13eI%r?jp5UEx zgnI%;Kq0m2jVAwb7aY z@tjuJa8hvfp2?3pUeM7GsiqeL!29JVnpl~`l>1%@tmzjKPRuRPAngn}Dgd|RjkBV= zxC|Lc2hoM+dnwoWQV9l7+v%)53Qtn&k)HXiQ@Q$kDGIgGooRxj3SvY?Y4%%G5_)JjR&08g=cSVTcA7q7V# zL#Es@NJfZ+*al%KLGh-y&_lwnN<3*Lz64e2(+v7WpEXKi!d%5lI;0iB%WyxH@eUSpwc+=n@B}D&nGij!Oon;JhjVm`On6!g7vgS zwB&3>R_*g@#MyG1A{_$Rk6`8R!7O%+Z;68VA9zu#bL`Q6USdqlqISWekbj1=$XtTp zYtdG7c?s7Y>c3Qz*IZYt@<$Y}xkoK=JTJ_D5!HOQNy~s1?by68{&l5%6s6Bbyg4c6 z`(>as8-{W*q)@*(8GrflV0F;Ii-qAVH5E0!eJZ2*otZeiIm|rKOC9H?^(VnmzIRT# zSN>e*MDq1)S2rCme`Tp1k04@78#StPx{-Knv$k+_;)ntvkv^*F44t7`RR z3g-T&>k4);sHw-a_k;J&G!J?!M zn4BocwVc676pL+Bl@Uch-qhm$(`wsdo+b!e@fJ)M`G#;}rpPh*0+FpuQl3r!*>;2I z=!LF#HcP}jW^C4FoZG~ZwVSiXR7UEN1fpb&N7$6LP)hXuPNdA43xn3L$!z3h4kbCx z@r27`1PjV-tS2&~<(3iH+$p!|Lmi$$wuJM4l;dYLDSO>v6M^Uf9viaLgYyr1T&0PCmpLpa;PMo$@gHNZ(a4zN-neSxzw z_7qbY*M!Q8JCNOq-Et=M&hjYvQdyGs0O`nc~BvmIR(CTJ2U?d!aGR5H=eoE#626;u9%#Sn2`^J0vPB8H9Q3?w%z; z*&iZkB5U?4As@|KtSnv>g9?%(+dcR$Tr4|gWz5y$NgDP?tN3x+4QI%NU|nDFPYKpj zfI}e@7&ttbrm8rwq!KP`Mxi>^F#ffXH5MnVyR(1E1D9m9I>TN)NA7d+;C9g@)p@)Z zgy^i*-`S;Ln|Emtdf58=z8oO&QZC3iqQc6%^7E}@2uLA%M7I(%APX`2D??PB(9?cJ z{`w;8?)axoz*!G84rFb-XV-T<*e2-=|75p^ksiVskEYLH?irH>Fp$tcTP~j=3QpPz zY^pgzWwFW7sgc^q*HT-oAxeIw@Oi+(GMFAjv{mjD!Z=B4UH+^{Gj9yJ=!9u?&|fWK zt*#JBUMTOGRE`DxwNy_!at?e9V;^G{tlfDlMto-mCF=I+_2h3!X%!Q?RlAkr+)<$H zEW^8xN5(rWyThpPhoH^~?wp%Q-J6{4DEFD6=FuyG!Ys+v0{ z1Wh=2A@g_+%sYA&8k1#}B&E5W*7zLgKdsSHes_Gh9y$1n^P#D<`Gr0uxT&H=FQ@y5 zl9^P1dkukF&F2vpPZAUXi7zkINY9jZK~(;%4$OG{sAW%rk~*v%f1ri+er_+#hlHMc zck;|lGZ!?l1Y*0bxEE`DV65{c{bv3WW#E)<<|Liy=hPhmwV4aDxOep7yw9x>dO^|5#sTC+}CGTPb5 zxm?j`#Wr_jhn%QvJcgf)I;lSPoDhbL8Z{nN>FFgcq|{XgU@lq%Z?SQ<0eu{}hts^- z>8(dZ&SqtdzM7-r9_E%>0jJ&6O8ggt5+O+@xD=FUntxu;<>1OjZ_M&!XIy9WoJ+lf zVtL^iv*cU5P!l!y8co7u=bwB5u6WO8KDSjnJNz2!w5#V}fx35h=VEqp9U09n^WY4$P10Z+m6=yH+pS@QMJdyo3cB6Ob_w;O5~9V9izik*%+ z*MlKq91&KrD@rKZmReMOPGZb9HF1f4_{;Q!%pleNw$zw>cS}`L=NyiHr?sxvZikep zChXEo^u;v{6cZV9scs9gycoRT=1b=mWD?@6tA0$^t~_kEt_iWIwc?s=4NyxWV;7hz zaz+zk7oG9T#{4{i#nXvnDYyINWcqHR$`tfstR=-Us}`++f=^UN_?B?J4|xWL)-D)t zs2aMlh5AGpkE?NGZ}*U)zW1I*XPXRzcIkv((<_6er?f{0y7^Ocmto!c@-|HsJR0Ap zRPH|!vscmPu2l0UOcQhHE7G`;p@n;Xc%(!)>@6mtkErQxAX-aABeh z?gO+9&rx4}|60d?3zjKnkAHE@XeQ$EhsR=<>qT+aK_u;`ds3pXLo!E!*6x?-Yg4N` zt;Nu1^LB)|%AqMv>q`sooyET1W=mlVm>C1RxGmW4I(eBmf$v}YzR+p%cohBz1!Mo; zC>RqfBlCaX*Ue~7#4>ll_MTCG0jrWkZvH8P2TJ_U!tQ)aA5Q1`CHs`&)(@&hzOeGR z#P5mFoaLXQ1d52S_Q{eSxzpm4nJkd(06FT?#iJb78~gXK!`s)`=f&+WfV@a$aUy%y zj@&3wk}Z37v_gOB;`?Jug!^dM*Y8&@13S45?@_so=3@ynS*~`P`E=>kBan>hcAw?c zq9(}|;r#LF8isH_{C#roP^7Gimc?3e^sPI`^wPKJcdo6;C9T_g0ErR*d{~uq4(Fn+ zi4pzVAgI;q<-8d2&iSV5yt|#JE|$aGEOFGD{W|fwDMwIDa6-Aqad)vos6Hlbc&p38 zOEIyjtcl!XiwqxLlb9x>q)u3sT~q>~;*Y(Z`KN`^oeE0;`2zu9auuJhiRtSDo()Mv8e~w27bh~E_LwAw?xK*CM6N<)Q)Uf(v* z@}`evw+*zsMxCMeNVvH~cJw)j&CXale^?;sQfzZHOen7eiwUF5MNc!B3dk-6mMQLXI{Qgp28xRwtW~27` zIh_5LKC5JpvTmzUGj3N)cf2uPBw8^c(`p)~ck%gHEsbQc=KjPoIUVJ42`g1j*R^+o zlk4Z2e_5E6hOtBC{YNEuO}<`xSK|1W9D6w_vQ)GC|FtL{{%4CI|<RwWB)`5DUD3q0^-dSam&NO zfu29Df9Sdtyk%ZV3;1Ou{hNg}(w0@TLDq+n0*r=tRS#6K&Z%bS64MyJ1oTA%W8HL^ z2&+kiI5op{nCx?0NzBmcs)r^Ct(l_yr)JUBq<7F7gzdLz1dplK?SZUtuQEp`aE`Xf zkWQ7nf|4SZn+cUU6|(2HFXyoC!75!NqL_bDu3@O8l`apZc}m5>jb#(w8G4PWc}^+D zv`tgls3sX*-$hu@O4&k_1fZOcbmfRPi0PdSs{*w!4jSCu6*yG^R?ur?)d>Q!z<;W& zF34AsO!5rNwZU#=--zbqt2y+hSBmY@yTLvSDl_oERcoUw`*D6P^2)EG;(_iYF459bkv5{JuK#Ti4Ka32TC2v}dpbOi7FXrBSWKpE z2s&a(0Au0|rV30*u4VGAB8b(LQqnMJv8(t-GDd;*hD0@aD}?4h{n(UQw2we2319;s zBnHP>>3fU%+;jb`i?>C=;QO>frYFuR{PG*li{*^|wm34D8~(fj4~-hHa&!nxF&#S_ zM@OSFE?Qqf4f8Cn<}TFDJu4|!L@*~RPdDK;^CbWj+i#pq5HEi{`q+Y91K8_e5~d|u z0HrQ}pUm71C@JP0`jB{yWlhTdSqSU2x~2M~+!1lc%NkOhyj)T>nFLNocGz&w&C!|W zR13PE7(aA4zV?r1z$d)h>~g8LIf{ZbPTTebPzc&yz;ejwF0&lvPFVpaI1!FSFifbw zjl3*cGT1i0CfVbwB9Dtif2qXYN-T&>k_)j%UB0dK8&F~m@jltqPg8y&^ba`Rjpi3J zk-$ES<~36Jl~G98w~yEAS|{>ff${NQWdU&Vn)x4$(bLf(#SBJ-9ws{b0J@nRf-G?! zN)r?kJPSgui|Y0`ms3S$twpJg9t4qwnW}eZm)5-r{-+ApG7n!Wl3<7^H#rqP+-kWo zTt;4#RVygv8gIjxe~l~Tt!o@Y%EFnfCRTZ3FQW5@CgclOny zvN#3Rim5>DygioXVzrv)?5yIk|Da2EB7f>YAV>{j#`JYArhr@S+gc9q;3h9S9mtY( znk-pQi(H9R(aF$MP+${W4umSmJ1GTVF|-0Ly#g)AWA*d!iVsGq)UF(T^f>IPj-Q$I zNGV9Y2U&br3y)3zGRFqut%ytLmjZio995Wg)Ih%+47myr%wh(d6EgFlqmE7vjN}J` z(|v`1Qa$naTG6dj>V%pM;2mlUZh5hrBVKz4xz;@2<4%qq*D+sYb%|l66?Z_wqi4j> zv<2}?4E18hudZ}Xkt)qnDPYd@+5@&{qmp|yE%9x9{e1w$&UJpGZ0Lp6`Zw!bAlnTw z(poPD%#fZ@vrxay!2t@hJY#=j<<&J4Z95q$k)FTc~N{PfYYv(MvIaonAxBLh9OI{k62ysuAs+mx&If28sVihf4P)Q%7yz`R9 zu5CC3psTnGd^NB|U=T~5!k1bKoZ5q#k)x-j>e+^vpIDj8Y@CxH-DWJ+s@*Ov)Lh~^ zzx72%-jwB%FU*7N1?_+%H{{a9ws?u5d@0LuaR2Yp-1g zovjC53%*F85OUpT`_7#}cFV45{#R7r1s3?VeOHjyPUIl15}dEVr#V&dX~J=yu=<%K zbQEYZAEW8r=UI)cEPq>Hg>VX`n|A!Y*mX|pY?R&8E^hi(z9AMQsEE-MTxgXv-7rdF zOkG$JUD)RFlgX(S*awpFRUkcK(EQ9y|li-?j#x zTg+|OHQim3xLf48WxU-p^9e%LqH6JZX5^Gz=`Wyb79ZzUgmchO_i%>Oeg6e_PxRPs z-9V&Bba*4# zB9b(KOR+rA9}Tnz^E7i;K$3EL9Q6BpxR11*SW#Sz6}^DLQkgPo3_hW*2P#zdn>!qF z#OKgx-#E&ACYScRAJccVXO}hC_s#MBtmcE1?Qt`5F?Rg~{uY};K2q#hhQH?5<7B%X zmh?tRmtFM;!O;yKvDW{79i6up$9}@IyK;F%%ezXX*B|2qbMKkuQyc0 z5^`Vy*=t;D0J@`KOJejMw%W|$If=Z&K}APHv(<~-!jg7xLDG}4_x2j+N1$Xqg~E{N zL6~5YK!|0HX_Ap38X^!HAo#*~01?3HkR8B=Wr!tr@lyM}$=qVA(4XAwD&o)k8 zjx9Il{3u5?P_RS7VHVBZ4K~(%??zJWt}k@{4j>j;C3Jw=)1S{{Xqwc-K;3S+ZSh1B z`>eEiN_B0=Mirf!4q=hP+FBQWOT-JY5p~RPLC{kSYP3V=R(k0ka4{)kuf2}cBpl@? z@WCo-R1a0b?9^=fWpR~boc}6P$K+rgca~F4C=U*)nY-5FXvV2fNa1kO#@FQZ1R?e$ zJ}YBy#x}Ug?CrN`7YK6r;3mu94zSBTzG`KYaAr6saodSBRh-;`ieW3NyCCy+ilvOQ zg}UXeNo8AYx=?`1SUclDnP;DNpum5u_a=M9tbrdcN=K+gpDP0}jsY4vU{G)vqKG|k zv1fKQ$l9-A{UZ1_eOSNl>&eXM51u*Uj=yM~aK<~P@9VR>-pL&C_6t&?LH0w86VZb) z3c^O6KUZsmh zZ_28G1{3Q|K+6cr*35aU$Pj&!t#cZ$>%rAtH0sD^Let?;$Ozb7lBJ+A` z7sE0s&P~Rw1ir8!tQF*V|eXtcG<(jEK9pC0D|4DRO6TY`rSQB z0Fncb2DvZ*eh^V-kBUZ@zt9r%BjOT`d97jU!O{tL)>R?~qM0Bhes&OmoV|8-45Huh=xWzcZbfuj}st7>*+i_nr)Z#sN zut_IoUCl^UF8wd?sq~E{qw^$eR-Gb3lS1=KQabw<8+2(@mi-1X&Eko*_YXI>i?3av z2bh3gKrn>}(h>DnULDq9SwiCbDiN?j= z`e~H_WTtRouAY7X?g5nh<5Uvp3T!AEPsd@TxoLw+Sk0i{JMVKqJ!L;?w6fi6Qyr`_ zILt;KBSu+PO02*=C>mzcGA>1h#3V#i19k0l(o){Jm20#$cI+D$RVMqY(mSF{L-0YH zb4Mi}X$&@I4h$7hP{|YRujmUxabrMRj%MDOCqgCHs32Vk@QC8pvg0BNt$euKk)fhX zNo7)fHWd3Yhr?1asDZ-iUoYR9PU^^!7tIv*(WCa5c5k)OTq~Ng7%`*qE2-P$a^yWu zU|z*3)|4E@TSHCFdr%=eH6$x(hf^|l9{p)y=6|^`jkC+C;ej5ac9;tJmVe|nWpjAF zieaaTB}6UJvB0w>2%ezyv^cn}!<`BrX>(V8s?9)TA`R(C(ZmuQ;JGE@kNW9lqpHr}~Qz$ga+Cw53dC zf>*iBP|c#G7zj7^76_+5aGVf$B*jI)sPe;oQ~rc-F6FpOW1=t~&Y;nQpC{~ zm$w1|{7C{|x3J0YP7E{)u)n9s9u}scB|+5IX%<;CBVx5wGuht^N5+c~g=tOh zDg=>@i2^(kPk{2VvyRwu`Vhrv3=fs;A4B1lTr6pSzCqQc=mhTI=&I+S8i|%HO~#{1 z-{(J{GPR?X=UIwdKr_|h9U3P}g!D^X>@zOea1xRex7+A2NHrwtD;de!v?R$_PA)4h zRY;zTEo}dA0oD!IHsz7i^U;>G!M~t7sEP0^5$?_mbCj>%n$xJ9z{*uQ2so7Y-X%-r^@R*-#_1h%ZQ;GETsJI~ojmWZ2t425d-e#%RZgq)*|Kb_uUB%J#$o z#)!^D-%c3*q#udHD4d-IZ%Ws}0)n0w;&n9~LmyhVc=bzc%LQfYDe1;q9ZG zCuzQ^&bjWs6pz8#<)-N32;QKs@PAsHnI^!?QdFF)tR%KVT;VEamQ@Az>bRyC7?QG1 zZzfWnhpA1uWD@qRGuhdHZ7&!7*QhTLm2c(5^>1F=TIL#21h9+pRXtO5G>->v(_cr6(!P@T>D+e#hRJIVpo0kWTMul#e#cE4~2k;kt4W7vRIV*&Ru$^Ibar-AI1|}U*GH!#2 z``le6w&Jv_VcPN;q;Szz{Simiyk1ZbNpE}XKw-0Rz)w(^l~*5Cx8cl{=}Tb~*#7&- z7P29EE@%;|+nzmdjNlkBZ!>ari#qt_=39^-@BAvt1gsSE=OFEN+IW(;B)tvfb-DYB zpS!~@5;;L?G)C(*S>rg_BSWbR&TBuY!RZ@k;r>3s7fYt_y?UNo@mNHqe*=6g&r` ztKx2CcdI(D{FHDli1|EIc$R7bsk6f*tJ`fnE}IA|Vy>ehKu*Lz-1?p#?dB+sE%%tgEsml#_C-CD&=Nx5ai4=g5xyUj)i%-)NsU0^#C!svHQHpN+Q) zqV7&!@8xttJJ+Fzjscsk=PV+*UUY|Rw~NoAWU4w3{zVF6A`Gu5N>D*|buI{1s=WDO z{BGLERrNg5xNtGQ$_&LOi+LVxoOOKe;NLCicyi)7;Yyk+!AjCw6$HZd(XVj?X_~-@ z_xat}Xgy8G07*PC^QG9j-UR<}9?6;aL5FxjPBHk@S?ek~RxNYQ#|;<0Bd$dQtKfwc zUg8NW3P^>i-6~Mvv_JP5z0Z0llovlD2m9~H49Ro;6{z(j(^0F=`Rw-Z7IW>%D!}#k z>{?K0bw=EB(0W8;kvTP>*vuL;Fo?jo=icjY6!^9w>kX#s4u&6n;pJ zoena?HUp|v8Ukg=1}PWw$Ir7eV**JA@69GLhQeS8l_KD>HvvaXR+9!NX59w`Dh(-@ zP-UGRJ`T6ueHP2ZN5=u=GWkBI=h@$26xig$(5pWubE1<{29Y|J(=c2nV4!0$+GhOm zI;?um#sIL+TnMwnHx1d2bkt%~G|9Isv86AN(58e5iK4Jhg(Vi18KQl=6ldb&oDE}x*zp|q)UunKri@c- zZjpR{XkLY$tRYv6Ny;|!o0o8}+?c;r;wCoWmfE6wzup&`PdIIUB@J;@FPqsy}uX!>^s<26nr zio|6`d9pC5r`DGa)TQV3rHBcR;fke;*aJn$C%*2fUy~M^MbE;3yN+iq{L^A9F@6v~ zx*gseT$?I&^2^nuSMM*B8fJmyIzMAB)pc}5UDX3n;@JfO#SJYWU_9+*5p&TnXYkV! zePy_k?%eeK3tWyz3!f&hIeJz_OA8gwZo#OTXs4F?$7-Yzi?*Ix3x|CBWlEM;z0yd3?3(do^_IEP zrAOrrPt+8fu`2tOwNpg;qg!?jQ7#Z`|!wp2yKH!MGzDh`BM+QvjKi9DOn8 zF0DFsjmvEhdMNLXqMxWUzE0+BTk?F@oB`ag8Ar}1rY|s|P%JcpeIWLZ;IA*0mk}Al zmps`tmG{Rx^*YbUOB--qZvtS>RV8}ZSWI7sUz-%=fVXU^qX&17?G!_lteNuT1oW{N zTHiancCTdOP2Hkfdty!w-%^<+u?^0_^|Lnm^eil;RDes}GJm8R0;BgkGkMC!}9D14cIM!5?R_F|E#cHlu*ZHXr0>B{lqtT_<_ zxk6dFYHQjjgx>h2^ZtXn1m$TCAi}l%Us->ooMq_EQrQcIy(lY?}W~*17o+ z{#;z@1P@!*G-&MZ1D!GF<8E!16$^s#?|` zVOdYp?UoFY=iZ-N$xd?^Qnv@In|hGg$~dD>0o~F}h8=d`Iv=QNxe!xVwnE`O>YJ!d_ zhHAFyz!4n?GW_rPO)7{t0oI6AmiatX#cdOMUMPVk!(mps~3BG=ue?$@8^JiwR{EfzV zvcmZpah*9B%hRRGeo#7bFG6K`&&~nW4#fugo=oP{!rJycMq-*JirI1M=ySSMbG&?V zOstcqM4reh>vjLt*cCANpdM@=!gEBW;yjizB)DfQkn6RKHb}a!IrrN^fa&!9Jbmrm zm+3(-2A=dK!1jz$v{@l6}v8SSVh(H*=%4B1_?ie zWTtu>s-`?Lqa5R{pHrbS^{>AAE-W7dFjMU!0c2yi&$O#dIl$*Kqj1K(l_+cwr_8|&rem@pF_5!w`yhD}L!;WANM)`9HRl++9?&tzRu^>!qYZkQohk~C?|Jedi4xyMiVe77%I9iiEx^P<)A ztf>I9iI5mYDdyxr>EA~7gk+4of6G`MToiyZ_Xvlv^j5j3=~H~0UYL--P%EX8E?B3g z+C6Y`pSBtHXNkyky5Fa}zy^872VqHDr*A@2OuWzV4{c6;a_i8B@BHsJk{`nqQ zanBQ+b*Gu?mPB{{#gt58%^<)gb|!x{?aE_(~> zSygDuc7VjLUxfxXpJf{RKrv-*nl^LIk&1}pSLNu^Az3?|J#hu+EXs+poW4m#+3f5c zq;khv=H4Yt5XekmEsQ=u=lsUF0-kR*z)^one8c$uza#>YG9H@4P>{xs*giZ%bQFem zQd!(SHetGS#Fcf1uDAzq2tEiU^tP5!@{p_n_CqXoLff=;qOy2ny&SY>O_gCGrHog6 zVGts$SJ)lQcIQuJxl!sy$H@j1ROnxv@>=%jjX?8@x&d5rMMPp~l5AFI1XxovCc5ll z4JY6=B1aCd2=#8$G(7fdv5kQIz-R1$3{M8kfp=*d3u<6E}$`p zZ_^N^019TA9tRl&<$mCBrsc>uoMoa69eF!got3|1+S+pPKFHEuH?=?fzR$d)y5Fk! z>eManwrNMeF#0PFCI$gFZ)+J_pO{^FXvEj|qH=#<5s6r^qR*jxI89LKC}n5gucZpt zP2C@bM9dijk{z5PHq8X;Mt{yC^7;Qce>eElFAWb=St`>pu*4q0>=)CqLKk{~dbJm1 zmA9ZFh#+RBB4w2r21iILLUVxNHx?&`XnM9B&9NhEO|c37o>QC7d6?c*1I1+>n#o(E z3cz}X$r)@-J`tdS+@KyJD>M-o?PCYT3}%X7S9z!>-3i%Qgu~B82*uG;bE_5MH%6U4 za_j71#Rldb$4>S2PC|>~sk96Z!|)%Oah4n%x|yIY>80rH;jqey)FtlThED__maYLR zXYAb*PvakPY$azT$ugzadg`y)1{l_@d&!&9lddoOGWv`Sn?P-wz{Y-%l9ox!Q*Wqv z{#R@S*QOy@wHBZNWYM!;Es2-wU6a_3Y+bP(cDQt(Q`j#jI_|c~JY}R{lpl2E<{9r< z8Q`b&omoq@tJ?LouQcn9#Q}DQ-8A;}J~HBQNsH&~Bp`+_jMM5`>}7p5{w3tQ#}I)TjB|8QQd9!JnYN>84?+{PX^fL>-H%?p$mQXIk z3`DWh8JFlK1cOvy?{JCA+kGHv02ni+%whAN941)uYI)<|=*?BSQM$~4C;~x9 z&$slhcbyysO$B6rzcT>4eHOL+?9hURtKTB?!DB|Ez2VK|cc&=AAgD%#UekkA(ZLf_ zfY)uYPmo+eEA*nSqZvdS*-So_3rCyjOt8;<`=FJOrla=o%UA_?R35dRaY**QX3R%L zTP08oi*~R4Hm^!Hcu*%40$+NTl;|jg#;{d^(jN+e7r!93_o2lx3?D`P6f0h0AHg$N z<-tTDJ5Ac=q8J=`f0eFXGJvUeXITJ{N(46+qZC6OJVPVgkLB9l*)BlDNnhmIDkl>e zmUP3(**pPA(8VvnGK~qv}y%SC^cp%U_COVvl+A`sJ`<<vY2%KadKWnFdWJ_m$DGESr**m(Qf#up`q#|KjRgS9t6dd&Q}% z=0HKxV>m0 zZb-39R#`E6eJ=o(RItHf;7+HT;zRoyG~_I)#%x>4`=m}7e$9fJ9ZIs+UwNQuvzfaT zY~xo-Q@V!BN}i@&&_}Fsx#Gm+-JQFr(pj?YFwLvzFByTj^9)hAf^ggvlL|>PuW!q` z0G##sCyv%X;tn-((}!M}vt;wvO84pl?-TYDb6AGDD35Z>k@)?Mq|DDENufg?5-%53 z)E%;=cZuPzT>c1q9~z%9Xl9X1+xq6OpYg|q;q>q$Bh#;xWo)u{CvG}j6`HM zeLWSZ@pn|+UNc6ZVX`=>e}X0phf49$$Y?g>f^ehAy*D;+)B|38!2jwwwRA@c>aKWr z@M`qa_|G z0|f=RIZNXu&dTdrS2wV+r)1HxHn8sB@{KpO^P_r}C^b_JIL~Pb7bm2pYY8zm1ZXuQ z+0;%nJk5FQmT?Uv)Zv+eO7q}#z73c3{R%Pz8&Ue-p!lVkY`*Q4xXvZRl@AH8 ztI-2@O>+W0HxcV(%oQG;n~h)oc23n!UiaAy5rbeoZDaRDN+JQiYKvGd?GFJmsKMpy z>m$-~+UXzvDKykZs;nr7^_f$+JCj-iKd5{{ynP{V%sd-1=X+l?Sj0LX3VGv#EYR<384YM@Fx+ zikpXF$2sxdTJW1GBNJoiS+xLys1C|VNoqP3hE!d&X0Z=h8X3A7(EUM&PZ78uncttr z_s`YZNm<@Z;s5fTCs#im=K1q<FiA*s-fvT(@Oz46Hy&r7)_Uf7 z(|`O=2u^}|=Zji@GLL=r89^U)cl>w?Ww9>UR=bOy@2jn5AD_B)i>K;5S~5F^?n_(cTw?Vui(-9(-_6Mhv0lgZddrT7jclKvC;aFpXPVL*`T@ zy~c5+!cRRzrkbnc094q}+o|X+6tLbwRsp&a-leSN?iU&5=$HNicaY)i73Z4;_Rr;0 z%{aEqPz;UO%6F}UddA!KA&R0Ai^`9XK||z#fz)%%qoM4|10^Hwl&krw*q}!Kvjt4* z^DaZ@jZk1xQsu3{Q`T4PFJyT;cZxAciXfWww8q9-xy2is*HaF8?|IU>)?@(r$K=tTGdP2l$&QwTht8 zcP$U4wN$yd?_7KqC!b7g%X>wKt)qKWw7Tu7?_mO~W!aE>Liv&z`V#N9Tg~R=@=Wok z!sm&dC#KX@8v&T;2v_h9=ZE}f=HPQ=LkX# z+t%4`Y<2%tmcO39ZH!;FxBHa-OLs%VMs%D7cPaixnyGL!;~8guGLBL9AEtG# zwX=wERtVkow9E=5g?TYVqBIl@YKoD2*_q&Kltw(hOmf8`qUgt>aHg5QrBDbu=I|j~ z>+gbW$-8{nDEqc+xu`3xuhXnZ14*yLX!Al0gJz<#%8k1u$<+HMqm`INNK!TWzL(Yq$7OC5w;n$j!iW!M6lN3G=SBC@KR8pvk zLx%YQ zQt28KE)vZEnkk{mE%uEiPWiI?Eq${h%`q4{X2iQ9GGJ1$bZ(}u#p4cv-3wpp@beKT z?vO0~6$iXG_FC|;R}1e;vu&EL1KSCONyFhFo||qPQ!yL{U=*Yh!~M`-V>4nI2#De4 z4~^zYE3dRuK>QJdTo(D}+B->HrKMuEaRYIdvLR}_DYqsHeu*BF-bCpG#eyzBBvsGz zJv8URMfc=vKo}}SpLW}dUa|c>^i7ZjO)w-%cSS3A-X+X?vQ^9#oigUvEQWaU=ze19 zDxv1{!A%!w4K`=eGb_j&nQ3Ytlpmq&@Cys}A_M~aT5Ms+)`B2TYX>4k;F1{F_0seJ zGw|ahz!fh>V659xR9U@`n^J7b1`U`0(&VYeL&K+^6G`2HYjN77&H#^yyW{mK)qxs|s zI&TibrsvsP)JivtTzZMx4b+8aQE6VAFs}Ug=tc#dIA6oMc+W45XIU32N@xxh9oZ`p z_JY-C%TH{$LygAYsn_Lo)g_H8*qp}m@Ow6`j+HAmBTSSFN)|rFdg-iAigUC2IdZqE zH&6$AudROBH5wg+1^gqBg$JOzdOo*bp_Z=G{Pjb4Mp*6asY1Tz?U@4{xX=l5MwPN zn!7F4*}!0R>YiPwo*W%)M3>5ScC_>ou=fL`IAe`{l zinGZlhH+GZNHM^H`EJ2~mp1Ga0{!%=TbebM@n$E4V#KW^LcNEp!hg76a zZ1|Jg-%zXO<2~7JTpe!~B4Gvk2Fj)paOcGn)TAI6<7po8h`5Lg(}w{GW{^VOokxmt zmT+Am1Y}G$VaFt>`?#t3E!=_P&KQaGCuHRvmRx*o%vcx){d>O(A&5!8VTT-n!6{wh zl@g%>f~mC_PXZWRbmLacNE#;eFFrxP;0^k*b)J&A2G5Hp$DhzuS3r~*xE&l}m4&MK zpSDdQ0ujEYit~ZHt?LJb_6NMc3zPyqa=&#@ts5*vOj&|dJ)z$)83*8%#>vAReMDcM zrb;rzAV{vcyKDhQew(DqbbwV}psmI>Zm>EL;E56T4$H&|8x6dm&b$m=()I3t9ty?* z#lR}w;%ju%Gy4n&T{a80yV(KmmX0OfhK?ufckDdj@3ichsNB6cX3LrfW!w!vA4H0g z(?50k?r20fLY2XjN)uqAO__3t*egNSx|2jZ+bSF>O7g6E>|X^6q7YvAbtR^2PS72e zn&-D~z>9mmNSb=7l(5dT`)G99;$1)R+ejYt^qYwY0819i5$gcJcp7uq5y8cIoOF02j>fU5t>7aUy?` zBxTc0*QV7qxlZMIm|rX=5%okt(B&ZG+%%U-vpe0n1fVuhAGl&LiEqjwDiZ6)A9H0* zL^RmAzVyI~l5oPCT{isI`dsU10vW}J-`D%38s5l&dkgCtAuwtZK#kz{}bDU@J+;!F1rElP3#Zz2~!IwLgI95n(&^-S2GU=T&P3F zXy$p@ZJma$`zliM|dP5?Ijnu;I7LMvXdTnFz zsjW5WS5D{1^_o-VaU{0@)7ZdICjDE-gH0eJ+^pZ}5OGzB z3k7gRb3du;1E#y0U-!RsLjM_Vo{53}zYiXcHP~aR|Igsz0xpUA0(CB}uW!SzF_?@I zTS{7%^BxrI{g%#IPPP1_%$=_Op1!tI8IeN%XtXkA7fp@rCvZ4o7;`pDm&bR|zjuGP z*EQGIUH9ipwHv@R$5U;`c9N1y(MDeC;P-abSBFh?Gt=(Pye3Q1KX-rj5bqS5XZPp% z$CcPXlMpiP8IWBF@S-JIJO#sCDa{ZAEchzzo@07(W;X2HF2n@$G{;i^{*g%b78W4J z+&av4%gz(vcwlXllDW4?*A4g!QDD2zwH4K5wYoUk#0P#T!7OOElsy6!R%tv zHZm>&W8Zv_cak?n7m3G-6DfcZ`L4mD%d+cn>VboCSeYCT#Q-J1JpL681o!z?Bg&Kz z5MnAkfFLv!Qw=g)*Vy!%bc<}YC_cs~9~NX9VS$W0+R=SQtVUxp=5esL41veGcfq?V z@LFc6_<=|fn(?!{L|f>BU$a%nTb5>KJM2{|Zomw=hb95pg_LbDh|(a^j96Ku(9Fu5 z3fLyRS^{gd-z;l?EZcuneR!>{y~xz*wK{F!WuC7P{qe5~1+}72P%?P=i+}@>CJ99g zek<6<&Iwe=Tzw8-5(S{xD0OR_;doYZVU{Lvn1Rh7KA((oFk_i<+&^}YdQ%Ac0H`T0 zMYbQp3tJm^($%+y_P(S}GKOK*o_K$|J{n4wUO0fZhmciApaeXmV3a%X2Up zQE@>Wjfn{|-PXutbt}u#MkQT1UP0fa5~(z`DHQ}H#hswn;J@NTq=<2#N~D=qBB*m~ zfl@#W=kpmeT!r}uGTKL&J)O|GF&459G6@n9D7GO9@er^sYykE`4h^G8Bsmo_CLScm zt!-0>ybs`&I-U6v*+^|P58-MYJ5U7ijcA_e#?lz}&1VOwdKn6Ig=|;F2;czB za&9r;!4>#8$}OlyaIF+Y#|prH@eU$CNLgD)uCYD|Dh%FZ55oClX;^S^gQbGfi5yij z%+(q(!}RN&mNQQ&y6&%u^J=^<|9}zij6qQF3y@niLtmx{zC7X3vfJW98;29Jx}XY3 z5~cyv8yqUqUttf0pQGWV(J z#HGw;mA=-7%;tk!p|y8fZYVoU1#NScwp1Pihz`KpG5{+ zU}ysxN!kKvtiL+y$aM=WPCigXH~~;r8MBAwJ;TVZy$GmX1y_DDT*1lh{CCGUcE`^l z*}SvsdBvi`-Rqf#XNHZ~1D&8VIgzBi64C(jHiZQ)hmsPssPUX)WPQCO?|@`hPb!cS zudMA2${}}~ZQe&t&T(ni5Emqy?@l|~=ZN=IqgL>E8n|9epo}8ZmRow=7{1S>#)c)= z)=u8s6z%Ry7L~dtOdwMOMxO6;e9UgR3WmEmfRMX1j(Dh9--pLw&X1m+7tVt-V z-xkDLSFS5h2F_Sqk(zUMYl>C`i!)#6?yAYWlh{dfSf~oa{)N8~I;p;Eb<}(m~Z3 z9Xr6wN6F}#okb{4=4h^3c31ia{)&S;@+aZCAx^4vY^?VnIVS+*OHmEEbT>(VTW1=I zaHHs3@&r$JX%9@EQ5gN{LZPn@*6yr@5tO);jX>pvSdm0dWF^=#mRbsx!E@IA{wj{j z7;wFv?5pa^OE%~LHOc`T(jb>d$R=--+P6eMR%ap68tW*rhVvCp z?;8dn!Ql?$N$Krc?TW)RQsE#H&Vj@?(bnhkIxp6DhD~A2^hYsfN*P-Yw8id}$a#v^k zFpHA;;aU9D85%pkq6lsYl3P`5zrEFG1** zkByv#l&8k_;J6A3SHBVW>8cxkk1X;`k;MV+i0U2#%;&JyCIvz%BG1!{~A?n}}x zTsdWT1xf1F&H9wyoMMYa0eO%3{NybZb;3{o!P0>hJP-A4?|k3x`Ryv)Y;PB>?@y*C zUj#l7b#3c#z}*Tp*&Jb>wodJ@M?C1!`)=)Tm|}L_2H`Bz0K1xu#F}1<`_73wiWr@r ziqa#o7iVsgBORix?UQ(aB=m>KE^W4V6T-q;@Ll~i3mLrGvO~i_Mil>;0g=IbujlEVnTJ>IG)OOs9z{DPhEee(Vzv;|B|3{AZHxdwEoFArRzZyq1Io~dv3xR*Frs!dodx+GK6#62)9{|;V1E&>H_?(S-w=5 z+d8M4c{m`Giko?W`8R=vyFOesj;K5vgQkLC)2ILg6;WnbUsqTk5yL}JSX@aS{S+n4 zlT_j#j!(U!`$W>;KR+IH&}YX%AuL8Ope}#}a8YZSD;R=;ja$x-qh|B`$jK zB;}Dgf5TM7&Mhx`&0Tri`_Rm7R~sSVkI6U2W1NBW%?ZMj{J9gQ1u^b4;CIN1P-y>d zz^fG(H%UlH`=<18y0ct~>}gAMiNTVeaj%=vxr0QnQO(K_U8u|wSRGP^jM&C_O#A9<3p?ryo8m;m(>+I^Y;Xkb-sQWe^fv^A>*-u5 zV_iuBREdqqc9o>xTfdjIw5L9|A$&0JCyk}fq==Ph`^PY>gDHrud?&kZmc%L0|~$?(J&YH&>yIdoy#h>!`r3KQTAvlG>cqqBo~|n%P_WoZ~#h-N;?8=&!WIU7~=h z*E+W|qhrfL24Rd$gUFsLtj0|f#lJGaSg7}i{!I>PssO)0zNM5^WNT7nd&oA9cbN%Q z#F*u4P6E%a04Td|gMn_LsT1DR9h@t-2`fPIw{$&XA5T$;5>Z1y6g23lG+n;=Ndz|qOQ)l%G?uV10n%E zMQh%QvM{P{Xf1WfIAU994Nj;WOlYp4hb$fH%3dZx#FKxq+8*CWiP(1PNzpIIv(7-| zX@L~9q}dhY+D!`?Te&(+ygr0b=K`Ew6)5`i*b4ue1#795jl=VWGPiJ?kv0?Y4Vk7j zZOK&jF7eH_R68;abi5`*n;5sgV+Hoko-9?l)9aBDR?fC5vINAvW&ZL?3@g1Z0^Z(J zXT^xjUR~RBp=>NsO>yajb1C_ALLdhSBt1w4W>W!;orXA>$DTwS2^6^l@ZA*LxXiw! z8EZ_k`c4IJi9f!rI=C@2M$2Yx5Hm>rN_`6!`_w97r=7ia{5iqRE%4PErT=z$Z9HtF zIU>kYv}4f=>w?3uA=4;~VomqN z!Fs^f#S+3<$*EHYILXXKD&$hJE-kr8pn6w=)@=mWCAc-@u{X=^<<$pv`BwalA|LV1 zLz#pya;`#zMd1OI17!U5mkAu1*E~LkJL-a<4o%G(wPmwn!jM7wWs#UQ=b5Hq@@tnB zTt1I@jFPD*Iqzh^`b7V!)>@n1+hw_zM@Rv7*b4`Jw+J?3z%RcW!jR!?s|q^gDU}$Z2R=rozi41R;r`yV+jDqy(AN zT_W!0l)KgQsE5_tS;O|;L1}yrewOVGs45+5af#|w%!?|Hc;qsmR{|=4=ef#IfNJ7G z!Jv+o4CZ%_bDk`bG*p$sH+zoe@28_qo_C$vgHJU=feiB zrx{@!UYQ13MF>WlP42^59{}YH()DRZDQI3l6eB=aBu)`&Kpor?SDKdJ)V`yxH8XYc zI~FA+O@d!zgvVOX;tmmfV1Uik-QNwT0R~=kPS?mc4C_+#K0Dq3K?Q9iYcfv^a=S4> zLu*+}ZgsUfU0t)^A8+wkFnrzOn{G~TMst$o#d(LZ1qZd17pFKN6iFQamPhEAH! zB)3%QW?q5izhX1#fm8{jOYYd>@kRo2x)z(fO?nAio(h+OCSXO}`6ewX_(pa}Q!|#I zQ#-?>@=tSzi6SRF%+8@1jr!-}1h3}~If3&tJkIW87*Lt?MBR0J1|R=`bm6D9L;0&MveIotez?(B8M$U%SM$!=?#r#5i>Hq940wcQUhm3pc@HC*tvcMo#;? zih1}@47kELCWzq^1@>e{gUA^@d~^Fl1ivu8ga6Tkn!9l;NAf=gnFs&M=GW}Hp}~vAs4$LJuW(g&0V!RjQy+KFfo^H z9u$a=qJQUWG_|z5AV#9H{jzLMojir3U2=%Q{CDE~YHZs~2|mCU$cLv_k5P#DDTmP4 zd00jqbqw`OjE|M1zml-YA@A9ws0{MPiYXu^V}|f+zaWbA(D_4i6jC8|Bql?)zjf># z#+1`%#YcqPbdUO-u+^*`CQyWx7bS4oTfM{0ZWv6J#0W!=341eYsp|4tM;!`+}F|{MCphnKHWB ze5n}^<6vy2WxZT^r6wHY%68EE{`0lF?i7KlWw==RU{hk+E1cdvz?@>vikX{bZV|+b!kd{;CD> z3#`^}A8|x_fC33}=wInpY~3)nYSVGUAAbyMb4hZM$0y!vv)JU5UlTaE!H0bAT5Z0m zps@={@+q%mrLEl#TpSM9+O@3X={1gnAZ@ujYO`ryGS$0nm({`U@Hw&S4NV)>_w`Wv z`zOk3QRM%%V%h#P%sD;t|77g_|1gyYFd?vip%nOw|5}CI>~m)HijyGGV za{CX_-%g}+ZN;MCZ^vHsP1rx#?>756cWWN>Cm7ky1iC$TWk(j(Y2u>}JIY}`h569D zr9^e)z4+2qVAc||k(CiI{oshY4m%6dWAS5k^|)0SfkW%3)r=5C2Od=TC`A_yhY!P2 zW70R(m$uhvK8kG<|A6c6J{!gzqLK~+QQ>dh5K8b3_(L>{M4+E=d;}YF4|bEIxQZtj zbc7I0&LFK+ePXan39E>3LFu2YGVuF^eiupyD5s_<@zBQlD6gSVHY^KE#sxPNfeEQi-}fi__I zdUYjR`@M1EP9tRE8mO-Vn%ewy%Cj~Dw9@y{OR08$H<%F+swTLW6( zD2g(HFD8PM_qVldiFHW0Z%%4o*oefBXBnqr!MEyJpwNsa!%9_)WAxGF3b#(oaM z5`u1mu0yRr09lb$x#*IOtW>MUmrUw|a0M#3uItGd=7Ko@X=hYw#8%D7= z-u6iuscmy zz)*CQi_W?eUbP@Qj7q8-Svi{3)(yBGGIV&EB`r3P3U_Fl{*%+NSGmh_zozNl*r6}A z{M?4i-j`Okg`q>kW%@^%QBtP)*+q43ns>md!`g$`Ug#3OBbn)p>D_Y@^pco4Px56R zTl|(ZAc{q<%N3Ax)^4xC8mfe+wnhEfJ&!?zh-?-RtW|B$U7<3yy_c?K+b`s#OrwT{ zM0Bk`2!A;~$xSWMC~XN<#l6>!a@~R}&CyjRBblr<#aBjwo=$|4 z3)1$StM(7gg3~vQMAkiLZX{L*g^iS{+wwiQ8iyZlS3mThn!Yt~IECwG8liP|KCfIA zytIxNpuPyvxFV2YI9->ylfw%=*O<=ovTB%bb50kt2;xW%ArBLaN~XxlTEy$(IBioG z+AoSRLcmi`9|>Z$@1j!@dOM9M+T!v4=l6R|tjft+e%{V+jrV3H!qr&qh58qB0^m?B zhS;_mo4}4ewZ}Tzbv%)#=RwIagf8Ib3fZ*W?#}NSv{k+!Z#j$8_~+2C7}{m!1_#{F zCm=ixX2eghmXiq-spUQr37b5t8W&k4CQZB{eiSEVkT88xvlTrCOZn`CXW}hXU|R35 z$xSZGRz$wBk`M2bwnOZ@u$C%9GO=NZ(}@fF#$jwIYyf0#A}?)ocxDR zuqaKA7N7RN`n)&1He^B|ThkPW)7mB+4(v2nDt8iC$P>uuDBUer3X8bPbA)AMKyxaM zZ89u^Rn7MpGf9tRBK&NM+B65=m@!cg83|usWVF<4T`xjYEqS>qgJs@!8T7?k0_dE3 zm&B^>QMLTD=Oo@#JytC|Quoq+1zH$puimgSkD_077!)lYk}XmseMRY$g7?=R zUt86eZq6N5a>B0u238Kwhb`WK9t6TbU$OFtj_-70w;eam2h$E$d$lx1&zAVl`rv_R zs;lttYLoVP?ZNK3uV4~^8CVSQNh@9FV73@xl6Hk-L6dNEcS%Z6ahG(J%5cR!a%}z{v$c5mzSz>DW_-<;4 zG<1-ct%hiM%(zP9tH$>%gq%`MyG#qGiL;}{EE?wwV(Mm!&uq^)IiA;IpBg2wH37ad zc((_f-m+CezWXQ6D#?e=A)00E&aqSQ7UcKj*xj(TF73d~T0&N`PeN8!h;hhN<&iBM zFUqk0A%XIC8^vr_f_UUyDLP#DUFoDagX|x{?(pB0k;T=i;;yl;)DGF3-p1neRgzg8 zX?4{9FBz16(Rj8cXljeI&N?d^!ZonAaS!>W_C^wv#_8m&(_nWy^04m~ zsS#$+cxGB_tYc5eexb{J)Z*q}+V=aLqI{wLn}Hkdg5`cg1bdS+KX`VH)cMWQ{FgwA z80M6Elhaobs02{I_2XDdDRdUa((dA4h(Op}hSBt#9+P(XfYF5@yb%lM@-RRw_Ib`` z{W8gU*L?${D2368*IU_&tyGcr@hZCQccf$X2R9Ttb~n^ft5cG-fwvoV(_Q~kp8~aj zLBPKer_!$+Rj|4Vp0nA!7FE!${f@-4(-^ZL(*Q!dr*K~aYC~9HVxg7R;mMhIbN2dZ z)@PbyTEZXKhV}#8;dCOfh731w7PT(Dc3 zfc+b4jAx}G7@Z+Oz#*8Rh~IkMxG#tzF_o=)uA!&z3DjOI*eKbFzsy*M<#I^cY!m_f zYh#IqvEzkBMQ43*_Osje{#J29@>Es+m}kk>jf6#iwfFL^aM_GE4b#AUD)79d4By^8 zTL3*uLej~t48hrquKc3?;WO%L>6Rkmj|#~+t*Y?3N^dRsjAn;?$!8=f?(2N9q*xzJ= zYV%*PKh9Q0%z)l>Cu~N$R6FGOSZP?PS&fXJw@N4<(Ccb}j8 zClQr57bX#nI#Wsd0=_f|w*vy^_OpokiobjSo7R_20_lC+-ji_@GwO|9XKFEG%FV&P^x$ga_B``ef z99XZ*bu!0oIV~1{WZ8$HF%V7t>)&?(C%h{B9yTQlOexEr(Nna2fBs6gPgh8Ps)nkl zzjwzws(|!j3w+;(9AIsG*LppY!e^=*(cDoJBdxrWf4Wk%F8)``0Cb7^aQeTr z4F4IHo1OK4z*CMjCu0oTVYW}HzJON33Ud7BBLUI@)?pSp@gp7Dv!p%#R(|=2i7y@M zY&U3gtAhk$ZoXdd%OC9%6!U!h1SFRH?jcW6ycHR6bpPgo`4<1Xj^y+6{&}9NyAP~E zlD+rz?Zc5-WW}W({PcU<>Z{cRD{hI_{8Hn^@px^eSirh7f%J1!nvt`?>fyMEd0u|X zdvWXhe!aJe;oX*``$F2ARcza*%V!z*6cG~a`r%W2Tf)_9Eq6X5YbJJN?hffm)7|E3 z{XTo^%lUo$*=5kGcE6stAhKe$bCI-4*x1;m)1}&8drSkRumh|;l=OUJJa^GG0u@Po zokauKP`5?Y3DuDd^0MQ;Q<2t1Bz)U7r0WB7SP%sP8C6Jf`po8SSsn0j zM#Cx*VNw`Om8)eQdh5fSp*+8_I485{W_tHyX2gd=G$XjX9VvJT|E6g+J23Cm6v(q- z&ViFBv0@^|Ie{U~cxh)U)A!cIeHG{$crP(fY|DeTsfZ zO68$x-K!i@#6h(IYwzTu(07pmsJV@BSRAOj)1t|bw!U!H)vnB#W{DB0IS#ryO(&P2 z2{m)i1_C+U)F#|EW@Y{K2~FPvD1&>rVu!fn#oV_g$>;KhV(jJlZ8C7oSVo%%3((FO z)smI$8Ka|)7va4@jOi_}Amn&nGwk2zH2=ic$0%D>L zOd7|UTuuwPUrxJMIQu@D@0GDwr#Uwt73NDo^;>tJNRdNxQFjr-?QFFjh|nT7RchYvM^Dl+8@F%4NOf& zFYhg%Ws9?wvvHfMjK{T{w1>-l=SFZLuIog>v%;Sn{Nue-QNC^2=JU1X*Q80%L6qT14l) z6Xwj`hj9eDIng=GL!`~CR00sKtdZa0^EEP4>jR&!)JQ{=R5Eh&ND2;6b&TfopfR@L z^sovUjVt-t)Wt^dTd5<0uzk6DrVxxl3SCi+YzfWj)@gM6&E)mA z=i{q~7;_ZEe1f)?e%A(eEgQ4=h<$WEjgc`MTgjnnR|0u{a+d4{TmYP-OI-b<*lQ|2 z;T&}(cfVsxL3HmfjhD&}SuFO|G6-m+t?2Gt9sC78dzd#P1F3ah(N0#p&CMbeAx5HO zju$TiQIm;io?rJS`=dj$wI={{1|*X}b#an74hKyj76`+o1GY*SU1=kzOyMmgLkGC9 z97MgeQe%N3kjS_VC65Oa=YV6hLEz?yI$YgvJADPYyeDlfl{(2c4v4;-JuZ9`YGJS; zX?`Kx@zMwB=9MB{lL;A!d$q)A^suVmP2*>u4&JxPQXP3m`0|wq;I(B+qwgG*hZttu zI)3tfwC|LOss2$c@J zKa}!caZdbU2k7=WB2#7t3)Bw__5T@uAQLGiB!@UShUSA8rrCH;qO^nM9k?DwF&$W# zGFY@ObRXzdrG1;Hw;vkeEjXJ{cxHepV^a=Cw!2=BUL1&JcdE@ZfXOHHY3qoX zJAMMnZS)~}dsPnmrxDOK|6|MS2a?I6`OWNv>UX0i%15bZo=~P1(mXp#6IpH+`yflS zn7I2LfSr@`m!1ua`oWmGu?WcF6k)DVz)qUYvMk2F^HE53GedIgPHzDp8DMXg+MfR- zX=0ON5n7mgIutj2;VocWmW^A%ZoX_u`xe(RoJ!PPF8o&^mzWK7!m?6wl4jp9iwK9# zct4>w19cUpE=sU5%Q2L|s281FRtci0)tX;5DzCz+3|vI>QJUGb_FW}lRx-W>Tq2VnZM+h_MHkr zhbu(XEW5ovc5daeKHDI(BkNzyrS$Oj!uLp?(wy1yqygF*bPT70f>w3zKdI;3JaS9n=JIp9|NT%vThIrp3# zsBES&*+z6)v+`O|(}QKx+@k7M?b@9Flr~+A@@#HO$%8yQZehLdo-ari*uvK3^FB13 z%09h4<(KNaJ}$LP1Pmq zmaENZGbAaHo|US5*bsx>&z!4!ka>e06kY~eDuh|s3Yt%+Ze!>9^2Mf*EuCyi`B)qK z?9}ayIGHCTia<@W9`HLfseKyPyaaPEDUZ-rw7cT6P&-R8=}$>&BO#1(t>t_%+)bpR zvht*Wj*Y00jc*RB3!<@nIYp}fhz@fcs-;SW$I$171WrC+N_C2{*nk7%Y8EN)U9jE? z2YGxhGX0GTG|r_Zo3UR<<{4J0&XAnvV+1twWE|s&ZORVN0uOzm{2?{g&B6hXtg?0g z{2dga%On>ua&zP#F2C-HIkPJl@F&TZqJJWRo@n#D%z`khJQt7 z;TP;tZkB<~n2k3N!qjnXUOr_?CbH(|&8?J0ZLEVlr)C!;RjFV-#v8nK}Z z7PQ*=W8$iSo7WpJK*e~w`oMuSL2PsCf}9lvvM^~>L|hsHI6%5z@DwGVQ^=1kU~H_k zh*n#wAud)B|6T8P5O9=Yp|XVo!2GuppjdSP=PaBGwh)rIS2908SM}B~C-TAE7ze=g z)@U3x_WYS~&i^)VGvz~nuzJn$S@?@K`_j_X;*V1VF{}Vnp(|<(yaB(yLH_GQ9!25p^z9$^j5^0~D|G%;v{dn?&|V#H*}yxvkySIh)Mvl-0ST?j55a0CGr?uRD(LV$9J%A_xAZ_ zaJJW%`|}m!6GR|ma>%Y>)Yw`Bx;4(`YLIqzdJ{N2D?60@ zqq`??r3lL>;>Db_ryWmY4rj`)*5Y0(l~OsJQ4ECcQCHV}UBB-dbi4zAb^T^VdPAc* zzTJFnqw=2ZGEV4s3N9h39%scp9Q^w@Jmc{s%pz~HDBNR0&1TGnyMn9tsLfv&(;&m6hi~DR zhTN|jDw)dlma!XG0%prF{Qb%95MJvMm8YDjPry{Ws&y?2bljnpRZJJVZ-< z|98~tm8KWY>zMwrJOrz~7V0J4?w-zPnr0babT#TO1G#mr_zH>&b4wAT+(e~()K1C_rZVo5;7InGk4pYRmb~d zM!GPmu3V(#A2xrW4v#ztsPTmVC~VCtBhx+A*N~=B+K?JcolQ_APc-ZawM`Bv^_qbk zZ;e239Qs+Tqyi~?nNVu(+wV1Q=aK0}_iMH&afsT~PIoMy^p9Y!)c$TW;Iy06h@ZhX zm-LN9fM&o~2jz(pUAU6;NgLR}5^t>`&ir;!N8#3miFm^S0XD%bix@E@?YnUvkJdCJ zXey7xkY!F_HElcq95e+B`TQ1W8TX}Zs)S!(WJ8GL(n5ViXIfrC?_p#gphfl{;u_dI zaXOH(-O-VE;Ev41oRbPuF1w7ujCyZAFB6{Q6Z;!W$S50axGzYFuzPPzO`g5kAw0?J z_9lEj*?!8+;6lZPj^fKONcfMK&a6nA%bo}23o&Wpi9%^7$OMNTp`ca&ODV!&YvXp1 z@)fHOKP=vb9ihF<3lf={YdX0JWh5Y8B=N&+QiE6S&m~<&ASd4N8PrIo12+vj`kLOn z762vZ#}t}XpwZ|Y2@4XTx-K>39XSX4V6z5C?7Enyn_kJAPzZuvXq;3i;<}4Yo`XC= z?*_~|V*;82NcmoZa%-b|>83#I;AXw@Qd7J1>^ba=vo{C7fUX%Y0nPQQnCcfTmzUwC z=-ChDfCMl#y2M}hhMk7cLX|ab1!$`oKW3yeO_BN{@eu1YZ75p|Vy&5)Nbo)3Ft{{) zD|I*Ll;X>cW(Y}11>9_nSW*)bQdIpmvpPfxrl7)5N0jTUjf{02;Ry&k;w9h~Sw5%Y zvJzF34;TVlkrZ%J-1rl0Q~`9Z&GfO`)BY!S_$=Wp%zW(jYYl&Luv)N4pei_lx$%IyFGikc?=n->EbaEuiv*M)Z_sKV(J-5{;ZsFQ@upDJhCz=!MFaVyS0}) z;t2aAt>4!Am6Iv_3_K7SARgXl!c4mxXG^2r@|^=H)eLjVRJt!MkIyii;KtZ)@xK-( z8*`g%42qc2#4h&CF_n?Uz^=zgXvymY5G!|G+>gH&9c)sy+iR&bXC*x_#9eP|ti9Ds z!?v0_SG5wRIC)*;o~7GZZYOMIIxx9ku7ow~?|#@!2d2M6OQAA=c4UCw%MH9LiiTO% zEmDZ!QjD8=B#kN|plCWX>|ZKz(Ak{N853SK!AK8ek|!2*D4XS)N3vPS<+-1O)78Q|sc=UvjB^Ypw9RS*IQX2pJVqM_y{o!rRq^EJlCF zp*oKB=Fmz^ddqauiUe)_)AzWrlecuG4mUh^!p>j>!wZg=k2WuqCrM0f`;gLQ8P)8N z&RIT51frone*sSS+)}+&((#aX`VSlZb{5!*qcdwtg*#B7xObh%_mo@j)kj)EedHre zPnoz}bcmUH=hM2c9wBzb4Lzp8Dve?%WehR}xigaA)nX%AT#6`&-A1qA;#9VSAJpWP zaXR((ElTl5e*Xxif*x$V=ick1s;@vj4paAXJ#B*_Z%TSvvyL#CUQbp&(n7>rs2a0h zRXJnhV+?`BPSC#>LK2cS&{)5&@mP7+yPr@2A`D<_UL3^1o6LFI1qQPtJ7Qq#muGg_ zSoq-;|50Q@W30vOa=bN)BZwW&(OnqmZ@;hRcNl0I8_P|*-GPn00BoM~=~gV0q;W6Z zc+;T-=s!F*B9&2fd@LiO2RxOJPH6chG0+c>TOkmoE*mZZg} zHiJXVK5h|0vRMY3|Xw=d4w!gimvqOC@ZRN+;7)W#3=r*%&n1k{vCR z%|7CN1Btt_R$}JJTMWN185)&z7n3`0V9Nln{c`BsJj)oV!Jy$)DL_$2-yQYr;BhcBqS9SlBUnw@E$2md(w>K+2_m_l` z2g&L=SZOz;!_26hs}|vAMJD^Jo@lMKtzR)Cb?J2ZzS0Ci0`J=1 z{)a&RA63V&uyg%4?7sWIOqi`G|4f)~5Mqsy!wAU7$bE?MnF-&RhfKIJP7z1~N00i$ z+4L<%>DU2xUPX3^kM&RDn>Tni8Q($E2gmwqBz8o-cR{^(y?(o&pBHggrG_7nI^qPz z?~a>4x+9TW(6}%H*M0TAJyz~ME7~v=@sy$3Z0xBlT|{nycaXW&|N0s~4Qs5PML9ojt}}yYoX2B{>;A zcdCY`%YSPEX?iUl|12*dAEAYS?y#->F%R}g>uSuWc``Gq11bAOk7-`dVpnQ}p)@aj zRcK>wa(pGm3_CXKg73HZF`WUg3avXKhK6R3pa$4R>;pGT#nt6fI_&kI(4f}k>l#rw zhIL)Dbt9hB@SLseLRnp^Vy$cpReU8Q1=Bmjbe;@tQ8rC7Nw8dr18S?1uQf{*F?y~t` zPH%X4!Noa#I$wKL=-}b6Q&d<-yb{iAgEl-eHQg$uA*n%Un-r)cFc>c7Teh;NTR+BH z&y(=_45Wx`cZl5CnIm)gDzrYgCSe3&=Eh2Rd+5Hba}270k$Pz^su4#yGM2E*4aP3L zk21*zw&zV|jvJL$(l!@|)JMhXE1u{oq?#Wgx1=^vkW|zkCl4q}JoFrjDfPQ5c*{$M zYfY4#kG*5Lnr+Z)9M|YuGD9Um=t|K-JsJEUFNpkMqQ#Ocn(?^n%m;^`>bMqCi4$a} zCgHqN!nf=_F?c{$P>p`ZU05n7?92pm)xc6`g|rfHYf5brIT7SXVX`*-jlSTIFuV+J z6K?rx|7qtK>v)jKe4N1O%MOAGvxpoye3+=ow!B($b9KNu*)R*$ZeN?6bj`g+s%z(V)q<{=AGr@V;76?W55 z-6_G7x2`mw#2X-)oWr1R!d|O0yiccYS+cRRXGxDXz*dD6U?DxxL0GY_vYgXxV@Nya zwwM5YoI>aB9vLuAE6|RV(53;IjErJOonidS@PQSYgL^l}2uH?BiB}*GZmtg2N8(;^qx-K&kWq0S!yuGYCM|>|2FRS8EQk@mDJWxMeZb43lKn-Kv%iob~EO4UEjHb52E^LitHB zG^R(gNJP+ryiOOC_JxseA_UeDU8cHnGx+!7g^wh%OK^yOQ)gz1ni2*7!`Ln5H0?u7 zN0$2WVJb}5Lv07iu8Rkf0Sb(-*K>DLb2Q)mP!?`r=RRAk-U=r%a1V!9i#1Diqg0yF z?P~FTBB)L6=dg?Q<6TpqxdkDleKPV5oQ-=otpy(~Td+QiXl}Dv0xG%SXK&MS_X&mRx`GIYP-&Z1jALv5CUUdB~gOXG6eXmZ<00N#MYl9&VH{mIX) z0Z`|i#~K;*a7+oza7~>~8#mE?BO`_%Pd;cEWiOV%u7Qc4RlvEfq00)c#l8vY z02gnDz#do3eo5C6B;`wQjM4;LNyEozgho|e)W(ApLuNZgOO~hZlC!S&ngpY%-?%V} z8Kcivb{P|&n>&O5c;uWI>Y=3bDL42 z!BcvRhf!3$)&9#t!9DRB#+AJUkHA&;#UQ->K=ga?#oESW>2>~+f^ZU*%~~cYoGmtF zY4Z6voPm4H`$p@!`?5<^t$)Gg#_>=kOP--(q{@uYZ`ty8EYJ0it4y!QEl{R5)!mx5 zp93*JO$gU!ZG@^DA8yfI+zt1va}>zxU2}Q7)H}mt(R)-K*_YLjwdjcs^&?=-{*f|l zU3$}sjB0O7A2~+eIV9CnkLjC*IOYACn&oT_JNhRJHC~k$h|VsrNM&;z7V2UxtBICE z=re1D7X|N1BUa6RU|{+<6}4cHk8euLbNr3!8-7gUg1ZoA;r$nck?RRc)K$)K zr@sHDB=l?Uqc@s-luNOUTIvFVe)dW=?87sH?}72N9MXNq0XRZ|3)eb=r*!zh8a(seDbVoy9tz>HL8d6;iZ6QUBpbfJ|By6IkTzPlwr@$4exB+q z^b-WK%{pu0e)j*K(Dk)sSbieqEH!2A5M*|qraa%#OW2DM9Vf6E?6QK3OMUgf~5 z5nLv>Tu29dB^{iz@a0q#cAC>H{XC+ zQ^GUI*ZF#dTeqEmrp_T4P|m1nnljiFF4NE=r$1!W-2QlVyX2jnLdGBlH+)!3{71y5 zJu$jA(6lAFR9z|_*jM5GY1@VM@9|&i=WME`JzIwtf%@)I{f9!yhw>`b<=I~>*VAN8 z675sayGc4Hbp84n4f8vu@kpE173fZe$=?LPb(d{qI=NaoJNu?mxK4|PGK9({SYQ>7^#(cg*I>{{RLT}YQPss^e{P&*{#z817B{)vdsGVLeGSx+DtFMQ4 z7njAe!W^C7*~al2 zgt{s1G=MZupHiDL-VW*;2j!~%bh7a{Z`(A@4J$BL8)9+O;7dXiwN3r`7B#=&mQ2a* z1F6qw)}R%B&VBTKr>Lg4Ys;Q0SaxXijNl&LUKZc5?Ab0I{bp*#oZ8L%0TCpp(V(|= zUi#c~G{&kRFq^hV{gv$$oJZT?<&TqH$ z$@3VDxMOfQUL0y83AGZH?DYG^Sz!~7@Vo+uef8sn#W=u{|7CcLe+we6i3`ckQ&5XW z&Xc;6hYgO65l4(c>$O8|O(r{$y8Nxa5D7Se8(TG{9nV8yVPz^}z6x&|H>;_zTw6Mt z%Fp7s3%CAvG$TuKh+$W?@lxTzXqf0meA>F#!?oG_0?wDOR4LiX4yy8{7G>_LP#V-{ z@)WX?%JDft@E+JJgSIO=CXhLe34?$T&|`sbd@XJ+{r4ce3Kx*WExfpt>{eaS04k)`DO*AXw)-$W81z+-`x8Pa5QpWg^YOB*9t z3^ddxqPhi&y7`yNHwN$83NC=Nb5RGqFZFCdSzIOA@r7#%aA`_pc

rV0AXrUr<~qy+x6??YAzm} zbWwQP%82`*kKz&%|GZi85CCq?lKX2Varkfmx6ctQ?%04t5r;u1FdlHe!cU`O`wC=U z7%)g~!^bdoPFpwV(Vj7`0ijcaAbl|XaVX?X%ok>4yhKtpcih2!ICyIld@={bLDa9J zQ!0cnSQ{0b1L1JEk%P*>yZdGQ17o$FHTe4}k_pq zzO3>ii1ZYdhYS#1H6EBd%EVta`{zv-P#R~yzHS^3V80|qRA^rWmwBNG9GCZO(8h+| z=B<^X2N=V3>_1&;A|FA|K>~3jp^a_k@R|4x!hx6K{l$vBJ1$C=xI(-Yn8bERJs>fwDZ4;F8ujUKq zpIKB^I55^PW~-$Fjv4sHby(+u|@pi4>zASXi62Ul$7Z<}vi4fq-iiipC>1^8&U zaZ6rsk#jfZJ0bP8!U?0KSYH#O*frW`TxAflyA1j{0ZK1IIs+8Z~SL5D9Dzj z4k@TE18?Pf#tH2sy%J;l=RsW8LG9BZmROxeBYKtut`cc>LEK5P;248IR^TjO>{fWc zkRpCHF!$vIbncfc?6>A!*<@?Cf)*)R#?Hvbv~eB>>W7>1ukP-Tuzg3hdFSsR5c#JJ zy($eyR3cHj|GNTN_KaIAS-ya#0%|TEV!H23M zt6$Q%7HUf=5DA};Cxp2O(qzZ6X=T&2xiFOvaHUPC$sj9!)@sn#MI89NlQjr6)?n$h zyb{3s{>5UtJ3;iyOVN6l#{r!$nED!Pr=e}>iXNSs*>Q< z3=>TC0L=;$Onv5)f7vVLaLa(WXs86cFkDX6=PuGAIQgoRep-P7Q1t{Md-5~q@FNRf zl0%krszjsy8k^KO{;*aGH&2xD<3wn2yTxCoQ7(0m_sQigJG_yAVDYYZ)~x6^HFhaF$fr15|h zVz3WX3*dA`YKViJXQJNh@Z~MV^!*MrnjHdfxg#$A8*Bb2gcZ(?1y{`p-(>7}XYEML zgKrhaW*alqQbts*b8YiI+5;FfXJ{z0LJ>Ri7FqS(Z{K^KYGWmoFDdJma!)y9&T4A9 z(M~xs9Vbt5hp^&*e_VV;tlmd?MKxQnXtHE$dMvGJ*Q$2(>pmV*5{@}~c-!)=AnWQ; zBDdv=tdMtUW=`>vqofSpU z&<(1hFFIF_tC1IX=sd6#BHh2hO0b+}qy9;F!{FyY$Mqlrg`Z56SRiL2u`m-D<5@A{<7;kI`z0z3FP+8syHu zIZtg~$bh|O=gaHbna*wJD`cuA8`!NnZm}%(%gGxGtL_eWI&Im|ttXw{*#!Ba$u-RU zl`C-NNoL9EC35QYXPQ);71(*Jm|_u_<|AjmziYXwBV*eP`yHqR~G$_}_CQcMkuMw*1 zNVKb7y^n1%;kslYvn%fyOp!brS}uLB)?+)}+wdV@&dpd8uluT^N|TqSokH2TG6TN6 zz6&V8B>pye`P@9f9~rN-@BCiLtOX*yZEd{~Jh67QGv|2=&?+Lnm;QWI&0~ZrWqZem z3I)4kF?SnT>m}w9z|cDe(mFPrq_}fs)Z)Zo7>>9gJ}_ow%#QfFFpe}M)oWz?B+b&k zyje^a_c>uKMTgkZDM&xrKjbs)uh4T+N2^KJ1k2Rez&g4! z|5k@DKT8$tb`p*!MR>fLx3{GmPWwGMf9Ux35NQKf2?!@Rdrf8|Q&D?y?^}C)ztJL| zX#A;NqyyWQ5%!hO)jUdv*=Fxk^xTa}%j}iSeZ3E({UQ(g2e`hy1fV&fDt=A~542AC zi#%yOg7bzZq=)^S^8V?A|AF2h;%vsU}s ztH>1N!reQgxw1N56?qa10CsC+UgZye+QEb}LQhz~1O*_jIM>=l{@rN)+a(la@s%3a zZQ+zf5CZH4Bq6y(2Cx+LJqA8jy_{Jrdj7P;a4w4w&0%dyDaHS_Q{wvOvg?wu{>rQb zUnPaM_+&iT;6q%pTzNNM8KmJHYs0Y?B`ay#6^IUBgcF?gNU-3W(=W_~48OTlD*f+< z1!{uQhNZ8m;k8Z%*}g~<=1m*BKs%VR6(_gIOrvt3)TZFKn8h56`1v!N-t#W zx7hyliB1_lZb{|9I@2N2?z8ag7wrj;?RWfUC?zTF97GS(jjy9K7YGuRXjCmE6j5aTQlpKKQi6yrq(ceitUsJx z6Q$EhqJ3*2DU>O}CVSWtfqvto5xcP@v0|*D;|%_X%5TJCQd1-)!;IQ`9VnXmCweYa zlp7T|Z|Q4QKb-OybE&fz$S8vw_+>BZXaunktw%K%?;qR66TL2(VxqDekGV!_Z;M3T zwcFMq1O1M0)=#}8iqxrqv2>M4r8sj|+?tX*yot+3+j5fIy!)jD{mv3%{*WSv#F!N0 zsPPr(w8q>!60X}cT+=kDX_ugGT5iQU32+c6$#?WM)b)WUhK-~p{N|`v1g(5HMxd|# z)2mEB(14h2+z3Dss)=Z)A$Vb@{W*-Jj?k>O%B;R^<%m4+64LV@V6*0WWuZpLk|B&+jx1xcXEC}qp~m9)pQ?t`UcH|mkcI@w>2 zfNv!tM}dD|{Sh1|h=eg^jU)*Yqa0^qcjSSZBIHJ84PFs;0g-f*T^H(ei7Z#8K&4Cv zWfjtul_%?)n$*3sB|?*=q(5_*H~~$l^@L48P+dVM&_mwJK}nuv1)WmP{~%c?bEw(; ztOsUWoJ(fm00p^wZsAvzKH;iVCt`2m;q*w;I*4lb#5q}y$!Oqy`>lZu#w^Ji?{{DVAkYy92@K7YDpG_cT9eGE|{H7 z-iCfJpweuk7#Z?L)xv*@)F8vL)>{}_vL9zy@tiPBme{&IAmWZGR@0Y5URT*N!4aK5 zU9p)Itw+S1P~c}HP+2y!#SEodoq?(owh+idDkXlL_+?qnmqWyN4Wd^z+P&^h_Tb8# z=hJ^qk$0IM-}tr503RT7EXW`t8wfu^6cvb#Ggo`ajd1{OG*Q@V_~rddt^w^S&K?MZ z#7k94I#>RV@6Q4zOqdBYUOeM#7dXGbI3QzUW}4al!tmVBiirN1F7rw~B7Fp`ZvkXI z^ibU%Kpc=+63Dm?ajmn=aPz9O!t4$55j=)mTMfbw=g@j!Qcgp;wyu9bo!4|qmK0DR z=9T8a7o8Z(fzWjIAHh+ZSTc+gsy#Z;rx zp>6yznZ<-S3FEApU(sgK?YsH}r)ZG713#SN(vbG*yDpqtT)bXfertBXqdEgaPuB$V z4a{G}uk0uAhf{Qrg-CnvF;#5HHJ@?XpniZSVTQqO-${48>6=_>2XxjGvqqL+R(7LVzPI=w z4Jc@Dq=dc~TNMA%8))F;gf&!uT;yEA9D-*`If2l~Wq$l8&%shq*#?5aes zAZVbn{d9}h`NMM;uutbEey+YrQltG=Z#>&l#ZB7?nK3vPd#Augo&CJ4|J*`5U4ruz zO;o+5eOMft=nX$aC<6lqz#)|1Un5z)%IslK+Ql?9Ma|t*Bq&jx|3HW!ywRbY%G)F@j z2bmL==|Y%X?-K$%AC{>F76F?@$x1I)7wKAceqbY7cg}_<6}r8?STrYk6+k2B@uOVP zxlFQ=)ynV+gVB>ARbc!N&%o%Ls5W!VbuDwWJW{**pVS|Xt{Uv+4%jy68&egKhf$qk zV(FG{h5sA|Qeq`Nf#7CKJsD)wBux^&)v`{sDP#%nZmb>D+BUH6FI|f6d)TWLfI#HR zw^$8R4!1+v5Jrg=QbXI?acSvUTI)8BH1Mi4{v6bx^H!&%Lud<;J9Z~c@x`Z~-Hqjn zc~w|GEeJ!7Ww8MZ_HtSK&mP=?x{fVf9Cf|mRc8xDek(s?6jO%o7q);Zd5jowuhRI7 zgKiTYXX1nflaHI*D!JCI+@D#rm26W^FAXgt(^mQZsMq7>WU^QjJ*6B;ozq<}$`uqT z0@roiD6*;9F;*TNV_Y%j9(ka#yI)<5`&AFF_&olVs%FfqCy2fstxO;UZr`vu_Y2=zhgcy6o6vSyeNAX*Vkfqw8Wnb^RwI`VP+wmqPEXC_+Q=o(S3Ma6b{)G>Y3mi~Z($barI zWElAK11H}S7x5VjkATr{eg75XQOdx~)$0SQxvq6M~QIe3zt4QwqM!u-|90d|>|=Y>0CSN|KcrwHVGsd}X}$vJB1ev z8%E-g9tmvsCo9?RFXrFXJ@n?j@VK|zxR^R#=qA-u5TR3HTaWklEJ|MhoLe??uQrc3 zMd}5O+~ktaG3GWGeh6S{&jzu`_|GRTpDx+nxVCV2x%hM!(OmjQdLfXPr?gL+1x1yB zM|lYz&YY{fex%5p+&(W`itUrq+z~HkB!Rf+5<6US)_hGE(ns%B%9)QyBbP&3Nc|`s z7r(ju^K6J=rTkb1f+~CeM9K-B;J9{0riJ)pSad;=%`HFfdy=3Q1jtWAwG~tU)UM3b zS=O4Kr-jEvqf;1m z#)&sV&a(n+L)kLd%frQU*FJ|19h;o&1yO1)pD_Y5+*%~u?R1%P<*qnJ(Q3m;($oHE z)-Ux&tr6+A9cQuX)Yqfm-{5k*afko^yu-}I@*e{G-2XSQfA#Mq_n-si-%0KRn90~a z-meEzAyneds40fA0Xs#DB<(GAU%^r-Wir4-BEL^#8+4%bCW|yir9!r6{O>ncm87BX zr9;bmhDhYnI3o93&5!rh?Oj2i%&!+LL2BxPXsfp;ZtA1pJG+c*rHm5$R=+N3+Rt~v z-cNdj#{o+VcQa)4lJwvxH=N@uo+((>m8e5P1tYy!F!zu zqU6$NZJaMBkKFNhPLJZ759-VDVuI8N4GpAb`sJ(1=BpV?UH&<@9E(j4u|W7j!Py4L z2GKKx``u@4YtKnVxp);r^0V;S)&%HOL!z|eNdDz+enCm6DfF(ncwY**h<(zy5qzX{ zwm;RYbcTuGQPwc0QlpA@Ln>bv3>SiuYo{t0Y<38?4n|S!ORhkpmEm2lPV;1O>#~-P7A^J8-y(2Gft(ANOz< zt9QL?MiLvCtWCtQKdUAR;hQh+yc?|z-{^KflyJYcZHo48ivIrUD7iV`N41;eO>=cG zdWtbyeP{_FprRsChXQJ&@qL^(j#!vVVb2Z1A8Zr=O2EmJkVLqOE6P20uz@0j@EmHZ z@HdSSj*hTF_8S#3lcBC~>NpyAQf{VR^b)kr+7Ol(Y9nN#TbN*@0CH`FY;^l0UHdna z9y&>F+Bj?)RmifjW<6%5AK^yJtz;{$u9FR}?;kol9F0Sfr0Tx<^GTdo6Oc=bW8;u@ ziLKWHm~_RiPw4#@7J2~hc;Uo8gRvJa90o6hLnIFuiQlOvkHJF&HmCc}7d=e|d}Y{? zp*E#`KVEzWz~^!p_M*XR97McaLm#pnVm-|x-(4iL2>+=NKG~8o8s#c_gQc$!lb-${ zI}Lxivh%+P4DjCL5Lt?Q_a|_QVv**bYrWT(5`s;=?)t#<&UF!-<9$pU2veWbbrj); z7$h!UEyy}`?I37+j_(qNj)%-OnATn#)ir68lXd z>Wsrs3qIwk{yf7@#iFK03Oi01J=^4SBfJXoe{($WQNS?Ly@rsCWP_Q6aSLeM)Kao-Jy zI^K8>IqdKQI)J~OO=aptq59m0woJu~=C@lR)>=XW59v=!N&F&lx+k9x7Q3j&ym=yC zq38iAA4t|J;YB;6GuvWJl$QLcTggo()a!hM4TtZe$vRie zOT71bvik5|umVW#P-YYd&e#p2@Z_4r$ahBv6S+c7SQIB8mOd?vk&WE#Jcwe#Vi-h` z4FL~7#$cD(Fo#LSkPJC8@y|B%iBynQ(9zwqQ1gw_Ng|$a%GI>7C*`)I^It)9EDc(| zVvoufc1@#yMwd&b64gmYw})9PIgxDh&K8E&cW<__GrGKEok2 z>Gl>NIY!b{8~4Tk>GK9~h*vt{;Yxk-@dJnLr|>x^rDH=6g{7$0CfDf*o9@x}!k+G% zfwZC)OMG_}MLYNzI^OXbg1=SKRNAT6SF@6D|F@`Xq_d^_k5$g$-`0g*+!GBS@#Nm4 zyW;J!S*OgB+RRWqs5Szu$UI)GD3uhVV^ws8{LF(}AKxCduu*11UV(BECIhk#gNEK| z(lvAq^l~(oU-?;{WMH#J#K|{xwRX>Iln%Vb8K}eL{*R`lECY?!sghoEC*}Q4HDFS= zVTf-=(kd`-*5ET6k~=|rK8H!*>Io0oM(*-FjlAeK*}SM#Z$&;Elt&OoH7*_8$ag52 zf&0L1SL_vnVwO6{6y~;IeZ;2<$(Y(Ez6LCB{qhq?%<=~4=H%~Ael%=O z^7sG;o4!=(jKph$P)aZFhi4UJX=bk`;i>(#TOAzlo5oeeUR7ly6k?L|HCX{s4TUEd z_E`P5L5WaDK`d=iDaA6tK~`DWk!lwJi=3KjA^$H;6e%QCc8nMo0<1y-KJtaAPtyt6 zgt_>jOSqBpjYqA=uvbc$L|M}0-zhYcl=PqFz7$z@dcReF2hrHdG^|kHJ#{ZNMxTJR|P1rWi6$tr8=q?h=?9*Q9bHP>gA{)bLx5 z(;6@2-%0^i-DU02esgBUY0g!j*XY9Xz(BGS-{H)fzhipT8X(5qSDn5CZR#(sRsFM$1;SrvRY_fXv;|OV=_sYrv5z_#5yJj{U?7eGJ)~{5!S`hc?~A0?jWrW z%>bG=F6+}c3UTTjo8zMGeXjWSCqZW@Ec2*B5#fNxED5O&N@01No2gi^RhuxVr?h<6 z--uEH1-{~wxN0MCdQZzZh)QS4K>h^xg~j>FZsczGF2fuu6h2@iPl(u5{dKU&#F7LN zFMdfYzWJ4}iL_QPlwZhslSnPuS7h~tJB?`1`*|bmEwr$(CZQHhO+qP}n&XcySI#sVz zZ;acxz5NNXcC485DAKCtH}y{AsTWs-j&+@b92U2FE~F7nH;q`Xl3)XU^GWaU*cfnS zM@<_pz>>}|iOh|`ASXuiJ7&V>Ab`=wJGv4aw~xTC-cMM$fwt|q-3nlVXGN?_TLcQY z00w&T-_LQ1_3b@e!K7od)UbJZ2eF17b#l`f5Gqe+13hQIpauW^lfl7`h`$V6e^)O! zeXqvHKH>)X_X4@o+5RfJH0k9?`irG<{9!74qng=g_FY*W(rcP)P0AsY&JH{JeODnyL&}8nYELP{qlFT6Z{{4W$C9Fhv=S@1(RS?p0_WN5}5J zz_P^?JE9iJ?uH;`OEaR*u6>>&B`f+p3t!@5_NedbSsnMG0>+RT>A z>{Qy5=QN0Rb7Oqo7s|E%D@$9Tik*T`3Q3<$V)2TYoc*n);G?9BSE>4HW7k;^=4&(z zYKN~I9y!yVVHNX+mVNGi=d{BcT#RAxEOY|Opym;tBL$q#+sQo2+njF2?Q3t*447Kc zKXS`6@ohF$^+VkpLGKX3#?x6yq;%+jlK08uy8?!H`5#L$8K@FKYYfaB}Xp-JU4( zI%zXV%e+kOGW34#^x~ZK+y2vJ&hp<(=1i>rySe`lm|siG^-miA1m`S%#a&XQfe(n- zMP(YMo}J4S_Q%aZ?TdGIC_*WvvKChqf*JF)-`kpuaRv&{WX9o=dpy_WsD^2_6?W? z_dWU2jZp-(4hUxeRSq@~4b$GE9z)-hFiF1iq#siK04utTy$9*y64&>f(Josue!%uI z&m-ZCcQ4k_j;cDAS#plMX@Hy}*bG0JQ&=v*f>mN*(ouKOK-(mDh8!d0)EoX?Z3`$ZM8H@KH-FuJUY+PN^%09Z_l@@5-QK`j|)?P`UIz;ko-W# zR^70cGyfUgkH_cbby_8h8R}68tT=!Ej^F``4xs(yqGuxEVvWrcR}gA+jsVdnAb^y@ z`_w+J_PoHtJFq6dvi`S{y+=W?tItK^!i_(OZJ{1v)ktXE5SK~#F%2tDlE78Vsn+HPo%akO>Pe)N#9X#!i8>!;WH67#L9+s1r| zf#J9OD_2v$$!K?{*3O(*PcQeh80$h$R`}$Z@-z2RxuCA!eS=nW2ScLM(_!!Q-(K-; z{FP5j#jtaqmbG@eR9Q^=0DDTw=1fq+ydXpJPTU*Jj56SlN|#E2`!7%`5fgC(KDKU@ z=7~E@9at@Ory8L3=Tam;(Z&rP~r|c*Tm+Yy8VD1?oy{u4S+>$AnDilHe6Gj!XfF?Vk zy=V79SS|%KYa3yMSyZw58!RuAZ{F2~ufGGyItJ`<8o)yHgWwoeId?%9vWr6%_8n22 z9kp#TeiD3?zm2ynFIdhTk;xa@7*NYN)pvRRE9_X^V4}%(53B-y6n$6ds`Vrccgymc zrzvn(9nd02rmlc_sJlGm{7hCpj)7A=Xxa2Ogq-!7ixasb$u71XR@mM{Z2hQpvy*n0 zOC{kAw44rjg=Ov|eZnYW5E~c8e4OfWF&#hf{%C)d`?qv7hzxKP7LRxtmaKE-ry0chX3_CnzvVr=9RF zdBKg8c?sxn;$Jn+j2uNL_Pww zTK(f;svh4`n^)&gAS*Ya0lLMpbA=lvA@hNJ{J>FPk~8w4lt-M|3i3@Ya|p6$)}&C&lvl9p>JF1L&h%F4 z`oSWx9=Y*`UNx4hg^IB3Ug`1L9voFGJkUw+;h?dYoT#CLIt2wB2SN2Cy6s>PMK(2_ z97=5`i*m1uIu)ss8&=XLTn1sbz&kjaBhXBjkwX|lgPGB|W14l{iX7oD73pdeM=WKP zYGwX=`1WjEX+!ytIp<+5mZc%5>E5F<<-DV$!g)tEL~qAUX% z3RH+(B6JBmNL(8xtSt<1cBJO!gA}_8y(~ΞUUvCc4HsqQ-fJ*l4vI+6(C?$W4E> z(yTNh#Wg`ZdeNc!G7fue{Qa`wa|=GLpm9{$!~gcABgkcP#6ql^N}?S{Pc(9y=CR~k zTgO)!r1?n7Xf*?_&N|*Yqnc|r@jQ8>#s2U@KALj4{ixl3(qV$Osi{0LH&97225YVO z!Gcy1qwU%Ha6Z!7ue6eUJ*U+!6L*^`vv-^Iic%`=5EIRCGA z(q>2r_NU^;`f+0bFq!p+tA$saYmYl(2yK#G!*KkwbrI@m>g6{1STWvg;<}I!Ixby( z+2e%#xO~}-%K(nnO18A4B=9sfV>cgN z1nH!=S9kM=Gs!|CSx^KM3fA-*|7n6(tP2%4IKom!*F&*24r!~5s!<88h!=Pxwps_T zM@AlxXGU6P)!p zxZ7cX$A%vSt4mXe92`iK!b+Hwh1W7TahZuGMVe2i;8jo7&0ay(=Es+{aD-UpnS(1@ zYId1@iG($>a9L7I1^ zFrA8H$jc?dFKCeVz4?_f_oo&{UWqMUdKcBeHeY-rcPgAAx$MS-%TV*WCWPGbaD3Ck zR3c;<=FDg~hWwVuPjZU(X6V6D=)o*tVl#%l<^{iWME!yaU&izjCGp=!#q|B#YF%#N zIriW|yiQM!ZMK*(`f@P~3{mnR2F)on;e53ej|Sx9d{ogP{>Pkg9r=P2-^Ke-ji2X| zpBvlFE7bCs6UP4@t)#P*jz+&;t;U_{Yvdqks3~vpuWT zoyWR9l#kSef=cC%xCo#ro}=;~s7iyv{q%WKjE@9~T%V11iExg)R8fn_>-M+bqRPsu zOmz^Gpgazi+)0aozOjIslP8+Xj&ZiGh~0lNslD?ctp!j$9DR$IBeiNUq-Hn80YRPA z9p>p&u&19Rg@`lgU2EC7Ut@oURi)sr@W^J~QrdqAQx!+^U)ii7)#Uhwew%X)0zMy0v7gei9AUL^NQ4N&f2Qj%=c2b- z&pu94xGcTIQ4pU?JHzTNU3X`%@IcuzDA%?n`D`wf<02hHtoKkJmS_`gZg|=8w`NI~>)PlMF+VQnEh>3_V+i7zr z__#hxTzq&prJ(lPUW}QpBz!%??chl@*i18iXmeEP;&lAU^en$>XgviH;d?Xo#NG0} z-2wk@GGBg_%Zwe%+)cxJ+A24RyTyGB--xvOG(AuL{YW+Ynr~~RM;qx#$9?AamuRrr zx65tNbrw-+h*KNk4W)f?K>T#KcD?QO#h7LDnddNQLC7;iCLHeAvdcCs5P}zu^G|)t zb~stDfmXsUEnoY72Afmy!ER}!?MBp-SGQ4QuXU8Qf1a(>DLP1~u?$swLcx1Q%MuRI z`cdUYugf<}aI|9nyTID_b+adWf2sVRvMT$3l~q~j+5Z16(#$^>1aZfof3>*>aK+Se z9P;G>f17`;xl7YGc@2%@s8f2f-(CrcrAEq*h zGW15t_osU*)-RmjpQg{Rsjc%lzelnnmDP>x-CkL<@yU`TCDdQPuAfU0D`?HGs#W`i zO{|X}D9A0LQNEg%ck;Z@+y%F_4^VfWE%W-au~hpSrU4W!B>AdKqx+-}#VV<8V zxhSrv+8cWQW0iN_g+H6@YwXr^?%mq#+vNIehdH#LoLXio^!LuJsvc=uwv=s@GL&h$ zbFyI)K; zBMb86>^pC|ub7$29r`@MZiwE6&GLIC9+z4#9Ccqlw-}Wi78>c>N3FLJhaJ5wOa2IbH+S$cxL`+48V*rZTnzzyTmqdn4MGynTWtmS zrh27hXZhova%I8Cnu-#Z7@t=3eI+SfqMvJB+1#6RI3o&XN~11P)~N?619H)faf)E7 zL0;0zMAk8V)awdHE7EP4pAx97#JhiSEln z&+qi+u?VKidIP&Kx_Ob>Vh0H3w(4#hsMMa(Bm#T@l*B-?=$c=?!hb^Nn{zuJ5G6(=^7ye1OUF5 z8v5dsA5`BeNBu{=L7cNJN+dyL5%)z4ou~DIJ1!p8MqgHk;w5*9q;PK0#>hg$OP$<* zac#M1Z@#4l&IJpYaR*I)gTFwFPrJMahPWi6WeN1C5%mTD>o5V18B7fHuy^VH`$dI%k!318G_7PL(dAHc<%zIL2nb-%SA+ z-8!Y%QF4$BCj>Va2qP}KK?R0T!zF@SXFm75hr zO|MuPnIxDwN8^ObeFS5_;F>I&5{XfmwiOXKI0`{A2*UTwhGwq*F8;Z?ftsKuVp1>o zE9{6iu<#vTKUqMO;$+9+e2ah>Q|9YVAdVX9rDv-JMi8feE)DX0aEg>}2ZkF(pP7^I z*Vi{~%4(|Ywu~OmZb7a_CbTAuE+f{AV}!Kh&!27Q7E3}1m`=HDH$5ci^Kd+P22qv+h#JuP_d{df$14xfE)=#}PdbcH9@Y1Zrz zww|v5h%L}I$OQ_{X7a@Av|LhhTpuzh_i(c=B$f@oFLjEX-xF>B00H<4D%@|Y>wj7$ z_x7;;aV0uo?^T!_oT5$`&G`_F;<087jtja_6Ko zg}OaE3CTz3oNFt>{9z(l0_K0`g(j670E!gS3NqhED|6l;21U}0>v2Q4y+-iySV?p_ z;ByOlY(@88d@M4npAT;;`|FS&^Ke()-`MCsWI^LqlqbHeu1;#J==ZSTsEPxzV_1qv z5lr1^fkG-$TsJp90&sZdL|c1Pd9PKaloh0m@Q zNn`E9c+4d=rO?}UWOiw(R;s7l&yEF`pymyNhBxD38eb-NG63Up&0)eX6(wy;kK$3g zP-Vt3Rp`dRS7na_4{qOFUcO*5`1<9|HRPFsHv*O)& z%+Z-YLUljz^QET0#LSU5lb-skq*DHXf4H4EDCwyrlKc<+CKcTrtG`(mh>IXX86hY{ zA%t->5Ayb6o`8k!?fOE1ISNq!5-8Oy2B6p@E*Q*M8cV&atE&BRW|?bXrr`PA{GtGp z8(8|tSbp(lb2{?wcPj}^OcukRSi26bBsTn#(@wzBT<$+a3r@wwtF%ydqKT18^&zF% zXPRmK>nT~W2!5TxOBm!+*C>`2EfVF7o#>1 zO$FGe!7)<+M@#H$i;*FQX*52aWrn*!#goNWaCdgH@RJXXT9AVY^UO;mb`NRnY?85h zdCX&3zHqM>D{|0&BLjt@WN;+OPTQ_HSO*Waf)%kl*X7!bTd=8Im^^()(%Rh?x12fL zhAIjsWFI@BP!bt6Y3$Ee)JdZypV+ffQYyYUkx5h|DW;e$IYuS}0>{>Q)m2fh+lHJE ztJe|m!ZzpCms@dk;aEKrCsa<_c{>RhwUr6u3km6Gk*E zoeYa47L^-0a zh(RT^EU(VC6y)102^eTtH|}fPN2vlTP_yN&ge^JD@| zk=y|ARQ7uUyuMR*xz>wU$38kb+0pi-5imj`7nzYH>41~8ZU;^6a?iNppsroj?tr^; zMYiD!K2vCle~v<w>E$DeoQAK`fsj#aAgDadKRZjUO z)X6ocSGFtK_nGxC^7t|&w!Gl1>hyh$t4TyI#HYN~d#&W>h1c0&v0E9%F4xBT@n5Sl zy6Tmc$Ln&^%AR5o5XIgI?6sn#Dh;l;0@TiaA`eaWVvk$jY43Na+;ooq*hDsa9pghk zRrlQ(EGJ6tfp5{CVb$y8$#x{=k74qhDv$*XK+Z;1zv&>?#yDR%o_cb(OGan-1hSsset&9uk2(x(-JT<`@a@k&ZK`@ozqZnj5)D#%xvq)r zaw~eS;%tA?l+Gc64?gJ+4R#XxNtKZDe$BZSF#v#GTT7<!p6-0>iRP>6QXHwzAHpLxV2hlaY z^*6bzjdd*92yh8LBj(QZ@3BomU7}stpH|4f`P9Sryb9W?s6w37);X0@g^yV+Zk>c2v-1BHM$b%+!5lcPM0a zTG4!t>+Cr9L^Z(uKO)}?z@@L2zE_jMhg(tn5|iyH^mxF{6Xk}=gjf~rJRA-PZh2z= zWAr$srRMk#$&Z2Ize;}e9L)cJ^4rmxvZeliN{r5c*yu2d^a@X1J|vM zBU;mxJvfRKU6smO%P|3eefu%n7F^^#?qs??y=jq0zmvZQfB!MYba(w8`t#oR_+0&d z?#GVP^kzoPQCyhQ@bc2AghdVnq27P_Zv4C!HpOae_WkO=4)=DhpCuW3j}Y9biXN1D z7ry>r;wIR6^mJMM$=cy-iVojB(K9^9>Jddf3N z`MMZ)lxKl@^1U_v{=WLOm!@+B=19AecjYG zeX}83pj|*u@ZC+)sAf$1a23rh7=nuWkUgPjoS{tsDK^`2suM!tY;^?;kl`>TRUZpM z6q4BtYiec8yE9ex#p4H+qurD}iM+Ah&CEgbz_1$K807k{=llHa0$3f1kdE6uJHzgb7Jx(5@eEux!ZooS2RozqAp~M&y2{v`2DrOo?uq!(@oJs>N93?ad z7~=#R55;WH51kc*e(h}*LBa<5uC9O4g+bZGN>n`@r7U}!^|l{bc`~>6hi5TW%&9wU30_ z=m#UVJ$*!5c~F2LOGcb~9Nl1X9Jhi+_Wk7DH1UsshI3Dgtgtyh#?n^^y?b2lchXyE zD@RVX;7c=9fz^*oHY;IY2|m zQoMzc9J>1;O0!`8U}~Inre3#B#PY_W1R~Mta`0Fxf`9cG1p_{%M9EHZ0<(RyQ+it| zH3`-PmGxMIu3`}Q2elb>R%EbkM20)DD=tV>7~1+y4J z;}Q<`AY$!$P8f^-3g*IV_N>H6C`Jb)cora zqI0rTwggEa5E7l*NVc8Fo^cnI2JDMxiX%7Lg8-;mTV-JTr0Ta`0 zMypeNR*R2oo;d`~^y!95%VXKXap}0y>lvlwCF+o@t>bo4JA8**Lv%~i{zlVy0JX>o zwOw)G7$GLp0v_uFLs_eDWwoqFp@NSpkSqz9QZq6t*C|0c`qc)~^_OrpS?JGjN8jNj zWDSoJ2TPdQD>iN#xAz;?N6DK9CEr0rdHdI2y*Eb&*LN*J@J{)R679xV#OW+s>B(yy ztT#;`)Aeph*e19l?5-%xAg-i|VO~o3Q*bWj-N7`(ej8DHl0r~r{4?alwg5>-%wacLkFY&pE6%LW z@3!m#F_>jAdzsf05|x>Dzc+LFl~9VdTXe`3xdy}cEGMvanee%+1({?xnee=<1pJD< z>3~=Rt6?rR?utMGPS)Xi2m|$vlK|TqD?nbVq!y-5R=)ODH_cj3R{8*6y5S&e zSy~^;F=RpNWp?V&{m4oUC2LKY>>Qa#7x~TvH(HBn$~tY%eWRDoiiRSzE-17Gx`f`#^r829l54rFQVEG$3c^dirjz{|RV1WbCH`jB}>MTV)7FGkZEHVK_Zf9r9|R?08J(TPzC?J z!bxtfwBtOL8@uTXiR=E$&YZS!VA9hHO+bRI>|fVk2Z{;VqDNJw13p0Kj2+CUw$_3b z);pDG!D6hQ(`EU0BVS)(fW0Xps^b4+$STl)!_~lg5C=mknZ{${>)l?@J5-a zj6{r_^#s7lHkzspP2XD$u%YT>f_oApZ2_UQ##}+Kh8F~Vir98F@3C%^lGWc*$50k< zWmn^SZ2MV1gd(!f`P}*v*okz}2Y#5D;sX@lzItEbZ3Dzc)g_TQ=prP=SmTn%G}YwY z2^zYi55Yy2LfQs+ZB&cybLr%t9um)v>?q7=;0lLfcgdFc3=uyJo_2i zzg-5IAEiGA9g}jBpw^_NJD6 z)Ms=^d80RRF`LmUCq@sd(d0{D>;ldnTW2=f&?dF)}YP70{w{$5i z@X}!1fiv!qW!5h20K&Z*2fIe++fK|tDvRg({0+K`5!c`t%UlgybZrdoG*^>oJdR{h zsBf^&2MW`EglqhbIcRZ|%$A(2F!*w35uWOig)2}v#{T!C2J@x14$i)#I^!D6xzAR0 ze|(PETvE+Pi^6V}wAD~+mU42R@=JM*zo2u9B(Xk7g?;Mpsk+yM`IXlX_$x>FceZ2R zggY)M4fp#UcyvC8dud<0hYaIoCPzeTtd%iENcr*~u8Qy`Gra!(6Ts+tn^n3c*H!P- zNFMKNdSl4W5lIQl1gzzuV2H1E=YFHQ8*87^h70hyMzXQ$)JZVl$HKoJOfmXMWUnig&u8C5(mTgA5Kr_=*ECBm zDgqZ~a}%)~0+5Y98AEM&joD6+Qv!aVHnRHCt;6`3#LtbQ3%vD{4bGSIwJ#aLce*uX zC4XWj(bR>c6?rKq(`EwaqMWT!&NhUG18RW|uoqRWK`zQ~@_AwOb-Vj9ZT! zZE!OG?3VDA;3I|dm8ka(visVo?FrfJPPe|bU?tQ?iLa)Bqi@YleC;4Qscn)LBYl1F zd4AY`J~5%o{pb@!suPCZk5fUXdVg?b>7(5w!7fofIHJZ!^Dhm6zLY(zk>2NChd{e~ z&^a4Rgd%~@f$QNkdI64MS{0VVwHENiunbTnlVQYGH=gyaB{P!-R}sNDONTm$t7~x) zT|p`h0xM~HIGS|xEAJ$_|B{zv4n)ry7ofaSeZrTl#fQnxf%dv!vm+{SNa(Lj+IXK_4MIs9Y{UM#-MC5Y318<9tiQ?*gS6G{ro}d;zRmR;ez?U z3KuN@o5s+i)$wnwgz)@~@(wI=&+9LU1w;(^fQl&>zp%p66T7M|)mNtTixSs8m*JsmbH;8H1`fCdXGA!7aHT(VjvQ?UhvQYkV z@{gL_rWctWon4qf3Q1z5cUbB|+V_>OS2+)1{ud^k7$WUbx!2wLh0O^3Am(s9E1TgTUYZ85^HuoD zXeghYMl8#Lq#;U%w&BI8WZaBAM_>`8SyIIAP^J6#(W7JJ$p9Xw zBo}{<c)YX0|g-P3=K(2sZ1T>Mjv-t1fE^pSq>yA2J*2#_k7Ir0^1L z%+v=Z1`?}v!+6@Z8K&ob96_=ZZiN9=tj+U1mA_`ENsy63P#C`k+xm75B+4EnwaE;r z6P7s!V`En!EgUpWzaf5j$9fwXxHMchJmU*B6#?@yBjnyM@Zfw!)qI(~)HM5xjXNo1 zv|PtC30G%h4gjVi;s$Ujd=mD{Diao|ii}T3NrUwO46A9R--Ya^q!;Bcq1J^i@zaoP zDxxhE%|G7A9*exWR*#8wV5`plUoSnj74})J!u;W|Jgf(-hHa4^4Gw@0VY`_; zudCC9q#<{5RoG@`a=M+^$(G`LeK-;Iw7%AM|{tW6g*DOyg8g~x)1oQeI!a3uAeBh*!k zI0pug4z8k;)iWuQiN{Um%x#7xVjF09*IU}c+KhQL=!{3S_f6TC(5^N|6jN$J8fkFD zj~v`Oakf$>k8uWrW^h*W^#O>w9hL;wP80Pynlv3=Y?mW%Cv88`BShRTPYH7}1;Yq1!UcqZG@zUeZWQ4YaCXccCuRbWNTpg}1q1Uxs??4<8CQe+E9+KT zujB|iPh*pm#57$^^ZBphL>>CB-;j->ejh9rRP5uhE9@?A* z!Gtpq79vxa>5@`;*RE+9L~~Y<1*)IO=I0K6@c#r>h8Ik0v`S`t^12_6FMqEllGOC% z7O5>l(XLymfy#H6OJF42NMH?eeXVfQnrx8QmA&bQi@3lkq)WBpSIa^jZNNp;SSw;< z4@{^8N`NDXP5fw#ym!FBi_ppH``UMw_4kiMX8C5eR*3(N>RV+)=I;4LAW!+=u zko$aNc|ANAE1zSbf^%_K1Y~}=ktYrLtnR=N##UJ*i0A-N_Lv2VcM+KCMN+^bxf|JI1A;HwP z8|ORz;|gb)lbr0X#?o+`-Tk^vb|PS6Ag9A5Q|r06JtgdTE|?INCANYA2c=!75`Z#CFCfsB`_3M1*@I=WL|!Q5kyK(>iJ8Kt zr0NN~PD5%lTRHDl#xjRz7NR_5>>XvIWTud87DmM){m$~xyI97g8Kh$DP4`->x&ly* zt*>`8m_&VJ2_w-UsHt^)hpBEE2V1tmS&JfhTA3@YEE_r22qE#uMgu>&Yi&u~rDh@V}4>fd>6;{527mCG|{dJC)_*S0flp9bnp zSO|)s;{GvG-k#{oD^FWGUc02K=pRSqX=p$H5Jf6P2`ZSn4PH1y{y8K5Ty0oqyeZmj zqo*3xluUj1l2Y!5Y;&i=JQmA=ag&^+X>>y_fZ$RDmOmg<6nKoEd`Kr9J)0Wf~Y zqa!f{B-Y*bVH}ajqg!c3@xwXOgA2_PJE|=g(&*Suq{!NXr&$%_HI72#@-=~5x$VaM zZNcZARSZ_~NrM(XFD20@BQddE1hh<`$r1`Z5XUFNlmFnzz83H12=v3tlS9Sy_bo$pe{>S!DGzdE% z5pmDDO#Ah|WjCS<1~&UUT`K?Pxr*anH;(&%(24b&0YGF)qYTa4GS&1Qy7b6=sJe?; z+{|&smvm__G%p4t*}S1`LgFuZs^W&tSw1JOpECoRr!Ue!p+QRg8{g3dh^QTCg?fJY zr`h5~rOEn_2U{6`uD~xZA~Oh%;xtb3Y*?{&IEeVXK3;~RF=8d+W@%6AR(?zy8#C)D zW>tDJR!S%Bj{;exeyGQ;hnj^Fyz3seNqje)XhI0e9*H6ijCpbTEc9b?om?MUkhDdc zk?-ZFTcYL|UE63Ze^y5-K=ep)6ZJyZZ0;;9v~8d{PU7l5Ug#OxK0_yO2GP7wd+T*H zQjrUrEiFQvzQ?!C0FCdxrM`QjBa*TTLgDnE>LvSD?~5ZfyJBMHriK|W(X~2m@IjLe z#^CCkdNrU8h@sbB{Qv3!K?!?hb~OJ{TlsPsjVG4(l;&*uxt zG>3+bi#>*N&AOCz9RHb$yM&Ta+*k2@^$idn#Jo{Xjqw8vap{LXlPYZ6Zv2D%8Qc>0 z4q+6f!TvLH4Sa|F6nhddCP`pUh<6zJtrD54b`|5-XB=~QUd@va^8t*8NYu-a_mmuY zQ(s_ZRH#d1i5lkohW=ox0vihcRlksaDfDS=^~rtCMHwSQCj^)6%HSyPEa%IJp zJYVp=1H6*M7gb!P61ccv-4)x|3<_c&^E7lQB+pt-voCk+qr&4C3t}}5eLiz&$FwNW0k$RG;K8kUQ{??bL*jOcgL*W&T!Rr zVbW0hfe6N7SCB8F&>!yB-)^R4AUOa1AK#t%l$)A0g#a`_$iF8RSn9clbLWl zr3h3|NE1>|pfIsQg2JYg<7D2NKr{Xw`G=*A;=5q0sdG<4qh?RVn$GT{Jv8_ymhCRcDi z6o@u-vK{S#&6v16TYuMoo+pSpc9>?C*X^i7!UK2~%F=r9TYnLjrAY5O`zpGv=E|I< zFNa%$#b$#Hl&SV+z#i{i2{I!PKcZ-)(arTlx?lTMgsL;GM=*Z+$uwFFStsy~V6M8f zF{i&bT-3#!Tvhu<@Flv zWYUS-#>Ykx)iLh`$e6EK{uy$|Fat9pLhKYT!LW-CAsBfyKRorFy`O(1!)tJnyXoKs zyQLm;$L+$}{8jk&6Ba3!S;%_7m#Vb@$x$e}4;j1=BPa}SjVEy=ig5u2b#kT-&zHqH zA9k9j%CK_b4?dEER}r3u5m4X+dUE(eW^~pRIuOu449APw7{B-#hdklDsz^Q4Za>9% zEBX$dpm~b18kbXz@*)f9?b|mfoVv?^gFyinA%B@(Daf?H! z72ItK#Dz{d#)zY?w^aLUh5EshN_Yl*K@T29Mtq)Q<6>Dw;s^sCee7B7?To!^8qc3W zJ#9xhqPVBY5`yzPCEVT3JV|wRQ}~={=jK#q_Aci`^r9DIVPCCdYxx+7O~tultCO`8 z0Sjmrd4B{GahDSXs5ZZ+jw2i~m^VSTl_j`N4y{QF*-&Gn1%9LOX2A&F%ZrN_C;F2v zW-;_B$=V(UK{qu60zk0LW%1lzIznmH&DmoJFRcgevcx8*XFvlJL3T_Gm%K^AumZfF z|62=sLf-0fXU6H=sLz5`Dlz#G73m+^P~}d)u#t)Dy3jy>z-oVyVNB~7R6c>KJ7Qh! zOWazw&)%Y*AOY%^LpKogj5!jc@N$YnVQLTsWb_x<8N~)9duwq?kV^ELHD9uNJ36Mi^76vGmUAy$62gOzv_PNV}d`T&_8k_aE8d0rqzZXQZnB<4yR%QDdS$G z4T%{+^w8jLzK0o3uox_UP<$vhS!hSI@~$(cv5vw*-2UxSQeRCh6a?CvDJ|QK}%jJHD*#y z`~YhpY5FKu+Kq2 znd5dmr->l&zDI29t-zU=_}Ap;+&)q#>Wf^zne=-z1K5(ye(Y#Tv)+RE-7^ zD3poh-FK%_;>DZRhM<>rS{+B|e`ZkNyFfL0YxluZO(u@&Tz$O1p`^B+9`&{2R&PH| zJ-=U?PT@>dg4Fa<1q0G+hM3N-T)Ah`CHh=wYxSoY!>jq={nBUuhp~5R5(P@OZp*f9 z+qPZ1Y}>YN+qP}*vTfV8zI|@QedvgO=)bU@a<0rd#sN@D-DZYb5!P<;aP?{h^P&dT zY};K0_bz3Z3Di=H&b0S+l3R+s9*|S*Q}0s(k4stvnh*h?o|uq{wl@v;iPMR>JnM6a z^N*_pe`(=^!mpZn_;iJS za8v$J%v##jG z<~cP=^Jv`$Z!c02cjJio5Y?T7Mk{Tb`ij%4uZQRCbK}uPk0hm=4BdpC(=@kM zzTQYwV<49Xb5RnQTt9IE4^Cviw%}}iE#Sd~kxTGa29m%H)BO*9{^)!!n+VRaZ`BlB zJ)A0=kQ38tiA?uF!c01I5N6}epO{QN<)-Q;44(&HYA!RMf(1}DzL;31epO?!Gd`n( zKK-)7X1c8;K)buBAXchwph?~i_=8xlC}EmsYSPLkQ>z^XQ^TTnWUNnCz6@Ohmut5C zdB$n`zV?m7J$OZ-!4_fXvOP?Uc?KH1&!KGv?z^685*4S!nFTDbe*^_%{8`5<;iTCiD#{UKW zL}$$KUxst0{|PI{%*gy7UZCy&D+IOuA4mHEJdy}gJ75F{Mjgx>nTLHSthUxdj|V*G z>C<;0Cu8d3A~%%)W3arEsRJa4zE%9?<+7A5;&U1b})DvV(_ zccu@vw+j8HqwUEoq9pup(9z$ zi_i>aJq=l#3Rn%pRhp$r(7@e5w?L=v&p$|*mZ7NKPT6bWs(G7$9o{9JXBZk8%ild- zf@Fl%?o7+X9=Z0*Ue?1j{r-`wFZfqRZvLz-bQcyl3Yyk4FmZ9;yPj3chGjPScxZi$ z!>-T*#7X}lj`$t&q-_II4z zv>|GOIo?nweR!@7I)Ivm+o2BW8OO7?F2L_X)|ZA)z(7YEuOLarzN{GsaDo=i09J_H02D8!^>`_@tmiNr*Y z6NJ)Tm@Q)whSJZsrm<>#jU;3^UmJ5b7aLjYpqpG+sj4B%0uVv%*VK;{;uk(GDcgV{ zBPpoGx@_ec+oVnUFb`(YN;uY%_8@9$I=Ng<$RjbyfN}A;LGdepxX*&-S71D}$OgCo zMH`^o-Aj?PA~1nGD*#h70K3oN6e1W%I39e3;GZO_Ldtzr-T^GaX>RTAL4Pt8+nvf> zgW~|hsUIa##F(IT6m3~WH{eScUfb`sy3M*QhTyMnb`mX35mdyzo)Hv>&t40PzvFZG z-)^6$FVeN-X2Sy@$tS&lLGH_CazYyW-64O-lDpYQ>i<-L??gNb9}jM8GouKGr3O&} z$!MNe522}35Rhj*H7*JIr}D~jK_Eb1i*54LN73eqpyK%W^XW1stW)`;va zxm#aMM{t7Fa@VJiXao(JWCJfPye)x+p$YbS4i|u2Y9d z%3^x$`%qj-5&p$ve|PjWYk(53Hj;qrunlIZ%PuiTxo{5-IGi|=izF~g)N{{=YMgV) zw$|aR0|P0BL8-1HU98f99UaJWztkK`56;Ddga?-&G-l;M z3qvEf@Zn#$!AoFs{n1*#&TB70zza3m3%wq5+3EuUb0$F4`Mq-U$bHnxRR+7zHswUn zA(PFNEo8Ioee|3uUAZ%H7Le?PJ1RkH#3B#OOCWu|n%k*0U5s_#+DIGMNcj|;sA3jl za$59`UFPqQaf%7avygncZag*hX~GDHspqTB+?&H!8f}M3rvH;SYFC~t!QXF3z$noD zmV}7&lLQ$H7XS`W$qk+8h*{L`JBzrrQh`S(HW;u%ZD(m?AI@lGT>)|07VTFmRJncD zC>v6n6jD}Yk?)bA5jjDy3Td{_)Y;Nwq9Yx>#H=ak>n$xLQKss z<;1k>;yqziJUFGS)^PCAM58m3^H+8x8j8LtbR&GVNdf$(Y^p&DjA}y0U~7~)D1&CV zX>8=90HWHd?7?=N4Kvwgh3`siO2;uvmfTvnt4IB|1iZ#-6y=MW$0eno0Dai^tYd2E zoFEk2S3y*%uByN0EK$xpA_{%W^X5_cpgtH{E{%BPK3~p6uibG}AP9gc0Hx94w|&C&o}N z3RN;91#))2&NM7*Jo3_l_^0_#DX3NHNZ>HXf865{S^~Fvyh;4e)PJs(P=e$L|U8o%D_(`r-TFqP`$B!AR8U-~)~H z{Fe*xf1PwYmH(h4O*3f{Np5tni7OkX5nRmMHjby;Bpz8Oox3%RpX)S@ci`QXW1}Vs z3#uA>dAz=%h7?3kYvol&#Sx`^7dZM|KaE4vm>d+6$PRm>U zBs+B`5!}^kyP!j;)~ad+lzYgGlA!`>4baY@IEP)9loX9R`MWj9U)>ZwKPyg`5x*CO z`hhe$PMs26U>GuxorqxVTVKV^_*VlNJKVXBfWR2?K^*b!(xseQNfhrEGn~H`Fth|^ zYnB+bmTwckGHI)CPcmG`RI*2@CK8&L=W}^Kdv4my!8anIz_roQsREU)u96<>BP(47 z*Jdl>YMQcXe2yUA=?j;#%vy&)dxyxZ0zr>7{tf(Hqa6R7rE<&2j%qR-*);ShVCo-nA_Ng(=vt{03@kxT%UR)ME68j!)-fmF#OoAQx{P^tqucI|ccC zmHj1Kf}GM+&RE0Al0GnmLJX?WSI6(t1!D=Ht^)4ZEd$XDUr!Y>LD1n6R}aNOb2sNY zaWQCe?a8DEQb^RcJaL)l2o^Un#OC78=;sL8@a6mdAPUpDXHB%7-0sKQbDPkYDXw1}t_eYyB~W$omvDd^;t|i+<8_uI z`|ojKw*u+buCe=4KNXWTkPweA zc?T6|{#vu>JUUX6RlEngkLwJ5U&nrCkIFLtEr9%Q^gLG1{|F$*+W)`E=K)+K2~j&h z2p47z%p1GiE)>2*aT0yjK<>v!++H#Z56262s`#Gr&2dpXkk3zwt$aEj>B5*u>6p!>l1@Yxu%NQP%Qz3VXq5RUJx zsAZh+XHq5n%0N%alBBDvf-7h0t`0i=LoV>c^$YH;n?f2W(ZLRa_X65JxM$(U211hW z{s!MA4bX~H*x%;uA_zA2p{|JOBgcj%PHWJWbwHbxkAS<4yjGx=p{|4(l*E+HCNY1l z5+BAr%mQHXFxz?bqRJ3!?`aU|69g4WvXBMN9WSft%JI&Cky5BFGcN0V`TDo5i08}4iF0jNm3_5;# z{T_z1%OXE|KRsV5kyN4HmZuQ$3bLZF@{z~f&k6+S-t^6(&_-T`{rdPBS+v&0o0W1& zVJ*FS2v^lxfYOC`T(x)TeTn&Cy^Dy17=aHk^vqL~gwI(#M_HzG}s( zNaqC0u4#)McWI+ZZnuFz!4mPw(M8t6{a6|Z4F)9!M6jpX${?fbn*(lz(U${5t&&O} z=U+)^uTGo>xvvz18jyqR|Ek8a)CA2%uG5Ro=i^vx#9zhK$dg6ta(fz5nv7$FN}0gl zC{NT^5Du0ao2C;m3{Q-K#dvH!s@qqpIr=K*<7*qoHwOG_DY`{yaki!=DCc%D){hme zs?LeDY>B6>Q{T#78%|AhQDm>LT$M$qcDQ0)b8Ho}eepa8PPBS(0!OjagFLRV?Z9`aO8ki^-i05T==;F^}U zkquaj3|~i1mIg1SXQDk;8#!L*K*;f0;2?*WddobI3^?$q$*I3ECB7=W70E4Bi)^oj zr(m{pL3z+1feANIkqHKm$VgKRICd&S;WRnDh@i2WQ3RwQ_W2mY#7eQHgG^9Gf}m3M zqCVF`#klr-n0={2*nEFC6m%C|*>}blFq^kK+}9|xRT!j37O^yj{>B-T*uWBHfQ=Uo zuYS=I{v%OF1Ck$?;KGS(Kjyt1tu?d~lL^a7TI)WGc|xEji8mDAs0il}zCe_K{$wtU zMVCF^BH^)K*h+(T?W|%TpnK<7(|-7frShnD$-sR$Sge8PyN)w*GaCqVET~I%Z;#=U zQaomkOhMmhmP4#eHB9y%&V`*9L3YJ7`lLasdTFK&_3E~2rAtk%FRIE6f`9XV571B; zg>6ukOHC>|>=!832KU7Sj`pLBd8Uz;)|!8*f3mbQ#WrmV`af;%bQp3Kf`}9e3#Sd% zLxhob`Qj7-n@m>xuk0?P|Z5E@nThhXo6#Q&)WA28hEMFU{} zV-!S0!b;9%bVW%%xD>_P^`Ohc@F3MF|A9VPyoi4^ms?43-$QAEpgEK``WZ)ul6!oQ z4KFxf4r+s+_w=pakl#$JMqN@s`Y+2BG|^%MX=CAhn8%Egm@mU0U6(%}$vze=M0gX{2`{D4`t z$b53AJ53;&E4M@FY;l)YAzi_4SWd)7y*5>oZDwE)uMHXsWjn`v)O4UPI~#zOdN{qX zCg5ju#u*xE$PTx7eHSI-3?ewd0X1`PaF7$Xk=R%pfjk+KX+6ATFW$#tpPS zJXMd!J2>P#=Y|uYvujSDPNqLRw_FFbEh@gAm)})5bxZe_28zAQ3mQr(n7TqqC;=;l zRe-Fu{fo^tf;uwV$lgo1OQ>m3h$EM<6@S%xTT=2nXUTA+6nl{ZeS4OQZ@q7+6c5f* z)E@+|@1ldw-DB)MzqxhpCX^Dtge8jdQL$v5mZNkW{9vl)6fA|I=QTxzKQj(6ICEd0 z=dV;%uC0{22fBCQ4lLRYkE43xNlax5oda{XDXTnTrYW^Q3?XFyOKFfZW6Xy+G_N;8*@ z02*&4xgIqL?C}H%T;U^LXn)jLi3<8H;PB4Xi(%ZKcaMh7Xyy#WhP?sp1cpLqKGsOm zRgLZ_dvqh4$<2>jhOup*xX%^Nel;^feinQLcW6o9e1_YHJHiROsRYpPxuFQhK7qHI zU$*&J$uriGe+q+m$1EuCB1oU}UTy`0QK{pJpKHKTwg0)JhmIdFAyF0ZyrnjD#Afyb zdLc9k2w{n%x~VsLS^Q4LEsd~n(^whsUNU`F{a%Z4A)9SSE#AueejCX3)UX_I7kZ1F z6`n8O9YQ4E6KL2=urssE7cbw7HvwRU2)I!&Iw+SI?DqwM3pw0tTN*$vNWDxyKUaZ&|8{GJeT{Qis z`Nn2KVm}Au@Ol%rz82tcfm-D878xUsQDGtnzXbmXjA|FlazHLdmCTvyd(DO9R|4)S zUUlzennpo^$%p2ToVXC83UEn{s`bH_9fklE4&6;*vC)5aQXECUss8b6giOq9(P*d3 zFKFBU!$#I;CW`rKvzl$q~VwVab=yB8%$VD?oiav?T8# zX+2!x0~j$8oZn3ZS>i+S_`$e>wY?Jv;)LEF)&} zSx{ODKCnM(S;RkQ)`Zy?yOSqllm?-{+yHjh!Sfz;y7wY*5J}RI3T_i!b?T%NAaAd& z{euRV|H}+scS%UTWn4b{X4ona0weYqdWMQMc_)uR%KO<0AeKw5Z?k*nbO?{}bMhiIej`BuU5r zBuUh5|0hZM_!lN=_yPuKfY!honVGr>qUO)2vfTGoe0PV%6NYVFt61Hv2^gX;6FT3^ z-Es^SChej$Nq)-E>d6BKnyoHePcbm<9z`5M6Twu(V=b|rj<*eCX|+tbRxPSsO(7I5hAEpTrQJ+pTH zHgBY;7Lk)x|5Kr!+v)zkRDMI(u*6o|Vfa`i4}C9-Yjp9HVOogjeu~Mz@hEjjIz9K? zkiBC?7|K3vPsq%iXYTMZ^UlBe%p7vg{C>a0iDFo!MgbYfR(m#`JST>g8emNvWW-nz z#zWu@2hIxXK8&`_|5@7jGbcnh5>BAAJx`vA1a47a^}dzYqboD@A!oO{YWLX6Aw>30 zZ1A%JN$dT3dtoG%pM!W-{pZj5;;l~V`j1Sjj2cN~)j?9b+3@@HN@UfuRykW*4MiNS zp*XH_6N^gka&fnJO(!AKQ;!vZ^D;`jDV9a1odS#0u6=W;x{LcYUA(Gk(aq(vT$X2M z!Hy0rfb|GPvBB38D^}eyWzG~-3N^HED91Ia5uKls+n5uI&F*-~y__rbWFYoeb)>XLP^ zi|#qfHUT1OVh6pl)tP@c*1U!8n0sImx6iSLqw!h2X%$Q!giiFOAL$%7^}G4<%Fyz0E| zpgs5dGn(7N`HL#1 zm^Ig4L86F8CGVR=*RdkE;tXk{h*zD)0E>noIo$V)!Hi+KEOPx>mDbLp3F5`CeWao< z9iKGJX1{&n1Faeqbcke%We6`_leX1tgZYY>D)?o!=!@{e^`9ue$VWb0n927wVy(57 zM^>sAYGZ7tD}_Hil#a_5rHHwPa@AZ*pba*0Vp#X2G*_9iwbJEA*ZJ39u-_JYZ}dYa zO;S;4PZJV;%hkvGiZsK8sH_okiO`&96s9n8icKW`2xzs_VvI!q4&82=4>2sy^2Y&! zKQ(E=CZy6V!F;T@`bZ5*DJ7@XNN+R>;dDtsd&xq9Ilo{Vb%vSLiJn0#o;XWo*_dN- zk?2p2|NTc4Wc9rHJ2k%!h!&7ENkl1TOI(D!hpHKA-(U-dZ`+9zDyF{1L8-7Y(b1EV zf~0xraPF}LD`d$}Gff>ZNDU9ebzwHmF^e(P&WkynzQZDVx(z9x>c$gGdRUMxM#nvC zK>>rP5S&(;csRGns%Bjl{D&ZXYsj1sQB}V^Yn&Veb@XUNhJF+^95YX`1Z$=xqoyfdT{ z1;riUkSQFnkleOr+^uP5Y^eB8Lh8d3^+X4hjwb z1$oty%$X(zYmhX0GE-;skn9(+O?n}$pAI&&M+5J$S0q@JE-e1p~ zm*0NR*cJzC-pxmd9CO(_3G>YKM8{CmjT%8Sxb|6)d8VR%?vK_GcGQ25G%MVM5otdY z0w#63z|L{R8TCqjShCaP4&18FQVZwWIhzXg0 zaH9d;yWB)oGqv92ht}C%QfQ@tnoHFHH5M_AZiQR(Z)rT>-|m9LH|<8E7l&rQyttH41Xk2Pw=X=1xI5{ddovsMeJ&V*mrs+%j_dSC0%wL) z#Tx=u=ih!#v_sq^N`u-^Maw@H8hdrtSXmp@f4jWZY^U4mkDz_BkYPxRS0+;xAjyRc zzv;F1vT--Ia?8E8e;My;z#Uqyo3@c_B{Dz{)o$!~X0F>Q=GC8SzKj$*9~#`rYm!9( zqBDB=Qq%`^W?7ARzMSB=CyU(1#LR>E#!mG|4 znx_iJQm!RX8oL(ZCYX9$Z-}{NwN*DKNM?z*!_9|HA{Y+!pEinSk8|WDIE%jauTJw2 zYLaTHxSy^sr}q+;HZf{Try|suD*ljrAC9MZ2N^6zfCU4f;USNbLKeC-Fd_T0suV&Z zKb4M$ckizGW-yhCtIU@_l`#>eqYE|D$C-TeD4*g`$DfIujlp!e(QAa3QCBc@uQ5dR zr4$8{JK_@te1o<(I3L3<#=zh$s52W4sCZ=wA9n$hMnqoV_ zS{O8p@P#5H8qo$Jn_8z2^{Yuwa`Bb-pqwx z#&k8HatVlmmk|)#k+7Mhw5(ccTn}tUT&D&cx{oCoaZYcyvYKs*La)r{%Q+Q5mG?;U zC=TV`SIpj5+?Z|yT+1qLv|yMY7G=#E{9<82ns$E*(mKIGooktL+^xvd7n_BjH#|T3 zlxNw4h{N_>D41tDD{$-jc?-L$;&|wD>RsAEhswP_w-PDfi2F23>QP6`}G~C%-V62t|;G}_wDv3Ol+Ge`_6;Ga;Bm1iJ@`2$%7q6Bni?+d-#_r1z44J*9mn# z`tJ1@ZH#gKoNbaT2x4*uw_&&qYGF$EYW7|i1U|gTYyuc^^u8IhocN#0ALn3N!N7@f zlIM8oy8%7Mw5KwON3_1f&~dCEEMKWZC5lS&KXJ{eU$*o+?-yWJN##sr1eNYJ@bO^F z*FvAHt(gyC#L3m=@ER1+ZI*MfDC#kQVz)=WT<1RG2kQjrlvJ{#Ywb{em*D<+%YkT% z*hn2D(aVq`MyT%m8_WLXL+r4dPuBMJ=QO&$9 zzm9v4JLH(o>=bivRynONu*e|j$981O z`%lkFAK!jgF%na~A}42YN@PmhhzDNMc7|1m>0ZOs`g43r^`tfzKc&;V%RADlxptHZ z-5o)pnc7!npy^+im#@jKD^{akx~WVYU{+jz)eAe>pi81IP@5G|TFgxJ?e39-Y4s06 zz(oN&h>SQ54RO_7eE@DD^<8Hg5S-Ci6?eYoD9>WY6F2G!$dtjl=iF__&0md~3FP3_ zL+$5lT|Wh*(mrV-13MJI%J!USPCs@9P*Q@mvWdNfiv%bq9aMhjrAaR5S4PhDGG!!0 zBX)I-!W+t*;={FNYYffEEaFN@S8Vwb{a0nn(_o9yhR027;@IyqbEuSv1*E!AYo8l* zke;8dNFP04Dl&$+xyd3tXDb5Id*L;$leE5XI9p?V;{P)JGyiXhGgj9BSS3wsN!L-g z!S1}Oy}_%`e*$8dDdbbm>CAOecXIUd&6H{wFZbywB9TfJHH^yHDS)t#8c8R=A-pFn zW&841BnAI2QJyK?N&a>I_`&wRS9^QCJh{#5%klkK&q+p+By;(2<RaOp3eu#&c;xyh_n``m}PyL@tVCaajY$OKv1H;zuU&M?KM{8c#mCHSdY-gd1G8 z2*07~=Ex?%@cM{ zED&#+>#d?76op)sjheZQtOIZM*ed4hPCM&0*T0&k(JUXx6)S4bi9nwaC>F`0U&mS9 zgFTO$AiBo$C>TxlejgeG5lB1kQDMcA8_e1xZ?`ytyAF`aQ$xLoV7X`ovZ@&&Q`!k1DD8&6V-|w z{XRIevn2@KanggA@M3l1dtnxDq98Jrg3m+rQARoz*CDRKmW$kPj+-bA$41pb4GIJM z^!a1q9653H+u5?1I2Wx99(|`XsjcEt&4Okxb6d>+p8Z9$*tfVl_NL$(O|4i-XTZeG zLViyt;Lq-Qa+qeYJL0j>eFf`14=T6U(L7;`nyg_2hh?ryiMeWZnF>)YyMk9J^%#DO zDsIIIju~d{1shNNjeIsopEL%usiU>czd1VU0nanz27hC*Hycv8p@HWJ3r0 z5h*sH%nz-tLYpvj18z#2c64++D7;PBf*p>zB0xT^i>W4_0)gp-=~A}PX$fPjY=2=K zk+K>E1gAj&_xU^K&bm57y&BW&*4uQM-1%VR@~AikN)cr+F~IlulPyCnUeG)@v6ycW zG(Bg?V`=U|@=jUzN#m5Wlq&9uXuWz^OD=^bjRZJ{x~ZvwNZL@Nto|WRPC$daD4JQR zfoQWg2O05*8Qu8igj{$xgHBxlAmHF;kLKn`nkn9UlQD(Sg@Fa#dg!nL3=ZdoQAyB^ zS9nezu#ULzqG!e)exqK0T6CY+Ri|v$JYv4}1f*B=A>jXZ*AeYBVV(dZu^Em5kpwC! zrG*DWZmnpY;>|WQG13TA43xiE)mw+g0#)dj_mxg)BNFa88Ml2Z?nPPM{03+&2vc#n z;$}Kl$`YnG(H$7E6n=1z?S*+A@wIBLwwdzr5vQ2%y%34YXs1!ZE;D16Ao_yJ%%LLA z6hAmikpotMmS73om4bP)c~khuMO6OFISsZ5P-g_DD9=B}^@g<7akR3|J2dCO)WydK zF_n=4!}!G~;$EjJbiDh7Cw>CP1jt1ZilAb#TE<=#(psy{8<{lL`yx66aHUMzgQ?;m zn1r2Ue`svd2o~d(68O0Q@2XX6nKrBuSZci~+YzTUW7_JSaPEj)F-w8E<^3*mLzPHd zMRP`zy5NY4nnhK2gm}J>*571n`V8yO^!dWJWB7M^G+cnWtNVDt8X0&MT?-txLM4`c z1y8i}CyMkFif%{U;gbgI9x*(|5n6B4GJYNkzQs+(9x zTDU0TQi+y(9hu^6(qBfgQl^6dnv06d4=0-YOz1IC>DOi_WFX42q(}N0Tt*0tQ;U=n zU#w<4!H)%=S^!}B#onlp%Hj}ZC<5Bl>?KAC?BE28&}NqU)pq?zH3+&8c@=NEQdH3} zSP-^qU?UG|Mmljur@_h;^7Kl|k8ij$2&>}XP;Z!pKSc}|8VQOV->wU)kqAP+7kXuV zdA^hhjuXch+QftgNzdIIpR0kaV;@j@FBp0+Atb`w@bKy~PC{_`TlELZE1grIN!ZdQ z#_iFfH&AWh0&SB0#d-alMabvp8q}rHmWZM&m0}GXjsS^4%l4Nhx!z>Pdu*~Oxg1fg zzXr!?I6C{YHKbw-S5*s<&os6B@A1NEftJ_)Q@Yg!xU&uccnq=o{`|J_#Gc_7QBv;~ zvEi;snVSVY2Gb@~vhSPP#7$`dSsXkzdxuO}?Jj?{fy*CbD)H%CkMKm8&ez1DuVO%o1po+iwx5>@Bpfu^fq63gdd{ysPhl76s7wl0Rx2 zdbzg&sb7ejtFLNE{s);#Ri5Nmcb4*G$F{U@s!o549PckRY=h_$5dmOS78ik{nFdjF zsUDJI5|hCHEssqrPC?>$20wG3jsRai58~phHs16BYiFucbTPTS0hUnmSj>WNGkFBG z-mS8EB&<*|(|a*)TShvbiLXbe*nPV&pVgq69+9YZ}4yZdrhW1^^~m zzyZ03Q@F%<0o#umA#QuUTm#16Gl3LS^IZ%ToZ!%Pq@-r?IDccqmks6JW~<&OJ|%$? z|HmF#a1ZQzim797j*|jC9WiN9QrBR+bSKjLq?@&*W)0Q)oVz0?5h3Ga_pW(fxr5#A zCop)>BBagGV^gwtfuh&aed@eNYte0Oo|fCEnH->tJ@B47JBWuv-`S)J-E=xk1bz)& z{8Nij_gWtc60-q)t&onu_!qj$StZEPeRG2U;g<@kZZTe%@A>xy^tVoYVfL%6}c*c8Bclm3eyOCJ!HvFBw%WV^1yD$KLoXC9(GqZfr z+XKMR44`eW_pIFFF)7c079poWwbyL@%eViOOHGifF}rBvdSoj0DwJtOTlLxf$n|FZ zZNV@IrHu10aunvE9(4QYpk|K;pk(YlJ>2>xTUEvu?vH z4lV7CMA~wtw*|Sp=dsa!{GY`+OeNqK#r?By#AEu)&jw|*GH2Sl45vWCd#lS--61l@ zDQ-+#)9oz0WA&cN5=rg?ff9NrvqGneJR%t^6;I|+;bgInC(kKrgoZ5?WpB0OI@f<) z+9`VXOWd-8iGnG@SmkRKv=0N~q|sLXt&JIZyN#bl@lF}Pdc31_!mYZum^=gn%%&zx z(G*ZE6;(0*Zh`d6DN}_kTC2;;^7z)DMlUVjV-L{+$G_%la%=k(DB_mzRzW5}=bbVX zw5tuLD;evP*cDzHgly&t!T@urJs5#tD|F{;zD4~LSFu)?Q2+ zWm^1>FBB;fSg*V@5sMv^PO)m>Ekh`U%cLvwXp9qa(r8P+;*EQybGBFMbj@7~Ou8c= zs6UnRI=2R>@4IJ8c`0m}p3b+4I@%QucrS&ArJQq@co{;5IZ!=eT(l668Y{UV5~dU` zD+>b;xTupi4~=?kuN)S2-@IA(p`?9qf)br6U>kU)oUNsfX>PT%QYN3z8hxoEQq^Z( zW-4T%DxF1Gwq@6*H&R>$cOx`?Q}048*nx7SIUuQ3A*DY^7cYy_6MV23H3-I}#pa~QW2I8=ivkuzw4w9073o<0;D7){KK2i{0 z+@V05(NMeaLmT798^lZilcshF9mZ=~#w!|nOX&p0IR-(DOAaqqEhN(>bzoe$ad-gu_bxXt5BuLGz0I5r^j|^^(xAFej zdY|xh(_dNsTS#R4pHOv7?EgU{_)h~8g(WbQ3&S4c-e$iKvv+xQ^~11JdXnF6F^Oe_ zva#69$v{3MZUU01gU42(d|%#_$Sa_Rp6z2WCy8 z+{x4NBTCQ1O3utkW$@3_@y9Isb+ZRA_N`v?iX=Bg-S5Z4Yd7PZVO;kt32HTGj^O*z z1l#A$=HNbvGUBy`df9VJ;x3^Lid~L`UnjZbCBmCsK@YUoXaIS^^k_%A>L_RGjeDjC zeHkV)PtN0uXDGt^_vismRHQF2CK15N4X2szI2UGWuT@um1;GPXQ6U&%g!fM_Q?!yq zaTzWcdUDPJqP#K6GTDwb!^yXeB(gG#fED6|A=+qQvDykeip~W)Q7w)Zeie&BF?9uo z2`-w&&-3K@Ym(6A^?4sTK$Uj$`;Gp>c^mRtxuMt3>^Xj!9{LHKKNSME8H0$_QhhUY z9RRy(K-DF>7#VSJH{Akc1cagW%fkQ~(u=X}7&_~ekQw$mG7pCdBMNlw8p{Mva7jpCd!wjkrUjS@PB^KyZa~AhUW?erA>HvUn(pih!FOQ8UKDF=?ij+DxjAf3 zP}()U5a=0taARWLH230uN_6<$Kg?8c5D9uDkS4+aJtAN;F0SD$jpV|>EF2+2n&}gm z2&Yn5NxF}ifJV`-DiImlp@3P%PqB>DweQB&y-4UJ*jGBGxs`2Tf1s%FS~6E$s`HT` z3x^d}6&!DPsic$I4{J|y+Ygo1JG<}USOKBxpfw0z17i5W>ERm88vtAOR}|gvs1@tD z^7)ZbI+fBCnG0fNZKEN!N|<4PQUT%&*)e1>$AG;dJhC7S%^mZaC%LRKZ8yuv*?4T? zgnU3;mG2PB2Yv4Og66MkUBWJt)&XY9@P67Abqf8iFXYE^MDe@x{Q%j*6lqR(pxFbJ zFye2y+P+}j;O&9RU4K=&oLey6umTZgOup196_T#QF$DpK)8xt(Y4CGx!5_vJ?g!E` zCO~#Mo$h)Y38%ZV@E2ZV;rS@%`7@l9vFt7)Q3OIJ5L^kD>e&oG>&f z_IQ+2c}fL1+5xiS1GrdTww_!@#^j^2^zjAk=^K@tB9JV#$y?8Ui~Zs5_lsm-2cEQj=YYaPflSOh0MNN=CG4iYrhyh)U<=fjcP zK<%J2!K*?F<%}FrS4KT8xD=*XtEsWD2=oAwAi9-LmexqMVr~X%;x=R!O9*QR5nBag zwbiNNAUYPnazQlMpb988vKovS114LfrL)}EF&-|F(NX3H&IZhPM3|Vj=T>S7<++d# zB!gq*s~qDv;eg735b`#05H$|4mv=Y+%2cH`=Dja623e{z19osFufc4en!qfEfX$8i zAt7->MB3ow=C)$5!7P8>D`jTV3nE|l)90eGrl~_|yinz79Oi)|U2jp8*HG6w>Gn0N zyuP}tE4}J40#BdZGa?;3xt62s%%wFX6#UggL==18;v8}ANQoACF z)5^GGiKJt>CAkgNR&7MtM()R3$)U2=35J^*D!m2HD=!AdtmH6JKtC|;Z`OUXuXSNw z>nj#NUx5juEA@n9MZPRhH7iCPT*;m7hzLpo9lEfE2W+Nj+C=pFwM3d=h1VW7i0*p6 z+P)T??g|t0#ox!Jm_e2rZx!khOU+C+ZP5N`+%%hygiF^-aV1ub;P0eh&={2H3@#jn`Jlp(I$(AI zzQ@*7C==#isuhA-L%lTQqaj?_f#4y8eks91); z>vtxvuk~%2^QSe^Tfwh)JhtAHUni2ii%z5o7xlL7vd`SikB?gepCIWvF(7rf@T%ZC z590p0IYvVA1uI=q@X!?9(?0;#;T&h1dCu3qlwxr(;%G`o%n zH(!;*+x9Gb3?WnT6V%V+xQ#rE3*)Fd0quay4<9Rh>acAk%1@LmV-C1l@_qE zzR8(F!b=mCCFbaCB!pfjspo8y%0A^Zic6hACSPGzhc06~U{teLJzKGl6iU0k&Vf?M zv#^V8iE4U__G%P5%5A?$dxLICxk*@=v%xz*zCJ+z*Okmog%KWEEIC<2Xa@Y~h;lb4 zOGw&VdZN?9eDPjJz?gF*kVQo!`zJajAYI5#Zn|iO+vT{?ajjG>5lkwE70V{|rv=N# zYE8zI1~<{+|1ow>TY>;emQCBLv~AnAZQHhO+qO|@+qP|6Q`7U(v(|mMe{o{Ri5)BU z<==}^1>9!-GqaVRNt6VQ(FHHTYN%+$pT-m57R==jPtp@=ve+>tbMDM5XV`UHMUF0h z@hy@tM1FrrTZ8lLqWFc|Ge0NTg)um083msaZA zqZiiUM(wXIbXRG5v=fqrzYSg;GEtVOqpayWVEvirI-_UsdEDGHdQHY2G0*UX!z*5C zzqk5=H*YSOG7bVaIBBRI;mk=&W${tR zQWv0hA0#wpgPUCtsF^SNw0HBp#aJC~e+UAcS{y&g{T{wH`PNwk%~BX%s5U=Ox>&%23f4c0IIS z-Pq&tK*k{P>eO;}BwhK@`X!DD)pp7GP8zlSewQ$Mk__}MgZxrjqo5Ukn;&k-6t}~>#0PUWsVaOG1Dg5EsFOB~9fCSBo>#d!+#9Dh1wRD6%dJYQrdk;d*~hoF>ywk;8R)n3c)ijz-`vXzd#5ZtWE?B=6>Xe&J z<8~rVe8s$`cio;-5D%2i*vao7?CZ?6_E!g;Pu#3+6YA@s{Ywmq;FHkLfhI4d-2i5p z57+HIFUh_->9%oOQB=7AV-}!NtM}ozY}hWdY}y9H3MHggAqJtn>KLyI5u0*aZ^Z1rmcay@0K(zo_3wRSsB}K%$E= zoty$FwjBVE*SfzXadok}>{k5zok8xeNvNHjD?!P1aoWznD-*L*Uy1m$F^!x$`*O=b6_nlfo?037SK5>t(%W;qY5MmL0nG-~9s*&ArAl#JRU0!`1l>StLx)t@e8x z;M|1*p3lGsl4r!n2k`!X zo>$chA!0HSk|B#qL;ZOL*3Fv%-?RX$HvW)R4g_p|qDdmyI4@)0@5Nt$wtgmq|1=J9 z{5RteBRdD{|9%TJtvPP{&)oh0{12ueZv1ooeQW-9z^~JH0*Ws02fS0`y?k_I#)%o@ z)sik!JVE``Km%Vw-Cv}=wzCGwhchev>I2P9}D=#Wmo=JMtz7B6Eb?vu)JzvPk zVZMfVDgCC-8B065xpcB8ixONuUOjK*dUF#BhsZv|W${PI(~C7P7CDTz8M2QpH-v8{ ze5#~gm76uwtddgSCrQ|VHLGTDk8bCBq|8oH2Im1QS{&{_Kb*5uz<^8BXN+8`b%c-; zSa!z{APMTBLn(5!c|m8>amHpTZrm-tIZFewmL4Vvx4t4tD5TsC`D(24z50x8U3+^d z)q)R63gb%WR<^d@;pW%Q=bWTfVU;SnSt3oeyn5Bsl^)Z(U`k9BaHZ=jtNpwU-hPf# z$)ZXes0Jlg3do@5$=0YY43pqsmVu3>80CMW_PY}#JJsi{QyAxm8^McUk z4PbI0`cKooh_CLCWUIe%7^K(GH%j16!4R=gWOF--yTREUV(&EijLp-``ld(+Zsp&%WrscrnP*)52hP1;fo06oC-mr(j#%vuRIed)%}Upx~E+!1iMn5o&*P z0nSrgR@3R4AVsGFMD;uw^}w1L9aLPJ+P&yc-Y^NRj;T(qKt{w$(YEsJ@PX)~wM@bnAnwI|d zcS7R8yN4H1-0wJW{<^*7QI&b^ydaCxz=k8CKaQasv8AzP|ll~y&yv% z)0|;SW~aZx=~BIKpbKslOs^4I9%aWZdzb5uYnM@wDU;#xv-A9$a6zv}x>v^jU#$8S zg5q3^hV~ZG0Qs~Vd*25Wt~vKx>@C%kQZev>g04Uy4mXCFG0$?R-D!^A0lGst?aMx> zu6ufL`EzXWq4Kd*Y)9lhpO@^*N##=(XxDm^OUIx>)Ax%_LkI&L+KhyUm4Nzsa0oIf z`_k~XMuN%?J3K1m-3aveS=9Sc_9odIz|`2p)wBYBDmD?V(aDdQYQ=$RO$pEcrmRsa z7V*=)8(<+@i`m}NB{MaTnkA!X$P0Y~2q@Tmh_Kk(_IwWk{SQ@-?jI@F0pn}2!*F%R zoEpSCc%v}@zIZ-ivZ1MlPq|qCbE7x>tp$Orhbu@e32v*+{=fWzo zx>che-7Z*RHmF$o#4b+EQ8Sq5UJKsFGMFl@ak7@pO$607rmJwwQ0}CKD9li3pD;w~ zaXK4B*aBr)#US`r6C_C_d+2(%a*6m_p1K%`E}y8+7wQsyGt#ICM@C{K>mu{B7;p?# zZB;1srDnBywYbXsKLvl$)J6|u>|BtV?*96!g#ACJRw1P$;_bQ*exG#Xs+~QR zb`UB>WO9xOx9d7x2F-&D@@! zxa&B}_MplgQ)hC1P1tyi4!D-&Z-Dbw9kRn|=ucP1t~h*X13}2qjMsvxQ+~cnl0Gq_ z4OS)YVs3>`*)2vL2saVTT194BA5X3teu*50NWi}nanuw7>Jregglpre>YgH|hmJ0- zQbNn*7WAk(*fTwsNcv3c%MQ;^Po>E*=+T~lR28a6i3|nV*Y(pQz5}F!brCFrjxj*Z z*UE(L_r$nNe1vp%J~OJO7Q{p6v{MoN^`>%;F|^{;HpRH4i7y1=3|Ih}59V@&ZNG%L z>0@EtSSgX!r$XSsTs{|2C@S`5m}V4_WuVSUgbX)PPD!~v*1rF2Uy}NJwu>fE}#H)~@GHA<5%JUg# zU(-~fQ0?c9%n>Nng&H$Z+Fvr9mYsDx;RipDMGckB*qZjN&d7u~4_4jRof)2&IRO<9 zr$#*|dGEY%ZC{uY7y5pQbdn+OLbE|;^9iT2>Q4;nzx9e|g1}rE8N~-brbug&p!>1#eDc8BwIZSVb8V1yk;^Jq zainQ+$Do|VF785vFJ)UEf1#>Powkya{Yiq!MyQCqfM(SR#s1)C{OhYD_Cvk$VN~E& z-~!5nc<($rn&$bd=YJ9y!)qX|t{J;tlktghq%DOQG9}I;u^*OO(N`QrJuwF%)yJOWmRQePdyrL-BsLW+QLnxMYJ9pRi7XXO z8cEAJLY1~WpjI#YeHw>?X0S<@W47uUGZTgfDHy{9Q_^~vuAS>uNbIoxK@24B8F0 zdOAE1^yY38oL(Biff?O9c71)K#9!SOQ8)|SDzqW=8#$2{>?@AHd$&`!{?dTs3+a+i zQYBwAaltL2ouq_r=k;(5R@T%VGH?Eo*&gZCNE#xBySYb*%Cz$JC)C~qX zyW#B?CqF^Li(%I>F$38;!9iCOj*mZ=`Su6Xz;*Fhxc&VKWF4u5RaK=CZH7$4F zteiJHe3udZwgdEo)1Qfa6OAW~){eIN4fXjRaP7O(vFJ{sd332c@^1N>3WyrO#7{Nx zThV>zbZYc{G}|w?p4N17<9Z$=#&L-6k<3sPgZ-s;K;>#^#4OFXa29W zY>X`QEdM)}FKf2P5_O{fk2AT@qa7K6lU^Uo{$+0l2E0afGD7c;@V967ST=&B0(=`7 z28>C`(4qaZ9op*Cs7U4j-bUAEM+EWU<%bLGC${&u{r#7&ZZq%Klr52PLVWYmgsYrf zdM$eH?e+Pqt|&RP*cr-?D0dm!6g|2!DOo_$LeSUs^vk+pX7Bwec78GHp-b=(<5Qb{ zGutC|q@2a0W(3OxLvAju>tAWQP1cn20mkd7&4u=Mz-ci%eb%9Ip7VNA`6VTzs>_j^ zVzxd-a6J3itcbHEqGyun^p0}S`=bl_)?7A6sH==kjl{^#b+OjIq|q32`j+n3_Zxia zOpGOwb--c+ZUcHjBb6|A)mRUX zfb^m`CBCG@ko@SY0dWfJ``P8w2w9Y?``eD_Es_8>K!Skb;j?rPQZtkFVfQ+3({A0! z6sQmh5IP2BVsmD-zrtCU6WY?A+8H_W>0rFNIF-!EX{=)s(rJlid;-is23x{34E}>) z+=j&5w3KQ3$HxFi7QK3YKr2OJ{!dmZPOzgT7dv7(f`zd<1%%>KB)IlnN|tq)JdOn4 zg9ZuxBZhr=rZRF6{w3a{hMF&Q9=_v%!bZ4obCvA`OwO2;5-0>IzVc8g-4}U;wea ze6-Io4gnmI16R5IRaFo>6cYDd#TQOXu%=GtO@fTlSdE6%Idwh zs+K}Yf-l3VXS^Yozzj37g{kkByK9b?gI747ahSNqd1i$iC%f5ubV8Y;Ud1GpawIQ* zm_2m>3(SjtB=N_MMe~g>EhA;)xHB1z)ER=jwgY#KA&&)%Jd0w|AzZ3gZsUe%9G`O>93V zNGO4KFGdb90ssREhWyWXiaf}Vx(!~{-aky#3#wg_NdN6nuVn;oq53J+E}4ntD-5d< zwSDcvRbCuC?#&E3WXQJp8ZNfH`ql1bR!Fp!FGHUvl0|>w|Gru_N19IN{nyAi!OVFy zH()hg|I(xKf#-&A!*)`DZn<0aq=<%)oLF;_8iS*$(2xcEc^tBz=U#ziwxbd6 zP=vX5bC$R+lgaJeEhqYMqO#g~1`HuCaUo%OO2cR&T2;=0_l&Usb+X4OP00t|r@OUA zVqS1Ip|U%PZUxs2IvXLeH{h-e(Jh_Ny!iIeyYF`1K#Ia^khRmzhf=BJOyv=1;Z zc~oZ5tJu$lRm#-9Y3#)M!iaXks(Xbk7kZJDPtIZ8kHIf73i{5_IA2U7a53L)o~rtG zRNV;>3rBf;VnN()dWaK!#RWGL3mJlux%qj21uL+sG$Aj<@L6nqm}Tt+Ua9$XPsq#1 zh4Vd?5(7W{v_(xg$!ptAbA&wx^k2!5gXWNizOM=9DmTFzLC8y~eg;I98hY7@!Q4tS zfWiGi;xHYRtfaq(Uw6~;9*v1FaPs9=p@AP6z>dRLu}SUxRi5p=*-$UfKZx-Q*OXKx z#&}X>Q6L^p%Vi5KUmdO9FViqIHhIQ7oq7~cEzLUEEtcG z;n-DJ?Hx}+Ye>-;LePt%qljQ5hIVj5P9HqTPSYAvJV)}hxl{t>z4E#TGY*((1SMU@3fXz_OzF-QaUzmcU-@yDNYZ(aLN%DblFfq?k;t$~|C^OG)B; zx%@zc)a&GAZ=ZpLHNgx)`Qa3h_XWip19FlVn*3JEj{i&nRQU@$#*E^S%gAHJw(%CD z;_<=4fBd@b`<(*&u2g=XOLtF-@vag+Z8ko_Ue?rhFpGN_#knw#aHs;{+vPI%S4V4s z)y|8loxsdm^XOCJWkL?r03@4GpSvqSrQ}B3y7i$R1Y-uVu=Jk1cuXqvDJo=_N!5cFzofJ^*D4`Co)_DgRi^yGURVttjlh+R zI@|g~>dD2h<>xi7rrvv)huJk^2bXuBU}afF;NVJrqw&5!2((z4u;WWrGpS@1N~>fQ zho4Xhjo5`7BXNtqXpT-~ck0dd~2bs5d(gJvo8Z^3n2 zBRM}K?Ed1l_Ts2P(d0)b%!N~^=)fr^L_JW{py3C5Ng-ggxl8|WjA~D6T1L`1!*(}<6F>G#-`%<9sm5>lh9&AYsY~MM$A9_H?n$p|?hdB*##E14K-9Sh3 z*_|~TDf+b$vb`|d1kak810O?yPej+J#iTF7+Psw{tJ1NfUISEOJZWs?@uloI#sSeV zWwF`9x}Ho!50xr-v8AQ*l?1GSJJ}^ZqVWu;_`Ato#rlZ*aU%VzcilHv+?Fw|!H4!9 zC$o+xU8}C`&WxrndEv>8O)O8|?H*-h`HFLgTtf}n-;P=$vHDg}ln4JSOBN#=>;Lz?z59P-S|PCii)sBw|6$ro)3^M@j(>XQ zlcU{N=$k3SO2vy@0U;fg3~eIaF7>hNR~Z|me~w;@N7_h)wzgaMJGZaz)0@XSx=p&? z4H*eU6XnfGn@)KYQfpE3uiuBCIx>oL(vs5Cs1;>j4U!TMyj}Ay2j-uN+lR8l*46tO zNX5!FA1&PeJMz^nvF_v4uiV~$D0Xk<_wyKU?J}fz&iEp= z=a|6zd}3SD?fD{?&Ui7jmK)$F{C7iX$NM)$w7mC%RC~%O(@GBxdRoHPA~&=q1+5E8 zFF0|Oagok*+V4d*PhBgwoO^e!wVY&j$R?Y*NqZ9Wep4K`CLGd8ott|j@9^iM(2&iQ)CY5YoMJ>2fx zr#HiqY~^J9w?0l!jgj^FMqOnjH{OWavg?O;OHJDB3Ys}F=sXYe2R8M_*JQIBx0t2@ zd699H@%h(772b4qA(|%V7#HNlcWA163HM5+y52*JbJiN*K+DdGF7bd@whEX` zD#CdWm5%?AJX7ffLr_!ONrUYwCobJsCR7{ga`3^k)lkUAfDwdW(PQ6qd%y#L*HR&oq7-Uq)6gojjr%uK+trnM=(3!B zUrk61o>U6$sVe1*=^9i1y!^HuII8y%A+Ow-#)`2rLw0I`>byS%*?tFPCWwmL8*D9& zlz%N2UlYQ&FQyz+Vcm;wJTj`+KcZz(^yY5N=YILuG}1+!qHHKZ{p@^n0@@pNF88BS zd?mmY#LG4Zu$DHRAAxYOWXfi@jOd@f6HCwpmfMq>)e=!RVys)xA($`>bcWLKv!PI> zBcC-nhcwg&-g_+UREs$G!!@y5{~T{Ag-8SqwxM#y^li#0U=r4m4jnJFmw-OP%Ip^F zMpKa6bCCopyNC}yN_B(vG!E#WRfI7{CDg?CTWboZX?0t|8+q!)O3a}b&|oj?S{=qq zSojEIea6;PT4A#>5@M42APU-;H8TIcG=BH==L1ar+E9ub)a-YQnXB3DvH`7it9{S= zwfWih9?QGGBq&1FC3y=lr_55nA7|e4B1YOg=!^sKRw77RfJc|P0#e1I&jovxYC!1% z8YY^KGs(vm%b^i;{{}xrZPc+P^?T(*h%*I2XWrqN0|^k+3n!5hf*4Fe$~5<2QbM{I zxRRhzkb|v&TRZ=A*3uyM$g^7k(Awh)uly85?w;yVzQM>1lvQ!4lPLM{s8_pf!~aMu zrSy`lRlFYDh6{nbtM-VvzpzQH6X8P83l3S2p9-6cB8tAYA{B%sev-R z!cMct+%Orfw%*$ePljs%S1fAZ$~ty`a<67(T>7D3nufVR;J0Mpf5($FV_Ouq1MJ-8PP2zYT)f3r6w8l;rih7Am*oQ@ zYq;5K)~C~EL>0-dg4v=R=yXIHM#C89z%o4ZcVR*BIGdaWETv_F&D6wctlF+T&vXNE z#g1Gj3ZjdUwMt?48zgVLPSOfIs|T5O5h$tDik3?A2j_F?GQFT4T=d%_cdcJ4`nHSg6JK{QZTU&O%?1gocpD`5pwH@L@nL0FJgPt1#!EL?K_1wO9V z8BbKZ>_3%_#_E#5aJO1#&~PrLAOG|cJS99CmY$P^H-#f3w7yu_gzY(Dfsfu&A_zS9 zNAIUqOG1Xs!M@>Xm_~%DH#HCoG92^2q~8=8=BG#}zCl%b3J7RfPU6*7s}Mj)G<3wA z$xT>XYxHDhM`0LGH^iqWVs_rAjF{f+7OncY77oj>GF}1NZ3UNC-l0F zgM;mSb|D_ihS*D4#=9ATj0gty=v8&w;taEqLhpliaQ;XcYYVgCs!c$Hu$$&x8JN3c zX#BGmoWpYXr7sZM?tfUO2)O1ll;yE8FFooO~a4}L= z!l`+Y8dU?dI?D@l>640!>!ZWR7!m!L)_e#bbcadD-h!sjG%f)cv)82Rt zPo-re2X8shu97DPf6DK(j5nKNHCL6evA*1b7dY4982UtF&Ta);Sre>eeY&=9f8k4+ zC@RDvvQX08UdOirbA_OE<(IwR2jHs5q)B{ntZq!Jak^&?m_7_e1Q9JU52a#driYL8 zn-npWLzsxt3RHP2V9bp}dyrWvKt6hpDo zvtwaaWkf0A{;9!f%=;&2=C3oIs}-iK-io&2TEM+#*WJc0MpBPJP#bFAnR1EdjcX>L z_HcwqoPJ?~$Vzv96I^0^b!QV|$E;GhPO|f9Zk6vXQAyvs|28dHgj_sDRII1#>Fug`Z$Piou*IOfv7*oFgu6imxQs1rzE9=N7F7!$3TqhqKwE@H=G2)Qx`GT0DsucNX6>OI?9ajiD zoB{Lz@M}0Yx*%4w?G9AZ%J#qL96t|oLMmU98M#q%cu|T}nL>oXB6H**veL=$aUpY` zaDwPl=6)4a`H0v2qh*&I)^rAYKZUdH(fu%P)Q+U|I}+vZ0uMo}*!^mG;-8!FHmEIX z-A+m~HS5qIv~{s#yod<`7=kMYuFV-j`r)zI@-{LahqfBt*eHsT0Tt>w;dD{T>WpDP3R{|WVe@)(m*`qe46t=uq{clA2FA~QRvB7koQeA*c zBDO%&dqc#7jM>EZfO4!|JJ4nfW+%4&ZNV~4^(JtG68NE^ z<=e zWnxsLY^>I|JhUQjO17-sXy=Dl_#pTECDYdCE9@|NeKNoD4tEj=VYbz1L7h*tHtEk@ zMNkq>dZ6x3fx)7wq0i=y8+KkfxBL|!47!+wjxn zq}v}>k~bB`EVtz@eij+PKMIM*Vc%87s~Xr7iX~?H;O$I|=i0qh&=}c8R_H2%>m)W? z-vJRC+pD?uA@y_VnWwQy8E{FPFTB)%{m^Oj#(ZX2B?!?Zg512W%$yDP9%E_NNg2Z6 z!w~O)$tJSP_n=M^1ki^JToSAhpp6D3T5D7H;@vvE>~4J0XQuOoD0|r^YXw%;l0Pq- z3A+;Z_rZM0-kKh3j@*(S-Ba@J2Q+B8eOmvoRO&XQnS&cLE=>Dzim0%ZZ$yR&W82dU zwxg)ns+#K&KJwz8aTF~vS8gdGvsLtqDn2o8Gh(EX^yuUe>-woGKTnOTIVNoSv$7YH zdZ|_(8Ryg*CASM=6a=LETP|$6(So$0qv$ieoIh5DZjoUmLHtgKQV~GMTp8F^lShpG zZK9xcq1tM{H02oR2_g z01QN6(LedgH@OsJn88X3%1xp?CS(fg!pCB4=;>aLfPxV-1cpu^PM0_VRa|Q6ObIzd zD6kpJ7vB0IHz~`1eTmX6z36vMXV!}+o6GLL^g{so_TQ&2mO^{kNGHDPQq|==jKY#k zbO}tA%o`!OkHl*7h}Rh3WDkNZNP~Q4Ph%_9nH7U;!+rQ|c8gpmNW`_|7%#lYzWq&b zIbyvKeMM(b8pNsSYcT5L7SwuM7$A^-LTVa7p0GMpfwEu%-yac9utyLY5Qp3&{Pc;v zXrkk;muV;Nl@AbOagfWmD3?Ga;+dVQvl2oh8i|N4F%Z>U0)^|;4ZyWu=Js=Oxhvnc zoU(_kjZIvZbAL=!3IUAxmS7o_W-s}69C-qA)}o#R$u~ z?>79jx|&O8dot^HpD;L9(4u4dlq$1uo{Q*rSChgS9tYwfR`;e|XBIX;}|NSoxJ)=Jy0ksv`}W)p-eXmZiIs~ z7R7{f8wR*-l@=O?Mp;d6dWj>~*jOyVk2i{}{$xeF;>7L!XkP#^{j93Ia%!JMI_BkS z(CP;cNHPhLenEWNKpQ-zHy>hNoi|`{VdS`qkj02&h4t+iWJeCDV_m3{jYw=$oNiS4 zh@G~hrBEh69)GxiM<$PgNOGfj#II1lv*55ckL38`>n%x2Uk`b?#BG-zuLK|!RLh3$ zB5!%P-Ec(@>wpJxB^(YC+b>#FsG-5zeO{EeDpj;(ZqoUCv!>sMs_r_AG@L`^!^7=4 zrYGf<7*iyP)qw?o>l83+Cf40m`M?~sM`l*~<|a0XI{_lq9IR36*?Sbm>`EX?lVnCd z%OVCw|18%My4;kHnc%4*v;w*8CrcJLB@Z3D5(ts6a$qRE(d^nEm2H{V%7wiGE~Dmd zffirTK5H^Z&+JOzw|7hmsK2Oj(>ljo3oAP%H8uvh{X|X9l|D2@g&{GTIO9EfOoHGR z{2`-Y)|Iq=Ua$Lb9ts3Ln2!M%06SBCLG=jRq24v`ZlvnS60TDgg6vvV8t>sr&2EZH zr==*3^wuJ}d)4~w-cdbPo^f$=Gh1X2+Sxf<=J4hLDqFc)?{3S|j`u#=sqL4yO0@&9 z@apC6Ol)`FezJ1Qlfcz;wNm|8U|!1~Pi$F}P)Jc^33QWO4nK+1Dxu8|GJSEMzDu=j zvETXDq{dcyMV@GQFtEob-7nh4we(bijnCB;95DARD)z{>d{|@viY2O|mVW$lm*JkV zScq+ew9V#?kZdy+NXR-5yB+w-chg z{4FVobN&wrhvmQWnJ_Xl|9?y1?SD()f8EUIXViD#agrdmIddU@RsXJ#4XtX0ey8 zgy*Xip+KxDIX>*DMhSt8Ld5*_)AsdES`eeK>4TRzzxuQ^^rn&v?cGO=K;)FD;N4~M zb4}zkx{97vucL^=_u{(F3gH@VB(3RWNWZ~I&h23%bnQfwLM&8%99eV)kosJ^k$B=I2bbKs$R z91}M0-1XvoQF>s+!n8lC`^X-vZfYj9R8~A_(m{ke&8$syUV~LIG6vD#yr%YC`g+}#i2r5wJ@-8(crp3ooA-F zSf@3JqSYXsbdA{-Fj&SwdQG=m<5RVAVKu6BoKc@p+3A+GuSEsUcT(m#a{(?(jt47s ze@MwIvQRamx7hI6c&SPA!xN$Y#CS`!Y%eYq*7p`NpY(!ErVjbn1KS5Zvy zd?tgtqFgQ1VP{FJLXcY^C7Mxa_~^KGva}>hRSK_ABU1D%@7ZLTM$_RWw}9hK7&!R-5yiU4ezA>1kd+@cnSnr0^60q z+Q679fkiKDU{ARs5rlZAq3^x`pkf*@8qp&eg2Jrvr-XYNr8Q7{wJmJkcQiBG8CRcW zdP-k`MQkF;Z?j~&1k7e}@gE43I3DCc3<`s;37<#33}xq9unZ9_Q6R=v$bF}%p>W_pY_wA(}FfU8{r49!WK-{1_m%m?ruu&L+ zwD_mOdVQEZF4HD&gR`(o0lvBDnZ9@`2ueo8)$&?e!`#gdy@L12{n$1XfK~$i5lFr4 ziiX&j98xb14&YEzXW1~V$uQ4HNJc*?aaPPnl=xI(fS5#fl{QiENs&_}Y}65#jAo+q zU})~T>nJojdH}6ww}^Wd=GsTbssS0bfW$MWvR-1ztP|S8J&6EIQ|dW=R;rw7o*QH9 zo&HWHk-QxjLmI!+5VK3y$!sV9wEM0;brOMg{1VxTV{sANhaZle6=p)3P0DTuK ze=hHw8WKg+Ne}PlF%uk@%DM!0an6h>oaViuqRVHI{vuxz;*3IM$zpZ+{)u_;;q^$lc zk}ofNa#j&4Wwz}!$E46QsDdr4Ies7c%hS*2oqIYQIoVHd`dlN5PJ>@CF{b(^3SK%)_ku*Jb@tMS} zT;aKhOYb#X!!m1QEpV-J0HC$(oSwr79vm$gk=e%}fX;#gU_b^9G&cJ4ATZDxID+#(qjA<^a?;$5mUM z7uJI18#@blRfj8g~U=4hUOQVb)&69!`?h7I1B#zMHUo<;V$wa2!8k&jB1B zhsrO>K>0Vf!#=5Kan9b$0hjQnwDGC5fYrR^swq2?<#?fTD!a`T%HQ@MM**;X8)fck z&$AA!eSA|@kn=3{naqjP!`iJlApcibq!E~~-gP4Bspfdv2)BO)##cD^Dh$P3C-na$ zJ^wq#!7Q?AdNzW@3~);26QNu!kn!i$_F=orcO&BO65vFq&RDUB(txC)VF4o4Rwp1= zxYh)t<66i5C3<=yJF(R{kJP1Tj%X1uy?9E4+GOrMJSH^Xb-4mHW*0B%Jm*={eG4v-jX-rRD`e%~xve{=cE2v4(SjuX|J3 zR|4d40)Dr+%YDFTTtv;Ueh}zYG3P>E4BfY-dHxibP}2z@u&A9exJ2b9aVD#40Hw+3zW$VFqxb0$K+2BO2iohY~_@0P3Te8=MZU?x+lJ8^`42 z1{i;a&PJ)J0J0vCVv}vBYTADZ0R-i?+olD|0300dKr+!#Xg}wWgJD`0Zg~{2{Ub1d zGJ)k`%1Wf9fa5Bi4~sXfh`lb-;t#2ccjo7&q2pfAYTfFY;(`tw5q)1$M)S@enGv~D z2c+Oy-LR{vOE}v!Py2$?!^q7-j#Th3+b^uc+p&lDcHyFyE*?lRWnVxCUW+V2mFRtM#tDixt5 zR~zq2dzF-UPVTuhz(JNGTs--+aYSRYw^a%CEuo$I{7@NpHGS>Mj-WA$bEok?W?(!~ zA?-diBm8ksp8ZeKD0$M6;Vz9;Wf#4ES@wSvt)AzY$mX<%a268{2aDi(4iO=ZMl2#Thm@cM30tiEoK^wl?OQiRC8{F3a z)9rhP_I=~}`F+28rNjH5Zr}g>Tg7X$0mnw3G7V-m`272GDI@8Uun?fEDgn9r>gV?b zEat%r)f_)VAc3i0;=P+Qny^;gHQ2lQs#8Lzs&jw+=(9@DQe_vD`A3#3DO@9ali~=# zkQzj&*w^oS&38L^Ue@k+JNnOxIW}4Mrtdm+c)5(n_w38;by*juEJhf6CuG#6l=DBW z7WE@MqdibsZHQYb1i+teER(x&QiVMv<~<}saho?1$Ps{_-jmlSm^PC-t8YUf+TW_~ zl=+QQUkTHbL{H|(i^cnUBA;tU*e%kE3X*ws+Z4h3$_|y2)(t=+Aj&}d`Phd%agC+q zzYV@Vy=jia8A10hmc@~pg+`tWxA98^b=)-+-6bsP@@i*>KZ+$nHGgOaiK&v|6)L+W zVy%^TB@$5(vN}b-SypU17s{0yZafo=J}xI_5{Fo#GwYFJkY_4v5fIBjH(7M43gn{z z%YwE>w;N5a1=zzSzG}uNE)}yi0r-*0XwudewcW32XxJl$0hDU6kUcNYGcb{J1j?(9 zDUXBUWBx!J4A+ZXS}_*XkQXxFas{_#q!<&ZF1InicMT2`pfXMqKAcIps*hK~tfE>z zKWt|fGX1lUxmZKLuZLbZgSl0hx<$+wvXyTvq@=tLX&UlMY^|6r`HN5F_GIo5WduYp zj_W?_P<9GQ?QyB$KwdMyt6O&0y2fMxQl}ZJN!{Zs`&TLtn_;98XaD=!v|_wIPkYv- zw?!GVXsz~uesfysb2098(qI#6)ixk4)+Azh zT#|4U+H;{4CBzsr*EZvGyGTv-%Hcq2+`iPyfp?MT+OVNPt~hVvy^O~QB;(7`1zz5z z$9P+;!+zjOff#S9VIgLrAW|rwoDVh5Z?fnBp7h6q!`2OL5M6X^pPYjXID@cyDa4Ln z*H?kHwTvb3LQ5^9a&7|-G6?pS`y-oL{&uP9E>zEu;h2^6sCW7PnWM=-*5Ru0Zu))j4(<1QGS>Q+2Djl2NqPcF}j>G4=mLWVY`DKkJE@q<_fYX6YUt3M}s6H zp?s&srcl+0zu-IA=9QzW*Ctb#c|&wTYdH#Y#=NI5i12pYsq5(ZYLhuAa@((l^(sH~ z$7bWK+413SdUOse&t{CVBFvle+)x5*K0B#qtEj?#kEwheP)2Wr+5>ykD5QtJZA^2L za?Emku~DU2$Hh2&HN%&!3K@=H%=C;URabU#+G917Y>q|wE+mQXaG)^R4nb9x;`Xgi zI%h<~bS0$Hg`0-Qb1b#Dv8@xA(F`jnZR+Sx!Zt0D*QA<)Dt-vqpd!27nrQkBK1_<< zO=6P*jz+Dd?N|kch(&7uOSOrtDO}`ZT8r$7?kl(4jl!`;dE=E6B|aKtS}ZrJ4Txp! z7NMS1%}fbtq%M8Nrse4mSHR9;EqoH=z)pRDK{ ziTsx8Bu2h>G&f*ax;05nS!l#Xt3F1#m0~H{KDiCB@Qq}pNxW8k%WzgL=`sLmi-rIS zKzVPsr|RSb8&sVQII^s3Q+3DP0ApaZ>GnzPkWP7H6<{l+;k8npC0K@6Rv*wyNo!v{ zc!$lu4HA8sJ&qtc1%P>Sc*e^v8Cfx97K;OcpD&8j`FbH+x5gRDMUue)Rky5gmX;oU zGGpQ6b~}SIE8j4z+hO}`OYyxWKWsAYLqp}v4}`hl?gjT4wR;ZusUr4USC;PrDHMe1 z)N@nqvvYk)LF1nRj)9ghpQl~u&3gfm-2ikCojxxG@fxN+wZPyXM=3Vaz=V_`Kt&d)KvEu_sy&8m z|Fjj6#+`}hode)xeX422OSb`&!9qzxuF=GH4@#e3!dtgTRx1E3q=>5i(tB;l3M}a& zG2^M7FPQUF_LC+$&t`1EN`=S}QRU*Gad;SM5a7uK)sk!&H)Qfv=u|wL$xSdM2J<`u z7)^W3b$N?^7_##5x>w4%;Ng66lSYmX_UDHm+BheW+`9=(;3$S?6&)9tk@=v#s-6rJ z-79oqpd25Cv0UldZs2PMm0()u1Y*V?F!86322#b{no(4R@2H@!-RZuWY|2`>Km!gf3!)4=%@~wR_8j@Es zzB!!lSDAuiBb;luG*T#GN|Kx$n!9M z7qC_F(vdT88~|r;6|%RtmQ4Sm>3%Sa7J>E{HDH(ZmAj?f;B{kGfcU6^C2F( zbxnLjkxf#e6Rh0NfWDBOu5~iz)@6i-lUHsjA}GMSKjlc;$t7TLH!syRb3N!! zx~K&jh)usZOLIEDOL=4T5jlDJ2kwc}C#7MR%_0!O60!SX735{1pv&s}z`b}U{}cfG zP^Y%GtxI)3`LGhf1B8Hc%PmP^!gpt(P@EZj28mNi&6_TN#X-s<8tM{%|JtY%a@ACF@1I~dO(x@^c6s~xd0IrF&JD5FnabGsr zqJs+o9A>e>X@Y}*O#uCAT{CLWg~h(JBbuz)!P~QBCD3``?VNTk1B7H`c6adP46l*n zE=TPc&I6cgAWR}UUe-q4x}9?v321&`R2iw&mo6XQn>WWc_uZf;U9`#L)Juq;15I^d zpfhc+h51h>X_&6}>Ih24+~TpRDmSIFURHFMgGCZQHhO z+qUghwr$(CZPzN>RD!wnZ`J>!q{QL(j=ZDu35u%BSHCNUrXmAmiod5AVN;r(;GLe-i#8Gg^Xo`dQB2_%8<+ z^beFAl%h99S77JxgZ=^_2Ji2hK{+b{6D}8*GCNZY{u}+(?zwcXOO5x$p4GDFrJVE~ zW6!-hq3^)c*R|7BK4|lWvX|d}VbolVno@4_DlK2VMq#n|Ff;=o^S8t@&J9y_T1&W7 z5Y9raPV7S}v^;hiMgnKWQPXVrf>2u^b2tkaWg#Jzk$}>kmu4S0k{*{bjj}mk41B|M zroLh>uxaIVC*aB?3|AlH-l?Q6O%K~gW@!Ve(;881y4n{;dgcf)sR=&)e|xpZ&Uiz~gz8U0MV;!O1R zx@Yi~cFU=ISV(NYAx`UqQQpkA4uA~!Zs@gZ2*kVG^!u9)Xx2VO!6mwuu*Xj)hocbc z=J@wAaxXF8TOH%yi+KYEv+G%!|A{#T2IdM+BAu-=7J3IhfEz2d47=|s)HbpB2|T&? zx<2OtoAo^HG4)K;nkeU}6LeLk54uFl^6|k+=XP(aA^AigvR}yGhg+J)u_;#hbo-Og z@kHex;(p=yIH&UAlkVQOIes>(3mz4Tgf%@Dr{4FKTN}4v3eNZI#XpUDuV^Z3MQR-W zYNtGo((ewuE{!M7RdSK^1Im0m=uj)wJLVt$Vkc$%-|&&l%u4_5#hd;Al#W;#{zJ}o zt^NOv!9D^1jfbfXPyh$U1MY?0W*-VqTt5DD%24+H9l4J+Z9=8og25ZGV3C~s7t6al zg6G>!i9GUmdEzq3T`|O?^E(RuC-(QZ>HW2CPmcfFMqVn4qKM1an>!~3d2%=j(O~d= z>sue4(*EaoZ|}$PW2;U4v3Z^eW@)-A`G&5fx7Q+W@8Dm08Z!SlhRL@Sc@Gr}EY-jB zAO3aXR65iN?hB$PHvO@_F%8vF-)FXf#R-%TaDz52v)0sI)n9C%AJu)-bHVzsQT-m7 zLbu-X_$aAWatFzgcwU;zMHcs_trnXk9n`>_$`1_E8{WUbuoT8}20IUZ1w4laN~Y@z zx)cv-lS)i$VmnBTOpZ&XSBR5l_KCk(Ss3@gjI6bLri@uKUHMVbf2BFSJ2q znSE*GTC7(h!a*=e>Y!BY5zx?XAE)3##6lH~j)k7lESbrC8#d&i%8!-x4FKoBi9CS`un9Nz{IM-bfLn^O6&gjt$j--?%5KaL8V&bg$_m`or0ZT0< z85%vbRMaCg=lXqehSJMtPh8zOXSZM7zYs(E!Nxtq33d=IX1p%~QII$*Cvgf2ML?dT zp3@MgSQ^t?kXrS%|tRdZbs44r$*69CWu(^wZ+#BB0{MlPYHX2*u|w)s>&o+pJ7S zLm3rtKjfES*5-T46D1)z&Z9J#pHe5!=BZ*%1%uyAn z)pVu>0gQEqEfx#=^sQaVh_oKPahxHk9RP1PLte8v+?*E85&UeP(KH582=-Q(GQifj z5|vYL>+c$~C8f&&o3N0-D<^NpjKT!GCQlpFB!hYJral@sn%U7|Pka1Fi*clYW1ak&nf=flZpu|2aVn)7CFr;T5`1DgU`x`!OQd!%+ zfH2=Ye1xNrFfq)H=!+q{I9LXbSUj@ixs2g*e6~y(pjg1a`EucECveE@c%g>zXS9#g z6#?PTs#ca~_#;h@(naMf+bpgFOOy!)o;SEt8pVkmhUM1B8tI0&WlZ= znAt`d5@tHKS3!CPy<-?F34NN~Idw7cE}zI>8w4s9?@6QO(7B>w0|(l`)RwiVyLqvb zL4vVn+mWFMdz=7>M(4i2LXc`tm#$;vFc(*`HtW1~7A|8Six(bnmk=i-0e0B1)VnPx@_efC-2afqy3{}wL&7BBwiVaIt7C=1?%;e%dw*Z{ACJ~ zEU379p=tT_S@&8SK9P^?1077D&32@j8}OzLat6)0D=<*gu`r4raf-{9&Fs44RfCQI z9{oR>B?ZQ@AY*0Ux7Kg%wPQH1EOJnhybn_hi?lP0@~MGjDzJszYf3QIZEQJoD;Fk} zs`h_bobT07bSuwmpC@^0Ficw|Tmg>V_pI$#03BWwL&DBiO0qPa96agbYDR_aI(hhP zVlnfVq;-sE3-{w0`q7nRsiQ0oq^n0m;tUwDB9XI6)F<;9Od+HmmGP3z=$%gcZpGoY zX=PW03%uUUjqfpq8ESxkNBl12ArA<|_fFW5=T8gHoU+dCSno=Ymzxvve->Rrw^2~X zwb@dawWcJU0rNVHiLK6BVbUJlSkI=QYeDAEclQ*-9Ej&r^HplLojEMIiW;qCY9BPq z6d)xEt`y4K@SxZi!LZB2#^yJE158~f6Tsh?1l!nGR~=~qMtj6ESx%0xOw9~x<|Mnd zG=`ULYZgrukEw$NLou7v8O_w{%@waP4p(uE7QY%}J0-!ijCAc3ICr*qFUDg~SPDtg z9QOj=L*G}@b}^ewZK|el<1YHrh_eU>=6NzO))uLSeC@m(i({((LTXt7^3j19Rm06} zm0`d(`Bh-$22X9=qWHlLa&RN;Nu>Ddb2)Sh-EFsp8f!X2!24>u46;XDd8l0_{xmOQ zZJFq5O|cuQC7q8`#mP}SMnKf+8f($(l!}`)v1ZXy#SIi5zI~>V0%%L`GSgz)Guasb?x7@-0$} zThrVMEB!7I#+}l4%S1O1il8-%f$vCm6385lb6IKt})G^ zsEe)1Re;rM>QQmP_ZYHG7$c+#%%CGKtn<%9j|jBGYyQ}gWHbh3oAstxx2^nl6`9u# z@Fc}jDljukF2>^zUZU*pL8zfbt(jG4E01xWt)bj;L6ln_)Q~t?5+1tm{uJ%baT8;wv|>uz>@QA=~eJeP$)RUbrZ5_3t*= zI^;E@%xcbgi={65RHi)}3CeZt_eqO)yWkwP)Er}sVaq3*x|?7%OC!bgIstvxGRmd@ zssz^sCe{=Ws+gl8J&}~T^SxsZfNKS71P*<-W(B%LFQr5;{opz~e)?aq!H(Bvw^LRt zi%!)-DH(U3i;1on@7uqTvya28D{NoIZZz_MJq|~Il$b;l2Bgpej#}PwTTT$0@60rJ zme%k%O46CIZd}P*#(DlSqF@PNVD`4A`Cc$bUu#&D*zq|Oj`mC~h`B98m9tyI9TSKA1dTh_n1Tisw_WgsIaT9%FT*ngP4} zOvsJm0jRs^zbEmnzDOV;MVN4xbajyi{6UZ7@#(&^)*UtbvzQjXj}=a+c=R=sOzha{TV;n)+$niU70C67&n3xe_ap1N&o?PVH!tG`G5d zX+3-%$(?M!DCc2{oWxw}n~zaT@#jD*w=+vl$SYB^w{fLb{GrsTG-6Jr316BR(@2`? zqV3~iFQRf8eY5b(Bj8VDq|tT4OKO0&2`lU1ySF0Jqgzhkm>j|iyar@8a+uO+6{W8` z=g^8`6Q3^6w{6wws)4|4^WMz)3uB={c6m4FUFA{4()7rOX`3w|bczl^%>>YqK!maKM9VEm74sN@u9v=1 zo8$bzJZ9)xQcJaGp8LOoU#|62+vRJane?II-~(>Zwb*Y=NmL9p8T#R>yh3&VJ&#ljs zMZlWf!!_EH1=n4_zmlY#b_=JqD2KK!sP^<1h3O=)nVJP5c=C?2k_{C&312YnnNx*t zJGDy%BFqvdpJwUS%-yjTbhr;SwWX~tXPK!E5OKtE@C^XZx*pC&Kd)S)+I#! zkf{+%of3_GoqQo;^oq7}Jo9r<{F`(|L*B*y=@|f-3{k%Y<(BMD_`)&abwhjMllKX+ z&w4#t%>gmhx$3FSC3m%_eHX5WIm}CkGQ?eK&xJzfClI4E=^ZneqM=$|3(M4AZ4EsG z4^dmgHKu;=Q}_YVJVgH`^szDgpF$rq`+q3tuCXO!i97CZ)X#tmC-&hWT>q&q?rirv zG5J)~TK*SpyyXtEW*AW^RbkD=ELtd6qth|k!|?ogFP204tw;+0-^l0n8w>vv<^S9H z{=Ia09_Qac{yzt?9KE_SW)Z`|35b~AKEJO+q7pSFui!p{63yaf4_ly}zU-J*j==?G zFQmsh?F;NTvJ$VcJ?ig8W${CPhtRl>kkO1|P#;g>PmYhFm28=!pZ5=TkY#6q6lfvI zK{i3lV{z=`(52b=e2U`Lh$M%F6UUF888v1i3}2%|l3I7QS=*ZGW{81kY5nV9Y3bYZ z$u@I8Ywn{cZCi6;8enj+zoc>pTZq?~b#@l=w=+>EF7RA&VWc}%?BdMS@MEeqvtLb7 zHK512tNEUCdW}aelJmX7E?sfgp9rPq3{nyhWz0%@nHqP*o+Rm(^g)~xS+frFc93b- zDMM*ZtNr_HTFm8>JHD1Q)JN>f8_QrD$8zS^qAs;kJNGYNfmuK~Y3t zS~}sAR;Fa$T7-z0F-QsGJq34%rQ>&P6$l9y1QE7DO1r2?bn42G?4s}xylq1CLrz&$(6$fj-1G^+?`;!hnS3|Lw2Qez-6p_$Ys96(PnRGA>mc`>-I zmzl+=W~{`hc4DY+uqr@6X{I62h4o=9b1HjM*dG8IgtQIr>u+xS{8IZN#)Ag<5xYT@QU7D|2hG+@0EPkK16P!7ssCSN z3#ZmX=s-BylNbe(WjQ)sX$In)aiP#7UXdvupX~sEa%(#vxzU>4;& zj@>oTf%fpP1VCBh+iQZvGUwKp22%V>57=_Cn_`=0v9bi8P}pCi?9zEd^>gMuvxP7Q zsho9&C<+9#?c*&m6+s$3?cEO5gh-vf0MBe`{86m-?Ig}co@%mw2T53=5u_N&LupZf zC*;7!g7I62bZMwG^LgZGmZ@4+E!jZ(>Vg|^YUg@GW+Z?@G+9`AN>$;?Fv~zN+5{`t zDjiHlJ2V$`0buZEu(^{Wk>7^+3*(Exm^;Uaj8gzkmR8h!rPcCJ!C3|$`gxSir*CfG z2v3k5w+%Xw=saNJB^V;|X6ri*lMMCRBmImFPkVY!o*o$!60NrURntNuh1zKX49ZZ) zG$?1Qu?R*>+CwQo!)&FHi*wae!% z8VWL{oAW{GYE1G(wIx==d``PrSjblTmGO{~#r4AD5_J*Zvs=v)r?8qFqs!ns!rH6c z)DYB2SjS}ZA=Ps-??T!XoS$y7V+*ggn$GXuI6U=9){T#w!0Dc80xIjXRu9|8hkpgD z6RU9F3P@(|UBhHC@@+~bQRtL>x)Yh&ntz&zVme^t z#hs#&XQoR)_f&I@A)D2dp`~lxUDrP7-7ScYCY`aTMq&n3Uc~%>y-EX$FT;m4rq*N|xm)0I&0Zi5BaR zVYZ3+)J+W^hWrNHUR+M!smX}J%hj6sCdy&BcR2TGLlQddPN2H1 z)d`C z0|`VH^k`v@HY-6jXM7QvzLlp(R4+=oKSf~1>UjS&2FgP68*YZkdh|29YD_mv97j@B zt)gDc#o~Zjp#zpa=c1ODkmRaSoO7AoS|+%WkP;5{QpBqi#OHaia=n}g_G^@Y6i5~O zxGTqG{fWZAz4Blrj7E4dde7d9(vjU0)zHFlCmMvxY|J5IW)Pj_akH>ZSa@@*^0A<1 zZCfkAH;maDAA@fFuHNzZ+b zxRgf9EXwpo7ps~j$^F=zHu39jK8w?5KyLW$+1K7&Cl1zQ2n)o+B{|BxAWCF5L3J0j zPl_v0KY%Dw)efN>JKMyl&l^RcnWzs01VQ);_0h5MOgK+aV>&{t8n|IyLzk$IO|91i zH{CY)q|Tny8@qtRlzOdauct6br$kWL+MC)m$Kbhs!}$_E81czGry40;FVI#q#bjTu zePX-mBV-jC_n8A}?_zApRxZiRncWmEzn9Po2S8#2<*kYZdWyEg6&^D2AxR;)4%&R( zPRW0eAdN!sc|lPXE7!R-e1mf_!~CF=;Td&xP@by_+bq=cM2^!cL)q?5YTc{UnkWm7 z&Zrc6oeGxPnT4)VYZ*RlYRT%e)sYJ{p*`lMZIlU|Aqrokf2Fcc%d`8=DRRLqjM*Tm-z1T7*3h;Pb z%GH^EyuK!;7Ny~XVQmx*Lgh5gL(Iy;RLD_rsbluBWDRvB2bdr7poDwT!cNY`^6Lnn z<~_@ml$sCv1O?o!7B4+f%m(eE&Ifj!98PV_M+R8DbjMkv+LBJXqv@nZV9EtxS=&5)VIi$4u6@X)NLb3JA1!=kySqE`I_6R6DX$v9 zHYoL&BSK9;-#PmkGsr#5zun`6#EhVha|`BI!{KAG2q^hYNYQhdG0Z#orCJ`X4h$#C zG*-6n1nB2nt1T;Xcc-txb137(u2RLH9y>hF`Dk-UMO>v%iJVFMlZpFJT?z7p8+u+i zU)mn`TVz;1Trby&t5A>Ld()K%1!=RE|gY+B|{5 z!i2t|x4iWqvp2%qjX~Vn*ziG~mXgYjbFY?o_CWpy;6BXko;KTk)Seh|xA7UfB=Z4c zJ|@ihQoHeYcS!SP@fm+XJ;3G-A6L0^e(n!h{M-1F7f!AV8Yo}kf5?By;qW^&WCw`| zk~0NS`bLM5^B)5j{l%8nFM35~bLQ-yNp=E1?#D$1)`%QH4|)|z{12tf|9@+H02fIbz@=Co2(ayM3;Z;D zQ=n?`xyLzS`DgxaC(SUDs<^0d+hV}7lBA?-VEiizV*PHa_-B~E#pC})Xw7-vsP%q3 zJ%5+dj{haE{{=l#>DP`$6w~W53hsZ?rug-Wi`gk_5*KxfT|(Tu&!|d9yOQ2_vL7+T z>&S^Ao0hr#I#SCL`_}Yj&id}9x{2zpjPSDD=HH@m&$D~0*vC+wnpk#f%ip)&Q@*5g zYuKqz6)#BZv^y$Ul6y9tPXhh5D@Mxv{ob)dPP_{&m4wD1638MoG4CqUSDcqvQyrW!M7LV12eVc+ z8S4~AdpIrf+drfjP9sR;;UX;vGxi9ZT@-&V!1Fa#Gns z$J@R)9x43(ntq!9ikb9%bdv$>w`oZW28QpRgcYLk*8_cNef0dM;Ve{mi3I>N+Ut}i zI&$kWYH{rvt~+)3>e_i13ts>5vZMXZ zY$H)BhI3nQCX2?c9=WIK7Cs6XcNq*jy6DFhnN)L51c(Y2lsIEU)F}6s&JaH9!y81F zoqFE{@bX{JK>O*HVA(#4gB;D88#mIzqw;Ens)`-r>9Mioimp}x4kV?FU9@b(Mc(F6 zwuZLQjz)oU=DlKScO7+nqzSU(DgvJ5-74y_X-|#d^d|tEWXP^rEOOXF?^*3WRB%?0 zma7Gn&*cb%NaTZ<+R>6y8$=GM%T9g}d2>uQ9@~TJ)%xafJ?wr#RdzvrXrlX*lAtvp zy|c_di@AjUTEtE)rhJwFXGHOv`LZBJ;Dbfw+(kH|{ z<>g#U3QicRGR`vpe#U4Z!5A2aLSC!CXZ=59DlTOv5PLXBsJ9A37d`8?A+-tfn^)5$ zMEtZ4fkaBl{1)wC z+oN|w@48PTfLu5Z z$iP>;=c(kE*}w9^l!TeJ<8++L=wK=<1&HD$Kf`btoW|yQ_fkSYp2JvprR&J2NN#(< z@`tYS*8Y55k2c6MA+bGpw1}t7kQ4aKWF};U#W1b87M>Yb;3}2Rv8)@6@5bLxH@zc| zHt1uA?-NQsDBU|W9+&HG)@+iQBPC07R`VqcN!J`wqxg_$$tzSjVSAU>;W@ zl7BmDSLUCWak`Pjgcc-(yQAiS0xUTJ&`x%4Roc3FH@0*XXXK!r1^}>JChwhRkQ3m^ z&Em`+h{U4VRXiWdnlT3Ii6jgek}nCM1V?J)UM90HwCeY$gH!{2d7Pg%Ib;sPJzk*M-}(F2%3-+U`!0&VNzC+mZ~u5N_TSHtB|Ma2++` z{#Jf+eJC)Ai_3@SxJ})7iOmA$@zNak7t3^GPUl>O{^?xc^(HFAOb>07h`^CnYjeYe zuH>c!=ZJY3CG4mWCbHzah_4*~_DxtC6Y(1t2Q5(X0eXIxlfr#avT{)VXxd4ZJ9iV; zKes!5dC~0xCU{?!sK13&uG;VoB3~BgE%+JWDcE}r*;0y<6(!}1U9|h)CEKaVc=3+* z)zKAT3MaHyJw~4O=)p1a=}}AIn}IJrnN0chnMWv9tpecu*>2l!TTk%tZ%+4KLiny)-a=(_XlX58Mjnro3rdA``{g2P?MQScb=~F4 z$EA*zYMl2nOrsQ}2gS&10}U7TH6aw`(sOYKM!$8=cgdh+g`G9*L$Fl8O6=cj{lDJWRforq-?e#}dGd!ViLr>VMC;e}Zk@nog}a z303f&TX+RdA;Sbd97x+*J4T@s;QUe)Q$|h@xel-sG;$0be4D*HT4qeSD>$e+ojZ=e zSi&Jpt(_k9YI|D0VQ=wOI%}O8wFYHNzDeVSHS(_P_DWy2q)QyB_7*E-#+(aR`n!OM zD!n{!Yn9}8`pb6_;Yq0Vm+&jm zY5qIIQ>9o>M1|=u7cH9it=iN zN&D3G4B#qtnF{1{0gdaTG|<0W@0u0X;2GhSu@t%VktX0wUQMQ zx$|k+picV{DShJJyKD5G`g#iA1K69eF8Xh`i~rl2C@0H*6xMolBI$#&u2*S-jJ^$B2^Qx>9MI)6=+H(ULB*-tV6V>9=qS*1}r-&Z;tBhVp z|35g-@jW)*Kb+_F@?x*gr|;|C{->}wf~j)qbxjnsAg4no1$B3L>h-kGZjtKqdT;MH zA>8XAI+$e<3i!ooWl%J0jPki%+9Oa&eq&S{5KTu<^AE<8C^W6Frux<#TWrF9$jUtt zK?sw~Bt^{&GLi!l$Uck2qeBy`AP56Go807STb0vIYfCedC~U!5P%chgd07UT*yr4-)6u2WtG`{FJULtWqdc(-kw#glvy5T5!$ zTG!oe%>q~d#tzPzqbzCDUcm;@!E8$Xc>D!!Vpepv5@QIi(bD%&YlYI-C^7Dg*zAxnnp)hvqG zC?F1_d?#Q?3qP;#k$<$}bXdjKhw``EkSSi{iU%mXA6iqe8OL+ppNMYn$gtS|R zEMlnKOo2;$@+B>D2);66AFi#6@Z4pARY)meMIG%Gjgad_P&{405$-p~M!@rl(0B7A ztpKs~i`0NJL_+C&!sz}oH~}u25sTM;n4ouLBW1Gb6R#oeH%bMZwyWY@4XW*O{uI=g z_|w_EGuMY!%E1xtayt<|v=eE3qIJe|iImf6*f!U<|IIbnlKJCsxI%d6qz^>@I5}$a zjN&-|mc7#!Z&hizjc-?ZQCw3PV(g=$og$@?RoES|sJf#eJ#3hg#XLaFkQWWJf=(oi zG8!U_VzaRomfS2-Kd(Q)7_TaUpMRlWJP!RRxLQC*kgMZ5URYk;CCvg-QJttnoC3fU z8u^g*vN8xDUfd>ksGX9#$#R;pTS}fV3i>lu@=H|v+wZDx>gxseRySKEca1imGr9g3 zR$C*mAxPLgdKFyt5&2J(5`kMjO6^sOEKHjdjC0vb;F;BqI*0vE^b}-uphR7?gbiey zmyb!7f9fGQo5?6IbQ7|*47P0n!`#FZJ#VN$Uutw1RpsfN}ppD3~xN0xzamcBZ zW|LL=zO;?mT|n{U$1eGX3ER&qX<~aaKH1?6c8lS=4Hi{ ziFx#Hq)swXhmFJlWd8y)AbofrulO^!oi{I*y0&$;5yV z{y-NaCqX;QXm)^fbjYd$r?L&qA8oA9(bU*^Cv&v7LVMc3v(D!In=p*e# z^I1@*=qO<^>lKnw$}Y5Rd-A{=(xpfwf0;k7VTvok@!_>7vR}}9WtJ5>Vvu!sDhoj8 z9@`!1g!R@p_EaS}-6m1eK4sDoz+_Iel#V;TlFln33f(mmj((~3q*8m_qM4b`a4660ZV=On!E z6nLzuoU{`uAK^*cDnM}a%W-ZQrP4(NgN=dD z&Ydz#*Dk~TsJ)w}nWgbq)A1S0HkoNOBx^ShmkxGxE4D^Dl82MjsV2q(MMFF^&xkw2N#WO!=L0p4vMq zZgW>u;p%rQty6kbb={YrkJ%^IP^{sEO@H&re=pVGN+4s}QxE0=xs`%cD}|G~?CrW@ zX4~~6Zw)ngJ@69Zl76w4Z#EWCuvAJC!n&SRG;OAVcxM}8m^KR-Y38=nz8&|f3H^@Q zsh^EKI~0&DRjNR+3Jg0_Kx}1M0-nBXLe(g7 zuRLD(T&KdRw=HWx%t-4mG={2XMo1uvQ$W@SKd|#UyC+Lgl9I15PqnR>rV&-24*#~{QOeI|%4R&z`nM*=Cks(Q$mnIuO@4N{gN4un$RddeI#8n7qcQPV} zwCU<<@#zdD`uOP%{-Kd9`n{V~=>!2|x+?EL-5e?T9XZp2#24x%u}n6U1?RV=aJG|6 zb{tZLWtdMnC6O>dh@+$1YmrlDyl(j9B?G2{kF>5~Bnp`ojjjktqMKTuHpPjZ;c6_A-^lx2AUs7Q>Q@TAd-hI>a0Z=n0#q0*mybeFD;pn>27;<+UFD*_jqoet*XAmM7VF)-XXP{!w zQ%skN{l}44jq5l&n%B#7xS1daF0BPNa-A=0TAvvfE!&=;9sZ+aPn+SR3=Xi%kmkzm zczr$a=t%LRJMcfXUKqBzJ79Rl())^zcc;rb_{?g?{P+Vg%=+WiwaD`wSf!nP1~y)TXBdKsv*g-peC2-+KoR^lt2eFU0-mfl;Q zw6UW2v-$g4g_@Aeb?*yx+&_Lg)(8KXCtsnQ?K^jFYDY}yn0ZVwUjx6-eRVb8)Y>}M_r;=uy!ZW%7?k@~?=eoYrPprP z#U*YB#@vfHofeJ!YUtC&XjSo45BV~GngC0!l8x@!ho%YplWCN8>~Pzh1^SUK&E5;F z7VKP=@HdT?A}!x11<RiCY|-=h&Pmv~p*7%nGe3;rb5H=5cyk9;DZJSpVSld~6N zzU~j>^HQ8s_i7Y8H$FwOXU_(HY)h=AX{yB=16ygD2YXLQa&S&d2P*I*8%)l3ec@C2 z#&QauC23!UjVfo(M*qYtA%t?E!#oTO%ff?47uj#7p^4|C9QKFR*PBWZMb(mS$!k!7 ztCwTS4jA!oD!*~X7HzHR0;O2>%7BbY!(#D!uMVSUQ$w7^N)P}zYSY!wZSuKA>fV0! z*^8mux0@NqcNAZpRu447q`N?8CUk+4+8TLJhG(`GS>n|;Ydc|_DSo$=aEVi`;Wd(HANH5l;zt6`EI0I%;SV=~{_c-G3XR;NjW9wh3C`qnzS-6+i35Dd-M z(I^wVpwcBIoXyTK`z_r7?d@*r!iF$51_e&z96J&o^Y(K_YZcQ}AqWFmVi=sGdaop| zRgvHJ<4$Nd>+KaF?&gO~0eco4cyCR@iqjD@tSz{j$YJ05Jf8V!v9+H?VN>2hHOu0i z*0!%6Fo(-`Va`lxNEF{)1?ldgIkuVqxsB-KOc!?l`}LV18on3}mP_*D+1i$l7fquW zxzAHtmHaO~PyuSPQV@*x)Yn7VFQ6SIrtN;Jc{TPD{3C>qXaO~qcaA?=(}KLMMK zQ}G3g(SxOP_g~SKx(lLRt8r&d5LJEoRlb#qY&h*<5?HX}XX=|ru$Pa%S)tPlUpm8=?b6+}R-+l;2SIXx$;d7g)|ns@wpDH`5y z*B(nPLG4APDQ;AG4poyi9#+}rsiS0@%l0PMBNcReN3N}37rHGeZ*q+Taa`a*WG5Fw zQ) zDii3Cxz@$H5wX_D%53zwWO98~=n-z&VBtZ#T9+JuL-AAXZqqU(;95Lx)sUyDl*6kA zW8m_mGPK)r({ppx1=pL3qD27{s`fx)z$VQmA1IA7D}ry5cz?e6-Y@df_5=de9rkUb zr46ffLvozd<+`hEG2i0Vrb&9}9WX}C=2)a6Fk{W~B%c@(_rm>dH7yMs7FJqTMZJS& zZPP4L{uq7XsEpwPbPngQc^|Q1Ovvq@kr+}2Wvq$;j{0ngO1LC#? z+-gl)F$kp~%`gHh7+zVltwO!>0IDpqhBU#^6t>l4g*bPO%(%G+ch1&It7)t8bG?}@ ziw!g6xRnMOh1N+bJ#-hL3NV~|;-V`6>O<~Lgk=PEw7LEdn5?_%0rQZ^VIX$1*G4o? zs=`Nek;<_Z#K+TiOIMcwyznc+)9S%Lr(3xBc^=fNnUY3XF4eZrSj|6?c394Cex9V8 zfu2@1CqI;Ca{pu`uS&fVEqY#m%QfvvMH<0h5~r#b;t9M=U+UbyTxT@+iZ1$1+Ug01 zKbZ;nZw=$gFDg;542#k{&Pt|8Te*bo)%+V+vH+$#Yk;b)X+)UM5rZgw(LFlNC!P0d zX&#-mEK3`00!eK1{3Vx5rUK4zA#=O$s@*4{MeS5ae-Qe=F&wJqqP=Wjsl)K#I&&}Z z@UrxgV!RU?Sr^UBW7}O;vaqeFzs9%sx8YByE@n*8N4-m=vg%7#k|9s2{uZMS*yU4z zT7&z;Z>Vb2l}1h(muf`Ks)cFT`=+ILZ;E*q^AYSFCe@E4naQ(Y$PCgi%4NEmI?=M^ zo_?S*u>E1{+L4Scf#n)+;r1}NLee5`t(v-j?+}yuRls76gOVGtzZk+;p@KK@xXvoj zyQ8SS*`(=FrB4$bai2T`U8Bu0BY4a{or5s}K12AZj9H(HeQU4F#aV>;_`=A)yQ)1kP@x#u6%*h_IvF2xmS0*W$e zlJ$3H`kKBuNR%RLZs3dd{hWx#TQq<1UQoqzF1!`FV9W={Q=Pe|Gafe0hkH%H^FWqh zalnq!J}$31UJB8XQioIb5VI;eUCYq6drH+(WdMH3yfY*9$uRR!29q_+4$@VlY}8Z% zm`R7{ z@D|Q;LQ-sGmTkvb{E8qxL)?wl6-KSNPNMz#{W(~FV84eiQ+;4cZr1{~pCJBCMBg)4T zpen;LcaI0^uC!24(4IOpr=~U4I}cMt8AzS>83!oUs)orh&*cVy^@K69OPF;7b|n~8 zI*mKGcH(aCUiDTGI(8JN!bveP_3%Aw`YkxpOA9@ zn&3cjTq$^UWgnRB2!8g?R(IY>uL`!sTOtNjKPWVK6X8fCT^bQ^b%Rh}Fe6e5n~R=>)F4xr!qhtU)alZ}jZ&MpW2fTpi>qFRr3yhpanpoUHC{TNzXWYsP+nEro@Ly^ky7SFjU#I? zn41d0GZZV7MI)2ssD$ucUlr9$^vc6wad0`+qP}nwr$(CciFaW z+qUk$C(gs^h<@lV$jFzBxmJ!j#$$xZ<6+$)UO+`33{MKT*cfnKrydd^Zo>P|q8{17 zcIkf^i`f3R)+j6Ee}F*C|3v!4t^eMi>H$2GFoUt zZ-&}P*|}`g2d}9#P8ihCqyD#Lm#taitBh4H>)*lixoZ<$4iP!P$E-mRu*_Uxd?>~^Rd)z_zPPnq4X=g;TM<6|aGC&fQ6KV?HnwmfMd4-K)(%+6QtzyUEtqJf({ z6PCUlWN$r~xb@_*Dfxk${Nmv)jq;g)mm)!%PQn5+JoAfRVpG97YSX%P5msim8 z6`ty;U6PElS-_w z9*Clxou5twh`KA+c}Y)^*Bex@U>xf%#olwQ)SJKHFR+A7Y>=a`e4*XrTRS|+_(=@kv<^ig} zIrq8EHaTCtIVZtOdw#n}Mmq8Kgxsc5%m(+W6}K)I`e*)SfnHT1wTR;Oo_eQ%$Y_b5 zD3y$RC<#}N_rHcRT7L{E5hQMr=o;Q!*#n4Cf~t`#F>i#>nQ^WF6NkW+n8Dl(6Y>z( z+ByalhSZ1ovjPmiNJCt?)&<$4J~d+)0+-v0K$y?h2m<7m_DWw%>?9EvJcVNrWmWxD ztJazayi&HuRoyf{I)!)@H|y&%y%7vB`;W;A!3B(k={-py_2g%GaFSsAr;6)df{IIC zzs6fx{G4$Z>o#@V0C-Wohu=HUL^XPZkJ(B6q4N8naJ1Kp%mI@Y!q4^>0p|d{LF7rt z7;Q`fCj!D;8AXSD%T4tz=Kt8G6N&D5IqFo)1Hu;KW1{qVCp8gLC?Ca0f>g{1kk?aN zF9rbr0d?vdJu`*t#up>-Ydb?M>0->vFCX>?*{Ic9Y& zy%FDS3*-gIZ0>QEyTnnM!^N`&f%-(vups(R{BQ?J6WTElaV=j(H5^piOs0t(baq)qMS3RVSx@&Gl|J<} z>bZX=pB@V9yNV(P2vFe_-u`?9v_kEr-hqPiq-Q{)KHZ}M&?1ZIGzR#db$^BN;12i(*j zW|1a4nI7$&QNO)3L6JWinVEWD&?a#B9t`GUS+lj-!S%2&-FS_FX_{EgTpG_GG&Gm4 zs+WtYR8l>cV5X58OmHKOQsDE@LWk2_`dtkS%sEvX>lzcrQ15GVl-^wM{MVGtuu^m% zBJ4$awW#JV-qPX*aP0F?qj>i!662MU807*sMWRutVunP_DzJ$sJy=;7BaNpZA2kkT z5&$K)9$=)W-Ag@#925pi6To#R<6taU4oPBjX$dGUbMFSk@d)m>t@Cx}uCX|n(sWWe zzA=u53vRXdFj=!BaD6FRij}vc8#XwXYS6NN@O`qdJlWSFqqQ}x;qW0n;d#g^0?1uI zP_ld9AQ+p^x%+_9ED)v78{{N7f30k2-2k)9NW2*7UTmNbb^5+UYz7F^-O`@ypOqO} z5GX;9ytx7pVqz^xYlIx`fjH+8e~U6+q=Tx4ipGoNI(f`3=$?h8PSwI!!H2#YDg~*u zy}bs+pyOG+a~yo+!n`dZAHCUf_n#C+YVY->>8I}Gycc(I6T1;vi$)fcL+1n1f(_1k zxmyk+KRY$53`ZCAi(h9`h3T!8@AE60%k8SqfUs6YxwM?;kqy0KhzYEsc$x*1i_1iK znF4wSZgR+b2WmG9^Uy}iZ3}_V&pwliDn-wSkDZ!+R=0zGZc|+a8Kr zS2rxaUKB3!zCdBzgVvPjwjXKg?})AdNe+T7GX*nR8p2*=qa_GH7E#|Ifa*t|?za60);KmK z5>{w5(DF1Difp2d`_MCOv7tXXPUyGBJB;!M#fz7q=3E#N@DRLb%tCq?Do9 zF<;Ox;d=N~NuIe%CLDd0i~Ev%4}w%8)s^-<33hxt6T}$B-5e{*`e-HvC|aH_9VcTN zQ7OjpfpER+d~FY2W?h(1Phpp%)+B*Zp>kW0=K-S(leJk&g#~QPh>AwuwV8h;(B6$Z zPW>fWeA^YjSYG>rLcQL5KOste3nox^v_C*Eu*PH@A&)NTakdWkOl|tJ;4{xmA2j(p z0T1gFro`p{qvW((9zxn&fGvOG1mebbcw`#w$7$vOBv^Q2&&ncUb6yW(Yo;?)_~X|U zkEA%Nz25BX#Pi!|af9z2T-)VHzGa0rLANmVO2pXva}1Zoz}EKP#?b#QamvK-A1KYR zCRZGBJIu^C)dgG=b%ZBS5CrrZST+uK#=gF%=O?0`{rvYg5rsk=rHb3_#)tufmJ(&e zK~`S*y6^T>>3!aM;kMxzh1T*qW~IMJuMY$pP|EHt>7I&rTgB?Jq`7-FL-S-VGMuW*t9R{*G|wcRw4K;a z_{5jSxVr)hQYJ&tZmzt8*^!jkJUCbS>&4chD<0bf|A&j@!?a+E>T*Jt7{XT2`9eAo z35;Vp&D$Vm%XE4!X~dA+JGx1s^8dH+!oZ6G^9vRMYKEoUPIt>@Rwt*-Yn;H}gBDa* zN4Uf?>~|Cf^>VJB)h8ITEd-W7PppmTboh9UwwGB4KFshLEP{Z}#~=s6l|k!i1EApB zpa~5*k?6?y0M;+ltWg6zYdI5dpQT&lK4KW-C@;ps4l=ng6sK>t=wt>xZXBe)b*T<6 zZq=1Qx+u=)gTSift)Hd$jc%<&o z3Xl*L=?z2v9~W?P5WuEg*0^rLP`OT+tWk>|Ym@~(KvTl6_3xJNKU--_ZuOJwyMFGY zTLYyrpHo{AMhc7t)`^dxaE`i{D25I>aa5rgT-}(jxW`ym%o{Uh1T<#PayDtk5vOtd ziD`Dm8eleh&vXjik-Kn(Nz_Sd_6MvJ`|gqshu>MFwn3r*O~$DJu5{c(vl`|TT^KI} zr3kvwJX%LO`oK{V@;cr7k@W-9YgAJwfoi}vT+?5U*8(wE^%YHQX}@A{Ag_EMhL2K2 zYgCdq!#SG9*hHR+zyhmatKaP+x{mDKiSkxPNx6^0@mcBT#(K&I{Sid0gZS|ik)z~f zk?pe`1IqC)RF~N-673I6-_myajZa+yI&xAClO(V5^i#+Us)-E6%&_>&3j@_Unr^9m z^>s(kGFsIlHVXmeX;OsTf!s4uoHS6y-M7sN&Tp$F9QQ8UB+XOAvUZ$k#O<}VMHrdv zb>2c=+|W5Ck}WPf6FIgO)zmcBJ<9DPpM2W%rDNQJM(Wa%Ct#KV27-SK28X-Hn;w{75)pR<0`goQKwT51c@+o-OUHj}W_R46|dc zcVqKeP~u+{)ZLL0H|vw>Oe}o zQ#W(`2FZr|M|NB!HQBJGY=iksGPnjL~bt8AN%!=D!kv>9X;H(jj3}ddJk+)&LbmpbupnS*dLjBa`aM&1%DW z>m&D!Ca70C1Wkt%pC(wbJ%VL;Na=BvQ8Qe@%JN3lwfkKHFS@vJ3h78vCR3~Y z6t78g%b1UKVpB(+>u8h+u&Fa%taztj+}3X!JGfEm6wjuE|HEp`y5d` zYH2w8Adgel+1eyGsIKdZLc`@&mNoOq7VUKvvDY(_YU^rbTo3D-Znvdd#gm(2Q^E(= z4kb=26nh;aK(m|ukb;*&Xz0t#R%c=fZ-w#5;p33U=@qr1>1*P~U&}13W1+Rz-6(E# z$!~JGJIPJvaiuWXO%=d#ExGC4@0{xOt~4c;}VIgAc}T}j&p-K51nFjAMtt3IKWZ6$B5eE{A~~WWm_=0Z_@}yA1&5@ z+tLNQcYz1z8U^cVhB94I%I!T|QA=qexHi0fW zS*q?Qh*f6MIylmGwrcOerrL_CpFGyH-CRtp0w3KgJ+Utn4EtNE8e6b^lI>7cuxiuu zj?QPNENsdjNm!A{DS%A73h}4f{>1GgSntd~CpSygWHcAr4;V6x&h`77EJS(LwKCs3 zJ9Gp;5`2?Yg(JZ*mR)$apr3vUg`h8M4NRa)R8R4;*;rmVWR%dNBGk6d&*jIqgI2w5 z^L-GQ6FL$$O`lEFgtEujEe5$@N2JlE1zJUhm@|cQyGN~G8i)X@9?>cHx)9f^bBHEg zsWFq@$6bTxv?>MHValHb}(Iu{h$t z4hqg7r84UFR{}-#E@#LVtbHzK`d zHZOl~_U?Cf`|(s}D1Y$fRz`!SOW`gUvH82nqRtTq^~>sW^JVoKZntIkm%>^yk~nFj zXS-k{3O@gj>EF%P&E4H%rPo(K@6Soo8hhPA?q=l<#mrCe^oh+ao<9`Rt^w^yR@Vp3 ztwfLN35mPnTo$~$bi8q1UcKlz1;Rdly=U?}%u9ZBhhO(vx+RS>2`akP^&?3tEkJ)I zN7dFpD)5_RVglodmv@R46(_j32ZK6L{?WRUmD7Lr zBrtZi(wITiv$tuBbPg5rkl--Nk<^4G-0R=vR<#?qxl$`&(3W8hrBKDD}X#&%eo4Cv^ItNT}aIn_{{e$eD|E)iW z!oAS)9~Rk*y11+*9|c2^brqGHJ3>6WB(PbM*d@;ol;oIp#JZI=K-Z@(Xw?iaC~VH9 z8;2^Ii%p}kh7p*$R=q-N_XJ*==+~@tCf7|^BsAGxKIaL&X`GYlhlQ8825Od2UxtWw z;YnSdPEEuPhwH(?ndVqw!(J(SjDj^?|NCPFVvrdUe+`*GuFoiSTT~fdMRbBN(LZQByvX14{3o^{jULz&j}_b$2S_`tcCEtR>Bl32mNIrv|R(_*7dikkJjhq^qo@E6QXF| zkg9ELTaqeoZ3(C9J`rMDHbeoUIiWN^F9TMxL2TYc_$L{n0AfUyb?v=9gSAl$u1ez7 z?=NpM^N%>gtP?knE!;-(tk{X97>U zujKmM7J6y&1r>zOpC(vsdKP35w=YMVDz6au(}+!VGkB<`8=*75H#%0^$g`}nqD~ve zJkKtZXzlr+KZXc%Bs0$Bpm<*0huaF`aSnF=nfQ%o{WJjy`YCB%5B8x60X70Of@rgt zm2t11@+N#y`1V{Dt?q^ouR@qz3-9^JQm);COF=M)HL@QL;hO}AdZ}AB)eap4w{ z#t*MZepuf=MdOA-%jlh2MV?tZFF|=G0uv#p?mUjw)(nN+^J3*Z)vD~_BvLXjInzb`=tr4$#l z1q-VLd^V_FCUGC)A1R^CxZFdh7fph?d7~$D!Gy7CRM&mX#G|J5fs^K-Fhy!bAaAnD zhMpwJJOioj*y{vfb!2GRTUKdj`B&|QhS?&aCObqEM&C?o_Nh`ORC^Y|%S+&F7?Yy9 zDM=;0!a}X(&~lfyCWqJ%osI00UsC!Vg}EMkrcYyX@ypb`7Fuo#c`Mf?H4Ly<&V#iM zw8H2XEO=m)@uWmjbv*la-?K-|u<;`Pk;fEYX=4ETnWq|yO#*6@nw7$NA~y^{p_3yA z-$&V^6hH?R)us?H09Qj8}IesR#L6j)hq0f@SYlofiVVukEgaCs?d2u>(3t|Ztb~w-k@HuJF z@xt=hV{1?dcv&4jr61w(%A{+T;uq~#p%46g6}a1_2p?8={Z4@Th3rR3kd z0?g{{;6xl1=U7n`vw@y|NeB<3>IM;r3MBRR_)xJ8u}^HO2{yiU+ht}Mx<)M$MDrRw zr~KxWLb?0}Wb=?6r8DGaD9mT(WsqaXGQY3?m|;u8C!I@c4?)03htf|*IimGiY_P9=l1I?~N!JB+4y6-mot62Ez= zW7XF~z+P6x-FmEAX|x(NM|g(87B=DNhi zd43X$KXuQ(AfOy1^Ef(Lv#Qds%Q!-Y?-z@!bz}&_MvKrXiVFn?OHuRlD|rg{j?jh; zwK>m6sQ?!?P(h<=S4A@bnJ0=&{@L7c`4@oK-k+8iqm-KPFx$~d=#Rn{*bn-$*5Dtu|2Eu0CWGtL3F8AXLHB->Uu53H{J$JS!WNWT_IHPCSus99t( zm78QS$p2)%ZX)_T_WI9P4n)yP3n?@KmtJlh9zOM9uV$M4oSoUD8dsJ8@x$QaFet^l z&HTMxwDJRCAA4GU*IYvx%*pnO*x=W*+bP6y0lRF@*Qm^C~p0*eE(9A`#TpPT*cZpE(Vm^dQwbc%ACH@KlTTqI75uP5IIAu8gK1VreP$(1DQiZ+R zW2nP~_RAahn13`EHFWQI>Y|Mo-hNi@>F)j{CZusI)#jwmcT|VS-;y6~pKyKVnoWK% zYNm@0Z6t3+5r6jl4T8{ppS$Aml-IiRas^NhZdsq*Pc$# zdhI_X@>RP#65cx%z9SY6GA#aXgLY<+p)czxe`S(aM!xe)!SYr<)0u$bRXr^{zmMOu z2K`-bPK2to0#&7GSqvw@NA-d(t|xMNq5amsr5y|&tcbBl$YiCBjO1kDSF+y_ncKDW z}+LjklGyjF?X1Fao_VuUv z!=2uz@^Oe7#Ti2TZ>I#C0p{a;^W}6Tcy|9~7pBeKD*P(WJUOE2yWcuK3qE%p_q*r& z?|0XkDnOe|gd#z+LUC345R-w9l8rp?va<$k0t)Y_ffaj<9V!nT!q?GC4hS{;vWz#xZozUl?DS-1LTPcv|p5L(Y+CD~mK5y0CtgwSGc;j&bFg+4j_Y*(LsR$P8a!tp=onYyOy~_FKR~#ASo;dAX?iIH@7&_C0$UowY&genZDrA zKPB(0k>M~F6I~S3C=5Tq&^VE9{;<)57CN>fMnr875s-TAN*lH zT>mg_-TFarD9De-?A-j`Z{9T1p%;tAai*eLoAtW*^1@w^jYbu2AD9a}1zGpOjO@%Q z^_~*Q;+)=t#Fz$J+4Y5X3w-*gIl!R#R=FdhJ3i2avXljiVl+DvN=b$|F3f=#i*Z*B zFvl8s_T=$ROgE3(KbElMWsnU--7&OQR-Ng;EaE}jIt6l2jM7^?x9rVFqBGwfYss1x z@Oas@etb$X{j(RbwijEFj*aj>FR#D0KhmXNp05$$#g*bS7yA`twg42ZU`kNi${1w0 zpwC_&S<|j2iK662`Zn)8%rj!lO@}iwa>2VUvvU*xV$|F6a_rM9>N>?$q-{;IPZ8c}p$ns`-=wzS-x47K)}_o+3+n2-dH~fpCZ}PoPD} zx8Y)#g_*IrKFc+4zbN9Uj$dXnt2kOKc30Z&K{0f&mBJmzz|_n&EYc`ZWK4mn@Mo-} z$Rk#8ZpgPJS}@@77dYev6xng(IgnPkF$pOw2#<-_BWbaUA!-nxY9!+dwHk;+z{j$c z(}h_J&3e+#x=dbNnrE*?Q>9j30iXo6I!lcCVHiiTPWHL@>t-q3*&JH-=77qqY-*4^ z;rHX7x9%bO{&<<{aMCU1{OJ64&`mtgBR zNR;ixT{unTRR;QZIp0pRV-zno9j*+u)ra||$Zk^S>gSdT6Y5oEmC``Dz&nzAje2+$ z<%L^KwKMjicZ;fR%B&=uk{k`oadsF@O>NB8%zMPa!FN5Qp=9k0v=LhRpJW?t1 zR2hm!!a#aA-7WR~-Odlt9Vf^2zl~x4Q)HHrjh*2??|%Q^j8Z=i{D*#@(f?JuB}(?V z!#X|uQ)(N>M@yTgRCa9FgOB8kP9Uf4MO}lA^M1QBlEwUHCYXQPnp+#htia}3hrb=we*^yl#hBmK^rzjK!<9hrXso#oIJh{!;aohn@bHP~c!A5< z+#!kPJ!D*vLBQWEeNOKF!wjCv>JV{y`A@C8CK#B#foh^koBic*MVMMSX<&GUh!M(D zaztq4h$YX7eA9T$vB88}o>x2k8FEebTptn1P3Gwd^giW3JCnn6wX?ANfCHQRO04Ac zm!N!CKf+?BrSf6lyuE;wkdhtVom(^n42wF4&6*1M%Vfkhm0@hIUnWfF8f^n zl-13G8?_VpsbG|Q-Tf-AA=(4mZ%`W+;o^9*8mt)YY6`8^VU)l&jT;w|B~XsP4{5lt z6q#dojxQ`yH!8(Out2TlpS$zeU3yY!}^U0MpX25-Ly|UQ+1Iq#` zd+(5%N#M}!(c(K0FT)!Ft7E3MgC~Nu@z@~NYMgav(ck+-4%Amg6&3SEzcr727GuMA z}T!E(r|CWHyH^qcj7nWy6= z05q=F{2d5a#z0e`!#NnZiNCVYw+^W%0at50`kyD)wN)i4O-ob1NUg$%i(@6__WNAIee>kIe;cZWtKjitwI>|GvRK?RwC>!5%`f+#> zGSST(jN#I*u`I9!b8@ckZf}?q3Wt;@LU60Esv*7p2smg>u2WoO5kWGyo|esq4sCe3 z@-6(vZ#OJjJpHrR>>6p;QTgrKs7>^Z;U+YxzC}mW53ujEox!h`OfgjTdDjpsmtA8U zS9t+TD)rT?mYA;t!QOH>>QyheRtZvYgoo=nYoQ+g>wE?2DJp2PjZ+3N6u! zU4jHDuE)_jH*_%(*Ja0*a~A_gT*K-ba}TL59?(Ry!%}FsO&fEB{JlgNuwo(|saYgF z{hQJN6~@cmY3RcV+00PG$j7@F&0!rljDAa=wj#1B&ROSwx*d0f$xbv5{pxbf)p?hl zeevgWoxObd1;~CCAW!h`4p>}i)M(1a$fPv)CRV-1N#qFd3~V_(%c>@TLuT2WikPA8 zP$En;m6zoL$7oCc$UfbW`|@ z%RhgxQEeGCD`b#Nm`7<7T?3vJZR@-aG*Sb7m-9LX-(V(oH;s9j1-(+zc;Q+aUbefb zp_#x+MPhNxyi|b`9;h*BTbwf*$-}(vP;6)I+b5T|rvyuHf~QIh#EVF9^3iP;s4a*@ zS&+W&^Ww=*)VYR47;Vk;*OY-xj-&}W&V?bx=^t~z`$<5{pN{n^)%jK3=M4D?_Y(}lCBSw=-PF)!pY4D4Q2p$1l#z9c)Dv0u{~D1#&0 zsl*7=6cV>Bbx1_EPRbON5q#pTgk=ci1NXJtL|o5A||jG1Hb(1%pdyzq1G zAqIQ=f(EJxME(hgv|nz`%zflZyy+;g$>GBx2$DmbVb>!?Xc$b#Ai{9FJ%0-+q|%9> zCu>CWY-}k`8lIS#W#s+W6jC*8&4186@muNOCQYiJWbz$32tqBCXx*|n$-m@7?z5=0 z|1EW2fLz5^4na4KPcaH|fF@8oTY4_KYWyLy3@fevj2Ax8jbjJH>>Vr+i7RRKLg{+X z;rbL!Tel^?f^7^P6K1Z9M)$WFaq(#jfrfa#Idf*Tuf0#b9AocxsS|Mmm>i!&#m>G; z+6bSu81#JPX}S->r(a`a0wKQV>X3tM;u|v31SM5=%FM*M-dB%vm=)ycmRhlH3F>cI z9Hwz`+S@H(#73BGFwo3}Ws{z)8;uxsFMCS%=y9uOy1jBNAZQctiU<`&dWYZVt#jE~ zw5ZA)GcAZ)+8G`mp9xmSYt+v%LBt?>8W7Fr+6nduJEp9PfOs`yRv({J^}_v^U7y14qd+Fbh!@HEq#IeU z1Sd=CIPG1%Tzrls#p$^_g%Pgow_eDS#_76ZcWAxqoaccaKF3Ul)o5)>9pBI-@ZMh~ z>m%VHHl&<8Ry`GWogHn61Z%ccDXvY*u{h?Hp)PEeL`k;#O-N=}bJS&O>>$iUj zV*_K!GYdvy45Xh640F|CK<6Z~b~wWI_oy|=Q8@o61T_F9wBVCeSL7(Nx3Gepn8mg0 zUp%j_Oz%P^Wx9e9M^ZsAnB9v_)fv|HPA`fy@j$;++Qp8G8m; z!*tipqFmu>`Ay5aB^n~a_A9_G&k+zpTToAsE+-zCIBuLTNIP}{D}KzS4}ijho=G2D z4W7Pe5js7Z=Xn!T*eY2_#y(dluwQ+wO<3N9~ zY`DRe)8y-eO&>Qq7pD~pxTOsrI0q?5UEB%^ofopK$9u=j*t9C-=H-`>}7hj}N5X+%ShWpt9W90WD@0b|rD&Dmq*`{^wXg9-DqQZhh=Z=~jg~aMmk!D#>Ej zv)dopxB6vpI#TL7!+bq9HjeyEeS`#t0m7|dnfdKsL2*F_zVCy*fazEuF#l~v{-08# z%=Aq3|L=^vtSx2t4>$d1Zd<}L7eRgofyM(O26WUiwiSSF*_H-rTHvI;eYkt;?F_^V$4)OREo1l^|Q| z@v+v$z-p0FCM~(%e8!UlVBq%;)yh+E{NZki>PQiovUGaeTDj$+~7_USeI? zZHD1sKB?P_sNb5inA0S?-aC8;iuD}8^109TWeo8395?!U-+b9DrS{zVAzBJj7!SE# zonAyMRMY+P`uu#E474~zX=vAhro02*M2nO2_|f{Y5a!2+@E`03IcX@8L}jgl7XiA< z#R^n{MT&`-pDoOFhm05*2&gbl9vPLE=3Kii;5s%UX24J@D-zMY$RSvXc^GeYP&@P}aajv> zr9;o98$mz$-gwI+hS{j#2U`?@;iV*g!5zoMmzPTq)x%2BoU43s zFFe#Zye%xke&k3$RNd?P;(|sjDwN+WY{;FFL&i)AQ0vS&xr=|<>#MbPI~7RcQULH5 zTB^}bd1RD=+U2|&WfxuZsneG>TkR_zW%q}CI1Ub(Z_=)0^*&ywPKEgMi{WYnZ}KJ} z2d$-cbmMx=6s@uWx`nlJZ!MRCxOhz$`@=61>FNgu)XUB{n58cIs)0>UI{YYHnv=l@ zk`gp8U}A=wZlrJ_el0R(+1|XX2aM*`69m=#du+2oGb67`^`-V-bSG|e&KA}6m4}UC z-<2hndCo|*H7-X<>tpHY-L<*`!Q3RE0TQ%`pJ*&gNN1Ts>zO2A0I#TeI;SOc^6Z16 zIR*oj?lhM%8j85aT*o4VsKA{8RZ-v?18IKh><`L3n`crUd*+&zM^Ih1+8mv5Ny%w` zUd|C_NnQn!1J#WQuer0jB}qjID^Gv{?09-)g?3?t9H;JXUXE;0-!?501P|!Ki6oIb zZh+aaD36F3X22QY`MO#G>y&pLDkX)Kt9F>5Ftmlfb+Pk(1bxPzpDCaY1U-UizcS-E zjai!yNBV@9jntqGMcwisn!`ILrn7^`VG|mGy(I_hUxibbYRmhI8fhEC%M`w%Q0h9# zQV$y|@r^MK_;r|gw0aBuvJm+Eq!pt&ooJkvdRLC=V6F;2yTqEL@PDn6KVAF$h~4y(Wx5xz#9m|Z{!x@qJ~E8ZKq4;$_m$Lt0ONl@m&@7d+AEOtRZ zk?EuneR@*mq8W3*32Y*+m<`kxFD+L^x@07YWdD2tc%nEnHZ3yiQcRx1ziFA@4$NDV zBKU3s{{VqN2w?r>J>x)}^xic@w?hKG+X8vk7FMqIRl)0IWZ_#?-%5vn#nNM)sp164 zQt{I(){n(5n$|h8 z4}X*@bDhT{fF8$#4CP7mv9JdcRfOZODoU9=i-M$VzJAbj4{)k1&D-P9%W+oDXj3<6 z7wn0wCR@PE6OCPzC&_*<2Wx~i1$2OoUiT>i8Co$kQk*qG7mo)>E%rmD(v|uuJCvIK zH3q0zbJZziGEAXwWwxs|(wN?1akT^IfP{#R*%N-)Y(!?@dDVsRWw|ATFztq%+#kmZ zc#n88Et$Yfb3iv=h(mrY@UpQ?{v!Sd=pT5U%4-ZbhX%6?mE+p8<0i+G6nMg1cT3LL zREI4`E>vlp5QQh}EgN&VCwQ|kX7R{5!F-^yptTXukXWD8+kxBZgWXxV2qakz*pO;HM04aTg%Sa$ftHBvhkN4+?|YJH08!3 zBA>p_;LC4V;)KD$s_s!+;J>FyMh$9fF`H)G*Lx9w32*-rqyq%UIsa> z!)aV%`4z^jP_fQXa~RK!Ayw~;-pX~9jr8wX7Bnnu5!Uk5+h`{Xi`kqLC~Hd&RSGZg z3Xbq2)ADF21p-b-_F(3KxoeW5)iSI$w+cJ(tm^M~q%M2jhr#?SbO`?1Gt1U`K!E4hH#0Axw zIjCfo^er%wUENxhnYldtnXsDg9>(S6q3wV~MGr1gj1W_e6hq-UY#ZQ84Vjz_(t+r* z#WIgBqOp?CK>^YgLgl2f@z(VG@fM{8<|IjBjd^({vn(xP zknr%{HJoAWM|A24J`TPw6x>)nkh`h_iu=Ad={{3hTs3N0192p+nbRl`2x}zZJ0h9@ zhQ}#Pt!h?1z>aG?4*H8VX2u-D&y3hbv4Tv?z0QS1+Sq9Yrn@{{Kun1LinR&XNkb~J$*97vreqfu8~{q=DNxzDh6p^Z?dwPQl-D7LxL#K(_BVl|4BiH+*X|$MAVff5U zxEZ*a^#kxXtqh}PY%{g$w2Y@|MkW2SjY*l{hwp#MvTdDkk0IjRfosN|C5_o=`7ZQY0X|i8Zp5O?u z<_0ur#=FrgHoeXC#DDGB-;=58FUI2tdRpDQNQL3DmvKiKu1Y!HB(#hVc)uu*&P zBRa3cWSAKYn{csa=_pN+Ygh20FrFwEd!~HBfmzX372-x(3Zqoa#THUIV(3em3EiVU zB-yoL7mI@#Qo?bohKRGAFG4cviN$Rs)ROUZ{AXDz-_e(cr{#;#MNj+Fl&5{_K%3*f z@94+H3+R|d(?8FNvT|IT5}E^xZ#5QQp1+>aS_=O@k+t5+j%3_%6wW!Tmo;LNNS-qN z7qZTE5YG3Kp!o#B`|5&A?c`4n?VJHFMmV+H)5}dSEwq9jmI%c>$0bkK(=NT@(*d_k z_>w8v|B`E+*bQS|y)9SY55AW94oJT7n}51-h2`w1@(0YYuHjqc@YWkAT?&mwXG`)3 zZOd15yNQtbuH+qkh*J zk~!=h?*ib{k@J>aYk8e$tO#Cf&oSX^WL`VcbY|bnWfwKRM`2 zt(+Gg0bT@c7ITKA3)|}cm=gW}k@n6pntj{5Z`tayU0t?q+g-M8<1O2^tGaC4wr$() z)BD`yX76*p_m`dAWG3@nS^tf>GS(X7ea7c8Me&Y%>0J<#;4b9g@il05pG2dBHGZqx zOVJGasl!`UbBYG>QhYE_SyO!41t9@+Bw$a+$_pXcrO^V$3D-R#tDu3>%5gCD)jvCg z3{9t(X(7AALN{E5o45f?BtK(A%(lN#a#7<`$<*tkd|f#A-9mE9=g!jjjvk40Gcpv&pC{LhH#Ts$nO#=K|(OI zqL>1E$&|j7B&m7r>V=wj(+xRp@+Jg4Dpl9bt$ta4Iv;G;ImWeKAY8-(g!5j~tyM!y8 z8WAC2wDvcj^)*flQ4FV#<2OwEND1kI94NF!xAE4>y)1I!FZGLzlDKv=*%2|1R5|?k z^Wvf{~I5pSpJuN%ab@F*XDY!~mp=Gn8DaADTtq0FZv6rChsCeC6Qdi#l z9HCc8U;VH>;w@vbPuODgCU{>&WY7Vo3AsSG_#lU0QuwbXfFE%8Z$p`XXaaElSJtyE z44j<*-UQgvny4oE-+HA_&}s?Pzj~z(sJOp+rMPWyjn$QvHDmOK@te>h5lL0Gw>joS zeF*r2lnKv!2L#FAi2Qh$eY5;tVfJA}^ppgAenl95#WOwE-`{5&d$E4ukX9+y^}OC4 zc%3@l&!L6U(lXb#SMRZjeOlkICoMgS%KU7_BT4bY@nR5(jN8};bWL}b+83#qjaBT= z2j;>Y>6f;jb!=irlgT^7C_W$7MuTLn{yagjk&)lKDY)Yd*T-hcdkM36F4YZB#3WA^5NUrHHoUi1*!`It%JmJRyFI>>-j`i2=gQs z&n1o9yWWYWt*)HDx)M4PPHD?C^rwuYnx}L7z$p^TL_U3fvcn_bG?Mn_;vcNn)Tiwu z!@khQ#wcsi2PTb$r>$eTe>r$uG^YXFpC|gDYoQaNh2%$jdn2F%+Sc{&`#YgM1ilJR zcwq4wPK#6h``V}Xyq;c$2BR|K>n-_uu^!OqzPx0ZiEj@w(4_FvTtFy#^MY1plOB4I zr~5cudHJSXP_VTpvoJch1z=2`Ou9Y|rNK!U5|@raP<%0({tGdvqjfab5eD|$_qmtZ z{<3AX4{sOSZ`HQ-7B?8F{eA6Z888s3IC3e8=)%12slT4iCftwhqXx7-_c`HvZESzg z9R@06nH@A_%Ak({t(vAL3E{XwxF1$MGq7-XPzjK*uoHQfd~Zu+%6PP8)~zZ=Cf z9(R%8Y5fc8X+0AUT#$G_?{^FWx}76QHy)WuhW(Z5uxwX^!UpMjNzM28MwVnMVP9Pg z;Yyp&_{)Y<3|PumEAL~Z*`!Zr*Ye%d)s##edIOAwn!|WJS@a}r3Pmw?vO~}kU)OAA zsdVP_HkxB??&HflFq|j=!a46I3V@S1GBU@hFN5%T*qTjw1%m3h=fLqQNO7~`vn6RZ zZ?_3CikoilPUlWdp#yj60s0(tlO8!~w=nrwhJLPh_9<tGBD4ocaNZQp3P3Q6~7G~CG!bf_);6ipHAtW7~;I9+RJVkQYQ2d>g zEERgwRPZRO9NT)<7g*a|AS}hCVA>vFgG-7o%UyWBwAsj-ly#ftK9XdWi54FHWdM^c zq^v$2>9XiKb}cU1ml!=pJyVk_S*H|4`X6zfdDBb^2w6$}T-h#6O8amOO2l1tn>lBd zvj1~(PWJ;cl(3SJ(62K3|n=j=wgVx;y88l z$O~3fb-v=N)}k;Ho8Q66w<1z33;T&Zp}A;|3cg4|<7&-Tq>C@@in$86BR(N`5Qvm@ zi0=IUNHT%)(}bju29 z7>%F%IRLNh@86b3sU$+Rr5x*#vXu;I`Lv=?h7NGyYC+|J(>VD0F{FU~` zN#lz_t_TadE)1p`FBGltjqtxrg2CS%W=^_qbkk<7;5m!DZ<#wF5^p|;0*5Qd-@(JGsGGzUvvszLDW(}W zToE>?{cTQ*oh71gPNzpZqOfh3g^$_7)wab=%mmvjCUcC^Nh{C0S>Xo*jEDYw%H3rPbyAF$UUmT2L4gdL`m! zCWHlOiQQz-{t!qE^!$W>(Z&WsMF8(efWSWgP{Hgv>0+paGD?D5_H-(^GC`PdvadPA z)m`M|nfH*AeuV23ktX~!rjTK)>sq7TZH{@=zufu>ol%*->VHt~n6wC{yKtO&g225_ zI(cufSy~7;y5Hb~fOqrEd1{CA*9`h$GuA(;-_G{Bobp&cOKb+I3$+1SAf=K_2?ZPZ zN4-9Fn$R7hLBIUG5>mA0kd@h-6rQk6gw_LlEDm}KqqpeBJY6j5Ut0fjN%Ywj3*LSj z)00tBDhLm_TH^CTTD}f14ID0E@!Krh$PMm0k1`Gx=QCA|qe|+IrlynBvYwWAJ&DJh zj-_kfWjZAK7Q>eILUOPf7n6uY)#b1=TZ76YE}jS{{w-#y*T}+8S4GRCVwL*T;^ZrC z+K>W08`O$fF|Jgg+Ln%HSM0D+yM?ivFOlUj8pJ1IP<>P#9k0&(A5)%ttjE2r^LTQG z>dR9+w9csTkds}Wk{bvii9iSyHDpC`Pwt-nG;2hn(dJT5<|DIRsfKFwRG;!tOM-cg zjCb(_O3IY43u<`H>|Wr1mg6T1_Hry;17Tl4Ae1o@)l0D-G;f5sxN(I^9$TmkkglqC zLrmQV@WjGl6=&R{I819Q4pXgq4ot1t2`A)@1;&EYLlfs^tX<5)YI6S+!`O64xlaK zjLOFl7+g+0J{c~Dum~x{nigOP;|MEF*M_iQXO20#nmw3t%RJiIh-3xyMl84WSM zl*PE985?q|h(Sj|pVLoLg?$`J{1juJn9nUQv{011jjO~vU<|bwrki1-%eJ7?^C!(N zAr98G#g9Kw@4UEWDH;bstB1|+t)Q`cm_Ln8KVBzlHz~Zv3(QxKC&(7GyCqBW${!=e zMc!O!Zb^l2SAp)m12H#wZep($H%L`?)En{ji5BVHYh&VMn z$R|aj37_sO4sm*GfD=0SZ_(*Am?xddCMHK-0;wh{d8%ZQJ@v z@>B{sFZ}LGp}u&jC@=Si)-T>q?wfgl{wNg5_$L4IbnJ(md5Kc7p z9YXfx!aS#ed1C!l-mhKrwyWH$5G%;%?c&9si$~Z;I@i-EF%&_i7iyKtk5{yL>y%nh z99pc{Ax?1Fs#PGJHlFm%x8}w47rEj_h_kWhJ(Dd<{5LD`P}B1@7iALK;==*w&yVF- z&NeAOeq|n67{{(Jdv;g}3k4_b9*EiOJ;(1Z(l6Zo^yxi6M-|8Awf_}jsa;o5rPJDB z?kJLmv-J^Kh!xmAWClR>l~y$K;YPOQEl;=`k1A8GV{+pir|Q49(wG6CEu`apT)c29 zgkD~@);}@SH{p9NN7Xv!sSu1>YSgxnK)_oXmU@B29LPA2xF0AUb0Zvq*8W@0Sb%UM zvLY7=n9&d2cpUyHQjr=Z3j2~MoL<5*xAo8y3tZr!n@GHgi{LTwxr{jHdR~0WcR>U= z;*?j4#uXF5J#z?1*~OYc2sHfQ@)H|DsB+IkR{A|j8YDTg$aIfSb=?}N+?tFO6fG%7 zSWA(d+a}&;%Ua?*6WQ)Wcs%?qv0`sfn ziR0vg>4&Iyx$IfloEuksQ>bDHNMUz-*W_7$d)G9p7zisAztnG2rz1lK33AZ8gnoPV zLX%|=>mfPC-c?z90~RTQUGCY1(BsAx7xPYx#&AcHsIg3Mt5Vi_CEjCP>R!vA2V;tg zL@)IfKen_cA?=!MVZ;<`XIDjx(2$0rha-Z4LhgNlqd0)!*mCisq_Ywtptp(_)Z3us z4_;g1d6)g!Law0KfH-A$8R*O+QA}#nOADdV$fYu|TUhls7hXZ zx6McC$Sy|RDPYB4$nwl~&>@uV63{F`_m^^QO|DgTo^{}@Tvja%xcVB>NVlcYMWtMq zhNMfDYfI%soEwpD@aV-qRSdd~e~?f5rD@(qW$8y#QIOvk zXKAb)Hyuf5JK z(7LjDjVd@J)#j5^Te11qLMCBHq>Je%m3^Ij-|ahE#fdCl!%WRRo0u z24fQL#=~dq8_nFyZ-$(K8aXwT<@>rDz4F5U!IM6+qK~@@GL&w?2#PMf7WeeYKb0#F zlm-j}GDvbW!J#nejg9Be4Ll1Mw+edV0JZxTg5Ze)P>=7@huI0rlX2cw{|h!7A%Y~w z*L47_%~8kxLRL|$$g(7PHm5HW?Yb>fOA|2~ED_@2Y32!XQO6`JOe98$N((|;(Z1#K zJy^w}=D&W6gz2%glRC6r@h*K?d7Q?>$!YUj$TGG~vJsSMsJ5zH@fnvieXE4pI;(Vbv4R-Obb{`|W$`wG!Ozp7;D;(xn<|K3?i+vnqjKu zP z$RHWsLs8dCyUkqVE1kuALtn(h-?3FD4%5Rgn zz$u)-6c}h_*JQ19B>{kZR^DA2<~oHL%`~Ahox*PxW?P=4!W>x;1xz%tYboAL17{aa zW4IjPA>^!uGBfF5%FwYU4u#(*yJ>2>l`0JkKlY-qnJw9GYnDXDWegT=!)gN*O95l6 zNfhal(&;skxA>+aBe>zlVGX?u5j>!X`Lu;*)<|T_n^r}h=0YF~O@t3nPq+LY62 z8|hI6DmzEo;OyDcr<|-m2-}2&an1TGsd->!+Mg<`6Oh3^S>$Fcacld3h<}&F! zhAQU~?yqM0CVd+D*BtX}{tV^Fga=Iko*>_s%l^d^`KRzfNUlZY-?u`*}@N(Cc=+y__Xxw(RKj z_)I&V>t=mBzJETRIq~awM_K6QetSPmO`SC$Zhw7VbzI!o>TPvmZJpNey`Mg!(dCBn zFu4og8BzP@YO@O7?w{I?oh$6rS^2)*#Ulxc4@&OKjTr~hW6$2`D zIZEiqjEfAQFKo9@18PPGN_Q~M7b?J-V<+T|F{eg2AYl7c#90A-=u>M&>v)JS zA}jferoy>^_GtL&)3rv%>wTi9pLXseJj0m#f>o7<1KmqIh%u zxP2QP@J^^N?aXz5$7itj|N3R8*|pwkyvv!@#;p=%OF>b(E>!N#bm--)`t9T)O8J6Kj(WCHtsn z?KDFiBgaq>-esm-?Hwb6@3Mxes*xonP(}sgBAC&iNQ^0G*>_FR^BU_Hw`&j?^>dV% zj+g!YQpv!?JCb(-?P#ls{MC@j-olf&1AebwYQ{BqMhcfs4)k$(clsQ@s_*tR74`nxoK}sE5 z4SVNk67_xWz(RFz=&Dd7SUK$j%wvr}6#FeYX5G8!4BBfkBa!cmikltY6DvDRy&ccY z7%l>3_3p;J!zOR&PiYeQZsePG4wK;@EyI-R-ewn3pidq)ba>TOkkr0_WHcIzeWO6( z&1)u6jI7#Wz?*l23_zo#`GrStP)|i~s7h@2B1rX&Z*qhOulRx#86&AN1woE5I#J(W z;&lHIytL9mpGOiNA&R&yw1Gl;r8%g&aSr~pKxgaJkXt7diJ~AHk;1xkiYnQ=U(`l* zQ}P7a3@`PpjESHlTqw17u}R#Yc%2jm4(aMA46k$p0-?fShDd&GHY>m%+HieH2V{J? zmLZ$f17u#)ExEZ!SZf54!rSZv0fMdWCjx_DKu1|u1ov9+agh-l!HF^ICrQGuz=IU` z^u$y;j;&W{=25Ppe*1g}>QxfwE=%acCNzV_Sug}^^mYf(#IGP^_G)QF8n&g~U>XN` z^1s0+j2=RV(c|e1B#L2Osr?0qczTN9s^pv&_;XSah>jyj8uq8S~52*-&8Zj&j6 zZdxOwaTqXF^3$X{WG;barB-~N&Q{lc0vjVlI=>GftK^o=G!UlOCouF|gDg^=YKm1R zVN3K%b#)BF0wIG1QZ^%-*9}i(y8ld*Ln0Li(!gS3d8iJYyxKv(0~ZH(m9+F2n{BKu zG828Xb2#`)3I&ozs<>yGEMuLjQK5+CVvtE11+r3#Oj|`SI6ErtL@N74fWnC|sXDN> zS(f~Q!o-F;IKwwyP1q|e8*#!hh#k_Mp0)xWh-*5w;zh7vB zSmNCfmRY50*l&q|6g^!RJXs_vS2_L-Ll8gOY2=^0t&jr@!%A8qVcp0=a;X6BBW5bG4tmCUQYHP*dVE7%o0g8 zNGT17nqPuYibEPpB3x_&(I*XO@9NCMXJlY*cYp3(P2_&F_EfW0 z48#oP2V5iS+;8o@W@W#4=CR} zEWQUg<&qh$?1vn&NYm=_jVHL?P9c0kFn;t zzR4CoZGP@39#ceZ;3k`m>&|89WxbJzy1$%%T(GmZtk}e{IA^y&OfhV2;blP*Vyf+6 zZtZPH&;1_X-V!p%!1=Reef9VU=fI{_j*rn!+Ijt9QU2kau`QHJ1yUwOn?=2>*8l3L zuYc0!?h`|pqm@# z1v?je4VLR`-c_1s^OSUa#>->)HQ@$*ix!`kaK?h{-<7imSg^2a8lEFgZLPs8Iw7!+_1I~`u0ATjUzwhJfNvFB zndJ-?t{IZrPUGya6rOb;~ZFm1b!> zEfD-IEH!u;y6G)?dzgtFO9$55H|w9X3&#YAlcD0Y%hj&@3f}s4t|ojg=&03`C*rqF zykz{RZdnHVu5a}-talxa=guAcS)1LT&*FSi+431IoeI|5YjmL2ZdTliE`88exR@T_ zd&cb{-^bDCOnpT>%W7^sKQCrJOfv~wHa?j{etXHdXysez)-UY~!)k6EOvd`2fSsHi zJcc!W-vAxw&wMprF6{idlZRrv_q#L*3uWqjdmACp``mk5EN3@1j`^`sjgPf4&X{8+ z57M|x7flhx>lkH$dXY#Lvj@lL5>{oNA4T~x#*tOGAa<)HMy*qisq~EHRo}1@Ta_xbo{j0;+S2eS}0v$k-Rac6CpF=_zI85hS6qwsJX?N9U zhrN)K>5qwlWSZ0H#fI=_$f_`Fp)h&& z+KiLUMjz!o`i`PujE^}%VeLzWiaf5(E9(zcoDtO3esKMYpt6XyQW^u{KbGP%#H|Q= z1J9fTArxid*+XDiL6SaYgK(^5GiQLX5+VVKjw0@@y=P!N9>NVN;DO^@9v#4>J9hLp zwjLblwaw~7MY7Ba6wS+bU`Qm9FokmJwOW+|9l%Pdubh)G)E&J;cQxU;?4p3@#79qf zlR+x8kA?>(BfNqawksn5U^P$E4yc?{6t`1eW?kWmx_jklU2`rwSTue(u)X{j)e27kU{YJZ#WM2pXBEAKZaS(61h%x0j~gJ|EtFI)DIulL#`q zlF(j1E4rU4AGJN4Xfl9*P>2BuGT;tlQixAjU|<~e^xk(Eq`(}&fP&L+dhTx~2LVQe z4J`>y1^|4BIh0AmxX~? zcS;-cqbv9~$P$bycsZJ1*wPiQN}4pW)G>i5k!0I-VN|0l)>Kc8f7U*@gxz%2>W*k`2#k=Mbb=f2mAcQ#M9{|N@htR1gx=0 zjuT`ok+@*)%)s~_Lnx@(oaUtxK;~|HXP9XGTWH3}!~T$hWmMNYL;=4J<{6s1vEL;@p_3V|LVC&2bYQHjJ~Gctrv zGH8h=WEuaI42MEi6w@4wWF(!jkhF*kRYNXrG!~{fKpG#Gio-JZS3|a8;O3|n#gj|{ za}wn)m2IUOyo)WmxFY!+nZ4 z;HzK~iPy)w*2I0){$niB%3vk}Cue>3*tUd)Xg>9udv88APv?E_Io~qpWjAixF7V2| z_73vPVpAT{wX|+4*zVvP^z+%D-F7mQ*M!&e2g^%Wbe$~^>&8Nql}qf^^@!<2|K>8zMGT2yOX|0VAHiT2ipfCCeEbA%!zfM zg=35LkC!np(QRYpi6)Om!0qalm?Cf08tHq!SwIKQ)z8%TuaGTNLv`j$Ju2(WJ;*Hj zy2<3@pSZJh__tL5@0zn3=zk~@W=_N~Jf#exV+0woL~FlzW|V1{r$*d9&9t+;Y}*)d z0q?vq$%(QtDZF%(O+5KFPcsAeU5Vy0CEmDM)(3xbS}HNkhagG+2vlTIv8vf-PS|C% z%Cs_j#{3IO)_)24i)V|qT^`+h~djA5G z8d_vW6soMh=FP9lx9D}V<{;l;r)y?YmI(B%AYZr->dr-x;{``Xk5UiC?HbX#)c741 zuwrn3rQ#!vxj8vl8Wrf-4%5-$%P7}TK;wbh2@~kJAtb(XGcs*i?=ai*o0I)XP`Kmc zT40K`%s5NIq~pW4k}L7x`d%KwYETnnTSM$4ymcreN~Sb?v-cv5;~CUmgtg*Yonf8I zttA$w4q?q}f|Eu#(x~U{c&}sPVS;&+^Wk6$r|sz=G&PrQN1J}7VmYO;1lCv6YM4H6 zZw`u0kM})bU}=~9C1F{;O?R8e8&<>5^L49~fS=dwv*qVxBHp5!E%rU zE&*)_Ls@VN6Jd9~DB%hR^g<|o4_C(RDf4QIx=m>l8R>9M#Eu5T^4=3sd!X(k)jC2G z>gnCwh-4e!>-(>^uRn@u*f3@*oH|zWkn1bjR8Z(F4L>Qhh;MTi;H7!0GhhhV)p$@) zwBT*@gq5w#5m}s*L*zwKwk_ITM^yOOtys2b>daeSpMINj#d0o=KCu>PlDOslP{+Ib)CkdtH1XKCeW(Rwu>eB?!Hlh{4!NYx%#&| zA)3^*q*)P%TVxb%v8Sk*`JiYleim>`(pi;QWIVdY!>V-hORlaYcTZ#{XjixA5$h6{ ziqNTNNz5;RTGS!e?__=$64?5i61$(9K_tKDol6C70VR11(FKNZ<8Fx?S+Vd42uIWOQU};8w8dI3$*Sg* zhuMj2@yIusgX`802&yrdW}>%F`{2r%%UzYz-)iD)I_e28khKIafNhMoUpY=K_fPT8 z`HtOav{u*59IE|_$5x{;z8_K3u53vHIE}rkNcAZR@vUhK(d~^E2W3x)>5dN*9mr;D zUJT{T&^&X}VAu`<)SmT0yY&VTTzdWN>KM(wt}q0Q-0m45%E?rxwpCT z-ZNei9|ZyHrgHkp_1i`>m4bKZOtQ0H8yvH#D3dQON|LJ`$!gwt>T|w4C25q^{-&?15`0@>~(Uxez9h2YvLd z?K&I}&DY&*R&-`NJUb)2RG)g!1k+Pj^i>fJb`7`xb~onTOlN&j_2a@C!6|m-1~Bik zFR3-nbjoVFLhOApj-{-h$}n|YrG-c#>in`JAFue#YVG8XZ}rwmeODyI#Nl?<%N{7H zQg!rcS31a3ySkzG)~R?`tcurF-&%VK#k1DDhk&%!Oi* zIbWd%?A}5j>tUzE^`R1pRZX(sukl&U8>C9!7IiH%4E=TXjQAytIm8O@239xpLh^)= z4<_<7ZpiDqiv|NI{JD>W%eWJ_Qb$U$+t`=1DNfG_^B0d|dPAA|_7&QbOffzd&nugs zc@f-E2FocY3K(QfT5>Dot>G(x+;0!T;VVgZ`f#8c?qhF{N~$sbSK9 znpte@qPi?~)Zm&tBdy9;q5c*eKW?X?;+vd*Ki4%L8u#$ALqIo^+wJY!$y4F@^W&iB zj{`vCk8j%=8;#Z42*&5vCtL1ex7X|Q!HE3*HHQlI3RN|3J8tBJxY!MhTgpf-#!KbF zz2@TwqWp|qBwHP}#?)k2`j@Tg3O>P14C2(C$s7-U?#iE>n7$=+BzvhfQ#X@9wncI7#5pjCrf$~P~ST>$tilPOp*f*5; zk)4G~0b2lmVZj=aIWr9Gh6eC&lHMFteU`3msJ8*RdnYz)$RLff@hUJ(pV;0 z7pGb4R7mTRNb43!=UkJ{9iv{PTsXwe8iU-c-$y;#(~6Uvj{=uJ&TLZiI$(NN<-P9}73fg@p)TY6uUwQ^ z{!`Gdle7_0D1a)u^A+KFX<%NEqE<`<)y4_dZWhA$1uRC5m0xH$Dg5o*xJ-mdLRx$7 z`0Pqhfxa}vsKyFY$L|geH-nkgu~4Ty_?HbSwG=~cN>(Is(Oc(o|-MiMkK7- z-lMT)vb;QcYxB3=c91o9c16z-1AQ#p!aajb!Q{enB49tQ4Rd}Hx+;AENi_;d^$~mB zBLjl>YAscO^MeqNF;%DxhiLH$nW>T`&ZKxYA-Vnr9vS@3f=IE{6nWnXGCY-Cq7y1V z^;QhpQ%u4!o~nRcgl-I<7=uKF4m%i?UJ_w%2x?Dsp)g6i1U?5@UJc5O5r)z(bDlpi z08NOf*bf4nT0~aXRGAwU9x6L7AAep^D9Q`RN ziAE2A)*pFP(J=3pP@B-?@oXPHo`dStX`4QA*ZzVk`R=tdU>+Tq9bzA6<+pmMGBsk` zO`W4I>Ov55cKZ%HqzC%|ZL9gx>GWQm>-M(8e_M!>@lOv98zBRsouMTR56}Npv$Oq& z`<70EtW}@@QpnAB1aEWFuDUh~QlB}k&_YVu<80>K9E?M{w;7#r6-%}c*tcxcf0+VxDWN$uMWfLM>4TKDs%or`MS%=xYqN;wy zCr{VPYNT3owWZQo6`9`nAvi9iKTWX=%KFzRYA&gMeYm^Mo+l^?z5ocsCp>n&x)+#sOlg2=mcAI$fBpC z;y2&;K{20DMSA^81G6>VF(zB3BV5T1NfY)<^S_%k$Twj;FOOysD^lOTfwYiYWdG^B z{wsb38_Rzn-gJ@`tu`1?gLfXNKUW#03?~vap@3Jy#r3zu7MNBuFDNwf9HJ6=9(QJz z-OLRD=zJUMFIk0F9-7su7ti*RB|Y!T4bZ8^ZssjM9J$p#CTDO*u9R2xcFw<_kJ_Yk>fyO_e0^_(62ey| zras<~V=i3Xq>djX6J$c`2j1p;$k~UUAF;cmR(zi~W(n4P93PZy_miiZF1Gs_8&i$h zG-&o6Dep5D*s?m>p?$Wl2aNe}d?Sr@;d_Qi8#n%3@8FE&x*pdbQ?FC&`Hjy8}H7b!FtZ*zs z!R!`iBKwIYj`tl^Di;J!haTYkF_O9oO6c{{5rS$J7yH;rqwRsPC&wlI))oKB z!LviBGyTWFHBUDI|MW(k7rx$0D9&)lmamrvl8@aETWRLTtB=#W)dQPr%TE8o!oWf9 z4qNKi-iHHw4&n}bYOdZNJUxD2n`u2i9+Q%etyhq#g%gX**8qa~gOd*vZ!eBc+>VZp z%<7J8w~>>(*z}JN9*r#m-41&GeGq9N%zRG4vi z{MJ8L5O~VP(o*KK(%0NgB9Pvbbf za4J)r4pECxw~#Jolnz4BIfNynt|6&7xX4tH5u69~76Xt$En+R@4~>GduJK!-BF0Bf z7clwg>xjylcq7&b;4sT$l*&hzQz66~?68CM6oK2A<{xF@PPUwJ5c2|&vgO_k&};J- z^0$pf6KU`)aizb^2|(bNDfuCa^vOWeEln;xnwXvoG_kx+(;ywG57jADD8L`_OZ-`o zvcp-De(Vur-uK_m$A`?r@`|Q8ViD!Iy5=$RXk;kR9><-gK&E!$V1^b$RYe?5VTF?k4`oYaEZrz*T}|n2V56_ufby~I3f;67 zxYW{9Z0Ro0OZGAqy5N1PdNJ0#p{!z}-C)zRJ?>b0vTXk1$StKt*4aJ1XWdDB4!!dn z;l`71i1_{nHRL2W`={i_`QLm~F|o4#yE;%uVZw5N0jcwX`Z-N0KuC& z$=jc%N=J|eT7&QP#%kS33 zur9&;AMQ$fg^GpI>cJ0?5eja2|922s8UCvoU1nDH{|I7&{J%a-hi-f$cuSIY{bU8f ztf(Y1n+FeP55&Z&2UXRaMq6&$?Z)y0`t8iNFL}%^J2z7c^wPd)N7@U5o4U+Nrw(M7 z2k91{`W<V0(&vu)~4J7*U>pUH3%x=vS*v((><+GQ7#A&_C6 zDp{6}w4K#s;iph)Bpv7ClR3^MHI&N8nRs zc+cu4rUt?cg2;A5!U&3C1j-!CDeE)o2>?@oUJ0}k_4>?Zmdt{q5vttHxr9;GfeN7^ zwvP(J#Sotwazw;o^#@uCt*|h<-{wckCPNut2a>pyLB|*_xPZl4f*tGC4E#zxtrLEd zm10%uvhdVcZhH>EpWujID4)L}AR}(#`=_J&H?8ddAcy7nk9Yb1QA50B_(NGNBAKrv zCvHc}DG^oIX9$1$xa<&x(oyhm-*{g|b*&Y1FGcl#FYBnzQqV=0v%+ubsFO}R+aw)% z7TA`@k9}4&U($Lt(0|O-lNsE!Y~()eT^aeEt}9icL$+_*73*fjv{8%7VuZ!U<^+v& zN=J?`D0L{O$_>_$1@X4A4wMn>o9MWid1l{qJIl5!s^2-TqaK&EzI;V%DizvSk}~dT ztEjuM!ux2%(=8=euBOWo?|XBFi?xz(kQ60s_gXjPy|@AdPenu1!wO`4fdIF+Crt zX%shz0^b_>jTjNkB+QnqUR;J6={?as90^bIFf#2HIiCg90ipyb$d;s9na@jGDBA#? zvwb{j>WHs?5iY%yGuBIY;Uq=Pt*W$`vBP@VVLMA~&S~qT`tQHKFOXb;qi6qgicJ5% zvlapPi6Pt&QD38+bQZ2>QgIV?7+GBk;`fJU{a8LM@}#9HrmTwEh!i#C96Q!rUZ9+X zBu7R#m{4TbJdLCv)gBwFEu;NJLH+S_KV;D9!Kbp`bWQHl5}dZ#2lewp;KH{rHyM`1 zrP{qs^WVHxVZIkW!+zrUg@*zzb-f# zLA*+4#brPmlLAXx?PcuIDFggwksgqr@@IQTO?4w&PcA1r36?viq3D((5|pb57>_Lp zyj1pp*9T*UYEYz+6gK!@Sxf4mLD{PEUs($x!JX}&g7{y}12Fv`<=KCv{(XgY+^GB} z##R=eRcOwM`E@iAMB}&Jo|>XG+;&1*?hK798rsbAxp~m9|3%q1_KFs5OP+1pwr$(C zZQDNEwr$(CZQHip=Y4xOx#@KOfi;u0vNCH_)u?g}aXT}J(`3(@x?&fMEnFhr42;{V zRq1FqOqqKayCPEpe^UJJTD?9Tt!IfiAAFhC9)9tzXf%Uo-%2YTCcIkhDDN4evfsK%3s_epqk6^V$%9KoN_>yp?Jk5mn*z z8w79&`ERf7f6-S;E{4wkW4ITR5Eiwwb^afh0lm=wg_~eu=J*dkLAM5kveIe?uf-UI zW<>I#!&tx5fqZC1SmTQ2a>a0YfnqQx;Ujmj@W~$n;&lRI|33iApa8{??5cg5m(JCi zwXEIU8?NgM1*)GL8~1$9pB+080$Mj0-M25@t-31##AIY%x4)aazt^|FM1)&g;PK)| z?Vi&idv8e=JxVFWLm`~CT?1Z^MDbvgjli?v?(a%p4sxJKD%J$LRgaS_6bu>?dtU*~)}Ms%<;YZxtr%+$IF z#p0PahnHNB$3a6)M`dB+!QLIUw^8FWzmG>!-bYk{LWYRS6buRvdvEgZl6dc!c<+@E zl>3%R-hzT%-e&5?_SS9O1lqXpsN`}o5K^-7V#H)cq$Sc%@nFKD#bYWE;|z}b930fF z)a)eG$~l;Lm?_k1!Xe{&9yUUMy*&iG1ba9siK%%>q|;r^hWMPez*%V_ApN)WT#{uF2zfT z-G%=*6L*Er51}7;7$P#HrwP8nD}`GOIU9m9WTpvCk(?krhNp&!3>g|i+(Yh*RS~Nq zREDz*RR;0Z$EeF$;{%5A8*N1+9n4XI z!{uPNz5~;RSW;R-y%>UzB`_b0ZHn-M+h-G_MxUqj!iDvGAzmgoP(oUG>xlpZz4(@M2N+eY+4tuO(wY!a&1Z8+K!6ZXeYu? z=>vF}BbG33S6LqK654pp7loz5&l+(k0wSc^tzy?+;2aRoP>Smj-oF`Nt-!gvJgRvocM#N8T4vRm$%>{3Fx zo)wWKawx`))pNDIM+@a`(z)GJUO=}RVQ7iwwyreauX~kinl&zhlC|dfVzFN#C87e3 z?7-gzK+w^3GeEuqvXlNJmVK2DfMtOm+`eHCbD9K)IA^~8^< zkg_-;NF+h=16oO?4-$Gh2!omEjxK3h&n4XVC!xawc*{kpjr2>+vr4-$eRx)Y*F8Q- z3(6jRF^kMk0K8`tpqz4^(G{x5k<>5$2;W%b*qQO(#f#ynWm$v zPDiglsW7?s`1Ul!e5xO@@?@SXo5%brO+d0~*f*I3>QLZgaA02pre*TnR8v6c@$wz5J zpPsZHYMeNbAY6-Fh7l8UEz>w~eywjmcKc^}bilqbnU4pf>OOXaa}3q^pRB^T1;yxe z7)QMsQnBXfSUaz7a=6n&L(yDVV3}?v2X%4q>KuMEp#BCi65)lo5Adz<;%Dui`|XJE zLasNycj1Sx&jQggtB(!r=zb+nt#HV|9x=?^3lP6({UVyvt`483%RCLJ}V=N%@*oNjIMFjJI~Xt-nNC7tu5C zl?%UhYZ(r^I|w^NtUi~I+vxkd%axj4(k?qi;Jp&({h~TEC-SH5R`-Q0HW#bz^MNJC z%eQlTU2meT5BO}OdlWwACA7cO$(h{uamVqU7@h`EO2cq~F7-lfCWnyU&54S0_b05U z3CQJmVBWOdZfLZRyY2;sFrVmo`VV=wt3U8?+&kA_CW13y2+8cDI3#_!vl@j5AsqSz zgyXx50E9*m$+7o-9>NYCO*?u~4GqdU#9HC>sJ?FJFK#xyiYQ?Ogiv{!&|66gnOkKW z;^Wf{={Dp!iImoYl@;)$L6CqjYkslXo_aRBRo#??Q!N=!CMADs722=4R``Rz47;A& zs6l%CkrPLc_~9Y@0D6ZM;}pRj6x45mc};`rt80HR*qqwZqsGa>_wPi`TR4S`geWRn z8^tc*u6bs(Md)bM!*nrmJ|)k^2(m;<8_m}`l-ylFwkE{%IUZK zF$w*1ob>qxnvA9$;!oGlKM`9SMAL*so+1f-G8$KX@nG)?(N2X#;mDr#WgbDyhjhMR zJYM4jq9~S_RP$tnpwF`;YUOv9qGoY|0gVt zXdJ)_N0&@LEUr^Xv8NFBVfstBLtU%3wf;G{j66CVWh(s+xM1 z?mB)WW@Hpr~znz2b!YR!$jK!Y7y_qd1SRGl9FMIItMme4D4JmtyT$_ z_e<6JSTt5i-Jh3GF~tqIL~>H$7+YuNLQd2z3CXAN`zr9#5%9Pj$2{HS_sBd(x&XH3 zq*aK}cK`~Pi_h!P9IRd!4?$Ebc-Uz^-dSyC$pl~D{k6?(RuTNjOl@^MpR7ki_h|yk zP*(=+zswsFOsHV-90-6^S_&Ls0^LtYW#1Oj4Q9oX&T?Z&W4|&-fS+>fsiZmbl*R+B zDDHokE^*Lfj|EA!1EL2O{I1=e4)ltBvTna|kFAbp7rb!cwkvZxi|$W!$b#ZywOsMw zRlT8jj&94eAvU)pQY9~;KU*5w%H#*|eg|3lTYI&Vm_nrJ1+TOx?F6@Pe|nnTe-L-P zI`@o0Z9)XRxuFXH{V?7(S5M-`$3L>qv2kPUD1in`PsC#A<206;)I+L7 zkuGlEr9@IF_z-k{6Di$jbN++;((Uu(Nq&z+`*AM&lz)aJ_2b&izU}ZyI#}-&ss$o4 z-+&SdC)oR+KAyz7=%{;E$b(D7z=#Q0z~*#MCP%S-vcTjL`feQ%vz$S>JU6An*RTAr z*7;@uPUo3M9J;YoUA>wEu~Q&rRbU-2(Ds23&U0b(`zu(emMU56`vEfYf*Y1aF6FAs z*l=uSy9U0hj}4tb%*L2*7Ow66R5Dp%`G$u^Qm>?rs5N!sThy4Ew`$U;Mf|CMucP&Z zhysk<)VV7%X9V4^ir&ZWr~U9pby6_Bx-Iw3$H~J-6qo{Z zqL(661u0{m%-jw*-F*cw-cxgzT0uw$TI6!+(?)hro}ZDYnPT`~ShIl^u9>Zp{>jvFj84h)c;Z7(J;-y_hJ1r)yE znKPtbo#Luc$C+}?a-NE?OQ$q*s1%z8)-|)>`EQ@kjR-Z{U%bwFGr}a2>JIZ#vwr7y z@Doa>3^aY-_N&7>34JeB)#{8BA`WDZ_Oe?{P5&q!KOBVJA7=gVhoFz@g zsK-Oj_PMMAtVcdMC`>^1!l*EzP4KFm2Y{737_|7UTD`+Zg$q_jmkjWlUO@q*y$P@v z$895yJLTvQ>Oj+2L`?bDp$ui!b}^Bk_QSD67FMVDu~$fx8o9nbLb!yVgf`Ge*mL7$ zP}d&^7C7wPX}=S=xg|HcTA%nYPW*($<aDjm^>cj3}_0*`RYQ`O@d#|H>#cDEN)DcD{Qe$4OGM`4qV z{t}CUE>z*Ey)C7QlC_9s0a5z^S09RkgOJO$?r5xe5* z08(vYMmKf~Rp*l|Dt`MoLncBZfEhz7f+1p*E}r8`o%3j_`}s*NQpP7L1%jLvjqsC*Cp>qf%+ZS*OSbYE z73urFF#TK>9$Za2Ubx~5*w-p)5GlK$e9OH31^isi2nOCfNuPWMg-&?_<~&E*-JBP) zUAe6FfL`4%FW+}uiKG;mo-}pw$}aCFm78{P-l~%o>mtLcMxYY*!1}&(=YhLfRKTJ3NC%x7C5=1VL z8|lblfcEmOOSVH>Gx&vEYTZyK%KoLtFm7+17&^2c@nU@gg>d?|T4nH&rbLiRNz<5y%^~UcxjQsQ&wzZpnk}WLgYw^Y2&F80 zqN}*0Q#`Lu%C1>^kEb=vRJjfhP&Te5HzKfag1!6hRXPQ`jBkonqtM4!Klb_1Tk;xG z=cw*i&haTPtK*VyD&lm~0l2#XnLPhMf)M;DC)J(QmvM60EK-;kO@Hk-=y3Z2O8jN2 zEqPt8LH_r>813#lX|i6}Xa2pkARiL(;pgmJQQ9VZh( zZ06rt*}shmn9(J!Oo@V~q=mpZ3z?1V?jP~Oh}L$Zo#}8{-JOT7`-pV$Y1gvZUW}GJ zy$VyKs|zH-!x@UGvmw!U*wm?O6AJYjs+EYQ8v-TAc~jJ~l{y?uIt)-@`z+^{g#qib zrlkeS(RFC=*wO>O?wmWs6m!Uyk0#~KV>3DUaH#39D~>w!M_k;h1r4cC5%;7PwF1pG z)=r+xXZEfFfL^9^F6HErKH1761$Dx0Ro(SgnsYwrLFhK=n@7g0!Hej|Qmh|LdFS$EyiY@`L& ztjSaGqT@%-8))_kE3@1DmU7o$j-zTfsYuMp0@8@-$x#WAG8u$4V3)YlQ)(AW9a{+V z9Os+5Mg=IYl^IMH&!RYm)2qivS}B>3?O6+MPb$#dUXY+GsrK}tv8icP^6?t#f`lJ` zYJBl6Pke^HGFU(CsUytpk-LqlAUNIC3@gbQ)y88+3!G7N2|?5lQGY-!kM`OLC9uL> z-gG2vTXZuCpln5#skMoyH08BwWt{KavQbLdUQms_FrpB0KzJWX-y%Zd12PVvv%>9J zPwvEn+yp?43FQIF+9m)dvZwXE7KXeOY3JF=v=Dv*@BF`d@kvGj7eD2*& z?2et31rypefaW8yg2ioLS&?xAUNd$=0I3l#%4~a5e*JkjVlN23sjK(r+jmhkYqZ~* z{T^MR_~ulut3eWqY*|rota**4rt9m1MM?mvl>8?u+7=f$m6NOus>cEG(itv+?v%E= zd~qUuU-oW1$}3f`F8Ov<2bh!9^pG+-K7Ln%OT78^)fQ1Kllo_fR6qkcV>5%n#2=Q* z;Kv&#<&*Dp`q>u|o$80JA*;#1j%# za_r1%;(M*S+VMZDKUq8UUS%FjJMHLx6<%%18$VGWK5wvCzGQqqa`~?$Ty{IRq<&3p z_+AZWnfy$(w1el0cWBNlL&_?DCmq8cXbz))o$<7b7Y=34s#Ae?e&irYCti_nf5`$| ze%{`wXWgT)B;bdvPiwALNy9h%R~G#L$)v>eANr@2zJ45i9bM0x{ch|Co8LzaGkxA4 zAmBxS8AG5yv5pW)|BW{OUqb8uFKx`o!S){>scJO{Wn?kT8-ufd*kFY|X5Qio7x7RD zIuw02&3z96Sz4KXB+!c;+0-5uR5@rrE8Q?i;KoRwKkWowg!>Lv2eB4CRv22rXazeX zZL&>ECc>wa=WNlZ^QOng&h6hmUMPJ1}Tl6X+!030Cuivwz4S9rp@$`gkQJ zfAs?SYiAs|32ZjV(7H+=4@KH1s$W=Fzvg~L@S+AlVDAOngfEIx3?8LG-VCw9?1#tK z%Lb@CZgCOR=3c$EJ8QRbIdf|LE{ONuFm^Ug*=_0+z^#Zuq<2CD_Yz+#fBr8d`<*yh z5w|!jRyr!V((srdqS-N9G=F96aEVf^5ocI{JmMVn; z9zqdBO~)84Isme2^YnkO0Ce_0&s*N= zChRR;<t=UyKMR4Bb8Ir?E=S2^@((NXRA5VQtd0!peRvEBp z9IVN$qq&5aUsZkk^U_O;647iU)X|z>(XpX+X?LyihtZVQ0Q6MnoN^bLA;6C8JDZ@@ znP5)3urXyO1q+6CmkgUe@UKF^_Ps)D`F>{bJeCxyvzkTqkz-l+gZ2HE29po1E32G#PRh(sAcxs2^z*FbQ5=&xep9s`JqNI3e^ zOju3P&qX@sisUVavlj1M*iUc#k+RKNMw#g`>hUF&8k_6;RmXL8y{%y}PaY{9#R~n> zpdHv-Ksu7Sv)v0}*7iOrr>UlqUkBRI4GTjMNH1Ejz%asfWlA z?$RgUn&chhzUMhFN{_%+x(rDVlG=G$_Jt{0R@hI_T}3YzEZKNBbA-cPa-a2 zFnuM*aSKb6))4cpCpX4mRFMrb_A{1_WqP{vx15I4q?rA+1+Bry)8p{^@jl)_VV-bT z5M$_oRC@uR&<}=Z9Y|ilRYs7E0F&s0-4p5pMkD^z?@ud5g4HiNnuwgo8GS!%$@)VI zMic_|_P4naEvGiBS1gjm4fN%!^LRSKo6QuA^iD81uI@ z`RA1&{b}~-cd>>0^yBV#RK>c^N$Lr3hnL1jkQUoELGb)YOgv~y_thEm=9D7t?;zd} z`1ZL6$$~q4mkCg}ZZm_5z;K8Po*Lu$_6Z!^1ZRKyitR_-p}h-O^RK?9G}B@S0`TyJ zJByRfm5AnHJKgD!*`p(Uq3CrvV=AguEJCDA0;OX zrsTxL)Ct|@k2q%TO3Zp#697fTVshdsG|b8O9%hv9b(fo&oz#8W;%29IlQJn3Sd5jI z7nB(m_ryJ@(l)41PXou@xv!Az&gjHErPs2yrAD2D6NZxUkw#Y=5p_stCTg>~Z`d;p zg%}8`8MPqq#mX4u6(;&?@-*}(fjAsbB`9z2&;G~z$cQudel|WbZ$0KEL?uL*nwnxS z=}!~d^9nXrXO`<P!k|Mp}Aeq#?HvCYuT#4zY$AV^wsw zOOfVHDrZWKAkXinzUOSd%d;=dMvyT`nfE?%p8a!%p~kYjyq*wRO3;)F%lVKQTzMfL z-sR2PE$JOKMpV%AZ9JWY_54ts2lSUgg$2F~!LdIk##4&+y&)mjbBQ83U9%+joC8-l zY{RqU3yBGGw*{(z5PXX{J#)T4oHU@Td$(}-GaYz-_K&dc@IGP*gCPCwiZ}*a890V( zq!SYwAPMBi(#&jGooh?v312g6O7H7ReB=1%Zi#M<=I2G{R&asY&oU}DG0K^glfYA= zA4poW@ls3MN|D}XRa$kH9C$uS0aok)6gkFgv*8`UatR6cH+7}QUu z0GGNG$KsT2+1vve%u<;l0(65Q)~EfrTHkF%U@@qz3e*-6^#16U6~VdP1IpQz$u`py zQ`04>vmTcSw$xKJ6e${!mRgYJJ*A#B;w2^QUXnMtP3Z}j80^puMSmTC^XzQVeElWcjMZeJhp^+S<;fu^_f^kA-ZRk3uF>a(jOjRo~+8iQ>FO@ z+puP?y=4e9KIqi4~Fr5+}jXbihAcT!= zbl^tsiOBM&ctOxn0Hp|OXuz&X7ETJ2W`z9nuvEAB$ny&z_`kr#j4o35$qxDoLMwuz zUVwmo?9uj62KC7myFJ(rKhL`r0A5{|B}XPT8e*u#5uh6|)*b|Vq0K+O=*?#p{5T&d z(@kD=8@$)6vDRvTz^0{+ui~UGa=0s5$!wDy}V<1M6G$+qAYaC$W_ z+DH#m(z}&QUvY;P;|U!(KfH9Xy3RVi2e7u?VA|7190{13m`|I8Qq z^zx3@X^QxF_(7L{{@@7!_x!hq|1S&A|L;)2LC^6Yhjx2{sUxp${8mj~=@U(~iJCcs zT2-wTl44q2;nWj$OV~-Fs82K;U(x!Un;1~gf`{qfcE_U|Axa6$$SXyOA~~7zY<+&2 zp|PBd9PNC1@4lLOpt_p6o?PGFzUC11RaMdZ^XqpS9(U~Vx8_M8jn+Os!~?elr^nJB zfI0*U(1jS$$Dr7|ZnqH#+LobUu1mF*rmCEJH@U&rc>CY=qmznzh5FsLG||0E)aHNr zAvJiyu;HbxS^=AG!yxJN)bpi)PIBnN)hLGB&!?sbS(t=sJT6;TYut9yJ`?<4FSl)`qaQs!vl5p)PRZl@#@T|fy0LP>VTxfmUT{R zP|y$~5G#+bx`6#w1HZCx? z{(e!nsMGM*gyIEpZ(E+hE>5p&H@VODm+c*=uiaZ-BF~(QndjBl-%FyeGfQp_JMC+u z?RKv{7Cu}yPS&@Hk>WCZ0(=_1uJ_FKf$F=v?Z3fpIG|6s@GSOQeRLFFl$j;xGEc(- zPkB0lp>VXgUvQ*x?ZYP<)Ae4QMGj|6`K2K+=>O^l?(Z^*xWyWX;9|Z$x^W6SVl|m6 zOqyoTI*q(XBSuJLudz#mo>@zb^@B2_w_3>k$E$l8Lez0`Rp?9<{z8mCE+%O>IA;l> z=8h1?&fpocdR*Bn!$9NbSQ6y-MGu|O3ni;&SFY57?RByP7aW>%*Q8h(J5tU81knQo zwcIn+Wr}|5$Dm6H&q40=*{}yI<5>lXyuzK^T-FH1QmsN81EMVx@S>dXSHUDod>?%> zp`Qsi1(@cNmaIED&8vEz5SAAEo7AhYkeH}=SUhhoSqnWI=-~LgHJuu-WUdvxsn-+E zdEUI#MbjcveD5i&4YvS!!KN@CdB;9kwgx)CzX#N6Jnbtml;gJQcRr%Nh7gfyZSGG= zkBlf&G7P95suT*tMLxAuUw6`(qWiM+MS?!uJ0$Y4X^swRI8xa8z5WltdVB7fI%#G~-VrdhR z-ioLC(z9?UL9`dM8x`GLm0Pich5RXLV3O;yeVfMm6v4c_@9}wa$D|SZ-Y0HD=j=1E2hIWj z8{{a%N{|uHZb~8r5ispLXFof}I?W9Gvo zHzdbeB;|G7e5zYFhgx@aKbij`JMu+>N{#GIe_Q4>=BiQeK$J}Zxf$bpB?K0v(U@!w#2tQ|31wvmD5!Uiqy88iX zg>MW)vCUx505N2A?^4XjM-&DEXK@d+?+3DLZ$*1$TN z0upwAVOuP0u9r4YWJS|~Z6HE+AQkghQyI##a*`Irn^<>&l0%*m=FylL zASysN6ghH;OB=Ax4q|n);b2G=E_-Xs2-J)L^~93)tJr_Y#Rac)^{32f^(zd^Chp#!c9%|lC77*Cq7Z6C^Z*ERb zZienKcrGRpW zUxM}!-I>me+p81EgNT2;ZX~>r=3Y`PB6z zj?%qu42B5TY;`5(X`t$9+YTZD&JCm0j;H3HxY0>uvSBp|XD+`_LdZEXnns_qoZPH! ziheqv{KN{6Rce53+@b^4coI#^|5Ly));tj}$`cYJYAF1}3>iUty{lrTpNe>-P2Lg# z@K4wkVzq;DPH9`1;Z^AzT%SW7K1Z#PaQc_7W<9SzP)d4>{8EfG1Il~eUihYEykHHR5Q%2kFG8Xo7PKIF}uDhi}$Dz)x&5I^(lv+_r3KzOkTz$i_E z{@ElUT*Th{*>ecB9#nxoX)pU!7pv;4xxWYA1w=-lBdZo|scG=2B~>A@Ktf7&LNRH| zepdoNeCMjZks<(w8+ZegLY-{EO5ojSRIH4yA%{N8uhbU@2*SJ(4^nEq*gg-PBz*5| ziYr9tsZm?l>mk29ZYgbt0bDaS3C}-*NYEB5i^MkR=GD@qVDiv0^|t<}>-?^s^NI$bA)?c>u^;0efkG-l36b>Q5-f80ih0 zZRMKbE|6bKZJ4qZmhE5Dj$;6M<_1x|0BttdBeptum)JLk*W}X@viE3{l749fj*dyU zZejbVegFoMDj064C~VsxrCZ}mkhzNMeKtXJ#%?0phnn5H`%kP8`mi(u3O^2Wm3`7HO>`9hyf!T8N_5=o=PK?(>W3d_yGCdpC5 zJawCLMw|PlJl?I}hq(b(gwGq~n?$ihTswZy!#KvhyjetBq#-gtL%Dspti)~ zmyQ}5K9)EzyYE*5z9oc2$t0ad`~VBc(vC|hWhBh&Fpp~~DmOzV=Er~Jk8Tts@JV7s zLc`JH6yu8LO-q3-Hf;gyMsu%{C7U)P1QOmzG0ID}<$*<}sf~Vtsh=Ykg+x%c-*&)KLWwm# zh~5I1;_&MgGKUPc;Pw{F>GHrG#u`dqd?2(#ug&H;K{~T9n_-NbVh{M zol1}(vxabZDg|=ng;AKcT>n#pyA&{bnGbVyKRJ&Db1%lWOwWR~5}@MzPvR?W_&JXs z;iSY-MowkupQedW{OF`ot6>{v30A4=#KdBfG=I>c7z5NqAxbWlKq_DR8Yw(oHxqQCqso?*+IOsjJg6ldC@*m@X8f<@EgO zyD9O}JgGXvZ30|eqb2w02X}Kp88+&A*ZIU643C|PIiL&|jlSVjvOuQrJ_VrLu%ey& zXaGnKB0*F5x8#cS^OCUp87jVc2NGN1<_Cccb5#k}C+H51(({biV|O>sac467ce{qa zmgNafB9;r&czO!14;!-1xW5$P|9 zVqI=9RhV8)PKUF?XVmV_aU!>ZuQ;NtpNgckohrqHL)k{g83$3b&61B?rnS~2VG(|N97RYmJQ^bXFWjlkQ{!0 z>a{Z=skQ4`U!0IhWIqO83brq`otcV}y#~D$ZIX4Yn}G!V?Zrh*=_>E1;%Hf;zbV>q zHGw8%p9pSXmWb^~fnB?OBq=Uj>`zNm^cR4q9jcQeU^LUEJ#9rQ_WrC21m}IfcStHG^7S-aa<3#M!L~hE6%&&(20Z|~2^iGR@9-^Xq?h$qI zS>$-6PW>%eLp1U?|8lm7F$Kun@V@MqtnUToqh>#mU=l(p`bStsv+}xV>j2Yg8b*g- z;xQ__RGqQY^~iZT94j>-C@cMi)d94D)+AhJEo4Y#hH`4i8}3lR_QkdwJ5~hdjBiXN z@-X;4<}L5t8_l(C>%{#%eU?d<3JCH~F*a@jA|j5|6^llfb8b%h=aJ=XHIdrw?I#L2 z!VEru2+|!zJ@qg0<=!gxFS}lWBZI~8UJ5SV`YX2kN9UO*Z?e_o{;OKxcNWYCt~8q8 zNkCy-UoVJ{*@>ifN4H}U7`Da`x=o$;Z5{s(tM^boAXx(IQ*1z<(}=q+<7CbZQ9O{P z2*^q03c(h^d{q&p>|#HIHbX)pnQF;YheJ+081X5E%7!z*IF$*<&~QupJB&q@tlc^! zjnCEO_hyZnuTazSZ>r>J@rwKX?1)IvJ9t^fE7rA^9lBn)&n>cC>{EeT8-^vKgT?X7 z)*<#z#+w-gTPKR8*UkC43va2*bjXoheu%-A>S&jxD@cPElT}o#K`0Uj|M46t*|yza z!yXa1fS;?N&;yLkQE7v>7OYknZD@U?jK286B?$Yvu5b>;ZmwQ`Uiseb_B4{}dhXvR zluhzS`jQFeLH!Xr+Swpdx;J@foq6>f0a~HRd3R=%_Q$qCT$!NAJw|p^S^t@-J3t0X zfxuEZ^vE(h1AwVOB0ig6P*|-n$0>AS%RN#}@xd8ariBNjLEl>*v2KN32Jybr%D2?| zI%f#%y^m?fEYxy5sd@HrgT>q3O@LOkZYh*ta4NP0!KWjybt|%T+dzIa4Qt8 zW5^Xx1yt%$77V(3dDY+!n9+m(m#Hjf62L^Dq`xhy<=60 zWevZkm+!IaLU$gci(@s!mv1QD=gl|optlxz17T;!cBNIbq`wx+?B?}Bd48D^y}kTp zLK-2~pbYi+3_@Ss0J$YjboN5g)#r!XIfd;Z(Hn-Npyoh{uuD%tF%Mx{W^4NjTpMO5 z`-js;$1GbiBZ(s{h;;k^R%$S!wJg56;A>bA{CKrZ6FP>qMX8R~>drEK6z<^3<(}@V ztRM~yr2@HNfDA%3?9OitHjABGotENfr5fNzgnQQ$N#4Ch!S4u^8`8`Tp)!@xH9dz~ z?Yl$H?82N5y6NkY^1+!mDW_;tNo6#l$6KYzlxYzn%9fg5%HJk}o6T{Z-q1`IGc7i2 z*lnSY+`HKZYu>|9Ty^6faL;ShAWty;I{w(x-`I1kcXUjOCuM-%F$t9zN9;A z*9^QaC+n)+>mhUSRHS5iCkuD-m(8e>lu%@dVQl4B+n}&sEw)dw9@LLLbTi;%Px(-~ zVIQpLHq|q=9-AsR89_mnev2XHOW>sm28wMEa_`~fLV&?w%;fmjLe&tmgS>Zvn}AoX z+7M$hc7YjHtk2u@`9UBQVidcVXF;ARGN_Qr?%CO^EodjnA+N5byX!4@+oC$UxqHXh zHllvQEut2rO|pUSyF4c=1zsEOE)(!M3}<1?;|zTf`@xF|QO#$yu2pF^f4~+HRVvUr z^uy4fU{A{1&o>mF(_0Z(de6gW^?RUtxdii72-x>n8h^JJSPl124axCT|M8xDbb<5P z9KT0r3;q=L9y#R1jIK+LOl3IAYu}_gpqer|`nK)Ti@};jZds83gX+~#ROu|EEiDb* z=f6xe9j7$F3_tfWzZ^mtBAuh9qq?&uNzgeH(E83702VFkt_>IKa?Ieq zG8;nuFGi4R2Dk&5LR?mb0m`I@!Qd$+sc?6=5u(+Q)}~xfkMmC9IQo&T3@`o+)-zTh zw=4eAc<$2LuFLYKR*i=ETcyQJFo4_=WD{#`n-^anq8Zw~$(`XyAvYzlA^R!%V3UP9 z!Cq-7a)6J&5S=*4qX06lbd@nsiJI1j-uToq-Qu*$;8H;Q|xOU

!p zeHVz?UoMra9Y943!NH+T;@j}_^27-G%yd8n#Uq!M&&%cT1NtQ&YszlM$jB0Re&!vg zFfm|*YMN1@NK(Ssb9uMH|C%z+tOr#Bo$lcM6AiCQ#+UJ?VeN7;vxI4P`7o!=$7i{J z0Uqf-0_B>Rt|k@}JFP=K;die}-Y;a}G7ANIy=_wmxekZrqf z;LiIKgCb8E3bvx9mLGU$K4gcmEC4P8zWe*W>~N1Ly?@HSR!eiBt;7#TMSjIG?o|o{ z1^-}KqRSt7)NsER@T?NxaEK_uoFr;B^;P%wKpf_Vd(DGAEo5yPgG)gxdEYP`0TO^y zAh5n4?GthbMK8ur;6z;od%Il_@j(|L$F~h#Sq*&%wx)vbeq1Je|Hm7!T{12Y?t=-p zqH#XLeZyNBt->_PfPX(&v>26^$>#GEEZiQpe7lfd6I1DX)?_|L8D2p=dT;@wdG{Sx z3O7VBpEn#>UEVrM0tEcIWx8Xq0pAw755CHdly?yxcly?6DTgQ0UFHgrX+e`rjH9``EaeCo>G)LRD5lU#mw_2~}}!Q31JUW}6<541hb;Pbav#8xK1P#(*H z9c1|Du7CnVAq^0R7rA?M8Q3RHRUh{SpK*}aZrVC^BR$Y$9-d&pR^-lSH!dAviLDN| zU&q%TL&z1#Euyj1>N*xbL%N7j*t$L;wwtBibg-r=qQJ~Cijqji4jZJTj8!S+rNndRo(3a|%ze71zlKEBvUG)IgS5fu~RILd$=%N~J5 zNi+l*5~^cI3MN1kA}aOJ$%kpVN=s0Zuf;fi|4{cb7Ju%>-ZWaMF|&Pp;QKde8BN~o z+?>S8#d){==&Xo?Zkw+~-J{3h3o@g$`gwD$2g0naC&86sL;b&$aW@Z}WEG6P=8`4i z43+F9i#RgJi1sQSj7)(W9-zt^%G%bd^CR9Y9EZ*vcjHFSctkBuxEUi74#}#?#XgtK zqrK8{k26O3N~I8TE0&25=YTS*ymSZBv_QUd>F=R|-eeAYH+!X0FDI;v-uHXg#Pq0` zAS5Lof{8+@#l!-X5H@x_ZiSL~NW$ZP8EO2}!yHBLLlREQnK6`In8**0(M$S(0z0mj zl#8UtOqh&2`l`+>$Zh)A)k8|}U0A=Do4XWfUbz!W?@o)GMSAz|F*cBQ@-n1%eE0@O zO3NTpOSE7uXjpGxducfgr|kA@z9LxEGFBjDe7~dThepPrjff+?_fGBUw@PX^RaOmf z$q4cRU)La;a8nEtbP)weD3Z$+LBr>)i9=%A6f;w@WslDzUn{0lp0e#)jQw;Q6c3Co zEa`V|)bNQi{1@)Z-ui5a&TGoW7A2ry30umIDy7P>Z9G$A{Dtz_vZ562qqV8jdl4LJIYqmQ?F~*^4%NZ*w&+w+E!n3I6OHR-fKQ=xdbD8wIL(QZf4~>-_ zA7bE9geW^i<(8)@k7Zw8DTcGX1eK01qhRt83|tMR6r7WkQ}9#k%}FW6r1lB8lhJ4c zDcOo{TY=BK_ts5T{tsp65F|>_AmOoX+qOM#Y}>YH-q^Nn+qP}nwmq}&zx{{Z!`7h> z6;aWB=%|RQ%={ARVA0yb91*&E9-d=EybD!N6ak;oF;nAATtMs%(x>O#+9P{CXiP@W z5&Vo3z0l?y*YP*kX}ydp0=6(gd7|l$DT(5Jm{RPdQ}X$_vI;WAcd9m@GL+Z*1Y?O3 zLJOE4J)~|^7Flhnh+l&FN?J}eeL+P*BvAngr2kAcpBP|U+@;rm*KL43nKjt zmj2$y{Z-B--H~YD^2zcj-grFSScWL?pSiK;0Vn5^uvs}kMwkw=gaQk%OYaPg4Uo=x zc@iO)?CyKxp1o3qdyOvVIvrzMACEK zQ3l1QeS?ilr2oQF_-l<%lQ_USyJ*Z6Nz*O>PO5i#hpMYb%)<138*F{Of7kSFJjAxn zIwuXHBU5>zEub97Ao52EFQXxh;?H8GEQM%Meq{ei=R4n@$7};(9s*Vchjabkb~?7g z;mrpeBFaJxq)MSGQ4{~nBW>Sm#n2LOOy)OIHV=OS2Vv(%YjX$&%$y1Seiq%KCJ2fhKl4v78dyFcz zJ^8v#BEO8}l(sMUZa*ajd{5SpH=w(QdpVVLhdZrHx!uPJ792;Lgg7q@u7FJVNe_@G(|Dk7NjRQu>`rh@(D2>7< zZm%fI)ngP5>s;H=tx=7zmJ>a6DN>63@ zxomDDT1@LjeSU7j(Y#%~@db^d{t1kKKmWBi*1bn3c5?LFS<=E$3j?mLrb9FcZm*YC z5SLb^xkjaRSQ|pS?(4r1{-lE8PKZcvyGU3v^l&TxSyFge7XJ(&g`#z`d3gBss*{n; z>O23DiE@eV(F0$bas4;>1CW)4FvG=t9*fB8R_+luwGFV$CNhFsH zgW^mSH(cis#4WIPM+svQIXv_ZT3aN(zUAW5NcjAfdDx0!Jc_Dem`=!8&Y7cuG&;p- z^J5)j^>`O&lp{P!(SPc}p|*?qtx~_tr*JR9ggN+1jS4Uk;9Nm>`51|w)>VV)tm%>A zJc6@i3O6=KCEjUF(86?mt(H(lK)5PDZ((?{ zp_3|{&$(TmoGX}KGPZ2qh?;uR?f%6d#+nHH-z+}=g`4@mfmJM=|BV*=kAH~rP4DOZ zx5t|(6U-@R&iSk@-jEgc z(r@d9!7CW7=fSB#;4K3^2PbE)2T-oNSSTE}hxZ)Bmy(P7T;vw_Cs_B<(Z=lfx<%Qd zlB`haYPOzp&Pmr1{%Phhelx9pzOR6>m$=u&hTmFST$%Xny`8kX(?nL;S<+fu-rnC? z$iopi3}&!ga(6J%VUHKdn|1OIa`u!{$6EKCO+_BF-u?EmReBmKN;(?jrqc*^9<|ZY z60o4p;*ucu577^&+bW3r=&SE7CzP2+T7orpo;hZ!xkYOIZZjbq*;`B$>|_Mo*9+_% z-F`xc90`SbgPb>CYk|LhcG`ZuWmtYOjS;qo5D3lY4lf_vN7yT zv600=8V008kcEVsA*G>^Wse&UMJ2^EI*RsFV6qk(_{}qejf@#Hb4u4t*48xYoF+&d z(K=>7wN2Y+p0kbG)NFd%K5nhFRl95+wXD-l(QeU>(5}cFkhv(emv39!y4wcZir5a@ zlG@7HPTOv7yS6pAUpsRjxGr6HZGyH&+NN&tIdopRPG5ImyEwJEbn@abxc4;yHiAuI zGWhld08WCv!Gz(&@dT>_8yv4h3nw%O?K^^N&s0#}0hFyHO;eFC57`2_wA zOcS&X1cSli_&d6%6KDtX<8cQc=#sR%lLFO$1Kc`=@A_|9`uVN3rAP| z!9DGQcb;|P)wAn#Ht^)r>7Mx4qD$}N^yN2)(gE|*abS7%x$Y9)m}gy_&jq=S*44^^ zJC=$PECzp#)%@|F2`d{6y_5euXK&~JPaiUP&YR2F3L$x@?c>>L{MkL{Za9Cs@8LL6 zKSuw2sVkq22icy+tryKZjvAMsO0bRj% z^jqB&R`(gCg{fVQM{^4zQnmDvTB=P~R}btdR%%aL@f`(5!?XWHN^6bx?+S&=rApgc zv>M%JkJQyhUFt3r-Q6mUu9J<8y5^T=^c5KmwI-j54=3!g5I43YyQ|)M)5QUq2bmTb zJv+R1_eImilf%qfkI1f7&rcv}7{={9p-|-)npI4wI|3IKXU^y^Y7)^{M>?PbRtOT?SJTgf7f30tCgpM{x zzu{039Voc?iP(c9A)~r6%tP#?G!h&+9CY`aMX!m0iXlZP#dzYLtk;=Oq?mHXEXF=r zthAM~ICMP(j8eSokvCW5_Ph54rnwwEkn}ysmdNyP=xYx@2e~Pyc$3mS|NV6w+AK}9~(Ot!$ zsupnS<$)yIg?bEr0?yX&@Mx-^xZ<>v)DggpN4CbRu({v9mZZ>Qc8b15;@~}z;Jr}V z^wxoL`#zsdiRUdmSH8G%;!Oi^0EXHZv{5ANrdp6f^R@cZoSwiK5-)jILB3{(mt2NZ zoqi4E4dm*Kk^qhkvR9@xQkxiJWs4X2CaAgJeyR|KMjvw2Kzx4%#-i`vgx%QQMumAi z0+XTo@)*sZh-;?`GyP?Wayt(mF+1K;MuMia=n^o3Lm%Z?6%rO!dv;#%tcZ zVz;F~yQ^0ZfTi^Z@BfSE3Dz!Nn)hD5a+I4QxMggdTR!U|>^ zV?H^-c=Evg0D96K^V8^`6c!#fRMwR_B1<0kcxG}zeumElttP*rCtvH#t>?aNlWnYh#L+qj z1=Lp2h3z@}-cAzIQ-^CbYUxH~ljFqw=My=6%Vu_!>5glHA0vD#syf^ZVJ@M*qjcXS z^Gj#Y>*DZ!stBXqgQuoa>Osa2-L!|19VovNCUxE`&XOdEwx=pKR=%-J1C+A2EOTpG z;a)t8GKI5R` z@qzFmSTgxiS;;o}w`rV4z|4O++W1iPy#ASvqpR9=qpAgU9oPrKfY-=KX5>T66k4j+OlOlN z22WS50fj`=$`fDPAGk%-v&#OZ;?0u)C(a?2hH+cB z-~hOO}f`p5@zXh5DX&Z*rCVa$DeUWz;v)8uzVCo zGjIhe=(n!Etf7FYnTds1{pR~5eH8(a^8K890^I?KTQo_pcR9qiL#B0G_lfnFu*1C4 z?}6NF^dabx(B6B2OmSaw+F5+^a{$U*ZA}=WmwX$(B}lDk6Z+E873X#RlkJn_lZRU0 zXiZV_WCu}Ur*(JE?9W%|p$pI&2)1G%QHm$^p#kI{95s}pEB{J)7&R=PH!LUv_9c4K zVgEWjHb)J$#cvR(M*f~aRhOaLQ+yGJ9Ylf1Hs(Cub{bkY2kd=4zTJ*nfGna`ava>( zi6sp?2ttwGV(&)QO4b&pd65)dh{JK-=EelG6L6Cm*^_dRKkS97(x#oznDYwNl@A_Lm% zQ}H|0!R2+L_}hQp;JF&CA}eg00)Zgrk6C<`jEDHoX@vNVN+H_(36ijrkGA@&G@u4}t>zL}9WT(vNp(y4k=qhPzE}uhV4txaafL;q^1D-gE zXQd=0G}y}ys5@VyNz(??!aGI;Ppeb#-sD)-5G@y*(9Xrc>GOI%{0#>g^K;d)2|IZ=!n#pPWv7>j;(_ zvPbu{`Mw_K)fTs{FMHMH?XH-QvkU|JGxhbH<|g#jm__Fi9W;lH=NZ5I^ag`+r?b3& zzlFW3|1hlk(}~-6ZIF{iTfqHRLCrNU&Kr@eu8;{C&8uXYGzr1yuljSui(4IA0%jF6 zx8HHLiO#tIqBo-Lf`a=?Z0SYQi}3)xWfX$INTeOC-s9vdf7bVt)4c5(=5BjES(lT9 z41|LlixixvO({G)xbwoNUyS=3*ZfoBIx}EmwmHu5!jmVY5Qy1_F zP@5Vkn-ozg*F?Wzb#^-j5;!vzyI(PY@B{Nhp|tL$31pfczYW{a!q6{Bf)7 zzmBJ&g?ie^-eBORO*JGpYWab1S9kV*ec11*e=tXDog4B3aWB*lH1kh`rT7ar^tE1GYToQPqCZ!*PLJ;pcdt*h8?_4X*7= zMr|K)Zuyt%`&~HHFGXT_Yg{ZLP-k?e9ta@CE9By(IK7O|DoA)OSM3qt(QWS>IIX)N zb>7+_Lsck@24p`JkZHGW9FqAM5%Y1=JwEb(AHNN-dHw4I7J#nN_=SHs2n^AFBWL{rVW3?cC$b zmum=|ttVbT6_fFG(FtYg?a2RIilAvIIS9*|t>c0}sPkq`+69%UM(5*(Xs}#`PaJP4 zNKK9y1EAI6+Kaanf~t;n;org4BjxxL z-0@(p{7M~=a+i=cHa3J{&6&#d0TM`t{{X-p^)HJ=4s~HvF%WoINEB#wV1-RhjU9Yr zAOXw&EpWOb|C5SG?sI36zrJheGVk;!#{CgpS{PrQ`~{N0x%l!k-DS)W!uw=m6;!od zF#L}!D3wc=v&{kxO@-BSBo!$ctJo2fVALPmS}Q7JR46Bb(%I%~t}j7XW}MIq88Qur zGEM+hA&{!DyKvYItX9M^BK0{WPpHT_R~HFVmO@K`9mnrT!I?j*xJMZjnATK-zy9iMDv$WZIdf2h3T-du1uVOX|2)3dgQn&FXm( zNOXG4(rqvj2<${9`?ioLb!}n7M^pm`CLv${JijZI8Xva3l zjKT?Gd=2e2ZQVeaIH&0%MC;uzz6gLQI^%#CZ|7;J`jJB{dEk3lx#Kr1cVTP|U9t7npAt0BDh zsQZQkgk|~u&3K_dqQ$#2zi`-8R`hB<@7OCc9I#$1WY+#xDUqA}=3LHY&m>ENnN=(q zcewQ#L&{+!^&*fiF2lvmIz8Z`_4Ez3b+dH_RnZ-CrQdbT?Y^OWv-RMQfiz7S&EqAR6x!>>XMxGGei$?wI$0Gn8z}o>9$?m zhk(E2D7Gm8H8ec~FVtfHZofWXr0xLUowpc+ly7H3J}eX1me%)pnE?j;#qU9;yC@OMSK|MFFdVd zcQznQiU@0Xc&MmcHq-P{=KF=HK5k~1Gftz51QUSJj~~28s!*}M`25MCWk20*lLROFbw|}&ntqOnmYA7# zrm5x5Q`S!wD6yyX6VZ`Mabb=sL5V7l1EXpe5?aIezoG%mi`fMVs?6bDIFtr@NJ;>0TxHKa!@T#>xtrd=QA+DRZPodao=B3gyAU5>t!0IW% zU^!rQ1whC>MGAZGwk^_xPR-%u96 zT79WY!(dLMn4fV7XZWzw8O5^uiKOZ|F!C=hx>M4qbOx}J9)su&ncIZB<$bC-Pm9CF z4t=i!C>bqE79Ew#ZFk(YETy;#h{^v2fJ+`wX!2BzU$zN;+OzJ9>=R&g3nbMiR}Bg& zUZp>zxI~@BEferzd+Kp&yG!rBogK3d#PvnHk?UQ(8fPdzGa>kSDp-{$4(P5TM6 zaSr-)fA6s|CZRff$>s`=j!}_}09_<@oAA^bs%1qW5>zZ&C{1|9%&YQC5?6?@o*-*R zNz!V;QOJ(z*mlfYX9`GGBUGq96a%H*HzP2w`$Ii1yI9c+=md;pBtj5M;~peheyvl) zLgm;NC_Mt?m}JUiYW*i@E9|0b2$S;O$Un;eP}yJeJPH?sdQhj#Q|AZ;amZg36&9*G zOAD5D%qgzzV(J6wU?=9{ro6OMLFXP{dHQQsx!GUvPcGw}+Ol*EtYiZ!7(%%VR#+%V z7KJLlh5V}rPJ_Z8eEAO@Lu$h!(Qi!>5PxF2is=~WQbih031U<~)K&+HIRYq2o=U|6 zQt4=E7pO5#R#D1m2k)U!E(N@|T2Ny7(tL(=P5N)6t+Ry??{t}4*An(i@vp(0ToKQe z-wu+CfSIgR|Ib1~!@)w7zQcPtDGv<(LAD+mY|`I>S?V)hA;^1qQJ3=!9(e57z8s|G^~c}97Bsj}^2 zxkRC|yWe|uzif7j^G5h9izObXq0+A;{wgq*gr7wjs2CXOZ?%Bpg)=0R@foiDj2Xj6 zO&E@|z~vJmiZ{mdzxEIOWI7Q|@N^*zys<_|+`gRe9f*JMQNZ8A1H9N_~!k2kT ziFETxcxUUuYZoG8mCODxOvaz1##%=+{hk7>Qh(yZnvQ=K_S2Yl=KD3x-#@8DTyt8P zSSFH!l zBElf*^z?;`w3{c( zYC|3C&!@wv3WaiRxZDlb%0}@?h3=bzHZB_z#wctDy7a|daemIy;Tr14Ih47*G$iwL zEUlR}n|TT=uSupK2!*d9$%+_d%R7JLdL4)w5~XDt-s|v@2$-H!0FL3ZD~u z=Q=1eiGrF-BMCk8>M^7!2ZjXh=wg)S#0X2FA$9P<;fypm!?}0{j-Se+RNzYtTIk62pk$ zslS)K_?|j`>p$@{-BP(;Z%ZXVL3S3lEV%Egy8E+Y=&<>Z)k{B?2bK$n7(zR$FfuXjB7cEg7oYX|YibiDX(!K}9 z@QUi?Kl;@WB4dNxO?a>+dYeTxXgC_M#WiEIS4lCM`I~!qkDDpU zRo%xlCGh8ea*p}{1{F;|zQ%@YV6)-b%;EDDyhpVU#Az9h&9mm2jdM-}DiHnHUTih0 z=nI=4wgqbw$7VOPvf>E|+J@rF+xhIS3A}}WczHt}4IYC&&$sh$ocA@}5x*OLNz4>) z;*YNR>Pqv#B<(`a{2omyHKoCUoT%Pk=pzm4x%vmOr)uyH}Y`f5*_JrkO?9#&=+?I6CrJiW6oLc8v#K0fi zq(QEc4tY1wqk#;#m;V5Z2KSiGXru2D_%Cz3LYOzBJrWt6k$-=e#3=Zs&t`tUHPW@MSB5|RI( zgd9A0p_jjMA6{apO3FE{+`AiUFTp-_D&4S(1RALWyq8M;`p1U?werp&&Wge`?@gy_ zBXP#cr}^E{C09H`o;YUd-fA1L)gGC$YE#MWqr8jPVq{T%@-7@8LI4SfpqB4pQAg&N ztO%f(2hx}g`K@c~iRWY{c!4gBMcZkUDo;dp4se?x3GYP5dX{0{SAjh94h&L`NDwW) zu+|8fLljAx)k5tK*C$QS7gIes*aBIhRW0-K@YQv~+Y76Vr>5ruB+J2<`Cw4cP&V#I zeS0ZRQ(VvP>h%9l5c*Ot+Y6_iGI>e0;P;aEr_ZD{Km4m z-D2QuOG~QOwH&r%iw4NSO+WF7Fu!L>d!w@B%NaDy8GjIqMn=n$Ks3B5H)C(iP~N+} z@(uBiPEHM%j2*Vtg{OHI_#f+kL@i`#^5yDQF|s%O`av!EUt~-qOHx&NWuy{JeEq7) zm!po|)&}CFf|QSvpm^8%5*DMPg_vBBhaDq_1V1M40Xk(HZ{Pt~@`*NYFU*TF+oN&;5W)&p50D$%JR) z^)SJd&n?S?iNzl|1B#ea2{K0YKQL*;DG+jt*4!;s9{%9Fu9a|Jb*clH`W=e12Zo-> z=#$+z4Y`hDbUJNvYTCz~$}hwRXj5i@b2B7!5xXc%MA#s}UQksbyLz*k=6zqHU4;Mj zo6bOtXmC`jAD5PsCogIeRkiEi-(DlUqQ06mf}`&uq6+>VIXrFf&J=zXVopj$XG3W| z$_9vuo=*nq3sJ8m!CrfgVghA3FXz+UTqw{7HpUt8XzT_2?Am@F<RBOc2Qm|Drs zUZIGRmkk9_4Qi;N1k8u-3j9JW6sp`ON)nLR zhcxV+PP@*Vt-tv!Ys`bv%;N$=E0n$syKXwKWb1sKiDbEen`Qj;@2je#2-21+i0fvK za2c`vr#svR9@aHJ*)E1Yi^1P=MX^|Un)8C*bn+TxRQ?jm_R}2Hhy(TgC2tG)J6{UFOV(f}b;JW<+dIC5?&USyjqv&Pb;H zjxhGU<9&F^{TzKkb%RbOrjdQyZN2bhP;AJSu4lXDmWo9G4u~!aesHq*$*Aew0dk%x zLZd%_PR{&0c?j~IL#%Pe9@p3Qj?B29uW|3bVj3f}LWnjb>Sx+#PQr10m_0$QE8$`W z=n%&~H>2-5|5;s3wME;^hTkbEwR^<*>Silz!eH!c(eZC8kT(GTt7P)r_`($ zpd<+xjb^!^Ri{cvGrD|B5+E5{t=_^W|M)t@_=Pq9F zQ<^|ZU+Hfid%Mu=cc+&Mc|HBJw!U)rHR(_)RlTE7{&bR@BwxL6^t*XW=EU>Km1y>Q zoRV)*`G&5#UIVnNKP!mVGb><~(-sp^q?(~Wab{-VtJk8W-i&DH>C^b{l1%JI#=~J} zj9pu@;IIsC+s4l+S_I>#QzkM2x9K^)|b}K|-pB9^$ zrnq0Po&eYTFynJ?lOZ0;QJPIjmTbq8_IgoI3K+B?9947BT_>x?*!fUh!SpSF>c@qU zrHo0vS6+|sG(}>{vItK^Ku7@(aZM3W5gzsWX5>gH)(9)1-rLfAhmjb6^ zPc4QTC}RYGa7%|1u7(5|qownRzeit`?+ZXQ7sKl*irG6YquLU9;CSPkvnWgWUC*@6 zLb3!*@#^kLGy#9=gW^FfQ5WP@5?GGr5uWvHrfdnen5qeH32^^p;|HHp>8+4jRI|vE z{x~IB;;#qdeesUU{;uOmJPNDXeKqpJwJiFW$Hum{Oanf2zKFFfd%jxIOGrSEtM}U^ z|LC|clzLN&!c*P-7JV;7UnN>-72j({&d}gYYnnJMm zmE_6$j^|gK`1gL2lae^S=WaiC28qPYzLV?HsusV{*)cRAMB{XR&?@xwCpwU9G2VROqOSL)8n%%99NVO51%XuO_t;6!8+b z;D1HLbhK^WIPA%uD12bY8;@T;N<~d!?U|uo%)4xL)d<;Kng06%DCjcAX1*E-= zUlAA++zNg5Ur$VMl@T6Wv<#(%4bfJ{e0U4)ZU}+OZ=d`A(LUpj3aSa&i!xcf8L=BAEdQ_$w(Hf(T zjUHgEl@JQ9H(qWaiCHIT};<^CNNT@M9L!!jHTWwLJdljh}7TdOdDS z#<~>Fh;n4hj+Qpz)LLjiTn7F@BuWiU$hLEge6X31C0WmI_y>i)wA zcOnM7wN{RkK@;{+^BE zv~apz)C2K}*W8+_vXE<6Tk~hC)*c24M?D^&NE@=>s`0=`u6lgnvlmukl-@Cg=K9uRM<;=N?5y=Wqoq4e;IQ99I>9!VCOTDD~MuR zBXAvU?Z6jjY*ws1FM&Bl911I06z_tQpAP1Wuo`fk>V&7^m+S+`sD`T78%c0X)OQZ9Y^+5A}w{kX`0&7ypY|>$kjUMAGnR+-Fcpwcj+&p6CE0 z4tGvjSt+rd&Z=;CBQ4HP+z#fMHe?AmSpE0GCg}IEe=BQ?=gHW+NdXBzqs2j3Y%g>m zcmGt2HHmPSlLy0y?}Za>>cik5w()w&boOU09j>~F&3IQZraeHLae@fES(Gw*Eh!Bx zbXs0j&_lt|-O_>rjpUXcDH%*82BMQaaYwtMQz{kKM4pH~wYgY}F*&eBHYYJlbVSbd zgdRdS7_|+ZszI=pU28J)vH}}n&8av!UL<_jqFLZ)MdW>%ELno=V*4v`lwLCnC!*Uo zf^!}zA=OrTC{anEf^SJhYh6(efRATs;o%zhQ61SCn1FtI2x$AA}~v1c-15v@G2c?}rAcx_2^ER+cNM<~7qLbzI8 z3#JHTV(AT^$XLdpLzeV$RgGY0BZ8*=XaIP`c;#FY!7;Y&tkGFgIEAqI2{kS*h%`@H zE|4Nz#1=J0Ft{J?DC?#ug)-RDg))vPvRZz~vP`J21t_{O71K=&&Y7#{#@VN>@)K4t zhDM7@I*`PLDy0|2hKfX>fDZ9oyo(Ssj0d%Vsp`U7p{GS1^gNC*IambA73-7hQnr;T z*u8kf5SJ1CyutmRtBFgb@)(AAMnQd!gcOVg8l})640oc*M0;?mJR#SL@(_kNVxiJHjBe#i zsM}wj5jH=^x`Pv1>uqU@09K*MvT%4kLR*1T8FRuv>l@q&rC2z^9Fd}G!E1o7klcbo zXBdaydCo&Sx0V@Qkj_Dmz}68WqwI4Qua&DsuT{_YHm4_XmW!wJ6Pij<(y&0NP`L2w z++<*6ql0TcC+DxA4;7FV6;L4&=d#sg1#B3~gOI?z%*qv#qU#w2D$|!^ ztrn9Z>!-1^C}CQVNFH-K)Ya*W>(zjGT?C`3a$LDM8T5KM43|J6Ucr>Su>h4uEB)D9 zH}O-sWIi|UF8Th)HeS=gXvl1-ulrYji>!~^E62wHu>p&uNdyVU!!|1d#DppeSRQ}^ z-ndCV9lFvXb&FoVkdlmnr;@?X{LElyjA29?swrrEIp!_P8kl8*Wuz624Lwg6eV%Qi zJzv#RPWQitQI-|@=q(qX#nc5d0nZW($j_i8iDk zhx*}ab+Hc{O$7o3wSO9n{GCF|Af8N(bOqJi)wqe8K|7(x;y@@2#RuNrAft#>uL7TG z@;Q*3fjnE96OyzIGR__$m`A!U9+wh32Kgu=LukiD^rG~FzXZ~Yr;fZ@`Onhs`VE|O z#(3qo{`|_7GUIw0eWLS-4H3^T)+tjk3!lxN>`P>!bL%bU%e#yK^m!vU1QxW|s0 zGhsdSNza{?3$@@U>5NhtULK_hm^$E`*k`GuRZBNtuTRmDUkRiZIfqG3pVB4o_d~Ho zDv*s0)N84`%-z!9dd2hUMbtNS%oe!a#M-!Zed;gM{T$!8S;X$G4Lmf94|{nh8VbeI zwSXBc@;K9R6V$EBbH-IOYhL#Bs_dl3M&XzW9@ zf~9RMJGW#!G(Bp!idXblDHRWa+nPP zIZ02VSWU8oow}!7@gQQ0ssOQ}n-g?Tv?)=Xce+^byoAOMKPk zZWtw{ghpbj(nm)%#8$7OTs~u6qnlVps!phrdre|O@~!sbibJ{Kz-~2v&zB-?30WUL z!p0gPm`H2m1y^CC8YWGYES$G&G(@YXui5RB6&35bM5P#lkB;aN8wgxG`#RiL=GG~B$ts97J;(6wrM-6LSNPj-q zp^?aF+ngEo;0~H#85JVn&8+2(v}OK1ZOo}w*6hz2M|a@rxBDxPzeF~zU`FA*IH~bV zXVg;5hvO}%DwXO)NPYN~I+x$E68*fIed$+U{8rFK-VUmj(Jd(R8si3+ONSAc>?jk8 zEEyE2o(e-;tBZ6MonkCmQt4}mY;hULwOWCN{H1cA&QfLk=vd*9mU6S)Hz@M>%+?SO8Lc52m_rLP^@w7U4Dysw3B;_DFv;;mE*(S<{w>4&X9f z{WzK5-TFS6zyi(Y}IN&I?a^@OIcDKJhiNjERl2|A+n{!<;X5*-O6NscU5j|){szI$voiGOpvmR5u*l&Cyu4m zmNjGFqeUq<@vwNQH6pC7S*6dXdC9)5o`;1L3Vy1Y=@M);hCpz1l)7M7_WGd>bbTE{ z9sRX*b>p=v9$e8|;)Ynp_#}POOwZNxRg**e&q?G#+TFNXx<4k_h*m5Dc<4YFV_4P* zD~*|$KRVTtg?&@X7^v-A6$y0ovzC>XbsKOsT?sBYXO{xo=Sl+L2xsCJQWWt2So#eC z9ejw%xw2I!h7$^A z<&L{kNumLeNPA{yck)qoDC-pP!Gj{x-CXV2 z^c<>SYBIJ8ha`_cHP0DW4PsOeVbHE@u#Tn51k0!77Au93bo>E+5es&AcjeCKb4JFU zlEg^-Gn(H)L`thpdkm#(h(C}jSey?tCdO3);W=+;gQ!|Furq)4o*qZ02`O3G6jo=q z;I!*AIY(YT8iT8s`QW@}n2hv_BoQsFeE8LG7IWJAT3vN)5}=vZf1M&?W+SP)AK8+y zS?`Kw(yCt3=2E+*n$1~?7(R&ygYGG5i-nZ>MkAtZXe7Q&CY?&YUb?n_62`!GBHJ%p5((;l%&9Rz@>dJ3GTwr@DNdZ}p}z(F zh>38F6)HNZ$}lngSCnTj3cy>Gz_&ptoNqKvtZd97ZvMO;5~L>IIJIVFbulFg{9yst-c7e7MLi8JMM9qQ5885XkTDwkCGdMF0eMxye^W>~o#BSSG97 z)G+nR=c9g+UZ=nU-8mJG_}>0QxQt5q;LU<>^Q--6Vl;??{TS74+P|5E zm7d9$c`BsY$6srl{AulW2AIxyZ#M*vyXzFBb#T;Mkb67D5}Z0It;z(|V@h&dCO} z3%aToxy=cGQR=_jH-i*jDlR56CRX}-O?53DCE9~u&E>?m*$gs&CU_~w_F|CD!jQ^O zid@DcqQOa0 G=m*o#V$+jA!LfV(z~+m{m=skOkr)^al`bM)SIU9c%qS|Q^xy^? zTWAiND^%H|nDhGPk$aI^=Q~`PZ)4EcQFR?H73u?SpmmS_ z{b}x$#;)Niib6Lb>@%2@fQcGld{@G@<03f)S^#M*P=5&h-UJ-{2&siYTfcWr>bb8_@EzfWsAxoAJY zqY|N&d5kqK)%O2G**gYj7B&6e$;37$wr$(?72CGWiIa(K+cqZF#GLqwZJj*l%emjG z`@B`>!~V3Y)~?>Gx>xtwtN%ZY>Wxeo?9P4Nu+-TVCovr|+6|6&I@l~3%a3LOPDj7yBjg_?x@yoayKf`Vd$t8$Pw;=QT zu-74kFYHsDwwDjZ0s(?&>N%kBy6%MP4J;mV`*Y^6J?gebmvA~rbj}DAWe_c zCL53C<_m5|m`U3N9yW_*f<&fP9DY| z@5Brg^gPsLcHDnXzo^Us&4ox-P@`Y9_b66tt-*hr zuqPi_2x*A0t%?~osu6?Pm(;Pe7JJ*@;70D>J$tIN)#!n2pz23y{_JwvFMVLbQehx9 z;W(w|Azf4K$*7%tgTpa|ViOnpb;sDk$*i6W$(9`OI;|AN`|p) zOiav^mOsligWf`DvJ7;a0Rv*Q)I)oEX}{VbXZ2dVsmm^rFh zOp4^DWP#7<(*5r3SNmV)a;P@0osMA_c&Bb^p@mc$JcJro^di<1dEMEh#Jtc$4t|WT z{?+atfpgp2g(8hE&3pQ4!;$ae4hKBLbmTL?DA^;}`{>O+Ms_UHF`T;HnlZu@9mb+biyXxbi5p6Q&L7VlGh7XtzlElP%f#D1^uoMxRP`K(` z+7xe!UZW)8T8XUR;K;nCsmoq%LBc8Ef#48US%$QNhA}cQBqJ`cSuWZqA!5$EcDS5k zZ4S&>RfXFt`tDuk#Eaaa+(h8Dq1~YUZZ@_WN_Y7PM6B5b$8>V6oRG8H7{|EQl8k<*JobZcNO;vaq1uJ z6jUIC%x_UXlf< zuKw!o?JBH$Z&i+6#)@rygY8g^Dj^+w+2_vJUkmq;L`VXqAz8M@=j!d`;3-^QLs9Lq z$Vd&PnykAHk25L69uRC1B0B2oy3YHqTJt6QE$jy&`x`q@xK39u+fIGkFLvKs7yp}0 zdsUZ7F?-^~Ms`=JR!;)|8eu7zp3&wR5&q-Gfdm_o)%=&MQ19d1ia^RWAvZmWP- zdEEX^Fo;ptv3JXrJ}YzHW)qOnC@3$6XSs3s5s$v@cfK%Qw%J|rW;mn8?`a|*%MVYH zgrD~o1^#a*NO^7_9wJ8AehLOoxqHvz_1-&;kK**v!Kp8`+fugDa)85cy~&4&p?C@R z5mXQF8K=_0m))~C-XD(-r03}$=c@|t=a`SN2qg&MYtzt8z(jw_v!|(-XQq+ zGMj5J$#}c-JF6U^*v*hFxrcrNNfIDAvi?pZ$Fgj}w*s6%w@rkNDVobOBB~~hA;j$d z+f``8w4}t^XSo{)d@kWKW=C!W2~tWPMEm}M`1#l$_DrU8Y{B@Rs#Soe%bIev=TJ;G zODcz3a{Ky@o{;IBaf$lwaclWHKXi$dj;D=a9)5h!q+71tRJ13v^8p%3j;DROk+P1B zR$DQAI+-Tj=QyVkVlFAmns0EdcYygz$?ee9P~`RsR6PFcq7)rP(?}uHq?oPXNV+;x zbp7-EZOUX>#V_58gh_eWXkcZf4L9A@hv_nBm8BrWI7b$JVP9rimtM?ZHL?P0Eg#|^ zpW_a$qwhZ-a;8x`l5c8mwg}Z1_;%yF4{3WAqdqke-l|3PP9mDzdA29)jIX8(>AA zG`wz{U*Y>-sgLAy${1@q!`D2AAV%SH?d)5>#K6HWN9We8vaO_%U57_E-Gg#8o z2Yl$`@zNq%_Ry%UKhqi*41+>-ZwCsYB)i9l_J~}ez>uvu)bO6{PkI#cq(1mjn?D(% zrD#;Cc(s7qI^V3X?0=;MUzp?-Bjx@&0z?2{Wt#RYaooIq*n!bdxlUnKul>_H2% z;!1CYshr6ipBY$w*jNLI;PC)UtcYsPyLO`T8UthOfap%cyNq-imsManFMrWRu+E? zZ>G7fG;&h~Nr^^C`ai~97bCwc9 zTuqj7B*~Jws2z8IEF5Pcy)1RsxV=TvT3f$2%ur`_+V`kBNOV(yy0~2j%;OFIBXhbf_i&lH^!n5`0qF*AL+!B9mw`K1D3?|1pVv zlTcok98BG~RjOF6Dn+Ibhn-Dgp)D%5BeGr!-6xyjiz>6vw*^w&+$n$JXny`2(VuLN z5t=^`>^=B@Th+v^^nDRaHUfaFt}&R}cw_6X33(1RSkLel^grX_Xj2S^lAZmc#_@MU z4e{(d(WLMJhE4N7=!*7btIZeF5#b?yS+(Td;d1^+{N)`a4f30xy@m@X4_9M_v@d7Q znfxalyEa*^5rs$PED}!km{z6JSp>vAu8SWwaXqV+TfBWXYZrRvId|<3&0EXwah=B^zR9oC@;Mt-o2RViiDGzF;@TbR}DGYKVi&?t#$&O5?(gPST7Nzr)ZL5li zpX4#2Y+}9SI-%SAeQsG^U~#1vxF+IE{zV{Z<&XLP>1L%(SVr<(Yk(JrAW4bUC;clz z#$F7BCv7{nn^oW^0@70xf#VGUk0mp1v*$a%=C3&de_u8>6%%-dBunY&5}xA z;IMEGE$psZ_0Til{CJAl5Xv{vXo7CtBC-oen*_4K2&TxReIyYb489x}z2$a3QjPLr zMy!ph0E^BA{1LB1pcRd;L;hzq7^WyGJs<3A0%6sH@2H`${+wR(LC2FBRpSy!H;5%# z(+W>giUrym^}+T;2jHcg@es#3;*D$E-Dx7`m^T!r{GbOuJexPepwWc!%Ur?D23_a- z$Aw_0VyjGJM*l--w&y#$khOgp>7aicWB~;tnF#6zYML5W zr{m{{9V4%?Zg>z0#G#r{Bu{=7^(_o&#wao7l!;oNo5xRwEd(2!sl)X*4^DX-Qm^mt z_J{vwS~h9po3J+#O>)HyA*x?4dC~;V6}y~syjS*(DmAYToq)+goNMp?N?4&K14G%Z zg`<$G_a6wi_fOu2yifHX4==Cl;|sKn?Y6s%1@*>|igE zs#1*es+&Vuw*VGhc1@RTp`$QLC|`tV3|q>-rU03E%-*_0{3@2CPku^Bty%>G3rY=x zg$EE!n&E>6D%Q{(+4_mSUGuUw+Q`mnPTte z)phW{C(&yUG4xX1zR*U${S)+j(l_#qK={w8T)yQin3Q~teVqWo1@W|1aHDO>*PqeR z<|MIs1J_7jq9THRKrVDmZ&8r}@vZAPMS>yW&!1huE2{%>p0J79c&!9v`?2L`hlzct zkqD@dh=HX8$;{gl(pR<{06Q~h64@rDu`T_pK{6J>J*gn@iBUOJXNQ(^_)PZl>EO#f z%)b6PtxDQhvG6or26CDUM|?*RXUiikl%E)};)gT!U!oLiu>v6?GGtTR_=DR!SH)1G zt`5DYdCOOP%#q*1ysNp`9Wvx;P-?_Km!ud74RPiLVH$k-HXcmS*~AQ#8}#-FhcdA> z!0FmdK3-5G5~}s$!RK?6Q`}?Aw9Yk7QTx#)V5e&j;OuJ6{-p2W7iz*##v?c36p=HR zt@%2w(im$PMic7a0}EYjZy@Lr9JTliC<;L{vu?__t(-fu5udm-H$=c#wrQdc|A=Xl z74l8|6j3ovfVI+(wE7^W;>8L9*)% zTKw1(4C>4RFTV^Z{QYV1?~($v^KIw35ec|=R=%TC} zRWs-muNUza!*dU39_i{ldPVGy_+Dq(fNjlyiTwdd#PjlG`ca1>_6C_6y~O|x{Du?F zjYW$J;?H%#+he>M7sE0ZpElUeogw5qpTWoj%Upmp>h>YBghE#euN$OGv1VA|8&3@|%*Kjg4KkM`bf4g{f&*c?GcI$Q8MMBLSE9p#!iM@ zpT!u;Yg&CK#sk9Mquh)i4G}SN8B-lQn1y2j6^qs>D&r}Q*d+j5_}A_MsTwNXct!n| zNOER_KhU%Q%>Wgc0H2t8=&&W)#n*>vOP>98=Y|6fRk;!pO|@b*Olk7I36rSciHV6@ z!xFYfQ!RlnX~o3`0)IOs$V}2_BW71<+*`1r&|HL$G=#+Phz|-v|F`|aCTwEFK0f+S zgWgELB*NG;Goc;qhBhO;4s)=d@#EKLOmUT5b|2bdj1li+Of04GVI|pB<-)6Ol4Z9G zjV$&sM_8zj%t>?c9k|z{t|R81bvhvZd7gfHJx~!qGMpcmZ6#(HtsA=kCPI0Imp@l^ zpuANh^;d1L(RiUY9b_-~JyYb33$mmwrHt3Y0tOem-2A6zHW6tR@^nHIK-^RZuj?#8Jt_}fhGd52tUb`UYT0Q&?9^;XRlm&Pb zc88CQnL0a-s=<@KyE@Ixnf}wb;5O+D(;+`fl!aICuhFuCFt0;h+U@j-XZQ#7>v|gd zI8Ns*-tF?l@A~d*Fs}4B*(JRN$>P!!0kZ~wI$dp{sZBK$MoMdSn32>H>?iAN8@kSz zPA$jb&@m4x7Sb-|1!z8?&IJH(PyL^`OK=W=ZDo^y|BRclMsW!jP0GIY(>IR4C0#1YNrd^ zGGHVA5572I$JlH)wx1btQ>2gaXn(GTRvvvR#^XELMTa*J@e!rwZ-y@GXz2)YlVX_r zxmcdOTh=;%?;ISo$@tz^6T2;P>6m>L{L?Gr9k?;)QqzBCPFKN~FAFE_t3^jm>X-;g z`9f{F_&L)Q=Ji$;avJwj&W{uO^@z@=AnP>++LlE4+!!6W&gkROkF^36B~L>}l|15Y zeo{MLNx7FLR}O{LS-?gGn#ZewHhasEaFH(V7O`9?ZnBnw_S)WpZaDnay_d=;vz8Tx@19h zp-PbQ%hO5pW`mZ8P;#r0xLI{@86*v^qy*Dw#f~^X!?HUQj{)gx$|{T$Y_861yq`wd zcE@BltOwPe>1bWcm1IYbQbHDz0EQ9$X|$eq!96!Yj~nmK{0-5&3%%$D0nQkRZ#QX> ztjCMT>hl5X-sK9K=TSt`xS!Qu(0iPs2!jKk*;n&HQD{U7qhij@sFvkOxWH_ zBESab_{>2c9y3K;dXNBSDfNf!kl`aoYdEV|t0$U^62d}TK*`8T91$Zf7cNYntn-=F z%xR-{XriJ0&R-85;YADnV;>-rrNTZ(low7&fv_;>0c|m|KW+AS-f?pfY8B!yp`v7f)K$Nih&bINRdiD0L*aw@-RsvH)>Z&dcxjUdSDQ8v z9>2gaAJwzu85FaHNB@e@XE)hy;ZE0^OYull~);E&Z}*t+qQOR`3dTcl5i zM@L?JW^C&VclKbWJ$*Q(Vd);@okq2+W~sJmYT6jTb=tNWJoM@%LtV5dKVtl}!(9sa z005KjZY|_7>ZrD}QZLK>1fU)}b7Sv0ID~qjX=wAw(WsFj)#wd=1gOXzU zSuF&u`hkja4$qj+-+}%`Yn8~zjq2t#`bDg#^wz3D^gDIsGu8n6ZOXc;3xqO3?3y>Kw+h1m_wI_!x26lWerKrLIBfQ=w)g2j zU-4N=$#}$b^%xINrfdBE1J&Xl%TPgA!Bb_mrBms5O`L7#`}VI^p8oCQ&3A)N$3;il z9bl{{GTk|me7e~>D4|+rkyJ&krf0CUK6i2wifPFKeix}|21t*V6Nd~FQLmn29S_2e z=FS^2*o)Axq;;rE&Or@541P_a>1{`Z2NbAVuVb#6<>yKNBK*z6E13J+a4N%!^%QWdG zUAcKbHC0Xbpgk6Z5XWax>Emu<|Es?-7D-ArN4KS{qOqa1ptGXn`$in#aCC0D62FGh zrt^oJzkz5u!{WaRtT@frX@M4>QLnhT}h^mykW$ub6qXJX_UUxdCkhYPR#U5G?ZOT#Kzff22{Lc5792 zwu9nfQX0B|LXTuw1DA#*94fGiwqEut2CaQ_y=>Ps%Xx5^Z57$Weg$=`?3p-Hh^~gK zpHz-59Oa1vT~@~~ibQSiq#1-mKSc;j+PXgu+xn(Vkz|Y{mhWT!pjWL3g3l)U;x0;` zkQT0X^LPWnyrq8qK;oP$LWp35g|h2K{i|;KBWKFINz0bRC%ML`>V)i($S-cD6b(q~ z8s_>AePr&TnBz%^`@(seuTR7Kbb)kV3zebDbH&Y!pOiEh=YCYrjF5A02^%g*4^iX# zr_9yIWwC3gZ(jOq{$=!O-meRoX51MgUlQM-Zp)rENMJI#O2PvX(TroD3N-DM;%Swe zVmt4Zwq?Q{9Q7Andd9f}`ylNd-JD!pNc$uy-B(pv735J}eO54y-Ew;>aiowG;*QG)V`EgSu3(%LR)*NEDOqd168xSQ( z9?l^zt8Az7b~<6!4>=TKYYLl$%t1ZH#Sa;x5-|qqu9Kk$a(XD@;z7}k5V5Pd^f}$d zX}^xeC$u*hr=11zvR1UEHdl&BJ$Wclhh}h@ySz-_i$9E6|2m+!SKF;k9lnR!0fXhH ztfC#hozDuCgSga<07>q`f!8V-GT0K z(*$`ni)GP#b0QXUw3@V%5JP)4js%^XS$6&+glOt&BG5zf9WnBlO94*6u{5D|u>x4= zaguV}`yTgKeY?fwq-NIJ;{1|sao@&Y6MM}6a)vuK=Z7&dKgfHswiSIWYwyGMjWr7m zns)^Te~T5MEm`;|uwSgXT0-F{97i+7R~wBOPv5?eOS2|fkkf0C2R1hMuhcJj72lvn z(%&9EO_xXRc_hOssx)h#Yv(m=D#@?Xe3GRFm7D#kPZm@WBW@#qsBp!!RG*^>2Xl1BEAJw$~Fvk?Txq7FR zYyZL*G5ML5gg={-nJVziMHh~MKLB5SCFr%f~5}eG>|PjkVDJ8LepVB6C8vBewH624kw0>XFy-u zilj+1MAKn8GcClixn@l7Sj-|)Cd&6`*3tBF1mRB!#&f+7qfM-L82{jQ0Ycc4^KL4n z{hXA^-)K!~aM2opg^ngsK-a66>tBJWKAO$B2wMH&)&5G1cp;oZMq&Da!LFQdoDd$t z?Dc7Qg=@)R3@KY>IuNr-?H)p)T9@coGTFsrg{7$A*H~4|zqTp&*}7q-9s8HgHsZf^ z`sz`5%oaMtWc3%$*TH)qJXrLh*Xx}i^GJuIS$M3wi#VL5;nh6Z z8Ea}>Yfcmn129b~2T`R~q00)EzN}WxbauFL&O>JhK7JG@u0n#|)Az-r)hoxbUq|Ea zUmo`zl>N#vFLQ*Ruw}u4rZu)_2pT=Xb)F|;{JVH~;RimpdA^c77>05!maQS_<s?+lY z9ZM|z0F{hXrH!t3sIeDSa3ZD))>=${A}-+3o__KDIPr@;ViRmP)Xa~y=jylyq2I*x z$oLAPG`3`0qWK|FMo{F*ULK=eqhPZD-B-Q-z#uBBPlWIrrd(DX)9o_Eh0ybde%Ru4 z=SPsaLsb=qsM+o=*fyMlP)p5>vW~y& ze!(=9?GN9Q95D`)b-LxTQXwWyxl#5zXMH+<=`2&3P*czD!#Y9`FR(|49pBBTmD&`C zf!XVC^^FDM;kM~MEN^hf!R{Q_T0;gh-Xa`a+_@#e>3CE?Pq!Clv=LZt9z&QquFH8U zKxL&5c5?iDi1ACrLD02#)2b2fISkV!Qaq!}h@NLX&B&SCyLRRX?2k5YGCeRxYG2s0 zO0kuE{Fb=Gw1#hmu}%cn=X^n8w;}Qz$i;MA`1J)vexSZ57E58l(M1>XD*$M8BN-`aA*IDPWdwIzzp@&53P9Q& zwy7;@!}I$Si$)NuvkA+q|8J^H^BtU8j_+lvj@y*jCz!R01d*q1f{O1jfBC4UsRJKh z-jyx#>^8YmMzlSfpezX}dT*p0MHvA`=2 zmpWmbH*Is2SIh79X)CHW8==!z2zlSzi^-_b+UgM@`r9`*& z`AKa7*9~>m3n>R5IV$cIZxdg~eNSfX>VA`?sE}iw9(s0ExAC)}sQl8xJ7}A9M9BWP z=TS5rlHWP~brJwp9>H}nwTM6BshLo+p{Ux{P#Anu2RfMtxWluRv$)C~bMn9)w_ zclI)5ysEpItJ>FUV`NEC&kJgX+YlE^asJ74D8oKj%7BW_Jz&M?@|&|F-p233^Azfu zBO5X2oO`vw#^JginKrCC#go}%ysf0IDugC)@T{5pLSbWOS$+e|=hrlVB3nMXi-nX7 z(kybYdXfByvc&YK+%t=X_h0;qdURGMJ?9E?RN4}P@T~;}psVXM7*F45&7i=6WfzRQKWb9HZ)Q8pSMtE|mIu<--y3U89d4SvYk_^F)#ddT88!wYYYi=1H z2>fJgV#P?xZvR5fk;y9*&?d_9Rf0buhw(x})1c=Ot`R)nfr!YzB=-!iHmMqMN#EU0 z!y1BTnzuZ!+-RY_7bs=Zkf#)cP%XpYEqwb287P$qqNb#K@9J*MVjA3uxt?Ddi+EC+ zgjWEqB5S9dk1X{AsLG_G3qiilZpx24@Y6Y8EVoa<=p-}E5VX2-pagJS?$nmB-WRbw z*gx2$3{3~_nFu~tg8?#Dva6Tfq3KD%292E!6tsTNjho9_Z^59H{%F&E3fCKr#r7by z-0JOdp3#{=1O}CMX2y+P{sT1%A(t0d_q!2ZoXuNk%9DJmc<~v&IN=IdQ$Wdz8(#+J zILLKjoYMjFyOQAlVu1E$(|f52{Zv+i(TDcVL3BW#fT6jwcj}(oo55hM>a~WO^Ku=? z$jO+MHrbiwRVag1WqoXUsCD1_Ks4NOn~|=6RhMdVfdx+5K(lRAB;5CCpSZ zl~-d({&=z9R|VJ>dITyyYjrB~*{_@Gp>~7Vv<>OZp%yE@?W}p-JC?)Eh-|4|_VEBx z-bWe|hA&a82V|%3Rhs%TQaKRzs}wA9#cY_;14Q9-DqG(>n`g{0EW~ieoy=pa z2s$OxbElS%kgobIvP_Vld~$V-%)ZksrZ%a^42qh4--&?lPsplhpZQCu8et!=VeIC4 zLA`!>P8@vsE|z5ZZdjkh1g=;^7bYhf36q3q29^HPH8Q-f;o6>QjNDZzMK;ME zr|?T&QcW;U1G?U9A*eW${dt^4Lt7Th44 zqt)3I!64ncPj*40;h!xcT?Zqy-))P^+9nl^Y*VDJ$Y+LKS{P-^rw>0om0CD{DK`ol zHlb)MbhY=$xu%c2sj1_F|COs0SJ%IuH0~RSTI^h=LtUtsV-7Pk9 z<@iMk_0AF8HAK+JQ#reAU_E&??-1HIP~cIcq4KcFn|d1nf%J<%9B{m_p5&_G zi8~sP!D#`PAVYwnpD}Q5#NoNXJNqdWG0&_fMmgbl&%5A(j6(_wlV!36nn(XDHKwG# zYgnn+$8!9x>bOrk0o-&TDz;3U)`}#j!69JRRqK2b0_x;%yOe-Wz{P-37f(ozQ{OEF zA4jDE0%oW5rbiV`5~<=$jG3r@c55jwoT<$nW?g977;D+_yrp-*)eddwUv%tQ?I}zb z1>?$h`>DsYflfn_j&7Kc%+9&owk{4@?E(m?x3l^R>hWHg(opsKVxpC@a@1Tcmxeni zync?=MCm>M5#TBr*TKYX0({8L+c0cVi7Wkt5{S5aUd{S^lssO^k~!)bwdFCPU8y*| zvgFtD3%#9)4*ujU#@`d$f8_3zS&hN5Qh#|_x;m}bPnqqhuF>QjdzFjm*wU_z4VfEn(TI z0PQ;u?8-O2-f4Fe+p#vvW)nvce?>*Tk_N2&^N~cvX8LF4%W8nP3}DahBbyll=M`h^ zU!gO$nJ_L6z~&Nkxvr@l2nZYq@%~ggb6UOdk8rvEmn+OalfSjwypf}j=68*ZjrSG+ zdMDvF{ojaG+(b-74#w87e0+@mcMcXa7yEybr*x9v1pB_xSJB^3{5JthikXc$FbE8c zSqMZduqEgor63~F2=tfnkKGVDczA?oblI=B&yTP52{a*}bc%MWwr9`FE`}kYABI89 z-{&y7 zXgc(zGQTDu;`&Cwn;OL8nr4d=HeNj(kGCX6ZH=_eLlLcm^WDG)B=h9-?H z24&6MM%q#bs9H}cVQ?jDsNrYAV6^)A(fo+FvO;qw^I2*x7!(2#5mh%DWP^H&5IIuf zD?hnW%Bx})sR$60DA&c}dQ`U{o15SEZoXTb&*wHC6p)XIvL5|SP5K<5_%#`btJe=w z`iFfK0khsLT61pZIbGU!MeYUt$wOu4`b;I9?X}WVtIAQ zOK-gi&P{f2e7k2%VQk)mZ}|lEqO|P~*CunM7$N#_KX@zl0sL#xXwN*eTt8 zj{aWN{y+pTC#CS6)@NjIvn@uKo%{@a}Y!TI}tb#PWDZr1X8yO$8d6}Y+_hmT&h9Jj9h&5Jh*6e1!H;`?3Tg3IHy5a~?qt$wS_CA;MkX4Ad%(rtQ6%Z768Oz^Ak z>FML^DQ{X-L==S}9;?M|19yV2VJ|G5lWa}9LlZ-Hb9l-u7ZQa`lmvdn1c+=-ke5L? zG4tymVLY^7`c&K$#^&>}VsIHsDB#7@Q2-aBi1f&%k09%pCblkioMvcf7!e;Co)?}M zYDV;?xF$g!=YAU38EeYPZ~6?>FbYXkbgVAxB?nHbyJ$7;H5CN>HtVG(+Tc4J9^zDg z^=x9*)5S(S?dq{&gV>U`k%f&E9((o({YtgD6VwXLTyfeaAlW#9c2#QmqHC*6#Wa91 zx+JNX+giI!ZQSxwhdfbs*jk#RM%`3KtyzMmfb&XDu8@-&1IOD&AzZ8=b&i>tttM5< zvO*&1Yi}Y2$IiW4C8dWYx=Fb%SrNAa0GSuPcEA2uoL-~DVY`{z&aB}gBx*se?pi8F zI+Ivs^2J#%__b53b{KgG&3Qxumtc{AZAy+B@s1cNiJFj>2uQFSLp(qrgINnXms~)h z{vAD*;42n_PEz8FsA&HWnm~*Lo%ycN3uikr!9q0dmR1y^V69*Uyb0WVfOGIT3@fZ{ zenknJA`6A1$bB?^w>G27!XLUPF{W#rgM8PuHa#jR&{LHwJh@Z`X?x*-Idw}fn3r9Tc6ohEtH>@ zdOI=NN)MPSh~$iW^l}wRquCx+zSiP8k0J5 z55vt4FWc1TOwNuAe+R)!A4X(3&esJm!rC?=UAf#cP?H-(QgYYoAj0bLF85}9xOPGE zes2W9ojTzr?T`_I5BEjL%iohDLGa|}&5)Z`V3;I-G`mN{RC-k~JRRP(Z$@Klc1!r| zWqm~1d(Y>qi?*I^lSaFilF;7`q7*p07ki^9aAmnf9A(-t3@tB#$F8(FqlGs$YH_|m zHP+dr(uKwP^x~WI1x0_MGBeAOh(Go?-6Z2UX!f`_*xn=@Qemdc`(_31Fow-L<|2i+ zDJ424>lr|M2n!(1xaPUu6;vy`Dtq`F)V2yGS}!KvmjMR24t{d!;j*0H+GCJ zytd&o8RHa^FtSF2jb-`pv`aemP9h>{iPpdC8N4;Q08rA)r5FjqLlNNlQILsS;TYXicRmIm()HDFIIoP=Nu77#NR)~ zw9ldx6`gK93*_?8xOPh}geh?<@?;l{f8!s_)O zh+HKa8hT=e6h3tA8y9U{8=X{=U0oyMzA(A-DoWQ%RO>Hq$t7f|Og7T*I{S}BXl>

5LH5A)z784n9Ai0oU)Gun`wH-3M=H4N43t_`;M zD0{R@jI<1MMq-|Jvcx$$ub;LIyD2trbRI~+eKv{T%x*2~@QW%OGuQ3(U zQUaMzG%*_`+qYcS^BG1h04yi!zE#737jJ|?& zU!bpmTo)D2*pi_-?e!-aUS z-oa_Qlf#!$qX(|MfqW^p%IAcfHF*v-a)MgYgJsh<>Fz$CXIgA)ts+~ZDmjgi6fW56 zoJIV5DlT0O8xV4G)1HRL1tAcyax1dqGCNT?+%lGymVLyy86NXz$VJr84lylrlVKF}I z@l%2qAc{j}p#{bIsrS%1ao>{x!3-cAgd@#Gh;zmcWXzof9Z0UIOrr(H28|F&UG;gS zAi2+RHh%p-KaL#&zCO0E79D*9WMHUJk!?(_H&TpON@^TRwowx6J z^gDiy3e_hkRrdr`qGM5*r?-p2i%)w?n(Fx`{oe1evCyn+_Zacf{r^qgK4PY z$IVpf7>+8za)tMObJNo+CO(7lwh*!cr5G(`yq~VjSvjvkOD6_^ZF5E=tpG-6%XN;j z*c>bha>YNBlhU-42akvx_7Y1#&-pR;Uw%u)y2NUAgf<U5O56rQOdD>|>i-KX3LWmpbMy%L=?g?BeY28<36Tbn?1U zyQepKv(x_qKWG~=6V%?$`ivcdGcgf*BC?RbKl{&51NJ2cK}Ekm5;cYD6V>;g`*^kK z?;1>UflvL+U={|;O7<81yxO+ra9$?2%Phiakl0l>m8U9hAISnSj^lrw5V3>n@UFl& zBG&vCCYu6ac?A!@V5yju+u+hMbf*N0YQ#cT76B`#(wQ}8Lxx%Tod|4fd;A2d9*)r! zZ$Xb(*)tn4zujR+8@|w|WT!XU6O~e$K_=G!aVN%lzE~uZiKj&YO%CfMMQ-VPPP9bbNm#&o_$0u%IwGFHDR2|rYRf2O6yas&? zUKyXB0E9qtVQ+OF2A5RV4am$0hI0Zx`=7i%jI?BH3G5whtNlehe`j%i2A<6sRq4w$ zR%KvTh|2VGse=cX(nVA3cr7fCpYG^B+x!AvjWAfva6(uZ6YYGeVM{H{1 zwNr{TeBm^F10|r5V7{vtPc(hvafO6y|8Z6_CTIZ~8YzsFB6UE^pJml}wUsqROUnqw5_US@I*j@G?nCjVl{smW<;%dKD zYTfB;_b6Oc14H+yVu~Q}Sc84U$9hh~DP%$=$?QdO|5s&S6;xN(WsAE6cL?t84#C~s z<=_qh4(_hO9S-g;L4&&m4elP?wdwnEzrXL_eXHMg)!wz|%bcrf$Q)~SbQDx$6eh05 zBA;-&-)@A5cp+!F-xKRA$F|VyWXOi>N)iaqf;xei6`?TH-J2jngZmUSeGRu@IG711 z(a9y5b#lS&aoz)6hOWB6sxqrPfY&3WXoj?$#QYI#@{B3P&h70t8!Z;ePdNAWE zb9=QxVi&`jKGP5%Pf3iS`vI>R!Xkqos@pGKt|0@Tnc*kzWp^p!}dpgd79~u<7XoG=0nNg?^b*)xjcp!ew zk;ywoEuP6+zAC{luw}Q!tQLf64hEOdaS$_4>W#a$VC0ZPpM9=z8 z25fvZZmj#0&ddetO>{GiZ6;R_SVlM_V)&vLT|LZYM!HNaANP0Al!X#Iyu1!dJ{n-^ zwUM3`+WGzI6zdEtEoZ$>zSl~$Wor@6bf6v0Bc!13#z6rz2vPtAgJ4Y|yTL!AUkJ`G z+Vk)-cDGLxx38S$GgYW5HhwTmSpu1EJGVFqh;Iq2pcvLhUHHETiT;J+LN=;pc0HJp z=8lN2KpOh(#NkLr4l?$+G^C#FHn|D|o*sCSTC z$Q|88zjw3vP@}hv*e*T_qSS^KHvlzYs?Kb_cO-{%brhO@-!>)Ix;pMTY;o6QFu>t^ zHk~cG5-QEX?8{|!2_VeFbR80u)Dk)l_tpmsuO%$(GNq${M!z>`uQDw2vY$C^)wC0n zT=&8dz1n5#ari=l@{0GoLNndlMBzS@hK2O{3y-j`7r-K>i!#R6DB@R>@vZSD!Td@6 z8o8;2ggAtVrS9YA!tc{RWL3~ug)N4qgBV3%ogTUr*l^}k$l4l!phIP9)|&l5HQRBd zz(EpP(B*`79p39S8}EcbDC6x?;6*Lq)-y?a)QRZfPr0`dR#=qcWjqh5rVHLIOOTBF zt;WC;W-7o{__Ry=`(lxhJT=Y<+b$pyxqWeQi0}UQ82Qc2qYe^&bWyy;byzX~))Ctn z1~K%P;QB8ZKJcuhNZXQftDKC^&iD%YKGE%6U4t8v1xo8H9PWM!L?la~?Iqn61A^HG z^R|>tILN=>a2-B4b>3u14A8Ql|x~S!PtTsdy01M6^=xKE=#xW z-&=p!Hv~JR+g>#FOKbiSj9aRDJtwKfkZ1Mqgov)4VmvPVDaBK7kC9n`LwjWlc;dIh z3|>Vtd2>u0iOz^DvN{uUyi)L^LRf9kC+HOJbLcjm{evz<>r7sxAdz}uFH`ZxN_0Gr8pSoB~+>j6L8sRe^4 z@?!?IdukXY8*@;G0XefuVLH$uPnp9}^?~rwqRN}+-Umr{^=h{-KZbe`$zM&`g_#@~ zNsKi0-9bX0@h@hj@eivbGeF~Gi3W)b>cVa!)tjnp<=#6L70VmOg=FimVt3J11FO#a zfiB9={J%KXo*8+C=qqkO0{;UaU-NCZ(9NI&o&cEx9Zak+jBo4^dE|wy6;kHooZAt+ z;0rPLTxEfL6vE(4?U`Y9l7NRw+>qWQZiR?9k<u0#wfyE+_=gHy_Xeuy- zn}mHI^ugws|D>yPw=+^!;%i zn}^uzZQlPzdn|GUyMo?|Jze3%G>|hsuCc#I5rt<*91BqJRB1!LVgs8=F`Mza_#n`h-MtIP597`D$mslVc_HlOp~im1C0e_KE}W_ z`^U?kLn(4E3EJL&Z5oG8fEU(Ur)*X63h3ZUt-B)NckM>7a`cK2g$FZ>`h#FK?NOX#TtF@KWCx*|*)^^6=D zT>kV_*;Xr#zkXkKGAbsPR!o%mJ(q7Ae^opSUpCt8@jMq9kVPo&$-eI?+(Wx8Cst~X z=oCHriNORNlt+8XYo+#GMX?%W!++drnL?MuCHw`${sSX%-0yunV;rZ#-R_lnzift| zH_v3A*G+4r_!lm1_TviqUMQSnm{e+gyoCs}w9kj&E$ARkhP>C}&Vf!Ht0F0Bb^pFl zm#=W<^zQ0z z*a$tVEpZLkT1wx0S@Ne(S1Ow@ItJ=YC9~?!o-voq5U5S9qf0DFEtKc2VY)3hnv#jO z(d^vnL`selPHwKHHe3TamkRB+L3lNwayVknE=Aq=}wn#?ssP?{K{SysUDmus^+ZfKNj*snAi2LV3ad+9JwqH)pW}DHC|eN zau?ZqZ>CY0-dXJh{hZr4S=X`4S2`Cm4k%P_RU4CsHCq!+GflF)ivzf(k#%1(O%&Qp z{7RLu2ofMt*gKik)Q7#MlVeC7L$5dyQC#e0KPO;bA3G*5IQ$zP57e5RUoBWh(aVC$ zDK%NNCZ!JBEvEh+S7bqVV5~lRZSyd&gQWr45O;9?@`WC#W?$UEn4dpJ=_dF#>C|Du z5_rZiW^YJ-5hBtT$9ZjRP_&7ajYz(V{+eIT{mk=nmK(O)&lC3UYkhNIpsL4 zO>?VHMRPy$J#)U|$0eeawd{#Q|#_ID<&B?9VUW@TSt>(~P&QJpz} z2LyB6poYM)FA?15?%^k#|& z-InnULA`4xj4`uU0Up76Xg$r-Yefpl`xy$MyqF01vJxF_WQhgn$zVD!)-#e<^CqO7 z_*R|K&q+~zM>hEQVK5SSEudH3hL#ac1NnZW^SH8}EA8*h$D>4yN(TpZ5a(drDTi2= zYtRAm#ZB58or5d#-|-?F2y?S?y^yiUS?#d!?5Xr3tM0y(9cEPQ&V(LWvzJdHXH=jHU0peAgAM|4^fxha|?1>wLJ-)sAjFm^eM)e zAvM23`ui&D%GT%PFp_Am0RcN0A_C>o&=T9PPn;zc0yzwVT8=dNi%h^%e!uupU9!rm zGP{Ni+hvmFt~ht zo;)Qn#6j@@DcKyt5h{#e6=x|}d}Ys)|C%J8>lE@hE8Gr~8INgorY>$0$fk$A^kebN zs>%ZeDoGb8M!ec48h$fCF_uW4ooAa>DzE z8&Y3xR&eUEzc3u9Nl#V?9Q-|atH?@KrGf(c-l;3?UZlkWb-&Jxn7W3ct}eNEO{*{2 zqf@Zl+Q-L{Q>2XK)M0U-z-fCoZtCCy@f&k{O?&S#^Zt&PBwH9c<%ZhhlXv%N`S5|W zjDo%hQA}+eXCy6Zt8t3?=e+=?g6FX|_1aHMe#G)}?-YqV(Pzb!5-Bgy_c*H*g&!DS zThK@U4H9JkhjRVj!%X&nL42PuGr_n{;frqFV8M2vBdi=GB*GUF79y|?OX&T7SK}Xo z-2WDB{ug!JK-EAVQwy`Ze~Jx)oQ9wYu#{1$p;p)-H?vZP+N`QP(N57o*L-E^bpGCU zI>jceY-(oET*tx=fryw=)}|7PrhAMZ6G;YM*j-_baVJWmi(#L|!8-fX{dvny{$=Lo zGRL($J8y4X3hW0Il<35R{VEgT&W`Q+s)}@^vuSSCAXBGwG2R5&1UfGE)*x4Bh`z!q z)7+l0*a4$f!R3SA3mI61xel@SA%VMBq{bhFqhcVL1T&;70vLFdD4sT){uZh+Iv41u zhdb})8+*l}ihkV4--X%AcL5YKDMfw3f(Tc_|q*a)U`392n2go4v3#TsI6XG zT&TB*_Sgi0B#6$-F@5?BaG_t3@~O(CrIU@NF_S}@`XC{;17eg@ z`8 ze+6%??Jil|)ILq@Ni|XaLK<(*gq|euv2?e&!5k6ZhFjMMeIFb$`FjKbJptG(oewS# z6?>&>M=^|^%kERClo+}x6yrnd;@FE46OJ6t%$8?q`ftjgpZt)1A3Q^K%J z9#5OHV9w?BYwya#BhFK0p9*hWv$R8OF0~a~DoN$NYjC_sl^vcvSz?UOQ&4zM1`ryZ z$;OWh^LcNS^)w!wA0rGukT41ouFrA^efK`F?B5(tHkFvfOA31%*MG{PKEW{CkQ0Y$&yXMWQ&m4B%GHXQQvx-6%Z7%6*sGShedy-0WXGTCn%NANVeJMTnj@Bnjc zdv!VIDUcIejoCrqL%}kR==Ako8em#v@8)K1o=ofe(ra9K#g;aS_Q-rzF`{ykJ2lcf zl(gcpSZ!-y!=V8zBL4%-W{sXeaScptF7;A7b_3i;d1a2OSjd!iHH$7`rIwyssMeb- zYFoZrJ5HLbicKYM1gcptIuW2wZ+5cr6!>aqaz6{46{YFw&65!T>wg~)&W z{8o~V1m~70`1YiOCV1j0aM1 z%D`Da05iKIeV`tAJ<&0O+*k)wyGBy|46Z3k8ZV6%avMF@7jpXp9%U6_YMm(oiG$Mf zA=K?F^)=d4_ty`)iUl+w{4OC;Sq+_u19jX;NvT@iC+wITmL$Wmq^KV_q>S(^{bE7k z6y?ihaQ)&z64`P%Y$9w4eW>|W#yWvj@?(_ybg1RoWg?*?z`Dv9M4oD6@Ub5O0A*L) zlJn_O;~&y=1A~+dw77jHV9;hGvrd|xr01cub5_2$uS<= z><7DtdybsBKVDafn%jm`)|2{Hf$PgPJrzqfx>j~>kKvX|4~vJnwx~Z(&d}asIUTfF z>CKUWnwp05=xcM(jyHc{?Za(JtnMC2a|{d(9IL~S#x8MV_8&0q-{rJkM!JM{-r^2R zUB7- ztWW9MHU=ubLU+H7PyD+k{0FP~KeRU6KiNxLV-XlaFxWJ(f78_*JUsu`NumyP0x&C? z+NinNGb?`OV*j+cxwyK0!`<#{?^?Sw3(UjH27eKhFh2Q zohz#ib=AJ5tBXYabOmioI*bx$vS-s(+E7o`tx=N@wr$6jCmSyp59OGKAOw>OX1hyS z5dlCbOWveT(={Vx%mZ(RBuig4f233vylA`4Z~&z4{M|=I=@Vfkh4xDuni9lDQyl^B z`U873$p2Tmx+V=<;%j8SsxbhA4!=_!%7};*3R^2|jYUtVt`VNy{vbSKO41~_ge4)> zHb~vd9^`~BIHbFs9748{ZyFjW2|^E@9Yrjq<+kR~3dhnXwum1!>O=L!quJITj2Bgf4Eb!sa#3fRHEJ@5lfVtl45WEU-e;rLG5kC24LnoW#OZXdBd4+i^SjN%?3=ED+x z30(q4)c_9`t@=F8s&W!1H}jxxH(?XhTni`ztkfiHLCR7#7bK@a5}pO~rh}tw_Y%JL zBW3MXn5eOqEj7EX4#K%eBX!XZ1+WGKX~G*U^>`j(U7d`K5lEupzkTmu0lQ<_yBoEO zLTh!6crGB^3Fw#nEPjtDj}~Qi`AEAD#U807#_Ud1dl zYC+}4yWQUGD!GzMqm)gLLRXB~T2<|w7$x(}shJtGH9y}u)!fzg>qVG-+M0*JMb$G? z$=LHtmP2RuW@p>A-g)9> zSRMl#18ZQd?NL-sV#Oq1Fn68XBivJ~Hv_BoxW}pDo|Mw94!pZfQbpB(jdw5QvVM?) zZ5@Ajh^lO-!KswxZv;`C*2l%OqLes@%_LNSb<=h7wbJ!^m6Ug~uNUE$R(5)A;5@)g zG*#eF|Bd%+&rouh?#Qwnp5wM$_kW=BSE!}NA$iC47noDkvj#lwKHW5Q%srj$d;Ssh zeo{iAeU}?Ld8}67lzy7Lfe86*fIq#wky+@paV6ti!RMYr$C5n^?IezAT61_TkNuC3 zuj85MHqQ=j$t>A{Ua&VY>lef0pV8sy^qhPg;CS_OHJmN#T{hJYK^&Aul7=J9zo4&` zZ8{|!N-%(T-ush5JjKx0ft zWrt=@;|-1_J8p2=s}T}9Xdvdxa4-kd@el&=om=G|5#UxUC^%vS2qfp&rr2`bZrnE~ zch=SrB$MFWNoX2r%KwS=O6t>xCj)a-6vJD__5#fp-*zX{9yr(Zq4X+-ZI!4emt(0N(CR-Dn0annl8Z5+9Lg_A}d>D_fWb8309I(es_OQ0;&J0Aed zUym1HDgO0!w~G#$BwfKh)rHm)Nmr>Fp!%I-B@D^W!(@}6I4CjmP0K5x-!LBo?koPt zL{el6ODFhw402uPj{F(;=Y^u4HbgpsK1c*%aMy$g5#W)8kk}q9iIMnv@HfBc%_fMJ zd!==)aNLXs$%jZEVXEwkZO~hZw_C1s8-gac!~&s>2)B{*umuJzMJyclC`ZvMt_x*E z#HA1+oH89MR@OKLh#pFvzY3VbQ^nc{R7i$Sa~|&~0%oIdX(|euSXrA}Gn$ zy{DoEyOAroilH20P6m=n3P+M-FfQ1jqVQq^HGp05ElKNdbnlWQF6G5 z@Fk~OG<&tUB5nHKbQmBW7x5~{#XO~s(Tv=Oel_UA^{$i?B{#e+4nbs$e1&JA7H&Qt z-PoMPJ!W&6Z#Tc*(o6hQVhd_S^9+r6k&?g-^9kHuJpPOB_}l#ePE%_DjoS#;=C2$T za3v@do)8nrexD3PpIWm3kyHS=);{4%LfvGx(-ClZNg#noga|DX>()ghJOR!5ARnSs z69ub}tj=`1AI|-fhQkS))m8+$W_%<`8e+R^sfvZ1lt4O6J?#*=$m!N=1&mlh>40`X zBzO;Q%NWLdED{)hG_?a+GkxRP1?*><`OeH=9o}vLY;G#6K3n!%c z2ir+(h9;aRAA~DG@2hz2(r{>tCs!UFz=?qnRW7Z#{AIqN7>wx&kRdked|U(uwGU$- z#yHR#TTc~DB8QJ7M~5gho1%_lt`43=!#zaH?Slph7s6EP#AQiZAAznu%BO9)S9Hlh z%Q0+a?iBpNolHZGJgap>jyi=n0O}g9F%1yt+{eCKS|DGmkt%KVXL5c2c&1z>OepNX z0?`-NqD*fP`@P&hx(Vpf{Pf`I$xOJt-8KE=>nYfgeu((C?^fUW^mt~>_R;7q^n7LU zdtKf#ZQ4-DDJz#rSZJ7TX-R7x*05&(-Oum|(8|-3VYq9NwV4e>13sZ(rxkiUITH}k zYn|TV6$TIT0ws>6&H%njl>B_5>OBaA)@{@JA01hS-OS>!{s!Gyim4YSI$1!X>!Gf2 z@BHPt$l50!1!v_I_gnmj{NtzIv+D{B7dJP~Zhg3rZ~GK&{sZez&^1bpPatp77k`zS zx7AwwYxI`&AVR@R!|$Dr$@KX4D~z*9dYC<{MX+a6hK{#g{_*de{CP@sXoV@=rZuCu z5ED-gs)nnQmN!NgYRVo#)6aQmCj5#h(}r(em;4mG8UDD_$s3SV4z)wvN}oQ^KrBj< zV5|$60@FS^^)HSO93R>Jr;x97cHvPZ;*l>%vM_&JqmrA#FpJ$q#=d+Q%%TfPL~jx? z_Vjpv_j>Km;kbsM1>I8Vo)ymgfSEO&qtlf~Vff)ck7z{17<{iM8qIcU<;6jw7z3*Dk)cJ`CbVzs#6r(o3f0T*8xPVngoriGk_{ z_&xt2s}}~nPw$#wP3Je=@4w}ea?$CtbZUX>i&-$!6s_)5I<{U_ZP|B2wUH^LH`S&9 z!DG%2iY~}Ak3rct$Y*@b`EzaH%}MJniQ(PvN9uv7KNG;oLYECI;?y3NVJOWBc`!@w|TxW1rrFeU3AJ%q?XxSQ*|1 znJzMeY14qBKkCXz(CCj%uSQ+fVVgx7p$EZ5PNL~rsr0dH$p^T#d5hP-!ATq}{{_}) zs{$;TWyJLa%vf01xy=9oZdP_vGj0|hfVl~asRbveDK|SiHwVC6=>PwP0kf*3qZ`71 z(u%6gG7c7wU)lc8qnfoB;43EwE3=j!>sR)#YzF@WY+_~O{+FE?&P6F@4NJ^lR~Kv1 zzmq`$21PV*Q4z@X0cFc|0r(1MjOcP4QIbi^Y7wGpG0?UQ%Y#8(;%F(cNe0>S*zFOB zmOmue@VIrXHeT{>xO#YRdO8s=*5fa{r+6Rks}J{5Y~%kz7&?c4Zh7;$4g2l4 zPDQ41jqzHDqWU8BTPzdyvqF%wA{5p`w+!IM4D!SbYcAtsu%IQ?A-4>=FB9_{OPz(} zu;O(XBa}qB*5Akde&mR|^z$}Raz?BDYs04%A7z_lQ%t{~-gc`?zfLm@v?o4@8vkjl z#one%U$a%6B0nbMOgUNQR+_!j{8ks=)*#!FIk>>SW8v8JLxGpRhHO(7b&S_AEBGdHsZxJa#K(a}F8cXW1$@+ebOR2mSCEWD7( zP*-Cr6Gs$%*aE)n7f7EAYr?4E|6EljWKc~v*9v#KOO&=gYDFp*K+C}P>JCk&N(3rZ zV>**iH=Kp0m|!ZID+H&QMlm;7x29|-vm~B)(Ua3`lf5YE;mJgP;mxrt4ne0??U@;) zk!_MT>r9zV#wJr@uZ}5b!USS_Et=8RlQC~-<4HwgJlQsSdFhC73v7^X_qckuP)i~5mF>;hvfLl&7J6rR-Vpzke(}v<0CDdtq0Z$Mt*8V{DTjES4Si(H)4-yDB_9EtKV{ z(v_&)V$2EZKm0{{*0osA=ui`~SnSez&=UkKZhO6k)V%2VkCjfed+e(TnJuoD2Q&og zJb+NjEEgr$#E(O~{Om0hhv4Sbz9TlC8;jBCT~SaX+%>I-<*8xk*Ca8g;}qns8?l9( zk&J0gw40$0r`*!LW`d>xSO9)Q(5<<{FGm^~o;20TDtaHGeYW#oIggB5Qroy=9uvED z$=8B6p4lQ#fk3ho2Q|sfP+`@vjM^=SG5PtAnaVa;$1TRSXpc*#jecM4U}0C1x03oi zogT9zzw0lk%5Jg8x`GjRp2)SkqyjPAS6sxsFOLB)du$&ARhzIbG*TINK1&z^@qS40 zyYN+5%#NB)mME_id;$@tDq0;ik_LzEE#Czl#SOYvm6r}R=bK9_<+O5YD(U7mnut8| zYp@MS+hN>6LcYE`&&hYz=ihweyq!qSC43P$Jp*o}A3%s@dCQ~%fnJ8$QofmKSNI!! z-fN}2u8=|{5s!cREFbCGUZCxQRd9o=S!6ohRK90=Q=(-`iPa9KvTmW&)I?kp7j$;L>xwL53<({7pU z8gxtrxHdeZaoe5K`++1*#M&#Z9K7hEIlUmKD^Bbz=LPZm1zwP)v vFx`&n>G2-0nf*di<@~eZ|2@84-Ar8EJY4`52yCn@yeu3Dl#~)mk_i6+z|8aM literal 0 HcmV?d00001 diff --git a/complementos/EstadMat-AllChap-ES-_cache/html/__packages b/complementos/EstadMat-AllChap-ES-_cache/html/__packages new file mode 100644 index 0000000..d44ddce --- /dev/null +++ b/complementos/EstadMat-AllChap-ES-_cache/html/__packages @@ -0,0 +1,7 @@ +base +methods +datasets +utils +grDevices +graphics +stats diff --git a/complementos/EstadMat-AllChap-ES-_cache/html/unnamed-chunk-1_b70e194f2bce3284a66ccbb76ef18433.RData b/complementos/EstadMat-AllChap-ES-_cache/html/unnamed-chunk-1_b70e194f2bce3284a66ccbb76ef18433.RData new file mode 100644 index 0000000000000000000000000000000000000000..105ea470f649bd8ce640bae8e45664f4617cdc6f GIT binary patch literal 164 zcmV;V09*ebiwFP!000001`BeDFy@NjVqjokW?*3flB_@`18ZoAo2~@|0}B(7!^ptG zzzL)S^<0Zf5>tE=OLQG`a-1^~3v^wBb>ov0lQUBFGfHxE^h@*d5_3~ibdxhm^Rjgf z^w5{s91I%fD%%0000WdqXY& literal 0 HcmV?d00001 diff --git a/complementos/EstadMat-AllChap-ES-_cache/html/unnamed-chunk-1_b70e194f2bce3284a66ccbb76ef18433.rdb b/complementos/EstadMat-AllChap-ES-_cache/html/unnamed-chunk-1_b70e194f2bce3284a66ccbb76ef18433.rdb new file mode 100644 index 0000000..e69de29 diff --git a/complementos/EstadMat-AllChap-ES-_cache/html/unnamed-chunk-1_b70e194f2bce3284a66ccbb76ef18433.rdx b/complementos/EstadMat-AllChap-ES-_cache/html/unnamed-chunk-1_b70e194f2bce3284a66ccbb76ef18433.rdx new file mode 100644 index 0000000000000000000000000000000000000000..19230dd37f696051b1b587ca6087aac80ab2b995 GIT binary patch literal 123 zcmb2|=3oE=w(bW>2?+^l35kr8);Op!XJ>TGUdPJJJlPtE=OLQG`a-1^~3v^wBb>ov0lQUBF3sTbbOY`y)b5m1vlQT;5vULsP z4K2(}jMGw+4U-ZLQ%udw%uS39l1!6Q3{5R83{uQZfo2LInJ-{vWu;K9mz2?+^l35kr8);Op!XJ>TGUdPJJJlP Page not found | Fundamentos de Inferencia Estadistica - + @@ -23,7 +23,7 @@ - + @@ -363,44 +363,110 @@

+
  • 7 Estimación puntual +
  • +
  • 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES +
  • -
  • 7 Estimación por intérvalos +
  • 9 Estimación puntual
  • -
  • 8 Pruebas de hipótesis +
  • 10 Pruebas de hipótesis
  • -
  • 9 Inferencia Aplicada +
  • 11 Inferencia Aplicada
  • -
  • 10 Computación Intensiva y Multiple Testing +
  • 12 Computación Intensiva y Multiple Testing
  • Published with bookdown
  • diff --git a/docs/_main.pdf b/docs/_main.pdf index ecbfd56b43cc3801ded32e2c6795b73706d5590d..e8319659589f25025d3b443966a4c089f91963ca 100644 GIT binary patch delta 688435 zcmZUbcOcc@|Hng_*;~dnvb*jc*<{O}*(-Zx6yho)B_&r~S!IV(Mn)o%k(4bmN>)Sm zh^XJW==1&lKHtCIuJ<{wvtH-i^L(7wxmm>@C~6vKD3TRPuvTggDmVsB?0qRsIHO0* z&}3=+Wf>4l6&r?_PSG9ut{{EYZo>jb6$Lx*dTPT71=K2mmRr!*_rt`tLF7^Y|Rp@)@AyeL996((3uIFKN`uj zFCL$(Gck{5e^ELL5rc08x!qK@tRa*bn_Fl{M2&|ci9~D^iO~5%1 zd1RE9BRP(p`1pYEEBAy?2aEGX0uNJ2kVNU{sV~g4&Skp0m$qd_ip5o;gx8OBWk>rK zHWg?!M?RwNqwqMQRsz2>a6j76M_>e~-5<1gR;?Yjsq z9kO4n&yDTrcxqREUwat8`5-XObM$zb-ZAa(g+tFhzBss@RjS=CB#!IOoYWx%hA&@# z%zam`{_K7E7FQLQ&MfBY!H;>kv)oOKG`NU>fgFgwaL{wFZw0oLU+TJQUf%fme)0Xu znxBr@gDj*+N!l>d{I|lMxwJx5dH+YzL&mXHcI8mIki(Zn(@c&pR>J$8;^oRWLv~%1 zA;z&;*7k?f9ZMT3TwLFtu$-K;AT&ni9A`G3Q@W>`rE*lf%i&Y3gJ+ZF(?^SE9{fn% zO?!>_uJ={nxO1b2t7I2S%ii{`qA&a0tSg^|Qj=~L^2Jx=Ak$sV+nrTKDkn37SDPmr z6rb2vmxOV{7Ty%_N*aZ?btQNGlnioI%eCU}tj%aGexP4IzzDr7fAd6hSivr#_6^Uc zPwttQT94iso4hbymQz}~sbWLrQSW#fEo)dim3>(u>ypAq?EDX&`Qw9r$jvBM)aI4_Cy)8g%k1qK0)K+f}J&W`+jS*Vma%-|9*)nI305c?BBk z2OSNs5wG*BSCaeY?_@ylo|x97f1`uh&dDLERd4{-aORn*B;%s=X$@b?CT_yr8^^M< zQ=|Q#uTFN-S9f*_snQ$J#X8l~J}N%?@@lZ!HR73UZr}GDZ|u3nT8yY34{y4piY232 zUlfg9)~a(eQo8*}X&iHT_NjgIbj8?6q{pw8!q*9k3SpOj;o2B))aYE`FtRUwI{prs zG;4ssY*k;evby_7yJ5>yv{j=ojZiQu8d<7I^qT8CIo4L!Q5MwO?*CMYf%CIbT}o0{ zRbRxDyr)_scV7Qk{P4>rH&LcyQ*vPd|Joto8>saR|~&= zI(D`BPrO@_RN-Ii$}1j!TsK%6jlRi{bI(>=(j>SL5gT|MKBXJO6lmUA&2x^>8%vRO zs`|SwyYNc`*PzLq>br-rSrnx2Y*)Q3gtc>KwN$;K)mIuK}_i7Ox%L}L(aLl z1wl}7lB$EWI0b?@f276`fg`_%AnjppHTY`^!@|0|G@4)_N^fC z#B6F84iplK!N4JKBo+#TVIgQV0*WD)tMCw?(9;spG|pTIJQRz;L*NKB6paN5P%tPO zgCIH`&%HmLh&d#1Oe&+MD$R$C3!WGY1AF!QdbW7z$X#Ku}m16i0+ekz3})g+k(>a5xfz zz+s?RBpiZ5;X(U}&9dC2`?sMq#M2DUoG8!&7#F0)haIz#`EQ6atj9|N7EV@EV2yHN!#>SS%Ed1;xXWP#6kSP=qMR=)!@AK@oV6 z8IOR%kXQ%`28V*a;t(O$FuHOgu{bCa{1<`8fIde-kT^UPP860BCK@xjaw9PqC=y35 z7!SpOCLs4p*f+hv63c}|g29Dj_Ns-$gLf!66bU0|C3Rnf(h^^>*m5BeFenO-gTO(5B5@ET z@DC(NP`8V3Ot%zMK~4=C2$VldjAZPIJ+|^0s|wDJa9YES19lVo`D8Q zgo!WMT{#gb92AED{s9_`1ny0)5r*ifD?&WO0p5ZE#gSbV^dtffdK85PZ+lsViK`s0 zTnO@jlK+bboj~psBpQl^?T!C+PB!9sK@&~{@Bwl^A+W$K1|&fsp;&T?6d{lwcmN)W z2mi!@83Q^T4hP;(eoI=s3OW2yU%=yl5hO5z1|5sXlU<%XUT6p#1(Mhd zHRgtcL5AT$cL9e%BCx>m!ED2kyB$L8fv^#?IT`njfx(6&F`zq=Oj-X3?C1r^j;&l@JQfl=snLx0k?vKSr5mP7X%2AX+e<)U>XhF z6RaIzK7piM)`0zmTTT;r1$uw=mea)Hfd3IG zdZnpASCNdLQL$6vP$X5o6Ve15yPymlN95w;CDH6+yI3WaUqj-a67r|}Jr#eMEXMc@ zqzWi0I4+`g*CXP@j`GCxqegM>*k|9w2R(kLxTzhgg%v%&wh-rC?SEFzzM=KvtD?*> zAJngt^uwv_h?QINA?3>Had~n~*}2Py>$2xEwOUW!}P3gE+15H7JjiZ7oQO0JAWoP+UF(85@ zj~%+pll+l^ar!;{+$px!TO$P0M@#7}foLT=O_3ojb?e^iOpIf0xh)qLZ%wYS)P2V? zy$Jta$!BNCBDEF%nPNb)$B3$DEU*4Gzhlx_l}z*O6R$)lWv3)La+K1pm(Tfp4&l(e zs?Sh+`qej0jsR^x3#MF)x+lsGH&I_taKkcxk9csgS6|i^@Y*$!Zk$msCdeza39YNt zI`~*C%dwg>;116|hQ}IA-?Dmj7Nz3&>ST;4^-GPl#k9T^z9e6*kl9p)N4mXq#n?kq ze&t3FR^AqV7PB!cjzOl?ROLO3?F4JU-7ba zJk;3f!**8Vm}T5{BWgDJfrL717VVULqF;%|X1#5Gj``>rBfa~s9cDiXFIjVZ=<@^{ ztDd)S%8RYXvY-kwu`#+b#*xLM>FzTfbXYx6o8Qrv60gD-rO((cDeAterf*7<8i4fi z=a)HXz3Hn6JE}h2Y&E_ap+*0w>(1s%H9zYkCpH_C7sW5><=qa=4sWvEEoIsX#|2Nj|_MD52m+QF5HkhEn;qTE3u=p`6>5`eIud}+JEtg z4<)~O1)WcgPcEIlhYN%&9IN}H^Et|WO$nAkYi>s0D&C|e1{tI4Nj7#wTpGkZ+GxG7 znMkK4QDm}6Vm(P4ardTq*CxDM#p<}P9JTb3bKg{jZ^Vi|sx`W182pOB__^L&>U~#S zNh6O((sEsbMhNfnWp@bzcc}lNP;acQ=g8o>H>eL9sSi_ErOY>*3=X~ib(fh!uxTuv znL8v@^4M5()&(YI6@RuK`>@tj)AD;^`QzzdZ|4V#4p`l?CT3tfu|HbeRAV-7%IKfJ zRMi>qN2T9NT;_;rS)%CKB0`Balh%Zg%ETGoMPG?K9)>M7+0zxS8JIdzZ(>yn#l5se|E1<57$cDCeA3x^t)BhKlQEuc!B4kkY>{1by(+us)WnEz{i#!x6J35 zgvVlyheX)lKufR1r$$xQa#z@@8_D+}PKHRTDax^+)_%DRvOITa*fN)CZ0VA3?R>8I z$wfjlA-z^6H|0{&f}}T>JHgOcV9D{2ZUuUtV>dL7?^T#h?)vH3@XeujgfflQXO*^M z(wwV?lqqSj;CZjQILVl?Q)Tkel0Q_}ET{@3zOOt?81TaLtl1@{r!a?WYPVTmNi2ax zP4|Z@#|hQjXi~q5s1~DcJwgSI&XqqDX=y2&_=Vc5+TPSk1~%i^EkT$u+N8s;KQ%pB zv#e53^LFuWN9(y0t6#L_UrbpHV%&TdoGF{FG^<^kU4Bk;h^118YO^jy-YB4~9G3iv z3O###=GI%~U5ojVESnUS8ZpbD>pk<^JKL2DTJPl6=BL&(MvjQBUa5S8-&mrFG`jcd zUF+P)%;5Lc?}pp~+$)MWLR?Rd%Uq5}=ubp4*6^3Ixtp|h1{ z5%Kr)DL+V7!iw`=KmIJU`h32w1ghUE+onK3bMv*jwW)n)Q?IzA=Av9;OmwAwfx`m3XUY@ zh){^L1EI0^M%B;HKR5_t1NP%Yh@c(;4%`2hhQszn798yN$=~d7*uKmHyNrX+```X> zu<6}@zc01mU?a5udH678%Yc?54-6g%OE~ht zAW%Ge2EbmE{InxYG@u2^+euC=3`i-mgae8P?2WNxU5F=d?5MytlgI^i;smM$3Ipnm ztYGk9zk~&Qe>_o0T#Ps_&O&U0ns8#ko{TJEz|Is2Hcl8I7SQ|JDpZ1vXeDRDjRE_7 z1kfJ{pa8LG6oi}uh6LMD2?TLf4p;z!4hedNEMdUj5`qCb0ReXYJbU_%B$N(> zqQs9NNh2JXfuq3|6$l0-0&Ms}mB7{(2oSOvQd1TvFIt+OXoWCg#{jhlN<#p315&|( zP{i*UnnE~pp@G@}Y8Ds)vJ8w01_opn&;YWc#4;HcVj|Ln8x7P38Vn#32n;kB4>S(Q zMX-S-S64@tg~+9>Pc&kq;X(r~fC2BxG71ko42{KreJ?PDq=W;h3pHj(qd^L?v;kXr zpk*MS)+zL0d(J^mj6A`XBEWI5Wv1l>wZY&41pvwv4r+%6B9e^ISr6ngCzOS3^Olw| z7g_6Lm8sY`mUfs!hgGCF^K^8xt_MmTpYz5Q+0jLI96LJ9E@xP@k zs~dBp$U=y$JwR3rkSZwPYB&sVMVJV&48CU^es0e==U?gox)TqS0SY)8eqT~*BG^D% zd-a*gZRG&c9S+)vAa@2?MEoTWG++eDl_04=n0bkBp&9@~fTTcAz%gJ%K==F?h6qEl zk?N(Gnf8PsiY$nL$|Q?CGPXG25#%~@pjav32hx!44P!>Mxey1Y+&qjfbO% z%TmT1I54k(8~`=2amki~=(xGP!l1Ls45>GGFffU2l|POxim{G}ua6j<>9 z&iD&SNW1k=+N1w9=MZ~iMaE7zpmY&nsQ?sVZ@%th6B;mq$%948x_^R~q;!*)+=t5l zfhce?DFD^^3sFG&J%1oY=aAE1J3&srr{DoI0ZSUFIuZ>B3mBLvz`J2!PV4TkM{NJ& zc?cqT3IguH29^OB_+CJO!NronC-`n^locaB)Bp$rwvR9{;0ugg5zw`O5r9PxR0Kg@ zF(AY#O?Fb30DuH9*ow!;PIoesH<}ABh{9hTAmX;cBT{?7_Y2>A2?BxKDU88=} zqjB3j>#81G>+c?Ree-r7VNG#UiMqQ`R==`?2)g{%iQVUSxZJ0?7Sd*8xX9}1g*lxx zAN$4$*Q@umdc`>}33UXoo_n#?`(}6g^GCTq)qK1^!>AJvA1h~7U2qR1VBVHE4%Mt{ zq=hy3eYAU3T+~@uKdj3e9&x%mxA-w7Z}E0RZv0f-lG%49vxwuO#$Ovl*h5Zt)4vx8 zeqUdH#bPkxZC+XX)|kx$Ca%y#{@_P8=FfU9Rr%LSOvjH$X-!melO)QdEjIO6x|l1H z7rr|9Xr%Os20A<`s~w&Vj3zJ!E@cQBXa8X;y{LQh4jy6lP|znJVqQ?@DpDIM z9s`5C`z#mR?as1ZD&dLfPkNN_uyr_I#rYQNRgFWgl#_%Brtl)8_Xr)rHD*_W%Z(+< zXA3%IfR`o*r@>-AHS-qaGEy1DTqmic@P|`~$gB~!ZV^ih$&p4R0JHO4r z6nvA2KtU_1644=9ZYjA<1m@LD=+G$gtj}87%F=-EXccLV$pWugI_4#47TugQCAjz^ z^GMCS4qaLCWNqB**Esy!yzY)WnW;K;F@kqmDSg9jbC*m)?FtC8TDMxUvD6B-*=UmEkEA>IE2uPg<)RLJQmdp zh=HWgu5gHHttH*A+dXr!sk>z|{_?ux1h2JPPDFf=Hfv=1jalZ(%9><(-q!-Dp?yg8!K}1uxbgp_Rn20I-NQkrDD#g9q zIXqUmZrRO!V`!u{I?{Lc;t$EhX4*w6j2!*pIt{a1c`j6|@A;0Lyxd3VZlON1tW955 zZrLC_rxg{oKy*4;W_wBZaHKc=`NF90!bEvuUA{!XK8suL{|UYJ z5pwDrwuv=LU+jWY@cB>L^@9cGhYoi#SbGotVvk;trgd|1T95kJOv8e{K66i^_#E|k z_e%p|ry{M>A^h8PABCf~s~e-g2wc9yG@NqELa?%9OM^8wsFF=1Dou>ZUQs|d;dHZ{ zzo^PDmIto1s;49G*ChtMh7gvgB>zada)}@kD-PE@kv#9#)M57R&gG))AQeK+yHeQc z-}w8Fo)hp-75G>x2Y<~f718^OrWANBhz4sb)A;{_--iYVK8|@HuM6$*zgaflF?mWc z{vwz6Q_T8@?`}H*FHH-=Ry3S5Z;IB~ru^!doH$7z)Fx!cktu(5Nme3&aJ)acit!8) z@=Ij3;XL3ma_Xv|Kcq^mxMlK2t$bTfjJtAi<7wv{G<9kNc-fNm zUukZJmCC~ov2jGLak~yWmAPHZVvwaj9y^wDR&ms6wmqV>x4lI#i0}Fw^j1dvF{GLuzxx`@U4i+|NZbuJ`AhTg>t75)sOOup9oZ%mM2gR~kf+d-bj`x5Ca} zHu}1c%5Sa*G&#YKr3%CX|3C4J}hy;?dow&XoKQtxzOUENuW@%{q30X zUwq~n_2nNnTPn58GLPj& zq=HQ)fA{#+zV4X9z)Bz7VsU4SQU74kcp6TM)_ZO{O3?PRRHZR8ba9>VPS9Ge=zP9S z@Hgf+-f3=)9kozo`RDJqBRSQ&=3=T2aZOws=std|v()HtsZPx;Wy2i>ZLAaDPhmCZ zv2CFXc~%$NRYz@_WX37&Wh0(EM&I_9iLaiL^4m$#(B8V>>Z!;7q;w_dQ(5}4HdZsb ztLoi_TH8+kIJCRQu%A_*9synHx`Z#Ou$#Vf&7oREEprRuI3A&{rds2|%5nY7@+*M` ztL1#y2d)ScgmsT8wyevN$M3SYU0=pI#_$dOlUbbm zYeVO$A1QNwLdU;UecgC<>nOhO**VUP?5uCYK8`me%T5>UFzbHdI)%DTC_OpPE5g_D zH99cWSB>t0i2KH{<7xAD_;ZzAe&ffVYGar?Px1)=o_VG6HQKI7bxteIT_fyv<~@(= z6!d2;dU`lzuKW6GA;o_fOXGgJ#E8P%z7ATgm-1Ig!nPc;Wb%YRnZ34^#y=kaoWy)c zpKHctW%*J~&1)XTJ3nic7!3%Pe?DKfnR@s!?|^YNBFd}pkAG(7J6FMJ5kTSE z)~G-Al(DtLzW%PP;q57yq;gPdBFYkmW`f|He^;1OXA81}S2f;RQ+RQAQNI6h)eyDn}|i3jfUI&Ak1s{_OD!-ec|%?tUZpYGAV&dIV7%(<^d$)bj7uu*R9~D=K+*6#?b~_XiGas;0rQPtt+Vs$)y_tBo|ilAwylxwEUSI&$MxSc1l`iayYgwH z{#S{@+SANU;^>^ZrX`Y{_d$v-N9OoX+JdAo*&>nhJ=9a!e zWsg}*XKKFvq)9`7Kq~(?DZ69E!(B&ZW@WQmrPG~b`C(_FPv(+JFHgiTT`JO}PVDG* zU9jc8!hfQ|DgLX0hVVPzD;PdPRE~sY`=6C**CfF|xNt?`RBLG((U~`%IsW=Z?tl7& z%HK_y+6QJz{}`Y_5-!xZ(&XH8>sl|GM-?Zu&$`MAv5#ZRDoS!7;1mz<>GTv7^U~32fz+Q+89@G#E=nI-0!6Hlp zPUgwVm8cxdOUyi>0SG1;Nba9n!$1e_YxvlTXPHxZAbUY@`IAeO<@( z7kQFHbjbB5BTq2M zP#AL51}BK$K>RBYh^yJ>jI^A917HA;AqP_70J1{^WCffD2ztQQE*)hjar=QLDW2Q& zG;Z_(efX!8y>1{!Nsw#yZ<+~8AtNma9ca;Cx{4-8?*L!@hpuvg>ithf5Yhw)E7t*G zMSP4NQluaB04M_Tgae~Y<^y;D*#C>Of)ddG?f@c%z(0W%fVBdr zCX*x(!h*qpKnOBx{ZD8G&0#p`K;ltHNit~#ZUsmTz+wRCVgNb$2epcD0w4c(IRK83 zrx6MuD;PPd3$Sc5WH>;rpe6JGq#R@-me})?iSYq#B{MY~aGd|pR!+d&|F^HeP@4QD zujKd{JXj?DA+O{tdp-4Ea~t5j9AkMw5JHB-0iFr?H4JzF5}Z7c@jv;A13@D>CRk#Y zkqt?#0ZpEJG(<-e5g{_8L6Mo@L8iZs@ZXsdjX8*N=M;%O%QW0bK-JJ-yg^J0m;`_m zg0`VS^bOfKIUS|Hq7eBwg?xR+#rps4_J`i1!T*!_1u0N{10hX?)t@z1_dP4bx; z;MfPB{yQQD4y+>(q)BF|3>5-}BpE3|IVoVIUb_=g1ZzG2F-s@$~82Tri zeR=WMDAr$@>$O3`lg^3@=ObRoe6|zLh3Q@!_pSWpzjVb|GxBcL;FRNIzZ4M$gEeGY z%=|j>;X1)CMM9AgQ&Ny>#C~^i<9&?~(aSQ0 zW4EOTDb$Y;!8ukX?;Qe5>CgIkidQ+DC*@P7B9mEO?6`f7w6fPfujQ#Z(l5Z<^`m*X zIbJRkPfsX47cy@ft6@;|`;++V9Wg0GwV2;Kj)@sDw_J0s`^LYBsJbnbeWB!x43bG< zw8v)9rowQ6|E?ys^z5a>H@Tu1^7F0-o2@*u4B;AME+jsx7I-{a)8CXFI(yf{=Dpk% zwdZ}O&cwN;-jWV>s3Fd@NKOdzC0q>8Bg*ouvv%1YCdl6GUH-b!vdF{tUN&c2vqea6 z3EJz{kfG}`7+QCyV7fexMRf!}Wa-`QMWr$HjTSd~N0xFTWl~2-`1*%QwWDGhRu$CZ zGGX;POLOSmlO)%cC!*rd$74@te=^n_@l@jORte4hUN4zwq;X6_%dVNKoUwW&OCGhX zah_T-v6TSjUNYkdzJ8vgy~-vS^1b@7WxEbqL7Vle3-zXHOT1*Kz?zQe*Wy^~Gx4ud zCK+dVMCtx?I^Id+_MO@3UZRgVS_`*H+8x8*K+fl_+@(N?=rbzgmge!)qSfZ zN1lOp`>7JeuNQ`=dMp)v4pI9Y(v7C!FqXQI!@KmGkg;H)L(`k+pn&KL37_Wul=O>k z=eJJ!)6zrF@p(OK6E6i7+?VhMhacNJPNZom&3Wv)CA^XDco5jibET55xjv+q;=G5& zvt0AT?#PR-$Veetx1IK-sRR6lUsikBYYo&VN$(=G!L}KaY<;Em79*d#$jdP@(vsAyF~T)*sY6Yyn&TUUpzH4Xt=zrKlR_Ax&sQ=O~$v(y$<7vMQ zsqWU}SUjpXRm>qx|*pBqpq=Vyw&-H&7Dc_n{88nviCM49Y8 zGcr4QvGi>s>_%rLl~&-!w@Z0X5~K;A?g7A_u^Qe^(5#lu?Fj1UNHfWMr;{k4aBpdB z?$7o9lo|jIcv>Wc4vUu!dH>fiDF$K{8?{cdYpCFr9a0aC|?f7j!boBDOAQk z*DdYvUMvb+6DqrV7pJcHMXFEWQ_cC_yV}Yfe3c|ZPR+$#&2*EAzOwC8}k z-muz<{C9kOdXZ@t`YvC56o2Mi@7VWkgA~{s-Wf|%Bf94|3=`j~=3fwu{)c zSsTz-vcwtf4QCB1?riFictL$F;A+AGy?gNY1YA^D4vz9n*7WG$4NL3816{i`4RoJ8 zZw?nxwh;KHBmMFV9EubrA7fg0Pg5kb9G7BvHW0&Yd#lT2G|no)gF3-##(@UW=klpm z-cI=f+Y`mn^d&XVto#}1)s!Ba_D!C_O`}&YWK@JbZ~NKL3bIV&tO#)L1s887kLUap z)U}Up{X$gMR4jKZ-k2?o=iDTzFtTIpy~N*Ku*VS;)1vd-7w$OT>zEtP#KW6n`JXmi z0Y`UX=EI^9gO{dsV>L3jDn^T_nl659_l_6kxyPV&eJC!gNG^Qa(?%(Y_R@5{65SwQ z?f7LCi^mb}bQV9&e3HTi21B8ZUL(r8Nw{l?VzSbHQah&XKUDuD2EDgbwa?HPTRXfI zs`cs$A%%_OWo&(c5b4r{4KKENbPY=9P{!-I6m54;bhC?kF|<+MSngY&%zc zQqG8av7nd}rcT;%e4cGEQ9kLnao$W~edx*$irIv8u-}_B{$(?qH6IN# z^lEy+9O0|b#lSSR_iXnv#VONLZB(Rcl1v^_JW|W0x|J|4!WZ0b$B?zjJjok!Zl5+zY>0>Zxi)p>of*N?%o`+f|#sj|jiGvdddY zLv_aGJM$^^ss#JObPn;6iUWB`g?kKN_LAfi5p!XG{f2i1@%oBZuBVf@4XUEp;uhqa-WY_rV)5}WV3$#+PbhFsp1vmexK*cCFr9yzW&{N$YyeZ~T2M$B1gG@T6n!k?)G$8*eAg^*w%9 zs0X~)UtbMBnZ>)iG5tO&J{*=^{ib23*X_?-)YhqD!r+GKQTcUD{|VL~@;lF$xp>N! zW8P@#{JDCqa60paB<<)$<=levp&en!o4?sxHh%q3#n7NXv|cOA67x2^S6x=MYlP;u z{Jtsv8a?D$=Kj-#uC2mfDJ&!_s)|}kLE4mR9lz+DIheU1!?@uNvAFr@&ragV>nE${ zE)Q8{3_KRI8I3F(L1uQkhsMihsNYFCj}7CxbN7By;jz2SHU7UToi3H%1Qdybn0!Q- z3vAxW+x!2AkPdDxLH>=9K$Op(6hQ1p<3WfSS$w1g6>0K8_ntK31Nsx-Bp`0Voev<| z0BitJEkKpy$x;eRY;mw83TKivCk=_E?u4iyIlc^t5)dB(#4R}^P>AF!H9+-XfO5|< z!4OLw_1M5w7Z}7JTzpVapqC>{AQVZsK}Lf3pqhmZ#P5@7&|d|FMIcE{(=$9s~d|c6?LHN?7y!?=R)bv)8-~TN5^ng!bc>x_8;|SEGyFMX;i8p?&Ewsy4viOAUJ80r|5Z)1 zY$2_K#&!s8I`eF(YBfO5Y(sks^V%GF(kj$rUWMK3{V4tW;mH-T7A$G);WI@&R618! z(s;n~<4xtv;pay)EHfU;p0btvZ~?m^5coQ`I&ZFLe0?M4*C#)sYz{%Vzo)V~=Bw&( zqc>l+;)jwSe3{RJ%-i#odh_6Gww{y{)u`}eMSaY4-MM{&I>&*{ZDGZ+25sHXUM`@PxQN^Z>fG(T@q zi1;u}-(aGiPIrX;Ip2-0T1O;QbmJK%|JMbKj%j}%&PP+ziTh{eH-dn7*%IZ}q@Cev z;ujbi=Tg$zYEguECa7tDvg_ziPZ@<(8PN|eg>1VW+)$B~M6N9EGEf^(ZxyKFfY$Zs%i+t*R`>NRO zs_!*oW`aNT8!D$%-VLw&%{ASYB^El!;23T+%PUi zcKxxvG%aE@ZC@2Ae?0b;ap~^Nd(kV}B>Sl&$GYp2_2J|*Vs34Pe?AeOuROouLRfox z%!AwR`@#hm_|k8#hnDTVG4IzCEW&siBbS}uf2=dmzoI)F9)3w=wl^`S{)#(q5^n1S zw@r_uzr*z*vnJ*fC$IiyJb61X7(Ju9*Hh3I@(r+GoLbB@(;#RE%WvU!R7)6r8>HRtD#2&WSiP_$=0p`FD2 zyMLd=uh?euy`&T4+zhqaVd6aZA;&`S_N;EcCtFptJoeX9Ns1KuSBj>DJpC5hp>5i- z%gUtQk2Z5H`9BnY4;B_KtIXd1Dl;10Z`ZdtF+^>0|2MI-+1plGdu;QMppvY)u` znR4nGv`(}BFsL_c>{H`Pta7zk+NKh*KWq-Or(}tRT*Hrl;oIbOrVZx|2z$-vZKuU< zzj2!;%xX3-`2BV;?ZgBgLKyBT>O`f!?CGv~(8gq8-?yk`rf0?Am0Y+;#oaU21D`xL zy2#&PuX+cay?VUU+|({Xe|7RtS9`UlFQdr(Wry8)zHYqa$l=wgMa#3@O;cISJiczw z&ck2cr!jPA|1Fdm8x>fA1)}A)^BKk&2oU9F)MN#aP$O=HFv* z@#Wm={aZwr_fVKYdoi@58qoTF-#qz{mO@%Dw|EQ8)E z>O)5F#*G+;o$RExmN8q4=NC>C*b1evA-Yw<;+l@qT%C~SRX($7mMV)hZrjqNdiFK8 za+#F0OB(^L{L)s%@pj&w!1wdi&G+0Ie5!3!$!B^yZhzhUl)o0UUSjk(?Z~B=#)rCfx2MX{wF^yb@nyQwqC2>7gSA#cq2Mpll74vf<$!)PC+-Z8@VYdd9wdOGUq zCYiEUwnFoVsN(+7+h*VB%A4+K6kmI4D|bo1B=3EhkmkiBAHNq)T(RTXczwEr+q5w{ ze=q}iw9#`h=bJVh_iMSR2_9fLWhEJsL#RX4ZB=Ue#NHl2Kmg0oVz_tc&YW|pb3 za8F!Ebp)+`(^_dl$W_Np5ZaClMzQ*%yDvnfj@jGw&RhN&{(a%;?s5d*AlP_8Y?h=L zpGr}rZ2!rmADX6HXzAXN^lLY&*tJgP|7hr2-zIo+z|@_7CNL)$viZCD9#^#B^ZbNu z+FB{Aw~9&Xd~-p*vDrk=TV1DYXD?0Axp`VxoI7J3>z1tdt;=PE>l;BT`N?o}@ii0o zQ{0Yby0eC1=Fsx?X{xj*<* zHI5PBo8@Z`wc6Fw%vTKvr!p(UKI&&?Kb1#H9L+rSGl=mXDOe<**l6=g-R!=!esZYk zR3hSGyZmn@lSumvyv-!3b8T{6rIn)T98dAxH+C_XqIEAoh0MxXnANHV7CQz7b#vdW zzQ((*sp&#r*R|=3ymy)1(dd&^AJ=w&CVuz0T6^WFTR=9ina=`82SM_<8Kz#vzb^ck zfV?L|Yv(}d*bjQf3i<(6e^c)prXJ9)a`aR@?AXB8Mf9zXQyn4 z=jc@sIHg6|(|@~P_ehE45hDoan4$0K5O&v7N<&@&W%bP)Ml@=Kb*=2O$n%UvYj>jf zK04L5#7g8!!80@iefS8kCQSJnGL(8>HveEw+7(E$uhD-VmQERYi`0&^h6{QHq-lIv zxX3=B8n&7_S*pN&)mbn4)FUP)=22>%oGSUZTd<|K@;2#5N?U}PwTv)6rcHmo3wM>; z-dxEIS>jQji_T)qC7g@iW|inW|3Z!@Yjeg^ZQ@O3`^0rE=jm8*c%5BkA(YZhb+6Op zmTM;eqtDt8UXqemFGg5?nN-9Hp#ht=xlvYG2@9dC6}j{!(uwQzfR`mYQ0gO z8@hCpI>?e|@C$>;O9RJ~lXy%{9vEhb7-6sH_k0M?Q2Hc14Z! z(0o>^z22zE%4Bg|X4>-D?R>R4+v1??BL(jf4l$&6y;Jq4WHOcak#(-7b&$rF(?b(t#5ls7dateV7M0a z=60RBQnpv9Kn3T$&x9SsqqOqU?HkfItXMl5!6Ft`S&kK+E}vR!*Sp`MZ}V=kqNUOo zQtKW~xA0hYXsJ!KnPh#mU{i0nli&X4|owJndO6Jy&EA$A(dNQ7rF7@ zmvil@Pp9|WIBY;Q%4RghlkKj2kE(dn{VKPn4NGkKLA2JI-x=0se?i4Ad+6NrnFlv- zZ#urLOUZE&u(`WUzHgfc(J%7mw>Nihb1zP!Ud@-2&ZgHlc>tXx2%1k?an)|oz0JYrnqwZCGZGn#}p0z|iyqP!K zOW*(G{S&`QwaDlYwYrf)I^NDqq3)ovkAzj_3a6A^atH+ldSCv6I|Kigzi4p227b8X z)c?regS+A6pN1f7J#ath;CUd6!CCm;{}0a6$j5BNHwFCv$X%j}KRCGuB9weO2`JkX52gknP$^bYGM}sp*IF@)H z935H&m=l-O`N&6-0tdPq+~*+Q$wGmk05}NW2RAf8QRIV01Q8RcN`V4_^s3w_aMcAy zzEX5>N{+&U-%0?taa4npiOlDODbeH~1K=T>Ye+R8gFuI`g-pcjJ&ZR0IT-~kOV329D^*Y82sV1ZnJVT1WN1^{1DY(d{^gP65)=+ zo0f8dAHmxHddllxi|y;0XLUx*uT)rr)10Mm)!%%$TNdWa*8hae{I(sv(L87?M)1mb zs@<4PM_~tT8T@T~?@$WQmfP;)=!?d!WJS?Lj5ycy4F#4?sPzjKPjIUczOBZ!j{IHY9G?TU!RGbBfSrtrFyFe%j^ zcafL1R{lt@9_mylj$1BI7~fx!;MB#&>X{ZM#fY;AJ4%H9yki_62zT;Yq$m`ogKER2 zEIn@_v-Jpn6c1}L-Ku&7;efoVntlCo(a_CQ?TcfkR5t%oXI7_cWC=ubHz!flTI^cb zeM0wK1b4+~bs#J0S3*oi^#=AumL8#p%4_@m#-l4G50zCa(7VSft3RciRLGuoY4)4_ zKfc~EIt`;?R0G0PC9Sy=h^$5`#$^G?-=!^##;5S zHEPs{YtDJi-_^)RDNF<2Eeh9wHKtjsa)PzJgM*$`uab&oP6g5cOnnkmsaLJY^f>4z#yL%w_l}q?&HF}_PQPI z<7k`LF;02Gd(c7m_WQHLpdgIZG`^Vhp2|!KdMsU*adg0wG)QebKMdw&(&IMFq8sWG zCisAL`WdP{D3`tS_7hM@1hksKx=5R*dJ( z{F()p?0D?j7DM_LAd0-*M-+@FMVxTDjT_ojeR(z~r5wj9NvIjc+>(A##;#w%cdzV_ z!;nKYu0nfjJ%o+U&bTisk&6uyU>|UsF7zrv)SL9>uN*UpS;JpnpUV9mCBkSc-mG9T zuGUxgt=Joque}0pTe-e0iAu`$APVRe|0Q0Q0pt2*D-F4=0p?;~J~Sl|ysj6-PyYvf zfhhC~Ii1SH$YfnE%srhFYJVk;40~?KNmfc z8?CU9taJ^nFahSA4&icWyXBsbK701+*j{<5Qik){HwtHw3d2=!QUp$#uyBn#!J}6~ ztO?e#0il_Rw~5qP{7|Z|fDgjsCOrAzz%`x+z%1su!ceV?XEx&fz?SCXz?3te3wi}u z>^5%|hLi`U?xY_GhXSoqjzr%LggDWN_9+6qKuaUQlURZO939gX1Joxb)vw_eo6e0;yBgzF>r<$DhdiYINb zO9>+qv|wo9uqkG2a21RfwM7ErnQ%J+AC?WPAz}L?!E1Y40I*Mp8`fHc;$D%)iPGnNCW zmE4;pY$Jw}26_K5^aA`wk%p90@8{tjDASBbkoIh(`E{OGyP?BgIX97&Z`n5Ydofmj zSik4?E#BDAQ)pi0IIH8EdfRqDmQ#ez_#u2!Y^q-?_IQoaE^0t?)>V$>T>q#N;7XMH zYW(s$wh@C#VUMixqwB)?_<)<<7&eo;S*Jkgp(~E(`W$cfDv@+!xbFLX^qp~&>FOXa4eRL?TrJg+Bp;LS;`hJzb)LD*|E9o^D zh@wnHxkK?tkktg#uv{|82cWu0K*%+e4+ujrdGsj?L3Hv-_45&@3NfLXFc~2v$db@| zczyFw7rv>9q)?SlzMlD1acAKe(IPfO8sBfED@?o5_*JCV7X?5~BTw7Gg8{}_EzW|+7gMi+fINzj`BnPi zW@%y<%z{w$Y9k2(ywc(hrW0R{5ev<4%WZM1)wDvvO0w6y;&-FbOiN~n z1~BBrI}$y=+AfpAWi~0gf@Qh!3-T_DRi5Sz$>+9bG;kUGk$VEB5U%fr1X2Osw{iEj zT5D5eRkTRI%q=#kD+rg>0Zrd*lieRP$v)a>hFzAX9u=v%`xqBg6&(mHb&}SZ+*H`n zV&<}eCceWW!;$hoDbc+fURmVv|Cp?z0Fc4$VS5})s9>iU!_s%qZEr_z%#F^r4NN$+ zY_=i8B6Mf@lkLRn&;`{G`%!lU82=vn(Sh?^fYK9*AD?xc1`FbX3kdzQu!AysN5n9) z-U9myr;W0u<5eN8SI(pp-Pog1#VY#~2{gaO*^GGHGY|yft;n6DoE%+mEPYhRrUwqBGTgg^&u$O=r(Gv- zKb(cQKhWd;I4bLcGsrt&;H#c1dR~t+!ries;Bt>L z-4e+mF{}_6tRO$cQm~1*1qFmMa4i~@%CRAW!zWc+2iDJ0{bd8E{#=b{hv^HVexJPc zCFXG0$bgW!Q$QL6I4E)n2DYe*=z&Xz8IM9*{$%cxk~Z>dLvT48Zspl7L!XmK2=>SZ4x7;ViTA*+R2d56Qyx8&=R@p;_6J{{EbPzqL?AcgRz@K5C$p zi+<@-O`cQ5pu_f9n%8-5X0(=?3->DcnAa>u}ok+Yk7A8U=i8y6VmO zCvxLPdc=l2&ecr>T!^JIRxO6if~%~#3rXfNM!-jD00#ZJdP$yISKg+oa|iyIw-*ERKvU7Y1@|?bx1HX zk~mrjn<(C+1M;;KUDRU<_T_kGN+G_cK~KEtAprji6Udqp|M~?!gYClw{9jf6cZK~g zRsG)@{mW|kg(mo`BKxN%|BKM@WwreGg?|e9e^?y(&uku0l%LQ4exnZ}?jskent9>E|4JS!JA$veVYt{7(6;ZrL+S5Jd zA3?cboRO|-I2-ynvkPJQT6Kb(!K`K_3GLsRu;V|rzH1m||7;t5ej;?^xbmfaDEe+i z_i%XWpgbl=RmZA)a9FkWo*t%BwEI|zB=&QCT!K!gbF$f{cyL^On&iy^wNqz8JmNfnyCNb^l0|C&$KF@Q}dsmiN6QOUb z!F;8~;>G@`_Kl&b9v}6Yk-~GHbq~Ii$u78CZOXD5ZbS(@qFOvVbfXqI>C%{PlpmJ#rD9}zoe_g94{LE=ATrv%9)3E`Wg&#Y<4 z(o0w8P6AaFRGxsWNkd`oT6r%9Z;>*}>C*f-YPv?vGm*K1vWP4?*^)Wt@+H(wJuNY+ zn!X1-pMy9U)j}LUbGDO73oIliI5aU$HS3%2XZm)KnvgJ5j7F96qRvfF-TFu-)<}X0 z_o!$-9Xsj>8m1QX_nKG^LX~y2a~+ibIfrAoUs%VXRuHO8z^M_97;V6$GkA zyh%9(6sutl3){kVU%12xq=uILJ5jkCPL|l>=Km#(M6_C-R^_{#bh0+Hs5Ot`zMX1#F3|_gMq|Jc<^)o#S+R zHtcH{R|5}K{lP_b=#Z&>8~hj`BM{GOze{&&xNRLAsxYPEFa-wcy?XBn8@`U~srwc| z0+1`qm2zLr59g9=i-L09czTD{<(&0JD+g))ID!$4jbpOYE_=yEQ$96Jgl2W_l?2{rl!bDuxk^ zpz#!;Awu>2T+H^sVI*ef6LD8CocS)X7hu7P(74@wLX2v@;AXOnb(8zwd(& zd#|_``>q(#x*p(L($d&ZgmM=8-ybV@RbCp?t+FOVrBc?Y4b^zGmZ6ucK_H{5NPxHu zf7t1Y6D1okcN2eCxUx;b#~d~N18qMl+HT{Wv1&pE_9XRWa2p)owIaK`Z`j9`ZZiEM zQFx|*{!p79x&WtAnKKCRRE7@($V&-iAZ_)m2aQuGJKq&>iY z3`yVv^gy?6#ZYwn!(YhyG*tv!WC3^!@1x8TdkBYlY1v3f#+6u;{Zd&?Zq?ZFKUfTsIWu;f029+{s}0*`}5SjffNgGTQ9 zN5VuOwFSEnBfBnnLegRa!AZi{=BswVg~H6NBm?H(7)a&?IpeKyGL6vkG65H|kRjtFwdg_+C!&?sAGQvSOI!>F0pT!}owMN;Bp! z`Zw3Ade(Vx8*a)EV@rH=LN1~J1!~cPgk1#A-WI34(jM;yr#vYmAPSTLm_Ns&K|2Me zM4VWGTm4`>Q3pK%JtK`&aRAf#nSP(5+upV$u$HbWiV!hjP@^J;&ZGJ=4~JarY`lf- z+{CUxxis}?Y8kQ7mv*bCmio9^p&_$xFHzrkR*W4$ZCHq}mBr~-WcL+a&nRHOn;*<6 z`yF9e?ruH(HffsBKWxlAx}^*{8_YG{U4l7mtC-{XAuFj;nv|I>dk82M2on-uoA#Mc zzlwte>81qsCjh!%+Sq)5)oMD~CZ%LoMLPOpFVdV#o^^^dc)^il z`$vXvrZK7!0&|K31}OLE7Ofea?44?+pC%(+gWY(v2&CFI`_iIiUMA*PO7J!^x)K4^ zev1s!sSo29qwtJuOYf(G@S@Hkq|;PblkG$43>|AAJS&U#PbR>0naTpB|2(8!{w09!{prp4Y~96d91hxzC@7Vqt1mg%b_?Civn{6M2YhI#``0MoXv) zPy^C34okhMepJBeL}LKi(fdQ2QDw}V$Jo>7sU*hXO#}<>rIgWvh5O*PyNNxogjom; zkiKq~N3JbD{0p49z@#Z#HrW8$iC~@84!HlATUc&@vj+WgXLXwgv7=G@3iKaiayf>J7;q8#G~yWJiiq1oZW5p`9j9 z8Di|gvAu8IVJhtz{&*oY1Vi6Iu)7i{8W7R$CMP*h?gR8dLcoU3qQ0(4->?V zCQkFi#|tO-j8}bHs0SLbkZV^ocHNcY?jr_A*Qv};bR2XdLkuu6osS3L)vL6iWM+Q> zX@Js`HUU-gwM>F#?l-VBp;xuetDcrpDg?zKkX8U-pl};Oh4Am_FOz%Dj0wH3Ow`4Y zY-?q^sFq(PP9gFap08J$1J#NgURHlsC-b!QW%Rc!1@Pf>Dm9hl)x!~Nt$L5PzTAeN z3Y=D?Zd%_U;K9<*@gwQAQlTQ^5%$38*|N2qq!l2+UU=6+15=r44Eb19czbPqGhXRd zGS&f%t!(2~SrD%8$*qsj*38ebX~kyq)#t+cD3C8rzx&))NaT1Pvly0B%djns(yU;z zsc;|5w3&!Gs-kk$&;paI(du=p=8}x-EV?M=?v=*N!1$d?GxNUmk53cm0uz&>$)7Aj zWcW$9l(k0QCR%AO_L*SmYCKPk_0c$f!O;Lvq_q_+moC7Az%vPz#G?To-OIM&jgrnY zAuK*lFyS`>1T#NaAr05=AE!e~y$A?}>QZb97`kG4y142;C?io7;Flt_%tJmIdh)RJ zYub;$gR8EVT5CH(=E zKf@oyFIkAI&+#KOl+GS_-STorM(?8jB!dvU7@lxW-eMD9*O2)S5{q$KMVD90XwZB&%t(dX(?*<{mnUj4j5+x^a9$$~2VXB<@T( zfPAriRHh{p7p93*5D;n6znIBLGX#)dM7S^N99s(V*Zd(xk`x#rkzfW1lIaWj^Mxi# z?CnKO^qax>Lc#rK8u9-+Yxt|G`FDLnGyBCt{#v5UrUF!AkK69I-06!!u@E`sJ^ADp}b(SAPfnwp`Z@abqe7E)>3!c! zT@X8$EuXYFM?mE6%BGPT2xAV2S53q9=~DQT;~@YYw(%035T2iFgc1wwdLf!$ z%nUFiV{mQVkv%LZm(S*A7ITC0+-A2zShSi4PwQJ+*lCe)u&7P64D#Cw0AyTd$m8(g=}k+LtqWH|CZV~!S5=%4n?F-yvFWD z4`-6L%LVhRDu9PF7m2P;a&q1_t$4D>E*p@{q$)x2i?ILQ>0vIj2wY{IM9Cv^>l8y0 z(<7}gaME!)4jE1Cy%S4}_XtVS{sN5w@9pQ$?AHApUYA86Wn@hFCtONEHv&z=l3wiz zC1Dzi3D_9L$Qq$4%W7^KS~-aSv!dDX=!O5jKFu{YsVu^NB^}0uMxAhFmXL0vB^03R zHcG)Z4TF71uVr5HdY2_Is8PS3F@fzZt$$V`5vJIDhB0jt{!qWtf!h8#B=FnB9u*_( zJkiA%ZvKx(s?mJ|i5H=P#Pp`}Epk92?hp4P5!1#@RHsdw$a7dAn+(scpK<<*M_+^! z;0Qbb(ex8JuqKFbet!N&@syua^*dmgx&X#*rA0D?k~C~bfSz#{Bs%Oj7vc4YI0)@e zg<2r@muKaDPNohNg(baWmR#SZh3Lfz`?}n{T@mVZmUaOEu>;|>*zDQ zDp})qgAWb#TS3usYu7?MC}x)if89sjAvTXGS%U;hgx@E3Y%30HemDSFH%R~&g?1`P zd?Qbv8KtCSjc*PbPYwejGP!BHOOxhhiai&eChE?Rkt#=acmT5xFqhY{9uW))8`7rt z;X{aTmVhdZ!XWmaHi3H<4+CED$3B}8trAXe4>t0?Yt`S2_cl?cOk@dGZ~}2~bEHa) zXOUe<`HT=S;r4MFC<{or5m1093NT7BkleJNEIl7Xa!4@IQnn~&I|^ZF_*e+29$g4| z(@NL%%7YqAij=kM$Xpt*;Vh)LP(f+3@x`T)DDukT#lIiuyqg`Ef2iHd?Gj|DCm1+- ze1}X`iY!O#Re4;LD5c*;V9H$?t{;xmWUM;j!h@pP+Lof} z&wbacU0~B=T2jI{qm2hs+|@WJ^OE>3jv=erDDK&b6dS)zQ?N`ubVOiLHN1$xMyL43 zO$2n91|C}UiZfS@G-nLR3Hh_kIRYW16+D`Lx&0{TQg)2{E8Bk{dJpeodx8g9NAMk( z>(wvR`SWcEhbUc%rNM@HD@i5++QBwG7+b%nst9kp(4rbx}@8+STIP6=gR+AJhCAMu&@z z>%nm@hbv|giAo75OVlspKxbRRtxuZ#Fo=M*)Yj#z;p)gzR%gXh=RL&~0>>pKlFm z_^=s824gj1Ao;0u&OtAC>cd)!Nf*O4RID!SX!shQAmkyB-LsF$_0y>pSH3N(!Ybj)pTQ`JmKA_=?(A5^ID zqvwBq#=TL;6-D#lLAr?#N|K&OF;$bi^TmT?shO+c+NtWuDz-eemTfdK21y4Y6L6J~ z0ra2e0)3XCDOIy8C3o^ybNF{c^E+jp^Wp{WTn@OenG&nP;TKcc;#GcW=W$f3Xn~ zGDqJ+n+C$IcHc28UN}j|pn*_S&&@s@Lk|%wvsQ?Lq?4S#@T(dbW9m%ffSC2y*j_)+ zwX1-e;E(kPk$2U5gj>|saka8y*NV~)lbpA4zyM)J`k_l%Np)#crc_cy@?3WD2T%MS z>DLc8e57|oIhd*-iYza5Q+MZ?P z@*ie=@PTK!+*)4d2V2s*v+@t<0>Q56W6WA4hfglQ)owg2Z3zx_k|%Yx!!~-bx~~!; z0p(l)x|AA|(z?SC@HpcKZi}vB9vbVFaWA`5nQZGc=mC){Trqz-{Ck<(JF0oD;|#Dl z2Gu-TdNq54(nQ{#mdY_{PtF*G`PHkS6PVxnF@(5~7`BLyKT&U=!jF}Z1;ZOtsv6oT zCww7qe7ePWVG99-zglh+cc;euuBNcm5q`m${h;9I_jxA7@9|Uo5`}1qtt&cz2}7(^ z$;6aZV#u#lk}u9AM`HIXGbH<$rRR%FoATKVN}O1-ij?B5K#K+XMgB-kUnRi(%7XdY zmtp;%%l%(jB5ng6S){-YQ)`9NOvWprQ}TAnO%lOEsp#UHoMJ8mjYfV*|5vMh3oeD80Mq%V_=-~Z%Peyl zn&aGBBBgWdcyo9md>3q*q>zVc#~!H%BaWsxj&2lz;kI`@!|S|eJ8%7y2A~*jINx?= z2kAu`2~6LiPB>KSV3&Tem*>_zZ?N&b|5nfL&uzbae#~J(Bzk#Ri6zH@05=wcXsz9w zD~Igma2^LpFzxUDCLIQi+RIBZD$ggR`ZtzcfS}O^EMqC5!*OicGoac2;aab>~@%7u^z zL>+ZLnA0!cBk_~v{q1$KiN*-U_DLZKUwNy*OqCR(#DXg2kw0ni;s#mo8AK4T3()#* zX=0k)xtnBYlTauHa|RQb{@D{jxrC6t&LwV>`3_`xsy-^=a}^x@S+kuNn)Bt}$jp3*~Lt)dRz}$i^`?jaFV5z>-(*b6hDUTZ;2yX}sCE8G5 z7j8>*_%{Hg%i&PM&2(nfd){Z+URnrZ%Lwa+rnE%BmfvuVVw*-4>T~%14Hs$ zb#Rrg!uH!ph{@1i6qIYs*Xc-1Y$@o4PalT;7pxrn;p8NAD!FXbxS%v{=8@ZStZ%nN z(S@@1MzSm|iah;UnOu)wi6gs$9E`TO*xJOsE*COq4cT5U1f8kRFc#@3U79S zdlna=wyUIjuz+t3AJ?o+$`gW1bd(*vOHaagU0Qq9#X|`Oc@cDsf*lVHDB13&r6Bdr z`cSYC_9H+c25s2_`JM=2f=sdRb>UKFAV`7=Zzm9{+zrYQh~kv7+cWx{%Rv}1uB#c? zs?gH>{%URJUgcFjyH$zAm(rM8<$)eZXaR(_iuUycuYl6E2BUh|y^uemu1k;N2R=Mp zd7NHLX2Yp2$wi#UOBeH-PvNu;)Sb>=+I{?oLN43IWs<78PNmVo0kc6M96$Cm;%fc;~SoQL#8Nn zgz_WZHUTuhD$P6d;SAa7D$sMdDj?t7_LgErOmX-ak^?;Lur{Vm+aZcg1}PTyIX_Ks zp@f`A@lZ+=9(jg5@Z{yFc1hPgOVydqD~eT2%_tY$+O-EuErrM9o+ZhhskhVM!eS`H zDXUfVCzADF9ifMa0*?#8&hE&t*oe8xDDt=eGy+uBT{>Yzif9FBG)AgR`sVg+${52{ z)q!Hly?cw)M+|8*U^H~HnG?}`rKBbGnlckHw^KwTKjpaGDkrLYn5yC!K>J~^Y7K#B znV0mo3-%jZDXTvKrgkDANn2zRC`G{<8kJ~n^}iXbgXXkgl)R4gV{q+NJF>IWUCcnE zh5#xhs;j=E;)*yX_R#rh1B{+#yBr|`rpo<~+W{DCCvZ7#Ncol*oAg1*jRG1OydyOEMv`QD6&DtW0lyyX}WaY^IUb00^i zR91|?wl(Ns!(E)e3mH z`u*m1@heYBERkX!of{0)t^|k?IEKO9{@XVit!c&ACrGnFVrPd7msqVy<(0~A;3=Qw z%Z%&3xWqQBB7}7~Ua;2i+CA@tSL1}%3gZ5}HJf&kh!sClT&s0$u+^(DmKyPeIz?qn-MIi)8X+9MEG{c)@v*Ft&QXhaX_O@1dPe5 zV?2$02pRBt2jBfL5KK2+dS+m}Iui|ei!f+^jp->t7L;yoL1Veo4uZV%d8Zqi4L%vB zNM|w?n2tVLZ4<*CT6|<2Y0FLF>3UO103;Jg*Uu6D?SKn@#^jeOe8r<$o2C@jVDAx1 znSujD*8;zMveL5qL>7E90YD_Pw)zh)-l-{&dmLUTcIft~=-r4J>cK-tv2%`q1yRLy zC?hLwLVil$OGS+^OhpkRSJ@CYCr(nZF3O90skw9o1W|T0bb@DL2EM6+xR!qY2+ou% z-qFPGvJi;BfOAwMDHzL1aZzd(WvnwhntBy5HxTL(Vo7AOPCV8&S6EHIj8v z>ip$${@P@TEowj5nt^z0{d!&C51xAwtptG3v)hhLpiSCF?E`pRqM(LTccu=&NcWbt z%Rl%z^so`(yf$&^)G+u)9^nzlRjaWz?&iL6z+evjAkUi&ZK)kFw zVmquPwwQ18)({*vY5}z@&~SYjcJl_9@Xw_BAf(xH3(azc_Z1wY2&r}yjvhSe$!bNH zdtE1>!mSqPLEK?RGI7(ZY?tu74)qA6a947Hac=~1iS>ktXCDUEnP8GY8HbW)3X&|l z*F|=4280{iv6nkl8_vJlH`q%Qm#Wtswrmi1_68C6GzjBnr2*sV$C~ZQ?5MUI2q@uV zb*`LVDS;WyHg=BaB|Oi_YfUSNf=~F6{=|NBO@WgQ*z2Ifo|g63{YAL%mySy(evWX~ zI8vFNMFY+A*ZK*@k-N=8<8of6C$;hD-^@pSiG5eB#hw&ObPbFe;n( zo$+LPx-U0}RE26VXvVAJ2)7Dq@{=l)zj2UiR28VC-ij_r#01<2`M=|*`(Sv6wglXG z6S@5v1P4G06F%>(SsnRS-&PJrgeG>ct-mH78u>1^DqBdW!lAz!iQDI|@f|pi>KDhK z-2|m6j4@@eM_-U)xKF|Y={c0pI=>7Du5e>fX%Y%|Wl?SSQ+d^RvD=JOct1wJ`)T!tTt|)z0FIRx`?_l7ze$ z3#&b&yq_7-o-T_&^k~Ag4u53vLC2O;k=YEhAWtwLxkChL0_n)`w{$W~QH3jTe~4>S z-SylSkw|wjX-(l((9<&wriXXT`B+ymp;$DLYxvAkz&ay`gN_4oyn zmjOCh6*Y{T72hp1kjqSSAc}7yOJG^E+;HZ{To`11>wE)onlCSSw7;slYxg~nh*6V_ zorxD*)Og%9yx{iJ2dCy61am$`E%~S-V4PXm?@e#57JeWjgRK(d!J@~v0Z0`wM#(aXIlt+ z^d!i?PgakrdQrVDg?r3^$;%V2xto8oh_zb)C+P*H1W7MtYl>}!(YRAl=UFdNxDzWa zA$X@DJqje8yD8sorvjTgUF_L~-!u<6m+C<8&YN5dy6+e|U=JGVbTHeaKCK^uj{{0? zOdgGYU_MT`F28v$5GEzDU)emlw^g!8pubL7nvfX`mphL_l#QFB1@&d@|5~F#T}09x z`})B%PohM((h#C{Su#>9z{D=~5DBYiNDzWhC(X_ARUm&tjP9D)={Jm+{yC6Dap6^J zVX@zjftURin!*y2KaCRp;|N3MA{>Al)0Vcl&{bMzvu8S%{Bvr&XDD`ntLUzJopIN< zGgB6%ODfiFbx(k?gTqX)e{du?Q{uJh$RYoV82P%Ccz%ohFMi$EC%$YmsLcNY zkp6vBgEPh7ik>8~?Er!3FUZ3e_U~UFt^Z=%v42G(uzXQC|Egkj67vYLu>ZqNtY2(F zcFq(Y z*dD>_HRk?!@ij1>?4K0){B>Gk>OvfOzLO%$IK_5;BWqkZA^kP7F?p<+=09)?T}xJC z7T~8Q9r6LRpuaHgtSY+!j>X&0iV&YSKA$4OsA2yG}wyAob=#Z9+e%n`tx- zLEqJC*h3~Isv3BTi<7g+ZXK3aZMx62)^>?moYpi!ZX$Tvf%OE|ikwn?eV;FtPU{E6 zbeMFdl3K7I`#B`_RGEBKK@=gh(`HD#%>5rB3uuhG$Y^Nv&z}eZtvk?a5vqjFBCVEXdLnsVWuBEOOF}Gxup<8kUvA z4Ut37Hb4xmI<2(4f>OFDc_RH|vN*@%ci*8Kwi!&5??b_xtPHs^bZqw$z z@aWi!aUOt79l~c)2Y^brTA)Lrp9n&!E$)A9_Io(v#Lj=Y4Dw9=bPiUUMb=!{O3;M% z0M8xPyOkLLtTT7~(?)cB8(GX#7{c3X=iiBoj!L(LV-SaP?V#txqr!O)Jj>YFXhV1B zF4~F-J|y$(%78?3{7c?3&(ys_gVmQqB7XUqE@is@^j19bGCOFZ&~YA^-ThqV3zl#O zf?xI86!KS})A@-l(bW&h3UNn8voH@gF+6TfCXFNuFgTCos-0BHQ46_ypOV32={JjX z??@z&C-O&Rx48wlp$Z1&`eh+XvOchUxBFdW)s83xHn;pc#>gF^j~_G=)zUPT-gw(j zuVxi%fT4PqaBCN^2Tst%-;cPgb4$Vr+!cwEAgGrJ^o^hRsk-;aRqy9g&C_oi%q|Sk zJWQCMfcmvWyHl1Atx)3=6+N-+YA)1Z!RgOGI(m^>I3P>GS)GAu{qebVr0l#yY?`_h zkg^U9r)^m8QPiM*{K498JD4#W*df!mB;CIlt?`$N2*VjvqrbMWZTqv?ocJzH2EQ>V zyzXJ4S$!@czUd!A!@_dU?0eN%gFg^ho|Clw2K*s?7xzxI&faD;hZWSQC=;G_Q}xNZ z%&7^zHYP-UXT@@~9b!M~>pG4JG8DsaM4J1?3BB}tk`6@v*qSWbKs<0n0mte_%`naK zI~hY7bp&kqr(nk2NU-b)n4_lRG`AER4-vx;)iSXM00~t_SsLr9&WcLijjIjO{RX&X z3*g)yw(2^FFc`YOTnkl0}njg8=HV$wEVb^vI}x%DdJ*jQeS@rn19M=aGEF zCt#A*WQ^7BSNZ!GE%2;vpUPf?Nck}5U%1=5&>#=zXqDGF`FptMqQ0kC>zNnT;BY{1sE zYKP+@d_-Y;lAj|C+n|oYbH1{L-eh^p@ec&s*FaHK$ikiheD9~O`ftlPv&w|+t#LN9 zhH*ddwLf*VMCpK>YrERr2QNVca*0JnMz60HbT>NhZ75T{aI}RPI3K8*10Hcr6F<#N zq9TDDeV4q*f{N%%aKadWc-=#u9s>jtW6v$=Uqpq4SFvmb~pG_0rttah2 zW8jwM420*QIGC<=OvtynfP?U@;P1Se+$1c*IEs?g8=XcF<~`_ z(7_EL9g&H%=C`jBNZYDwD0!vYju#`bbdky(b4@_$i!&3*ZIAboJSMinM;k+1^@3)N z!|^ptAzA2M-EPnsfENzHI$lj34(3}t;T513F^){XoA)#Vj0Q(AIh|m?YLY*)J zVV4HCI~Uji@l5#(;lFlM9C^pH0A*547j ziG#ZTQf7ZKz%f%4W*}hEzrf}HL!5D?+`LnglmC}E`@0VMVx#|agO-csFTs{rbcdky zm!A4BF#Lb--hM6kezBmL|EHe%>hAx)=lokG{gJxqmUyzu?XP;e#oPi1Zj%f1hpqUDf^Xa_t{_@2`}|e|rD_v-tZd2gU-Mq}7R|GDR@H&%frw?JhpJ;q|Q*cLn5{`F^d(?U#JLJWW4S)juvW9Ym0ADEd2woF-}=#0*x8APb!yZh%U-@;}?L}@0w|<%L^Axo&i-O z)W?k(ZQ7rXpT$?cN%T9}EJtt^nbj?NrS_TVV^x=KHFH<(z(q1y@S&6GW{XJO96FI% zZ91?S7v;Vsyn{u)alr*!{M9b;$r+HPE>hOi*3IZMO&e9VsTWm1wYI2C z>Nxtl+Qn8O4I%*YklR3+T;a7|mZx$rpmSY(D*beIug_L8hpOJH zSi>+Bvj{nz395Pm`${$e^dvkDSy%Sk&+f;i^5fywugKjgobIHo%NLJ)mc#W7Rt9yq zaP2-ijjEAGK5RgNBJ~W-=A7M=k`RY?+5`p2HZ?gTo1OsRHiDD%5rhduXRp@^2urCl zIWA|J-_jk0j1!W#KTnr@^e#XcPMT9SuLY}lJoJ$yOaL!6kaDh+E#G=o8AofrGTmtj zeIa-{1chX&!$#oix69r7n5^i;hu1>2kE-KvhEQth_WHa$iM(2SYAuY^+d@E5edS6iZBk-A^5vxM~UU;a&4-j%=3R6qc_rmILhQbFZ#TngEJ z%%7y3aObSk9=zkJ>}JzSHpYDT3&%&tl=RJc)T{%*eY6b?W3s6R>k3i`hO}Qgp2ZXa zG=KE#N4%k)wEM zp3!-L{wk0^cY6FnaU@SU{CNn?3~ii0!Dx^C$9j9ND?h;)MEk*him^NC4?JyAFVMgP zV&F6?USMIDA5g5gxja9-O(K4YtOUoT|Rt z8c6aLj|N9XYpe$FJU`0vYkis-GAu`>C1g4QzeTO>@nt5N-kSqNP-s!G{MOVaVg3QL5=CrHdv zO@>NH&Vug>5SSX@!Dfa|gKS<>Jp$%x4loS2{ z^q@q{;hT+F+=3K1^6n_tfZQqy-}@RcjaLwGT!B9;8q`pk>Wyxn2ydTgN1dFnsOF1b zN|G|om-w*fP|;}+d!$c4OD#B#>H2AVKT>DNhqj$k1c}Aba)LkV88}6SVYKIB%&K^EJ~Di~8~B<5QivMRPdtg)N7B0A_7_>WDynn-W~=sdhL-Qz+M)J zJuNZ5AC0o+hljrwLJjgRa4O7q;|F09q={R_(G>4dU82~#9l#*lYp52n}eTX`$3`vafojiyX+$v_2DY%MiFjB*2i zXn7!u#d-Ax4wTAWZ{DFBL-4>%HfQ zi2@f}G955dy+4{y7}#})t|~Yzx$>gEcmab&t{TlkjFPLe5vyQ{sv2xVljB>JUld$q zg|J*=^Rk3f$^qY&wq_n7eP^B&-UMo3$-p>>Nezuz)O5eKE1{=_0tS|TEO_zVhLa0!FD2CATf z5fqD2m@V&i;j<32_qZ0=it#!{v;~cMnb=*6uI`{;dm?);ZUY&JpY7zC--67M%S7c@70Vn7Yiii6#P_Tu6lkju^b)F3zIQ1rB`GC zhfVTK<9=ziszhGy;1*_&>rn@ODF;GA5knvVJmO3;8C7?SYbhbb1AYhC-mUS?*kJTv z<_7WwBOHlIqiM79Q9ox4wtF}M?oP;Gi)s=qR0TCbtNl7x&uuq96RMl8NuTi&k>)<3 z3fhzFX_xr#*vj2F0E3}^*x8xxWC}MI!u)xtoIvub1$@N$bVIj75%|Eg1e~-pqFaHPqUTW*>f&s>ZHN16p!-e&4hA9Hm2b; zHs|><`hzrM7|>yFy9S&t5_j^V(%tUk9YdOC@%jF?yq8Dyc9kNV-hZNsd9!jlkQ6)) z#?DY14l9J|hRuD9xQuA^k`Ybdf1O2d>|Xr7(c2#kQQ8Ob+=SoF*Vc#Vd2!n>>g(+3 z7jJ`}g1g&JIPKfBxVe}jSM4-dQRB2xd^gFPH^`-L4UqJvIZCA*x@c>W$GL8A7>o}O zRjfbwLCSFv4c-t{A7d9)j4C^`wN{lGLn1N}e2@gU_QEozG&3?9PGXp}8O~b}-E292 zWvpnb;b#Vu0`(_Kl`Pk7coHT?oS6bP+zgHsej(L3Tpe_7&E*p(v*ReDwRLLsw6**P zC+3=a4L~gM5Ih}CleJV%F8yq_K+tao1RoAF=b=Tg*5KMa(%{?XridFkyEma-En%B@ zde)HuneI0-qVA4n*C=dwMsM2y8ewtnR%S-!X^}&$z^^}MYNT0#KllH~*jq)#xvp8; zxVyW%ySoH;cZcBaQn+i7!a{)H7Tn$4U4pv=hoC=Mdv}kuc6Wc{Kd6Hm zGw*rXb;@AD=D=zQq)O`lbY#35hz!I{;9%0>U>yvf!nmm=$0QK?Em-K4r9G6{2}=N^U$CC5z9v%@t;G9p~A=LGRm|#C>-bwx+g*SX6I6s)*B z`Q=#M70~W|bAdjl#XCxwTAuZcDVqM-D?-b>@JJRlmPM^R>-A)F#l5N1RNZRLMXf=& z;@$No!SmaE;RGO*r9ei03k&_E(Yo~ujh6hHy$L*JBukB|HhE9Rn)tz^avV;398QO4 zmJ8cD23IwKiID1fKs@{*j2f2Xb-wl2o!%h1$z4R@31?IUSU$8kMQ2pw(rm^(GTb9J z7sRX`GR`A0Y!?*_x2T6pS}NHfI&)I=j}qX|$>}@!n7sf#qhU&FX%tMyFKVP|aum1H z6%n{h7_J4bH8f^4d68cPCUN+NBKIQY?q6c_5Xiw2RB>Hvyp)Sjt;m_O@)-l1B+ciD z-qUwVA<6U^I7}u{h@m%PVQ~kgX)_r3lFZR$7=s8SDmqtmd%Y&-V`=(J4XIG}rC}S# zi(^q!4zB^fg)FkkXn~lbgP31lDvIFcElq=9S#ofk;hjN9S%eYNr6bG(w!Kcn|s;{A3I!D4_Q{O6Zq9U)${Lr6tq*6%qi@j#yn zBhxw9=MjQcp_GzN7wS;(4oZ{iKCS+OQ4ok8$^ZpfNr#xdD3~j72EV_1b%6L{LwujeY1Q3I@y40Rc1eOslcSL`5(xdS zIXi%JkN7QTfhu!!mW8S$;k@)fUuFb^c)OOsj}l<`n?u*R~en#jLVYxo5TB<`W{}#t8#wt@ASb z8h6L&D$q>tMxEpex<(TK>P)iE@ADZZdJ`SJR1tv+ii_*LMU{uKkAFOs;g#=W+gii3 z&86t5w?Y!3*G07dzV@$>@LbIzxd`r6|S8#h`6Bw^%0&|>-jOs>rk*n16i!%F&o#)kVv7!n` zqBiu4Gi0-X)qF==C-Fc^c)Cwp=Z=0L2-V)|Answ4%cey5;Y#C4g~DmXcXm<%INR0} zCkB0rx6h9cLrlMfP|<>1L=sqnc}fB4KZH`YW{P+$X;dqIIWKMcc?52X<_Jl6Yc8zK z4oP%W2K$gCE=)0&fZ57H1l)*@u z$YY!?0Ih20(t;SoQDZTj1517)HermEsgRYM*mC2h@?*pG(DCnsFbMqYlK28(`Q(IC zy>6{{zGY=EO&q7V(F2tqR`9j!RMry`ojBS_;IL}Ho9q+6BdQmgshHJ$7<&wxRI1p*bK%>i!n$=_`F?znvr45~Jq; zc2I6D(i1;#lmPIOzN7r`lpswrttT*RQ#UC12M3;{I<#$f^4iC;f#JNwf zJ&bUh-=jVj>7YL%zr$#icR<~?SufX&*L{!u>%pR*#AXZ8n`&$rkzNk~-!>gi#amj$ zn#p9xl0Fbj8eG|(aI||888#ipDf|jOMV<&VqbGKuUvYOSe4a$XAoIPj`&b4=m zdF!EJ?Mf(H#krvf_-d>@4KW5(uU6ie65fQcWN+Qp1ku*9%3#^KzPooyz8qqFgo}(9 z`2KL|ylVJ^!rt`lrNjp0<31 zpaUcouL$w5Ba?5o1YE{t7h9~kJ>XG^xfnCqofLYr%8Ng|Ijo4@Zq4*!%iWBunY$5v zY$yUbP!8Dq*4STj%r4Y9xQWhP803A<=t3~gAERB|JdQ>ao4bC*W zEhDjNIf5w-U%y5hShSUrDmTAk$z^2SSeoYKP+H}9Y4b1gVF7%KepmpAoOH4P#yT^F74&dSdsbXvRC|`d zj`ef=;v%mayAzKP{2<=~$F8;xyWp1rC0wa2zkL9{IN^c_eOth%hwtT5alU9!ckr8G zt_3BLQH$(iC>i1y2UkTdTHzVZ&WUNwa3OuaVW7lCQ80?hu?a>gJV2qBgp{}5noP~g zgMLfKT3$E}4IaUux>_^WO+q_}FOBf!>C;gZeWfn+hK z{){f>Ve8X8qUMUof?NIcZAL+GJb>oQz#vw=f!{c0LWPV~|?qK~bAp_{)>;`6eS3&>n?2=$C#BmVYc&7xNXVT1%n}{g2B?8vP7zK1wdK5i| z8YQ%6HUvo|C+kpu05hmChj6Qz8UlLXN_XMj57L$R#)D-SJfw|#NrT2$97ydJyv|>G zjr0oCeu%gRK+;0+X2$Z*YAYTJgh$P$#!lum0KHRUo`WW_8`5x5|= z0tD@XWfCQpmAuc2C#%0@_649!f)JAB-^HRRhoC?fpxg8H1>~+BexF)@>Pa9cN%*z@ zsk%x)(4*POhRtmBWmAHv&fd!0f=)`k6jsNVex)3+{`9TQIb-k6NBwp>L!q$v}j{6HpZh#|gD@IZHGKN7$YH0M78*inTuU9T(F! zQ69vvt&#fDV+>`4Gbp;P_rv%2s43wkkoFAFNEqAtx%Ir*fh196e{pyty?Z!yXg0*& zyn;=1(Hm>EeZhOP?l*hZBboIw1nS4vNqd?ChM+QW@c9;gRyt9o;POcQcZ?Ab8GsZM zh#~JrfZ7ZFV*E{Eou1vMWQ+x^8UjY_TsQz}YLsev>^+$Dm>mW8-4N$mpSl4isZc18 zoOIt)EW=qF$=wD$Uqs}{@Jp8{W070Q^O3e1xYAnrWUhgmZf8D}!@y z*U{6##5Y+NrThPC12VCP0}?QR!ho^x{52e5{51&tb2#D#I!{AU{x5eJ?5uyF8~>Pk zc>cP>z#&8YlPzIq`L}2P@2d!o5B%Z>ruAR*32>4OlnC#i2iQMgmAwDHi~tIBapE!k zFHd3pKxT4%G^_s4@re5mW6|n=?=1R%%qf2>F#6|8#orSne_zk|YqI%k)fcGK4UPm< zAVr4$;4}WYcAy8yx$ZWjeqb4$9Mn_82A;P|=hZEC3h0U_;^~2RM4zMi$7rK&m1oVr z7=449A%TVc(%wd`3NgL$*$wcTXRqtW^!X}*KYFT5Xyf(La~n=7`=Hh9slhmu4JRLx z9)TI*dnlZmzBto76(hk;SL_N4_D4)C{SjyG$-m?OQzsO8#^#mkB{g@&Gy z*NX;0j%qwg`_%)$b|s%(mUu%1X|1lD%$SwK?IxbSrytfAcY2ib!`Mv^4QQVS(e0uQ z;#Id7%#<~@^lIFkFxAiIb;9c6+V{4?XJrZrn@#0LId9%4aVwasI%15-Rq2HxE-bC* z!d`V6zvVFjkTSNU5`3lSeM5{wQX2+d$nfUB`Rdy&n~ef6_B((3opCjvbeZIPl2-9@ zh;Ja6)c@3czR!Tu>8t8SJMe_K|B*qe7`bB&Ui3bHW|Z&~Hsf4%C)?0Y$F&zX=WWPF zEidEnIaBCj4QL>jNR=jQeni3MG0I&D4dB> zlTbB1fD;*K)q9K*BL4)`!i}9`ROmj(_;|)d)C`rP6E5l(9+vk?G&>e3do}?FQD&@) zmQbfq7DHD^Tg;0z5Q(UTOjgMrN2X8On{hKHr1U<-M4D;hHz#Txc1ZTI-F9%xzrA`& zLwAn@Z2Sn=iKn+=gS)!3I`?bHhykgrNo z#LiV`ZBq*l2;5X-Kem#uVN8BPtld8fAS~o%juU=+t+wU^85nC6_dv0iHyv@>@GzlO z(KqB0I(qYwAO}g|LiFJ>z1d%lWDM1ky z1BB3SO^o1WhZx^@!OC;wi;)qAxMJm;vCq8eB5H8B>avA@m8v`4D!`x)R#;BqH56@5 zWrcO^If{(z0}VkPuiZ%@u@j5a_Y#40N2lS~pp5Bf#GMO;niwIYZ-9u_0;>?N#4*$H zf*gR_`h?b^d~RDz#U*A5oH31DiPwy>}UQ| z+pysrbbiX0sL3UJK$eyCn4&h-yz#iK3Q>eK36jFn85w1X;Q5J7#WHi=o&!ArA>d{g zMg|6iC5%Cp3X2F6jR7+tKB@wAKS|9GI@c~ScS4j3sHndPZ|2+5VM$7FmVeHt7GR9Iv9kZA4;Z__g5 zp8^q5-;3e6Ov)!s$_>Fhk@R+LLWawf;Q3-De!ItV_@jaHb(=o2P9=bTPs$2sra0TJ zX+v65<>^+z&2~CMW>xNq%IcvO$&mt6ZxcrFBm?)PgZI?m+fv+j^SU;bY6j?iT>t1Z zTS{7vYUDtQr6wgoj(&L7!(hVqZJ5*Tz{Z$ur*<%IYv!{_|4561`*I-_U9?UsYPaON5DmIZv@*NPR;7s z)hV&lbAhUHj4{kK6uR$v8k@~g!P;Ql1zTYTb=KvQoSD7|R@<~`odBL&@wH7Q3}#xa zyxm}nAFqCPW-VjAsMP=~b6M!l4_0sl67PwWf$irQ@?d(Ho*aAHFcIK0U?hN~V1WbMg*?2Osjs z0NI6dQb{f;_Vt|HfB@i-Z9g%;5NfZeT~m?llX)kL++fI!=$VdE#Q3mbaX&Ea(iv~* zcm1~cl>y&6TT@S-_ch0AMt{xJFUGagx9plJ88Y!>EH^H*odmJOa^qGKHVILmaMOb| zbea%@i8rUeClVyexhL9QTld9au;=*Xb227+(}LL14pWPu76nj9NlRswAw92-_W~d) zoc}6Mt_HEZywE6f3fZU7pvg^Yb4>ga zYoIdOE*L0K8VJ}ocIIfXO-IQlW;)szvJ$!wd&LCy)_VrrKLheOqE6yJOnxN#iW|iwP=W;+G2@6d- zM0!D!+YZxdd+R#7w5OmE-qV!i6Z7XUG82vaKSLf~Ir+|MSWC-*_y@lo;3J0HOg9<9 zCP=O!7drtr_S#xx&_qq!N9Xn|;F}b35KBuF##oJ@N6q>!vRyr2TyMH_3V~KPi(kMD zgy(YtT`~1~ST5ws-|_eICr&TF9E6=GozB&%dF+N=+ANr3R2gUv=GZp7#A-O`IQr>6 zzs;MhSjT%KG9MzspG^xGT3#I!e@nwV(Djk*8QBDs%$hYM?jTjI2ZQUF)-+W&f~cA_ z^0(Z(HlDd?{xbTx^oy8?C{0qy$Z|!Qx}rX#4EUBLi&_@TOznh&ZBgp^}x6lqd>wh}%tQ>y?FBLoMf245OS^vrc{deR2A0EL+ zzSx8botgbF)c4<2^M9OW|6s$ju>M!n2RP9LPDuODr?GzACVUVL{-*?HW&b0Ab^m`z z;D7k}e+y&(GlcV}KL5XSH-8e?|5Cj)Eg!1)D=#t(7!MCH4}ysn@DiXt(-b!z#|pBm12Roj)pJBxvYZ6`~fO?=2_ z61afQ$j9f0te9V$CuB4dNo5?(Ey!$`=4@z5lfhYhkAm%QcCF(4`ftuRw$(8b*#|v} zmig1s_l_EAZyW&NYvE|08Lz=b{o+SEz*t+7rL(rdsMC?P0B*3|Ns!2Ic1{GRa`Y9p zw3Ydy;;UB{k9{88Obu}6ri=JR0x8eu=P?1KA55-V#XROtb;btD!=j1wl`q{^LWcu%2xrEU@K^nFSJr`VkeiD~ zo8+RsaiGRH87vt7SVYjBZfv`i@fPpkwNI~W;{d%3Y_gElubO1e$dB8Cq6c)+l1azw zVuNC`g#Bb=u3&Qr8eYnHpU`fH!Cvgaqdowiat3sK5yY?-br5NJ7&fB@w5gW}c3FC_5yAXmgaintk1^7%TQ7_Ko61?6 z>CuTEUaEORJ&qI(A>FBB?vi-IO~N^@TjB5?W{Em`+_MCHk$2~i2gy&ZZ+PX%8*}+( zb((^_r90m@J*lW@|Cjp2?(+Nu_n_iM3tI$Wx0+-bBjmau5z82&0=5$^51Z~xZOo}` z6xH0}cr^M_gdvWjJj<7zZ<0}hD1N^wj~jiM29%&{B@raINW7%YWgQtJ;(~Y+x4;Gm z|H+{_{(g*^Jv1q_anu93D%JY4&2G5S0V5Z=3P#kBRj^{XQJX-Du~tEb^-*U*Ug;d5 z)KYjY%zTVRRo!*5cL?WV#75M`ym?iPq1%zr4=N3Q>5}W(7@9(l-D6_L#6ltC{F&T8 zh5#ji;Nq||{CH5#_iQLC^2XfzK-_FA&VZmij(EzHL@YdqE)v)v9b_fXk@s#~W>Ues zgC(Qw(+a9)+8|A;mJ2yX?RS{7IPndj2ouNN6Xfyu8BH;EM@{Bt<`Ok4Uior_n<7u` zw#!Gs@m;`|uaDhIAV4yW2US~IN`ZH0?#^NY<2!veXl${T&~Ml;?=R&e5)>$TXQ_RJ z<`4xUDJ}yvEko^8VbU)9Waj`bhhfR8H0|@BMCb7fK?ND#Im)5VAMf}!S{_0GU&5?5 z!kd1|Yq~g(B3^L2fHRUszVp-W1ov$L;B7q5Z6$zQ@#HV zmyC=_#L7ctg<(5xjT;yiPA}-FqJtf_Y5(g)JeYcGrp9C+3>t-+mj-U?+24ADA55n> zHYBRcot>AZDY!J5{Cj~YbQ@;^YkJcftH1*X$Z24IAsxeaIvpiy)f>r0hgwrGz?Z zrOP(hbMX*SzZuIUd(w&9#6G4==~p9fSuU9r_+dLO>InW};_=5|g`OT7)33n=F_j0y z$2gi7IR=hc`I2Ci+4{co;8bT?T<}eI$Usq-KK>Ih4F4!ZM=pm*K#-DmnSg)j43t=5 zSae;T*e!xd1y-QBxCno$r5N}Z4YTcqaxIE4MyuX@@j2fmSZhw57*VngCv$0Y#StF9 zc%0&l4yBvDHr%!S-tn|&l8Lq=)K9SmDEhwrJvfDp$ zl>_v!Li{d4EMgIG2OQ}lU8t7YGuaiT9N22=hNwWD(8fTSBJ(wnS1Fm0Fqjyq`bo6qT?R=y0~Rhtp)TY%=7D1=a!@6# zJd-vfGYn*CI+=Z~!}qEd@tTd@X;Z#%jIMb#$&s_(Z0~Y?E(@^y+1RLo4hydB7doX% zq-zT#bL0wlQ?{OOFDOoRIGf>Nx{J2sIe180_bttxjYJOCrNKqw?RWio-D5?zU=FFV zlSq}4B@#v0fQP$_d7SYIx;X97xT+H{>+PG`?rhzDIjSD!DxllJax7DVb4v?+`69At z;jp;d#gA|M4nqYOC6aeq%WVONg)*J@U$sS|^RzLQFwTx;c2nXdPgdE55jVDE)gIzo z{99)La`HRM`-4kWQWN==mKb)vjjKMv!nS4ui&!nm0DNE7xV|avS%sn51>D=OEvJYp zLXe%3g-Q?FwnoB0E7_^lZ>q8dRSGxDKkbMq55sSotxN!P*yx;^BEzdhUs_cq}s`@PEQ*lW{ zTs7!i0Z?Gn0)B|zanQhr@2UQuQuR*rtk;U&E>k?rtPBp8rzl%?g(-eDo9w>$dt5)@ z)}6S!vRsvWk8f2;)zgTN^0}>^WR}tc`rn!1d=K3L;aC{qL@%G;$v!t@_kZQ_x{XpY zGKpq+@MD4ZrK%1`>xoOxZaf>k8la)A)84~<03F7-D}ks})>|oFDhvYAD7eb(uAB|9h76LFq)qvifyHMfd=m^p zQjGHSf>z|p(GOY3P0Q!a0mj1l++K}7^91fsfhSL8zq!BHugdWK{-*haviKxQvFd@T z6oAI$P22N5_RfijeK|R`gd6#dSSg@3kZ`Y|u-@W*fWqM9( zR#D6L>laBz;0a<05LT%}IM{2z2F9-vKk@2`nWoK*q~m#T`W~>^cvFT2u~kHlU?5H$ zKDIdyGsBeVx`A-Wt>ngug^Tl4RQDS6@Iao5JGGX$NH#ml8P-8C$SI;k8q4|JL8HiK zFuO?jng6+9y@Ymy=Z?5Oz~Vd{?7+fiaAKeV zG83H9{~aUxI~Cv`38BB6?SCIm{@H8vFM}Sqjm$(3#?JOvXAwBtM}F(CA!I{W&UK9k zt@BXpNP0mVh6sYVbTx#1|7>xQz~$1u9a>uq%|WFgtw4YG_uU#IhqPEerLUS=T}F%y zXxyjoMvtx5olmVh|F$vyV*9TMwP}RA`-NI_eV%h{k(&ak#Z-H_36 zMwT+cvU($AHZ#DNch)?x(&s+7c0bmZN;}89NVrMCC=W>)YiMHet>x}5kUTejuR9C9^9b&*>lyXT8hwiy zT|P0huFNG_<)Vtv6*btGT2%&Z*;Gh+Hs{*V8+!gi0W+)esvNekM};wMaqhR2&EY0f zHN?gmb3{4Ib)s!VX=wHtrVGA@%zAUkr2z4vlHugC6%D0@i%3Ay+;g72oNJp+jNu#N z15K??MUTG1)Qo>1h+jAuB-Q6PSl;Ezb3s@iH6b6hiwb!4sbbq`X9b}QqG3@bTI?vw z?JgpPb0fVWFW<9P8!8B*eHTBvOHEZ7<*>Ov{da}azPWwuaUGgb<4m4JX~DBrLWuFm zbw{5F{rY~2kT!tzzWJxI)y?q51cWyy{yE>()h^?+#)N~KGSLdSFPVsaD1)SX+g87_ zp%*m_oz@8X_|ucVQlc808gVkRI`hJQB9$Sw&2@-+8V}~^Oo8F0k6CH)j%R;cH=cL= zSw>kc@_>yN|I^)rKV6WQJGxu#kV4;=y?e^)-PKmVYG)e&7Lwt}0U}=}1#DtaN#r5` z3SI}CMYc4t$xsedU~Ig#3Wi2*ecz}_e9|WYH1W5 z(5{)`j!OW-ZSCg?Dj2S{!G-#ewOx$nGQ-^i!-q^11HT(rVtv4$;c%iX_EoDQib$KbgJ|lhikI!9C1}@fU$dKLQgD2G+e09=Zt5 zCySw$pRFt1O;6I8LUO`M&FUw0ns&Q$dR3%(58(k%`xywaq{(*+1?&calQ!==DIOPH zlB4zGeLfyD?_8=D@?eU0nyG*yXf&4;?`>;94tc8YjQ36$ZoE@vfa|OfvHB76!Dr#wAmJ%Ci?L#fQ3H=PhHcitNNDBRoGVUVMJ>)JW+>Y z0R+NT+zfG?6*?KNBv}x&`oZl?UogV>Qe!R!KxbI41*nJhZ<|#)kO-URr|%mZQR=*d zC3#2Me)zq0^EInW8OnB)n)Q@}G@4XRH4GUc$9q18kjbVo zv`MpEstFt_HHcMuO*mPP6Way66yp8bnE;BGcHjKc+&FisWH9&0Z-p6`#2ke8{{=H{ zu*j56ihbScGc~$$QQv^p%k)$<3C8NP7|aGC-X^& z01jw3-%}A#5%$2ii#i}6|1uEx><&8&mha`*8w&{Fu%+w?hwEC?A1KzIr581Zj^^0y ziJcZYlK4c-Vhpl=$b)YANlaPl>BkBSD2|B}@q)?h2&9>sX6Zd9aaXQ7aCm?z=F$Xs9^kaJ`K!9X;7_#TP-c zw(pY51R{LK!J97|$lM~!cyu%gr*l_yf&OJ3);~c?4E2ztthazy>|K;w4hF$Lc0R4i zUZ=oD&c=aRg&jR0B%yH=UtDayV$Whm0ZECGF@UTIxai3wd&rpVY=7Cf|8Tk4{wfan z-)!!W4EcWuzQ4*u(76A!Nd7|z{?#P{%xHu{r}<}($e)-w>jx$Gf21_n{_6iQ_*;bh z{}hY=h?D;_n(=pq`1feWztkd7#e|L?hn@Y8O#QE)D{tXo<@T9`?W5_E#Ep&)peyIN zJB->n^KWBf5Ya#cmO;ZE0$ua9K2S-%0*=U!nvd5V@gj5Uvz76I zFRK$LKJE)z8vW%Fn1-)+ghG!mclR5}U8rK3c*ofXAO!jwJl@QQ};~2+PORXATHl5H{iSGVm^%2J#&u8Z!~QK&2%m8jn2!M zZ6D5k&8lmV2XBhN9LsI#P?C2Np)=lp$M4&%QT>2PXv#8xytP9ItPQHH0vZ%dop4iy0zXY_p(w;7oPl0?^-Db-^r-(@a^VV7gVFpeiu|SE1fODT_fGWhY4EO-m1y6 z3_R`CX1zvfk}PVfXUfB4-WXBo?Fff=p0`&!aP%s=g2G@woosUC!~_1tzheD{gT98DeO89*O`D1F#mlAAvWn8Byt}ZM+uxi(D`4c&)ryn;Mbh+k?v0)mih( zYxq8ze9B`uCfTKAN&T)S1(h*4M z&eU)FPjjTg-9I5qJ&Ln{26Q=r03&IxWfO;!0rTKdxkZivkj4WN5)GUW^JMT$M9Bkcp*mF(GI_Ru8)fc9ThyzV%RL)!??@ z16yP)AFeW;!(0>&P2Q}7T1Q2<-FilLN#(f6P!RWn&e&^^&f>0md(dQrYNluHFYN@1 zCt*fY{S*TR_hMg8&%~MTze|EoxR;>L{9f7KN#TQ$3O*55Bn13$UK-gjU11ICc8@Z4 zq?>Mv3lHos)>7J&Hn~Vj1H*qFf(ib9^puGbRF^g7@vPl84yjzMBd)pOXb^r;mT%BJ zj^j`xhR_>FedkP^>#`;gOJhC!m3D>7&s?}|9ycLmla`t)7cKdEf#BiJau+m~knJXc zI*AcRs^A6Am>*EmP!~wzDw5bpOIK$M*@IGKSKo|`E|((;vEw66D$LjlRon*^yMmSr z`mimo7_-_EB{HzhNTc3b4!&NS&gQta)8qK ziD9n-Hl4Ub`Ll7X%k<)Yst(%k-FhbdYA71qZ}y1ZjhujbKE`xa82CFlskRL4Oe9Sr zRMw%$>z4@vhv^`!V##?7Yk5O=V4AIX+D37&)8)8!%izgnpnWe6S!icR>J>a4Ns9;@ za8nmr+?gREk~uLQ>}%6?V2Z^-VjN8@1~9@Ci|*!?aJN7)$v76AHM76lyZ!b6zVHDQ zAP@TD$^uX(E1N2FpJbLyv;9gb7~D02Dv*uKkW=iogx3aAz~Ib=zLibj0&yt1qbXq! zdXu&cN+;GHWVlDEe3)){B-!GwtH8KQ@YuW8JAFksT-4xquoQDG6N=d;VxfLh7!2Cn zcZiMPxHT6n`qQ8Ae7Xuo~SO|<>{rj8gNJ&(cGoIaW}1J6hu;c>aY&nOJ#A!M-}Q}iN( z5nXrEqTiX58Y2oOgIlws-vqUOa%ahd|L1$7um)t*pcbr-xI#V>PAyNjHI`wNQXh<( z`$<5a4@cfII%?fPO*MuI#6g!m;qj~5V-s{B5xHg_F;i|Y!ku|e*rKTs;{hfOBo|Mr&c;IRKAW3|&+QV~gZc3|?Lf`Tw;I$JJy zuv!qe=b2SKv-exoJf-_5?*V*}%_>#lGA!>X-KWDimV?!hSa4~0cYX>LI6jc-T<^1o zCrxI|m0z|K>~k8HYR{tvt)wlSPUv(1bbxSJLYMk$RXNvlzD-vBf-RVk)!f@YzR*wf zUS8FYmFOtA^AN&`?dwdbW-u^>_O-UOYQ2y^=!XESw$TlxrfXVr`Uhjo!){XDzD_hA zH=su@UA{(` zAD0d$y|-cPE0n7KGIpcV#Y@j} z)uHjxn+=x((^^YJ#N{yi^S8@RkaQA30%V!V+VsbDTR1ne2Ks`~>>V_`AhGSY05<1v zVod9&J)7#q0#E=)Gi2H>KjK$F*yRRwUh8AN_^NOu764fKL*cs@M|5#cl$6vJSzRKf zyZ}Ja)UU%_1yOCy>|g;+H47L(PzA#H1qF8Uq!~n}A7k97#tmTQA-^l9U7Rp87}>%-2(Xw(^|pmF*gE;05nwG!PWva9#&6u6sy zy+LPGnw2n5ie9|{-pPZpOQNZLV9 z#l+73pH?CJzYE6yt968h?ZaREcStvRiyQ~~3{Xcc#-^JfQG~(Zt;D6(IfDe68NI*skP-w7^pWoBTP6vq7l}R`q{FBn9 z;YMQVyB#cab&bV_7Da)$7e^sU2AA5)8VV${Q01_Df0|!3Po9 z5-#a`*rf4(`+dU=c!{}#{`R!K7cpgo#HRt(Ixk8L=SovAo63mvO)27?;@eX(w(WI6 z`DF&>;nf14e|!DV2ZGl(^O)^&ZC>bjufx$O)qN;>Eg%ygcac4)RZu8{?6l2~Krv&F>{T=B~j1bEmPgB@pAwn;z|hna6Mrm=`|(MjeBTWqD@qVzM{ zb=mF68eUQHd%)Y8A(1E!A7i%AUZ=ccu!XcA4nBp&SHRiys<~HIW>T9HxIH)? zv&K|kkyh54!`5Oz`eUI*4u0++IAe_jd#?QjlLlfe@^gdnCeJ>`k$UZ_^p_{xD6UzJ zF^nyS7#wISr+Gi0h76*$U6#U+t6o*3s>~!H-NIxY$yF>=;b8GN z#R5cs8EV2tB$w^{hO>~NB~g#R)nj0vfZ3b~p_H;hI{n71;tlp)%g!)%Inps1|DJb- z&9C(DmSA*zrGYFtkdX;UwDi`_%a{09H;W$jh-kSvMS$c(34$$s2cC&$`1~coA+wl0 z>HeqpiC0Oe8$L<4iTNe@aS%o8?m#9dr(~2;BDCY)y|)FdgL#%;EW{EnYEU{kc=W|$ zZzMNCFG*C~?V-hW!CIb$ANNshT#auKtVK<+8LOrmP=v$Fo7s#
    IP}SvwR@1fsIc z-o&_lGc~*4kN#8-KVysUXNNNnTQZ1NoRK{2Y5|N>rbDk3R9>LAoo&{|_BI_GswQ*L zOoQ8uwJafu#qeUhG2SYt=aTL566J&pDK}vJy;x%F%biVv*0~ca8ge3GlQkx(;YBs2 zt+&SmEo{H32U=D5GONV7AIFW**gwT*-}%|~k?J7Ciam_2f9Kq5JVb&e%;*p62JsNc zBL&PnQz*fX-snUwO!P``<(FTSvBOAa%=0Eag=Y{s^rX1Sg;M zfct0X36qFk&yCwYSi52(A#I_A{?l5@_EFN{oE(__OVWI23%cJ)@l#makAcAb$5Fs_ zI2XPX#p)0Emu*n?!DaOzlr-2MbZYpd)p4ZAD8v+S$^M+%BCKeA9211@ebFL97*?F* zp4~lY0>O_Ey%;-T%?81=^;65PFnsOxzq-d6v0D|O+2FHa@kyC?vZ;+0-ZZbEThTD= zLI<;QaC#|vQsHI|WK32+?HT$0H`0Nxr zsiX@qyl@bwtjasoPec5H#ErJb&%r9@$w|ZwG?yRU&SgWO+-kX;8G9=+h+{$cai43WrP! zdZr9&7Ch-a=$D@qJivcd%Z0u`oM4CtSm@{!(DpwgzkZ)owR-WG*xV*Yl<0Hek1_2~ z6jCs;h}@exgD{%9!4v zSY$e2>ZF)>km7H&^7-l&4O&>I9iub~qnLokbGJdeG)<1~^EK#R-aH`U$zTiEgw)=d ziWll63;(u!(aNL=Nbx`yZZ0JD(!O+uv5(?-zMX|~hAT5({%>mO_M^mDh z3AS1bsi*qA6%G36q7r_(?H{&tnz^}`#VLA@Ap#jBPr524etHj2f$JhRU%bn6eJv7Y zpTtLb*kPO(b)QAODU<}jCufbM3oo0{<211j*W6EI-or?6t+U2lK6`9moQ;c-=Rq-jWS;hw1i!$Re?AyZ}rSGr4$hO zF%D9iJZ-{ayc;;ewaQpnNbls0u2wFX&IMKk_&mvg(LbPa3(*abx0jnJ-TAZ%Dxl*R z`U9M5)zq$E!l^z(b)+k&Jw|Pc?BgZn(2KQfCQd4cAtDPd*V&iPAJ(U*4r=ZZzQ?Ye zgkBhom^*Pz54{V++icFetvg8aR`^xcG#pvkTvCENr&*5&d1L^8dSZ>30 z$X|ddM{`s59Xvu`?Zk>0#rb+5q4B!Ql&X`~Q;g~KYf?vN)D@6ZruIrF>rj47Tb$c0 z(id1vO#Q;D<_56Y;UxHfyKabZnPp z>Zhh)*WUvylC;KCKFzI%x0cT)RrpibW{ZF%85Mr6k}OQ>JVHg@JDh~Q$|oOHiXdn| ztT88BRw50xmOjzYN^q2pol;Z7xI%<&JJ@I#z%c%hq`WyrNIYn0$u%oq4O58L{C!?< zkTUb-E783!kukuH5p>B?0NY{nBleo5M|qpwj`icc(M`AbcP*81SDiNk4TU74AW*djV4>OSdJ?B3uzAy* zSNzsr5XdL9TcfQM1xQC3_p}s~#IKJMC)3Fj*1ZV4<}&j!OfbBDOcHv%#Cdu??cUO# zO`yv`uT5s)>qo^cD<=okif=b%+#2 z50qn{t0pv}t3@w?H7a!K+2{$y09zZ_k*NV0KVXfE98hYkb(%Nm@X2`1lZ43f9WP+7 zd(p@)VpOc-C66Nu%Tq>2uhQbH5M!?sTiZ}7A=kd3_mZd86I@!KK{Z=##Z&gnl{rjs z3eBrnz<$9VqqMfY=WCgse#SQtjc*Gq3Hi=mzBJ%+SL&nxG}kH3PTtr%67~=*B1H%I z)uUL`TYTm5HUP?m+ywg=@7WXwG2fY{2gUqzQf@_=)VxpKQ-Q)${4z?^ug$NWtHAyo z-zruh{0ukeRYWMuz*)khzd1TDaSU$_lK2z9fu*%(^XX@x5J&*u1ma=^+@fgq8>5!x zlFR?c*jon0xpv#yxDzaRaCdiicXxO9pp8RtZ`|E2XmEFTcbA0V5I$Dc-e<3@_w29E zkERM9>8HB-rslZknAec*)Ni`p_(bUAn!^n{^1g-95)2yx*z;D~e@HK>eq!7~bRHX9 zr@uXJG0hx9hyDh0n(sq0-3Iwhy_04*Z^-L&rJh#GVUaHSaL9YE&>_clkeB-)Bwg1i znXPK*2{<~rGu#_)yfK0+XdIFlIuoVk`n+@tm97GZ9u_mchsS7^qq`N9^ioA>##Qx| z_=gMH771TpfYk$*op3@HhJHQ!9UA^Fm5#QC9##N+69_utbMN@)FrUDUU~fnUjrK(Y zy$kIwQ(m(1g7gU{EI z!@;AUPWZlEk|V7kTG$#8>G-cKSSpl$;sEM;_gEV|z^3M|TGu|}f|nWck7MdebesF? z%O}uEHT#X4DP@NA8@wPI+6qZw1jn;)ULYq3Cp47YOCiFE^4C||zQ;fxrJ*(P;`g>#HD?Z-+0=KNQs(Of?2Ah3g?f%hnYmPLc523Odlv%k?)#G_*)St!ujth3} zf5!5<6co2tbZDq#l11($P}2ckc(B03WxNH2_~}3iQQ&3=%%@AHwq6L}I6QLxwym)I zMJ#`}*Z*hVf#rYgJG?8t|JktrEf|0I9TLMx5&zbYfA$#IxLDqmC<{<1j}GmxxB2g_ z{=ct$|AX@X@!zvDvD34#{@3W~KOOz=S1ZwCDF0Jy{^>aRr!VDyCF1;{LjTU&`ipe~ z#=`m+TKqj$i;0y3nD>i@2HBhT5t|UrJ{+MvWoPrGmZH4ANHSzVhj-r*tiC=gwFs_z3M;9Oxr@gnAS`bGC5 z-CJwe-kSz4`NGC0yA963Z?#u}jdejpCa1iqI)<-t+Q8>im^BTgE0DJxm>x^jkY-8j*?+Hg_D?0I+5G|y;YXky0XQrKJ@f zD5?x4O*qhtCEoi0DAB1*f^=lCRewAGm3ls;5?wXaR)O>yUiJLM540X@_>kf+SK`@1 zZ?4s@sDkSv9e?2~#0BQ)O&FSc0o!q4vHG9dov-|K> zFA!&Ughhj+j0Y`q5A+(gl|5!u7&yOSsY`$1 z>#BB2r1$Q#oN_DEoJ6O8aWI7~15w48cOT&_BX`fIo43#@Euj1P;-5KnFPKC|2d?fx-fEB^7woHK$MW_pz+X0`Hfx=g_wu@Jb+aqOZJ@lPC`*Zo=I|i*}@pYav!Ye zVnG|5LP>d1=fg6`epqdv%d&7&v70WFV){fCqipx(=e@_2aoQbT3+)WUaDrM1t6ls+ zQ0u%8Z@C|MFAcGl*nd7OtdcT)xoU3a9@F>?wXB?yx8$HPOj+FDPyJ>T(qDy&kn(}Q zF9<+;{^(3MRR&>_y+nGnjJT!uqM1jOmep}M28TES=WrGP1MSAf{``s~06Rpmgk7(} z$U1Sqk*-T9eCS+EJdZ<@%ku33P))N#rN6WX2MKu@#?Zt}q{vJ~?mht5PNw472-K}a zrHYhdeA71)VWGPfZi>|U(b~s`(_k(QnF^?oBlVuN?tvrgG(|$A9>M3Y;_T2VqqU80 zV277MTfVWk=`rz?y_;^y^cRF`b?B!jx`=~#d7*hUl>(JdxL36S1%EL)LXLCj3FXek z{*lfUw+JdJ1Lwx#gy41*m?Abw3p{#GhM`)idFGvZY>U91w3u=qgKw~Auci9np#&Hr zSOh~HBgw4+!O-+q;$M6zT7^sO=q*no)S^!F4Rp2WUiyGqXY}3E_O$Ot(S(NZ)Vqw+ z&*|Ar7-w5YH#|hvN;>gl2q}0XVSrc@1RjVPcRXkY9ZQbB3&rzfZsXs%RAWDpiNV%syvw5-(Tn!8+dC_U zS~O9Znd2lA*02m7ukSKdL!$s3Zo(Pp@!TZ{^X2qeLuyH(V-K1KTo8!3*G#Qmf}17e z^Wmizo||y7G9{;Zedg<_tStMqCoZr7hi8N$D^n3^4o1SixUkN-uU*~31%mEa+F$tg ze;V0s!ATwz<8Sc_SK3bR76)!3YHvsy-Eyi9QAal>afWeTs*Xv(;79=i%)0?ZvI>UX z$qCnUs)2BD!n6pc4_r;1yFn$?E;gWC0bj|uNvfC9nz-UXWRU%=3UBpDY4kz@g-GS& zlfu1(s0XKo<>SgYy?&9jvsuEkGG(=lq5VAJfFkC95L z!o0R1mL(&KDYurCidd9w4+1_$yAxXV-)m3{iOXqfk{<8})uQsN}IQui1ON7&0*ZVfPm*@}%LcnNea?5SkeE7)8x6LIfXWQZIEt3@FLR(FZL^ z))I5ea=GI;%g*d-l1@^A9*0iF7E?z~#n4*mEPNI9FL-k7;OVpK}z_&I$IMcA0?Fmy0H zw-!2iakNMhv<8+T{v#ivr%2YH3^rtH8<(g$^NiY_=pPde6RnC7xHi*>%I6b3MdsT` zL{t-rM&Blp7iN*Ss`EQ4gZUwN>aeS^Q$uRe)|RgPw|W89sIIr9*~+>!N3>LvoHPdp z^}^*caW$sW0NDL@dAPAB3#Dq7j_!JG^eZDRLK43Kw=YvVOKa#&NWcmbVVum#m`B)N+xUbxaE&)WONWqRD~3D$FVL8W>@4%NY~ zD1emjXOK@lC1!~qyzkDz!ldTWczKAAxrJ@1rA@!;TcAd)-!__d7fR|Ep+1UJM$Def z`vzn3grwur=`*NIysL~Aq!LVgVvqhTW)O^ohzRxesza?UJibis8NG0eEzWJoa7Q6y z1ElI!cY$_=isXq*7Q2OA;{FUWfFt_o0DxVQL;ha#vZ>aYTRp%kd3)q(1Hd3erfaks zFrMe+Tp%99#(9r^X7_neSp^rpjp=xMf?(-WHh!zdLuaO&LSnYmhOf_ngVN4=qGZK{ z-%p;Q3tFr%j*u1MVIL_fc`uCn=Nu8$2=bpt$V zYQE?))5%i8#_n_mx33|q73I+tVqLCkvl!51q|Ar3Il9IZcXTbPE9rS80QHih5`)0A zEVhEZZG4+?t+_#%4AUD}&1a?Te(lnObsMcJ#+z44trOLIi@<+D74r9!&i_QPFu`i9 zAwY1{H?U2#ODiiE{5||ywWv8SfmuJ?Sp%y1*J%lV_9}nb*|1ivGxc#JOX66hdT=!V zc6@?IIw2?ox~tFAjGh{irL%3Z$Xwj&>sU^8zT}V^RqJgOQQSC)csOdU8Em2y@>jxd zJ$AEa8SOQ{z_Yx&J%39tVA(VjVqzvF#>e-t;(w1ev;Gbwfc~$c0U-Pg6#jb`@UP&3 zRx-rDf}>d8jr=oPP(&0Q{~l?6hlc(kso35@qHG*M{uwAz^gj==aBk#Mr-~o{6ng$KnGXsV8@n1*T80p`Y(qEWV;NuJw>c8*%9!|yfK61RX1%(F8-iG>} zJoWy-e>@j62N(VOn8SZM&scv469E1x=>C6X-#=!e|JiT+LjwMhto(-t{A0A?k1PYU zKS)HJ?;{v&On+-dHlPp@5*j!w(>rjMFmMEvt$cQ|2$iPCMoku7)4+l>(t{bz(lY)50^S!-A&^X%-m~hht{xWK*U*v zc80Klx8bte{5FbREFR&WIj9UW^@U+s*oCx@45ZX@KNw2ek%ll|%3c$W5V2$Rsd^Kp zNXB3hH@OUo$yuZVS%P+GJIsuER$LVz`)GIV8(C)W&+DY}o(?=TzkD5^=izr$;Jv}` zh2G|8uyCO@KB$f*JD499X3yz4Ll+UunIaKLZZ6y~%N0?2;`*dj@akf`!rqti9L;PV zb=SFvf>yHvr-Eaj#f3FyRJ#cC6x(WBX1$Q!b2{Lz_}E{6#wf^k>q?7B%LYPBGlMqq zb^r6#;oIrHZK12KKS|lB<9r=K%L3}R`Yw@}ef!_b4V3LSNC1O{?LR>RY%IUq=tO@H z(ZexFI6JsG68^Oj@z=WK=l`o6|JSa?`wGlN1LjiV5dbNgz&U^f?G*6fENon1ICP-z zFR*4DI`Fk{Fg7kAkvb()Gi4LF6)2GFJ#++^*$mDLe42$q1k$Qgk^`f=!G*!t8N+6} z!QWpH%`@GQj6Z>o=kM#~_uZqq-|wCqNP*bw@fC^$6nL`*g$nvN!+_)8TPSS*h7K^& zb1?s2n-stE*8aKO^6zt*nCaP=n0_zR_kS<%Oah$$VG{hq`uV$I56latz(RTdRDR-apKqhft67k)^Sz5qj%l-8DdwHNgI3mc| zd_9EL!}1BPf(ar!9i^99|#-mPxw#eQx{oE6b;{$}5J;~U%Z-_pH1q27%C4z%8-Fn9W|{~gi6du zKow`jvcdYs&)W+%RZj}pjrK7P+6Ljfs*C|Q>D(iO!dD)i&AnqKU$Ok$~;COl&kHDob0!YEQUQZ(m+#0!=G$TUArx40p?8@peS~#=lT9~Z- zfa@CziBL~SXc*MY6>60+ZwkX+7uzA1rR+2?sq!9zure)vax-gp?|nv;$C0d41@1Z7 zPr7qFk2>nHAB;`V}F>M3AJK>+)n?B zZd47b9iwmXq_8UKx}6wF8<_F=h4R}+g?(@;~d)s)Y-SyxFPEYG4m z+zM7#=~k$=1i{iJdyy8+z9`9=V>b-7o-IMqk}lnL9{PS~CwHzo^mb$5a?|B!hMyu;plIP)Cp^Zcc#wh!59Fn$uE>R6zA3H$XF> z%lC7ma&@?aWsOupOzKm1A83Vck~UKfS6mSJVFimfYyX$jGJTflUP5LGf-0)X@8w9x zwWr|RQA_#-7SEYW^f!aIUV~VuXf5W?i|Av4GE(u_p0yZYp=QlqULXgp@S*7>(@ph= zOVw~r$Kx0$&;(uuFt-RF`ZRjK9s^9}?swI{H#o_RPp}(t7Iq=?x5GmVLKj;eGAN*B zzTjrZ0X4p$)LehU=43Km?N=gZL!Dm*ilLnAu;d-{! zbUQ$QzqYKD!!CDwCvo@jTMnn6KwUa9n)pid z%txp)YD;$tk8;AAwosLAs6Mb9#>fwib2EE#5M+sh-(b=3g}xs}x0_3{U;@rgSsWe+ z94kkn89gCPR$%IQtoKbVJmzWj1f|T~!a77=Vip+|uoKjlLc@J4+u;FF%Hbyzoz&b$ zAyBh96=OCHHmz2BrNmy8o5~wpE-NL#>v&oB6OeJDX`{#?8SqBhIlnS(+Vn=o8J zBf5t~#vomjScAt+*AV*$z27)}XYi+TOodCc5siz_aELZa<`b&?_RcOc$`%PuQ@ z(4!{qt;1v8=PK57c-q<@TVcIBFQ;pXY2-vjjd|%4w&oUPhnx=-F+OhFgGGX`zcCzY z;xj89wsq^Z7>J-#$`)(b%Aj9(1qWBaEvLZ2f-!rv{PKPR3@u($J%aG-xg0mGd@TfNO^t$4L{u!RW z7#?EG@sb4uFk^`^MvlDm&A1@eKz(94uPFs5ni%t$PH~xC>=_twx zj-9~h3C=rOo$W`JCaJI^TjX{*0nu=Oy@QJ>NX6>7BGjD-X!kH{U-_Gv^+}Bojw6ls zQcCz9-o&$h{H+#tey^)`X1DVc7Q3AnI^*61BG0e>i*J)0#PwiqF*mvM4Hi(|IVGbm z4S7H~fD2tNwAwgAC*2rFP1kH3vdjk%JT@kN4HA^IMSg9j(Lg~Kqcp~EYQGBEjR}cj z1?7Jr{Q6Np@a9OML)p2GU{^rjudAxerblY@X%#L*I6Pu&Y?cIRfvz3VT|($wjWuN+ zbgvkEmlQ_Do`l#$y?n8pWAfA2BGvL>xmyISZNQqVn#4{EECUM&@8lc4@1 zMd@a=BGZ%z+g~Ny4BzDRpRBC7dQyMkYd7J^i*{&Z)yv0+~dJsmjD*6}OJ}lQ? zv?0zzK=ZUNL4P}6jG5!*nrBeCNaV!!YuQRpRLtM!vKWpX7Aw0ZN$?YwdP8F34E#|~ zyOFkiBQ3U)Rn2yBSFB_W3&r|v-aulDQ4RaH%xJQC@}#0QPUQtni7IEDcrLg#=26z) zVf%{29jOSsgpleqLRCeP0~XVFvfU0_D_q$51|F{~W-W}H(=OZ@{`d=b($#y4k2gqEf9=P=m9y2w-^v;Nch&i)C6@hfODySs)$;!+-r4^u zl>fU#{Yyf#|8~g&4_}}@{1uT^jCE(|3B67|BLQ?e>!IN zzfffF4Nmd@i`4v`vypNMg#q?nunWo1{Wa~B_@0IL+wfX$Z1jbLQHQ^h!`)h?Oq!ZU zs%W$US~`EomC`vSsp-P#R0Xkbv!5C?-X-?VMiRYg?n*1S6M5-`;OIvPXx z*)40nESI5An$c%D_HREXbjmewtb~G5bcm~%qO__Rhb01clBW;L)tjNQ4&AE+Kf?!> zQo6t9dAy0UpdJi_jc#0>wI|e9uiP_i1gRWtz0@BP&&CX{YPlsv%)^!=Qz=oom5+5X z94jP=M-}__u4ge1{bH;j6H4?0luF#^UIy+ORc{Qba8xq6IxDOr^ksFq+T=&f<>8ON zh$qcB*3)ajO2zlDTiuB?JGd_>5_naB(w#2qg?TL@fv3)HTvn}U&ZuAVGg%G>){Aaq zFc!KcW==2)B}Gp6(w;`!K&E8sphSO^ysO%@2sM_Z`Gn*11JN)=Ql?xM03H);UV$i% zK;MKu8DS(`lP|s%Xab*>41?kiDYZZ;&X<77)pXlC7rnQD-lng(tW@& zHaZHD`q8xSdEA&xT>KG6F+S2MrZ9hUU=u5r+EXbA6HtkSWOsFm($b^3An}E7Z`gA}DsL_$D!L%u?|$nh43&(!BF%Vu|hEKfyf8xaOt*SFd{nRgtDr~f>Pp?Q)na`c~JUY(;`oyig#%G~tG$u?!EQkSx{uWOvFER_;5qqQD2#{rvQ* zs~DW-ID_;PzDM7bDwTTEr!q{h!3F_JT8kIqwXY06R*UmXFaWhT4(yB~p^F2AJ2SmU z5Dud3ize1CC}BBH%*3`monoI(SmiY|q5r@zTrBxMtlf`gG>`-;(XaB!kC(j&SW7Tx z0|@*%xMJNYaO(2h-#S?%_9grHGhMyXumpREw{mb8QO~)qA2ef+YCn;{$^u;wR!t}v z2B&B8OxxHF%mGEPln}p;M`qa!(}Y9h9}^bQT-y7R%t)O?2R@S2G%)7z?#i2z%EX1Y zf!JwK^TsE7ylL1q2xdxpLiD#s@e^8+Pbr)b1KZ+U+QxPC0_kyyw?k8-;Y?FLOP?WB zbDHj$eK*<4cAvmQZyci(k+vn8J6{PjFd^_eFy>!+W(A-I4?VwDyr}oowamU^;0)nL z2-ll_H}o+3!azp7gm}+AL`!;3U8{&Ii(>M`wJLypag}Xjd#4svMUTp5VuKTVJ9G|J z4e6VbhbfvD{K~Gk^yACUu#5Sf+Kb-~Zub_#nNO1gZJqQG)UZ%;S)6R?!)Uxv=H5K& z2=-iO6BR(kPaJe~z84PTjaMx?SvQxcCp@(goY}uN5r+{$@WGc&wcUh|wM!ioi9_}A zM|gfVH05xJBBT`Q(1Yy;{4r!&8QubFPv}*6w}9P=be&+CKX`Ee=zFAjzciT?<2vZs z+OvDR)|Syv?p5_~oH+3ds|oB6tp%UFH$;vW$Gic6)BKV8-6NH0FlDvGo{K>IZl#y5 zwko8rbTTW-$;qqy@whj`5D_|4jpUNjifvd5mvG(AJmjgLviDRVk^y=-Ttp!igodJBPWg zvTZSd=?FA$rqi#o%DcW*lRpo6FzVq{PzMm|x14B~Dc$&U?gYdE6)zwExsBy3WDVHe zs1SI2uOZt z`?u!Vc+MO}Z+dB?TK#I#^A0~Vvl%_-uiZ`p)%X~`PQ2yQM7L$Jaa0sKGp#n)`Z zuDkAxW60q`MdlteM^qo{BSk?eSo`hs?Tr0)_reuz{A`|Yit=W8^|7`=cbCeVO107? z$U|zHNE{nX&;utb(*h*7l7 z!Gm7iW`jDu76RwV2v$vMc|ED=Y)b(GdVS{8KBozW%ZWUoq2g#!&TCsOYmA=+)htJM z>MR?d3-y5e=XrEl4-;U1DzCI_1E5<-Z)HP6;5E4P*_I>|! zRr!GUHbOdC;bTLh?XihC;s^hcNo)*MBI?e5z3g(_vm;G*Ot2B=4TF7^;0$nWh03=k zybJQX$Q`e*kgU2m@-}y%w6uJo0O)6^+|5ks5bv$p+xx2tBRN^0LvsK0p}dvs1Yitn z9|7P=$J*cwzNG7V^h)E}8hZTDLU5#~BX#o2#)YCr)snli#p1zvwrHuAoI>r~4c0IM zFC{n`zPYebz`8A1C;kbHu;AV56?^DmMua0ljC+(PZP_)&@Fd7}$qf=dz&6Z_b5Za0 zjJ|Zb?H4&0?9aC!o&{2Cjwc?k9NG65)DlM-n`pva-?7jyo;Nvc=>`H_i&-cV>;Mjy ziU&Nt?skTIKR3vkxfiQ(6(Y8!tnyE$lA2p$nGbBbIzBs?#H^OUO(O+ zk~(F;RrznA0!J-8hqIU7=#@;wpMU9xeB>vj2Hx@|6UdJQv`6xPoM9OQ%Y8D{Oi|bs z@sQ-PFg9Cj9CY)LL*8cC&Wru=A{i>T<8$f*5qj?Z=)b@}p%F5Xdj`1S4=)lIoxWay zFWhjl-)$|ZfsaB%ha5cV<9|Kv4=p{2qEN`(^H1+|m9pjxz*A}Va#*K;=BUQHajy~s zTT{6R9iTx`bCq|&6YnSBEIXFv!vw;!jeBZ0)D$4utxELsWTs0v^QGAbp&!j1BNQPN(|d>><9ny+35pq-m6?m4{k?uqe1f9-U;97*?DG8C z%lY4#RqsgL-&^5-)!~0MgZ`+{|2dY%h5FB6>wn-1fEMp+;dhh-#Cux!yGIg8Kn2i| za={%!@4V3%N1=qh*u)&+=TuWJ*X5#w-E&Sp=tIV0P6Wa70^!{6nmR)~#{UUIC?=y$ zjd^ES3|w+}-8>_&zNFTDeS{0UQ&`g2`esqgJS<6FakeHs^E(x9;Wq!t^9Rt2+ayZP z-s8;kIbN#it_w5Tj;rx(B1v`?Al4Di;1g!vfG7gUfMY6qZtBz$o?^70`$>?7oHxeY zm~m&n#C}G#kZ5;f{xo)rq;XYU#v~#rLKZC;QDNQL_VkFUOSip;gf2c> zdMZ$T2G<5BiXL=ic6(pZ^;Bh@Wt+?#eO@sC2}R`9kKjBXJR2*J(`Tp?0G&MxZ5ZeLgY@_uZ>vsw`0v1EFQtra}l8j1W%4a)BhYc;GOFeS~6E$9|`$gJdxR%v^AE zi|AKhV+;2WT{(o2SCNU105Jn;3@E2x2!X6sq|6Z~;6eyesEv;Ln&Bkl6o6V&`$_ZxD)bM#e9_UxT|HSL3d^;k{TfS(ig_IUTjG+$WGwf(tph#IN@2G>PY zB@kqiu*uP$Q8FomS`~AcF?nh{4jJ4SA${H&G$_{_^UOBT}M--1Fpc3Jsw3}!E^G)I=%e2^5%)r*#^6# zuU8HOJ_!xNL1W#sS6(wd{ZTa{lJ_=Totuy0zA*P}!Iy4&{s5SB&9(FPw%EKa8qS>0 zkDQRPdqAgFLvA5+Y4XB7YbgEcTI8;+*9uUx<8Dz1qC|kEGHXU<=E4g0MbIIYg@518 zHM?RFIN=QVazUTFTW3jvnqxHMw=|_7)sb)uu z%FIWU9YEue%OZ$Dp=^YZjNKBjzLc()MtTZPxj30yd70pz;69%%+l*uNE7HN1a*2c@ z3-G2p{6uc%sjX%8Ty0-OG)$_>2dgJP)q8 zMm1dzKE7;}pIoSt=m&!_f)ZYM1`DRDvx6z{|J?9h6WuBT&)SB!WmkC~T9>Qs$dF{W z%#t8o3XD$;MC4;iO;+BXV-395Po6duw0|8O^*^kJ!km!%4w0ekx2WVJT;G#(Xd6?O z949zqVhy;dvY1a$vCUGN%mR)FLgG1NTpNi{I#n&NSLWn;F$>;1^qW!{IN{t245e=XTP7Vi$9d0y*YH@f3ze@^f|7y^} zK)l{y?+G;-t%&mu-{Q1T|FP3O;%@@04r8Lngs6|SzukSll}-jSZ-4RHk}gON!fNY% zRN?0DW4%45c6~7Fb!E4;d0rnI+esC>5LPGkN%5J}AEZzj(~vhM6P;Zwlt&qi3L7f6ZuDD>hXt5Q1?~^I${5yqs{O3Ik_#oFrxRzfX0f{ zM*Ev{Qc@jXG_>qErhzC57!gSN3UHtu1kzbFMb&}l^D!;Ru! zv0!C29#g|u&XCVUhG)3<8wEKBwlSdk@Kpf#BSGw0xtieq@!&g~*?G(U62w2PGMP|O z6o*P2#Rc`NLj0&LAlN1AduqiJpw>z=%Gp7?!K3y;Vhi9wL`UfI8zb-%etc4;PSGks z?F6ZYO3Q^KKWaxpU+i!YZil~kozxLO0@(LnUz)G6pGl7R9G$_Bd3C_xWx=bRE4~3n zfCh^tbDoY3xuHs+5n?YyA7Wd%Jo>@7B2)9jbh8j$-29uG1RJBS*Lb{bwth{NYZ1&o zA%m~B<1zZ7Idxnerxx-hYHsI=-L;!H+y)l}GD}DABZGD^P^^W15tissJc2%xPrMMEjUL|<4*;sd*=<5KD9 zP@op1xINR&(Xlz!RRf1L+jw0XD&A_@5LDfNg>UQ~A&ZGd;D(1mx4{@@9#O@Ku+9Xgh zqygD&VA>XmnHzegP7iWR^Xb2kgbdDJ3?K@{XZTKB@@CiZie4}RrJF}n`O_DrSqDDaok#2g0Rh}odM7q0k z!3*@cv3iRDy0W8g3Ky5wN>ap9+4xQ%i+;|~%2jbds*`{Oz+++Qk;fNYjmC|{pABNb z;!Gfa6~lyJd+?ZQhv(kNa0FaRjHAKU*1f8Sa8gX{Nk4+!g;XnqCLrtr+{!7ja3w^f zqzFit-K&jj?6a=5@J%NNRq5PI+-pfSXFvBb@PDyucc-BJ0LVO`H#JTT0&fVby=&_~ zg*bmO;LMqd=Hqc~QAF`O^5wg&e1=3)85D+`5+10fBzWPTYEn4aSF>6fZ;!Fd@yY8e zWO*)O=y>A@%2i#4u}!`Jpj=iQtsg!lJpJSiu7rE}Hk_%Cx(+Z`dGINms{y*+g>iJ( zkaT1^!4hJGPSR$^SRTBm>-`%1kiq&3s`pHBrt~?L@_Rv|oVOD*xg3TMt+w|}vA*l; zw)+76M`8AM&qtgXzD?yMgiF!786KrPd53pO1_x*DgiQzL`e>sT02|VY>1rRf=Bx)~x1`%)b-`^99xVfy;XTgvUWi5zG}Bsj{RJ8916I$%aZu)LVp@ z2)@cvnHq1;pb+N_;8hOR_lX3J#iH!PIT2wSidUJy3c#Oc;Gyp)!Sooua>|+I-QzE+ z;?i@>OMo2~SdJv_Q)q*fj!^BBsfDP9wrEO8N97_EBVt&DV(!KD778hw8o_l!ap*rG z?86d+8p~8Us1S(zG0Nab(kciyEsg%TSNoJYmlLO>m&z<4b)|p5V~b~rfohz{%Z~bE zMEr;KzH%J?x)$y*ZI5LEKd?0jcup)&b&aKHW1J0!Jou&*Vzf)$o=Ggc>x-YR2Lg)v z3w~2%MeJ{<499;tWjOxRDZ}x%Q-W9=+VeoIRBk__wRFA*xr*q z0+49`I``k;+<%|T{BDy;3{XJ>77`$#%K!W5J41v0T}b=~LXGp^{f2*C$i%_+KI{Y} ze1iH2w0nX=NQ|0B1pJ>4!#{P-pKi84(mwtvdj2V3{x9u@|7t}1p?SC%30XM*%a|w5 z#K{i+{_Afn8<3V7>2Dkd1Tz=sf9o7Am;ELbzonW~iE`qeelh<^rR1cq)h(GxCNyPL zm3IN@0Uz5qMd*+u+PnA>bA zYd&|5N@dsCx_LH8OJ&19q*NbEDJOG=F{oI1CACB8iV%ydaxN0-xJzXLQ&vJW<^ ziJbw~f3~}6U5!)8)snfcr0VI|M?@1m_}$gnwika3ReEjvwu`;>=pK}~o|Vm#HD7h6 zyhG>$SW0cOB&QAEuP&>JJgcwo5B)Bt@=$ZuS-N>!WF^0)@5h1$f*5I0LAyk{FwWpp zcqw&LxSk~}W09UCZEfq|8UmiFGOO9nl8F3NNZg2r`)u2Hz42Ic zZ;b^5ZGHuMdWFp_h&#=6l)Pi=xy;hc>czE04u`n~D1JY1Y1LNk*Cn@&YRl|IRqF@6 zDnHK0p}^U&k&h(f)?VQ7zib+LPf|QmztEDTO&-dI>k5nqFUrVDN~Hpdv%g$@3soJj zA|9RG>oh20zSSdlamr6d@YR3*Kv*a_mUNsH-N0DK2*2D>sCBGLTML$HPQ4ov7*Cn? z;$+1vR{H6|@9Vef7nCzp1rtj^g3AD`#pCIx;5eDb%s~Dl!yCZ0u%>Y=74cUeP_PUv z87N9*SYkb5Q^5D>BlCEGBK?mN$s6S66{g!+)o$@8)6>_vDWw{3+L094UNS(0qd*av zslt&SZ{R(srJpaS3W0-u8ey4XPH!iE9pj@cy!VRxh~|%WG9eIUDR+pF{hCIlY|`=A zT8i&VpTC-3x00&5us)nWB6MD7askRPCUQy$TS`Kxmf)jcdsXiM@ZNf!QACgH`uAL^ zuaBj}SmQUaf#t37{&E%9O_bV<>O}nBW&+SHeD)RJK941Rn!Q&rN_|cU@JYL&=vfdd znKB?f^_^_GbzBw#e5n<|<8X(O$9}!g_Rb_?Sb-S}A3v~g`1%%hh1oEWBIC!LC<;DM zvWSOn@K`mH`Ef-W;4IG^p~OaV`mu>VaimM$Whb&Axgv*JCy-T4LjLUKPEEsh9YsErS&7mwc^$_ibwMy}usIlCzEne(spJc} zri!MKslECG;?JIdGQhWch_Ve0W;uG{H@F=2q&wHryDOavwDUQf}}_OdFh>Q^}N!mtcTkb`IL*>+Ax{%4)e=2g?_s@)$S zoK$Sb%4v%YdLZyxbk^V==*=JSc6 zd7Yc-TBP9uvamW%G9V>-!eh!4x}b+r=t|C$5&=HP5AH@}+ZYmE=Y*Q10;wRg7#u7B_Q*H(f=I(YzBx<`do=(9EjPgY51b;Q>VDtV{Rl0E@wpOFsG!E5}6x??ds%WHTV z+UbM~TskEw6<2W11OnB%vG(p}6A+Ze2r2K7QE(;g@6obPZ5s1FG1_?OxW5i|wZ_fA zu09Q=0V)eL;@fheGoz3~LtHVW&>EXpJrDs9Pg!9agpix^_G6RVJgJ@VUX=zA@804h zih5nG>+b>{@)^mGiU<%XWZf=O%wz>|=o50r>SAw1rQKV=ezS3z$Q)H=i*`Pmx6RN`%Fi+ zpu%AK*$LT`LL44X=3(g|mR9Sd+%5FDk9qq;roSDNTk%&5pm_}t9cy5F#dA8;LTEzC z#ELMinHSvKU39fAFn*D_wX?5SZIS~xEur&l9rL2F+6NJM*k|wPVIS9i));Kc(CeV{ z*xXO`X#?&vQ*ckbg1vpu)zt28_(cn-sKOefAwm;X*?EOF)r8V<86yx~xS>R^&cC2Yr% z#Dht%{zE!bYf_N0CHtO-5s)AbFQ+7xGib_|t9PCAm09$=WaZ+RP2;8&cSVn7k2wDD zQ5uA0#*|Yqc}OmE1{!~cp}G#hy(r8un0-o4@M4X;5cn9E{B*tbSVwSyF|_U$0aQAj zf$(XNVWpeBg3CPABlr=6qFCiv8MzL=>rb2~Tz2h9tqtl3!lUKkL%>mg8eE=DO+zCgmF%9ip`0_|yaUTgdXrdMHQHIW2 z)GxzihD_U8XaSIn_&^R2;5hzn^3I)$aC#3~~0IwS6y- z$*skyd-Vq|s52$P-p(_0+{s6>YXB2ay4cbSPxLN4l{Sy&5x5zU|9QWqtPsQz%i2dr^nSP?@KzDW08_5+ zQg@*0MRD9d=L!*$wS3BvEWR+({R zVx@2GLw=crGf;(NMmD;l`%gtKuVeC@s9exfSw~LvLmPXeEcllM#Z$J$eHK5b zd{*~q;8Q-U6nNoi$X-{`^9NbzV!8zWn1XAUJLh=nyiz{TL=x93gBlW;Tj5Lj2<%O? z%t|n;R_2Co-^vb*^KaV2ySDiEz!B$f+54O^t*P`kU$iY~w`w z0Qk!u#rY@Jf&D$;o9RF2cm6|o{p&I|HWqre{~O}ry_xf;fc(dW_=N9FYbH)Mdbamb zp#KzFzu^#oe@+Sgzp1Bx&KUhuJpBo={zEYRZ@P+~KM`hz1W3d2uA1H>7oj2EN4MVF zTCUVo0BxPvvv<|>PLq&e@Jd0Ek}912D5gUS8PO;?r;=;Qj-;K@z7RmmmEh~l-qp#H znI}5><8q`3h$*vcCi%gF-;c$$$#c~-LtxYN<>hrPL!onep%_)IY;3xUAeM@X3@TE#C$l+Bcg_`RY(U-d*Hiz|+&vFjrXiv`p3x({A~B462zAG;L;e z0H#?g8>{a1SwC)Bh#hi!0nWoj~ze?o@lZ_uO?K0u7b- zMtW?sL)+xmD0YoH#x7z~>}811ufA>(%jlRkAH9>H9IhHem5dm+#Y7TC6dZzZr!Gbu zK>eE7zWRI{$XaE)Z=1*SaG!@r`HYhu2DteUJ+K7dg}rhpkE3MO;n{wVftfDQ))PSa z%bm5gCth{kI8x^&w0tPE_1?;a24Ar8`l?=SN5q^I|OOY!WYx zSVNlzv(Ep=*;@w1wXN&IxVuAex8NFry9IZ536|j6xVxlrm*DOW!GpUy1b4UF$=>Ij zwbuU5t@>^i;}1QUbahwH9?$!jQ_G%+8ePdxn_+Uy64mY~!)N7qXXw?g#`!3KKdL+I zr9lGZ=6tc>`SKHB83JeRHoyP{t7;%}wAdYRwEq2B|J^KS>tmP9wo*EYn(gw$saxUW zdAsCDH?aHU(a7@ov}d3F=G`jd9M-q;@(C^J5j(g0&B2i{Ia-Uf$>r?{!5LKf5rnRG z*J?GZ%bq4g%iO>hTL<=Hn7SVsE5EiRvYArr>nF>w@4d(X49U&wYm(N+TS3^l^dkH% z58+tv%Z5bLP)pf{>0<(=R#;kJM#CAaxU?1~ZcDL^B=DZlF;l5uVzBX*5z-DOjGc+` zX$zmfM6}d}i?K7eE@w1I>=ZzUBxGN1Z4)wKCh2Kr(g!h_?l`na5!pfHk-PBRUk+-> z4-R-QUTh!(7>9mF7r|TcSJWl=x^@Gn{Jh8>x4V(~?})+Dbys1G##d^J_6PajrK;?F zgyxNb9Ua*n(ft)pbhcsyTa2-e;l{JK+_}Mn@v;**KIDG0Y1mKB0;fW~GM$$LFGVaG$ ze+k)sZ%hxk^HQE{^Gyil!)0z!V$dY4`Vk| zeuO+C2a45>jtI#;+U-j)T@GN?DNMk2+%bKmx%R6}CdkWq#qs(_TQqDyY=s*0Qp*YI(u8hOAG3(C~;kX|Q9n3NRRUBP5joz~wNh7kbjWq4;5$g`BKPNoa|MejNdB3a+ieQ-pggO z6sNcGirKLa3@zrcZY^DPd<}YX5DT~)I||@(LG<;g0^W&5A@CM%jjgVj46T!N37wsKu_$xsI(2an37Y}(f9{@Ze5DLJ7eVp8sz z0wKQ8u&$|tPmU~K40_EM1@DL29O+)hwfK^Kc{1+gNd(+ZYn`{OVuNvV_A3O8OQ(5# zscWy$XI8HRG&YVQIg2#OfyDuB8lQyqc5{_&AgV9i0AV&FMZ*SR3yv&3(}0xQ(U+=2 z_g5*#sp;t;#%cVS*`IW|M>!;)mccqGLRJ*|$SdqAp&*TsFYQn< zcaS3cz-A89UekC2&^7V=gIzQ|xr{suZV!S@?b zvA0AVbc_Cd{*wlz8gX?~YVOThYB=@a9N&+P1ru_*q%S!`+djl{Xu-u!>NyZ0sNx(L z<#-~RTY$duG4!X}$AZefb&)8DS!6pZ*3_g_%~7@}AP39=ykRSto$DI-3T9k5XMKqZ zZN@E3XGnfsEG~f=IyicMvjo*$Q1xC%U)sSB4kTb3g82qwH0{o#WMndR*552-V;eLt zeRR<9lJEICqG-C!w^qz{hn`@zhB{tnFL0N^7FDU_10C_+Ozt6!r`MD}l8%UpT*N8o zxo_Kx1k4l@Fx^;^%^<$ZTu1XG4?^;e8PfGGOx-K&mCTpowE5NeK=a|JbIxeu!;j&+ z`+eAo^Dj7I_$#Mk-SBI#x?vU+W?=7`Wr?I1g=%x4BJ?OVkx1}@DOlc}az=if+YK1BEluH*AXG6Q99#pH736e282 z=mmU3$f7fMTjzU3C;tmGODG;l=Ty_O^*BDFqs$N`NxtWwF5qGiK#l^zb~B zWYS|XFmHBtM9JhEFppO+I`s&cm*jr(wJw}l5*HAIP~2z!s1x-hq%m*89|+iBVfl)K z3mN%P@iC?_{0+%>>3rXp*72ZkdN%^vU|RffKIVWehAq%`FlvnM$9LlvMNhhRH~5YZ z`S`O_Gr%Goko!6TF^zrf`$sD%o6GfbPx_I6>GsIFIdOrC6EH|vynm>-zm*U1{yT@_ z->^`N8w3mgTm@E*H^@qOv59`f;(`U@T)qw1z?7aVN(fO0|@Nb&zZ_L;q zaQG+w0b~eb?SsLD;N}8u2655@W;J9L-m#*A$}I1jl#;r~t0n3ARq54uZ{kF$dW;hE zO0p>trLCT>__WS?s5OO13mj_ZGcz9cE*4GbeBkH=ZcW+sZ?R&OX>%t0=PBFBg^K%3 zL3Zb)+>KEavhD=j&d-z06T$(t!TanN<#z>lJ_~$2Y?N?toZ*}JvZQVRi$EZF{*AF_ zXu|PyZl&mLt?ug~A8@y}W4Pq?;JoS1D7lA>Q?tjG@LSI+kI1jBSU5^0Qfasy^62r; zd9aclhzkLzWkqWw(lmL4!Ay|d%j$ccSfsP)iU|H3+}d^WmP#1uJ?gXyLSM4c`7~7l z+1`UFD#IUXU8A1heVX3^I$`>aZn>7^x~GYC9b&p&6Z<7wHpYtXVf6x3gN!rCsx35JD{=A*l2|>&hgBL;6qp@oQ;(e((P6I$(u~^PZ*{ za>(w-R;DjbJ&sFoY^lb@5C4YoQLH=bl*?0AxnkHPxX1=WT^bfP0CZmFsw92AZ1gLB z>2*e#M}i@?e~WaBOsr#TCWq>>{s*@YX*llauHkH_Keq&vxakM6 zY7x1tEX6oqTGRW2;;OB+xXcHRFw<(TN~)72Q))~5Oh2$$rUG=#K9<;2ANogTe^ZNm zlMqv-A$kZnA%smpp3^SOH1%Sc07>k_wVx_ z4$xI{Lh-3FSpLDAgRU{L4nq#f!NT&}gs1)glOq57EdwM4=K3@J`u*YmtH$?t-V0C( z1Co+EobD^v(=Y$S7l^Q0-WMbzJRZ&NbdPzq{CUYcM&Kh<1O7IbcEjx26yRttk>3Dk7 z2zs=2aC^^~yMiXBHN%QmN-&IF6x6rdOejzxpF@*IM`a0|#KXk|a(4ae_Kb-AyAb#v zV>{4G6Q}#08t1=W-oGc80Qq@P@&6S#Lhu430*b6*2{Cwq0WDb2f&(ph&_Vz$M9@M4 zE#yXn7Zh=H;Dj8gmF`ax3H}QV&%csL2vJe{Ah0-C{vpEPU;#y@g5EYDk~k_dP+o}< z0s7A%?sr@WF7)r)EAQ`!5O!SFzrNr9P6z=F$r2`G=m7QFvN78rkN!Quv z;ijxzcgk_SeY#Hac6kz0vZSh|HVC1RYN1BALGU24Q5+#-8pOm+qQi5Ob#xKfYFX_p z>CxbQ)RIxwK+`ndK(jT@mppMx(e7>CkBR#1;R3jZgs=M5wIXm58FdPicyE^(a`Y_K zu{sWcIP&1f4WwcT5Oj0ofhO7P(iKj|gx0K+hy6I0Pg5~n7X%=|( zu-GAeWXleRa>CRQMd%`cA1UUH7+pqHt54wMecnF29ipE0@E`IMu z>Zy($C~@Bxr-U`DjqhXe$9KoxEfZ%=!M#t!Z%>(a3yF5Io16_6!Y+f9{a{FdhxQ&o zR*GIbo9!qU+^Z3@*F7rV#M|TxGyamZxZNSB&{mm#8W=mddS`1@Q^VFhp%bHup>`K+ z;b^KO1g;@4LwqdbkV}D1BnWVEqSYrlH+R@>zG;EkI#P5MgFzB#cA_SOu|IZohIf(1 zfHx}W@JqrtK5no;Oj2X{#r!<7*ggl)b5M6FP5rsLj=ZMxBjO6Uv4{q7dy`Y7F%QjQ z2;k4*JZ{Z~X?G6oDSC`8krbuvA{FlRv*Jg3xqwsW6GzEr|3UavHFUldf;|8R-@9O; zA*Vau$fX7jCENJA%mhZR58m+HS8qR%8E5&i^PyI$EG_#J8v@Tq3V)11aAHkBS4R3z zmwi1I8}vP9-ct%cLAhFleZ1r6Oq57$U{BgqRpu5IK?Zir0Qp z<5BYrx-L$95@71S|A=)LP}q49o)DKtDcjt~+_e<{QW{gtjyqL$ir%l-9IZp4LJ z(LmO#hcQ3#?b>hAv`imk>LPytysrtU?C#puG*fofgyX@EuB4Tlqp5@p$ccpFioYV@ zvmh02K?F>uDFyi~-@Mlr(m=JDV(F%_!iEUlzJ^-6C9cwN6$lQpTHBL`UAxv?zjagD zNty7U&FnvV5}vY58A@mOL(O^z(9rru%xnrj_tk|+$&36xzszQJ0`s5?)HH**y#>fj zK|2d3e&|pC>&RhtD<1f3%fZ`{rNk2hAJh@1{`St4N~B zy?ty-+>cY<@%EOJf$Uq`0$4=W1vbDwxymJ*&s+rZzSN8$MxJ8#E<=*gruVll*e+w3 z!Gu#33k4$jZL;L4#-22NBlACksw-j~SobeyE6=$^&d1iuaiYzkXUY-Sz=?&gdaU@S zaB2R)(Y;(Es*3Jr35IILxyt*?-AFX^+YC(c=@=0tgB9#FpB%S2G=RzoVll*7uE~Ln zoH;f;RMo}ZL`((o)z>IbzseS+q5~1008BiLKAOV6S|@(>8?MW{-Fljz%rSAk(@<+Isub*Ni%Q zMj)doO6Z`>+grFAe&)X^XLeFW7yS|^qNi=8ya$2!iIa*9`4J!kT*+cbOy=mz5O7|f zFP>GjZ5C^SGH(U_fSI>K{7m*Hr(LUVZX1j=6#51+BJg9woWk`Cp6;2HFtV$BW6wV%OvybFd5`Wg z)2wYwKbp5+4Jf2z$D-)>;OIA+zqpbbZ?9DS(*4sgpXAHpQ2tQ(Jy8#|!yS469ff0x z-bnmsBZ2Csiua_k#j$bjiiiaTd39Oxtg6B1c{y@?T|zVJJxeg~YjM;*(8_Co~D;W_Rv&p}=i;HJ39&k@}>3b<^T4+A}Xv z&=k0WqV297zMIqMqGq6PcgITU$AKEdD7C3u6?5ze`B79=iUghi=!?iI`QQ`1zL}RD zf*f-eh6ivd&0QrWVd#$BUVW`)3f65iX~hl`owcKe?^v5G^Os^Q3DWPNd{4VRAUu$v zB=;$*V#21~=t~QW7QFjG>fuSfqgBWM5|XvqY}Kxw@YJ+FOm)| z9QdkZ2Q3>%WK|47wJKNXlm@wQ15k|s%vE$~9C&rpH}zf7-W^Y|bIXuby&{*sq`0j(E7^6x1pQ7~r9Eia80Gok>?gKjL+4KXSNBlFXMB!HM{h|Ra ziF)B$?eKXP8NoD)N4m@>fl=u z5oa5uF)9|5Ce@56|`5*hrlNy>e!)Ed0s#eG&!e^Unnx9B!@vg zfS1H;9&F7UloWw#T{04n3EOL&inY||@(m^OJ!Xm}KK#$b17NGOQ+S6aJfg5F;2gI! zpMwpYps=E32$)80Z@Us$~mO0batk z@HJ4{c5b3k`_a81IdTUA-%YePxU;71*HY{Dt(v zk6FuR{B;}kMZcjy*`gT-N}au0{E+bC@ztG`uh;*jEU4zFChZsgtS~(4kI~ayKgt z;bbIZAbno^+N_+o;RVf#T0$pY>(i(VhMj_@aqVgQ7WVw@@Y=qZY91-IB-TqyM;G^c^D124S2yRlv?@4IS@{e2$4t?Zpf?oK zCbtR4R(BbBylT?WD)fi8cge5dpC2m+k%hpa>co@Y+p-<>4%ojUN^k)-{)NIchtQFM zHW?&1*neQm-y&x?KnaSV7Dg)Af1@y9#}GR4pJ#|J}z3s#@d(PSP`Bf+kb{*R5=9Aociv7I*)CGJX``cmR(7Lb?B&EaLygJo`5+ z{kI9(U$8U?<1;HJAWo73r6$o)fG`!HTEMEd>~9e{2Z6k&U8QU_GehLYY)&5Mi!Qdnu=c1%hh0$Uzjnd2fD&#V!8aF+K=n2+ z$SC8TYwhk&pQ`c62H}J)Tv6G@Ey4{0Q&LwsYqJ=_;ZoMoM8t2#eLzLr@~d^d&%ty` zoaF!j)8{vv5J@*OwdMJv^`3>2wT4p9{-Fk)nX9*z7ZcOhTOxM$fXMtQHtH_v;zi`i zP^;|}%*4^;7cUBy3cL63O8iFCRl9;!Kf8TF!oL$?RX>@l2e>bk;-icL1it_Lh6|)ylm^% zraMj}M|7-y=(k_D%J{SkMTgg%17qdZf^Em2BjfJNqbiAWr@7H%jATVcJ_!Ak3wGfD3Np&Vii{b zU~wKvkq2MvLr*W)48mYwH1#h&DOaTb}XxLC_1lfC`#!2SVM}|klY^_ZQBqL?kPV@ zD6fn(3JAWLS8=FG#Z2q}DvKEPKvAqa0j!v4xM=$!<n~Ao3MhPP_dXba(!ds z2`#Y5_HsA@OI*iJR}yK$*J_1?R_T&*@U#Q9Ifp8PpW@uYaKt0FLKYa5OML7#%A^_`{2o?1xWZ2vPoS8DPU(R05*P6Xp>fvgti#MF1=e-z41mi& zciJ?#LVG~RIj7`Z%(XtnRG4I zPf-dxoRxg8NJnE~IbqEwWeeK{2>3 z145KL=7!OocdRqw_S=sIrvRgw2Te_XijvGA()opH28h9wxFZvEtH3y#asZ*g&T0^n z2aKS3R0mNwHkf4KaM)LxG3vT-C&^gXeaL z_`1_fFC%%5cG{e+(3blvs;AZ|gjl~miMmOENj8-}^O`7XgGbC7Ig)P^M&+|Sq@zOf zx%#+97m$pYv034ZYYQgLEdk1@&Fmvpn*Fqs_EZ$CC23(-ajhgVGmAl&J0K8AsX&-aq$Pz^NwE2vED31#O<|RZIOO{& z?vH!vH8wH#xwE_uneUz`#(SYV!Re?F`DERBTD%<@{k%rsB~jHcRukfubsTLYEI9Kv z#<7=ZpxTHiZK(r*#GJJsPc2V^H{{V9G!fm-wvwk_bm+Q&L%MgIf(AWOKGoajTX#eSh zj7tnY?7*i=q9xL9HZNm;{2 z$(IutsB=VQmTT9iGghnJ2$B2QigWR~aiI<<~KvBlFmJ}ivUYmcLsTmIp9nsXxQduu{G^DRvP#SH*e5woG&+5q3# zkfydO$r`y`RL|hoKXNQssd!=+=dbv-cjrO*S1vP}3(=LU!LCMoa`g z0U0d{CDxZu*&YQ}b&aSagaDpFBg7M_9LflF$_%wi7LyH+=;I!kQGmyu--vLxS5H=H>8uL zZH1lYg*D(Ni-XT7@>rk?uYpG9F6BWcJOZ ztG$K*y0?TjZtWd+LE@5`!W43MeSy_)xm(lwfQJrADS2$vO-bxW#NNaS!S4IoOoY4o z%JA7nD!(RN{dUh;c}l&feY@4DH><%c9K!H{Z@%GlFJe0?Hwg_m7&5_u_(9hlX9CVg zOR$;*>IFuCL^J5%&+L|psc#$y+{Kef8BUdTTPPp#?_Mnir_}vC~mGzIWC7a%hg9ZTHZ}PM;V@!mtrz-X~1JI%P7G1F(|{BxW{_^+Y9fB+DXkA?F)^&ixa2E0IFqE3jQNBUj# z%>klJ7HP?WpHXm8{_AlCBPJ@~&;&Zl?=CjbAN>7*$;H9M!o~w6Ljh3>mBZ*rzk?6| zxru{|n~9qfXvEKiN%@<$`AcTve{5xAXW|A<@-h7m#OM6KoIL-Z_}#yeHGg#~{^hg@ zN>=}k?Mp8>RC*0DK&JV3$ zE^@m1)+-$DU#>=Hxz|7I;h9n<^^HFHD~Ho!2XPP>$w#EwUQ8e2u)BbEpt8(iVc_@G z5i!Ja)M;V@ejwjLu0JXbN77fk6dtX-7?U4JNKuy5!VjOe(RXC zQFCe3+#o&Ev78!TI-VqW#2tqTDikb?_l9!P;;%_nL|g*K1rhj~g- zF1Ep~MFz!qMGBRv6e1Fy7RH5yA0dTCT1*q@D7KjtCWbc^ZcxW$XZw-t zgGe227zFRhz!VZ|bQ4FP2Zwcb;g01-Dta);JR;w%Dy7IP4)t0w9|+g>SpE6z$Xds) zwD%?z0Dj+)^s-yJ%Bhv~dfE7S2t3ib`OW@-6r=nu?M%zqQb?VyN-_$MG5ZNmI04_9 zO|<&^H?w1d;AfMMQk1+z{fcpSIR4jx=XCD#hTV~0(UM6i#AZ$r;hyOzkc5KH(VL`$ zVI(D{smjB&0CAVwFXF>W5c+;lhEd>CVi0Qw00K*xK|%@SHU&jH4qgMb5g#SOynuq> zPja2-cV-ro;|qs5&>6pG8*Un(J~z4Bl#H!jsc9s&63XIH@NfK5+4IbcHi`NL?LB#}h((09Kc3rj%4)gFaK#rU>`+ntT zvhv2vOFB-LpC{%u+uD^7VHd*S(tKJ?F@SJ_7~*ha?Cta;0rxH$*!BDXeItt)Isa%x zp)@{b`$iT!2UyCmT%bupy%}f<`F*&{w0&LuZY;dyr6Jm%P;mm4p$)N+40~1zF)f^) zlJ!hQ$sALOUL9axPLBuPTQ^r2I8vX%+2g!yyIG#cFq6y_XXqY)dY|~z099l&1t@6b zpg0-uK42ytFJKyPUk=hRJlz#VRG@Yd8(g?6@Ae}fqe(e?Pvu6YL;Ulsa+m9#Y8<&% zt1*_sZbPkS6blaPnq^{yjI7#sK69tRe=7Cth`OZ-uB|X?&}LiejZZr)3=u07)b;vq zF6&mJ&MNJ887YOcn*bdtCy*fD8SvdcRqg_HwpN8V@y1vH2wo*z&OwkEYZH>TRdfEm{fjr?Kt>oKYl3+99I(dtyW zXlEqz_)#!71aqe)<}cl7+YLfN_dgbZ_XTZ$U-Jq#M~(0!i{h5=KOpsymHncM5ys(% zaT9=6zz6~FYyX){yrVf+9|_R*EAoZ`;AgQ)heGGiA6+zQ356Hf;c{ElwJs>P%4Qk8 z+sbY8nmJ{YJgKm73?g`fnOVSnEm$pD8_Jz@7pt+hZdwASJ${pJxT_qA?RRosZYLf$ zSkJDwl36`3?>4LkZ$TEO*h0#t)hiEN+fm1!O5kEJ~qf0?^fKfvI6fIfbtL4$Z|j z1V`jWcLKLJ@3()zXeKLjlldJG59chy1?ct|0$gb@pv`-^x#)C8n)PC{c628+Ez?fu zg;g#q`3*LBmJ0!EzzS(puU4@YgcWTgnu8|WJq?L?wmN=#fwAtKJ&?k+Q_c zX=B7Nr>}-_FuZmr+>%wOX6k1#;DYt?n_PAyrW|LYxat7$2UP^z6f_ zps~^ZZB5Zf{xFy9;>Bk%5f~a7G*2HqZ zG{QX-Z4CJ#7+b*`}7*w@azHpo`hcv>*f< zS`3*(ze*0+L*MM1!=dU3S0C{3&{3(MEmwT$wygs=)>augmXTpXfrICBs#iJTM6ADS z>~6X$`QlzZJvy*(qkd}?T1Wb>sRgW7uPUe9n|GHm^DZ57)z-P}%bWSe$~(u%#iw(D zW5i-L*s;n|?mUG-H5CC>rY*sl$y}4sI6W!o1yUp=8jcUfAtN=1C|1W)g$wpBl3l0| znzukeO3!LJw->op?~j|~l8!ypsYnm&6g?&bji4mFlgOkyJ~T(jCE_c*fVZ7kDxt`j zXz4iJTDtcMF}H@ctqyM^CR1tmxh4>w>0p)L;a@d&Y;&<>wcvn%Dqsfc z2ccV6RIlh-TDSK{tOI-0n~;IEg55g*RUc*L_eYVs5b$#&H;H8V z=p}I;S}~i z?euM*WxLYa43KzhZ^SJ@(lcgUd9-2w1gJQD;M$^w4{RAA64O5NMSWGPFHOx^ffoF% zwr9Yf*!tZ+Oq_(IaO2j7{Yyx?+ z&1?IzeE6NM+w&$X3ljG(UAZHIRs5;olT)fN!X6{pm&jhhZ$<;8RUQscw+@@6mLeo# za7#zkQm?q-9S+!R826~0I*Vd{15d=!Hut1%ldYE(4Ie7Hfw>8`u^m%Y&eeX$xab&A z+0-cydwYif%I#ss-(ztsaP~jCFHE-o5RP&H&!1^&ss2;-#r97?!N&eaK19RzkNg-8 zw!e!@xp=t$l$HHPF4X_%Jo}HmzflfIcl3KN#qT-zUlGhduM6r&1F{CwV9~JsQ`z*- zo$R1^N_I}55(N<^5FZs63HLX4`sXG#Zl*tYh?;}_ABM*N*viTY!cNtoR%~jJT=oC@ zBsoEeIV`+?5LtpYBNE>K$3JERiElx{J->rBACN&1^N+&zuR7YlIT!zyDD(HJ{(tLZ ze=BGI4z2zNS^bq%_^XQ&6tl^}{%=l0f)$e$bTPJn_eK3XdGoi57MueJ-UNdU$q9P% z|7DR}wFk++0OJOmo(Yqj3Ru!%Kb=XI^tJ1Fuw0u6Cvp!0jM=qp&4x;2TxtQ{Av=n> zHXlAU2!DBJNEN>0z?1$k3Y$?utZ{Itpg|`90C?Vs=4J{RfD>z|c8l~hoZE1W)o{~F9c(fv&OPSns6H{_RjX~(WMJ& z?2%*3*hHm;`Ar`&E>Ta7K;8QI{bxOt_g+pWPMxp&CkD}=zSxu>s;p-p9Wm%&~P*>uUAgK2&0B_aWpX{2=W}=N%Oft8La!bX4P*_lQvJm+4D- zYlbS@o+g;&c1U1xcTz@7?l&alJwXIW*F>S&;axHUM9Fo#rP>&AkCSLI!K# z$2(F}_K<2#c;e^P&<2(xMuXdxPXie-Cpv9IKT zx^TORv*|k@p9n6Pzcc=L!&3po2k$BH8qvGroChd*fz!S`fPK*RTk_Zri3zQ1DP_Fx z!8K`GYM;~QYjT$V3~iXj*>GnD$m8=mD;=n2qxQS5n15ICRhQ2IPfe-}EFFGM)R^6F zegV_JfhE((p4Fw=RtDjdhI=YHibAV1sVP_|Cyu=>eq@a`@v)s=E6bp{pkOqNj$U3Q z5k`e5w&nWdhpa5YIL0I>MPpuztpUbkO}bSeL6*K{|H+4De7FXE9DO7xKuWF1E6I|b z!D*GB&`k3;iOc1N2cEIaSqw*h(#UFJ!$)WfT2+}QvGysjt58Q;ULmQjn^Qc-$)qYe zA%}e(PggHxgFk*k-xexG&YU3ldwB(q^PVo0tY87RYQzU5h>tn%$G4K_2ZpC6{P>vxk8P`_8GdzLtA=fS?n_vFdN=?6@1f z{u`=*nJ3Xz{Q*)4Db`1qXm91=Dfi{|7RjHZwTUbjAGiS|Mv)0+Xm0^&Z=8Y5%*z@- zRf?2HO{VZVZ%^K8_Hp}=`pQVFW8aTlP4hD!8$uq+P!?p@MAEt~bqi+06D~F@y^hc3 z1#sX>Z+GdtVmj@U0i3e(by`c-U6z(LA98LeKL(D@kmf+uRSC-;0HK_&zBQuZGj|0a zOr7r(G@Tou=SZV1Ir*Mt+)gLoLvLDRytyhRZ7+(^wPNl1G_FmwNmYzexS~#f;IBqv zNs}Mm6 zKi(np>d9X|bUL;;fo(hAGD)2XQI+~s+4#akaLT|Oz^XdKl5v*4!URyp)eb*M*^6~m zD>3zZoV1V1PXNZ>1%}NF?*(=lLO`uh?&8(1RZ!j4BO%f?`<0OgmU+Qz@j_v^(rr_R z7C)!c4Ufhtfk%=I+s;1H6(yn0n@DjcmD<3s*k*DNxLCPWf!F&R!W@ulFY$ zzbXSlg*YpBUi@ z4;j9MX7d7ImOm2M#rW%z8NT-uKAoCG+Fc8jzeC$aSW4F?-5HVj(ZlT^CXz7oO_PT< zS&5ZO%zPESObcv+4heD-imWa#Me0>iyHOpF=F0%jD#|R5$a0jFO4q}lY%{mGsf1oR zOt6+0mx2yR?&jEDI4Ft>SMiR8OE*EWwnQo+ZAca%{q1<3QC4CVRZnX`&r0#yFxFuK zWn12d_(DC~{aS<7tAn-5tQcHfZqJh-L0-dPxW6^@iwrFi6|{c)Wk=;rj?c8l3)%;< zXm0W=H5Gp8;h+vT+-h#eeh(IZTc>yGkGu#IP32$r-2omQ60vmBmp!PH-D}t#H|ZdI9Tc*SI|1yF?zF z;X$Wr6hovwabcWclWPt?hn3Q|G05?I!i|RxQxGfqKH7a9&vTz+G`z75n)+&{WN2-{ zM5%TO?(URIftzZwMJX)I@7dX0EaqNZ2X93J$UoJDIjpZA>Zj3oy497gy~9oWWGtck zJ=YP%cHUJ(H*X&G9f98Jias=>qBL0xu=M2ha2gw`{9K`FZDZBtYg|H4J>tQ7_WrWq z*~8(}?IF$mRUo&JJ7%mvJ2cnssBc6%`r+p`ZWnf#z~GvON&RpFQPHTJ%~$Wn+03sk z03lxm$0z~<;V1%aM%Nz!GEO|!>iUPWspet*@*kYkYRgeFfi!pZSwh1bkn+zxH&klb zu}l`<;V~uf-uZCcWh_aydq+I78j5Vf9(qh+zF3u^?A>K0d$a%bXlh>ZPkdo_B#GoTSk$lfDXB5jl9u-TXUAhAn~(|Q~$KbLt)qH_Fw3X zw~}rLGVKm7^A!+Bt9=XER32!V7zB=KNJ1O-&NSb>wf7RP$cWHcT-T`wu24$avnf*O z6y*dFLou>eXN-)ah-&+p&qk}}jw3NLu5dRG@+0pV3Jr7#^GKsvg&z7il+7|f z0OO{1q>Pw$@FZTe9`@0bCme$b%Ht?oSMUYHJSk-*S%hG?yGQO~U0bpR4{GDtfN`O& zYYa{^l3~MI!!I)8PLX{qc8C1E`G^h#rE^2mAqp_NRaq34)!s zaX=n*qzSkwM9=p7_p_Mn{{#r2WBYI3gzBGQ0HmP#Llyj6f5Q%9KG@m+b;55ZCql>m z$HN>POkAKd>mLLVO-uAAvhjcXD1SRt|Mlqoze{cYMr8c;ApOU2_Ad_w2k1x*0!bhb z1?b!iVlglwK}jfoXpC}A*_ahB3{bb~gc7owrGPkVM4vG?GbIbo7dBqAuM>4V(MZL! z-?XKdI`>Sesdzj2(rES%YuJ8``k{URv|DYQK-S$pxgdl{W~)#-5^FAD7snkVDn7lps#@=Zl-u#zU$OA6Hxda# ztRFhQi`N2UBoM$Jwvp*r-7UecF)StuW#%qSiqS1t>5vSsTHTt|0M&E9U`#7ZJ^od2 zB#x;;`J|kds#c~;h{fV(klivu61P875tF=EP^-Vam5Q}`ix&D}I9G(iM4?+X*Y3Xc zv=5skS*5495%zS6n-<*H7DGcDGj+>8D6t(q*pRnIR2+aqv*2<5h=S;B&ip{qec4N~ zbwFotSs;EzF2CNIVEVJsy06-qTF#yZ2KvPZkx)qK@UIFZEcx4l*;$Dj7)|HzF7CFi zN+6$7oYGI5r=F;#boXf1-4_Zjv@feB?V1jiabl4?I6i?W)QRa

    )k=+ubk3s3d&Svj7pMLAfKYAr70v{(j) zR1I!v)i6m^oQ0y2z1B$_Hgr5*-J#AH9b-EwIMEL-jVm4CrJwE%JlQ&jLbCZ=q}>V# z9NPIYBUL<04mn~nCw@+cn_89j8XT;;*G5-*&#(ddMPl)4kcN1&oqg6*Anxx1iXtNs zq&-d~8(L?z_wS}~3}9|t`8)1)>hDCC-xzGto*768576RUY4i@gKExs-z3R#KegK7g zySr*?szOJ|@MR&T-zF|*$4`trm1Oe9_bfDQj`ZzDndu_5J&!9<^3Ygs& z{XV9MN$lD`b`4@^;tAWW{b$glADU<^d)<_>*-(Cobkk0Hm=dt1QLp2rA~-|okSN0w zJWpj5*NxBN!^a0!+k1z^qV$v*G>a`V}6b;XzOT-^xr9MMt~=(;om+_Xllh9 zkhjf_#9MJx)RtfJc+s<{sq~P#v9}oW&97O8J{u(mb3bK--Kq5L_y4q>{mHh>b`ziJ z^U$Q_XQGqIpJdJb7xhjibZNLb6@>i*KEKd(v}7i^aJLS_aFy(`#CU5y#hDjVE+!!Y zysCp3;&Gs8)l6k*%>#wi2KUdq1-VL_1p;Vpj8Pu@2!CRuT=JsaLTq{qglNG$ZRsR3 z?``P+BmWnwOcs2L*wr5 z5IndBcMER8f?M#$-L0|Un&1R?5AF`Zf_rfPI>~;|xA!^kx%XBvtLR?6y7)moYs@i+ z03Xig(Zn&4Lh{u%@F}OlA8(w+LNpjCIfy%>_WiC*t3$4O&~F&BG^0u9qgZlO&rFzU zlStH3AJ^Qqq;ZRB3J$wRhpggH3uEN^5M}6pHtwn9BaZ6%8_}~E*-r~2lUTqfS@MCC zdv4H_zf6)P9UHL&*?n5IbdEAoG+&_QHF_R=$%^*Nm?cn#v7OS!D>B{+Qx!ZSZzjY6 zkTS|zhHfm7XY6Jc8J~x6MKlRuM#&)-N!^_3x8W7c^#YFg_W4CP9+?2RDzJ*!`pszs z$sR2CM2{Vm1iihH@SXI~+;*{4{h_7g7#)^0?gq@ziFVsSco}f3Z2bj?^_=oYS;+c9 z+=xd6qe%~b@x&RBa!;9xx3+t-h%}QZGnUW_(4oEo1vCz6N)NS+g2e#b{eGvq z)~WE?1WrQ0L{FVhA2(LL-oN*W2DABNa|00oAm*+0I(1Q z8{F#!v0H)94|xLWL?(C?B6E~3+{HsS@0LCn0;RX34Fg}JnY5DE^R2WO0z@mZG}u&UW6DW|)Uf(m9m+OwS<;2?csYS$ zp~%~KxGXK$vh1|7)(E{3hy>jo5GvX;*MBs=iz%dkG`?7z|H)^9bEO~YXtDpOYX7Yv z9z;S(jGxGo3H!$~ISdC7hvei71;7Iu0PyHL9U#L`q?rG@#`D`w39|WyeuT;S?`$Zz zQRbJK5|i`a2|@6M-wI+*&VPqCod3p?f)yFBLHb^qwX`3Kj> zOUCt!vHT^R_(vGpYcL52cJ=@Ab3${GfxmPEjfE7{5sr@y!Sxp&;RE9lu#IyTf7x!C z`%(~`bcUab|DAO-BDW{OxQETfk_{{MCTAhyi)g*-Aj@3GTCVh9o|v459C&q(XhpAaar`*r4ItuSO~R0nZ1H`XHem6k ztMm=*z}ZH0sPL5T=;&x}HwBs-$Hl9&oRH$;;ZIxm8TG=yTRFuAQZ@8B^`**xwo%j6 zXlL$lJYDR1nHv}p3O7rfTOGJ>G|y}V4b&_ZFHf}zFl(vPzTf^HQR9Y|ogzkKrK0)n z$@*^hX?*_U0Y+dHd=LUs6BVlTA;|>(tGPx52)m*Z<(O1easY9@7z)tFjH8q-1dEm& zK$zdnnIJn}(2Y-_9U|f#g*XrI{3bCXCkzdXhG<06!W4s2(gXf-u_?$!*s^I;kG7-W zyIOtju)4>+vYG3yTd{4H9r#RD&7;hSdMI4TOOS_voty~mf!clFs6Z~40>~@a$hu4|Q^RHc7^h`d$U@41c0vh@Q`$)Cqvh=s+p`dcXb@R6eb~a0J8>2EEK+E)Zju~LYqPD6(^`S$X^iwy@)d|qmYps$ai9TrjeTe1iT-x;{F2Rn`*CP#l z?DE$ZN#l{oqS2Ymj?zO5B}iQTq0OvJW6%n{7wrgnuKmqFq)X9d^2@o@T(UI^Kk`UR zS4Xj+C%-YfVmI%pHH+e!>s8QrQ324|24R{V6 z4(K4Bd5&4Q+DnSLE(d@G4=4X%aac+)$$M;qMnn zkTFFp)|r4!!(>4*R7fmj@rV9`A2EA_g3S2I%pZsc6V^cKF2S-?LQr;7Ce92~)~%Lm z6DeWDJa*lr@U4H zoE5EB^;4L;5aQ>pUI-Pr=yERNBW<%QbxH#k?I?gENC(gw&CE3rGKk%;IgA8y5TZUx zF5p72E#C2mn%8{UTI)kUL+xRyAg~+zB+|ne^G-+H@1PwOIEu!vJLx?PDLzxmdmkT3 zJs`mUm09l7De5znl458@onsG3H)L!|u%_4a+sERsd#>^;Uz|sLZ1O|Nm^)ct*Oxy7 zAJCqFXpgjH7EhsE)OHqBE`4}NmK%OQp-63XHGdUh@OxTI%*C}G( zj}V^iMyVKE4}GL9ber$PeVujV{oU_cgQ zP!mDp;>D6(iybx7H`cISL^6B5;n1@EjYL2oIjS^VetZx*ge^dmUx)SB(MzPCtb*dc-O$>48GU^=&e?FPb&HCzW(P}-dSK?$MwiKSIT4XarM^EaZO4J4 ziOqfc3JhU5GAuO`o?oMIC&4ur5rG#l;j2ehg9nMa5BIvV$;c9S2APblR3OFziC+7i zvL*@!0SQV)8kxtj(2wVtv8MtJ-3c2*w3V+&I0n?rE!jsqH7v0j`;$i(_ugTyCudd* z8_PZ2TGx+BJaf{tV$o`I$nX4>aSv3A;q8 zZX+EH7K*A$_PVF4rl-WgZ_5|rqhe-f7IWf_j8444P42g#Q&9efd4^*|!mkCG>GOEy zz#-E|CaD20VQ55Pd@A6OsRQoiBlwo%pz|?AszL2!CxPCU@C$7b>Qg{&An-W%D$nyM zt?CULqykA*lr3u*{6#qD5n~uHP*7_U6t-}#cutLuO_8@nCmfloj}cFnyIr;z|9ptf z7($+!)$Tg2Ca-IRDK)|rs%)_s*piYgD3%wGgnPoOcakC{2C@3Xt^Q4;7ih;_|H3Q- ztjq%P){)Y(8hu}KO479Ia4Yonwyu;TdFb_Qzz{bHWQ=_Fo9p-xuK!7y6*ZkEUyC+Q zs-VfmwL5nx;m7+1+R^K?*0QGMYB;m&F>&`?Ug>-Qlp1?GQZ z9x!JD#yk}NE9L?7Fu(MyzYbP^!3+g7c97R3x;VH1Ftl?L9lS6aIwvvNCczMaOq1^S z#XrEO!8{*}0s`a#0)s6kO*(2&a{(6kHonl80xa;tZg?rc39hPO{qh| zt^e^&b7JR^AB*~(YNJ!s8!1REByEhrG>%Y^I4VeL96j1Mb8=_!3?#)gC6Ew-VV&o~ ze_B_OkQ1KreMICTLgSlNWU6Kt)? zpY(aX=?3rtm^3b5S0sVG9x3LbqwI^=p?3jt#Kn>Z>lxwGWtY^8bHc++%tKDKERVZy zF2-#)vrl(#6O%H`>P8KW<8jVgK3gRcpX>rzfbCvYWw@Gz!pdabF_2zAVeer`L{QKP zLbz9!@h~BcMMQ>jyMR0vB6u+Y`2L+(@VgT9j`;BNK{1Pw^Z=vY10+!qbkVnDPKXk0 z-2*e@{_rxKrs9NLFckFh*J1#Agl$TIAVR=<(}P`+Br>*$VR>UZIo=k4I267THh*v~ zO1$ajE*mnf=0Yw?z8YQ17M{VkUTYhENMlU000yFjVe={@WMHV7MD{ttJM_$rZi4b# z3;VMK0mPV3HkT7S*-i0|lvcBjwX5E#wY-CEfOOuT${zL$Qfgn9H+SsnK-yQbcoh!> z6wGdWD6cksREZO{PV{>}>>i~iwA!&i}RKL7aXm;syU zYnJUJAC!}L`;uN=246^MZ+{XD;vcJ#^E{cR+e%;QNNMtuHMb zB?nl~+SG!T-K+7Oqd(DP7Rg+ZF}$gBN46T8{BI@dkirjnKeQ4tyfD@Jq!GW4%|fOV z1jUjqP{PF1T%|QWbV&9#Q5!`cno9ZYKX)UY>a^*PJ;O--$g&5qm(XH?mG!@}pTOSU zUjytPOg^~E^%s**$@zbMf`COezn&oSq4iup)hhD?R?@#d!yrqi7Y(7=XI*wlJ(#5> zLF4PwJ?daClSgtnIxU+~c+ccU+D4p!d_I~A!Bdsoxy*)ev}IDQ^tVh0^1QrN!DHzP z^{l3`zAuLfdX2EV0(gc`GY5MQzBi1IkS36EgOC@?Jtwn-6+lV_m;Rc)Gk{9MlnuMk zyo53i@zP$y?e(}d-9g^T4T6P-cdZh%)_H8v!gM1;xk{hHX|}Ck{oaiwY~ZJU-RC7a z^o(5Y8-;D=qSBFSxX6!X1on1cDo9&PCB}B_i z%p*S&9^OA}>;fF>r@~>;G z73yIXm7Kcw^W*6_DiLO7)nmkE+9;0EFecPsvfn062*?AB5YwA3n|9Y?AE3Lxgb=)L z3T-ew^~x$j)bG!?vdx1Y-O4+a`lhb08Mr_6%*fy6sR&GRB|V($mLENjL0Zz_u7n^! zANJE+QnVzOXHVO)`pl?{Jcjn9zrN9fOXHuQHxbs8C>q@Co*Pr6_8DU=n3;;d>U)T9{>8>Rg6TV%<;R8HFvo8bxS^nT3hsCDENL z#IgU@v!jojn(wlsHwClrV%>4s9oD#T?5G#t$5qi#Ab%WmsbyLu!RW!@Swt6~@IZk_ zOi=c78uGBUuy>#Ee!|Vn)w}GtS^3=NX53=CKoR(WQ9ta-6mno`qq2Ox1&su6Ts7vR zw{crk*R%GJ3&>&12g2~ssZ(*PO9~^qhD#f}5GrVmZx`=h@ASS_DCi&EH#Sv;DToch zHznLQCf0UvZwr6LZ{)C^9g!0dcnc5Nh9_ze9j6~1XBeGRAvK{jPNTp>c0|~b3SF3u z=m<3F;ATHtWajPXUrsm1g`^!XsWu3*fGM0 z_nI+U1X?T{ATYr#Yj9y}*n8}@$iKGGDgc<{;ihpZkic={pv^rr*5%i&K`_LnTeU%YlwEOV=bm0*K;dqfE3O;%+;m+@-4R6Kzqec=d8Ot z5N+)Umh#Y5R|iae-xlsif{M_POarbNXzZJL^6AkV#IWL^SrLK#A|H3$>pca_%>{ww zo0LNX?@Zqq^O00*Y%r-SlyJsP*|t4%mo&ZWZF=bA!Trwqy4A3C@euiEvtt856W)J` zi(03;zTO2ViJl3g@aa{DcKXF@dU-YZ=$6-f=R4(S!|b5R%zi!kxyTfPZ1mDpDLj>)!**TNIr>GH19?^z5A%c4d86H~zb z+XMB_am@339OL}&;}|shiS~C`95v{KjQFoH%)=2{5{nOB1mH#3P!dao6%XpKq5aKf zk~f@@5r2cg@#e?P};{?Za{)?^T0iCNb zVM6h7fem&xT=c+W?X}otZe(Au?C>pNiEBbhw!W@W&yum%fu9jx)nVZHIk6tq*r-f| zE%1qMSk_j{(ZUE1!w4QQj4^mhsi2l;^)qSWM=17jCGv|^H^wMtDV~Zt&9>duLj>OY zG(#ff7HWhL=}L3njn`!>PmQLWcfK9>_`oi^n2-zq?Ni{~mzIx4m~v&C4DW<#lC(L< z$o=SAD?Sc_k0X<3bA@nPp2&y&!@rJbH;+4|aQk-J>S&f5esQoq47JrbS+4(n^mJVG zbKZ8NGW&JubY6L6sO?p^!s6Eh2yV*)hQsUk*TzrNtNg>T5`l7^et5{=!VdDaCU6Cy z%){z2ZyM);>@=|5pK|aRy)Uoy4OH!_)_CIjf$A=qolQlz!vP5iX2`ro*r z_Trh~>{P;Z&q4=I;sZn>vNv8ULH9wYBs#Ejhjw!Ug_7PY890nc^FeHIXh^>5xv|Em zqOEi&H9)K~Z2oCsZngxfYhM?{J+8JBXFrOd@@7e3r6B9Eg$TDQYCBhOEnCuG#Tp~< ztJS-moJ=-NbmN+5&P+$Pk6pDDfx$~QZ(Y4!8b5x{buVeSDq4`pf(B(u?_PNZQhk3b zRv9h?tXxyWmm?@!(pL6LGo<9kql9G?V?BS9f}SK@6wphGPMAQ)2rHpY)ff|o{JIx` zsxgtin{B{pgbQhX{yVqO8+|&Z*^PzkjWVHTAM2ae)d6W)e_w4*N%}6I-eu3Igu0)k z&_X3KNp8A!jz%n zD#RQNN2|plHyElqzx>2_On2{opXHz+(Dy!TGu?d%e!Ts9_`_x?%Yd3brjk$Eu14SV z3Q*d2iO^%sr{Ney`s{OV=_ z|53)E8ha;(RW*vqs9`SoYGx@eFIBbkcM;Y!|I6A~3t7El4SSfy%hdyCU1Ekr>GxFT^~i=ER}9MC<~?A9#OfFu1|^@fX|BK}ReO$-@^4O-~G7Bn{B?r1Uo6H~wHx!(>uX@VNVT z4GB03_!koa$ph{PoxtP#*R=Y7!=8W8Cb--?#G(>L7DPFacpU0S#Bb3;4)H7Kj9sQ8f7^8YRVtBZ!d= zSvoCKbre;)fWu3uv3ZZVb?Z)6ylb@+1dctOC8u=wtSfoiNL*UTUax+xY0eL*Kha#g z8LR_3i5Ht6S3w%@T*q{52$6#C8+nQBe2k2X9eoQUAvt@1boT;kll!H22uO={pVp@m@Le7=Tp-ss?9ec z=p6AwWM)Bpn1)gUAj-x|gQj739CR39R_)!y&qw@t2&4)lO!5UPO#E)PSW8q!C)|*E z$G{)LY?j62tf7#kEO5;rG3}8gWXFu3FVrler&|g56fycsg^ z`GZJ%w;h+hWW?i8D0y1S_xn)KcvnJ^g6>iIA(Nwc6*scQB5eROIDh#o~%e$mmD3@2?&T1LHB70=-Oa z+dsMIyk|kW$zSpd#5<_h35Bi1w0<*(Nf}`Ht{F1X@$+1+M_YxbzMaOFP!-!J6Ve!c zEq?f{g&jO=TmHJUFl~JtA^|jV_!XmhI#SL-f8mSw4FC zH|##MYOFAdxSP?f-_`AwGj~d$}Z^NZ-rcc$aUU7QQXx3USZAoyDA&3 z5cn6I=LVaO{FRw7LEO!>sJ|MlmHzeo`+rC4f9( zx)v3`^v^>zu(2p%KV`KX|KqNS3a3UHLruG9ocpy$h=p)_SKzMj>G#$)>Yx$i*9k+5 zt3C405=oi#0qEw|ZVjnVtS!aRhELu%r`IhF4LWbv01;S}XG%bh`+Va2Yt1yvATh-6 zPkvrZRfN;|-Eo=}QFoPuMkaIcq6D=uh}+?5e)ghfc)b`G4rVUHM;{R|h#Wunyn5?PL)2M zRruiGO$xFOK|1PQ#)Tb~BEsa?v3HmrRcPVT^lFWI}Kv7Z>>H7SnAH0nMha-N_8)_00C7le5aW@Q-tT1!#`vg-Q zrGZKLEI;#d;43Gl^Lw4BxZ>ANoX9_vLNxB*cX!TX)G5F}s$@YellKcPoFLA8RDhY1 z^6ZF(Z`Fq&LCjp8(eicF~u=W{lk;#phU4?oI;^GTZ+p+=!Yp}GFlBpkj5Dow@FbUzGu6R1@2 zU4^a9(z5l!71s8+ngzNZT};YhkKrN$Zbax%9K#4JGGJhbr`Y;+w}r(>VJtZfbCq5c zc5cNk+R=QfJVUBGIyx&IzkfvNagkv&MwA)J#s^*z1sVFp`O)}b-EnTdPVWsaL|w(_ z)v!ZP?NKAC^wWz{a?4b@PPqLsaQA~XT*)z0={(^!2|;Lf#%cuG`?FS_(v$3Uu?O|_ z2_jGBD-i^~vAxKj(m_S9@q?;~!z|2To6yx@5xgMVt!n{bmzd{v##2zxeNYfLg3LE5 z%X*-j2O8MH^VZwX1!jsnL1RLDyREF~yLZ6Y=dcSA#M27}jbx-7W6+aw_UUBY>7vB9 zBJaI}bmy!mM#HfiIgssCN;=_Tt?WVVkOTp8bL>}ga?_wX%deB;LWR3ho^}PFMC%qU zrY{cLnHbjUO|UL%oa`^c24ciiS_+n__ceh;qP3(ez~$DZ;L1=AVa}-Xiju+WTzlRk zrIy09^)|)h1Zi4GRf>a;-}1_KHL8aX?ZrddS!|5SlC5N@Y!bczxW13CP+bU#Utyle zBU>A%hO1A_Nt*WrQnTrxuhw*$jj+)&RCD#^?sTcz;P;xy#MDTV@ayvvI-1nqveyG| z`E07K#ysBC_fjows(p}C%qyo?JnwKc2*=R9%Z=8p*}mN|950idP4`MpQ%g-&BMitg zv+A4S9}}>!+OPe%vN44b5g$}1%WT_N&n_SstC+xIQcvZo+WX2oyp?VU-7|{S5uzA? z7*+LEp6n=p$Srzngbuw!Vk})Ys_Gm#cAsB9-SX<2S&O&rR`6=Sr(KM{_O$-Y$$mF% zB0OOf8gnyyTPN+toghCJBpic#c5xE8X)XugZ=8Ei>Vt=#$q+_?bqK_YxFmj2i2r^| zAy|@wFsU~^zaL#bEpBhX(}g!|H*EMb`eisfM4;jez=SKGB>W4!DiPi;0lGVo8@a_f zjwS2I;y@d}_2O>0I7G^Ek5~H{995lQ$hiemsn=@)8Iwnku!H0EEMh-7HVfm^3wzhg z@{2+V8(L@^+}#M$tq7&+0HtkNy%fgu9a$j@7}_1{A3Dyb-rkQDE^nrbeHzL8Qy5YM zGlZGU;{2?8P2OItoJ0oOkMVE=2jSemtUQpR*~dqGHIl25l%o+sKfV{75_?;M5B=@R zK4X?93k8oqrwv}hAN_k_b-944mCz&>yVso2l`{77=Mtn{0z{H1 zJ0L*x?Ok_l9otG0RTX1_$h?1Om=Lm>`+5509FM636I!3Q)*GG{hDS$!Ae+exP2&Sb z^HMDFyMrsF%hi=4zBKzH(!q=H?l6uHzJSQ{DU|UgeQdZLgCBcg^%@fIl&OeTGy31} z&js%+zvqi>%NRTOdC`t620U#0+>$Zz$kN#sU*i_I)g0m5%YG;d$VY1}SM*vw>G5&D z`98;sG?lhmnPWkykaUxJ4)ibxF6~#hJ3Vu%Ot-DOO9C>0>OX4|wMbRbkw!4k4H&jL zXd$hfgt5qAU5zzp8aQS+AoZZwG-JoP$PZ{SHfrTs%c<>)nb@es*+_57S@3jV&9-KO zGCt0cNV_Q|KU!{dD(#CUO=TRtTzH@Z`j^|wMecXzy2ME_`|W()-?w*?0krbQ^?vS% zP$36SWE}WQkV{s;qcFOK*Jq%F#WcjbRT+Hb`2 z4|esh0$onHjmk`9FB+?+EMf+JxVn0{5T3BEH|jS5Ulszw=k=L3Z)9$Ux^^-@!TNrEXmt z6==~9SnpQ<e*u~^6~Au41trNQ=%13XvhWQLRapA6tk0g= zsNL`8b`^gUA{q+4-UJ%*0Ks2j_ZDtCldV%m6U&iK&Y61Tz#NI!cL4`YL(OiPn26lv z`ds-Ql;_Kz@wsT$X zC;tpc1H-Nsvsb(G2Napk3n2~Hc4)hkWlKT9ul?+Yi;laqpn+>t4d%TK^-VP^7bu)K z(r=`{o}q1%qDeXr!<4%{E6Iid>CrwFCpqVQMTlHRGOuaL^Rf)heq?p!=fT>N}f=+2gjKP9fUdw4CIO6*U&orhkzYqZfsmqTCxi(fc@&nt?qASO!cCfo$#qi z5HOn^8AcJAWLz!QP}ecge%_g-U7lJes8=M&120VwJ$t}|@(EFUU9^vuh#i;vVgdRe zH5|1-zJ(>jCTrcYyohGrqYg-JWxr z7p`b0%RZb&w0wrmUr91v48~fSPpm0D+2~v!HMX626~|_;FTc|doArWqx%eR!j&_4i zmXEHV*b+E$D}tzLrjpLW)PAAs5|kL=bM8B!5y7AwcEa;0=>8r)_sma$YmEjq5MYue8po>}$WBZJ zQupCgix7T4dI0Z=T*15j9F}G4Jppiki$J&uSYNYOwnF3oLxE$n;>^4uD@JJNBwpY z5M}!732)~zRwXReSb!QOPCN&T2~;akk)i*!^Vr$Oz$N)y!Tn{Ne1axa{l}x{E}Ojs z6xyd(Yq$7zaXCRXnbvhio#gke-3(#`Ur`!R6$NfRP9R^y!PtH7q zdb1K0*0B}V6k2sc%L34#hK-O;Gle_lBSz_b2FC6#Q{JsDbb+O+j_8fkRg@lD(yseS zo-xf|uIu}mF&P0@04$xMNjZv87bK4eb zDN@gmJw;>-BwlgNd`9*XZlyI~_y%!^*Zz>}vTJe+4IAVpLu$O`=cm%hyuoCcL;+9& ziWUw9(v}AaYzNtS#lpifI&nz*8(rM1du3cvuJ4d86kL~p0YR1cbx`Y6EH2KyyYaba zeTqp_9wv?|$2|LTfFGQQU$kEZjv2KGp>k87h`n8t`Et#NVsFSp-GN--@$OOoc6VVU zKaC}eZB^0D#=RdR@b&iML${%Qr)rhHyKa6PcMC=kf$xPCt^wkL#&Z;ppmAlbvOv{U zKv62g7r*UFhG^VPb^4cycd`-c+sfEiMrivfAq%`FDk%P{XXGa5 zD2FAvhPj&AKSK1KU3on>rb_ zqa+T=PQ+Qau2FqUm0+YCqY%{{Pv2JzUy>tTxM5By5+6iWET!nbM$Z0*D2OU0t(dbN z1;`CTmV0Aci5e0Pgy`;swu8W@bNY#=!YTqs=TOf;88c<3qF5 z%XXRqkb%jtQgvg}#^v3g4M>G)V!!NCvW5qE8DmZ=B^|c z3oGGGL%t8!1loMgyqkekky1nNY1Qq7f)ID)N>0ReIDIg&(jGjItV7r=-Mv}M2;0&w zWt|HV!0;aSY8M&LF6W|eP#i>E;}sCu(hT;j!q4B#M^0QwytEfW#oW2wP#~qPa?1)r z6v|l!tr8GM6~9@>delhWZ!47t+EacN^wQxKM$*aL0G=6|Fi3W|A9QD-2ACj3KcORM zqt_BNX*G}Fy!qK>5j#s^W&oRSdaIg`nu5sZ7k1{eSjT~pESQ9H$$Rw$A5?@4i5ybR z{;Wj3a;z>&pK7k-*u{V zFn_iP=Zkdsze9V$(EPXQ>vs|9-&Jkk3%^WXprUa)ROVkwiQlCV|3Cfu8k~v6_rGbI z`FV_J5>C7q9rg)0r-(YGEujHwqP*{e-7@J8BU(Jpojv&P zwogJU+d1sMP67sq{agr7O7o1BAmsrc%zz!c3b0|6>U-z_?ldRU;f$);b1_VdAe10< zV~;N0c-bH*CYxy!Xh+1KO-x0Zjam0$c(GoVNqB?Rk?3Qa^)z;JaTvp}H1^sdl1j0R zc$8A5@Vnx$+0=TeVi^4r0i(oyZc6l{$^~8D$*PG&6QtGT-=>n(4sn=|YsE0jVgWgx zVg`__W3(+;)Iyu3i8q}~dkjj@yuyW!VD8!A?s)-q^N-r(Z@0@aJp!drgoDhwH&<8< zR=?}}G@2|(BWc2;_*)@ZXap^p)HmMW;p&W>pTLEw^XfiUE;pT}wyrO2Ud;kI41{0R zShF_Xg+|Gz(qLJC4AQ+wXk#mOkpVJk;1|-~LjpC0X0_Pg!&1!Rw6b@LtXa%agF>V~ zBbB3bt!At2ypoa0i;_-GD?u=+RehMSW%Dcf$!-${~~KcS5q4A(0Bg~MZ2&WYT;7|LR;Hz#W$%qwtm;=w`)1Y2| zbF>FAZLJ_fP8?tuBWiznPaDM7Nq{s>dz>k*g0Bz!}Hpc7k|F-UQ@#iW&NIipJNzQyUa?cIaFf<&o^P z z(&vq>mdn0))FGg0d^Fb`7^r%ilJVJg&e#gKG_~@3J$iSM9rx4fy@50iDgrT%%uF(g zqjXn#KwUrC2!dMNH?yJCyzS#1bXt#hm0z|85F0d;Mt^1@Hrdo`NEu)O7scPY;!AN_ z1Wys&!3`O_dgSS-m?Md)+Ag!UXsOqkkDR3``?^Y~6<`5tE8lbo*xE4l=0Jn2+kVi0 zvctCH8Ew&5du!E}E?;Qk2kivcD5_kasdeGLGjClRO(uMFP^Bptkn-*miANrT@P>EZag!7<$N}wTGB%6h#C* zC{sIYCm>gfZHVfv9T^lJfIk?au8_C$GL|D1TJ{>s?Uo)3qb`(tT#OuhBW!<*auW+N zh{5<0B7%Op$a|ahjo#z5jO3lmV6wvcV%%$F(Q?*Or#J{6k za(T?D1;w^;f0f9$1(8vov!_lFYPAczR!DCf8CR`aofij9|!{ zGsz-9cSJ%QKaYIx0s^d40%WvHr;?vrn2w87tP|1C7jec~_m>^OAZrf=iu3HUA*eg7 z6o%fGn2+$ap8=&1G9=1(bw}crXr34nh_tfV)MOY;6u!>MU_ev3#V~TRsaIJHjSq12 zWzh={ivheDI_P=E;7EXcp}Kj*oZ6l^cHv_aImsR=Csa;g zq_P%bq5I@}*i>1w;+1`N4%BcxH`2(by^{}|r56+SBwO21wn%KABDosQ$Yi~vL5+vT zW&Y8`;Ko@o_})DDmLef{jNPKjLD+{4UvTe({=79@Kn$LzpHm1OXCw;`p8T$D!mB>q z+)q%1a#BD<2c2?Mu_NQ9V!I!{mW73hT`$jdIxdAJ7fon`1Z@kh?x?PXhFaEoY5WCG zaGK#M+++p~T7zv_yPk<)E|_;K5>k9)wc>>Z>n%ZsoaGZEv2l@9d29Cf3?M| z4w56RT)V9Rw`aFmZpy~qa6vDN?sWs(f|0+U%!Q5L3A{dGrGkV_mRQtQf8Kci*&BBP zU3&~DhP1%!T14xDd^rTNRH4{@XvFHLXHfoOk4o2!3h-veXHXRAmGLK7pR;m`@LP7^ zpdum0j77Y%7~zR*{?K0Ux==&<`G+}YJ{2vprzD{TqOo?*R@F{%I8vLPklK_9Vm1!@ zOzTO;vo9HCS9U{=F$rZ)kojgY{UN8b)LI|#OVO^kaNnB+EFuAr9*RmoP}adRb@aS- z4=JXi0}pOxWI-3Ln(!gdzzuRhBo9 zQaSL4?+DQCEATqeu~^jcdb#k~rD#ft%AY`Ik;hNc~LF1`& z5yoxtf8*1%t&LCP;)&X4OKz$Et4kAYn^B!+vul0IlVho z^b9J91PJuH`p?kn-;gUyf4Zh&4NwF+W-6X1>?Ps9F_lkd4Oev4%Q~Q*ERCHmHN^O| zgA`vZsJI(hqjVE|%b!0${45Eh+#e%%DfynN-&vTzVW647edztIB@u(u+NX~SJFTa~ zkD*KTX;<0A_s08y_HuKPc65{G!VCCVi(&&Ij1;$4CJ^>M1vPNMgc>DMovb|zE<29k zmP22|x`G$|{ck{~1UliRwNtM|{LtVv^)|X`QL_MLF@C$p?4f7EuC4)SPSI&1W4La- zCnIN>+ROQ;0iECekmWs?ro{5SgjtJmQ# z@xiZ9R8B75|8Vwk{YSGn-#>5U-~-1v@pAmfjbL~V5sr`Z;lIM;f21}211tXn5&r`# z{{uz;ouvN_&VR#ZP!1f#FCR^3I|n0hR7b}CM?W?=(`h{(<;w?cuVg6FO?MhmBfLOu zcu4JE@}*Ew9{R*pf58r+N^X|&15LR+vrmn)Kd*1vw3uoPYbhQcS}627+I(-GDQDB9 zbO7=CF9|XUGI}`yLr0#8Pf0+-in*kzmCKJ`xKx__fgo;|O_^>^ZaX4Y+ zF-xg*y7d8+Mtb*n?I;Rr52B0gUJ3&DokU5tDn^ax=njCe_|_nDH(=W)Q+2(!2H7fj z3onz*hI>5&lQE9h4>2b+?h(ic%%!j4gbWr4VR8y!`U!Y<3;phh&n&uCNJFRi+a~xY zHXcV;B;0V3e31ajAF+QOw!LT82c}oJWY#onTTVAquXnR|3a1!H<#=;yDpER< znXJ5Pb6v3aI;n4iLXue&52Kf|q)_e%D}WV8PNIpH5jRnC52!;&->A3kD$mDo ztJg;!4RiYG{Ug^-_rALVoe9h}rY~Fa{-KXY<}m-uR}`x?k)MiWfzfIC0Wal^--at# z>>FrA{K`pHh=&xk?3Nf`?i<8!?b5^euZ_z;9~sxq3A+>t+uUr=BP?1)L0Yc6pb|iT z+V-k&DN-hf)4-NdZ~&6mT=B9P!Ns+U=%`{>2m0mW)uxq?a+`%ApzumKJI?VIAfY7^ z?*h!~*>}Pq{y)mzGAIsh+uFw6-QC?9clY2D9D)XS2+%-q2!SAtOG0obxH|+1?ykYz z?d|NGbMDSQ_f~!1AF8X@>V~4aR*yC39OL0?YQGq!gT;!nIv6ZenqW5;e42oP&Y@L4 z{fyGWU+M#Z`#FIboo&8m$r8cpAhD5z+W}H)3BjW2c%g)*M%gTg)Xf)Ogm+TnXpLa? zZ8YuyPWYC3)V)ZAo);pLd!$vs zq~=0XOU&=&fRhLGcLAgQOB}?rp%pXN431BM4i~+iHC6=EAAhQVHlnaik;lkzLXlEj z7N6dIg&_B$C(<{4Jj@kM=AZ8u%vExV{h>|=qa?!mE{ew18NWa8Q`YKsn=Z+^g*o!v zVBvrP6Kfn4XHoWG+M5KVTdWJe0oYgi1->1EwvZ1T`@@=>dc~wM6&0Rzm)f0h6)mVM zz$7D|F0F8l!^zyL4@*zErTfH8Hr!?FHUTz|8tGMvN-0mKJI@O%$0{{@jtsloevNtp z$KU&;7w+$8r5uED>9i-;q26PyNYfLv$E%(S4`m#_niNZ5y8o;tLT4&6m-#$dwBhuL z=`5^}NXQUog4T+EenSybbCymWAAVKq7HI4?heST@Wc{EhX)>o51^vS-`6pKB_7 z+2nD3^3;LkRKaUoB=hjTt7x3DA5I^P#t5PB=MBm**nUQ{vOm*~So5Q)i&tG5msusz zi>)T=x6EEj#y=!#te7@?gUyFi!P1mmeS7penJE-yd)wN(YFy?4pZ96-3-DO->Vd*& z&^Xxz3E{}?P-3l@O2|_lKz6SO_w{~q&07&~QE!(3RZ#5V=ZSbDJ;CDW&;(&L7=wgM z^;&8l&!fWk@uavP32^6P8M!hP3{=-q)*wF5zfMOW`^mbd0mPqgiw~T0dxHap(m8-GiOD@7tiV|*A(jyEKWi% zQ^W>|POrbc=B7IbrWPOZo@Ey)I1OGtaJ1KJH=c+{l=&4ZFO^nUsF2dV`k@c(W@gS% zAw+X|s8iq+GiwQCka{mOHPRPSvkb?-JeBY)Nlt{K-HaTP)LM2eb$4Q=9bV2Y*B+n} zBH&3X{^_Yj$vK|Dp=3m9;vGyaVj33$phGJ@sE)EDn!v+;ZTHU0qy1!mvAeQp>kj>B z1=(H?4mx?qg-|j+>NJGP&ng$FvaFjq4|1X9#B?xZ~@NszUw} zERHkO4ltS|+dryPH8|<uMk!t@qqMb(|x*Z3IvD+5+OGAZanB1?a=aVm#`kgPVi#jNFjRcW!R6rH-0x1ieP# zO=Nf9!{b9LXDp>3zdh*@wW)q|+iSNE`%t>HtmnMgrtr=7{MK1c5@5UTZoFp65+W(%!Us*%T`JCZCC3s49&M!9l9n%Y#K_gH@yVdRq zl;=O1j>Nqy)Gh54(XMoQ$&R=zRU^KmoH#M(uDT-k*HX_pnrNR3O1gu9o`?1%gDzE3 zpls`EsXpk|YHy42z2qKpAkYitE&0C4KP)Ec9m3MYE$RXxgOLI3KBPlKEh#j^-Fpo> zewsJ^ko2U^7g4*9X2P=L);T6a9La-f_7>-Q3&+9)j?$=i4jCd8aCJKL%6>Zkd4+Sk zEtF3oLou$SU)*C9S|SlWVz+_YzPS^R4`sg3|LVznmV_+8B;W;eQ=l%q^=qHoj#Gpf zX{NH!{SN|;1${7|?@k=oT{?I&e=vg+w#Xd9oKvJf|902)FpnOl|A=smA}R5$0z@A4 ziZprzlth@azE0JOG{gH7q&kMk6he@LaEDP`BtfwQ+X1p5ssEL zHAkhG6-QtijIFKMpUy_s(6JaQ_S{wFL$JkeN6<$FQ^Sk{brHW4!f2s#SdwgK&W1_H ztt>?WQK(oTnVV4j0Td;Hb;Bb4tp^JR>B3G24yY}v@%vl4Lg5UWS%=U1>yH_yW$}9w z_eEcb-+j|J6%^ZeOk^4DGe0Q60Z?H1NJk6XB8a^r>g(Ufrnu?+eiBQv@snSVS~XYM z8U~XPEo*KGDO}XB{Xxu3_O&=j!j}mf1epuK24TEn!ocPDYclljLl*#!-&vt_|C^Zn zM@|-i0~}`ojsP|MN6J6=`QP=bIeGrU?)|S9@^P_&Al1Ns^6n;h z-s2zd3gBYn`ZezXg4<;HYfcvUpE=q8TW&qNe~MZ!_RRgC}kOiW8mIQ*m14$7p@fJ+*?Mh~porEhQ*?}Mn*1flC9(-f&A@-md1cwRNcCo(Ek z59~uGaC$y|7i(DE^gblijLSSAv|zzBz9_1l_k9mp7$b-RT4#5HoKe&alAY9s<_J!i zjZ4E@+d28H=inLOqdp8I81T@)o3*s~fVb^vqH^2dCpEh%=VF|6 zw^@D4d{;eiLu{x((<4YS?MivM74w2;YH>06X8o z=aFxv_usP7dqZ#Y0EvU-F|P!-7M+L6AN>$2NoMX+pYmCAC|)Z9nMyCy)3GwTUsTk~ z_`+QqS)^Kn(;bXQ#Lu;>DtPg+a5U5hkH*%o6$2$XnGTA3(;Zu0c6on1Rx!0D`oIIu zo%o=?vQXhybV~2iU zIHu-Kz`0(G6Vt;XGgO4qDoXyeiQ4|@^u%>C$9P>1ruRs2fU}9vrW2R7v z5fcaKg8H+8_up@HTC-3i-WJI`3a~|tVo=1Zgf-?Ytmk5Rf$01leY z2mNzjgPut85+uHzv{Dq)j)z^rAU_{R_kCw`M)p)mm*P~s5?c*~CuJ|3^QvYB^W?-g z)XTOm#;>r%%8q}~kP(IR;@F`oUVhlzuz8Z|ou||AVDMJI!P1js`1V$92-eP`M)N!fcmJAi1GDk+_i^5K z%3wnESO4oDA&P$#0t7&q(2Sg*y(W4IXaFZ~J!>;P*GG`m83P)K1e%fV*8RGEPZNC<9t4csla2Y=)-SJ@HO*fOhEiDJ87 z>m`zb=tsA(+i;eMM`Qfje0TMrP4+j_@_6^@bbWp6j$%y!B@ zIf;#vSh;M<&DJmHI;P#q?ct*w}qOssQxUOBjV4g8@-5KABrBlq)U0}((E6{pEf264y_9ZFet z>%Aid7a@@{NQi+!s@>$59t69DmD^wQa(pSMw zUDCfbE>)P4y9_fvLH;@3OqW`D`^CU&KW|uAhK7u53;mjxv`e7+DW(+$d(dX=0?39( zWGFx~CoH2CWiADa^=8MDN5E(-aD060NP&+y1TB^64_M0Sa&;}Eb+M<)s$g{ ztoXZD&NkN-I~Z1<#XKAdKzR6*@&dyf3_Om!-S~OlH6Km%)s;83TKm8!eA~I&Pn*7r zK@lIhB+yF5f3Fk&)cHQfe*FAyO|m0+Z|y!~nU-N?FJxUwO)R5dxj{CgV$5qd4k7Xz zr#?*>9vCC)9;3HZ6G{_5?)dB%gjETUy2PriH*{}Z4^D2Ma=-~*G5 zNKA*zF(%{3i*Z_FkQu0=8Sp0R*idXamV$Y45mTwTXXcishFD(!oL@~y18d?sZoHNe zL`%?U{#4Qru$z`<3Zki4uB?O(a&j;{Tn69Q{W$`RSA5BWQnB@{!^DB86B%-TIeo=m z?-m~rPPr+poG7HW|an2Vo9+o`$?BcFn9mM0kJb#Uq|vWCm#2t)`&~!)O5!Hm2|vySvU3l|g5&g4h7>F9 zhIi=w5o{ucaE_kIN-n)(>YYd-^{HZFf`nWJJojkWn^LP-nCXm}L6?&E%i(ifr{j^W zZ(TLoE<_=p*V|?mIXU_g0eZ1Kz|bK`v0#Xe zH4W=w(}Q|j(Om? zk>?89W|dc)OGM9pV#jS&WTC&QsNNIYJY5gDSaheWJuo5%@=0p1_OUXMdW|jeEKkbO zNeiC%zdHb;t8u;Yc0Q|Tq2BHW4~u6 zU;zDI%(Ic)^-`@TB#kdI_xe4ax@!ok(g`(Bt7%@f3n{igJ|C~GpSj=sj1+!He%&+g z1I}lY7x4ohTA|T=7d%4v;q5Z`hO>Dx? z)$DI4e>|&w$bm;lbQT~s=S7J^9_ys)d3*&6^X2;tC(2gO6;Q>t|1%61i!>?+*WGe7 z6I-#LiUos4Kd3JJjFTRvJ|}_2LG6L0QAn2)b8Pqw7RaEVnB~(bF zP}$Xs)}NN;QY>wA5?<}gka8uH)%Z$xI}{o_X&_=UhkUE4FA{1I&|H*kM`tu*XB59|;?Q$+>J*%LTtg!Kahe%H&OgVp!)!LI2GRHb{uJQ9I5-24i z^%=2jWJt>tjD08x^79I#^sAW;MaPeG?!vIJVg)u+xLrF-kYu>n(CdOq%1`=F=*CD? z%EU?FvuT=(W(UL=e;~)7&h)*$H^JXN;{j^3bWQE%~o+r=Ih@T z7YAB=iICuT^g9kB&t{#fqt_CA_l`Mc-%rYlZs~` zYv)H~{vPKO9RPSd$k**)$D9t6yV~T!$jM(DeLa7DY+yMVU=jY6v9OVmhLndJH>CP- ze|dQtba$gBNm(LgrgH=aXF6AfUS*5(A^{ibfnl1>UGxZsJiY9?V*TjpCG0U68ad;1 z7(%VNA%?fb#l`jx`BG3MC72kjUsv!RA^3R1-eS{Tc<9X#co!Dy`rzeEgD`4!S#Fmy zEzCUdsTq`>{jVpPs}y5ajovbpeyNo#p&ppp7tXgnsyYbneS_`awrbj6Aq!HvoMOM{ zd?}rOTJLNjX1>G-?|Y{Ept29`c~x2Cl$_1){{UCER&BrQ?t(CN#_o;cVgFkn&Yv-$ zCS<_k;{DcEf3%JOoc~U+`E9cJhk^vDY%vgmR+Q2ImBXDm%BDVVLsx z_2^fYgY|FmxIWBq3Q{;{z=i~yFwPk0Xu1B;fdX*;%WCm&zbhYr4UDWiWyYohfMc=$ z=vMvLULFB9K(ZPW4yfso0reNM@4t3%^RaP&&Pds?L9Z_u{^GU&*A`AbHXc53z~&PJ zHi-F&0R#6Re-S4*?i;L3!Id%`NWO&iIs(=I(9i!rDd0caQ-Acges{6{(!4O-VEOx> zARQbK{4)a@(!b>{7vHad3Pxb7{=Z=)aZYx_Jl%Xn1Z{^@#uVWc=_q*3r?)xk%&{}e zpC&)D^tA_++^R(r)#cM8Y`p)PAJuCv(q5d~TM&%*(vZ7;SO1Xiv|?bOl{aCCf76bm z%qhui@bf#CosUa9qiCX7x#$Y;W#pZv3IZx8o_E6uxz1bd6<(mqg-h*DU-F5tf0ted zv!zSFHVN@spO4Q0dGyj(n&8D*m+Y#Snnu2QYB}$e^B|`0uEVUH-+M+*xQ1zq4hsd) z{HTbHZ8QkY;s>xwc;dL|L~@6t216NVu#3Hn`;@w>q7b@Y1lQeF`O~nKG4($%0n>4n zvm9grx>>TywhTZQVVh2*hOfNNyuv45l@^m5>)MSa51u9uH>;{gQAu8>Up8{MC?9;A zyT1nXI{4Tx$CS)+R1N@I@IL2gS)JidNwN4fa>ZtGZ}e1i>O5zfbr4i(WsuI;zRHVdU=RCD)wM4+ zzSygs%TRvd=~i2Ba_-UJMVJ~SpqE=j`$^yF=Zp8nOgMaQBJc$YYu?rQ#p$}i_~i3= zb8CU^zJnWZVdlx|w0*G*7)(#n{mF}R&nT>PMuUmtIn}K>y6sA+ye^0vX3%JDK74nb zK(F@2!ONsh>NXbMMbnWgeOyp=zAMA)dMw&&TML8Qq3LGOWM-Su z&qXJ+Ao>!X0kPRr?Dp%Xb7}XiN=~euoQJ>=O8BwMV%XQ)Hw$9p)FG_x2hd`t+;!nN zbqDtYmT!a)bvll#4h}XePxkROo2oxC5DEKD0vMhvIu?EMeLYF_1YyvL$v!%eXRH8& zx}isaC(M@LiAJ58a=pNxw0AGT)%D&^1LOVWdt@PaPdr#!ms10_LWk7&?&!)d&$|2- z63GP>qbZK-{D=GTa&Hzg_AOdM*%hPpjR{o~k*-Bga8+T*d!caOV8KSZNfbU*T%mpb zPWzIAXI|>`_T?Qs(!vyjPaPY?cOF+A{O4^*;QXu9VI&_l?cOvAUKETVYFsNZBitw( zyYeo4+rI6)1PqhMaT>I?C&Rn9v3ft&JYb7bR@atRiYA$l$Ab1mGc$};d{DlN&U{q= z5?;AQ)d~5j+r{KYVFy~s-C@#<$=XN{ad1h7%8_XD()OMEXpf@x=k$|fr-0_j*e=*9 zXWiCf zS+cW(wWZ#0u`uj=_$X_27CPE~N=7RO?dR4$A++!zP~r>*BpPosjbPUVE%tcFeF!AF zEl!cvsRj~jP^r65^h-uRm?HuQvw$sb2z(oXNn^u>G#;$h+l{wfzm$KZ^qqGiPee7@ zO4c=9y*@B1&nhE#c?h9Nc8g)Mc_hSnG0G!sSNW6kSA4|ui~&u7jdD6;M;*D^EbOo^ zvjS{2`Ipsvi0cW9%u+jqHtAdTL4hg{iBE3fY-ro1j#Poce$E7s#pr=*m9O;TDS%4e zOe|ko!;Mw=l-788(X;Hsv-|Ac@v#YEe2X>^Rt%i@q0w ze8V3kV_=XRcRgc4^*}K7t3EkGwg#FZLzE{TnngEgVRv60pjDx`<|^Nuew8W>iz+tu zl81c_y_9x{sT8h-w4u?qkD*#bj7sxv%hFxs*g|c;ICZ8iV?o7veoW*D{j9z}MHc49 z@uqE)I3n6)cVs zWdsN1!^^kVi~J3h(al3Ps{26VvEL!2DKnksk*YtD)h*+N! z{Se7yjrkpu4!MLw=qSMP8~N)Q(Hv{E!?>bUR*Eg|Sba^J;++($YKUo7l5`lj-YPIT z(wxv9foir?$fGqXA;mBY3To+djPV{Sh-hPL#@{2PH@5WRQp}rzJ)?jh3Zm?}p?oGK z^`tITq%$tX?gl(ZoP-A7sNmcCMM>RapwXqcgoRN)J{X>_O$0VgY0RlA zZ^$ZexvNq9U}v@Jwa7q{@uQSg!1UWfg3c+vV7ZG5>p{nLQ{YZjTn$}u$e<3CY#*6J zk;HY}7I&0^0S+3hIsO2)_U8ItepvfN6a#D)qAIE~R6D{_?gylePvFm0|JH3XlZ zHZnqTu*LOrFW*Eu3<(W6%; znYxqb{`l0Rx9u!zH~xz#dVPE@D}n-Cq`~*ZEXf{pE`FU|5I==S#a=1?(2V4V=oRRC z1K|sbrOBxXWZS&l%5S)+l1;IlbI*?_6sSaE3O!Y8eVxJYjK+)OnVTQe!teIwsTYBd z{R7D`GaXtW!4P>I5QaWANHMmXyW&`xX(IXOg$e)jC$ab~tj{Gzv$%a9k?}%K>m*r6 zG^^>9g?uO>55(a*5EBV@8S9_`)zhyL^Obz@Upn}*9V^8dOK6*KzDO@wKQ`8Dfu!Xf;gjCsc-;)k);2W zt{}_~XnHyT_wSV4{|QeAaQ}T|{+CGP`mIGlzRwI;n19O8U;QriGX^}mzYxoRo0I~- z=#M5ACpY&mjvXeL0s~5U`sG?KqDKYm&)=J5{|v(YdoStln(+^5_-Cc`*Gv9oX#Q7R z?%Eau%WtSN2N;m|JE{ENdT>nrgC5E%I(#GlTXu}w${_e?2r_b>8A&tf}pt!ch|qU^QJkC4Ecv|n6m zeF>}~ZFv;!mM2VldWYk{H4;yO6)-d3+)RFKyu9lF1Pn_Zrl2kwJ_dd-{4CFz%2

  • TLdE(Z@$biiPN)L7pa(fJB4B{g{Zf}3*pUnlM+4I4Wxa-5St5hB(0`Uf_Sto`l zp(HFBDx?Z5ZS8aBE23aRV z{emro9|GT!8jA=qXBYFfuq~o`SJnGZUp+^X8UyoCQjg%IxkEu;Alpg8{O9$?K1&Qm zt8{j~Mwz+agUG5+s5p-24*y_PD^<(vbv9}u2Y^R@r*#jX%`3TOX%ZwhWAOD#7*8OB zdB${}fJKZBg%5$75LS)KrZAd!PG>m2kpv(uxo_*q$QR6IMqqv%v-H`?5P^Jw^{`h( z$OX7h*9n!Hly1u&q9gC-$=I1-%;Kf3K;uET)|Gnw_W7-*yo}E?x>Hu#yRx+cwehB# zA~(sj(pR>*P#VS-c(iRQ#}e}MrlUn@LDGItl$Z!{6$G7q>}Rk}NWC#>-D)r_d$a>I zE@%@!X)wpVSUb!2*9tswv?!FPG>$zEHuHecDQ7NQ8^t7Ra7-}+XLoZDj}in!tN812 zFC-yrTxl0Zv+gT7*$$h|KlCq)h&uB9Z@N~YxWep@$!_Xu{UH$9N6%N#!hKDSH=am7 zu`mz?XW7ESu`k-;<2`$)VC_M2ujoj;IC5E2zcHT4vG*1@R%MwYge1{*e2>c&6S@hM zMNaj=X0#+ooO0rdcs}kDsQ`ec1{~un$uX8>97Eu1%1+Ye=!A#&l70# zP$IODkMwi@3DSkd*(p00ZGY*w#9_MDQxAAhaV;iM3QxPpB+UBO;J8_IWnspo-l*BY zreuMX07Ewzgt-IH5oB15B@1O-gfa$%wv}z&tuwNCWCGJojm@Nce4FtF(BlWLFnN)R zdGa*6I3NiMlPyh=-Upk8B21T*wuxY5VKduxq$zY{3hrte`5ia+pH~$#p9)jFRFNs4 z2`64@%4d`*<-*uO(T?>utwB*&MWfgPC@rwsDTOO?Z@zgghCsyLP8RHXr24@f-ul&v{mrVP8}xbzZ4|dbdl4G<6(MaH499^tT=k- zIGikDD)C>~3Axh2a<0dWkRn=WKm;KRkgwe51cI%-P1*E@6Sf%*d9zNfujN-xpV-QU zKSypUt=x0fYInk;eS6jUC6pR?WZ5nNh)CF`&t@-!4D5uA$0rvy(SOfv`e1d3x_}c* zY{I%tV6snOa@z51p1#}E+~uCy%}JVaT)zJib|ACAh*;9l;tK?^vNDTRVU~F{`9j=& zK>-rFb%CH%l;u$TfC2p5{vP4*?0vjP7z%niB%R1!8VvX+vD8%R%jXebSaRM$dgbJ{ zg_D@}cDb^QzeEU`2ops}?MyUvX!#9^2P{%>MfI%iU_yr+nm^>=9X_brN#nZX71ML@ zrl2N?c)PeX*KMa736pgBTd5@>uAdh(tFMw=`%r@3!EGSIUal1>&5CkRewR6CyPtyN z|G_35`r%D&{j2aMlsD%!z=QSRg&dxidH5!xDllxp`HeZD6i^cOxHIH(R5s5K+N_|qmLe4b&}LYtWVkT-PklK%jg_%G=}wrQ~K= zB{C&|<=At7(VRlj^(p51o4G~pgG0ytMOjr%-4TurLl*q!v#4Bg+yCg%*{A1VovamFar9Q$<}ssew#Lzceq3E8r0 zk2*zyWNbfemNgT}BDI?#7 zXJm1w5*jJaMW~Jo#8x5stvbDeuqImg>L>#md@h(9zWE)sR>9laDtSpMFTG#=32sMzUJCyw@-f_W_hIQ@EDGl_0Y9 zIv&{SARMj@W@DQSw6wK9paQ(%eE&xdAz6Y{e3{_?4f+NAH|Q4t2K`EyFwxQeFPi9| zvpZmX@2~nCHuo=?^LO0?UijsZWB`DL%Rg6si=BT}?s&n~I8Jb>id>zET>Y2K`Um-! zmjhhc1GDx1iHQOH1!np4SN`$FJiHui;Ov)sIBbxv6cZZZ|MK2E-280(+zBqR*ihU& zzcOM~{xkdYcZcTx*`@wNi2X^C`BkI?sbis2fSk>kP(h2Yz(3GvNa10)_y8QgWEcZ* z+h8$vsR0vAjJf;*x49GLHDN5)6G%#d5CSLJPPop~)%`!GUR#AE*ADns^-BgNB zKR7x$#bXvx$`%sR>lB-*9TVH7^Mqs-slfYta9b~kyG0Tyu&$>CNl9+@iy)b!en92F zl=7!eSA`yi?*3$(DE}(PhS~ZeFR3PqO6Tslt&72Jf??P!jia3FOK`v9u)!xF!rP4o zcJ*!;VxmN4o7J!a2L{HXx0<6rQT!@+P|#+Z0WIg6lPkjlnli0zW=-COb>u=o3$Gtv z-NihrN}kGk&06&Vi|^P9+s{^|jtokffEG1JWX0iD(<~)l+iOr*B{j7Vh4@y@=a0Hd zp5ZTzkDBJL!|>Ky9a@D-uRXp2xr}w6_nPL*-nW+3ypVO&me((HTw6FL_AK-eMq$d< zdi8x?&>1Btk7j?ao+HEaXn>Vvd1$PEJ_#6ITEqy*pQPt=qg0yvF^mHSw^Y1nzK3t# z%>|&~H|=*3L`&74lzFvxlCOI%t1kFBHPJHz9hNx;4>Mbr+g_VF%UiJnmAbUR_eG72 zkH%}E*-Z?EFBeJ;&F5a>_;Be{0Z>*1CY>7P}y|pVP0ZRd1L(pl`5U+mDku_3l-)=~ipif}DV`!Fe=Up!e zdPyN$~RO_OX)W?JJG7ttZtSkH7T7w;-@5;14 zNr!walL}44=3@1dP#&~mB;#Gg=KyWnCRTS!3>G&E%79jPCiPxhR3Ui$%ud?nZ+f65 z48iJ-JJB*u0+`ew4)ll{j7x_XOpM#{^@7)ccI~5Til8~?_sa7?j6hraQ&?KkqNAe0OZ~p21WsOwkWAFFR0VpmW!RPfIn9oES}Wx%9FkOb7#<^mq%?-y~Iq$76&* zQ^?v&%i!RB30=0PHWGZ|z+4v={wi z3bPN6n(#{>?8XDtmV0#^LgZ}fobX0ObX!QdJl_=1yXki6KF-Mb!4liYaD~qdUi^IW zuZIh2A~@nV7xRO^nnHa>uYhy!wR(# zBmr4H;McgBsYN;~K?i(1+uCBWRe9}@C-U=XbR)g-$}MWnhR|^Mq1zj&Nl%p?_$*7W{heb&iU?}6=NHi8m-PiC4l-x@9>IHd1DKOlZ;I)$U zd{9@jw0T8F$ng2Z>nHrUd!IvIqw3oEpsp|jfJjmLC`rH-T>+~^Oh|na>30I5f&j~W z(Y%S)B|P4Fz$u;DlHm<)$kgaC6lBwE6XDPs0^y0~E?rk7XXTzVQ4zHQ8Ir5LpnE1v zFJAhTQt4DgDCI35k2Jl@EhctCWL+QLGV~|Mq=JfBn|V{W?>rFW9q0@2C*MrtE`(me z0`*wNLb}?KO~nO_Oa|a(p^v3GYzaarR+`1pbGAs5Vxut21PZMPbl}6$I9+l3ND?*P zC}d!*BT@P<3X@cabGkM=qxK2id+yTVz9wd(&F%WiQ0e3lcjn~ssT#jBza`G%8DTWT zaXN(iM2Rjdi&q~pp7D0h`@0*ArM77yIdHR8^mF*aPh@*7Z#I&Z6s!JtR5fmkqnFQ1 z_M=J%BPn47&}ifXdD1)l1%^=Hf*2?}n37nHWCc2l+z{}i=(9Yq!+qw}rfuTRs|}_h zLn}C#DG(Z~W2nt-Uxia5Ld5A4*acTo4QneIQA`jvTTw%*fG9DFYJ%iVup+7jwSn(h zf-RUbr;GYB`lvAH5m}g^LFtm(ES|n^WJ0gm3{a}*?g!V%zBhm+r&3c z!z({5_3?low?mDT35@87T_=edjjs34pV=_m7|$-&3GtL@PXbRRqWQ|4)PRNfxiD{{w1pLTHbqZf zTwO1{6=XSPfKy4S9~DmBzXtqYE7`qAtnlZ>&pCBP~CU2hzhLC*z;%USMa>#5t z95|mC)R51S3(S7m$bTztj}EAiNY|}$g|iURSk`y2xD;D@2SXMiDjXimkDM9VNHHUT zp7nD+D6%U_7VY3P{G}_hpFJ&P6K&Z|u5gx1m$|gWzup5kiD}6ff&Ub!;ywOtNU!!S zNGgd=_%bV~KJ8;TnV_?i=2gMi!Gb@hJCqd0S8=u-?0J$-2|u|;mbYAY{?odJWTup+ znPvwtCV>i_&}cNfv)P1QDvvt|Lq!{CovsYJRi27mA_?!p14ugas8QvedKoQu+G6F2 zB$)KGaPceD!)CNhq%K&2M9kmDK%nH;Z&oH)skn~z20y4;KVfN44DOBYDC>By%%Iwp zBz!BXqIF~m$+iFBoaV9%WkvP+6^Xxb7?CFo;J*2@Y=+c_yS_p*5K9l|TuMPWYBLP) zJ=9cSgjaTd)S=&50i8~Osin-~T7k93wKZ+$M7B$AZ=c}u-Mq1k`kMrFZN-LO@{p(r*_xoA_LQrEO163!J z(}6<4v-vo`z+wLrpu)|?!N$S$yH47!#)S2cWiGH606cT>*HHg0c=Jnw zUeLG@xPPDA3HUAjf1|_yXA2)V=aKW5^aqWaGNJx;JNW08U)BKdK&cD3R_pLfzyGS$ z0{>I1{bLaI4`=BgRop*X_kXYA{#m&FyQ6@UpMwJM7f$>a^7~&iuD}01vatW-P6ZP@ zbKxPep}Dxhq2RyJXGh>h|5hC)*rBTCNc1LsN6F7VPAS*}f;t>km>1>bP-3#o$mUD3 z7422uib*z=zOP#MG1)uRZgE$vUb(7by^j_0X{|qOu0Ik-t+p>O`(4%Qq|)lRBrUfN z@%-TV5`vVuOj^y?ND&jUNNNE)@}j?T9D;e5OV-yGz<+e`4wx$)otgCT{qd@7%|{nq zYIdcq^?eG{u$R8P|q3Ui9WI>n)e<;{VwlwiL*9iRS zD43y!{?JC$jPJO#^D&@d-{o7Er8f4nSXSK1RMp7>x_EkbzEO(c(d}N{n9sbsKVVo> zYP0Hu?0a}q5fFWw^72~)DF)YF5##1cWQPcDb(ytJI1!!jG&*(SLQ?QI+V4?0IpQyR zSKCsW@r#*>!^|oOa8Yv>2b+7z+jF9|mNtR>GRD^)cM$JUW0O_1V@ciNL}T%miAq?aDI=^f;KOSI6gU%2NkM z$Y6uy%*WNqU^*K_^Go5~RRyBASSWK7bT4nCm{s)5@*69#^Tc<29#w*&=)?AGyU-D# zVlbt8d4SY|Fto4)BNtmf#E4&d($EM@Iy02D3Zs$UKpnoa7V3*+a<;?W(RZdce-daP zqER=+3})b+{DLjgoK}Fa>pRZR9)|~uG{X_J`@M56azZc*-YtdEG^9ES&e0hBacD_Z zR#Q{S3t^?DM)`U4kCI!wIBy941`0E8Agt;{(LTr7j5m$O4b;1NI zktW_RtHV1u%!!r8Q+e<4>qFtG3-Hz6F@?OsDU7_sS~df#3WH3S?b!V55?<*re*yQo zUUgcvT-CaGur*2P$EqZJ`fdh;E}&VN7X*3E^9pG*#-3>7m>y~Ky3B1j zPWL(H`-4PkBRm`D&b2;@p`)R;rH|SsK(_9{XeXi#gIhP-85Lqft;`wGy?}q zMl{aWC8WJPZu(e>C)X2ZD>oz;ES1`xFil7jnR}SOSVchutRVc?FoB11xKl)V>?U5h zcrJShwkD_^$sou9NhEj@YSt~8xDj|t6VD)MlmhCymWsxTk62@Rr~aEFNe8gNKgHB#29FGklERq3vs|5^iE83!DwERpJl@9>derecF;C0q(lM;Tp;;Z@h>3ne(MB91v3Z=Wky;Cp(qER4^WV;GDlOSE)Lhb~56W`DIVUJ~zgvao2 zSjS2|S@m}YDBwJ2{&)}U^f`oayMe;X5XTtGw~&xSx}kw^)SQp*e!R;71}IPGCpveR zBb8QU0-B6nR_-Zm2;p6--wsj_T!W%BgnXINCzC^FHjEM||H3t_VyD=1Unm#SCZ zahlav%{+t52VA4hQwzM!gs#&Y5ol-1%OOK$Lyk456M0ig47pGUZvz{daOj0A0)mTk zjO?N;JPMWMK{g!x%z3py57u{uY|~y^*c}L*d`Gy)u+X?QBcDAy`vvKPnL8F?bca!N zQMzymgwwYYLg`ExH6(h1Tz-V=e!Mgl7vg|efDv9plDEk5boK}%uL$nS-NxBAe3cdm znS(4H&zwVLtwpij64Y)8XTNRf29s`Or&|Ac45eX^^+K}q`R!>nkc#h&*mO>~vXc!z z+OR{Zhluc!1Db@hbI}a~KIavmu!P|8ghhka>*BB95`Xw8-j4z;RMg zBnd0EJUb_(f2jqS13sQuF#71( zW~&H-fiy_g6@1ne1#2Z|5bgn`;ncie`m2UgLx@S;u2Tj;Zxvve5wz1~j_u|v8EXsp zuoLCk>JQ58>3}&91x&_y3@YuaFMny*c)HhRdQq4s4)36>BX%6iHd3oobb;Za}0d zo@?~NeLD0?nyOLkInqYjh-MsM&sWRH?Wj;68_&&XF2GyVhdVxEl41@9zN^~=R2(}# zBiAKEg2pvju|eJ@OlTm~99HoB>R({;Kcy+)cg6eP(sb2?i43f+epR+XG^R{g;KzT( z{TYDU_W$sY0{HmYI6>;lV5yl1Ud8>>T?znjvw_7Z=+>2q{4a?K_{TaA2OHnNbZn|K z)9+!_f9?Snz6S3pWoJ8wVH(^Q%S>qYd;PypWFct?J4jLTnm$0VIq zr%4WsfD@DTe&w-r|J`h<77Dmv`mv~xZ%32{HH=g$vWgNL6}wn`4jL_ZI=0sRUaOh@ zH<_%xU*a~NlpViryl612tJxHE*kaw3%-^I!4FYj=6TW9>$jE`sMVzB4_5i@dLH+)jOap-w=_LzA? z4KKy;o!aIgpR7&xy*0Il#CtgrfbRm%5Y_$jcxxNjdc~j!WD_zio6^=|+vuyIT&gDM;p7p)(UWusOwh;l zmZOfKZ{fF}~mgz`m*;a8MXe0}aDuPJM)?uV58&#GwmbGrG?g)cG(W zmk$LqnkDWCmNf+p>I~y*EVo25o9v(G+UoY|R2Z(-!(uaahP1j(7-5o2J8N&ry+)pg zn7J=f@bCHn@(-ZnT?Wd2^Ryp&XrT-*`RuS!5Sy5}g=SVqN)^D+=Jb6Ig6Y{kV@nzF z+#p%(%KxiAs5SFD8DF~jrW(XjKVda-J(|)04A|4soQZE3~8(VC1 zPNgyLI2HRqDbv?6RrxYUBpgTC>4ZZ%t*Nr&7T}3y!a-oZ^+Ws6b-dLsOq$8u7iL}f z;betowqAq9XOFu69g^|mKCW)?38D`hAT1fMf zO(b*tO>H}2qVN_}l=)}G1kyx9{(l(Z~ll!W5rsxK;J+>Pob2B_c3`^WUuP_x zEBFfkFTB*h+Jc-sJYay8nHl(8HFjmf#{9=B2OkKdh#nUj!21{5k^Vn@yZ^IS_xs-b z%P5M)LjgXQe;;8A4x9iA@B#I2h!qY<{tEm>p+boc4+U;vcD8Xd0Y?lBDi(RM0>r?C zM_!_umT2Ypa83IK8Fd)_OK`JpOQI?X`~NZaR#9=S>$WKF?iM7tyKAuE?(XjHg%jK< z+})kv7A$yxkl^l4aJ!YvbDHtQ znj{5!6{l$wlVMG@!Jd4^dGDU0=J^>Q;Ng|p6s9J_B-FyD!6M4Z#t*m7Z)gIAjzF{> z0$nexO>I`(GB~}u?wW5l5}Gw4r+y*R(&7QBiYc8;bS#W2Bm13%N6txdA=|R%Jxch7 z-1G!;WVrXLm#*QNt}80;;h<(t#jhP zDLfAAwK-nc&V010TYxwJb0+{m%8CV_GBqe?Y-p8{7!z#7k9X?rOOubA$mq$Lx$2^; z*23&%71jEq?z1+ri{ZDl&PF=a5&PN4VEOJlW{KTA;j||o&AkQ8XKNrSDF?HL-OqV_ z+yaS(8*e|S?eF&9nK>f7&rK_ih=xUhZ7-!0+vhyz0Vs|V!}NHkN@q5JBo*;8XwZI8 zM36)VEzzYDBoo~x+Ni&((IOT`Y}oS_*-(Jbu8<mZx(tE?Kx)3lSX=a8C32Aj=y_Ts2?d;YPPxP|#aiM!KJ_sPa!(LFi1X=);s z5}`*NvRCTBnv@<^pOyu1UyjTm^H8xu?5ljK*?uF;S*=EMhQReu@VSmqi#|1iia&ew z(rLo8e;C2gz;8`$gjp+i7w7A88K&xynlv_RrthJ{oNnOKO!zEFliiXuq=GS)!|eBR z!7>HUvZso<<_kx9)YZ5q0oNocOTmKw2B#2rA294a=&5QM962cW2_Q9!bb#s3PgUaGPTc2k? zaa-+x){LLWO9womw13(dB34TPNeQtLuuO+U85Jv}GC`Z9k`uiJXxUGloMh=<7!5 z_4TxhzHC+(NI%`SjRkHWdib0iMv?c2c+_v%tq zz;iA!e{=FUoaqJqS>BtK#1!N{UAseK` zQV^LSqMUg__HammwcIm)iA=`A5`3 z#B`xO4?C~Q z?#Csd-V(!q9VA6@GoO(68><22$KHR)cUkm37(9ixgTNa3Xs6`^mP~|{dt+yZA;?S3 zfGG3iw1TQt566I;_td(ww@iVZ1Q!(D0+u8SS?ULn!pnGno2k?ipYbYn>rAU8IOsT_ zQ2)#}iw#Bga>pG>{JAI#)0q9eFm}^uo<47$=d2mnm!dJJAAMkb*-g#|Uy8tfOdBveQ!U9+$ zf?wqYANyHkT-}%1T7+o|s@F|ApIzxl#B!1j0Os=|MF*H%v=dGmbL#hGKSOpbQYs=t zMIeRR;z#BxDa7I>A(Ta2LuBp(=JJRL0$_^lEFdK7_BnUK0K0Lu_Pi!`9f8u~OD*KXz_4Q})wOMa?;IyTq9IzYQk|;Q* z6>vb;g{u9Y1VjDxq2WjV-J6zY%d;yLmDVjJd5 zTtlth%_?&6EP3to&PSo1g7Gb}23}I(?_sbfSj&;rjFa1F zaFHumDo3tnn1o@OrGhcO{PeedCvkL-iUq&|5X){vp+TyZtsn(B*^0fp$%Lycfkwk@ zsArd^>LV=#qb%au4ag6`dx<9LLLLCKt*%n6irYfoS;t;xBY~?GEGQ-$fgcWCDnF`# zBBLR+_QgRe9JfspCjdfF6#-^Ko*9kFLY^8cNWMa(XX#?d?eb}FnC~-mj<*rCKLgSy z_P-|^6RV6cOo_2!v}ko{(<6LeKsjJJi0qHE9Dn^qj^ft8_>K5m9=WEUpqcMk(4;C0 z)FvYA-MN#LL5LXJmZN1)guHR?v=h>Z%&z&=FoCtzBq?bS_NSZC>0dOQch)8Vm(VD= zOJ}$s^pJyJ6^Q{z*u8Ex#j0ikUd;fry32=gp%PU%V2yITVIO`SQJo@JyU=3!j>K1E zR$OqwV40IS=Op~28!W&0$3$wKCx#s6q-WNu=ib@;%!Pcvi3g%+bq>A_h`34!fl5q) zBip#PfH;&EBGK>fLLc|XvGdK>9Im{l;T6Dcvws=A#t-nO`R!va+IX+*zm@>*pErm? zWw}#UtuYr5;GH{3j!Nl&Zjgn!zwfVu5pEkf+K4l)FCMDkv5E*Fi3_7<`Rc7JtbvUX zM|feDtZfs>`{|;PcSS)F-z&@2Ksl>}kYxf)yp|PpIj0Y-T7HbI26}rm$whCJ|9ISc zKd2tzQ)y7C@(7cdgTTHD^^zwj#o&rK0e%~3yIhiywN)U1rGMn@>V~L;jFNpZIMQ{q zpT$-jm(Ktg%`(9ZxNnko_AdC`ht@U{v%?B~p|X6Q@mfB0^E8vv>C{J_mOJA|*;Mvf zU=GdqAVp&Ed-*_Iq)I?76a#PiB~+{hM&Q7(>BJ5gZ?0KGqF$B{?rk-|QqU#+o2}&X z17-k3OpecG8nV}9>4+r{Ruu?RdGEGyJwh`@vS zpO?Ex$S}7&Oqjy>$mcQP&{dF<5#_tl4*p|K-9MeWAFR8{V9>@%Ts5!nmKGU|5?D5j z=oFtv>>J=8@eq`6UJQVM@kM5G%2i7nvm zk{mc^y0s!ePPc&zX%svr_3CVcs8&xr57B2vs_xRNhsFeJ4d9;JG0ue$%GS@xFaz+n zjqUq7wYQet&%6c!diV4M+2{9=Q*0~>;?n*ul>>7z#bn!=C0XxxD z$G-zEURy6$c~s!S&SVk+FI&Cy=a;{#FU?Cs2=WPgQXA=_>)rF;vjdA( z2iA*IL>pDt0qX@2#c$1uqyb+ec~%Xxd+b{+a3E-C-_HEmsd#3!m3~A&Zq!b-d-DaK zdWH3Ng;7cv@z@AlD%Dw198l;OHWkU^SYt9dTSjg2r|sd<-2nMu}X^K8tVRB#$^h!xs~EVn>>lhmUU^?R1aDXzsa8R{^eF z@S6pVXI`~c*k=@{kPT4cb8)n4SKSPr8%k>+PU`5%UaX!n$?nhInJ5q@(3t!~<6S zcKPJSTJuf&V?CI?_a+WDp}mk7o=xWkza8V3jyiA5xS9d@tWJhlR`<_-2OQ`DZf)G% zq8-VM0(==0gl55DR^n_cQ=cYd`J)NB`i<~XE&wjOjx+bpV)RR~WYm4I1ZX0FsDXLV7+tSpv~#P%aKFc_c;dC#h&@h2VHpme99?J13! zrqdw3X`xvX<-0-+l$FOVz=h#vn*;_sBT(bJ9d{&CRsMQD+glHL);Io*z_EbQZ*&;{ zti|L0!}a}z!MXpD!2ds-wIF!5&Nj`Q*Q! z;o@ZC{vA8-rpKiGch;W!UphWJFB6FW{4LZ&aI^o8!T-OsRS<6m6n-)cG!#(#5`|L~mu?0S~!rbqq*{Gr%cctPoZIT{dCw;Z?3bt`DN z`4O3Ga5o3EuP716I;c>~jQi(%5h~QEnu*F5#*d9n_B{d9n-Uo2I=Rx(x6-X%US4P1 zQMG59ZZ|KO1i9;70athD;_Y2QaJ+hCf0_3(S%X$t z4yg5vus?pYv+?^{coq+60W^hRI~b7#6RiOJY@_8psZ%PSMFE3R9oM~WoBA(RuyviK zYjs%{9;;_hFbY4``@XRfx5w+=Jh&C9DW8^ZRPsPy$hW|Ux_iC8SR-bw zcfT4_!O6(*Cx$XH7F-NSZ}qAJ#J^H73gz0o74fO*zj(hhSkwjhHA2wPMDrWp*PiM0 z7QZ00x2KBiRt@*A&U>nj`ZwA7zL^lRfHRktca-|{#!}lKAN?301Zi%nH_%aGrC($c zlV0`^vIgJ=Dx|qx;BQ7sJ?-1$b)H-vuQLB4kR&TP|A#^G;?cefp2|k zG4H5wJR|Qe^UpVf^jPH-8GoAVXvfrn`gVTo0oyZR#Ol%l?;Eth&r+c85A|SJN?2k| zVN7LpwP8G&VkQ;?y|GBB^+xb+8iyf51zkH6{embF$zulq<|fGl*Y_R_9`6?v=#%wo z9opZw&J!!3Ns0t;x5d!vbe$}TLDH?vTWM(+#as$!M_%E%Rx|YEN!8u3*spAp8Lah% zR~l;S7Mp+iFI{{ z5M3=JV;~6tjgk^J2dn!`I|%Vb zxb{u-T{`T6h~6AHAP_~Z5;8C_|AP#<9ZzWrSeZ89;$!Z$E>*u-3G_5$WUwlA?l|mp z*nRiMcz%tSri@nntgC4rafWw#Or)LLF-$(R)PBul{0_fdV^ZFi!bZA-Q$6+E0PdJL z!9_FyfikAJZ?%dGYh^@8Shj5mk>Mp|CLHo7Amk|H$_r_ih|F|{N`p|$@Tz|o zfvE;i!_IKdLC9s7hf=ln>L}7<97DhikU~R3g&k3m!F=aB-=++uhy30Nkd{n=nraeE zPn|LLkR6g@F;Z0C7jzh=LV1>w;$%Ko^CWesR&mj`^tj(~1Zi07vO}OHT6EES3|2Bo zRZac<2Fn1M1-9=DL9=#`5;e{J8;-CBul_V(mx*##%;Rk7ZsEydStKADhKGHNp!_uc z)Mz#VAcFbKCns{(sou3=i97wOwCny~hPgeGoUk23_CB;%oJq!9wKXkKO2oX_N^QPmjBsQ2600GPP zBl8`r)OforggCY(Cz^d`>$TCE>qe?$b?`N5Gr+ED^wooGwNNj}wN(9J;9bQuTT7cr zEV9G(rp^>%;~*2DUQ>)BJ3^YCgYK9C2VrRZ6za&cfbNY)O}i2U-&^ei#NA>NUw8tU zQ8+qT^VVwVnyK386u6yq%oq{`K+cLvPj5tFO2~lqVhJ~7Hf?UiCIJUCn(ffi^O0z{fS}Un*i$>Ah=V2`Q08)9Iw0d7k z1R9!oY>LgpwDsqT7x=a*N_cbcu>~|Hlx02?)72j}+VA6~q3wI55(S3KnVtKwPU_je z&`8#pY`2N1Ym26qe4BKvg;FHag3CBNJc9hvtVEXoKyz#_o-q(<#ikubX$e>V3m%wH zcKBjw*xu(u@||0qX)M0^6F>!nQr@6)E|d^I4U53pew9LdEdQ%{0A*OE#MFE|dOqKc zL;5-hJ(RaDbG=r?+isPSBZzNVcK$R?&(y+eRxm$!>SFLpfc|ti6E+T$m-cM3Pm-r} z_90F{in#R`tABsz{_Ev@-Tm4$jNyptN{s~OjKlj!z7<`fEcdxHK|laIgX7@d#0?DJ zJF?1w1&UQ4?+o0I2J<=^1y_dfiaaO66KpxXm*tA#n(gu-d{AFjhyWs&II$+ z0-v=BpczWOxIZ`#^#Kx_iM|0c9AtC{qrWB4h>qHft<8KQA@fB_T`s|p6hRtRJLme| zt8rY^yU{r0{Jmw8X=BGJH82ClrM&YlI8-dnlEI5AtScJPYcD#Xr$x9A1@_?5L}J7) zlG<*7j=)5_c{AK$TV8>>4KG@~iZ(KokCbfB$y~^+;X~sgaST9wS!Az^T5S-E0sw8s zqwFR*c)fd=24>4@Wilr?orcoD^Qf*Z$xN(bBYJ2zy(sIU$cgSVJT|^7MiKH|=E&8W zDJR6g6DvLmj|)GkqRI6~V`IsN5h+8{WW{3}C0z;hEO7_EEMoznP1w`!RB%;;+Jvt<|^6%)%Vg2U5N7Q@=SMnOUPuGE~)Yk8!q^z zd9>`ass!p`vZQHKuf?$3GnJo8({&E`=Hh{UNn`;;BYr%m)Xo7!!y>XXo%Nf7DmZyy zj)E~P+bkoV!TJF{5UE8oXH?2~scz0q%ZVz28y=Q{50rptvE4HdHZ}Z#c@~&^)o@9bnPvp2{y>g@H+t@54bD}Oc zgtABv3o&di1F5{0ggNV9KkTN)nLs0moP^e z3f7bt_w^LLac_N#T2zX%!K{-{?>$Z0P)MrdwuaFH zmAUr-)#C9|5(mA+S|Q+>9|IIkK}HS$u`wUg&VuEYwXitWA+70B)4fY-aHb`GE=b9_ zBlF@lMUG|b)XYis&O8FZt=GJ8?Df*BU(Fv@#our+p_xLd#H=SVM&auvAq@)Xr@|&T ziKHQM`;+o3o>~*JiWebJ8~t<`fxz_hsJR4CLO1Bqk+KFi?jGwj8h0lkq(BsODaqCqunp_=I0QTzlhoWI&ZgblH(P_U-L|hX$#m2 z@5y$2?siW3JC^#EP-g%p!Z*UO?Yh48@u@CDA1to=#} zr0@BC39Nzvrv#dTuCf1yU|cM}yC^wOW1I|E=hPOep_t<7VXo!AX$tEIdvBkN@T0=Nw$W*J1pzSkv6n zAt%SofE?DpG3syU^ZyDE|7f}YdFU^&_!kQN8!i6tmX^QKA~)urmBRmd_y2%LAUFvF zJ@9Fg9{K-lSK|QT?b&!*z=ED`{B|pLz`EgPm-mbo2qS)DTq?GXE<{#w)5RLS{a|WK zEo0~Xe)*89w`ZMG>-``i*TeJ9LbTzlL0WVp zO)N{arX!95_R3P&Zne=jCIfpMLnd|SyE;t(fk9?hKO)u46po)VAhXb{2q3^JBMk?M!TtOsL%NX|Zgu0Rj0=eibGDz_i=(d}bHV_j|<5bEfqkNmrW2 z$q|3g$?fGVRorTG)?TND>(MgF3)~aaGhfSO=~A&HkwSsuYPW?-O%_4Zh176`4Y%bM zSxN1MRl%#yvd@LN$R_=h$ zi^JAS4Vo67D;5~R(i~UJ^ysy%v_JUv9ToJ|>r6pckv3O27hqEd>(fj1&?fKs37GX9h(V&n6=I{&AU1?y+Dg0Zy85lSQ zrRUXmW}6&`v=~R&Qmyc@CpHJd{8qfqB&K@(ve@ty-Sx${X^7#d$kH)AVHQ7jZkJUd z&pj1}M3!DqJD6MJ{x0|@Ua`lm^Dh?0OoFP-F5e~1ebJd6anlCX61?QXU z!SG|DKg6y%m$T2d>*vjEm@C6*djYNsrKKQtud3)g&MQf7?foxQ zHU?u1)i;|0I@fZ$Ontt7-3|YOX@=K{^tH<|c-CM9qXc2IP<+;G{nPZ|Ey0z*|+*5jH_~n5)~^z#q;!a-mXoaBVh+xl}0vj zr?YVe(lOUp>q77LodJ7+%a5-Jlk)3_tin;gd{Uw^d~nlpMb?KZ$<{v z&2Cn;_72Z%fC9^@w@h=&OXy58@8`VV@0dxOjvm7vKqBuh#v5aFeKsXhNBR1~L+?bn zLOC=L^6td+MAM1fmSP-XzF&1-tFY;76Ze4vKyNO`ud?&Yp$0-f7H-K$-S58oBoAhO z3b=*y!kBrGu5jKe6Shs?O%~>L?&I5V67eBkkMF%hvAI1S(EZadKJ-58I*mgKd{##c z(vvu-P<9%T6oR_o7>0xz@_`%?F}=V1ilb0=kTg+*02>kdnS)<(u*vRTn@IamLL^xj z7a&5<46c&}&Y|OXgB)nV1d;h+BY%7uY_gkOqzTv+E~lo)s{D58Y=v|i7FZf8O;Ib! zGa49TuYj&~mf=+wIMc_Qg33Lft{2|d!Ao>&k28eV%+?5A5MmOLBSvp#tQg3i+DVV5 zb1QgMJ%&Fc=TYHk_)$>1m`q%j=uA~=5AcmTJq+3?$ry)z^bw!1)1KfCo;u(1OI@>% z5pNb$fD6`rkYl`8Q9U!6#tauqae0BwEc>lI)kNTCBU#`hDY?iovL=p9rX?T7^asup zkqp~_{00KaNuXSGqMYh61_A_oJriv~pp^lD*FOGQwq|aWHXtdL3*8p%3pT7nIY2f) zKd`$>e5Wxe$qq79K;8@&WkB`tR>HEC6*mz>3(FQj@L2rTGIlC6onLvsI;~YmLN8jL^qlsjbu*dSvZc46*Uv z*I7xxracTLQZ%f=;t|mdy3@IsZ$gtazkdWQpOeIRu3{SuEXC@L0#MM?Q?$)+8Da^u zs0a~KuvSq@RvJ;q#_NNtUHc4Z}eXtxz7+ky3@RTiLrPF)Bybs*?pqkF4!we~PZ z_jpUW%B$|j)No8*TI4OHVb&AKVOAzrS-;|#d;(i&+MZ=c&= zTdbcRZHlbqk(yKY0X%u3_wNFZStlvXj4y>|6i3lfx7^SbIkgKBVPio(1TmcCEv{qko?f z-4M*0N;kmXGb8n_C2Amt>gS;lo$z_*Y9Ctv7BCoQ+}vlN51{|R9x-0bjMdq=qMVYx z+@8w*tWAj$CxE#?Q@EI7{AcQhLN1rDk`9n- zkH|_C@PV7-PwGnT!bl_ql58b`)XDp_UiqIZc^)TygkJ@688L!MS6QZ}BKQyr$ne;G z2Jm*GzI4x%4bHLJuc0J}4@Z(NCiSs2%c{Y-GjJy>ai)Wlo9HYG6egCDXt*L^9>M z3ako2-*%KwaRtKgi^G#YGG6u}i`t z0sD9g9wbO2e14Ry=%*QXiUs@7{(3$%8$*DV{la&&wi(usaPGjYz=xxw)d8BkjwW2uq=xj3xopoj#hyr~O^nueO?iC!m zg&YgvDJE&)kz+j@@93Bz7+yZ(PeKE5&a5p3-2GTME&X|7YKkR=JF*&@6n}BRm{~Xf ziS|%297D2l{76Fw%dBFIf8CHlJj<=8mn|p=mkdg7?Ey^yzUO4Oxk|?n|2rb5VIUWq z(mN)y`-ZsLFQV=Ru?s5oFMf`Ib|$=940fU3oDurZ9h8x6sFRm~W_V?v`Xy>bIqGPgaUrFtbNtAT@GIdsFZcbcU|?_4VKCPtW}F$yG& zWfHw7uch5H3&O`4+7!)i4iK-;sqxTcBzoEof9x1wE8Akb>?|)dqDE7mc4{IK7f)?eyIGEjnm6%p!Ts4^1TcO+>`%>g zEV5an7_x7en(kc$HijAAZ4zxq3c)4^L4Opy?L+ew&{#EsF_lXsR^78DAw!58m7AqR zHx%(>Npgd=qJT608l?OT9eGh-eD(8O)u)jwjsY|2$C20A1asWLfvt7ju^|N z!c92xbxmYPT{@*lxFyl@>urp#&WYVy^vy?UVPAhdMuBuevO2tdOGQevcD^k2C;Don zeZz7o!jmR3RHjqJ4P_nP|7{~W z{l&172e%E7@)`-NbB-60Pn&w&)YSK52LAPuOFyK@`yD56iG*kw1VCfWy#`(MFn2VQ_i4#aVMUM^Kn4(9=`qwEt z2NOFF5PF)PlJH+AASIs#B#8gng_SHMg8wH|^zRa7(27wWP+>AQI3}=ri~gTX(Z8Qz zW&h6#{8$jD0Yr|(|KDgAF4F%SBls8IO|sp@IjF`PEX?^;UPS3omi<)rsL!XsACn8VD zUc9Bohpp5LlafIhMF$FsH=9J6w?f;Xk3j6j$B>1sWrJCT#(EAzc54`#M zBeDkfT~s2k&}x|K_=cUtXf}NeU2U%b6Y^V(EDPOb;4=jOfRnp9ddXm$;~e)F{!e|! z6W@tUp~OB9DM140s7y4D`pOdpygxf$E3-K;7iLqAt5iHxxu{#p)T*S>@xqLYOmJgj zri=3@Z<{mdc8gBj>8vm*(R|RjS;Wqzai?(P62hz~zs8&WUJ8l6Q3B z@K1)Xfe3;NvWL$jsOl$QN1;#f8xpBK*2m-@cAwhQw=NjHrTpY?{XJ!P%--v#@%4vJ zo;dx3A1(2KmwH*sVy4+G1nh(8^tjq zh|94mec+Y2+0kp*TAdMYLH6jfh|gWdN=9Z4l48}?_Ddg5sl@{pi!KjO%zZtygKi%o zgrr|15i8AnNuJgZ5qz%m;=R|S(+4dy8le>Rym{fl$I9k7`9RH&2BkYhIq>TIcvN??R^2A!~Eyd^>+FLerNnUbaXsyD3oE(H2^gNT)6k zf^e)>Ty?}=Fcg*Anh5%iC`L1-JaHSkJ9qI&Ppcet8BPSc990m2Ewq2GasTwg)X&p^ewCKHHmDAzcplB^+8hAWD{Ed%JWXBt~E-o$le{W9w zhq32k;Z072CdJ}n{X|rufe^_*V_ef0O>a+(6cAI!ho)Cp97@7pO>2 z#+Po#^UoFNz7sewbOYqT`jf`$dZQBs9dNgR)8}>mzWCjf!V2tuqx(;`3b%{?4rsAS zkNMBw$pc+s|2;QYIk`bJJS%Wy6GZ0!>xi9|i31d1C1$_`Vr>17NyW;_!^Hc~5=EIU zddz>#FX zpy$(`K!9%vTxeWr581eXKkMLqyTNw}$10gSwbv;+7?+V%-f^UGgOgL^wSvlE>nw6wYzMPz$DuU_> zV5#)D^VW&p&Y9rir@yb&$F{OK2RAS7m7IJM<|XvEyS9thcEMap&o4M_j;q#q1&X*? znK*TwP0Ij2&&yTSJG4@gD}&N|zpAQ%*qqK~)$u14puFcw>?v*32S^lH;kOFJ!n}8G zJ8iu^Ps^gXe&58*k?B9Men1_WLM4yh2H@9`OhxG58ECK_d`uK?3~X04_4HhOkT9QK zCKrNbl}gm#uD8xlv<{7MjSi_W*}o0QzFv#9lh@F&u&9z7``k!#w%oL+sgD%lyNDX# zP!*-P&$Sw3ZzFjfd%y4Jq?*Zi(8ZMSN}O_bTHzVptcZ z`iU9gm{YQj8j^97 z=w|yY`hYetjnHg?Mb(DVtPwSoSbMJCBcvD}fh<(Jb{|k2eS~e6^uoay&jAfbUb6G8 zi1IRnX4(ZiZvt*4;SH#zH3$$ViLc-IHqOwQKcke$T^0?dt$AMyKjsFuW&V5LO+NV%h+RdXtaq0s91SnpvZ&ZvV8{v7Zoq{$e;Y(Nq`wu8+S6tPk*QBvr& zw@~s@%!47OPX=@WALlVMsp2xa6OC+15K9Bd@8Z@TdRtzHy1<97e>SrU}AZ>KODCRzd3wv-u-d8G_ z`nWyK@o+*gDUw}O_m?KPB|09E$dwWm3N0e`07gm#?G_gs+XVx-)rN5>#yaXZ5Jnc*D)xAuq zrrhtLPzItGU7zd&Vnnb`9nF>+j+f!!4q)1v&&|FH&W#Jv4lG}6bXQ9#rr5m}7U^k= z*KUrgqQ#0ATsC?}FxSRs`(KIs$?%Kdyf|4A-XXp2WP;%+>8k8m3!LkTB}7_duLQcE zujseICKA~7|2!h)So=T_WFFL!pLV5Qb2&99um9d2g_+zQaC_H&bnM5x=uCOz!mQX- zM$F89VAqe};*V)dJa)|#C=QLFA{(Q{!gwwlY5n2KyibQ-rEg+|foIu{>Bp7(mL2MG z%mjmlPV5|ksL#>;ergbw>U;O{8@i6Z)tKa(lSw*NhQJC&+N^+RZ%PacO!OH!I4ewu zM>DVw2?#==fQm6zxih@*fdcQ2JUMiF)wAfLsb+b}O8nIOXY{wriUh1^Lp0N4EYnk& z82f#5+VhZO-wCtK3Z$k6odyh}1%|LW*8)z28f7c>3n{d63DtfX(^ssfL|X4iY+8LV zJLBYGnUvhtngRQ&xz+_zt45Ki`;L35mpBK-!vvHY0QCOY$R}=^ti+)zy*|-`N#TaRH^$@*&{_Q;XT-+$1J0 zn@l{IPXYqYQK%vIiv@BRJR9Wqr)rYn9GcOlPuU^K->QFM35jhl+FtrKVJE!(q@xlG zh9~I*2Uv({IDY>`#L;ufIuVgBhUn+Txy5v%4Do2)I6~;cqWVkA#AZqGv}?OP*8QjJ zOqb@Nm)&;lN6PeSozIT(v@jd&q{;jVc=8HaM2!2c93U>DganuCt$O)xI2wJXd zExZ<9K|#(ptNomV=3-Ki`3~~G#0+H-(GEECQ~?WZ`?Bx>G#{=8H1Sy66c#plOTxj8 zo;nw+lu&k%z6l;cC)7ACp;mdfE@d9l4VE`jHvH)ZWJACWC=fTgA1OceA zmp#Dgr0_+;;19bVjwIm~G-VE^MO%tSh!z@Y{;}k))E12iyffd$@n*u$YQ$>p>h`U+ zFBTX&RDCE(+GOmy6E|c*Z@|Hv$8E8C4!S?6&BS222w!$0-tXyS}DYIF3k`1B!QM(drXX=_;U70GHL z{l>^u+6XZ?o}hXh6}L;S!m*;9Nj=$Vsd0TgjKS>tS|^{okuD>TH@D&vx0Gc(PZR+9 zT5lJRD!URcq(goZ9C+f@e7Z~p5Pmm9z@Nvvh~rlr5~4h-Oyg9Q2;aRdZ&S42g>J-EhPlog4?R6ALPdvDTX zKQ2c?Nl~1+^h3{M>xuNM7$J{B|JogRS*%-rv(z(+%L@kQM>Q6ksGMV`2;T&_FkzZn zz1aEqkl97QIsXX9)MC0GBQGeU`&M=6F1Sby8!In86@Rj7>p%M{)aN=0nF4RLs?(S;G2gA3tdb z#hUT_`?6n!r_2F3V98*!oxjLFFx=;n%MIV}CZ9p&&@Zt67^MrTKHd`Zz%eF+vUQ(q za85y{XH1wT?vaz!#;%1?^ru_ennw{IN4fhFb&v488ce9rofgePTzcXMK)*r_sOX0d zh3((IgRW;9YPTdneKjrPf?`|$HdO2<(5|MT+=Wyy>G@->3hfPMw6iRKwIsKOCcPHipR6#P_4bpMGnp_QJ#!` zojH1ej8HO^oW&g!YZ4EIn<2qizIS|3dEOQ|E@!Pcxh{=1&s_mS0{fg`P#u{i2Hv3MeX~Cs&ME{~=H@DkuUICBfnMY?*eax> z{-m&Fk104!3VjIy(6HfC#`?giGkPaT5HtjSIH$LP`5mGGwFWhu)3d>Hv2lPv*q>i8 zfiLIuBrw0X-t)5kCh@Rvf?f?y4vq=V`sYDdRt{FsEe_z+1wF(64_DS-knJxP@W1ifUnuV{WcZhpixt%3 z$@b3@QBsgujv1(HOh*R61!^$jMa6{TU;zQ>KhREhJ${=jDIl+RK*V50N_Tv{*n+F? zbTzJO)`}JvA6Y!|$5l}O z_LR%3H_aX}N&@`t9!FMJWn`M{xHo^U!?*cS*ZgRGx<70{p5FZI5V49DAh239m)Tmv zaQ(dN>-m#)>7lk$@N7{ez~lG!*&}a&UV9oEQIDA{U?dd9lr8cy>XM`Od#bvhv5h7x z^*5HuTq!0kZ1@m7<3uv9J*;;R{#M9I=BnNsA;24Bl8?eLvyF+_65V>|j|KW9sHYf%`(+{d^tB9cI!=8nj{%!;X!sY{d;#t49e)AGC7J zJjVkTB)^+B^d*n;?|JY1nUdLBQL|FWv#XR@k1InaeWZpz? znMZ@4fKWIW+phdU=c@O+O;EVREqJZl-R<>*%<52XaWGkz=W;VLs{FxP_^dq%U-KaN za+0Z-tsqf{dtp|`2=8=OMgTIN6H?ve988D;#^s9VlZU?)rhlRJl7DBIIZj(L9=!B? zs_Sf8z~!y&gNv+3>}0&R5SN(MlUvzB<4@1Y!O~dy_y%9xMR?hH0YJdh%fSZSiita#zp(M1zj<*VJ?U`*fe#ba*4!Qx7`SSVLRL4@#B%i*}%%> zBY@`qf%5+__EuqaWbL|WfZ*;B+}&M*TX1)G2o~H6cY?dSOK^904em~G4|?eS*WRns zd+l@1ZH-YiN7coAp6}IrHSJM#tX0)|G$R9jJ;3Vm0%fS~$=c5$QDuN1{E@PrX?65xXl(==nVcjgx%LXEFYT?y`<_wQ?SW9Wb)BPP{=9` zp6l@`J;(bX;i1}APQ=CrtFY`7&O8IZO-;3369zAz)09Ojo%f@}>#y?4X-n@f-vXDv zKV9oalg3ca>;h}d-|@FYZaZG2S%-((ClSOHA?fn?pVxE7scgPfGiGi^uU$C+=H3@P zCbdu1INQ<`^Z2j*JPzUwC=tlQVcsO|6ww9h7sBhfxSSKQK< z_*rR#@a*kocfAlMMmjG9;Z*ef*o0c@ z+u!w^!6ozNDELD2YP#H@M54`szTbr)3A%N?uJ7g3cNsy~6Cb$%ku7Y$bnTc? zD$}q0izL(W*{S7Db;p_V1fmk&Y(Cy-y-9`N;`JusmgG1pcyBI1&) z<~o|08k;oXTj=LH(SS?>yAEU0ex`K$b!Wx}uJ9FL?i$yg6{DcngoT*ZBEM?f>_v^T zQo$kHOf9)J_R#`A7?G>p>{QAbkk3Z%E~Yva<|ZKJhA=TzmB^JoIxKE=1`TGxYJzzy zm=#@^O!J+jaCU}IT(|NtG(DCdcPv@OOI_O+-47 zYG~a!=58nyr!Li901G51b;EO$)Jp$^xdEl^&`?i~zQ7%riZp)U|Uj8$fdT~0dCd@0w#J$Sw;b3eC4V#?oPC2%k|&u9OvcNs4--T< zD2v!S=BHpc35)HF^2VrZ?Dec$$h2|~W1n=$hi^s7;?F0r3U)f69Eft=nkj=Ll;naG zra?6D(vrTL0thSm#2H)*A8~x6wv;ezOJu=bHR!@=ubMxCl+}nZow0W+eaOqh!7|y! zZj4uJ(lDw7L4CmboFu&@vA2^^tQr1joyD(st-qVUj! zl=8{UsjFA!<;CFZ%u7|FRPTo=J^&U1E%VWaA<{o32)>7|e$Y@b;8Z!2dw8R(kkJ=Fq~=TCysq#oPi>usmaLUidd-Kk~HTGza( zscoV)D5iJ9>JhZDmN6V=4ZfOD6)x$JXEP|L8jxI` zDm#s+1{lFHug7P!w0sxVeRdpa!Vomr_WSmQd^~0Z3E@pYvP!(j7@-sSb zLxE66xG6f$PbW#!o61FbA(EPe9*$BV*Zdk<%=H(C`RA}$Uy)@7w8Cja(6abQ7B>$()< zxgSAdzU$I*yDTs6ZQrq}_3ZAxk--V-E6uQx<0|XI)`L-rytzjIaom(QZOl&ct1<+E zX4ZM4F=QGqL4tNYx&{>mh06Ue3VKBFAgh8&moIz=L(>FWvRyy8eT_ih?!jAqdh2Fh zrKEp>x?h(quE>Y-i!1I2N&u3FEwPSaETW3_aC?m;zvoSxiEgl`(cIlxRniz%PwTDR*u``Euw4*mBvsjpBs7HB*G_e1Qxf@=+t=?HO;) zZughVTPxS#Ms~-2w#@p@Z;3)?dWOuV)Wj#YAw^s#Q)s_i&|)KndVs;QV#f)G-c*A$ zYyxDKCinQE7D@9O3IJ|@yo3g;p~OcBBTsfg2<86%YF`M2I1Ph=YlQzPI^r^V6CEpS z>|+;`=`*OBX`CMqf}C#h{LeTI8F~b-9dr3!7Detvs@;+$4i-siRhgnj^0S4r0R!;3 zu1#`+xP{D7PF!ai6(A$Z!@)n%ho=_xwGS8Bz}J`|#5J(3Fc=y!4c}JCh+j|T1{`F$ zXve|}4vm(RmHOe9#5U+I8fyZN3p(X zs>yUhG)UTs#QND3LtsgCzL|xWXA&0_$C%D6lXjFao(+7-jm3b?D5e#}=1dA#fae;AYX&Bd&8wwMyp!u-MGFs2b ztL;UTCQI;BNTQgYhSDdYXVpZB{4-Js zU{yl8Mz|-@95?>b+2Au8=@YLZduDA)OQ$;Urnb`(8i0kxxU#y0;fbUFD>BWyJ9s6G zhR1$#b`5w-@&mNK1f80*>6QxvwHE~OrXdZlPf(ov^xlDPx z+eEoo9SFzl3n>;I2r2F*z$kv%w(H_}*x^8R~Hj0VzPk{tdmN)6Y+Zb_9Hhi#?itzToQt z!QD}n$&tErOu*F}c}aLH#-4sZ=-kypM_z)L*2NjdmlG-3YF+nJj}gohjjWl4^AWg= zjyGl6i>7PeVTTEwfEH|TTl(VzE794s1!b9BZm+(NZ#s7PIm=>#-9yiXH;WAALt9F# zVzGc{hts$^bTZLw9u}gs*j1BrP9`r1u8*+1Q1)*;%;Q;+QhQ0=c6m9A_axbL2oaRd zUwmGvBcIMkUY!<>PHU@XSNNZ~UvktzoznStxZ9uoD`(4a7LLf6?WvnL8kl`LVtJm-^l!fCzfQ=gx?cXx2fA3*sWT)qh^HoA6XMb09 z{SnOa@2xDH??im!UvN<9D-HZ#u`K_`4h|-IMkcl-WW;wWzX5?38ST#lvAkzdGyWIs zbA~{R^6zC9Hv0eEP5SQ@CU*Mwq}F%n2`xznkro;C&*w68u)g;!{*5M4yu71HI*9Zz z!29d`k5Yg?*#CdRLVtiie_}*`bz1*dY_`~+fYDzo|Hc1{{Zl5!m!xh$O_~IOM2nF0 zqCg7?#=^yv6yrrl4QTyux1Km6w`qS_@kfi8h7}A^qRW8oY*V`U%37qOnMfT#g+TA*-MfRpu z%6ChZ%M>wkr}mD=4Q|&SS9taoWPrAnL!qixo@PEEbK7CoItuSL^XW1AQwi1G+0MBz z;2HeoX(Zi5kJ6Wy&w2~WP($ygGFP(BtePu>O&DRn+OFt)Qn`Pg zOP_eYd7ZIdXwhX^T!atlKg?x!1rZT@rPicO7+jxqOL?`c24!?@EzR?SSvI z;tQq#(aQG?v<=v>noMf)M%&TSDW&hQ*{}piEC6Xz>Tvd7cF}|$ZMezQ%c(C+7lV}> zr86&?>>iuV`kW2G$?>%T0MTucw(-y_WxO+=4x0(aFLY{@2)VSBd31x!9nRS!BfVW^tv(j{Bv%A3hf< zfh2891`D>Zdl(2B&=oV$aqb)_Cb8%Mi|k3p!67M>wkO zoa``#UD?xy;m}3?Gefrv=TR@%9d2p_D1jdMyy_6YNgAY@D}n6n>3gS*0&>90`|_dL zLMTX+tevO5ll8@nJG&QyAeZY!By8U5=p50hac5m$qf%YG*25g9*xU+Qyw6sdjn|6d z_H|GS$CF*xz+2Gs z!`Ob0N<_yn7dmXppR645+x~F7WX)8VYSd;f70O14Hg;b(aSUUM1TRLheLr5u3M+o zi(Y5F)%?}8qR zQz=H8yxv6RxXpET&yr{fxFw5Z)S9lv=KEruZ7ULLrt5apI1~|+7WCihMEacaHX?~g z>=9a!dwq%UN1bkRgGB)XJ&ThKa_%?HWf_n+u9JP58e#&3mOf>ZfcPZ^OsBBSo1J22 zjrmYwOj*Njrv`5)vN{QpIy}k@^|FSf-rf#)S+~0EL7I5Q_@9$aEc3b0F1oVeVf_-R z*wb%TVT`##uC{7O`SO(N>i%uALBk*+vww^p!4QRBAsW3nvS`R(y6G>D#;Xvse zAIuyY*#N9?sG({6o^lzTNGiPhcTq2GLgT=)F%iIT-MgL?FL{P?*A~-71>t3bPF^6D zbTn({YrLDHR3`7-J%{YaUq9@fiIcS}Z3m()&;~YEQS(j5EtOz&9?}Mt3f--4XIhKK zUgv*tRC#+Q^rQpKA>T$S%cpy|nwRl)z3#n!EazM^P;#@@-SQh88Wgn2e^36Q_wq8o zVaUX%Bd5VYjTJF(2cjG-hdNcVA=Ko<E4 zl|e&XZSXY?J!>bWDqM+AJpC2CuS6g7GIK31s}~@(oqU z?JDS_oPO#+Vs>eXL<&|e7ja9bqSlDU6&|4v4EO?9ier7DM4Yy?Aw^t=r)7cN;*#Wo zea5f|V#aOl{257-P>Zy7n5*ePbJ$m!5g+*!)*p1aP(;E#D>+N`yskJzx)HCe-*>gC zr}$syOxc(q;(nAdZ}!HUBEKP)D-3H95|wFHT(3Z_2zj>)N)-o=Gz&zJyjh$Q zw7Qvo*WJIqYpcRF9)HsChyLk~v2MwmE;?+#{%xIL8iE&Y5tQhA$@c@kSL~c#`v8Pn z0n1JSz(Suqp{`XuBQ57pBH=gTaMKv!2fjpClsP7ZZf4(5Kq6UPBrH839nq;1-i}}$ zt55+1Z+&nOdwCD5vFAK*t#AJ# z(z8+a;3A3&6WHe+l_2;T>hRmUMI#5RTqDpMIlY<5l>zgNO!3$cRT$4DVAmru?AJD(q_*i@??vN;MtM8rN{X)+yd2NTBf@=S$G%upBd)7~`JG=VZ?>6FRS4_Mdkl zw@%(VA{OXWe^4(uy7&b@t`)41$tRy9S~s!!f5x};E})s~`Z0^G3WW77!Vi@2Rs&KQ z&Hkql#4;z+e2Jc^tS7VPA~zOjj*At|yK<(%bLcSmIynZPkDDpf3=;fZXJ(~ui-#-X-@c{$c1VSX>ReiW6I6~0U)Fe7BvK7 zoDvY_wn-ebK%jJkzy*qkL%RwNOOcas@?E=yO!#9^ZwLzA(pyvaTOX$Bow32iW6)if z;wDVJP~9|p%?IdUDHr8(1mPw@o6dq~$2e&hY7u3`;Z?(4M5pHtLwm1YqLA|zVdHkI zV4Srn%+9FALf8$dq(putG~gsCe0Mewjp-0>2Fj#tsbZK6AXLdpu-RJvO(gAp=85G&dNu6m>7Z3`UK@Z(S5zw32Tg^mlO*wE`tX5SFcEyl9~hCsi=zEJmcZ8s z)r*fItIsHg3dIsZEKh1=-_e8_h%c~8GiR^ta49>ZXQB11bcwb@D&bIjhs>S3(xcj zv^a@wR>rkK47NQq4UlPvKUzZcRr@1%7j@YemEd~W@P%A-JeRtBeX>psKW$zNf(Dg~ zTN+JRDRTzbjLmMtBl}qUtxNy!2PeBs$p?YoU>{DO?U{Rt!bR0n^fka&>dy8#C~K9~ zQ$XDZ>wlheeQ`=Z#NWoGay{6ElbdxdJWR||O1D|a$9Ro|E(OxOd{NUBCB^ovT_3k0 z0)j;3B+Oro8}lY~KNE)OC=4&P$+dwY1H!M_tL3zMKKrF0Y;*x?rX4Avy&BvfBV;5r zWDh>`)+alGI`e4#qK4s=cF;6GF=VbXSU>+oS_Cz9a=fxspootjMlWIpw6LQi z;9U4oV}FVRQ3814VyL)2l++W^2L;d+5C}wf>)$ZLe@ZbW2_*$7>D@fDuZNgZ$j}CJRO@LhhbBzgM}COtI*os&0;IDj z50mZ(YZ;;Ln}$_e@F8jimn`S&=lST@L(uK~e%rT3NdX*hrOMUrR?;dxg*S%s!mk&J zqtRq!@>{LG+is8fHb+V+1V?J}KNh(q}x*L9uYhmIu(m-`0KFy^iYG*I6uU0d|7u=>^&JD~1$ zC7T{g?SLd|gZO&BkkfC1w4_OW8-)zmU^t&WOefENrcqe#ZOy*9Nf53lXzP*Ll9RKj zZdh9>z^SN-7!R)=pE+bKCte6~va?9MZE2b(*~MA*WPIC`34|GKw)kCSV`KY(QTxQ} zo!;2giK4OGb4I?-d?Fjno2=8+(mx(4j$cX1E&-&kQE;uN#&+)}z;5WeQZ$)HS-^D@ zZvA>Fah(4MO;t6e90=EKMfxZrmIp(_>Zi{KQofYz^l&vvmnzetPx)DgJ*%VDpIR3z z;JO(iG-mW*;6{vzJ1-H5=tk_J|KK9r5KPcEvt(UzFG6&;_S%1Am9gNx8fk#*S?A^J z`aR%EgTsGN;8pNulWq0n{(WFXJ{FnjbeQR=^UKWI+IyMzua7%hCkM_CE=bo zFy4YuoS(si`)%u2)y?TzXKTt$H}vQWn*-*5f0gZ;>NM{X@19NF%_~oV6ViFnI~JVT z`X4M4tp9;gl8RI)aWL5b({1_(48!`Lb{ew(BOi&K^{TfA4s2ux0&Q!GoIAg7=Qb{CoX9dx`b$;xI6F*1t<^{{Kj9{;#gP zKOmETVj=G?xqo>0{*dKx{jBHSL9`47tBsCYkHnjPC;)H$otK*kG$)1Q5EHP+w(<@6Zx6cX2cX#uRgHhyF z2VpZudcREC)5ZglW&smS0>1J1)SoL2-i?-qO6``%UcrSA9@Ey_;-@y9)*E;jr#LyH zR?mgHRbTHZi=uM&I@UXoV=K~L8XPP=FK3p0JN&*Fat0gf&U3_vPSK>Ph(<{0V63?h zoZdt-dMY7tnk}OkEgDbI7+#J5H%5mVKLq6lLJD#TG~NRN7XbyP3~nz}_hfAj4fy=x zSTw z_YMl9rhBOb2LWpacv*M#F0(En2>t9i3pN9Vr@=Sl21 z_7-(&Ia$+0akQ4lTQnMO`Chfzw}4tHy8D&0bvL!zavRFiPw)?^X|skCSv{x}SqXi%!3g4&m|^6~(x!IDTn5U}r7h18Py z^Ma4z!B0!+X%>x_KQ#pK!YbxZjzTFQGsXQ(l~3qQfnZ7HLa{eEB(^-5sQ zk#v*0cm!PQ;Zz-#KGvs=*I2Vx9&{`jq>w5RC1pE|k@+8;@VqG$ugI=iCg8i+$nfKS zABL78>TH^nlW`w_nP`ES7wD^}39KbjeNMD{ZH_NvMTTN`XR@yu5y(aRJhtW+0~0e6 zgG-I~2;CFf({0taX(?13umx z{JLgIcaDP!X3(PNZaK|8MIqGGiTH2?ilrFLq#XwGfvbQl-qDAOxH(Cb|FHX!%=v>BJ!Mg8F-0H56MvJtPU)akkzl1~2V#RUiwZi+X<+U8$`c5CiUD2|Y!YC9&tu>!RTsI!SmK)ILN-i+s zojc9iPiLzYEvLgn;QluQKGUJmF^%ae41=S37}*?wajIZHAQW=^l%u+!9k8^+kM1cS zGV|Su&C5bs%k)X^pU~3pGb;VB0bhI}yK0yeD%8!E(=GRSI;((R>N^0(uP6PzSF*9P z*#UENE|kTK+0%~+^VsU5{-ml3aiZ)>eYi7Tupq>9VDv^1U(z|O_8|ZQp2Sl!j7DDjTeJp~549x*0jBSV2wwc$ zGbnpihG}_hDv0;mqsv=ucc~1LjB?l&v(}BnpY)|{v_cdx;^%^yul&f*PsVXa6=Mm zZ^%9Je3VQX^!-R_YB?CBhkV1kx1=yU?1eve22{qDkHup0GS{@~ZN-p?&wi>Dpf0F%OZBcP0-ztFOrJG)>4sZ| zXBXi!$umV6 zv&bSQN}yb-72z)J4*;Av*M3-yr=H;k^VUK0omB=qSh71t^_!)K1#{n~bCT9^^JW-3 zo3C)0QjK4hu|6+xZ1#S7XsL5LMCBZ>*&E(B&J^b~xH)vO9cBHF*Ud`V&=(NFV;g?b zk4)^-SzSM59Z)#R{R|UK#GBrJf)}+i7h@QWU7eljeV&~+2+Sjx{sggh*NzNUdFIwv zoF#F@mouAk#@&wZX&P7@Rl<6H8wQyhB<%LrptuFmV^_$k`sLyam%fEwC_bUBBEH-9 zm65Vc%{Ot`Q3MYfs2Wu-vG!goo1zVL?^eK+m%TJf~BPu zYtqJ*XSB}9lbns}?`Kn1D>hGVvd3}~E72K!;B-j)vqsb}@kXV<81;o{n@&aLm8`6w z6T~wnQSt*rl-aQP)idVXbp`~htEGy`pvpt}db79sF3_M`SUB}I#Ii$1%u4sd4(?Le zaj)leMA39tO+t*a0znR|ImBG zF$R%`0QiC)rwiz&4t_3l#iE4`(Q#0Gk2E^HlRYi4ED|6oMV`m~?uJ&dDo9A6M}xB^ z6HK)_@L7eTn0UjYFkyw6P&$)hY_%z@GSdX*%N%^1k3(|Ym+Br;V%BXt>J)|nXuDeS zl^1#eN*PX$yxQ)u9ae)jd-<4|rW=`Wl#y70X+U*&F>3^S5#vbcpbG0I2J))<2MuU> zStsX=01_-asY3LvE*{ML^@NcmDx8X>KB!+tM0B&1UC(|f6@9MZL`g?cpU}rtBQY&J zMc%W$=uC3`PnNG*RVrrYq&3YW|^1Oo7w5hB(oGPbFBO7k}?Bt^UNqDg-I&PB47Y4*Tg<2JGDY(A`% zVd})8SzWiJef5s2`4V}V%$;sOdV*l}yJdhW5G&t3p$z40vP-E5pkFlNgw`dZXr1GI zPS;Io&W8Gwa~*}xum)#zp+Nhj{^f|=LkIX0|2d*4vpByxK#hcqU(OUFztc624);su zr`wTaj4=BYVButDZ+x}@PxnpXusONe!^Y{sZ8#T(bW&&fbN!(Se0S9g^dJ{JgAt)i zdz_dyXQo(``S(GMnS)iwXSC_(W*pqX)(W4gw3~YQv)Ecc%Y!--7`uUL^(e<;n4sj!Y)C7=n0y`h+KBb8pch84p<`5n+%|N5j zS0TOw^qQ;{g&YICHQa;|?wo)Z%)3ag^Z#Ksd^a6r(-C2?|DV0g?C<7-Z&MItFzoDq z^^E)#o10`yMT-Ic*F?q^NBBySL`y*XcRdO_+xuhQdHJM6Dq56(cQmte(laLc%G08e zv;V9AaM4aq^V;u=?^PQ+kTo?OXAmldFfYk<)&w; zE57RNEK%M|0!ZUUEF#0c@|l_!EAns=_0TV@F3xAYKwjH&vYW^z3WZ)KP&eAX(N$W2 zqU#>cU>jKY($?EOs8w@i1bo)9w+VAn`DC&0*8+3SGa8U2j0N(IED669@6MhsKpk(n zv8Z85$G(-D{dHQW5m=dTbb5ddsxK>Swca`BZwyvyw+2dh-tO7UpTBMNC)uPf$rY^? zdXdyE0tKBLtgXFdTJ;>aGLOOzA+2j?9uPLEr|bMph%|m5`1PpkOBz1e6ZUWC|Ge;`^MJv|lu}miiJr}XqP24O60BX06dPOM#hFtJbD1z=w<)O!MuFWez#2Qr zC`G?U`H>)YfPztq^j5jH`d|tCtxUR{@FN=1R_gu3l~vP_qNTX`IT5vVZQSMuw(2d- zZ3DQjw3oBO;gEivP-)f*OfyBO8oIJY+h5T5%)zT$j@q+qE;qIOPBL|Vh;nzhfS3z2)KzklDPT%jEJd>TkDqF3iz48UcDa>kaIeVHU#O@d80>Xv zQA|V3KFa5A^C@5|ujQD)MtRz;Mqkjlizw5jiNE4skIfI@lN*-B0<~bSSk}3_ z3>oashLtyR7&8U3oFJZyrGv<^ivd?jo*17$HPci;_&p!4?PqE~{p6jG7m6P|YrG)w z2inBxV@M>r?%*0_Mqq=xk=_8AoXN5@X4MV*#Own)pRX8%qFdzHGW7Ahf|YUs1h)Es z6fbVZ(5EYvpI>NQnH(rm6qO``6btChA`K3>NhH0b;}FJj{1vs2 zIS#!c-{d%hbcRB}$mSW+-FwPSIa!AHK`WZ4bbGPquM~SNkS3TM==Z@F%M}gIbq1a# z`eN@3@e*ZFdI9B6D=xfK!>-Ig1L%kbCKJz=+Sqd<%p#9nC6p#rmi)&(5>a_O(BDt}WxDL2g(40^bBy16eR6gA4gh6uyzxO)k1cK9_!E6L|N8 zzkO$A*6*+iry3M`(lGS^bKOdejc_*S!!uyD+3P#``V}a%pe0=vQ?ivNJH+w z$Iy=#JWGbY*AZ4D$BD#+Q>&5n3McyS85cpCfxjb0loSVh7HIkUi+(5WHI~d!QZM4+ zR2Z5!+5nHc&3+RWx4e2HDyo;l`6qSd5B_ltTM}7l%H^(A;(|wqj6GHmwDNWC?{UDZbI<;J3KC zdti<;3%fPd>3kB~7R4Md;DGC##b-EZAD$K=(f&FJ=FUr#S1gKuV?s>Pf_MMmWR)EL z6?GrJq_25I_=N}7XPpjb`wK}2SJTM%2YIJ{C>mGiX!@rZZ{`564r^<}72KvqP%eKj zlof>hSAmrYzj%w3WoNem4vh!;-U1PhJRno#99wMoV>&4026#Ej{r zM|7EqB12M1a7@{kQVLoKu%(I42D|Vv|O?T_PkvF zBSX~-q{^Vj+wJ_z<(jvPX{p+6k#f&K@3I}$*Oim?%;VS9yQ23LP_Jt-N+-^SG{7$5 zS3P6}YdX(ERpT6E##xct2av1LY(1_>a+ict$$&|Hy_I{rf&nqf`%ZH8*6i{Ltg=C z+|mxBf(5>H>y_~?ms+h3rorL$|;{Y2%t zx#il4&9AWxYG9E$)~$vVHe2t?_}c!jguU#aEs~*FE1pfS&JG(W7=M?YhW6^xY~?wcy%P z(TG$b9#^j8Y5^n+<-n<4(JyRAmwdkbej`n;vlrN@86ARyr|;f)hfgQbeeeqRy0dsf zu6TC~I{MFc?xaoDdj>F}UP;;vh2=;5n=&i2M6O#~tOJY*?T6d7JmKlB-ns}R@x=K2 z)ETs(s!t4FXMDc@!yw822g&#!W$+&)<9idyU*jbH{~9M51m9^}M+ZVJ!uMj8zvn=m zzeh}VTHH80Sjf0dTaqLO1X>78rgwur2Rqk$^duuaGb0xv6AL>%2lKmOACA@s_3sYK zfAWd!e-o5s@B9BGF8@B?e{+cJ?}BWmztrD)>>U3dOaHy~J=2qg>A&d4e{z`|O#dIh z!Nf-Y?*BKSM|~Hg|EsH${a-)wSE2yh`?bFb(Vv(VhW-_O*&wI*J)doP`qc5{`ES4 zRloc(HUBYB|B*8Ak9n9u?4O$R|Lbi1CpF5%@z1gs&OgTUKc?{a{85(weK;o0_o%u5 zw7dQ@gcOVY{nY>c&eA3}W{&2BER65{HXrG!k{Xd|5dnV=0b8!%KIhT~XPrxT>ZFX% zcBJ2fQA6j#Vp-PpvTQ!&L&3On?UZVZAb*@fbmZu;dFM~%4tELESb5)^J)Ev}cjMA` zQ-2Mg_V!(b8pO*RkT+fr+b-?IuUOS;)K}TsoE0rxDE=J#R3`DHKL2p}>t@-s-*P^- zv^hmhDG{hob8_nJ--qvDXM1hW)TK#%Sz_gw-LM5(+-z@rs57)#gzdXOPd6rH87gh5 z8;Gj%Rbh;`Xg~cx9$Zu38ho{)xk7p8Jb(;j+9jsT@TEAk$O;22iiMnDl8 z;OGk86p+JZam*)U zlLQF-#B;g&7nXe7yFCl9~)_A6rKe4QnINbrT0aQNKYfFuvbhLWNxe5~qi=i_CzCt7_a84Bd zdR%n4GYOxwY2w6Ls4U49_(f6Cz@>}1!zM#R(WV)}Pbmx_$&a3%LztG~9>VIoq2t^Z zIQrdWNylA2TG(SqqRqC-ex`D$o~;VCfHQF0*t&)e2Xin@?f=^Jtu^qNU8^7P$`1}| zIP$k}>-*9)6go{Z`Vc=g;)6=h7Na<5gg|R6C$2zj&x0Swnn6TW5F&3Ch1LtNWM=z4 znTNyA+`Dl6ItE;fMU&X+98E418%;qdinv+VY zo6e|D#I;2oh1n;_O(xcj2=4}Xk6DpblP?l|U56^sD# zK@D-GWdr@QR3)}A()Rc?9|hSKs};CcaS-Pk{z`rm@mQGa#o&%?cYx0tU({gw1wT1l zmk2w)!^m6mNBOdOd@5&R)!}rgE~Dw{DvG<~&oQswejF7c4;nLc4I%|Ud!Wt!vVEC35u@yknOHc3zEDM5~JQYXyW(q#eSGx zF>BLNZ*P*~&`t)er+U;8vXqdk@gNN;2-8~piZ^ppM#$>mnHi5#HlSG^(tQ2V9?u*> zmgfpaT0NjAqq8b2BzHn`KbBx1A-R@Z1?8A2;{ zN-7h!pKX&pg4s=oh7rc79rb(D;}BbPwhAUSr23FawQ?&XN-}gAh$ZcevWXv0ueJ>r zu`+p`96vV1;@Ygt6H>r*w6gI`goRZw*mR)JeaTcIkf$f%3*CeY{D7sZsRz@Zlx6Zv zGfq}|xzb!eV2|YvEUyIbM?-6atTDzq=AI~XqU;U;)dns1%aHdV*Hkg%E_kGeF+fV) zF)mpcvMf!eiJl{SO>0&YF&miYkH76k%4|IbZ_6esE1rP><1Mc(qOrzhjWpoB5cn=` z3zew|=C_}NabO7myo?`xn_$j&!oqATezferRgTWLSPB28f?NKn!{JG#b4lmuBDyKx z)RRa^xB(5d(H>DH1U{jrnsY!b&Hwe-S;;DFjh#7}JpN8vfRg38zelr$)dKR^=M;nP zX9^Bai7Gkg3tlC;%AL_X&W#af@TH!!BU}<>7y~v4iFRh8yox9WL@xwp;Vsn= zy5kUUDM7w9>8eD#@-fyu_|uaik57N4Ksn){wUhvRI5>>n1pxzlW+SN* zB*@kF8OQ^|)^C$mUrC5>6MOed@Dl;%2CbuReH{?}zVCm?=g+J}g%D@sA54mkyG1}h z1+)66wR`tAcUch5V{Bep67J2nu9WdtK3<_&!K3sI+(?*nrO;J*KV``7UtAXbKYYDq zSX^7WHHuqsclY2{xVyUqcXua1VZnn#0SRuw-Q8US!GpU)aJyvh?$bN{opb-ydgf#; zpnj}(%wZ9g$^j0=gOJiM0`9N{9c_<%aJ2pt)B)N8Hj^{q@Vp<*RD!Yj_r3m zg9lAQ(X7)dL{t`Hnh|u;y>*f@V^H^T;0HZWDz*IMz?6q3NxPJ`RSgC0P8GS7 zk!b7!j5}b^c=~`qG2#Ld7-qsCr1#`kU`o5_lMpxis+xII=sZFs-0_G#=x zjpqEv+7g&nU<|m4Xq()462^%nbc6bHXp4`B#i;+rutptAbV%E8_u&$9TzDjMst5ANsBPjqGHk?%!T1ca^ zMb(yew*}Im4Y|Hu%KxZY4qenpI15y7fx;P%$i#y!NwZOAj5-(UP}1e zbK`g8JdnC%i$K*ib1cDI)*507y!*fMDl43#XqdGP!O05RSjOk9bt2$mA6`~cTtHqX{cwV(kT>a~_6qxuIB$31=tq#E_XU46v9VV#Q zNqn5HZL}EI-ku+?4W;xh4nf&U44B~Dzr(??|HcA;bbxXJ0Dr+xvi}W!{@t6&^@dx1 z*GR~|XCO$_qd@u}1d0iGvkJd)m2BK^g_=C1fVWs~PL@PrR}N4+5(6hVAki5P@86qY zu{nPibiSEmdDxg(S-IZ8?HhV!0VL+AvVnY&8F)Z?$_(h>+@K93CTfhoGS>cy(*WEc zmpB?KP?9nO2F7pg?SBv}2Mae7;4d@@8h=~G`g8R+IA(uqp14+Kpv3%hiR}#-a=szM zx1?|g03b1N3im%^*MCB_--QnU`pG}qKmWjDf55>%fg<4TAM_Vf{D#Z^nIQMp8}U!C z@Y^16HjoNB3Mq&*o(2)(Ee-EY@rnV(#slE`EqbMUv-Bq}b76PfR<5h)n|3eYD2*G} zc-g4ZX{ny3%YB7xmEd!;W}nM&zC7B41XqQUP(9XMF6N1NcL&zC^N~Qj76oto#a&|S z3;@t#HYCX4+2ojC9Dj^Px4ek7U|{EGk4C4L_oyBA*MTF4r}$cRL}e<;&@qnEdQ{+K z(rus*WX1wT&F>8Qwnn1Nd*7{Mma=ueT6$fA(!%CLYmH+4-^xZkxnVrg7PSn9exT>!7Ezz%j&d60A0vEC`=LPndyA{y`AgjR;%X zWQ``tJH_| zt`CQFw~%W10Wc}sVLIB6vq{mk#xrz@&y95<#oeW)-U3F>DefG&(da&yn%s!9K(jXN zJ=!v1x~3o~^=*d>ZxTuCX$@jKbar-`Z*?cX;thH_y4uWn6J|u*oK)SnAK*?7#`nJo zuzf;CE3V8$;216mJSi-?vJ24Gt{;S(+wdz9Wzpb9;FPkZic_tH$3j0ho(N2Fs;?Q> z%uzw*pZlUt!C;(OA;X1a3GB@iVHw1i#sJrBBHjpjG5!w*ZaEP?I z&DH6vc!+Zx75cIhXy)qtswjMUXQbxv#WMBQ?Nz@>2FrLU)UR^6{{f8N5ZI0nVGqwL ztsmULVuN3&plra2Q8%YktEL2Fk1V{gC#(xEs#A!X;`F|#E{i8%7Sjxn6yOD?Bt@pn zPM-R0&>1x~Jw7lyBj`9Z1-sAr9(PDkf<-FZuZ#6e3Ln$-%6>j$fl2ipwIUcR(SSFB zcQyEh4Ftj{a?Vvu_m~Hw1#pJd2oAPTo<3ICfwX-qJx5?lf;S=qi4h6ry(f=HjjJL~ zLteY5ldRAZTxZ>xT4D$DF6Uv{m0Xh3P#}~^6VCTj$dnMp+VRd24s1cg=zm~a5+>t zAEWJaryf?j*5}3xK=-oOho5tLSu);O$y54i4j1xqKSzR4ia&(;Mcxms74%JR4-8F) zqX}dJ1=&$>x-)&Qy2PXz!`Qp?V%5W^+S5L5_89fq#IsM|hqCwJ=?pIY5>J#mc;d1e zmYmQYHT_Ov$Y=!)xCXjQhXuT`$r-+yE_WdBi6@0J=r%n=A2#5?gzKIE=sJivpZQ1Vlr^i<B2dd2}I4{+cQuCP31p`0UJUNGZXXI;Q4%j1B~Bjm7b4c0-Bx$(&qq z?zL1{=~aE`XXytO-l;+H6>cB0V&8rXXnpgRjs%Vd2}!|`b@;%s#tFrajElmI5KsmQ z(Dq|&dqk8r50NJNxgxcfiit4|*eitd3dF~dlh!2G(|pi6{=P!Tc`7|hK5S#7^q9j# zBvPXmtM*i<4G#R`xLYR;UpUrUKxy+W)qc&o-c}DMX$?MzB5bTnKmw~HH}6dQT>0J~ zo_3ohuy5KI*tGU(20T}lc>eFoUwTaKbX&-?*htV#sh_-0tA*U9=t zJ2j5P)A>O;lCI>@M0W)%10il7%h7k6U!@a%><5K6J6z&|A*$?REEEoR5p(N)wfI&|w?>av(3 zmUWIb`I{Y>c^s8l3WO+sU4Qp8VX+R1l5#yb{ZwnpNhY?Ovs7S`W+WI94pMfE96}|q z?`&SSk$yf&#LtjUTiR-_Jh%O6+E(wP`k5j0gwNGl z%r@WNyjzF0(tfTo0NH~I3k`L;4PhVJ{ymI7|8fKH@)Ix_exF|}QGy{(tyoDRl1@rC zRGE>wMH6>WK_Di}Iw|AqgT#lpxO}@7y8)89`Wd4R%wzZzyKopD%`dynHB`W#H3esu z!`{zjwVVQ1bpb2U_=ghq^dyN(Iv+}oAfD8}AVi1h!0o&PUTIk5Y6$5nJs^;#4mY8Q zoR~cWo#|+$7(!M=>8GN>ca*=&{z})(wf{gC4nA}JpsDcM5i!TLlM}JUb&uWQQ$2Wa!`Xm-{tb8G_%wVt}w_a7y7m?yah>SHLa{bJ`X3+|VOu={> z*QkBprr=w->uV6_1rbK>R=YBPdNygZWdw`{9`cY2tqnxfHL1BH`+2{6DprK6j3?tu zoy~)cHbd*q^(CQNRUk*zkMdf?<0Oymvm9H0Hy`ZoZw0WGdOpcDnLe0+v5`2Kz-Lae zattWUyhJwTnI9^$kKB2!c$927ARtm{cffa_=KJ+obZMn7!k4^-p5oIci$3=aeI&y* zu(Fb1G8#95S7W~2=`EYbK)eRW9woViatbXiI}?!@b+4588;x2+e!iHbkwuap&*qGv zjZ6NDG93l)E}x1l1k_zkZn?(AYc4)NDm$gb%j9>yo1&j}aA0eaHL**Vp25}Cn}<=h z`)xl$Y(9NhB?4M94h2-^kR@dD-GMcftNTaPUmoi+pQPGX!2I@0zNrk zC@1=x$?yt()rmE5DS;Q0ZrV1=_{?xszu$sfzQ5Uu(Lp-+RJd}=W$tQac5K&qQICiw z-Vjj_a9E%#ZO(~W4mA_#lj3-}H6}O{!hTu9d%R{^0kPJIG$n4$Y+Qa?tNd_G68T}> zA2UQxC^?Gzs)OEB15e6f>zflx2XMEf^O~@tXNT8O)74PmE|2dPMMKWIk@?H>EG)w# zpA?r>^y$|Uv$k4SRNK4Z^egU)_l#?iM%W)b!`J+M&d++Ta}YZp+q`v2pf7QZOTek; zuLjS6mki6vVPaQv4k067mcS10(3MCUb_6RgKMR>5Yd^eJZgq#Ift}YQ;S_rM zklGKgLLAMdHN&KL<*(ppBT+*CVFW>n9~iJfNZE{7*j#Vzac>aj4;qmBZ&fMPzj4@` zl+yfP)lP5B&VLx3-zrn?zf`7WI&XmKUjoyex6l723+3S8dh_~mfe=41P}2RW7-a=; z|AoQ+9~UAwN8&~UF7SWa^|-l7|A%1ugNOQq*5V;$bCd8Jo@`+h%BO9wg(R*?t8$M@(S?fJ9uVIO_rW-D@ywYUmeZT`y1cCmwCqy>AZa}Y3}_bprGK+&51Fy z8_z+`+Wab9oV?1OQy;-KMaf^?tD{1mKRqpJW4z(Jaez&r6Muw=Nq?y~{<#1BF$Dbr z?}}VjBL3j(54n7ZWNB++RcrF^Rv2TVThi$|L&_*XRmw#X^Wk*p)x<28K;>|TUl`ePLW`}^Ty7-1wY>0OP(M;@ ztib_r_!wvQ#_36|yui&qfc2mNdS4p8PG?`BFzxq-uW4XjXf&3Bmdz>Af5kHb{d}rgujC z%y^d9^CEk0Q!fdr_K9D`iAM;+x^X?XQn>GOSl3o!u>@C1WpsaCH6`#U9grEvpQ+5v zgpr@P5<%!e>>y3s= zM7(s8$=Q*-#=l17R^R1Y^QQ5J6Ji+%4bEP#U0|$ny zFC|XDXAHsj%IseVF%?2>Unl3S9z7rLO)xQ#GqFlDzblalR5iPFwTWHU;P?>{thiNb zp&a5nMa0FE3Y}D~QY?-BO!eZ_e27AS@9MhO9^#1tvhUD7{uPh3Kq7~Gp4zj-%yYS> z#r{>}=F6upQ>mAC!AI6&nAs>-8lgb1Msg@^z&!A4Y5TdxSmi{=~=m2!FGf%;(#S5bQ&c>4r*S$?8OeZ7LBFr-9y^2EJby zkGhu%&_z8s@sF~36t>o%F__|Vl@iFkWLYLj5NM0unNVtG3`@vd`bp=k#knIa01#W8 z{+@!=w})_pe`Iag(r=8@xqA*I4j=X?X}n@mT%HhQL6Yw~x_oPhv)DQAZpM&LPoEg) z#eAPd*|Vy8p~XA-N$ba`a}VS$UAXUeR?eOnh8KIoX*hZ~z6G9vhmzuNgBcD>XEw7) z9?_5S9nC}!%PkP?cd^bkQnAY&k4>=SSnErhgwh`nOs1xgi|miU`3@h zx^G%%0R}yokaGT|i;&g@VQ?LUX&V{HJa!%Qw}!ZeRE+>Xv$zm0=NssYp^rUNa?*sp zaPlK$puRTkUVBuRVU?loLvz<|#j30aYylXe!t1fb4*b#gOJOp0q+n^^;So$xd}0;B z>rgRuL6NDm4eoQB23ozq4PMf|EQ&F(dUFH&Jxp{rTkgw{MWzYXJR~R1u3t!$BckjN z&+CgGVNnXm1LyE!;Ykcz?>=~xJqd)gE>kkb+42k#@&jmG6MlRR>m!jPF46sQzmCS$ zw7PCSQaaQBEEVaq6~fmcP9?x^C?>#FhuEE%cl;R>Mt`s{r(v`y4sVNNDW4=vUG86m^b}|68_0jZnM`=*NuZ83z@xC_gS;MX5I!fLKr0E&o|NQW@8eb~O%(f6h1Ab0x(mNg5O!p% zP7YXahf>WsgF4f^8beD?P$4xG!Z*$R{4eJh?l7fCJJbxnl=kRHC1EnGdjLdaKqHAAy078GXf>gBJwQn= z=uhjXQw!WKteA3cMdUyuY$3x?QEE&=8OFS6l^&QsB>l@bjx_t%lV4P^(Wcb_iirTC zceX>k%VF52V+ZO@f0oBf|5N2Diwmoa%Ra@R`;JocRqEN}^smQ~G@yFr*X`a&cG}?1 zuikYn5JSvqULnx4&uW-MnJ3?^!)Coi5{aw^Kh2{NM@AvovDPa4w%8;~4tcO})QWoj z)KCL1a%d>iitIJCNtnxjWJCHTtkW#C^2OC&t$}Oqe{7v9&Sw8AD3I4YWYSy-=P$A-OT3aZyaqj49ZZfyXev zdOr0|?E&Y5Mddx^W(Pzjw}U<5vd@ugbH;C;OqCBmWBm?Hg>)kPfaaT{ruW+3h%5*G zZcW@9SKu??^^@-kmrU2H!l|9XBeW3L$LiXhiK7vn!CHDLlE@HC-o<4STQ@|DA#iB{ zK~F^AS@ddiu(y1O`DQci$G_ajso*nPek$(j2V*9xG6ux@@Pv~f1|nL;TioL2^uT7_ z>>QJm;G<$|T{#LEziwt$TQqKNxq>yl>kt~r;n@vySR(eGwpnpb`RbTLQGnoN|D=?Q zNsII9V;R+-4+2@fLSpzm=lqRiKzELuq<`hsV!gFq|2K$vOEmqhW&Gbj49|Z{?|49D z?eD2+-fGAH3*Ee7gFpD4H{ytg^KbVXye=n<$il{sfE==&iwAS*-5$V2_2^lRq}A)_uN63 z;)0mj^!nR*SW;n`lGx;GkRmFxa1Y1Vd34iQ zI2A!K8FPw!<5pRF%wI2n6#dk5Vt#qQ(o}&A$q1bGg!SaT`gML|on;17$_2aWvW)eiOHb#vfQN%n(q`j3DbaKj{-IHB4UnnoM7pGp8pZnTN>F?nxTr(LaFH*v6zxz1_A0flZ z2qDv`P&@!Po{+gR<&Ly`Ls+JKS~p{!FQBLy(W{UHdoRB5%Ae>&)9{0P2C(Dye60o| zbu7VAjDoE#Wjx(?YoaSsABPvx9CHg=NT%EB4j?mly?>`-EupfPaqBI*K8`;@eZP;~ zG&J}^&46ws7sW0Q`Jm(hM!N70bPl)SzQ7(6EiexZMe{)9E|t%`xA$uFh}+R#Kw-(1 zRWVPC{g$0hFP^4BsQjr7U6p56_!s4?FWHDHL&nzKms{15Ycx8tC_;GzWUb4NTiHS! zlK#PxkO|aj|F@hHzBZL29}oW@z!(jOx>~BjmWwzP?2h?Q5P*;?q4*->Z#BUJUh;^w zivxGSA?k(`*!k5Xy7^DZmO1p%j0T|MZli)S{Pu9VePbl{1 zF|oanSn*zNz5UIo4JhSeX{54H*K00T_ZTG4N>9FxKUSc|S+N8w?Db$N1MnX6KHu^$ z=Y49fDNgW!e5v4GH#_AOFJ!kH6J_$CN;f%GOst4El=WW*_?(nY19p9!)T z=;Ps)KP3N>4y|?LAI<9Tu@lXBM6p*D4UyuoA5#`jMKToyQ-g+DjQrhXStxXm%WnIM zdPPAWGU@$oQWOPhrL+T{2{*&XWAAzAP0tJhuhmo){T(JdNVQ~gxwJGk6e~zPa1zKC zihnf3^1hRr0Cz-GdZQ${cpr6fJ!nxV94CG6vFiNj9({QyjZH;l-`ld74+HP z=%k~zUz=LHJW1MQS~JSiZTXRccgiCNEsp5jaqN$Kzy!rmw#Q1pg$>OH7;#U8_3!ar zayduOgB`d`Xexayk85Rdr@LNin*3CTx!xS!wr`_ja;dtV5OFm5Gu$a|@*7PI53t2R zU7V$7A*{99`)d$Zl4YJ(aQO8i*6vtC1@lti zJp=X?piV12t~gnB^#fFp>fr)tfV>~Wle&J6^2bu_EQ57%%LL(jbg|{Y-thLVtRKg) z6XXIE*4KJ@pcs6>VXec&vgKS;^krcMtya9LGq$?ju_v#>=JyR@WUjt!3X%%8yBR>k z*PD1K9n5wGa-~XBsG6~G7G+2@%=VN=+oL9nosW&+pF_1|!af?crwQu(04`M-W_M?S z%3P7XQoVPs=ocxuwyk$b$GwgLq~JzO%p6K@Z~uy2O%BX@Mc2yIpa-j}PSIb#6rg;g zF_2=s6fUUY`-&jZ6g0;36^l+dodz7y;Kl zv`F?jQiPSMb5SAUQ2+3D1|Hymv;(0_(lSDAb=b6#9}z=N1>G%MjU5>!ifbwdstFLTn-M4#C11|HIon?H>6A`4kjW!;H(`92Li-D2fG*1^4c=%b+%gj+ z<}xTd&*5*qQ(wroUhsdiPKv&l_Zn9*N2L!6BDu}ZFT`!30*0thNpq#-rD2@8I9P;A zeyJ&}LT$2>OI#Gjb0*svH5R10#gBfsKCzg~>rTP;sUe?hL}PH$jVdW&^wuQGouL^0 zR|tPkF}kb|{b8WxGtk~}N6yh%L4v`&GtAQZ5PJA>&OtV!2kMSZ!ljc*CKut!Gn*!I zbZ+cxX~9-LnR1TEQpy^XrUC2C#TE49(Oh*~-jjypj=#hTv}g6*2B;mUUkw+(^1hTS zywzbZ9&wdgL-z~eQR`u@2Es6I0@?Z^3+qKa?&{7O>S1J18>{H zPLf5u3V1yOd+3xQUn_L(98NM!hx-Lqwpb;YIwo4c`ZT08EZDF;Sh=SP{{DMXfu&Fr z^n5;21JM{?P~8i%rBT%*>wm0n_-vs&hN2J7+OLvp(rP`)l`>l6r% z6<#HvbJ8V}?7L*iN*HP!slx~|T!w<@B)_w4D->8CpygI4Y{!CLLv}f zM$oksQQX)L8&fRf>4GlGM~qD@)?qZ|T_4t^a2mfpHp3Zx@Vi_II5^_TbVuM6gEPRa z{ZL5cs{5Y9@S!;%h7|Df>nF>@i#BV#!ZRn?2GMsJXHt2fkqtmXN<#kE+Wk;SEY z!D8s#(|Do?iIpw>;5G5A-M3B|JpHqM7kSzk1xGuskz9Pr;VtbA=(7e}PKpLG9V~52 z+iEmCmf7CSU3#H9Vol2+gb{@;SoxgAy^aNihAc2AQm3oicxMmWq~pQdq(2}<@lMk^ z%y@0=OH5+r-U_aN)Cozzp%9vs4--nmQ)B_p_NkhE3w224eORrB^+P%E#~>?RMWVa5 zeu>?I!c+9xaMCDjlef)O=W}_%Xt?6*0w*n^yS@=Bur05ZbVn5UbaY)~-LD5fpY@1R zWdkJe_%O}k<*NJ9)F5lG>VBObbq|dRX8k1&laAi$Cr*E&}aG za+%>1EiF*%V?ofI0?H!cz0RJLDm5;vi!7Px^tOKRy*lQY1Zmw@?8rYHyc5REgO`L? zcti|ms&z;~VzL|wF4;cx(M!fS_rY$@F##?X@$-J=O2VjSuS886DKNfJ-5=|u66rt< zR=vkkk$xHIR(lnMeyzb`_8mZ~4wV_#^M9-MEz|YwN2J|Kz5>q|kS`~~T{_Cz{qejv zpC?-kVw!&3#ppR$@XYacX;8-oa8KBORwgHFip^<6!+*arr@ch~>q^7<{%UUJX%d)- zqSi>?{q#`DA!x*8hK4bW?2uU8=aF|7V03ohatNbD7n=eHk#P=s=npL`JJYE4ao~4e z410zf*mb%_P?jxr{Yg96J`>f-hpRk6~!e9mOdh{}Kh`3r1=Q)p$tx zvAa!u)<0FWp0JT6P*-d}PD7sjs)^L}{`9o<6^v^6iT^)T(*H0+JUqX3eOP}(h(Gxx z9#9TBI5q6Q=p+!SEF&J&Z{!4Wf&r(&Wc^q6r40f8bvL4rb_*d&UC{rB}B zD2$7R>#xRE(7ZGwGVcGff&HzjmGy6wW+%Xi1VW0yLje9$I`@C$q<=!Ae=<&gisk+k z)x9xBoc|W(@%&R^_Yay%5Tt{Sg8R3c4!{BuAw$7{WaDD_8(5v_%DFBNp>-T-Wq&2? zisa6`1#7(^bJo;Vv@dA;Ky+N=3nmi|jU!_PKGSe{^!*Af96XGYR;9i=F-imp=DWbE zfMMqVce)h!!#zan-kKwmfdL&}0d2CnB)~I1H=Z2VxG?vN&M&gva8h1;400!5PFeFd z9fc@e>O~t43wU6ZWwZaKm*(tINvd5NC~@;j`jWde(vH)F!(cBj7Vzrp-9LjY5yZ0F zg%lHB$fOoTsg(PLO8J#4_|tlCE0f0Vx1KvD4cxCOrAlAs!l^HKUB63FdgLeO%Pqwh ze5H`^saqr3NJjWnW%4406823xFkkfr_AFLK1yK z>BbXY(I5nPU-a3#W2Dqh<%#cV+n_AvzHEp;hxz!-S`*|kV*$-Y7E&FNM)0vJme-1i zXfz;WI7#Qm;-1mMH@WqC)cjsdnASR|igG%&kTwu!AUA_W9TX{gPSbGaSlty^fGaDE z z&OIjHAU6fpOSjon`%x6KG}UnYs}i^%6nYufWGg9FTLz2xfMJl&C3NfPH>h`o%REV8 z`7!aNHI<{cWct+MQ{eJf6!NAn9t|WArEubnrDMH7j|p8}ulm@~Lp(EJ#EH&5s&-Ir z2&I7BIb%XLRBh4zkZz0#_wpfY&DG7$@TnYuf z_GK!p_YcM$q^2LXu*J>23!fk-J9;1ezI*Yb+%6rM*N?UMPVK(KUW0t1bhduU*cq*H zxYLyf0;0-X5=&eX6e1;9M=iSE9TSU#8;}%;E@k}K$+!8I5~JH%E}_GDJo%wx3~Zh~ zfAP*NejX$sGk3Hykseg)w7GeLUu%+9d02r;>*8|+!_Y;IMJv<)R))c3aDSlI(PkK6 ziu+D<6Bt5{iSvGcfzlQt{nKZwI+y4$n><1oAk!&RmIwCwfM<8qn<=?kk%c$?Cz}X1 z0b@!PO`$G;hO&vLyZp>+w@BLvSkux98!7 zf#?xXP-<)nCxrre)xLGQFh^g5uo>B7hEtASm=0acbAz~k`gu!)!%AQ}pUaw__tNDd zi_mtr$NJLdNVCpBayQJ+J!cnm=~FIOhiC>jMkh*!80j0iovsoC#R7Ebksm&g7#l9$ z1&7p;qAFnsX|gt$rRgUZu@q90>y`xH1ABt+L}9PF3!SVmpKeHxI21z3omryP1w<3E zk$6*e1kmAzOO%%xwezEh~`gje$DYGzKb~0DAG;QgK4P!lujA|0Tq_H#( zWv+*Fr4Y{tunGGSfN@&>iBwr)2j=+Q&J#fs-qGf9wg+Fko(d0tBDSJ&kn5_46Y$WC z+I=9WGaa+k0iAMr@?$21B=NE7`|Ots=DX+IM`v<3 z1AxAP?_GEv9%8U=n7WjN;aI+TpMp(QxPR;295$p6HmY+!8np?Kqo}(AsZ4W_E$MbW zoeo59r%0G;>J~0Qg=*%5x7<0h3QTPLT>s1tyC}Hk|6Ir3*gLdVrvsI`pb;aF8YW&{ zMC2C|W-B#MD(-{ar_f^jQ7f16PFEZa*O#}d7}6zy_D%+pjhH=}k_tJtpGR*FIoQ#6 zfYbuL3#mG~n~4k=aU|m)1eE1Q-xjVmXiJnDw2gM1IvRQ|BqIgit2``Kyj2>dLi9qdIqxB-UD zNtk=}Pcs8zEx<*?cn7jpB@oVt`M6uNa(3eoi>E;LqHL#B&~}*at6$!AkU$D_8i5f~ zY9b?EQ+hY^$M2SwR;!oj2%l z;M7B!G*VY(tTHS;b;ETFrkht}?z)64vg98WUU0Rca>19DAO-C%l7QqrS>5ZfeD;RI z27SP9F?6Uho|?xFSj6eq>+T>tmxR zzvuPFU_VHx?wPY=ab^5hsy=FwprYWYEwOY$rL{7jV~b(DSYVC7i=xkNU@ZQa3V#j} za<3}byzISGKtdRJB#`c;IEyHI$P}EOr&~o}w3!eyov0^KfC_?lHs*i~fV}`o387p4 zLXw^NE_-MZ907;{CNY7eyvYYnd)W!D+2IGnyI3z7ULZ+sti-^L<`ue;0&cHgoL$Ar+)3{cJCoia7XCy=*aWfZA% zMbw0-XHL;hhlfQkyA7>g!McW+eh^o!qO&$VZkC@d_ z^WEA%BrcUFdiroS2=uu7sjaEoJnAasW@t$f(0CIuEK?Gy3^}*!N-43NpCLtQoaK9m zR>%Zsha4S_+5@$+S}R@%SW`I^B z;WM~>k2_i6*!Ib{o?h5%n}MCq#O|#3KlzYOt5KM-{897DYOVAri{w683jx#uCoT^{ zS=n;)&IxnR;esxe7l9{zqK`dg^7mti9XD44^T90wy8%kGJjMfDPMC64MW1hA;-P{7 zTK9UGiS(t!J`OQHKjUR6;g2$l?+Mq<6_%M0QK9msT6PeY8^^pT<~=la*Pd8MJ(ypf z;Ehru@7$AZb*F_Ch815^&5v#@Pk)-9o^@ayh}cRrRJD0pE_mM6mZb?92~ER_?Nyq_ z_Mq1PatHQ++k3rVdph!KNYC-s7(>2f!ekhHlm>)@2m6FRYAIP{%8H90eJu*pfq_C{ ziFV$8k@;HIjy76F62Up|4(o4!Bm3~)>Z+Yz#L6Q1b`Sk){;I=1fTn5pxEFq=in<9X zm+zY7mW6-d&|t7Mbs;Ir1??rZ-1RUiCGlO+?;VhAg2X={OC>p6NGGkL_Nk9^2=9jx zS*=eSA2^9zG54n8FHZ62I`BSy@Qq&hmyH*cDn=5+@-2bmax!O`wxhWR2IRqJLCB8V z$zy>Z?XzSP$*uO^a|{lSuDlBPq}fOTyb3mFiXKQ&b_vXfwfC@o3a8dDB9IgbyH6@| zvjlwAY`~n#e5;h@_jJrRM5km&X$1yti>;bld`wyBMYk`#8l57DmYTv%0v2({9JgNi zC_1Qhudr$D{JkLMp|{pK85u@IPzD4Y7B+z8FL~8Jb@|Pb{7269 zW}5kv@BpxIyk*BzftqC)F~B)M(`ztfpv$+FmI z7=OFPAJaMqHzyMhXqt}+g9^a2LkAm!tLorW`UjQ^QsMmX zVk9z!8HzLqO&JymF=6P&X^ax|zT67_emE$qA@Zg12RBo}jA&3EIIU~`tpT}47~Z9-PFvmG%vUqeBh4cv3rX{=@N#I6>@(#b#G9k3Sqlo<2yl-kLLra z`uXoQIAZIenc|Y19j70@U9*zA*|pYweLJ^C4I9b}*Dm-OUd``&sb;PKL$lLpog#Rl z-W`2~(T69a)X|}Yi5oTuRCLMRQLfk#*Q^1sZ4iyY_t?QL;Lx=4X{*Yh2HI(xM4OG3 zXMZkf(6Tr9miJ;2pwGH<@x7NHS-&Jb&&D~ri4sM%w3d`PlFq3myS=P58F_fP%1{dk zO*v0_C`811=6I>8&|?lG4wVZr83>odYPF6`UX3+d_FYup+R?!NkYiM1k@$0Zl2NFa z)okS9bLZA_;+Aisqr+}`4SkDLYz=jgx5_SVKleqRU4-!S+{P+Hj70f0es%PFB!6F4PVns_wG1NT~sQ!K8&dhXkP=Z5T%Tv-7mB>{* z0a9FSAvSM>L*Xvx+k-6=fZukB!?j&{S2O`MZ__@prm85%mplHT@aQR+<97#OXwaV} zN;I70)cFp11G%(opR;?q(b{Hx`L=)Zd8wq--e7mRjys*)U#$X?Z%Mg~vFITVlc(ccawT+MdPS8o zyqnUBBMwSJ@^J4*Fmp@YgzCKZwQqaznrdj}RlQgS{qwCt{;L*5_81X5uP;fe6uW1#>Z@W z_B?G6KGb^@;@LIeEiz?ULw?SsfMPrQvDw+0;_boX%uca>4&Q%sZb2=1eyMV5PJOBe z1>O$9YQ>=-`J%IH|7^r{!`ED-q-41TP+pst0MYryEv;@JZ9PYrO&vr5Ut<)B;cZY~ z1n*G6NU zmQXVtlR_JB^h}`YfF+ChKexm&$RF|RA4movSQ#QDA8y8T-FPRjF>$lHjzCixmyW$7 z4kDPZw^75WiP}?-c@Lccj973?1KXA82^wXjeJu#72vSA+$s~#kpQ|__an};1L#ZtFITAnQ)e?gSptRP>G(MXFL^$n1J1yT1lS{JT zVdF%vMcrgLvrbQV?dgkH4cDiRTX-8O&UiVipH=E)7?dI60J;ERMIOh>VTLEkFGzMi zrJjb-oKG`r^n820$_{xa85n+r zKUQH{v8XM6qOM&>3NgeG)wu29To5)&6l-ZByMnj5_P`6w@- z$!BB=Ar-%4^}|xFKRNqZ{}+Muu2W=k;9>#)I$a~A%{-|m#`zg+7>Ph(GX2iQQqf~11ZC3_k${qi-dw~atu*i6h5`0QJQD_43sAHE+fgKgCM{Lt z+p3ux27v9qvZ>x4;0yy!P0RY^R0_kfo;{Sab`rp&bpOek+S>|6deaZjp-1MI(rGHFN{~WFUupwXzDmxdUZ%xk^44o+k| z#aZ0U!of4>Z0+#6Pr-=_!sHpnnfH9xj~!`2xn<+r{=rxKrKys+l6!B|#p)DL&}z6` zs_pQ2+Rz5H|1o};z%-gnAf8^Lx3TKc*=*+1e6;dZVz71Bvf@_BR2c%MXdcUtgr_#D z;dy`Y5C(G8pe0oMDys04k4v8LpXhT3?pvW?MGzDOy7!YO;CU$HeOG=d4QsGv0wZFCXi{lWll?#2w0HX};>lx- zyl@Nyi7}Q^LKKSj1)I~+DZ;k#@!~nMcz%5CAKDNLf}}_>l;I%slB0v8K%~rL)9pBFwO6Yg(Rg#p+92=SR+uz% zg`YT_EtP+1wfAoy1Mhk)T+wrBSedgJXVq>4`pQ|mA>-wcPGETv2&cJXNY*a$p^bFE zkBn8kc0@$A=ZRkLe9y{T#&RmpIslE^LD;fPOruYW#+B3+`bN{Y_b^DneR3s!p!X6? z%&v)s8=!CuHzL4UQN5u}Au1UNkX3@zegg9dJ4#$}xAVrFh1ij`R+!gOOu1R70RNml0 zB)oP)Iwcr?Vq_(c%9(ubr(#Uc;v}wOV3Ghfis4on|!Ec45kIs}ug5e8rEu)LXgqi4hq4Nuq60mxYZ7q?fN_%$*F5 z54-2sUle$vUV!?X#eM!@jM?D24hXi%!WONCkyRW-c|nifKI+HvmEhzi(; zTCWM;a_&mLg2NG`9Jb^7%J_}Wv7j1?u;2*Wz}r+6S~Jxyn5nc7xItW6ak8S{&Z>37 zhQzLh%v}q>gEf<%v5=?EfDqP51#*Bl1>=2ZV?nN9P-h5dET%I2c>>UIg{-P}p5#Je zo3~iF9zXdRi8qGA-T8@^=u$w*;QwRnEra4(*R9du8r+#$FIpSTm8 z#)7-M2iM^47Ti5JT-Ms(xA)3Eb?&|Yx_Zv8?&_-UcZ}y5q9cuFu5&zRaw-x1GAn=8 zk{@+Pswq@QTp`b65?vn-`Gq`ACi%NQ7Y*mdY;>27bp4Ud@uXma$Cm;M$}jZnA1T&g zK(Ikr(Su6)%Rn*L{=4biANm1+$g?!K#f$w!ywcNcZqBBaYizQx2U(N_dgX*cA@wSA z!u4}>+NG;~>Oe6v*JsqaOFxIn><={^&MWwU%5hGt)l~oA4M=)*D1s);5KY{Qw{eVtUY|FL=e*b<8!f=bq8aZGC)+0mVVvKfZjLy2!lyVGC;lpb322MnWumMIP1XEky#l8?A@_+vi#M zyO-zVfJ7W&{2(E2P*C$%?!r0G1)hYXR9Dgv8Hwd<1oicJp9;RZ+s{95j!%Y3L}PlT zepyyIK}eueM(|c&;Ed!(?8#O|Z*C%?;e-H27 zo4IgaXoh6uAyD`9e-AO=RSevsA9ad6ZM7TagdAuVP@VR$6;<}_4@f2Z1X)Se2c3kI z0weM+kEC4x;a5OVLE1}n*tMhC>{zymgMdb-+g6HbUqsfOmyz~osLDF()#bz|FF0xp ze84erVo?M?4HNY(%a$yp?X`20jb+C6d{&wD?3~xqZH$hd4J`NaHNOX&Z?I9tPEatq zr5WWUnujlS;c<0bjo zZZ(;5_QdY~i0fy?6S4FJ15wrtf-oY&Fk6xXmzI+*QwoJ1UXb#Nn1a<=jlglUqEHQy z+?{unU|kcl7MROT+m{e&Mq2-VvMIP;bE7tL$*%6_kBu-9CO@(CTu93a&HxPK6~OA` z;EQ_s-+jaL(aUT2|oEd2PS zv2&7BvN0Z~P6u3DL-bCgQh|R=0^mZ56xGP_PFnaxM_3?X53PglCdQ)!R^3dxTD>4; z)=v~)9-EFwXx=D1hX0`IDV|eF&5zEI3X}et@Ms z)o-LBv`TC0*TRgY>>Y{ul7kJueedEOYt26MUUS zmlB2kW?GVd$lbO1U_JA31i0=kKq5sfGz~zk(=YX5f6e3h{j0m*s>*MW6la}fy)y%3 z(V`E@_ArcR^1~H4&v~ekISNR}r+vpfzg7vK`kii0z&qcI>O~Xn`^U%fguH+ae1ix< zy%pzrj;l-#pw)C~-ev(^xqMB89r>}^Ik4P)p1?x95TR%) z@2b>co!DJAz~(rVuZ6Ude+$1!@Ey;X63QdoHgrEx0=W;+a)WizG)7}A5jDWTI17bP zV1*Bip@TIv6s94T9SZ8&qJwoXWZCaPyi|pBp8px2>UR)Me);i6O#udRB;fALrt-zt z2lv30)M86e^G!F055U`lNB!Fx-xS;MUiZD2j)iYiTg5v+Zh;Ec##D zN92dgeQ1xs2>{pYEO{Q~p_oMfJV)H6vomdRZr&PPp3`mjU^Dxe^c;CP=$X?0peL;Y z5=tRmddp?}3EjO|d1Q{7DC__()5{6`{?kTM5d^zRWE`s2!^>#-nam zh_^E@Z*YSyf;eN&De*$>6KMk^6uQi=qykMn75GD=#f6q_<>s}6?*Xbx5J9r=rMD<@5Ty_rL zzd6Ix|GdP;_WBO5{i1)-2?&n=3LpBzQ2P%H?*E4D|1Yrr7h(CMTl3Fp>i>(rorQ;t zo#+3~S^p5Y^YV~!zs5WLO@?0Gx&O?ZW&5{`9h{N~LIKN>qrySGGM~TPy7T~nj_oGb z#ryUT^IkC%oKb7JzZZiot3Y-g5I@LZxaJuV7d|ON)W_Eyxm=#w-e#fxto~&cU#_(r zPKPqMF>Ghblg9e(go5bF$=B=QX{J}`)%qTvDW;6Cvmya)P^ynCNu|u83{5$#>Qomh z*dsJn_-)FXFO@xL)1+DVWNsgry`F`Yj=S~NVwx0h8&%)`8ClB4ePNNo+hJSOdC8JP z|2w>TY~KNFQ{C0!;w^Z+w9FzhTdB0&;bx!uT84Yved})-La5Vi$D0cEY|_R+jBK~t zJ{Ax%rFPdhQZ7JuBaF$4<=uM!RS&HU%{UutxV_8u0jSt)!kky-I3t8 zL7uK(9z?irajKG!SyDedX-gsN)#NBZm}GINtB!5JR09hK#={~W-@e6heS<6d`P_Z< z0fH!iEK>9RCO=x*B-t%QG4!v{Vwz`1E*j8$h~^k;-AQg`@8kUD2a3B8q>YMncOra#`h=A0l^ib|M*pwr^-6IAlQ zJl4sL(R>o6PDU{9XT0P1Lh_)<_|2%l8Se3a((kHX#_QGD5^o*`hO+xq2|pI%r1SN` z8-5O;Y9rkZv4;&~>gGf>N`()j-QMs!l;n!Ro4qpLt({;w_KY=fZ*S5w69@TbCx%*r z$$nL9Y!5vKecXYQgrVrL#pt|;OlHseWedmAB3iAFWnb2nXO$)gQQvLM*0B>}#O@s= z7Hijo;immafIv0_5UyNXF|m*s`(lW37ST-le&DUBvqXf!?_9H0jH3zl?U1 z$nqiW+wg@g+UCQxF(r9t##*RHqg2><3&w<0+#w4L`Q&HTfMeNx_4g`=Wh6l?{teq# z%w6aEX8c%tqr4q?s_XIOlh`V-&FeecXT;*@lp`j6uq-fNRVkx4!6eHxjUrMl_9x^v z^WQ5?FER+GHo;0awn2@mA&M8c+p#D`x8V+MDDwA2W3jCfEqv@u`^gI?g!>A`)mQH} z!=B3^nefv;04JZwRTg(|>#|?cEVm1Dkj8E_?!}xZX&hbg`_~#xAtN;8BV*Pt`)?t& zr~1b}Q%YYC;sp|gO`_#nJA~3;4fpQyFxQwg>6o0Hj|6^U%m{ypq5J6F!le=Pmb#Zo)gR;al@u>o^m@?h9q4A!#y$x0-QNu4+LAf+Q6H5M_Vx-sD$!kr!6&+YZ{ZHY zT6*-91U5ZS6nfNbSZ(|dXFk49D0uCB&Bbi^@s*-*Rbg8E z3OBnVr7kaO`vlO@qLoK?fO(vQGs52SxEl?k5^yqv_vM0xS5+9(aai$?LAl1zkzbewW`@Rk+N`9YZ7-IS`bw*Lxc=#= zZfSHnpJ2XCIy`|+wDBa5vk55zLp+kj{TTSo#K+}yH-%g7{?++>Kl?Wtn@Cc0h+$)M zZb)J(64Y*3rzbJQTnNWBOArG*gG1;T6y?{4v> z(#AW(GsSL8-@(Hx2+vYUv1C9ZxWQs9U897f1H**~^SaTGLL-bMw1} zca0;dV{mhfL)YFaxidACCFx!M@ZnBzYB>fd!C*2}$nRV{p0TyxU_uHQoNR$CH%$ua z73~%lALO%&4Vcw7vNgfv=q$9#P@LYHC^Pva;g1;2Ry>a{q?5+MJ?Te`D3QyglUb23 z1pznS)|-~LbH8nia)N`QwBZygc3ZFR%htkKDzqzn9ZX41sY4YipQb9Ti)_nU@4Ywc zc5%lROIm+KEhRCz5)z4iFg*qmzMjEkeMJ)@6=kagf~nsl{TeosnlJs)i5l%>jsbyz zPqB~TSqYF8pi7HMIt6pou{h(+gX(F9`GN(VU1_kL&`K0g3{P2i zV6QpZZeW2h=faKJ<4DU2C|V2RV|&rl^!mE1o2$9Q-DbcH)%txuT-5mO zd#W-Z7scR>eN%|~)l8M$QT(;bq59UF{(k1s&a0kU*{?au?;r;Qkc|!HH=lP4zE}7o zOO?Kd^vG4f-Kb%f&&Iz^;6fyez3_ zwfARbVd4TSaid~_CBs1|f3*SX{M{`7SAD@hXT*ODkN-JU{sUtEe-EtxUcN(ebAWv} zU@@UsUz2Gjy6Az=A76nV*6Z#a{v#?EnxmLm2wyz^LaLzN+#}9zSxBa(%QqV`BV~N{&}03jX6Mgqx*vrkC5bo=oj8*@&-nC zFEv|{Wdziw(aV(+OKs>%`=jyVPTk{kiPb=|m2IsqGBaRU)-RTXEEx5&mptGYYE5{| z^_?)4MCXT)-E?o`OZwC9=>#!c(Hm##4;Q1|6%i&9FN_99H#- zv6^_VU|SS(NaXXFT8>jO!^$~hfOU2}6ZY595AE=p^gy6&eK<#QbrHOH2jl{#-2zkc z9`1tTiWpD~R;4ax%(iRz(ZLafM~NCxauzQmUru8nm=%{=U37d`TiYkubfKt)s_oas z(8D09$g6zV6q_`FK^@WQJ__Hbo>Wb-NDtY1?AqwvqAK@Jd^Df@rEonpKTA*ov29kR z^K=u(!SxLW-^GtF(X%zMO`8;BHI}p$T9@zNW`lr~Ncb|doJFf~`}$xjhi(!Osqc5; zfy)8O#S1TQr&Xvlb1Cz?*qn!kv5WU!A0aaHOw*)^C?L$=Px{I;-7F=sxulm8)Gs{W z>k2GE$#V7%p5xHqT*wwoz~_HjPPww+VED`xv(52YHwG9ykqq4Xgv4ZEWW4w~ZtCDX z8gT<`&6Z}|#$2R3Dps3D9jwGxLyCJ;VZHs7ih}K-OFoB?g$=xEo#K4h%_tOw6P3RA zO`mpxV3ym4hcp6-yg8E7C^CH{!(U!LThW@yI&u4WzAK)2|^y|VRosJ|xKupU02X|pCEQ`n3G zQ{qWmsxe8j16-dlgNsKxtpuiUkYYcTF8Bu3;*IQI1dxAbc|l6OEL}dLA!v-lE_aez zv?wD9v-mj~T*e#Bw+`#XyKCNuH#th3#U$O7uAvcRIv3_ zAD_aJ%EGA11Rt6oeq1d|dRWg{O6!sRb4$9aV|%S=u4fgE9GG>}$}CuMfcMfCu%!Q5 z3QsAun-fGAEReq2ummL};Ut!r7yVFGXK$c8mE|7NdRMWyzr(`6O;P-#1xhqhKZ@9_ z@DN*+xbYMM>3nu)H~c}sq?HcA#ImON=d@BbTnPWk?#Je_zL&FZV?W|bEhe@VP}QxS zhbu{TdCM%(`FC^n6}S7)&#u&-K%V#gr>LJQiTQOKZ0Oj+=7$;1q0C9n61-~W8aveF;P*l}S z*Z@X#A}z{(Cg0wV{hSUUK+g8sOf7tAPmp-m^jGA1-X{l?TViR`n)gULW1seIf9m2j zjp!T}^)-D$3_QbIDqneFEw4my+2CnX=AcIDn)lw%X3fHhCi~HK4_l9C>Z=G%wR_`M zT@+iGz(8Udsx`_ZV6zfgQ%lE+i)uU1G=i9C4f4zSz@>WWmJ`g7W7fgd;Is1l*`sNp{TdR4t;XANMQA)y3~lbVc!-_$E~ zs5D54wwW*dxCDLbAV9CSayqSW2zs(DheHzn5pvQ`{oST?!#8ilH#bkX?e8@o{xeYm zS0#XO;+WE2_s{=ltNhRXGdmb!0-gHbgCx>K5HTbN%inrEqeKt}7RTQ!YqEcf^j^Do zx&KulB$Mzu5FwVOMdbbOWAvY!-aqwi|2&Cbm2=>AR3=8S8W@BP&C2nbZ!n<)q60KE zqh5t=-fMbUlK7ELtx-%D(b*rzvtitix*?rOjZ<|BW2_|W{kPW4q{8a=@=R<|7%Ox0 zHipkqwHjR+?aqJ0-Z1#SG?E2o!*CMNb%%+2Tt35E9^E83&vKKfJnS4WeUI`T9CkYFs(}sNTU~VWq9_$*h*^wk9knU@L7RjT#SSkY3cSNfepUV142&ZT9E`Ow)tyQtn55y1K$T|MXg zgU_zKA$;_NVg}Znucc1JbEe#*+Kbr|;Da{wxpbd#q22aJp8Pt2-56ba2kTRzUKPL$nR;X6kf^+drI`5Xhtyz zKL?VPsXJT=xF9VkQFZ-7E&)v6p#~R|7JBrfiHTM#fkcD$bX)5i0}40I>)FAF2*D2$ z5n`&>&lfjs+`R`?+yrr*=CTRDja)5Sn(N3oI-1G}w2o)L-{57sw>NCeo7#fym&%?7 z-wDsbBnSr<;25LO*=J9+Abr)3prFunhfhPbQU+}j-&Ky(Z!E#Da_t2MQPFOW5B}^#OI0zXs*?G=A znK%fB{t2?tcDUPAqFVqF-5%c)1;!tx_qyndI;Y?<8%igvy}4rwy)oVoXoFeb8AZ5I zDy$@k2~>OooBni~a6!>T@?GPR4pOK^dz$VOI>)YPQ+krtdmPg%oKrSGtk|Nd9|6-j zPGa1VND#*Nxoo*u@KYjZQlUwo$laf-nTkYS^MwV~kjgyY-W&q`&);Qcq6@IM_G3yV zGdkh$Bk@DdF#vTWYu@ib+vO2n2%bss;sT1lPr9FcEIX$Hd zY|^ms`_Obe1Bk@ybNlWy)SvdGR>zVWIfm6;B5jbk@wGTmVX`V}&XAsNa=Iy3riroj z!rIH6O@U9s6`u3*#Y=3p;M{~Mu%%wossto|x zS<7R7W6DncXqc%d5H#qQM_kMi#$4lwxft3(n;Ry6b+wv{y22mKk-Xn@2olBGVK?7{ zg3DG-hao32NW5?xnC{*{7Y^nVA|SG#L9fj)@a;#$a(qf2MtBH$jquQYb)CJ8Xm6FuxpcE0ArgPhVob=H6&Ke-5ahWAL#)6G&?OUUk zsI z98507iTN*;Q;#9&BP1tF1F8{-4)65=Sg9Eb6D;Qessr0)f_UR1#NL9Fvp`rduf+#E zubS+HSJC!nCWsV!&;aJ&T%Nt$=O@H6fmj%N4U)`GjJeB@QBL88v zd}WufON+lt2mhj)f6&W6DCM8!cK_H%yh^#~yg*oSF&t#z_E3Cyu!$E48(feL!h&LZ z?Qi(2t?pHwq!sm7hy3f=_r`lXd(!wsl<&+Ri3-LK$DXi(CHgI7d7{gn)U-sra!Y&L z+VTK7=Pz9XtmAMg6x1>6Q7$-OK6hH1d9_UsuZ`uk{b2al z@yf5@?VEzbIyA$(=V_Z1!YuK_jMFb33BP|PS_5;-YG1t#YHX`6&Zl)9YXm-#G@t0| zzTEy^Vs57k3&6qjv$Mdl>4wn7Z8OHT8z(c;0aE0U zUm**T$ls59C6bsd4;uB!(#hoNcg3lcYLph$ggb#H?sec;!D! zz4kq-;?P^#mwqfHJ?%>k@bma{vXitZ1VVO2&z@q#>4nKs)x4Kn((!HC~Z6Kaa7t+MV5^6}* zKR{)5MPleUtHi4et_!NB&B&_zhy@g|EJ5$hz+4i>ili!e6SRFK%TbA2$7r*`v%#Xv zmXx9h@!4k+2LmMyGtt{f8?j9-3yWg9WGmb&=i|%i5{eCSEo+=JT-})00t;8ZWs~uu zs(Y4jU3y>3`ShD5!j>oLO+csWBhgb&Uvh|>*18J6uA+ZWOWRfAcdDS0YoO*uMYISXSkOpQ)Pn~Yhm zJ#uXip+>B2pMsnDt)sAoKXtPE0KuqiJLKpi;odKfL|6fdt#ErvW`$;D!E`NdyM2`Y z=a26fWoM3mR4uCq8`bbyX8|z>K4*n^de5(;3r*3kpW-qfuyD^(I1P(Jm~NshJyq3P zXnW{jQ=_g=ya^$PpA3MtBhfm5S+P>HZ7%$~pHrM8250$T`eNk;un+s+F-jY6l zdCM8!u5+8;yvCKq-lISG;`;98cMW(Qj8a8^FdQj1M` z=>Z4LnNT^Fx?md{JRm!0VwC^vmnfVWI9Wc` zSsD7#etghvJ15OQRF!9LrKw28&K33r=14gT+r1nAyC)|ON?oRYOag8NV3>XsuANFj z7jsoLs5D9=StI3BSp>{aw0O1O`G$@Oae6!ImF8Eh&i{rxx_|ENYDIKE5>J{-{4@~s zNeh|S*FC@f_9eRBhPJ@+v2tb{_~z7`Qywsf{Y#m-0}xTqo}2kB%~?tKtFJ~*I4xON zxar%6{4okd(2sGIa)fPB?^uF&Mp6n)x=2CLrC6R-MbV^>Kaqf;{+5i^)rE_dOmmz@ z({fKoZZ7JkO6>8w#-I>WT-$&Re$^oF!C-ei9ZS-}|o zVl0x`XVln-&iQ+n+s0qOO4BA{YQrvyRyClqvp+lL6#i{1m6|;L21y?IKITw1XtgOFEEoV7DUQyHKpV zwfuPxV<--|$yw z+&_R${cMY=4omcZAbz~nu$~eqo$RTz_-(y1f=A7a&#D0s*iQ?R`DRw)vOdFN2dmZY zuCMZmdx-`kl26y zn#i9;+{p?yO1>a3h}Yt1!mEPi*H z(da2FnS^+&S?2%E>(szLFSBQ0S1L7ClzLK{4&9U{>4l{~lrW`wx3X&&JBlKRg^*o& zxM!Af`=TW?$JA(KZ?_177*$QssA`%K|6Um1>gfr1UcVU#c+V;G6)XC4Ap&%S^{7qB zlBwkw>Op0kpyEb;I2~--N((jHM;aT>>;>4c-G#wwR$Tvgu^bHj6t&5|Oc(ZpvA#?r zkyn^?QvAwsMy)43ooZRXyGRvF#oDdmvM8}i$WB*>)@a@>w@`w|@qRUTrh4(?76sG> zO3GgVHFilhT-)Xy{^)^e*@>*cQ4~`H(T7P{2A^ofLnE(w&bBl~C`c__Qq*-`Rg5aJ zPg$!fC%l`V7fCA)w%91oM|}~%FyWY=4c<)@rb}8z<-PK){zjdSaBiE3yBUMF^#q0lufBO zpW!@7fVdYI@u_XXXgFh6V*>U)F+jv{K?fm^^e_9 zdCIJ?jQiTli7;N-`KrurYUXlNzyMLq__cavRC;L#4XHZUxkYF?HD3m4_j@2Bls$9@ zU|qSth_kWPDJW+y9gp?IbL}*DJBaQ{Ku)o&L7ZezPOEvu_e49`VFH=!jQ2GXsl1aQ z$bc^50ylWQc45|F)!pi`5+gE#{VS3qqIwA&%?eG4RSO2WRd%I%fkVG%n(oM5I-|DM zu9t0!qy}%sO>z&x=Th{ttSndp1%uP-}EEs{Yfy*)MU{ec3BLTV_IV-C}73b0rv zozyP^t`e?wUJ;DShV$%MU1AF&xhV z#s14GG6NlU8s8wqKAA-U-VrSwV}opXZ1xr(eea#9SU;C78Du4U!1^6BdAxhFWinZS zof)a<16b(OVE=q91dFXNkqao^yIL#ig=(9|yfh$c&kpChIm3-uheLK0Fg4u!n60?Y zZhK6>>g7W^`a#wmXA(RNVMU0VKbdRx;8ULA)32L(@zRn~+%@(NznIz|)>IywptCE1 z2u!IhY|68t{j4X>19iT@(e+WK5#Fp~Stl~w?zd)8Ns1D^yLIG|5blP9^mj2He*Sf& zd^9F!)^B$4nGaZ8h?B=T^Gv;+hSU2S)x_GAR?0PE^#|8--tNh#C2s$R)uS#8dw<_9u7kbPq#&e?-JO+%poYoS- za_bvwSa($e;LIY>GAtK6=WB1kzucZN#UL^`PM+6(@z-sYNY*Qr7oiV8qy7mX)%IIA!9*#}>t7tPuX#JN(o?eV8Dz@j7Kk3F z+k^zIU09Y-3l8SF(yOD^W{!b^dO>x#7p1MQC-g6raNsX~6pzDtGj{-GGG+5Z4Qn>ahrvI?3Tf2v3R@Bj}M?v%~Pw zn+X=bn@Z6_Sz)t9co|sHDMyIu0M$%}rKJVX9{RD)29@Vy{*=FJZk+&fF1bGZ079{| zt;p8zX%kYF9{PR}$E@aTTuQEUq~z^SyV0HCF;3SwdFoQNIV<{a+O1hV(5Y7?HC!xW zoDYXkKRYRwGR!y^LM0iE{&*YhsAB`Q;#I6Qb{@_36G{=Yh#MLF+DpDfOVoa^Ho zI`NHazpkMWD%;SkK}$xI0d4%;qSr8JUGS4{cI0iNK17daaD9lM8UGX&9Q_OZ9aLwN z<>BvnCrTerXW`_YHKh~iqe9`u0gD9To^nh`QQjzvXYP$3_zI{%1g1Li^21vRR4=NA zxbBDi2TUAH!i8y}4-C-2s!)YBHDsc2-BO_d$}I0$PLMDMKI!m0dKQ|Bz;;6rR9<;! zX9Q_N*M>#csl{HIZibb$Mr5ml-1xm{O+yXoebeO0uI+AL9FJMIj{-EFhNbzj4Y^SK zP}Kd02GW!`nZ`5#H$gad!XgV2o0ic5r}P+8Oyf-%iq?aTXK9gENnpVAVdq3HvJuX{ zg|_T*6x^`uR_*DM%^KfSGY^LMa5DYaRoA)OkzE0Fu1_I^{^kw8}_&5V}PexFOp70qpOCE%*o+fR1NwXWQijmhd z!o%q!31|=4T%(q9)T+V%oR1HeN-Vl%NK=E=*HcUUrO%e#icAlCVx1mp3GTP>G1RBrXOW#ERRq7N@}7YN`{8{zeAu!qH2F$AQ~Mb22XYFhTrY4DXGzQG z%x4M=46zjEX&uiWC$VMD++-<2?UdLd_7LP0A+gbb8L8v94k-hJsPEDtJ%mWt5lI#| z)uC%5Gg2_LEwd5u!XC+uzl~<=pzRo)tx-nvW(}E;Cb| zn{!7SZ(NRc+*#3zJ9(=Jra?1jmVH(TdpR~Eg<}iRO7brQU!DYCkck?F{ zh+IceUu{=^We3r<;Oe7^RO8r2-nd`S z;}aQ6G5JEtfkP3jFgY}TL)xt6`E|utHnGeL*@IwcVHM`jR35NOjZZ$xknD&vDZNpB zJExcT>9v7Jr199*j)Z<&Z-G;*2myC(s~%n|4tK_Y*BQrwR)!+hzvBB0&U4G`J}y%g zV4EQ)twkWl7#G|9*$G4!H%~yQg>o3aLL=8{qAU}P>l)rb(UC$%9T5Z4i<|&yMOJ}y zBF{mZk)fd9Mr7(dcVY90eb6d^%SRmvQv!@}yP~%cZx_Bql-EKOCvfR&P50^Ne`geD z4AXz-EKkTc739YyGl*52Rl?dFi%b#$#3D54=<)ITu?;(BFUWFuwqii-l=TQJQnO0f ztJijZm=78hlkHha#ycAgd)LEJoeN30Aqby>6!$hOsVd-10l|k?-Gt%9RU*9+-f$-qiIAWKm<|Vqiu7+C-ir5?ulNbF1%OZ(n&ZOq|APrut5;@(4n2? zmMzx$T@|k&@%?x;{F5S%$4L3%ip$7RdFR&+P5j5B7RPQV%xpxGyxAOo!1lgo&;Bh5 zDNbqk@$|glJ@v@6GwKhfA^J4TjG*T#cPmsC|6m<=7xnkHs9qm>SG`wr^<&1+b-&Hz zs4$wsN8xu_33lL$6ztr50aCtpGg`!-`_Osoz3=pgJ{ZL$>geAX=jZxO-QzsN)W5EO z(&Sb;c}4riLw^@)$oG?ADxQ_#?Ti}*WXPRR6&q*XKlYIo&98=7T`)83-|}`WuD`R) z{|Fa(4e=X?r3RxFgD^2)(a)b!b}rVxJ9IJr*8Tj`q{;;zUxTFp&o#Y9i~Mb${m<5t zjh%^?g%|wN1foL!^AaZqYn+k+Hdws*^}YVQ#Lmmk!~$0QYoH7?gD?pH>nayJ6BqZt zJg_=(3KIBCf9dbJ{=A9pRjU#a}A}a3Jls;cd2t455#k+s%*#9?}`3GYBCldSv zWd1Ro{s($|E#&=Atl(>43$r5lsECFPY|;Y4fn?>3Gf4ky1ikd_b^YqKRxzG~T#AQs zD(emrMg!%#KZcj^tHrlGLXv~zxcDqVj@=c4t$dZlqC12KHK1{K=u5R1GfN>a|YSHYI{mcpA_7*qa zMB(( zQ#p0#sETRQD~yednJ=fEL`^2w@LOCgiQ4_7*Zoe;VNr;rQgZ_YF^gwC zwu|%1P8bBE03}@Vpm3;cUvnQ3q9>^N*iDuYpb3qt^D`P*e>x!yyc4BRZxr%G6FT>{ zr0=|JRWppYRYH$pLCDN92a*z0qR3n0vMSsVj{`*R1!lX1k< z@55$R^2_Q;4>i={q@cIt@8j!tsI2co7k^fabD?F29K<~Y^ZZ1e^pQZO4&fXJk(Gsz z113L9#c?_(GBFtHkK8aV-KJ)Si=9-;OVpB?-@Dz9(19`vKa}!?ih)&TCHn~CT;mT8chUt1j5)=77CqE+&t_C`weGy zyMN$vMnO;W7xy17V%NC(!R%4RPU#+!4p7H>?df9;ao`w)e)^!y8-x-mv?>DUyqEpq z2rr@ZQxb<5tA{&c+IBozc?i7KIh7%ccDD^1O-zJoIm0bAUj@;#qj zyR^f}J&EPDlRlzVFvqN|K~}@$)&#VYgrLulUN?Lgbov&sQo-Z`W!rlOkIlRv3ILsa z;VQ$ip~j-o-C)ig9cbT!2WZPS^tXBrc1N@s zM7IRJXNt)4bgUl~LJeqx0u3Wl(7NB`_t;@U`QnXxeu&U#M9Xn!h3r*i4sv8Rl}3ca z<{zFxw$!R~zD8Hbv~uql`%sc!B?J%#yZve~KF$?||AsZ-gss)&K4N^|KO9z@WLqM) z(F`0DJX7>Xnap^#HB}^DbLn9p;s-lv-S%r7r9_!rDsO%%5aqUVyCTw0QtB9={~|yE z!FR8uQ6e>k%x9@FOka%YTPoVjSN#R?xi5+lTFonP1`|X0i7`!CP+5!uo|Zj?c+(LN$2(^XG6v44>tKPxSNcgFTLxJDoOBJc}G}RJl}0 zZmiGo7nEA6b$6dftbd#gOxC`Ij+Kb$JY#GKo^b*B>mM*`Au-BnM>z@3!@d2ziLq2s zGZKLxUh2N3OI6@{<GV{GR%#`Qyu-Pi1t)|}QDYpx@;z7V|sjN&>ZA(8X{Rw&}|B*wbaU*{@nc@hivSPbs z2AqD#Rk^bh&-AWS2zy_r&7$e7{=4rd^b7(~+F-{oj}!8|lN>O4g61i};(f$CUz%>1 zcj@a+W7x9CEVMwG42mwNPntIT$-Mo5jSpT;%AuAtVDcM_P?RJ2gDt@q9&Qy+0B;|% zzAO}w(8$#~O%a<;fs-pE{>O40H@e0HP1{iA zu|7ZR|2F?{mNx^A)r_u;w&Td`wm{VAyGk!RDZUh$!WFO4 za5-mn99JKS6pIQiGl5~0RwA}S=7~W&u+Xyx9HQ3eqFGKP`q)S7Q%|)ui0-O%6hh2+#w5CZXBL_TOsdW|c7#WBd~%l6uKGlbe3#FI)X}AVLQPy8AN#99Uth`|7!f_`x6Y2WK|^Qt|SUI4~l_gMA>(B!9=3~B@IUbC%5gf+t{ ztIvMbSOi~(wrPE=O?aec2`)ns?pp#Q8H2FUo?+*IS|r( zz9r|xR7@uXd{iNxxRR4qDP4gbo#b#~5lQ+a30L2ifOL9Al52n{<3)nsf>gRa9JQjh z7nW5z%u%_QgzO{^NE1L$lA&ZleuTXox0l#-#$3RN6uz^EAz}|u^qtBTSw5AAxQWuu zIXrw}v{O)uA13f*PF0^`l{E3s5NK(>CES|X6hSm;2cQ{|2r808RhEN&mI^{{v|KF|+$;rpcdZ?lq%?nCGa$e_>GOu1ktrf?mMs(mtuT%01L1z!Q9rs+aZk*Fj{;{@}5Y>-mD9~$0 zUF;rZ9!J}2MAw_!cOn?rOHH*?a8Y82+Keth%lwn?Xlx6W%(GKM;Ml2cdAXitf`%cs z%HYU@SdG|Jgt0aa_s~{>Dw_Dbm3-0gB)B)94t!T_Zt7^`+B^yzwm8I9EFK#AXHbAX zJ-f$ntKELGHciW0n)EseT+Yb^+9{JLt0OsJ}UMG%Zvv|$0^F^ zUTnVXOKNhBllEU4kB0c5a)SgEw=foN_lVdOuS}WbW;K zw+6WvFHcHQT}Y)Jd2B~3hcVcK4@ULY#7XO*x}8CTvf~Bz)!8o&mqJLw@Jg7k4@IYW zWGjcBq)GQR?u6FoxnzTQkt6zlK=HmKD4j83YXc89AJsDAn!to^l*kxw3e4(?4`(xO zRBl;8&sCXA^VA)Ocux$me7v3C_|+sOG@2`Ysiu~Z6c71LY zEog{uz|1gf+G3A;(HIR<4B#>%PS96mIkWnB(2 z;qWVepgzr2SPJ}BmZ+dz_82kqtp-`?N&fl)&q-oni~<(3CxxjqM&rId`X}v)ZY&=8 z!x8AiZx>DU*z=+4h1u<68>P0*Fx$tG_D|P~yY?~OdfsVtF+0x554AdCSA)VCJ{Gjz zfrg_1GPh;Y750F^a&9l&*-mj6Qfm2{y$IopXj5A-Gj-VkX!wnuKI~0*^_l?>FAtKBbsAPB z&E|fYYBAj=nw(Wv$S^1R*KCd=$DdBajg!lPi;y_jG0g!SMdNSjIwZ{!d8wnE^gqPs z&e+TGWxIr%-_U+DC9mPVW$>D@a;!MmsMXF&uvlbV7u=bzh5uSoDKNh)AZDX}9Hte1 z$MwN2mC)AlEtjos&!p41s)I0=@mNg0?PwCo0oMEt^p>(UIPBbf6eHE+E}`*H`7ahIuiW*OMQqdP*qN}3Rc7?S6*TF5j4|Kr_1!>5}D2} zM$IkzDYwDWVRvXxx>P-n^?c|d76NWUZos*_7qoq6_@!m&s~l9};8Xd&DsmUtJ_Pk_ zB-7N4SYl4&lUiyvxqUzjUzQg~w^-*Bki$fX9(E^XynmRSPB^?n!@Wlw4JG2j;A25yEz^z2t!$eJflyrKTXA=8)j z1>XU*3K|e%AjoIf^_r!y%G^nWxSBjM7Eh?{g((qFHMpZ*G2!hYZa&3B7Ubm_Fz-E} zaPrKY{h(nw+&k54c$A6YIWapl($A*H<9f$W9?dn>`Ykac0*|xMhBs<2z=OjB2b1Xg zNh^Z>nAtS)uE!aJ?yZ%Qk5d(GI0Uup8*;-O*y*>IJuzJVs0k+MoMhb={|{a7930ug zc74aTCblOwCbn(cHaoT^>e#kD;l#ExF(#bY`Eu^_zV)1Qzu)s;SM9yKcJJz{?scto z{g!*l>~;ofrkA;d&CUAayk9f28e`yADdQ#CAP2w{r$0tMFR9;%%G&PO7c*r~+owwA zt2BsnBNIh*mAz_d;3)HQg^6Hbsw8yY2r7dF>5Hqq;4!lc)j1m$m72Wa}u6CR_k1RHatx6-d`!^vM5X%8^^E@;Tuw_Vu%_fa^5vnl0 zN;p7pl)?k^7K|$g4Eac7hl~$h1z!lo=lq~SZ@|*J4tsox7zm54P)ZEcA#GH-zZ8Xy zaK-Hq4Xej-0i(m-wGH~RqT(qecp=nLjkoZi;FA^#5?~wFZJAA6uuu@N<%rZhay!U( zmcwgj&cHg*zNsj0_2WQ@h?}iKA)8<0P8_fqjD!K1F%CO}N-R050s(&T)0sJJiukGS zkFXN!?DYVhag5iYWOaKGvd;!C3NePMPC;Ln{lca0P`GU*xjhkA?zov%K%_U;QO;o} z(WUM&w$Md#7cusC-CSn|R|Tw&QVZ9M^@#Iy@;HJ^UmtQALN1>%^YH=-SOUtXBRK%{ z>*yTlFNq1%MO5f}n%=40FJ~tB@EcV1$UM;|WrS^NRE~5Z#D@@Z3SSO~e^>L7-ZroR znml&$aSXGW`(FylD0kv>DN?!6<9^;ZW$f9Amei@2N0-={h?UGkt!sST)vRE+b<+Y6 zgMXPkG*N5Bq0HBO?_D3iY9D(uf&S!;zON`NJo>fL@J>-Rk3qMUfe6x0N{3sG5a z^y9x1!}O$N4vyVW4yHrlAPd@BCgg)AH|Ya2X>UWke6AKaB1bSg8QlU)VEI%Cr%cs% zVoDIam!FIU-P(h{b{Pymnh)pQQHe@STQBG%#D!oBCiA(C>?2Pp)ODKZG8Fdhlw?ZFP5-t7+nu{UM?*1&$~oX>TT?MJuxZk)0NjMBb%KBobOhhrc9 zv70uQsZzCtOOpQ00lq23E>4IlFTUb{Tza59TjnaED0wfov+U0 zi{+Q(#7>L19~}07-dn1&aFqDizEgO;OFz{jl{5ttVs;_@Fu@b_W>?nU6vPlcA_ zU!Lr`YciNQL22pTuU3|{zSw_5IB?fwp-&B}THLIGzjAb)X$p~q+3!(+K}4buIrSmJ z{T3n)xY}8z=rel;zAvWEi*}5`sQK&yTp{X2+QSw%?3wR&Lm?wLOVti^JIPMJ_nL_g z+=(JWF1Tz&)c0=Kfak9Op1>Kh3k6Mzvi1-zwk^Y%Hw?hFJ4PUAT1R~3dE<`vl^~_Z z>Sc#Z3zb`Q?yo(AcTHamhv&2`NAsxrNf+8Fh$ z`$Q1FVWDb0vlytqYaqLP`x2Dx;TK14QHO|KI1r~MV%T=zJHj~*u!b-p#Mu4je#J84 z5AtZZ#}682w;Vdp5Q0azaJ$gF7b{>We||nYUuLv*aURNnQh4b?A_a!YcN-~uJRS!; zQZ4?~9h>B>n4|A~;T=b@Po*X79Y-0WIDt|1g@;t0XcQevD}k}fPdX=Il~K3tUX-MD zI9(WChhCIL?TQ!xAXix##a+2zmL++alO@R0`7% z%>{Fz+g#Z?trttXAr~iSq17PdtEmCH#$(K9hiQ9%=|D$1pcj(`p9OO8s9l&EdesR- zfKhFvL@CslR*h@8HIb$FRu{XhTqNQ(f-mS&D!=Q}M_D15z}*LzW9))&uVwl65@N_8 z?Jz{yFAAxV{L}#ALjM$--2XMn7hi9;W@uTz@+G4#Tx+k0@lb9)M#wgBJ;}d3;5x@bH1Acx3&+g2FJL zrYL;+M?g(*?F|`6acS>=rsaRV`W$jYz;SYN{ndqo#rYqZ@UJc$PEOAM;9&k5n8Oe= z3fbE`xVjMQ5OaP`i2u?YdjF(zb0#^#-~dtD>1n>Oa58^#ubGM2*;p9Z{*pXgp960W zj--5L7GO|2y*fJAf1_bO@8Of=jls$F*O>dCvv*Fe|8Tt-IR7Ja{(aj<$oVjpA$l^&L0JR)|EGRI=WAtR#ORHp2zq1HNto zRx2d^ySLEzvVei!>tj-LD4D#Ao~|D?7f@77&5{b%rK?T*OAiCT?z{UPD{hA{x<$wx zB1QcWmW+6jO8p{WePygo-6M>eEK0rbL3OsF^}Y`52aPOE(^KM!BwpD}IXFU3)$D?UTivHEz zp8S(;ltf3XD|d}o=RdWURj<1zh zRl1bZnrM@BHV71k)cJ3CN*ssPa;8~|HimvQo@-`4mB6%0mO(Lnf2&q~^0CV4%H!nQ5!tR# z#Nd14`ryFf`_1N2r3~`<)itJLF)C> z@XT|c{6P}_Z}^w@m3sKkhnoBw4omB5=2#QT1zDLF&d!G2$(o)zm5V0$uL3}6dUcQW z#T`I9x1`KU(GPy7`B6(!c~)o%LEyYEYH53Wyts}7!|JZN&jTr^#v_GFww_EsKCzim zl{q`0oh!T?V_vNgV7j}E`dga=Cp@cN2gqZREjupG$Ox3p)ORc;(ah;0z$vn}lL%HF zZ4oP?)sPW(7l$zR!wv#f13B6;sO9XOJ8FG+G1*Z57@IWq^FIYjO_Y zIfCdI1}8Hpef%=RXyID`fZ9(-E)e$RmG_E$5=Zvk3-Vn17DyQ(u`En$0OOANEexfC3%fT8;C!1|2yZNB9JW47OAnCQ8L&}I zWBwzuJBqxO=g&UN^HOCNJPTxhvFDYb$(hGapgx49)vzc?N3U+OXsN3vM6X9UyWnC9 ziMb?L9!|g_r;Dp5I7m78!`U*3nE{}m?}328dzO9nxH>B z>{S|p5-qzBSi~xtAs5#WMF4IJ2n%&3>;*md_E3x^2xv+kxuzmy^^s)&4y_8+q4dDi zw78rS2wN7c=m7Q#1hMQ};Lw(dxgkDB!uu6e*IV7-{=sC$lL8d>_!0n{~d!39v^^CrIo3Jq|49h&%ld>eM3!HD%l!JaPUbN>W2uKb9jYIhC<^@ zR5pf6_`JjUDvhJVoA<>p{!#)E>pg#~m27w8996)gdWKD#aX0!wbNoiQ4$;oQ`=Wx&b!^-0frxglqhM#iI-{0#I!r0`?@PM5v z{&|V@KC{#i(5wbc>RUt|`0r1reWJ z)z51Blop66pGwvYs2{q4UK3yMi8ZuDp&M7Pq_j?qT>u^YUi2y@)*R1*m#Az+RG+=z zpYnSzlHhcJ03{{o2FyIt>>|X_0|~*G0D?7bmt}iU7=ZxW5#1hvoMFIu9YceuK~C{; z!o*y}#2;pbU@BFY7sEV@GAHZin0rY5N6V0Af86TY9FwWA~%(cx0<&8fb>OE#!OiMw9k3USK-621#GgU3OccuTM)pC$R6sZ%&X{ zV-+Vo42sD?cn$PGzHvhP*>9?*_SGez$!FtUIAL083(?%QykO5*qo{$O# zq&HlD0i?3M;Owo#+P~oEjbw8nb5zzOyqzd!r-u#@{F0wxHER4V<5*C|_0dH-DCdo2 zpW(lf6`tYFV!h_@*(e~+ZagG7|B|$zqU)*~D=EST7BF4Gx}Emmrbc1P z=J13n@eZ!}0+0ieY-kWKsK2aySyv!#lgDR>onl@PqoFjpYd&H~RF&x9d?RU6am(w$ zz7v>X+yB)cy9X7+h96r{GTStqTdWVs6rdu=^FTE|Geu?r3F20*G9o{ZdZ&0EjUUGL zVCjAI$$9}IE)UzbML)4$Z*vRurb*$ft~41OmczEfPL76?E!uA_HdJ_~6$xS%)kA!C z6VNs;S{ph!&((6tOPsa)6vkY9U`lv(2ddkOPQm;{j>u-@fU8mAzUeE?lb(d20qnUP zMSgCrJ2?_ZBwMQ^l%VolElC>Ld3l{4YY>D*j?=%eZkeNpgGx`z;`w4+Gw8X#cr+>Lr{}d_zOa}c6b@@+S!w)=0W*`Rw!5IDz*OHZm8A$9(`^mLj zwcj85qh}!0%g7p8GRg00*MQ8uB#uVz$RTZLVg`W`KIhy=()A)0 zUHl*qJThZc*!E4S@`J<4@M}k%)^z|8pt1DePyCt=Vsq!_qV1u z_foYEn(Gei)2>3T>^;`?vr7NtipuJZ7%{hUlg%0LS&o;AfP)IV>x_p~QMrt%awBQi ziV(KB()|~Sk>zw$r82)fzix-fk@&rG^jLYZGBlz`XfR1ap4l|jqH%NsvRc4|c*zdg zZ3a227VgW;;7-=#O?nwr95TU`7v!SSwG-6O(kN!)J!DU-Y9aY>dc*b#Md7uCBExJ7 zc64-x8Wu?lVbBYvwiN+#2nyHaHUbSt2>ho&8tRw8X>$5Ja08NzMn%)er~<>MGy9-$ z{U2}l7Q#Q;xn4XEJ+Ul^p>Y7Blu)omLQY%*Zb_CaxlnTf2P0g^W82SXxu1XIExJjg zjP&-#710t}uT$l8r1q>l3FV5X_=_gbnLGqBc!Jk zLqWMfzk_OF%^R6+3CL?)P37FYWQPl22wG9AhM{B-|43;S4bGU&E1m&JP|(WH;RT{6 z+Mk+Xhsru&L%k-k{Md>r_8=RW5kZnUQV3{$h`q=Mp(U?@!{y5?y@pUAyCTZ})7<3qi$Al_Ko&nwH-O*&c+RkI45JPCB>gmZ4B~=^d-tO@XrYbEexBrb7>EEIqUsx?xlRLTxE=C zmR#${^XkU!H?8Xg4KGmTo`C8ciMy&lC*gQB%B)^Do51ng$gl#y11OsiDWPKc;p7BeP#`aC+eiJ7(AwU+N{p72k}Zo_yW6TNWx?kS@o>RGJga!lziJA9ev+$ z%vBqv%i-8jB9(pu6xBX1UGB%Tfpml@S-qZ?-3rH?d`-#mEa!>0;W}A%M9s>*(AB+mFSD zDyz@p^yP5I%lU6)+m6*ZY{D^xLV5AU=v@pLtywu?LGz~oV1p{)uY8A)B-UqBVqId0gib4hJ^Wzg}6_w z`UU|uX?S!USW5U@A$YaAS?>qFZZIZot~v`zFIg+*qw{<3Tm15}mSrLJRyP#lYPn|c z&qC7@fGC`51>=d@C(DC5SkDOx?|k?rgB;3ur2-;I8@RoS90w;p>*lS}Kfs^I2>T$kqipm&bHDU% z&9h}vW3fc?C6jv*qd*vdno&=vrDQ$vWfvvO0A#_06hQsEa(RZ%l05Sv^^OO@V=vRK zY+TEt?ACu1+;`lRG<6dV*{+g#HCPUe?~mzx-CsS5@YBkpab4gkJq{Va;LGQFCeh4z zBH_KXgJ_^i3MHSQR`zVI++`#T;WnArNOsG`IWx3Gju*wWBj%25|D(|7v`cerKdH;E z4%n=U?q+~@g&cOwOGm>q@+1+63hMicTtK9y*{bK0VxZ>MJWcW~(v5!7{MH)wDRk$x zHxbq0>;V#?!&G0?d4d$IGQ22dSNmu3AUx4eCGf2WvvAPw94WaKZyW0gaJ}%S8oanV z0Dab8g_y?5tW4`^98+hwh|;2Xqt}`<0)Udv1ToS*zvOVx z?DsV17-WHHP%YmzqDe)b&5|3o%&5@6TTP}EC5~?ue-KDT?yt1&OiQ9{nn>EYSp(MX zg~e91zEHC2=2c&9!6ZR6^3`5NL5;~``VTWZWKoGhu{7t~&hVY3TP530t-`%RLCpPm zUD))XMMI%`V>uOLB$}i>31=YM?0gkqAUWVm);sk9k4c!~)ZstdWUI~YvAm!LXSbo< zr^zx8Y^;-G7{n1$-h7iqh`>XFs{>jMT`uX+ zg0Z-BJyK-+!c53jT1xb`Cl%rZeW6tN&N7fV8pZ2@klQbwndfhGi2Pp3t32SIN;j9D zWIi+@8OzS8h(cY)jV&Oz=dU^2CP{u$(e9PoiJsqN;ZUmq0gU)*dO^1|ssotHV`h82 zZ_CZxe6li`*A|^-Zf5Lk^B#?!c8MK@r~tcIqbGem@8}5vp(3n~#aMX${xaW-r&@ii zKM{gCCVsW3pmvF+M83pfXnU6%*4Q)*Wv1#g!f7`KUigd zjcJ5ECVU%(=ee1mst-p`WB2v!vcn*GcyPru;^XnIzZ3WqSZ*A8Y12ZU1eD zEh6pRyKg9nY?50GlhwzoBDqr&7vS!Lvs}{bH-~=frr!FIirR~&Vj`(JOF}wUjp&Dn z-(CgD?HRTampLUv)=Jx+HD-j;n`Ayr0Tz&sgU4~E-u$=nZit?kZ;Y9knmc&>m-F0} z%Nsh?j6TqLWa9fl+5?-A|nL%_Yhq;nc&G zh?6l;zx658#1D<7SsD3JD`Pbb!A_Q1X1mV9C3ptrTEx3q_%BbWWj`90TdJ{J3G(|M zf<7^B;{nwBT(-MnauK;bSior32=c5|1v{zr-vy=T;?`o^9lro(S?AB|i01{y@Gqzb z^+ck)FC+q#N{NGO9Nb0LM-UTYIoipY8N6v%#@8oIH5ucI5{1}sl(A~~C`~vsl$>CLV%YCNPFOaWPAvzz@y9L{+3hbtGVyV=fF9pIVVWtUTny&s zYp16k;&G%#Z(#tMkJd>zj9xmKtFqLbq9X`#1;bmy7xp)hKc44flxXF~--G*=b?O~a zky9RfYc|aN>Vk|RBjrgJ&UJ3hjSvOIJ2cn0LN*SmdDnTS3G9h4x1pV*42WNHzMfjA zYOFfgy6ebv-Xkoga0cMC%7^@nOGq-S4*B_2PV;eZ*n|`ijS1pm@cZ|aTTSWpw*R$? zvy~$s$9pcK9_)}9jy1-X$hR%>6cjO*0lR8|T5@)9Q>PY_41t^^OHka}SV{J^^dIB@jxy+$&c!x`pI?`z*p^I*0bY&1y;9DPVpb13W(HO6Rvixa1 zf^IfT*LjMf!#$AIclXMYvnBiH>d}Om&XvH{!QDw#F3e&78%QuzjD90D!4-`3eFvt< zkNmgE!PO5CUIQ?P|HmDJ`)vB^{Q7_D61e|g6zwNk?ytIpzZXil{~JEb{dYYrG&sXw z^|XJ8kV&c7|9k0#`@cA}?4QmVHy7~yhMp+ttOfCZoTGoruz%{if5i*`E_VITeSX4( z{u`h7&)T$qg$n=EM(}^H`lpm*ME^g{Xa6*rfIH<>Ux97L>_~9`H%!R4D?w%AGtu14eX_hQdd zkfrb?NAj5Q+vdzgW`4)I(#m+skIILC=9%gSC(}I3BI~g1ul$GPRNV<$YbCK$A%0r9__K)3d6FE$s;!45(zEl?%i3fkZ5;0%1KgHRqm(Qjl?eC|!m#i6ENDnD+T%3>sO}-#O0pg2O0eYGcbd--nz1 zHFwL2wMR2Oy){>&iDgTD@_{Ks)NQ8jQdW5gHwat%waNx!eOT%Z4zF<29bKU(UzCrJ z#7fc)1r8u`ZYaGEHsK;{G(DeA6-v?Gj?Le zM3?PFFWoMV!7}iIx(G_l&QcKr-Ngb3Mk_72FR0Kw#1M82#)D<#sN=l>lK2D9bq>fY zp~Ue0$%9(K4&U4*QAwRQDcKe=XcnLS1kRi`Oy)st*YzS-l9K>vJbXocb-y1N!~-rYswm+;|mBGOF{FJbcfeveN#-*dP@VnH38v5dnLZgm_R2@VMSDWtoI z(KEIZZHjonDtH`iF8vWq3CM}r$pU9)g?6SfN$Ba1+3|||<2*zRNR1&8A;MGYl}-%O zXl)P5fGeiMl71;|2}IdLwN=JwuD8FvB)Uu<319&9K&}Q!BJ5yMtqlT*#w}4ChRuCs znT*%ZGdrr0)R3+YXOt~wSTHuR@ZmH>Y4~oSyk<;8#<>c(_ns%ueE)1Hj$H`9<`^4@ZP`>ub7-n8D8E9u0N@9V1f&+I#-Q7mvX)3X->~skcN+NV9n1 zma_n8wTiqY-AlfV6Cq4QL}t3HGZNx|K75jh%u}9eRgf1NxU`gWE;G(&zK*&?5Ck~` z7Rk4QsMOX)RR}H!sD6);Cx`sAK$`O5dvN>{9|p67moW1^g@(bqofeR}@9ywaT^Db8 zX%ZKXOAr^;nbjiMlyZV|-jk@g!JUv?s+)j4r|_cF!|v?@n^XSkiCfKp)dR278X{kw zyeie`-_nF6Q9(=*>hiccw|2<2l(q1pWgl=_VT=k_UbM;PN6f{@!gXfhD1o~C@m5Gp zCMv4lLEj= zW1%>;h*Pw@jMe${kUfc{5=;aruCXAFaclke%+WgopRb_uN?^E2#&&L#+39%=cd7-) z!TPNE0;&c_dRedNn(`NcjalCPFG5&4R4hY`PynOUi*l0QxSD7 zro~(otmqV`w_x`Bwz(C-XN5{VwFdy#pau@USNh_PVN+|4VycrIGW`@ULUr!40d<(B z6pT1r=s~OfsH`Agy>eMKMk7sT2P9%_!kLEVSK1|LN4Qu30Uki4Jb#vG3rt@02KyUG zM0cD~aW@4i*r%uDIBatf%zQE$yqVB++YWBS54Mtp%~~Djz9QmUWO4%+6TS@kS?t&F@W+A)smM^2!w~?}#=7u>dty)!IQsIHHhPiIHyX+yIcac{s1Z)g}A_(C~gsRn8EBqoE*oN1>{MA|N+wN|VbNK$%28 z&en~_@9dS_G)V5hZIynlHT#M0oz_OUC&0*Gw{K5MTs`7TON*y_&3a+(wV8uC4CS@% z*?aTNi(If+wJ2m|96KU~R5uqw^$}0r=2F#jG$2EfD-@}p<_dsSHG>`k^1bU?0M)OI z=hx9=P-*AJSwYI8ws4G__v4v1X>`E@pXOd!E3U;u8(unARP`DKsJcjmV?~w z7J&f{Iu{Rx1^4GZ!3Jmo36_E*?*dK1`K5a-Q6yF!{`uZpf4BG9+CaVi6yd0yL+Q}s zEQ(j}8VNDC20H*@l3~Q$UQMeR-Zm1`+*}1RX}XC<8j(4{eQpj#El=rf5Y!OWSV$42 z@yP1Ppnnv8@}1j-e&%}rvSNF36{Z^s7rU0{Xt4xxHeGn&$d}#rj(J2pjs}5QHZ5&_ z-)lV*0Z%M>hL!G%jix$u_VS;W^slZ4Lf<|Tc>`3dmjnRzRV{9m-@ntTe@$7RuF|yH zHOO`lr{jiN#ym|qM%AmHLlUetrL-ho**nNHc7S4cDBj?+T$)np~=0u+-AI*-hqo5 zGJQ#bD04xMV5Ds7fi_OTpFegh55{N+q!!**pGg2Dnno`UDMJQwrzus7e z@3N&{{wayVa1>(Wl}`1{dXbjUPU)&z?La?keGs-4et(;mBAexO`kxIqvfUQI;H2dA{pN!)@P|G{Ku z?K}L}AR3bY(Op0%a0aZTEJ#dDE~ftg!vD3t|4B3b?6fB5V)}2+D;Lv$=LUg}P@q&m z1!M*!sK3_dKXI+Izo1CyxtRVR0ru~#rmq&<}zE7w7NG|0_wz`WXcT z&Wh5ZC(%hFs{H?)!um;(W&PaG`tL*_7t>!l>z_GB?tkCFCuZrB5yc5)1ZN=nyZ!o~ zrrZCf0{{2K;J>`Qf2qFDfF{e|#o?b?@qb54VTk{u3Y$^)}+_Z_)dvz{gsB$9?hC;>kTA75`WJ8Qd9wGzL}x@31fG3S%ZKsL>WP=ry1 zDG7&4ZDl1AxdW^+yBR8Lc$(kdiA6g)*#PfaZ_oaK?W?ojDvM`3%k6`yGkeFmJ-W27 zGr2c`Q{@b&6*TK@4l01UqJA4K#3VO0gC0z6;y=T!!u2H#*KH;^BLeDjiNiOp`v>g*wtGT9zi8ebEdL>bc6SLM0tVwguH zcg)xy64^Ub_HecOir;Xh7Q^3iIeQLVRAOYA7DJra&gLBK>u=muveu`%$MyWHoIPR9 z=QRjca>oq3*3xli4;P}SM(&f*Gq_79Vm zZX#4M(yudksnL$nu!B*t>L<@S9y1z(8)W`6&3;)fLS#{pAsWz$7(}4zxusHJ`#abGq&uA&7ZldjvG50*-!eiWE|Z zAv0!^P3yOO;T1(ejgvpu+w-nojh&fzD@xY=zo|l#0s%QeQc47$YX)rJR76V|cS9Yn zNPAgg)2`4ULYc+RXWoF1QF!|2gq<71KB3Hge5*(VQYz|lN`*W)NATYOBMA8A>Bl#k zoQwL*ic3RqwvOgYtCKnd6?iI4tSKakgnEhyyjU&uz2|rI-ja2y5!JzBPt^zbIuX$h zGMb@uR5tD|$Z66CdAJShlb&R*HiUh7z#=!`suBOxWxW>6 zMu<9zIUY}0dHj!cljC>u5O^#VeRz%jzNs^csw+2j@;oNc@2mx9EW{|O@#^Z<>Q!HW z@0v4TRkk@ShmU^TTzQ39V?Z)NTSaB&Nf4+aEzRi}?9Edu|M<|;6pR(3V*K4wUbkb* z?qFiP_shjsS2!-444`I1@GY2nJ=c2KxxD`12>$+-2JeOj@79iJDgna;OkN4($}d6% zZVy8?{^prU&Lg?Z=hxGo@U;&nlx6rxz+%SI;Qg+)0M}tYw&IFc*s{4Y9f&`|)t)kl zEpLB-U*#bw$bKmc&w*aXz*>E`xOqFklT-sFEOdoh;D!dp4i)R{XyUwp&@}4Z)%MS? zx(@<}q2msHw(TXI4@)Oa-QkVQyc?Ns_2*ze(C`f5pKF+^nmPyl&lnB6*qygIn%>~J zI$?v4>h206*LX0*&}K{FS|6$5wP~lLHZ>lLn~T_X z-dvAbj2O9X6wu&S!G@Y(v#gaUMwr)D4Gj3$2tDH!Wt}T+g3f7@dPywshZj^FuJ#H~ zn#xO4!ndg^{zwym_hW-}fG+~MogMpGTJg`z6u|UrGUaxQu3GeH!lT=!?h?=ocsDAQ zn>OG+Uo>rD`CE%Sw*yk8GPH=1#R{~9_?!)j|5qYnsR3Q=bCYda58Zm*+l78l`^$lS zz(lgJL<)!|Wd2AI*XG+*93=%?kOE0SS<**aO(}Wv%ZT`Ilk3e*fwvO{Rhh22IZ-Ls zIKZXFq3KL~X-zJuTh)Y>;gsx*9nI%pVOdsfYL)zfMBtSqvE#XSf{Lf7Bvp9Ak1Zc6iNDkz{(c7U# zWs2Bouxme-S;=XmKSsY{{F&}h_94ZL}2xM&M>oN`36q=Z!_9;Lmvs4a>R zPD;vXoh{Q@-F_m^ZxWYi8wpu)US3}G#uCi^%H8>t-4uf0y@nNM@it(x6t?&`XaG>! z2j&;PM8kdm3f=0v;F!9++yLk)1uK;3*c3t#lML1YsNLQft5k1`~A= z$Kb)S3N$l*+z=DNv@*17WLg7$wgcGMbbv_o+qbn<2*6qN-~ePoVGg7-Kj=FJ1LEXR zK>U=mIkJ#bpo{;w{uQ=0#&4Q}9YDI<18xcUL(u|m0cwB-c{Hk=>RR_4SmV4ij#!|Y z5=hy7R{|)KPI{8dRiM^4i>B_tRIKf!Rp(6tCMS-5Vpn+@rO8b@Dy9TkX>2;onqiw^ zbMriyXt16Nj()`iK`WS8RReEfiU1a-GyXYz|)u}ui&jLuF$dw?`wVJ7ju zs)dk%@%s22izt7Qc-9!shX;!4BSx}C$nNUi>H9`lfkY%{O&Ff2rk;yO zNP#pop~vlA`~5qTi-As*Z(028U7}(x*Wq%|zOLV^H_);S9C0wc$BPMcRn% z@kPXe`;=d^O#6;7hc=+J4UqNQ^s{V^VWG0-uEe_xE~cjWwMDJfS)=A^SB9E$O?#}l z;Lg8Hp5Vr2a3JK9_~X1|iMbJQ33i29egERNBMF;>PwL8M?uI4?JH7kJfi z^13h2LTIg-G%wEobJb;W!K@Rj;hcnmZk|v*%;hb%OZFphxSC|E9Wbn$Is}@Hj9_eK z<;8~&f~^MF{%)z-9cf2SJGy}dPuU5g26%b}A7s@M)(xeM zfimkHaD+ofBcmsf3FxoQX9PT%bN3@RAwZv+j&q9AJA-pXcY`(ZwttFCYN9> z%bGniF~r74%L}1WFUcNc$^;CTsmuQ@j1WqROy~DD#@cX{p?qJN&2gm|7|_nX|i%F1Z9{ajZuV|0akz3_>4{ z@|?Zta*ilc;DvZk=PVhI4`*RxkHO62L+$bx13#PFiO;2(9KD`w9Ddfnsx{8MxnHap zA}Ow~qnO2xKFTgyCx^$s8V&kt?HO-wu4J|)M7#kQSY3D3T*rs?B zj`%J{zA<$==+}ujU8$zm2P{GCO=p(KgD;Ojr3-&I`S#457{U?)o9XcUd>y3&;OWVa z3Oiq-T-Rz{WFpO`-EAZW+eH8gLris~u+V7JhC(!itV7e>GaoGw2#&H;2^ryD|YR!-Ew2844Uz_3k>h!7mZ|CLma#AF6VU9Y@w}?99G;e z{Z1^f7vWB7=nW{p)&Bt!5d%jC_{Q{MG+T42X#A;Opkv%#i?>{5_LfS#m+dRmJfC+! zrYJbWu?JtzMSfKG4+rRqM-+rhGSn6&-*9%m;E`yx-iN`pTcx7D>?TgGyS?CQF_|a_ zv}EAC3Wq2OMf_@#e18d|#wjar=%wtjul=;YVT?glbyb!9WSY!jG4hfDc<^wSKx?PZ zgn)4I35TP8VlE{VzaGxablsHzaC@r4?gT%Ix&~?bdpa1Q2vVF=hL~9!65a2J4i_OV z4}$I+Ge^PBi~_x^UBn6QsQ@{iV3qbjCs?}89q8R;Z;qNQ8m0GF{_CgYeH@HeSqg4a zWfe-kR#RfVQ=DKb-Mdr(oph=!wVM z-P%5xxu=TFP~_9+?hY{nRtJqqzfK=a!pn^Bj=juC)Tv6${SP6o7Z^qf=S93!LEIj3 zij@uY@eki2Al(o)BeOH(b8u{ zA88JyQIedbK8@-t6gY-7>cTGk+zDI^kx}CD_4u9E8M|*rEE?4`-1xVy_)I#?6%w z(GT<_=T7N07i-#4wQa9M{FUhUcJ)i`HR`xZJ_~$7+c#4&7d*k{AcL96BV`)U;AZbem%=}2367`Tr(&2L9t{=ujf3Zue zTlLjhwl-vGp%fGkr~Qc*90qAQqf}cc70RBF_58~NdFN$4Tn;h?T3zUp``fY{>efVhkNI=w6fk;g%ABkXGM=R@#LmgF-KIS@nU) zx;}3NvuJE1$`{H8f%~noiOB`sjt74CJqzq~1Au+X716uGyyRA=yfx^;lX^e?){x`T zR8;>cMgDpq#?J)ll>k{0_Z#>p5`nyohoJ({`L#GALvvg>$}*g0H^6g5EZ}K%>;lFs ztb`<;Z7(C5z$IMYUfV5{EGq6#Pxv5&(xx7SM7$yzSQa+jIRwoWdQor5Pn6_8v|4UO zKtR4hAh>&Qx0iFCnKdV8=KKD!=uryn$$(;Qj%FTvLQF+h>Z;!b51Fm>?L8ScQg7O+q2Lh}Vn> z3I*pcjeH7k5jmyvioK4H1d}Rwjuv<2U32DLjma-tc2MHlv6gp_(Y!w&62SVv&CB3= zCBFcB$qp8wfu}d$>D;;vqmtv?E{4Y!pv(iQj~wfsC-tWhZopuQEB(v+A#HRS`Yni;`g4^UzrMjQO`FkfIWsfvxu zz*vdVJr@u$Ff2L5OU+4sJfNuP&LJ~ZJ#luN?`<*n0t;<^Ej)7f6|Oz`)7)+OMitIq zcA_ENz^Z{NQ=iQH<9&{iC5N2$L~nqR8y(#u2Q3b-f63k=&vM`;5LA9eRUi#gfyDea z9=IPY(UoDb&(XjziFZ_#ccAew89&J@rotw5NHPd=xr>lE)SKozRZcFIKSDBs)}F>4 zRJ7SP1}qmagMck0RS8x}m5dioC+=U=YYZJ3*jz5m%$H$l@<{DxDyAh|!CZ>lwDm;c z9RwMngKcRJKiq^;pn@7i{IapM6TPFx5UqiG>a{%>1{~?Y_i!Ju86Zv*2tV7z3nAA1 zS~q!6f0e%w?ru#pmoYI4^ktCE2#Rz_nG^xy0KX2>b=vzu(5hSo-o!GKJ5T!)M2E>x zZXS{5E&Hx9_`HRxwLud*5WzzMR>d*3IkMXEt)qgL?_8`q-lXNIJ-A+9va-*QZFQ@= zSI?*yFfh8~b9Y`DPw*x-dLpE;ivX^N@51QHN8g;N5PQS>%fq@Po?h6L^F|}`w7FH_ zfba{^!PQQJYTSHgSE4lZig$Go>axR6b3whVG;bc*1bf1{sHq9!EN?#9 zrsJ|F*GX?h^0MXrctPFx^BhvSg}QQ$oTzbidM( zA6c^Ux|YDHz;p{j$ypCtm(rMtz~^mXfDNObvJnD_f!k%Tt!GJKqvzvBMB~4l4MQE` z%^I8Y*qW~_;;Ku1>gWq7v(kQhU97>4aL8wA?LBvfi+s1U9q)Tne{@odnPc&fJ@k|w z>;aphHh+$THI74Fi!2PbQ<=j}6r;1g5@3?{n*-m5C^3YFzCoJ6xGsFlM%ol+1o~3R z@T7y89n>cWyEs3Ir@jfz3kl>U5BvZVlT^!+k%`7X53Uc{ z@vzK$>@QSg=&SHntL?C=dnog%rvy>12j3?(ZqnPZJGpc*u0IKNHr-J}WK&!S*IaNV zWyR`z9_{Y8w%&jd(Nbw*Baed)TDz~S7;Uw_kZr-B(W8d_I?3GMzKuq6pJ^bB>_Dn@tQYq>xpgV@K5 z&ofPa;D>KrGucE1ZwVgC0yZgFZ_3=8jM#Zfa{1CAJrr+a4HTAb^JSdH9o@BuZ}-KeG@+i(&qCmPu6k zaUW&m+=z#e8bo^2UZGqc+mKL`MBVnCgUH}r%A?ThWsovSy>z$b__ZELHjIm^6UlGv&`T( zv^0svgiO-Y3mzMABl(b08%Kn4-Cfnk)lfnz(~`e2M|NC zaDK34|MiP%1^|}+KjG6qLE4{)>knl1PZ8rE-DiK`vcJ*S--<&pZq~npNWgfwl4jy) zfqNfX!<7-#uBlo@dpyJWmGdy{Hi}Cq&E5E(B$9wLaK>2^C^Q}_O6a>~PMKx|-F@76u?J(tjH-*_JhdAaUtw}GN`g1I#*q6k`lwfCj> zp3J5)I?3)wcqiC1@RNACDW;hAW$R%cBrD$M&**f!?w?Zh-`1H@ z7}k_X$(mk!drUk7cfgb?Pz#Lf$#78nUX{_7cFai=lw|qtD2#iUpv$e2?@|-?sJk`i zOc{+}mUt30EN%>i+$n0Xgo#xLPr)J}OrkI)hRULA$yxE<6tG@(3yTv*X=cFYfT@Y{ zv^<#o?OAE}T*MAluNOfKIN-%WB^Xo}HdrTT6DKX6O8xx?TXyC*+Z*;r?!CBu%6)t0 zm&f}K>k-cTkP_+O=n^EhnyabxK`;cL3p-Jq^$GQ19>uMjOm9-Cq&zyUzl z6#}V#`Y)fqG%(23;Bbc1!2-nN(L_ewHWuUz6-&htjiZTuEfdK&GKA4Y%|4-Ud3F6L zQrxV!PGF!b`CJE*ut^gHflH)dr+_0F*%*>s$F}d%Y|+P~Z2l}uh|Wmb3pDSAd2d~? z)xv}ib6j`FQ+X0y8^I_+#e6C3>sg;If{RLUqySUJBHwY(gMSI&47@PIpN*z`(zBC_ z_#$4}9f3%#y|EO!ort*nDI^ea0h4N+9|{voIJEB5Lb*IBK7ulB>+~zu&+cDBV85rw zx_ru-Up+gFWtoJ2JB&75E&^9d>`S4)bt@{ee1U-cw$LHRw*DA);=l4-n)PF&oU`Lq z5fg)5%|Nl#h{ED1XfA5}XbSEJjuSH@`Rnraf-QfZ{*C$Rfu<^g5>48aVS>J~(u%3K zcsr8!hDYvj7^yZ*dOpvEeUFqWPqd##%%S@rq+VCWx>rHfgnSEi1U^u4laOri?8#}P z)6ofwlvNm7bQYVIjPo2EilaWhvjBqld$NN>f-$<{TcDScZW8t&?UlQbYO*l``J_ry zY$?oP7q`PfFDrwm5d6Bs(Z)oDdvX2)9{jIflaL3y!&E_;7KoihXUOejJ>}m+Hg1v2 z^ce8*HvI{1T?DO6c{P-BLtoKUX};l#v-u3_t{^ zFGJ`zFW6glgIK{pVn=3*eQr0yNKfKt)sT(cBuSTbpz)yU(`U?d)G2&6)z3zjoD1!K{S+riLu!V)(CG573x?uIjWGv{E+ML^ z3V`jogT=j_>LK7}%ZYX4x&xJ(tp_vGjMcVME_bjhI>mX3yR4^EN!L~hG zL#}x*(lBMoe5)LrR!C#*-GH_Ds>Y%3tdGAvLT>3hB*6^`e!8eD8vUJ6Gd zm{tmGLu3y*e~{WVZGD8~0X$_X)M4*LvYO2DM^tpSs2KJEVmue&?;M6{WI%GaXR&HzhGv#nyqU!hGDL)GHwAM{N{_*Lsj zGG*q}RjeE6GN?F-)&JEz12j|>WvfQUo9DM^*owPbN6pJ^7d-a){X`x7*|OC_^qIL( zbH`6`T_B&BbiJ24tg-UJv--V*z;_<=DL)f#yKNwFcx0=f-nE(>3DRJ&j;3O0TAV{! zj40k}#XBB9J`kDIqb15Ec(?#L3yE`JHI{Y8P{_9O0Z!Nc7n2&H{k#*E5!bSyx){eU zTxAxC2Q>XjiB8J_2LF?tLKu!UPxG4Z%J^z_xOn+aYHY_=D=NY3V3*BFg?%6Jjm5y8 z@unKM1xsg2*W;~9LP*^au!j;LE7~Jpn;GVJ&{W7Mh+A=60~$=(mAcy~rwNT@;|0l% z(CNK~F(A(UjcK0MD9CRN4^i3k6WeRs6q>`-<$L%BVzv%sS+xb{5G(Q;6whgVawvRnzcQ%)t~> zutLAHc*|H@V{=FX?-5K|zgIS^@0|B!K^z5X_mjgv&_CZKy_#S{e3#7J@n?Aayse4@ zu0ZOW$TeigO+(C$(DP=R6A8Bn z9IY5AKV_8qS_~tALay7EnV}TD?$A;Es{ux%gRDe~X4%EESX180R)ARD_W5KUD-77R zQ_}YU(RR5QZ=q*gac`s3aH^y3b+?$Q!L*@fLa`4NiCdtmg6U=x=X`TR_ncv)l8sgX z1=3z@6&Y)CRaK@_RrZ?-Lw9POKMpGEbGrX>Y6fa8b5(c7n0w z)Xf~cN6J!`j&oWKs2UZ!5asOwxj0K`Q~Pw=rFC9XO(r!?eOx^Z)-(GHbR1UaddJD6 z5p-{LkC2RpC4O1Z{uc$)Lll4k_^hZUo%eMFy~m}F)$m8sE0xOpYj}xK4xwS_*7Qb) zRp@-ogtt(y%CLMq=Utr~5=IV(`$Ez4yb@WNu8y8<@Leb1^~t(~utb79sI*QnCpDF> zK{!ZO???nOgrso;W4e?ucv2qp@f1T*=%goQg0Quawaa;<6M~p(mZWbRXk^V7e4Rh7 zY2JX{1?MDhixZqISjZp74g2#q`w5-;14p=vafsq{ff3IUtN#!E9T250_dD&M4NX|9 zu6HKItfA87N_;tH6s7x#ps`3R9w+hOPNAHRBOKgA8IYadx>W{G=kEIT%ERS{+X+sM zuFho4==L&jr>|J1Y7c%v0sB!GUU($3i3y`>t0T)bvjZH6+JgH@3!}xhZSEQo-`EkI zPsB3yYego{I^}&spr)?LnuuHWoTp$I>c8KMM-+>qHBw6P&W)ry1OvkTFX&Jh| z5eCQVtz+BplMQt_)|F_NoY`EAqr>}OZ1)BFB|cj^go_s)T9g{hrh z2P!4^_M5L1WC{s~ErstlE-<=+xrO0N=b$uVp}JoDZg3%A2#Y?hMoMrqL*mZZg-EWZ z*L&GE)(NNF){-NJfOkl_?ub1E&-n3T$_F(~|21CF&H0dzIc@(jx?yPe6I1h%SpB50$Y1>yI4~C+&YQ~opI)e z9=ubQ{Uob?Ou-FI=~x&QDDHX1C8^ndC6(f|wqLa+}HiAy8^Ra&(G01@XyaL3L1XCltumh4G^D(Gpk^Z=x! z=xIdY-$6eAD^>kZNb(2RVEG6@Rn>4;w0(a z5pz$N6AP5dVn8y#xs4qOm!-1NR7;d!b&e3w7iZ<`BxvZ*>mGS{DlKK|dMOw|R@2^N z72^NShjFDC&M=|sN`2sc)m3V2Z7E1A27{n@LdP5`|>trALv99%Sjf)J*!;WuB_9n&D4mO+C__^m)XR+;O_11%U&Vf z^~pbtw9q9inW4IZF4118m?ys9^abi{03If%G(-uz@}^eLN0gFgP&61HEpwKpi60Bk zSFE7T;SA)iF>*U_-JKkfua|lH#w%#~#Tv(IWR>%ke%$Rxs73b`G%$Nw_FHu~ub{Qv z65MK9dNg5%BYV!YFkgVJa9R7}*xcImNkl*M;T(Eh7!9N+}ht+GY!>S9!l3D;mjC9tVpQnyl73Cz6S@DK4Ixd8d@g0T6d=l^4g& zAySlwE^J3xIvvSmj1z(`l(xC*lj0&XC~eol(k@0)i&wc2bikwvT?Y++Lp5at!Y~!^ z^;Ud@A0wu!pzO0?so)9Y@Yv;-cw}z%-k@C;_@D>hC%b7}46Pam6P5y-k zEGS0S{*Y}+b}x|Di|@e6Q>EqF%Q`PDz9}O8t(p}~FxxZzjB2xnsPx%NC$p)_QxYSb zm34HwN)|G7I__qO(kVF5_t;MIJo7O+(5&q2%SYHo>ZCaAvZ{l}^AV?$as);QjzXIi zHeL@(By;Y?b&dc+k%gPcVh_JcI~&G#Qn&^V1di2~QzziWcwt}MCsz4nDJ5P)xe}b^ z81(No4m@#CSgJ~I04(-8#SCMl}7ERqbBM=5QCb+cU!xmPx<$ zI!;{-stHnn)A6r4z+fj|8zZZ{${qj&t%LwNEevl`jEGKux8RWsbxj&pS*;upbtdT3 zn@KkR6$D7WZ^`&uktrt7R>eN8%c=_nl(okk7=Yy!m&z&=(y5t=N?iON>LfODnm35+ zi<>P35^R9QN}GGTS~DFX7lRTmxw2?GncUNvAg;ABZ}+96>zB+7NK!Iqm?Uf)%D~Y; z0E>@g4;^EaOy!H+k2MDHJ&>L_%jrc$8~ zj;0#~kl9h@`Q%X{clBftLGiZOTQJm5PI6>EWNcQX{d5NBDuAzc4Zf7Gjbs#HL{L5T z?7G00rKiXp>Bk*vFx`P|Gq$!C!`yDP)|xg;$R)7Q$F1}*Fqd^w0e#$pFCa|~T6oKC z{gJ?a^muE|YhOn2p=Va4W}p1w&=cBmya0-lF#O#720D%fNP!I&ypD;;M8)l+|MEe2RAC@kljnQ}>~I zn&ahbNmiE5MK+}2w0C`4BqDGIi=hKD+=-6XDsv{!td34^dh&e9VFjIS3bpCc^M2DS zXpQnj8sc_(v|{SFq^;Gg#iLuQt8HPR&Iy1Iae8&SAzw9|8SfP@ zff17RGkm>Cf}JFgC`_P5GycIIwd$uBgH+x14rPG=$V>sx&HDDd!YYe(7`8Y$mr*dF zpbCYkeCUCH+pb!B2P*AX&=9=@LWM4ni=G4oGeki@wvFE^+<@ zC?ChQmo%BulK!uWR>ipDxVC{ZNiVoxl=zIWp~jJW8O5`$TAZQ)1YT*A7$mXT{g`3p zV14uSp#j&TG2h548a7G8TlDxKAG-EW=6x+Kl=0z-f(R=|t!_hhMd;N=xm%`8AqenF zQS~}(yvH1}$*4nD8LHg6V;8A_daCl+)UJam5W2=S=gGkpV6qwYNg;>5?spBE8;tIR zGi|rHefRqBS2y=utHfQ*iO81Ru^~LM9CxnzwrT5j#^qp!w)#+%G1;(+@*-04IJ))g z-SXKs`{vGa@I!-!i_e7Q!l7Q}%^lo+_@KDQFlHP%Dwf!F&auXh#SX#1j({0}d$$AO zy*~w%Oa0mj8NDMX{?QNp!#R9i{P#B-mDz zs`DgHH2Ifn>*|OED ztZ*gW+P%)vI@2%{Vn6x-7tj1Jpb-vII!8XSK-6F!<7E|o1>;S@(=&j6tg^FRR?2Ru zh4*<`U`K<*hB(gHXTJ*FadFJsgh5eZf&aQnlDYU(lEBxZl;c#G*$lteyK_(CB{O6M z>#B&@4?3waBo6&-y4_W1Xp0;<13dccD@f-eLDTUdb%uFI@9GT>&>)NXELLudB|?xU zP!G8+m7X=}Nhx!f7&0i5X452XOv>6WoIh-~TT=#@1c&qtBxIiF`)-79a!GZyaEU6c za>e)sn&6`T%x+{Tp5%0OR-6CuZu0gZG)Fn)A=-oKE$hNZnt?m*m>-iP60a@uy0EeH!-nLd)z)O-rT zWP0(FbeTl-bZ|J@ny(YKJGkG;LP|2)$jy3&RRd#~botq^B9St~dEv+#831m3kc7Tb z#n&duj*hQ7cOj{c;I|t;~gZJ(Nqo6=+{3>7J8_G(0*$9euyK z5cey5H*Xjv@|9n<@%90QwF!CAQoFM^CCQ~g{W2WR`ko<9#a03p4>xZLA%kt59h`xM zDF=B|%Q+K^zc3#)qkd5P8j^_lR>iaz76jhs<(N4}!1Btgl(1cfT@m;m zy)VJ*DyHKgBtSDCa!MxHx$DRD+8n z-Y+Ggcn&;sIk_U7;r^ocC>hAPyH2lI7m0Ke5^7Clg2T;0WAR2CB%{%G?*P@-^jku@(#B^9Y5Zto4fOU;(&KL&8fUceepZ11Wbs9S67#zR}K#g9GvCv(hp6sce)bc z+Tr_9egcMVFZ^~Z1G#+#h#b+jetdXnemz(RXiqD#`r$9oQ<|9b6#u?@ezI%|4qGK~ zZFFE{s9XY@vefsb;B?R1-#?bsvWeI{Q8_x8r%3$VHj{y-pp~DGeh&`;GZhRuQ-MjI zdaW!pXu$0~v)IyzNgahTD4N>tQSr}nG8zwL!iFuw8@W8JVJ1J!6~-w{h_?N?T3sa6 z)jbL1-vPog@T8^it*a^W)l5eESWv`oH?{Wlrh`kb1BmsGC9$w_kSQwB}M>N znqV9*R1(Q9GA1|c-=^^Yf}07tj8s(rM_U=|Ka;cm2Ay30L7^kO0JO9~8vwaJ$G`fy zxLLXW>=k3@0({i`yAOi=jj`(L#m%pH506A3bU(wGd=U(Id*tAd>!z{&9!*@q6wnkJ&efNjl5@&Szh6EgNs za_^tW_fKl?pK{DUfbXB+`;T_CzeSg6N=9__X_b5*){!|p$S~lXJj`h`dLPar+A!t(8bq2Q10R)MovH^xjQPJQKng_x%O=yD-F1)X)H{C7WK3lJ> zp6FiJWY#Wh>EkbRim^@ib@7sQ3jm0->?A9NH0*S4TZd}DDeMGBoM%4EW}Ph&Rq9E1 z?h#J;?W7!5W&t-|{Yu>RvB>B#%46_iz5}Z@&pX>GlV}(DNR-HH#enEX%2!=|Ss=-8 znD6tiDt;f)VCDNccCRs5T{8~aOiTH1T%CMG0jQlFCt$Cs&1-%S43 zk?x^JjBKZ073Z#x+w7WEru#$oc)?RWhR#@DLPqm2bLUf32vd z=N^;$hJl+w6Gg@vL-$F^(bQL*?Ih^6m@ss^^*XSYr_KoV_1x|JiF_&1?c6d68=mu< zzI=?57+F7_06kFHG%IQ3a5>g@g$|-s`E3n9^ zw>m9Yj91AT35i?HwWu@7{dD>>w3t`0y@GWe67P)BrK0)%z*6c(8AHTnDZV3t`A>H^ zD&ovYRxDlUO$6s@F{yprMSuVQD;KbwUbR(5Bu3Fpz^W2@(NzoWgQ*ti^9+HL#2Ag$fp5i3Me>iQgWU ztCBC%ss%*!8UT~5o%W+jb9ENYy>k?_<-tZGaEhM~y@xk<@54cS`~j{Xd%9XY702% z-f(hASkq7XE@f%}NLA{ClFXEywR(*{5Up?&r8qF9<)Q8eBe29Kw$$_{viVi=^LEiB zMhhqZv`0qF#ZZ|R0jdzSh19(Cr=--er!}SOem(Eq8sogeQN!&~q73-whPpRbnb106 z3_~De&$qifm z_IIc#Y{P!((^K5iuaZ&1H;o*J=F&oWhKvHnNFAQ}o8_ajK=Ct%{UHl1^r~{EICU&lXb3uuN3;lfpBs3nF z`d-BRgZoP<&JWG7=su7doMdN0Nic>)Ufi~9BZ2Nk0vPw6KE~>g6yVO|3(kOHu|Wi1 zl=FnAV99J6`0bHR8-FVUF(B&ZzUXa^qX8f}DWV|`-U^=1wqXBLNvEbM61;6SGo1*T zg2sy>n`TS{x)HY%bDUN5mXsU!ZdB5rlkjrfoxGRvHb;_%BO-&kh84*n_VaV>>&n<+d(`- zRRBR+0O5^`-!-#5;Yiy`%KT;}SU#3}f|M-kSx8kguZT zT%6NaTJ)SJ78^hgzC@ZWaBjP2KB=x-p-Q6$0`fD-rZhwLmvRr<1Lx_m$7ucFu4e14 z3w{^z@!8=CsN8_zUfXem^%%Se+__uL*91qlu*k6jkS8&xox9^5-=-kjueq=6^wk*@_07$PLsyP8key4ECgUiGT_cArGw~4JwWr7FA@Aoj z!O~^fHrqy%LvuJW0Oa&wGDYVT@jMKR*pjL0Fp({%C)=}zt z2{OyrR)$T_&?7$L6Aq`g+e~jJehQ?R35r5jLiv5Y6pR<5*TP={)yR@}uS z)229vFrVJefY=|@{YwVEyTT12Q5F%h07(xkEr$QM03x;l;5N1(10uy3Vo>@tsOI*iN-G4Q z5=lH4^L8WoKwrXsh_QEka3l`zm(^7QpYhgGraKvyw7{AtwEY%Uj#(yiF#?L@6Nwxz+8xzeNKw)2M#MA7T9Eauj}c=PSE_j_ZW z_exnYaMjK?h{-+K$W@-#Z1Zo}V9<4ixp;M6*QPE7)J6T|XL=F_laZ!#!yO*)kQ=jH ziT?vK{`%>!LpOIC=r<_z{{RiPzj>rTfCgLIxtvJ~MtXzMe#M3lB#Rmn_wQ#pK7dP_k!qMU!7BGRtRQOGUn%{+ z%{kR{YN{!6i&zhfZg$xpHxI;?BGJn^dO#Ma;3^!tWuV z*j_iVqYJO%>|4`lS3ai4D}M1He$7pZr4xh99eao6Z=@A6Tcva4!IIz2m~P2y%|#Jr zuQkV&HVM;Lb-Q)tp+|6;Z#ENMnkcs)^g5&cxDj&tkkqY4*0qJ*bdM zwZR#HJpiDIQh24-*(Brm4G>Q$;w_QzNYTSg|dZ5VY(R% zjD^ud3;f`=Bkei!IVPu>r?DD8xvtbP>a}J)G_Skc`NhbpBeGcrHjCD+;>1OFMn}Ii zkG$Y6*HwlUtmF!ZEQ#w$eDc##{o%coPows{-S_Qqto6_#YRpKdI~ahnBg0@0*fH*6 z1T2)U-QrDx*hRvT!c550R|m7EpHO`QW*!Y4rGnclx$AEvtL@-FSDaL)HqC}MX&A6K zT20`a$?60rXil%9!&7R~4gM$sNodv&1R_(6S1qmx*Ze9!?^hDp&Sz7*KrDgV$LxXz zbu?Jy+YZn(!|8av+~Xeg!`D8I5f_q;qdO`~I`uXeDRr+KE>0n=M<`KJr z9M$M($m!a!u@!*qMvyt+M?m!h|%kSX{L+}JVdVcL(Ya&7_pj&UOX=}%?Rz00U} zxsdgj{Bep5Y*;8Q9{sREH8Emoo~yiAV}%KFhF`p zqx1H;X_Zrt83fNt;io^tcIKN$3eiH(J+7rz@vy?k2c;a`vj$vS%|*HmC@!($ss00?J4A!qz09r zf^wv2Py5pDKxtB9*8k!g1wLrwQd!iUMs|^m@?%VdiRs!y#drZSL7O|gw4P}!xV4Gz1rD8_{o z>0Al^j`3kPY5E5T|E^w2E1KAt;$0YDgf0-i)?zN(bH(rIo4!< zYNpK6W8*IRg|4V+eg1dP<;sqqo~FcAiQ^ z3>@@>h|-6t*eHJwma5E`U=>DO?xlh7j<9@M+Kf?-o|261Cj#5h-aNK|kereL#t4@C z=lJy*+8-EZAtTF2&48|w!K@nvvcm}>+4V^IrPhQm7ciq;unfP5?OEXla zfJQ7v3QHoE$RVZ!(!dPE&@*3?#*rORJaDDV&vTwLQSi{84<(w@YfvS>`b2U}cNJ$u zE(-8D^fv`AF#;*^)nkl~OMa)Rc0-Ueie%M-ic$=ct9JW09Z!+H#fcFjJzF(_hHj-d9}tb3Aw#l#>0HAm6H5LKMRK0-`?U<9|(M>kUg`XuND&xy}H~kSS3{uLX@M zu-GCT@-czJ5ld2SZ#qZW1RwHs{~4vqkdgI^U@X;=C`@@0S-LXKPemiPz6GgZ&rr7E^UOm>JO zt#wH;*gHbgnFNP^q+mA@wYR1}8Nd++j}geOD{89nGZ==3=7Hey2OrtUIk`n!3Q97;3SS?iwPW$fU>`xyls$Cb z@GV|1d1nxTUyy{?jKlz7ULSXB@6^4ABY|07(Nx%w+!oSrTvznwv=KbSOXY{TM!`2= z_@)W2K#_*SFBRz;`pIDWVTw;iM`jH0?@PdM1yrlg@ZU6DV=I`Zy6fhBlqf%k%Le;- zMGT_m42Rq(I=hqq7E{A`z+ZxSE@YmFdD4K=Y(L7b)iG}KQz4wXKul8>dq;1yUIOQP z9B6pgndR(-yb&RfZ8bCM{@@=BV~#JgRSPVvdw03VK{FeWYH>Ri2f74O$U-Y%+?0Sf z>|C1Iw}h&(H0wxuE=$i1frMjF;z}CZKUN!qjqMFLS=rp0XZ?6H;c3jWwQ_ut-$Gfq z9hVgya(KM*I~*KFN<(IKFO%W?4en$zz`?03jw8K4nhDfew>s zh`VB=TK_(YU4k(iTTNlCFD<0avPT1JE4iI&~9 zX*OMrlkV~P8;7GoiU$h{fSXr=w`p5YRe<%>td9=S6o;~u@@HvQ#S@|QCxuiX3{rkF zi{ke5sb3CmNm!9LGy2B`-ytFudd=EJIQ^W0nitB06R!QKioogj?+`JK=K^iikj93d zBFjkl^P&>i(E{?^orvEikxR`D+H5saJDHlh!j65GbywmIN*UU&zw+d@UZ?JxB3I0D zyDNwdA2+%5r#eFST}Ja`p>WLuZ6v>gRF-#3?^m*oi(QGd8g zO@hm1bWH`(HbIn~9aB$7k5xlfgG&y4chB#>hmhh1$%Y;N*(Uv_=@75n&3NK7)W%~R z=SAcwNZL*~W-Pwzh|H>6i?B$aWETSGcwVbWw5+vF>D|~|PJZOJ60O1sT!_sL94TVF zQ;VAV4zf6nEt|gbGFL)Z>4-+ySS^r!(_-1jtIf_YY8Wz+E_F1!CEAxH#N=OlH@N=j zuR2b3z(_+~@r+>PZQz^BuZugfbGizT63Jy10i4|0Fk^Umy|c{n zxPj&fvTrqLP~HP(6IizPt2r0HoM+btjC?l00HpoJcv_*${rOjZB@>jN@R3avw?V_# z$kR(No0rfibLbL(iuNPyua(_M?GJSJTc1}KyZEo&>MqZ>Pago2Ov}GBkV$#4@OQ24 zD8@Jn68C0`vQ{eJLB>nr^ZqZyS1-WvH{!$MX8(^ZA(OJ1i-Vi9iJ1!tH~R{D5|8lhOd9w4i)Osx%}S06NBhSyucv-s9#5uzchle=sj;QZfLve-Hl;9HjnR z+W1en$NsOWJ_3o^Sh&)*K2}NVkO813X}(dVUHu6&}jDHodax(+C)0DVA zQq}6T0BHFC9_HW%aDN!||Lp}SKfr-!@qg@smF*+jn*IMUdgS~|*ZTkSC;Fhm{=(e< ziy8d*pGgY*Xsh}k_3A(9xBpKN{0F-I6A}MK#{Cy3`DaS>f7GgJTgU*05A&73K`--nO?S3wf>!6@+t2fKvd?lXE2mhMXV%g~?9yUOY)HPZ5rYBz8v z6;n-@?Y)<=bqd9uKdc;iEXr)}JICCC&kQ^7wfexjN3N2kwt38krSJYNY|a+qspdaU z^@-husJtp>U#ytKb14nd{8og{Qq)G@vrS@;cQ6WX&rig8 zz^|*ez6s`NC6n%8`=8-y-9v(bb{@3~%xh^1vlJ%R*N1s`+F1j{mm5^I-EXmYp})9t zf5|J%QtddEgWyi#*TuCYCB0e>y>s;}y()xu^33xB2 z(M?#1w^j;k!si$Y-p$KNgRU302LAr$S@hX1J^7b+Y7>2yftT$?!mlvC=XEIS1r#(ws=X!+! zVM{AHikO~+<6+p`Cj#H4GK$eS_l+CyIWr@ux7-ps%v$2uDVIiMIosJ9M}s4=#V&|k zTwHd!&&CNH8W>iZGLxYskj}$nBHSwATUMAPp4RU2jzrB^zlkznCkADt$N}~5W_aUW zNla40Qtf+5X~vrL)LP^|SDSQ(cVLf?{eE;m6wm(?W@3rE>)QFR_e{oefCj*6~ z(Zw0XC9StD2ZC!S78AD}^OG5vP@8-yC7%<_c&d$SwEsz>Rlp&)Top+B9C5v02PDa3 z^7%e`C3`w`K|TAt!qgH_3W^Y74-8|B$vpj;scJM3{`|K5lbH8C2#Y#enR_bg@QvOg z>|%O>dSk{8hGkk@2}%cv2xVvb@)c6Iu+8ud`C+HSVndZf5;7Ks6lDt%*URPp^o~`b zn%>-%R81B~Uw}5F$qh*C$dUM^TA!Fj{zcHBtK zRnu+72p$AMLLgBbL>6mKhuCTyTCki^csC5ZA1x=^!44M$L;?!D+=dUsHpBs+9ULXs zQnJAQ4)19JKjom*`vN&ZCKuR?jzqO&fF-_jvF)ej z)qecKccGggejZHqb~60qo+YBk4^djVy*vz!r2#C-__u33-_c`$>Nuz)k^*5d_i5PD zg(A`6@1AR@=t@(;;E}X)Z~tX7qIH0dN6{~Hfk3q9R0cj?a}Zx7 z%l+%6rWamC2k{r*VMtiZh(UBqh$i$ywH3rYXMil6L&7Zjji*R;?FAuR)#<5!nesTQ zrq4*>2ItKwu9%R_$M>3zDOx*1rk+jfxn=trPG6Jy35p{_LZLllc*)#Z#8bUd>aePg z5+XDJodMXO;E--E;SH)>TDUoVMOZzqpU<&@ZVOR7Yu-H4LW@>Uddl4X*)GUIbNBBS0?h&+6w zGCj~z&H*;HI3Vk*^%VZs%y}HHx$piY)oSIHbC)%#*K45190kanXFIbMCl9 zB>C(?AdSzQ(CJ)eJ66^6B}M;nPR=M>x^Ww*jdLmNff8w3|EoNG7WC8m0W5d-!KTU^ zKUr)CdL>U8?Sn=l?T)KB+J{b0RQ0z;peu3$#^DfI{Er1bq2JfGprE4h^8^%#5TD13 zDd&36xM4d~e!TErR0o;-Ki1wVs?KcN+Q!}8-QC^Y-QC?C0xTR72=49#3GVK0!8N!9 zcbA{4+Gn3io%-(nD_UD^&iStO-Y~~A`slrLDOb0L+3wnerrADJBu^*}m0KrhnH)b7 z`e1)>*v)80ljJ)9Mn&Y6fZ@(+jc@Lrf(FA4!60v#mPxTz6Dgw0{G=^Y8eO|=SwAQg zG(R3;hTHz50##{5T#jhOf8204%6CVhdAwllE zHuDpgxsHU}8>!^b#%s6o^N*z1y|NMds4#6IXdI&G`K?PnmkZ^G-$^9u65vvIGlw#{ zs^ePpj~Z|QV6)VXQMVsKe`NHMz1y@joCz59Lz`h(4Z)H2dBH|i)P2TZvi+)4DVb4Z zaZ0w@Lu!YBM{w@cQeEQH`jy9$A?lX}5z0Fj7{i*04IUg9m~hKp`&#ZL7pa6ITO~Kgh4KV?$pf z=G(9oh2q8>yegtwpSYhg!&tC<2c1S3j`(Wqqglm|vHo|EPejQ(aT{NDdq;Z-_Kqx9 zt9&Lo4d@O`GxK!bU*<$=<%XKwJm6X;9H7PY(Tre#vgPs^Y~5TZf}0dVqrz~VVCe{v zi_%X~0i1%F2vsgIr0=Gia0o-X`G^f@&D}a*3Uo$mhw>0=SPx^1q1;+*j=pRVf%l4U zdSii+%(u0{n&lDa)DXhyFO$Y(>ZNiDsn!*9mn7-4tHsGtzaXjjTe1j)~S~ z4I~#^NaGlbT1tekNy|aV71hE^`Y{rN7Q|*OI7T%dA+98ix3yJ0@JC&@(7R(AQ;Fwd zwPoO)6w1{LBBRJ#OJu6?%KJIbTuvJT0=nwULM*}X`OrX()d}a77}C&+qPEv%IA-Ph z5g;^1{xv%2XZrEWJjcZQQPHCz);Sxoz23#^m9NB6HyE|iUP^$uX?HIXm{A^0iltfN z6}?M}$kc3o#`uH$0}=GWQeuv}ye1`ydSDMbPs>K}p6ILWmDHpZ zUV^d_Hj+<=hUb4Zz4SdCY~8WQKJdd&+z{|IPb62+?_v1TVY-@EInB9oy@?sq$BLaJ zaD!DaD>5Mv9~%wA75$5rZTdMmT^L~S^rZ@>J!8rcXjTP0RsarGQu_8f&hTMtl@LP` za<(NcQ=w`4(xL>-p_Ivv3-xNB72JVrW2>QVQ*5KmOOH8;cBJAS)RpbeR*t) z>H>JZub;mcj*6xww~Qm63lfN>OIwX1Y#Z(Me4(32wSS>%U* z&8i<+1nlq9c$T&CYLi)RNK@(yu6^F!UAZ|+LZ0J_p3xpxKb-RbLsFXZYcCITgzFT80GCT_);k?l&!uNSSc-?6H zWXO@7BA$*O&tbrRiwqsGj_(|q<3tTE>#Njq0gx5SlW<8=@OQCXRH(j1;CzXCUFUbl zwtc!oH0Ag0!AKSQQN5t7J0EqB=bai2-{{U)?VXt((ecB@cnunta&vyu;M|^mf(6&U zYFH&tcIBt8Sz-LhbB_NY;TE?J*{zd}6?>Z6n^Laz5#IcqVb03_Aqk5(O8OwviRrpA zD?myDQ6;xQ#(!VHi3kFr&>7LbLuZbVv=Rz$SG%34J4GRJh?BjRD^@cnZUvz*R{GGx zE4IiSxrT^QMcKxrCr-kG#=5oaaYjv5Q9OS%l0K2Ijx`JK`K(TG+x!_@mY}{@IT1Q` zC17ok-m97Lm^gDs%AIiiat-nJ5SuKX6L7jSce~?*=TyJpRx-16y)v2e9*h~!0t_8O z(5Avf>zRxpL+FxFqEbWTJ1hrL>+eAdW0zKto{vI^i}bEE--DsxzE_s+lU67|sES2% zX0VqA_8CwFlXi2^lK|HxM)rbdT-o{QB{%92XGvLx)F0;5tC0THV**nxCq1(I7hvSF z>qFYN;Mt-1YU+CR-1s>K0dHcXrZX3YCm!^>s&+LVpS-)er|`GIp+-XKD|9+Y3|KE$ zo#U-Et8YQrR=*?%A;IU(c=K9`MTFnuEMhOCzltjHU^pp4XQY|Fx_R_zP1VYSg|eP= z$_6B!o#~8QGOCmh5Nooi$4~he!~%%KYVpL!RB2G@JxzLh^5--31SxVaoB zW8wh0U(V>=vIWQn;xL*h2{4%KG{YvK!}<#cO_^r@3btEr05`WgGf$?$4GD1bw+qOg zw>}`#`T_=DMym)nmt*Y5gPE-TjhB7rbDJPSzc%EY&Uj&2J)Z#<

    cfP=74{&q=gym$ zmSAJzq_sc-w+$bjJ7t+(rWfLjT zh2?VCg-Or^HBgLDV|ZM3=HA{2TlY-39~1B)^AFeWAoM#t7(+4RA|e8ad2qZu}VFJg|Y_aOs7&=F|&OovX1pp+#_v`I6h^XYb{|J3F2IWoC#=i0hxR;4_obY*p85>5eOBGY(gUJ6e^$^^2(k*Uy7hL(~3zC z91(aNWNn8Wv$_o6yhyt0ZN>fck-4^GSMRGepuFM5`i%*jN#tsa6)agC`6Zxto-fa>Ng7? ztLSf~WUkIR$)CpEOc_c12u+e;ZQYa$#V2c#*RnKaRCJjD(Cj1@Wyeci>g@RL^7HUw zgw^}gPMjFNSzwv)U+&?U+7&s(%NUnQ?5-U4lZnrJ8wI;bA z(h73_0F{ep2jTr_H^H3g(jlL13pe`}RUID4m1Ox6P<$$)g#lhrMm0-fil-2l%qiE* z41}t>s)`<}`fWTH?lt(6ReN|Y9Z2f;ruQMGN`fcKK~F1bzXywDN1v}pkZXL4IcqI< zhauj;{8HrRH9-NK@Flez^l-4j$NPM_!yS1ywf3Y?pC{m~z@A3qc!+KVSkXMd-2MBO zM#d0d0Akvu)8O5FqNv7x5e8vMS;sHh-CB^xPjd1Kd|@=(%&b~YAqUpNYS^p~7;Z`} z(vk6s03Oa}Sw6)9CX{y!jLj3Rk_5;Y#0*l;Jf?oc480HQpE*!;$%}?aB@_6NF$6n@ zzE|fIF5*#|VYyegeRL}=qi=>g>7j)KxJt8#VIBmpN z06t>%B~TI$a_aNc@rS5k0mDL6k?9wDo#hE~Ji<7RSiu`dkBy2zIRgbSy(D)sDSR8` z<6>52v)yP)V0_?2t!pP;4C<1PKnt%z$T4?O_&t#kn4f`vrw=!f#sZCCI|@+(79-KD zSnHANvRN_`PH-V@Y{5;T9mqV}opq+<50l9(-KT92Sr|WS_oqhVZY9#=uZQ23dY;s+aBYhn zg$)D>oT)u6F$EH-=DXz-;-YSMAi0(u&@a*=W8F1-#Iy^!%U)Pc1wH0yDa0%|01dV> z)0O(OCP3O0jEkgZ{FA&a8#>>BvPb57q+IPc$ia5no;#_OVN~;0UD59QO%+-X$@#1J z^@NPr=6p4c;tNFiHp95em`*5_0dM(E0^=^s^7?jU{Cyd`lWNZy%y}jgDk60j%Bo7E zK#soE+dIeUJVIi^w^M2wrMWClqX6gQUdniDw+M4;LW=1Ow^1d z;xnyEx7X&jH1-7)#?mh018fEJJ{*SR*uE}zO{_VGIgL^;{p9WtLdG9{&jd54orkpX zP5*kmVLK@|Uh4nt2qDoc;yTLbuI!||WrEj8kaVi%!6>SM(;7W^889UTX&Bz1xfTYI z;Si$bc>RjtA1bIz7gS#B7h_rIwfrj|k_CjsO{ro2h?B1)js{$^3%mBXSwof@`t{al zEk?6lp9>It-%9uL$<6wL<~sY{&7hbgM?Sta_c~(3vciclezy)F2I~JqyeuhF?+kKB ziG>V^bHV2*`T0TI29Pi2H;|%t!3odD(8P0=p&{EeV@q&r+p0^ zW{!LE!0ncL8i_~2*ulSFsp)lsEHn|V326yos)kF{1SZFI6ObOmF0h)b4i5>kRBa~L zJ}@SaVyK-KbdFj>sTiidgK~VSkQK2f9?P0ly&Iz-9NEyEJjZNjOmwPIx1_TdY0Cj8BJyw1DaUbISk z3(Udemg%!zJ%Fuu58GUD2Bn{qmG}B|C=4U_1T)FaLW`-K8CiI`fkDG=KkiEiETxlq z9pQXDqDq$+v_`~kN|;Xmx~TQ;>YmRg?AfD=gzOa$*YURdiHJ<9N#|>Z^^)6CH}W^= zyu&eGE9FgmwywxSMTXcfi)8)dETYup3_jiq+QaM^V*t{0uT9pkAfNqvEg^!+3wU{B z{1uITd`Okf$e5fkAV$q4s`@YFljcTvBNUS{{9lx|8%F&RcvxI}ZJ_++BZ|4duLdIY zFr@n@t&zJjjgXR^wD|a=VH6K>cfrPK zC))3yy#U?@DC{s&PrNYvxBK+2923h%WCxvev0d6DDKO&BK~&WQXS0llb5w6%e2jWh zFxE%~FQFq~yS&QYYSG!jrXMmCUpF6M$oLp+N`@|cNZQGKT>4tJ272*-p-pSn6xyYD zv`H`j+^F~OH7lLaqOcN9o;s8;KH_sI5{b27QU{FDrqKqr1|XTVO@nI{&Gb$>k87S0 zAp-eV&{PKl*B227Nx6>zhb)N;;|OWb{SuMd6%l5sT0Hs_##$*(1}hWL#TC`nP?Op|PX4Z^M8INNo7zG6cD zfDk}O7Y6YuT<>JQTpsRgUqV*7VmfH$YFpTsbkLQ^7sx&ih^V@YWd z2trRkm)VGRR`1k0m~*KY*v^}oA}Tyy3#>yGwX32--X&SxoOTSY$+MS1+eO+VO_1GM zU&9wnfo{2R#l_K!YT6ynMoNZ?(BPkP7AF8?V?KUM3_1J`OOLsMuC^sTx2NoRx0{!{ zu^n?=u6jA99hRCv+PQf`=hWzO#;%E|Gcj1GA0hBl{=M0k%&Sj%aH}`r9$$k+j_Ihj z;P-H=TDq6Y{f7RsIV!*F>2;f<#Azv>cJBDVj$0*T*H(ce+iZ$RnysfxdkdjBax`O~Z!m@7qy z7!eJOm5b|t2Do*rb{paSr>d}aM{ekC}fh^w^w7ABo$doG_%8JhXN?zA!bziX(s(R_!|KKbdlmgJ)O z!IacmK6x&^@>&aI4Ygt$^7GLY#fv`IU}yMmESS3D0g4azg4sq|wmc8+ZZ4o0UsA&= zOPsxq(oOk0{2!*;y1WEDM2hq2JY(|ZXvwXu<0MQqqAaYx@?^XSRSn%_^QlVa#kx}iwJ&|mj7D0BMiUPI$uRBQ{wLcRnQJ`-azp4+pIYw z7r<8B0z43vn>kP@Vfb_RV77kj95uPK@F3GjM0=KC}`Z+B#a}3x3m!qHhNy zw;S$6SvM=4M*sXKoK!oM7E?Q#fT*3l)i_)hV87Jl!N>|PH+K^seys{GM+};?B1HT^ zY*7wT+lyQj%GVRfz@!%Wx${&Q^VyZP_XMwS9k8g%*R)ewv0gIy-9Bxir}_y(E#%p& z6rpBD+*n1~dIr4Ihq-+k&mF`E*{J--!tpL!0`rtRW(LtxiJUArW}Jq%f(4CZdZ`pE zvF1mv1&um-x-~|cwFHFd0?9CsvX>D-1=tyeg*XemqN!+|)B+v$@tb#U73AB^wP-e_ zJAg9^zRF1`oIc^2tN9?>;f{!XVxWWS)FOE#&*EoynV^|WaFdc;05qs8$XM5~T7yE- z*6DK7gjeI8N&G>Lzy*Dpcxb(IL+d;E`p8PqtrbovoJO*6rZIN^;`5VRw&aboZ~7+^ z_cF=)AyZTFVsVOG#o7B)AM08vFNdDeRX_=M{Se7xCj_cr8aquI%}CqnNAu*%(xDof zCfW&i=3Y#KlEU0ienF1xKE`3kIVP8Mx%I>j^8yd9j2 z8KXdPMK%&C?5v3MIJFA6wDd6F<80`AA~(IdiVt9j_5`2o z3sJ|$-Ku7s3HX zK5Yo8;!yY|xpV3%T0;f0Wt{11tYno$i`@)+&JJ5&d)x5LQWVNBp);2V)y)nvL2wJF z_Zq)O&&+%K!+;QHyH8^U@NxjGPK}z&Tx`uQL=8Uh?2YMq;)sO4=7&Uk{U_hN1dh{Xp|s% z80pE{K`aut!1d>kx9Z@t8e(2zcv9NW5ng%&AnZFGGn@mH8K|9Jw*ugU}2Ed1vl{)Ku zww4W|WO2-|Y6OD7uanhHXid{tCPKe_?&|1^`XtDz3IVW*mVKDV7?Q)cQwv|E`-5O{nTjNCKj6kF81c#9;6M_wy9e+B$H*ND6$yB-57Uj08TEh%4e`%x@sT|`?-SS zsn{_Ep&yM4k0diR49_XX5X-G|d;I-7J($|Q38WAY`^CUu&jv@&fLS%NNl*Z-Y+V|3 zO#>}IwZf;+R=x2;?O&-Vx^jD^$S(KIQLfZA0G*=#AeDTNxx%&0ayjzc3!}B;33AsY z##WaQ68S`H>Vf=-u_PL!Qk@91t1mp5p?#IZ-+|EKpPs{R%xS8<6hn>j{MV*AIi_;0 z5TAn6kTf#|za0UsiAKBgACU_uFYZUc)tB#hM?Pq#pdbmme&6;+8zqMX|I7^Dr>E5= z1JKP{v+7WT^1Dhsi}6g2!^T20y0@D7MWR7fsaga%r))gI{xm1xt`Iv0*EC#XbFqVK zsN?V@Ig;k1m;G}i4z5lQ*aKTWJ)L$yR>_g303_<^GE zz@f}l?)XmpsjHp=Doc@KRXbQPwN}qF z4*2yX1$}fY4UGp#zWYhXOXh6+EmTT*`##;Yc4ws({MG7!%ov878@}s?(~_bV57Aeg z*jj2+f=N%WWSmX-{vE3s5D{bdRe&h)%c`lksL}W8uJ0C%_?{70{pe7M>Q}o<3YFQ$ z{0DSdjU~wb>AFt`aH8P_=cMb$p3yq2sr=@~iY z1(bA9!EGY`($jm)ihAeJdj}+FMtzDNOALmWL^X+>@F8Ucme6RE3_yf=-y;mt!`&Ck zO0V^mMwqkCPSa;&*pO+1fqG(luntzr#!!!?Jl$fVQs9t91cFl<=q6Vkm{89z` z=dMnT<|pLE?#AZu__36HvsaYFcIDbCC~&Gr+m$w2|CnNx&(qM;dtE_dDrkYFLpq?# zG^paavIARHE|0V;5Z;aW$#Q2CFXdm&iAbdCV6e;0%S6`q*jWMlwKmPt2Q+Pu?^)|q zqI?^Ii-F-Rqk8&iSl9$F7@uXx`SlmDW=x9@*XSCp3Iy9^kMFb;-F*d2_uszrt_PnV zPWz<6T`C1|SXQLovo^Hbr_?(O%{9!{?XEZ;lEiB7TWiz9e`N)R!54x+py`_pQ3{v> zFucO-cXVi$Bvl}iz&JfivTG=rkESBd6{|aLi4R9(css~7%$2< zJQtkUND60WX-Z#AKi(W6;ph;fni@hU=)vCPcwSpwFe{#S&~GjCK>hZTU`D=-Dj2vb zLe;uYJ5}vPt149+ZEByuvp8o7u3UH>MD|hCfWwf@*A2}X_r53=^g-M$dVW%i>_;XK z_%@chVXsu9>FLm&l0nopJ%BO9%!(vEaaO67U#8KbZHGbB$b9SyO}2{y6gV+f6!{<8qkeaF|IKV&;_qH^|4(%BJK*>` zy7&!hd`#uA{3X63VwCu8vWA-l`R~&-Odrx5*1udNxc>;JLIwNC1?EVJOCh8J?CI*p z>@=c(5D%xPLg7WdON#h}Vnlln5Hu?!HdP{_CPbVJUS%R#)e!@;>*G&e31VrMaILUSzttdRG&Lv&WhHrN3PJoq=hqv(EHlA~ObM zNI(n=#E*VDYTmasT01t1S+v<0=4a6Fa6NAo210&6o)uV{>N+yLy@N0S*wtZ4)gwx- zA5Ol0OXsxrqyjy*(?tYxTKEMnQ7b~C9pUxW7S}Xi2s{V=3iqMZ#Wm$w)V%`1J|{O+ zQVp%UKo3Q7Td-tTg?u{-toZ%VCxV(k6bp94@PLn;`%B?w-c(%xN*uG0v1;xMbq!u5 z3Npo*u{hQ)mD!zr5D7690Mzx((gU-!Cx`L0GQ!i7!9)n1P~)aoD9ED2-&Y>IX45PU z!fN5{wubip`|(Z%$i$7~e1U_9`Y(SRv!%+5nV#+$pfL_D^b1rzZFgoK@_^~-B0>J; zVho?3=?w@H$9wpLs=U<$-ho)%&XM3Mi9W@snNwi{P83o~cpT4*fJWzX?#B{{iF(-U z45$n<2}@(fR$PwJ+LBsY#473wG)p5`&pmq?QYuNVk_>ufDVeSPS8n4)CJB_My(vx` zX6(Zr^Fv|0)N_<2BJO-MqP;DH>FW`pU$E#Jp{nH|&(XpN(?8D7!wYS8VHDj-#Ycpk zwPravb@ib7VA2OU0H`h^)3gpMP`Sd8Q%cyzV@4-LZP0vXdGZV(c{^bC}*$PhVL!{ZNntl0xRo1F?F;@TTg{*)Fo# z)zOBs#8FL=x=V#bm@vU!tVptE7$8t1+@nkU)YFL|KjrpZm)a8A_))Dh!m=E~65%34 zoH8}8fu4H-0AN2`8f%$<7F7D*6ZE6pZXj4#j6u&@%4Ap!T`BciIJKe4)__PaS=47G zt+Oh0i;WMaDt)OrDPi)|B(NM~?%5&r>K%(@wj*Dg>1;*-U&5_#vALUHwE@`hpSAng zY}PrzSw{EdKoIJu#I5>$8uOo zWsVmnaK2H0$^B-eT!J>jO7$~ca*Ke3uhaRfA!RQ!h)-YsGDA;D^tM@0E?zTh$f)k9 z3sl+YV2Art>1;<_5=e7cVqTLo_mshW<>D$XgAnk_9}#zig@G=$aex&w z?#<+c1ppaTF{2C)wpy`!*+I^Lg3tz**Xt4pe4Q_}I4_2h!=~DCy0c)`dA5Mh#&l&t z4u!UxA7jn3T;o{l&W4GKg6Ene)Z86@(D)p{rCPQc0&Vl%z}0d~$8l!VaAgwF?|?wj z+=^)y>sS}twUyRBH4?qh-Tj#7Mdj>e=4axq6@b)3{Xhp_W*jA0I@1YTi)n)`0m-tN z|K5Tu&lpAo4>Ok>Dkh{F&mem8{QSGorYF9Ekd*~$uraeAEz~mZ#uO@#T1SC&g*_u- z8IH?#$1@fM$M}f|Ww=|lj7I;on}kb$(AI}+J^`F(jGMaPV;p#_^9S#GioW>-@rVcU zKHyiq0ACtf@k__;uc0<7%|P_|N?^50C>qHT@T3Irk5pnmIbGZQuuX`&+jN!_YLTa1 zzrk{2@1ng;*u??|OIzEZv?@N#z`UYov(vCMqw26>I;Z7ZhZWd#Qi>B&xW|xA&ovbS z#6~&hTNawgav_`Ip6O{#dEC|qX2_1JK>(Dr56&npcY8otBJWbXGM}y*OPSB|xN<0Q zOzsC3Yp<107UdgIZ(j_bWE5Mp=vqn=i(0<;#7@j~xE~ooY12PM!$kZ>VP}(Q1!agg zPUHo;1CbYJi%r_1rUaisA?gsn!Za>1#O1Y=qu!4!5X^__3e``oICy$pU#>KO4q%VY zL#RbTyP%?q*ayL6;7AY{o5x-PCScvzK&f-l;*p*3A$HnS-i+OaAiEFo^L2=2?1jIA zbD#@VrdCjnV50&MDwK*V6oF_(W93bmC8gKNOlXO#&JOZK*m+pN14)2`+76Hh$@O6e zKI2N)qC^!B6VN131a+7X3bqC<0_ssXIF5@s{pZ-U07eE!)8G|Qu!F-Ka&#`=pUGKa z?($>#3^rk;ev$QWTRwB=Tqx{-Jq;32wHyf?#DgGhmRzbhp$_ML_R53 zIF}274q7+SrLvC-i80Xlw0<7EG)f*57{?S4SU

      $X6N1TbLKDA*QBg#F?Y6D zF}g5E6c7$~oLz-S?iedQnBh%hfj)q2rwcS|%{M2XZy?)pdFJB)pB-*k3^o=KC3gj4 zm$z`(tgtM#pgJ)X>_tA71;QX71eKy8JKGSAoL~+9p$oi@(q)KVwY-Z{rldOu<&xuM zm}z9J-7&H}m@lLfu?CX5Lw-K^t>lYh{Re_z+tc{U1tLhN0&GIL3Lu*8-SD0ypq@0a zp1ONL3j4NTFeZn907?dH-Kk;}(S4dJ2&25jNcbph+>~JmLHBm_>CUoJxqZjz3ux>o z7||8Ss=9VdQ~4k{atY?2w%=+LsX;XYA0rsjeZh2OR3M#>rd${HMu6?%; zPT^r7#L1pUe#uj7I=06O3=$Yx@H_UiLvQs0-(i~DJL;4Jh&3|TUFm!MO0}T&8_t|$ z&}{pIbGNhM%K|0o@skWNGds`SC+bpLrcc@v%Cuth6@9w~TSusa<+;x+!b8U8z8V>K zWaGHy1F?0c@i`9=5pKD)b5jWJ*6fjB!)aG+pX|WWNNs#5+1Y1Hf?vT-FlF)@aL(Iu zW?tY-j;f3UOq`CMOML{BI)0iXJLo&E+T_N|tz3L}1fvA9Kyxi8>LbE_`pUn-@`G!$ zOJ0(Vz;08r6N1^0xocum?de-=kQbljvP1TMhS8yb4ER7SEljWaGXFYK*H zkn>s@z*s=nuWw9RW@dJxe8jsZDbnHH4Q;WYq$S4sbS-h8a={kt5SdoTO^>Zw*ULhf zA(_HN>SVMFeTI_nh#+2`7#3s8CnT|Idu3-hf=i}GXs^$ki{O9b2X{e@Ajf9kN33a^ zKeZk@CgS8SCif$h$;QbD>-XymxX#b4xqY_+fY>NF3`0FbKXfRNKje50Duda$Tc24M zrqUjjFo!OxJhO)qGQ zf#dUUaEi(GP@*PFnmS?eOPwQ3Bh4P*BmS~zASZ&Xs&N3hbG7GeHpYE;bB8jNhp&O) zx`EG`9y4e#90&!xgM_#7o&Ap`F4?dSBOPuN0v&_pljr%Lrum22{M$dq@z=JX(JnnIGYi*$f?WRNR#vXRI5AxReLkM< z#LR_}-pK|Gqx63cjQ*Gf{n-}%V<+*?v+%##s=xc9WV@cf2`(U9pKd-xMruHg*7|37 z^50=*;s$tzJD+K0t14*Wt;XIzJp7KDgT(`L{2YxZ=J+Y)&s%<+|CMIO?L3&weMi0k zDV~V(o3xxPI$Zqw(~x-IX7{H4>kS8MGzmitTlDIS_-FLD1ex(s$yh3q z6-uW84fe8qbl$e2{fWB;;ALNWpJt_z*Y@aJgO4T9a>2%&4Dvd4k^7jS!^i!Yjv5#) zxl^JI5{VYn+T5NM+}kSs+3%UO9+CZ-06w*_@opiVgPDSoj8T*^K159zbIMD*t)Ps2c2IGJ=|eY0SYn|DRHq%$$DcJ zWNO+!l?Cakpj9s`+63p?!wd8qgqBs0_)acWGxc+k6)>f;<=nLeNwXPlG!G79T;ms` zxe^13O=%`?Q_=($NEov*ux*scrfi5=ux5=%y5`zgu6c#`z_Ui+Plsv~J zfHioSx6rdZTUl6Q0UIf5Qnz-HU&ssbpHR7@ajQL>&aGH&b9Gs7nq9oX%B;k6hlBQN z&uZ2e+P}A}Xy-$JgYrdRDv;?PYHh?6_R0$jyR|A7&2tCK4_V-8vq}(>kpIS;I#PYE ztt}eI@&hz@@Hf2W+JlA*W>zo&(;Aowm6jCxn*f~#HxQZ(@ak^;~$Mp%!_I1wc_D404$Bceoi0{|OYa`&CxP(L~&!mZJH~TfDQvKpUI$ZSe>1qMRvxqbxbk603-ynF_#jkq^YC6dU<52BI=LVd#;CQ%xyT zu$mJ7y!vZ6LZWNdVzcSgS&!3AP5pM8ADTrz2N*-e(D(36S!ldXCS@a(SyF6uA+&VV zo!8M%f||Q6ayN}Bw7qSF{fR+QUDhT;slPo1Fn^9QffKae!tD2Po?Woqj7UGAbQR*j z<_}0O9wEqH*oU4J{mSb|3iVwNKEKZs%(~e49ZU=(I{-L(UZ7PNkY>)et}3xVj9B*l zTk!gM=>giXF+#rVoq}Y*RSVDbV3|akr{CaY-4|HL>4-eh#T$9{&p9g%7C3wN{M@!J zF2vhU*SRKmz{|w6o15B);RVOBRMwH#IMpGo`wE zOEv}RbdbK<=I7$Z1=YQz}ZgbJ^ zo6~@0Qn}O#&@GxVMU4f{ZUlD$dd6Qua02EnDQ!Zm8R$f(&x%vx%*#Rt*7R*G!creX)Z51ylMK` zDS7-wQ@NnA#3e+zwb%IeWrTJ%fKgc9$}V$X_xqMYEgmgx;ti7;X(*OCNWi-Gg-Q*DMN4@^pXMS5c&x{ z@SYms)~nQzg^YVd9E})3GuCQ$8IN_#E|BTZV4)4XAk5y9l)w|YLkTuo3IhBb0y2>* z{^UzGe$Atf)SxeDX z(KRb3hzA{q1PPjwA==Ne+k*wrh2hBALu0T^B2MEKTWZvogaOKhL};1UCT9 zy1N(MP5!OW{c%#|_WDz}d0ZiH7)P2Tr6-)HIe8G1Scl~q17y7!!I82@f|JWIcJoEK zr2oouhhbJ6%;GoL7~I5U_9%L31k(vSot-ZdwdCLBhvK zFx|IXILaVMj;D$ZcH6shnZY@ZfJa3hR|%5vkO1}Kq%m5e2|WS;zxHEs984XWr&U8MPOUxsD%nwEo}n5OWffpCK6Il5-l|k*610) z)#=53?;}mFpTkL|N!2!5k)`;rL&fqUn|0O&4i%M6tL zv2?~`Nq@Vr_h~so7=GucMa1-d1Vd^=(fd|GprG~yMb^Ibt&LuLfxenCvXLu1eNpoh zq>3$R(y|zkK=+1v^!U`ff-)%GuwT=xdtiqylz?7hGLOspuf2|o4K`fOu+)c5j*&?t zWfg1~!Ek6QaquAkf<8Me&!aSI)jHl$5hKGP#BW@DxbPGgL6^XkKFjM=ea^A-=2QVQkfZ2!!tYK+c!*G(w zDQ`spifB2Gpi)g%(a%UR#i%%p$I|uYE|&YpukDqmeeDBy2y!*;cT=;zjak5m&D_{_ zLBWDv{l6wLe`-V+nAc-U;cW3{I0WoVfBUCW$Ta?3Y%G_&>NAQ90)H2-?t;_b-PV0x$2 z+%k(Imt={30C`vpOf9SxK#qAFa`f5805bVtL;oQTn0o#t4$xUXPhS6*IQT2E3+rFn z0ESW6-rm90g-C~p<+CyWyfwME9yd7_|6goMf)B_~-Xz;+aK$I_@zZ?tnd9&`Z<6VA zi}v4aO6L#yrLS73nL<-|7&rSTyK=Dc~`dh-_{&@eT_N1=Jj#6mr)z0a%(?h-R z3c)2o2M;Ul5cbQgpN%!2QOW8DBjrA-<=?z*87eIng$>MnaNe9~qfIR>^QCZ%>s-5A zpTy7R9t_*hHwoX{5+V(Czhn%{sqe)cqU<9-O_&-h_|HhBQcqcyqG*^5Z2%zNA1D`< zBp~}>?8>Y+jdi${e}wP4Q_B5vr}X)TcQ#E{mI&j;>Tp#mhA?rQ-D`md+Ko*cGur=^ zOGtXK0R+NS_K+K)g#?HkwlpmoDKDpAZ_X|r53p{Xv($DTQm<^D-OR|ua>?>bKtf39APy>q*-r^pEMJM4f@FIG z!}~A>Fp@1e$5N}*xvuRyf!Ad^5tH_kF8Z3GfZLu*-a46~^eeOGh*h19DkOcuX%^{G zB19I@nhe1V2v=Zo5&?bCMwFH7hFs!?%6HWhr3WUyLU0!B!6frZQhJ{ zZaqh6MrdI`TFeES-URHH{rGm*`bcFPQAj`?{@psA_OZqF9HdaM`^cgEqohIZ_?b3b z(n40mB0(g87eA`GI}5+m6--L&{$*RW_w1?LA&b0)UtPYr#wx@HYJ)wtPJ(f7Rxy5< zrm{13C|#c39_^j5b+3EcoP^`n6zJHsIb6OTy&?jK)0z~Fwh@pfypN03b3-Sp3dMxA znuDZFDY&}9Xd&r%)g@u|(YS6knfxMA^Q#klh@}h%$C}GM*e5C{)z7Mf^{97n)h&2* zLhED&S0%S#PVi-YiQz1>pXa5bis!Yw{Q5{Q;xst#R^mtiFK~K(XAEHp768PqaCn^)WZftP~Q3TRY++DpP&HnXH;ltQ`{|AK%p;|fEIj&qoLJy)D-zC_<8H*rZv zRV15_(_E`Dh%7r&pv8ie2zV+1JXdnQ68*25Jba-2@+H>REtyv7d-&d=U zcRejpLBB4R0u^w}Tn0c~@hVD7q=M{%)R`7U;pga;48A3-tX3LDVNk1}xd$tE=c`A9 zy)|4>i!HXkK^Gn36~W~~Bsj)u2W)D*f>YXjrccq{`4&KYE%t_47()h!CLKr7y-<-z zE=mG$hYBZ44Zq?;O5RsE9L=h-J@zvPx_jWPvj*C!i>-a6&JSfT^U#>`Pq@T+L^%_xc2t|^d3P0BHY55Dh> zUm5SY5p=|Lsex}w4|#;G@tI4{ly-T&#yft0uyN;0I3FSc;kQCX7llbIILh*s*rVXHeX%OU=|G3`AH);}fUd@dsQIt^>%__A;Mj z=g)lofX5H~_SjoAVbjwk_Iyq!R(E268?d8p|HYd7WPQ7KA%1ZtKqTvtFdCzfMN|-fEYUqPcRGXKJU;N*HIGN+`&w z)U20Ro6WkjQS9#OwYY~gz|_&W&1hhol|BC1+#$6a`C@HTHPqS82~V8Cu;&}rQvTd& zN<{+6f|M>UUU-zv;nyzJb$R8;D^AW7;XVfBt1np%WV3vbVp$2$N~!>8cPEl}TM1j#pX zCBCGU4>px_kf_L~r5pSKC_vfNE6wW~5S9PAi6C1Eo>zt$!d|~etGFSm zvk>v3NhXl>#iMg4fcWsTl54GY-zThurW1oazIO>RTF98#qg*Rf4-uS6_WWR*`du}h zDr)}rhjNDpz5zrA$Wl*E0LSmQ!k3m@8rTeaG0y0HbLc_b&`T{k_Qx()VT}V{x#wn2 z#_!AaT3V51_Wtco)MxwPy;RIx>Y2xE>u1VPn&8mtrmTf8;fNm~WE1H`WWZ=3EZpgd z?F_^ipB>%*>ViL)96v|o)a`>`!ApH+wp=KMiHFVgw?{=j%&r8uGus zd4`P%1Mts|^#ATV|37+FR-*ror~P9|^3Sl@e`eDDvvEy_M5iMMVP#65Aw&b=VEvb! z{^zHievJdE>rmr}ida7kF)>9MEmVbzJ_--SbVgdNW19LCL1_={cJO%g*my#K);L!Shd>)-M0h&0#|de5)>m43APsp-FMz++O3j_?pejCH>}zG{$(b6I{iI6=s%3 zJ>l$t;0BvciQH^w%5_GA?OyZ&Bhm!NO-y0z)$fx9GVh^0ErRDF=vwEr5C2_z46_@A zP7Z}3SzIKCSXNIi6=e+MCTfU`2Y77S(ys~3A`? z=^!nVHwJ8yy?XC`HIkEQm~I?rI+~c!8-|=BX0N4>NXdfW!iOZvKTP0&|-O(=g& z2$wtX({)F1Xq#HY?N(Wjixt__R@ybMP0D>3T{$m-OhzCjcOEOX2U zeyW>1kj5-(F+4dhLZ(AdE&!we&^*C-xO;Idz5%b`2SO=uHtGy-g-To(d_dUA+060MmgTZf>+QF` z^^rYiaah=0AKj#X9nbBY4#Y#X)bw|kVpmfX_d+z%gFPG!<-Y!O?(5-))qi3I zfmyUJ#-8=&Hphw*<^^YEU9)W_q&u3%Yo<|5H;@2#@?i(%bHl4_A8gk&;1?v?dr zbGlu04M!`3zN(& zZF~SLUBh}FbD7Dp*ww?Q`IuUC(x9!v*+ux+WcUq0G+f^p3#LNrf_X?8l?V@c9GytW z+~&93?&o;Dno2>#t^&ba%_f~M;nP~`>50`#SPgr1nhI+iDcP6TW=IxQxg9jLPC6|` zVqQ&LYLk}bFb3f6iO3RTU<3U^Eals59$YX~6@q};^HiW7#7hNlusWn9&fQpbyzH${ zFq=%wFsYbKKi8<_)9N}xLdZ!cZ&hWy(|oJSEiw8{@}?;?qv5E*Ug=I56bYFr3* z0-10tVX~Y0r_dzW>&*kgo1adNC;8-I)UwJuwryPCkdXl7vg60#U7bF+G#xrVbEFW4 z?K3TSZ!Hep$;KGil&vMXrfb`Z68nnI=c>weCL`fWl`L*IgAADUKClLkS`qib263-3PITvlqMEkht8Yzrveg9Q0X- z-uz$sc$32jFaEv_M|}I<3l&slVS_PV1m|8RV1CEvU6b=ht0&&XyK+arXHbJ71|@;C z4Fq7kk_9IY`_LVLhM#O5h8sE)Daznk8Ergo&`|+%!(d~=vyG_|vS?T{ntVDvu~@~g zjgi#i)D)XrZSfN3q8J;`y^b-moULugS68XzCK0li5P4H$PtZ^iTauZW!Hm(pTzF%o z2QCALv6C+10o5!+XG}S`s_|&jUv@~chkpiEo>zVVD=DBp{?E|q-vtzyB|Wf?k_3a5 z>0jVrMrAV>2RCOEGZ!KjZmz$IF4_Mox~!jxs{c`R)18FqDU!p+|7)L_KjbaVcA5G%IgtBs9wayysu%p!6<} zXv0ag+QN(gKMO8VzpDLv{X{emL>n71gz($nS=VOmhkDH~@6j=WA2;vOwOuOa7RoBa z#*gn-8d0jW(1co<<<5`qbuSh-RAW1<*Gl_^oj!`v0{gHX2ao%7}8- zzWHkA94z;Qv1lvx9njXpE?f~QTH1%tsS56mK2NU}skLVJ69`kULo55#n|dQ3(@lnP zN97I#BAw-Tk^qMtg0op(zV%zi+QiqJzFN*pjZ&@D?&UIJ_hg5WM#Q?8&WmsAbO+6Go;#H(_ z*|84okhRsMWV&Cndk&BBQxi(HWR$lb^746!`u?|jWP*7EFAsag8#UiM(4HS<02TRaw5n+(gN9ocy!D{|;<;s`N9!-7w%&_I&A+79J=}Po50ua=+9_A! zV|unOd+}d@Rslfe{N^--aqjuz9|ZV**Kr$pkUq^~JWN)5qDY-HKS;k52>v<+0s;lx2+3IoR#PP2bYEAssTik81v&*rz!l$Cd$!3 zN*wt8u@j)G4OhVG?Ef$=xN}lY|8l}h%z?u7@C7}LpWTear{0RbMOKD=zkx8^-{BEn z7xPsB52t^3q`B*`E4J}GtK6;q4g?q<1%}gXB?0g0(b5XBXUzcKO5`sP9ysyrF6mcdsqYVv4jxhew>yh|4%V)FYpso!hU^86mR}gklIhCJ)~8T-Ft|ssy`UFJd=#=m zy#*PC>S@3$-xdB8fr$9a`G8uM;_KS+xM~Vc>$tK>C^yoz$(qwykr+M3xB903Xgi^> zmqLc1lw1_0^(D}67xTJ_r!?q>N%=uvu?7JvzjGxh-!^z9L2;^(;YgEwDmWGRRS!gU z2Z=|h&Cix_TkY|yHx19VJzR^~>KeN#t*gA>R(?_oA4I+&5~zth*zK4Lka>@pAA<_Q zAF=7%loNGjFafB zGJwNNqf11-U`;)QlWaqM>GRQh_K-`IUPK^sq*Vde(N*xLf82$|H4$;v(5WXR=e6Z$YrJ9{jezjXvODEin3@ zPSGz7xVl-;5B5TD$AT0C2f(7NE0G!3W^sjR`TcIcTIRM>sPf6MwNWvgMgRkPFxiO3 zk@#v!pdNh8ZHDYuUILZa=}enRqut2YoIXeh$bvmAp4%2H&tV@$#hGbz zD2J)fcB3(Y&u6pl714pl*~0<-n~JHwzy|jVnMkd)zFsdsYVyUx>4$_U;vLzvp!!Fa z{K_BSKoH$*u5T6IfwK)wS!JQ2FEGTk5iZ!VmW(I(8X7}O&f6fgh(Gwu_Y20`BM6e| z09wk=Gms19;l`#k{4M!WR}w7&xjli3T~b{rujec7bwQX2Ld*K0r{!vajeNq8Pa@x%EaT~r>lIV8^)$nHM~yUg1j3B)dNK` zhy4ZDWmsyRAR8PmPk=pPJ^3-vI{r3neQm$Fgv3`vSRtBT`724rYX!e9qU$Dj)5tbq zhp-Slkm_Mg)iZG&lDb_0acq#3iAxyCRvxGX8j|1E8()~Y;HZ_3m`2JKXcx?69b)a0 zHgOvUB_n(1HchlFDL5Cy-P=lCmZC^OT^rm4-U>5otmy_)M?fQNX9yb#00=fzwgSom zdWM(`d? zWHXG}tr(jdPj6-bKd5jaTD9MN&c1vmTok2^ANd4HC|;@h`OZEI_T+YxS{3o~scvTk zm@U1y_2>GHj*LFo_cFEK^Cnqv&h$%dYeb9LbS`YL9<1+`b{g=dgsqi(2;fGi6mgmo z`2$-RF_m4hJC@5UD zYXp%$r&TDbiCk(!{Ki9k-@IugoSQZ<;GoNDpEKzuhrDeuaOLrXR9rfU$NU`i03l1< zcN%ew7$>P(6|l^ynjBPIV zy-_Eb7i0AS!d#uY?%hAfF4Fx&@|oGV!FxYYc(HTo9`WHZtX1h)88xasM&6XiNn+5Z zCRm|ZKjW`W)l0+&7vQnUr{sopCTi0Nn5y%GFniYAgo(~DZ)ijf6=V`dl>*|a_?+|o z{GP_Zu}2_123dX)hxPCKZa`bm!}|@jCko9*5Yg2GKpSb!;`v$u!?2b;c}+vjsgL%#QB>g zz>(FvKOMA^w&*x11^i%))(0Q249%ZXtX!q2CK@cu z67Cb@JN6aY;L$awOijHS;K-vlo?JAzV;eLCfKML9I5)@DnRTmCS>;J>m2c9273eDO zLt&}&hrh0ANL3WqPJKPyc|-^$y`VQ zPK_2G1NHF5y#id?Ure|cy*L$q@eu55J=^jqrX50N5(qI^7_{haXwB)L`tKid`RS|* zMn7NG-!P`t9N6$Z>C7dD;|kD`B`mL@GTdx;iQi1%zq!X)UyXgdrBnKxPK_y9nTt};%YDTi>wP{?R13()%OhI*Dst>&Vp}r;Z*6s zc5ni#0t&2x6$p(F}2u&4FSFT+tm(5=2!i#VR&^mR6-Kh@R$PX+ZKgUx@; zKmR4q{zcUKL^971qJpt9vwS|%ih~;P2{7JkhX2%8%zjzG?&u?FuQP>+c1bphV8Y0{ z(Ll?5o_6blfkU|s{NXb1&q*X^G6a_sB|-)Z1X87vQG|lZw1|w5UQa`qNqGRk%g=O& zo4foJs#qxmhfVyOy#!in(@eq*j_|y=NJ;s4Y4U@o;LaHL?{CyrwPG6~ZCYr!&Q!pi#UT%#C_K3jG~ zCbk@Z|CcGo&Eow6G_y3*;c65XV5vP};$1BxF$mwhz{|^oXjQ^Z_}%4B7EvZJWnCwS z$KAJ7iAwX9@p;RsI8iJ|xE_GTx)gqf2zwKw9}$oLm-seo&k3-xocz1l5opmj>JcSX zZTYINyQ$^AT-ZdRyzrzGE%zE&SK9aljwFI8_4sOF-oq-1w4zZhs=I3oi#0g-fhmvj z>77PpJ5MPGBg=81aGDdKgp%p{D;D+jm|as=&Bx#`!`^A&*H5xgMi1!Bqi z3MCemq>Q9*33zBCD+vR;#)hCOh2a{VcO0oHLta;=yt$bSj`n=sgX9{#6DB`rQ5`;H z)NXMdz3l8Z;c{!O4G7Kh5p$wQj9zfhVWqMOAqBWl3Tt(k*agN%y7CWv^k-%o+-NO$ z3p-F_=S2^#vX25al=A9p145H1{c zF%r%(TX0{&!1Y!WJ!}QD*92y}NFl5xQ>nI&=NxOidDT^Hy-Y!Njh{1kt;Q-jEGCN1 zEOI{l?8_Pe65$t$7nXz*gDExAAQ_qpThaX%nk~}e(6{m_4#WT|wMn8Rrm+Wuhacs};E5@dxdNSxoZE&u!glx@U$agDYzr;l}SQSsXi@_eZMv62ZM?4qV zjqXm*Y9Eqv#UG5Z^;8Au6n{jjsFEz6BuEXzhEiM~XH&6#GJVW0rQ*{o?!tcCdLc7eBpJEQ#TDmL9)_Eu$coSX2~WRhP^{J#EdgY?9+VS}&7- z310izZEw$*-!}<>M#*Br?p+a2ONxP24lqR+FE%L`p9QeY?iCnW>PsD<-90%Ihh3T%-EG3%L*ywMl0O7V)Cjg z$+wme0%~y4#j1it(Qai6g$TQxF9}W{4D~pdU6e}irpV#IHbg*;ej-zImZ0Ss3y~jv z;+<-SO^Ta+U!=uesvG_o!7^u|M)M3H#UvlLnn;K)#}F4HPmGjQ^Y)|@&%_2%61Yzf5onDgd$^5YgvHOJMcfx^AsnjkreAfdNB&G9s)x%{oY^nt8k8|6zu}s zwqK@0O^kZQTH!m2ymP@7S?n4y$p6FGTSmpzXUoGh4#C~s-QC^Y6M{pq;4V#YC%AiX zcXxLJB)Ge~6L>q%%-sKznYnkpANoVD-#Mpy!CJj{?W$ds$~K>_Pezu?Qiu>*te?uJ zk|(!8iK$l_T44KP-#WM*v;h!uV<8DqN}T!`X{(RYORj`dT}*>8JuZSS9}ZMrn2mq$ zSM0r2Iep2=<10DE`2Ahv%(&&2-CYy`zw zVn|Y!)bCRwF)#pT4HnzutFS*yx zqjl;ncs~~Pj_5FRk|qFwmHlDpA}lAe6oMlVMz7bB?cJTS+VbNP z*DL)XVSe_$k(7Sr#zp;|-~6bXrokz!XNQIU5(b%k3te~L1O&kCuiq@t%#Aw2HAP_Cy30)6~E^iYC(=btR>~ z#xROgzlUXw9%rg^9kkFY_F~aRgspxcvhC3~F!7z*s4WS&#{_|jGIOzwNXBl+44{!& zyQt8b9XuMhWGYUViY^dS6wlxa<6@PcU$0#G1*^UHXUZ#ZF(=KeYf>8#L5Of}D;Keq z`DYc2)@q4K!>GjML0g!(67kRPhwuyrj8GZzs?yzeI9WZ(%}ck0(623D8t{}*-7=bO zikpkO(ZY@oM$a+vxVJX>hhlVPtF{WwNa6c#x3vQ+tE+k`SvPJlvdi?jX|WGgv52PXLUE8V6fToEGKTBnr_|l2|uFC)N2~xy7Pw!BQY09Yx(L z&s#W(+J6I*hLcG;*M3x1mC{KLmJOF8(O$4;8m6YObtq@;)n0wJw)WUBh}i22^Emxz zeE=m2C&v~#oLYr?lF+RB+##=w8XH&%fX6mqLw6bZP|W z4slvz32^A!N@vNF+u)Hm36at~DA_&A6>-BNg!SZ1NL_x8QkWY{!zly{KjJwqp@5?i z9iDOmZqvVaD=Z8>#A#HE2TCodp}@@=mo)jP4fpctiaKhh`X_%#z`=FcolkG?JV)Hj zr7u2-xbPgX*)d?|YV?-IX7LW(+k*{Q&gvM1sEbP|7&axkyxu0fQ%`0dJxJg6A6h?a zJ|lLm5-aSfSTu8A^!%|czzJJnj@tDeToQvF*#5p3+^dN|hT>aI;21!RwklAAWK6Z; zLZoVADRzxe&pNpH_xMwCLv=hhD5KcouD6tZ*}SKhxu{V-38t z_64I-ao#VD?ZxPfTc7T3HFglxq=hL^zm4HaY2>kcFNS%}OHrWlOqE67Ak`?HxZCy_BE&x>0{hjw={^SxBjHu( z^8Fc8Z;k!;?4voC5h>48m`?C_g+)KJm@5e@YRooY@4uLH&Bw58J!!Ad8pknF?pDL0 zF3ibQgORwd&g^C$TW#Q&eU8#c+<*YGUC%hX?+Tms?!YhPG4Qr6#hgai;XMCLd(wE8 zKCK6SK9`+~%cx;<+KmhDt~W&9^|XxMgaP`9P7ro#Ear)0T6jsO1Xxfx!oBQ=kKRv| zYTtaV3a4Qwb*T;5MIYRFkYI?oCwrG6X$02meeRrOzh5u-oQ)~SfO&awHwiEr2zB=< zc%#gTI=VHfE$RP-41Jj2IA*F1#Xu^&DQMk&wZG!FLFpOW<=R4=O^EXT)$-&kMS&j& zBn@C%bn-wX@q3=#n(w6nbKuYa5-iBh!uvbnm=u%sKR7FPmfxHeB@76P{KiW0gS$lk zpr)w4p@2vr-elDRYSQ?R-%#j4Z~j12>|Cr&EFi4**~P}@@5*L&mSogbCfxV`BmDR~ zNA>>`Mg5V__b0FQKNMAb%Oz5Bc?UHt1TQ!1KhpOGbU{fAAT9H=HVro?+r*|i1x#BA zA{#ozuu&XNOF!>0<095HqsQD)_nJYMWGzjYRg0|!v!vH zZhE;{xlKgTNTgS4PdFT;FROoeIlo;O@&I%h7o)9_>I?fcxB`IBmjPTMlf0cr zw@g3k&lB70@W18_cV!;2T&fVan&4>NB4XCsmNLDpB@c<5AkR14%7hpI8xhBfwl|+t z?n4SCWAlsQWztuJ(_eBWwDvQ;yk9H?ItI5^JY!BQDp)gyn$s0W?PERGvgc&-vq;@l`aeX9*GQC1KeR&3}5&aOO4C&*egL-ECc5PxlP{w}v zvN`+bSp^A+u$p&gnVa}^R}|gV6$Q?%U4yq29!sk)<^vz~sL{dyOl3uYC&AeDLNFnJ7d^7Ccw)$cXq(bplD~Vr(#x;g3KD!Y%n+b=Q;6`TpTf=kY1ySE^?#Gp+s?u z)%f6?J@Fk~wX?Flp(y)Ti`5F+sD?n3GG%Z;&6KXu;^#)$yF{bklj^hNz&3hVA;~=I z+?jE>^Flv;=b2<325$wE0G8;&>t90T(yzm>;>#VT5Dq4T&F_Jyo>y)ak4nzTEDV^=@5I?n4fWxd43b5zvboK5_FaP8V{J zO1$W9!kExEN%%QL-Uo2j z+k9S>Y%Mhd8rMBsXGBBjnMr|`Uy%EZ<8`Zl2{Qvq7gDgaSGD1^9ZWMAUepTF>08*kqCHy4z;DaP1DE1IHr zUe|w0S*|Swi&rnM(XfycwJc(t<2cQXp=0`lORT;zi|7OE3=M?H@`U{eMhft~@G{p3m7}y5Nn}#32R1W;%2mUv z890MeJ3QF&c;PAXKi-k2F*kM=CN&z`zX~-(`k_$G3hvT7MmiulR{ro1h%x5bRq-iy zj`3hrNh(`ZUjA-o>^T?Vi)PHG_Tu!zAjQXtB^bwir&kE5&hit1c>dwx6-wOTSGSso zu)>290u|9$Lr+Mj?^7W3cO^D-5fq)>G5t7z6N39NV#Q-TiTg=3u;0FZnI_5YbYrX} zKE8xx>q)jKYG#vURB~iZasI4pRlLQVVl~=0NzJPk z`f^H(u-7w?OL)!>0a*t<+w|fC~h2BTtv1Hokafn-ktkD}&q6{8VX% zTcwZs+Szdm&ynMSA#^rv+p_P6mM%b1TH?XbkmEei`T9(#qIl$;tvc(h6kcBV1H}n? zocvz5_bUyeQ_X-MXze6bHlM5WUC85Nog)u!68xpU8%MIP0B%epg*{>TUUn>e+*xH6 zOpE}D(9d{Qs-L-UB2FJWB>_H|19Yc4`3)xK_aYHdXh~qJ3lc3(3B-ehZBGuNX5AR1 zd-^Fr0$lD_CpvVXY__Ohvo~bT8A6}sI^{W^F7JnWc~V9RxcYSBMP{0Q3THvf+VP4o${>2S7|-nL(v&^5}uE0)Vq}B=7b@NXB1Z zqW#{I@};ASf2cx+U}xq2s~e(bXZzho{Vkmebn-`Q#05%G26;X^~K5a`$OZ$uMlzn%fmQ9*$<%Z z?5`QO%q1vD84vmY2vYvvUBLb>ANpf8?azdVzlS>TaFYC9uKQ~mFZK8C4p!=)?On3K z0u2rX=%1I&`pQh49McMo`CEpZ+d+*E&d&Zj1%eh>p$+QqxDY_n--iQ$D~9}4T}Q*S zNCc7INltPhOjN};y@%Lalkcz3YGh_(@u??yG~g0gl(86(m-$p-S$Pys_Q})3n?SV7 zVieW1L}!;=E4q6?eFnlJffskJP@2;?OWS` z$kIR_n5fiHrI^WL8C^ZeBC02HECzl8UTobLlQOF7ufz3P4IW=xPLQQ_O&#(b0?l3? z9ET;#rSc~$sA8=e(qK>&Lxh!u*SnH6HEQUvTN+X%q*-XL!5LpYQ78$t?bSxz^-fX- zJ=2m05$sgL8#lJcNFh$QzYLY}E)b-MQ{n-KJln)#&{ofHY~)N=Qc8$!Ph1eVxqph= z>1Pp}Cbd*aDk7Zg?mTKp_I?z`E{PrY+?jV z(_WmWW^hwhh*A`!a11-Xv)@O%3|$ly8HJd`6wB!1gPTt#y_JbzWux8I#g0ikXdrV) zK>{0oztZ9@-S@;Z{ZHLS!SRdTJCF9jK*UMYAb=k#xXQ`Jk)&XjhStP}(oZSQ@H-lU zn{_Q(NKcMQp&aiVLLFYs6;II)ku1^0!0?KXSCzq2LD60VjL}LDB<}z{9-F)m->d~Y zvM5vwBdMVV;p^}q=Iusb6J8rNf8f9AO)1<+X(M~12NT2 zSXdfekSC!#8zR2+$32o)8JGUkcM&nA+Q<7**D(I@w?^#ya)D$@U+P@)sTDFhq|XNu zu4EgY8T`wk^x=iG2VqhjO-D$`UC}3qlZBeM8`pI3vi81bVCzwrtLZW6^ZQcP>5c|= zyK{Kf-^eM7HVBO=%ddk18BK11Sk~~gz~p%VJPa{y1iWltuPaC20gKZ0JdVIB&IfP) zfMrM-fN!hOqe1G*@gUL8oWXg0yI~@RsWqh|?0_C0ecl&pv3y56jvUc-Fhmz&x#%9v zlZ`8IPDe$Rx{&dxE6;iYG&*<7JFT!?BDIWN+8B2xoPFA@BWJ&jl1Vk-1g^71`@LC_ zATnn{tb^kmKFb_ANwA#QEtc8o#W&ZN#nLFJ>vwo-9n3bC&Jup`YTqlVkD)%l#&nP} zp5x^+ZYJUuvo7sTuZ2oBBx2_zU6%LqJRs>A!z4oK*HTRRzyv{ohacx`q^&pIN+12G z#>8!mWEHO?s=2L)2)9fDCe@KcrYjSjuh48~tt>XEd=MK8Iv3fkOx5{Jaajy#x*!V( zVUAh9ohRm(C6bUzQlOag4e{vL5DCz%;OjdF_wH4K~fBE{ERSVQk7W0XxPyUY|X%Il#rN|&@%>O z0{c2BQ5VnKR?UZI0{*q0JUQld!smNbBlmS>htM+i;DbTR%W-Cd9FEG~>3jku?J2oe zfgAjJrTb$BIF7>d^@!_tI5#?i&z(8$Cy7lTH$JL3w`(#Z=6!S0w7^@sKs;Z_GcBPB zuwd9F3Cw>p6SrUS)y8G)Z!|*W7x0cb&itICi`ZdtQisbY|E>FwGci1pHs|9l^{QY~ zO7pF>9fiaI8WK$$Z@fSe)|gxRTISg+6jSR|se_GaZue#8V2oBu9#|8~y) zd#jt{zYHhXf42(%$AdvRN}zho_McM?wq#KxW-Ok+?^ypa*!Z74ZqTj`vyQT{m6?e% ziGTnJv#c%K@2a+WO7oAZmaIexK#V6SfCcB~Og5rqpal--{UhDz_t-*lKrEE|fRXs5 zf!iT^QFatl8Hpe)YdW@HH+-e``gm4^o5nBi+hszTBiSP4bC9n$Vu_9bL-;_p0fw`W z*YlQg*RZ2%?F?*P^RM=ea+Hfwor@sMcVq9gWZIfn8HE_%I=ggfN0N_^rngp2e%wxY zF027B%zltss-N2h>fh<(XJ58fAh};ZNByjBEjerAj4id*zh(S-;IRsh+;o!OZ56s> z=fGKk_cv#@I`dRT%XA^Qs zm>}4ytxT1hMP9Cj;K_XXr3w6%Io2L*byEtM+mi)OWa&21xg-JZ-c3Pt@of&`b^GWQ zEUA7ux5{-#1uf-i&|{sYzB{eo-?(Ng$zcS$318(!-$z@f!S3foCWqtOk$C~HL8mp6 z&-@Cq1k|09XHUKctxBo7XeqEgUN59AH_eHFK77tYijA6w?_7WOM_bbPFWbR zG7Vk#nXTeSKm3KQ4IGU9m2n|BqtqI{g&XHA^H=n)Bf?NH$skRd=C z%~kurI2d~;TGL@-9+xOBRgF@inR)2*BVICI>Jb#CJbx%xAtGiaFmBkAWH3=U5vA%<$BQsk`61r$doZ z&D@Yjgng4!4AX#lK~O-cP6I+#2U8=n_W;!6-yyCJO0Ym2r@QnQLZ@Bd87+ixS%rsw z_;q$PL;eVV7y_WpA({&^@<9M62`)s8@SauT<5KB$?F-MQuP;6ISK0SDJKUI4M1i&z zMt1pH=p#%O?bVIk8wK7;XkfqqR+=!)R$|e3Z4m~GQL-ykpKgd90dbWFJVt!Axk))oZ?E_k&4P~DAXGW>5Z*Ia9nuopr(E_r)g z*yQPOlhQaaqVp%0g=;{M?X$A8TuFas4^~yM;Mv-tGbOsS_1o`j2XXnOni`yI89ePW zFjZp?g-|zU&Lcb>bI-7+ZQ*wYj6SpD&;!UV9bDE*|3COrB%O9JEKkg zf4*|TyzB3ZktJUIs=btoR}dH&sK(kV)_J@u&W+;Vy`Ka3!QosWm$$sFH6~^!p(W9> zzaIjU*j(%TByMINraL?(a^*y{f8#Z@C>JyhfVtIkb;U$~jod7U-gz9QTHkb~AqLU% zE~?p}hb6o(l;jg|f3{+Eh$df&klaRJaP7f#zLi*NE7t=jZMx54ANgcF&=G?{9_k>& zYT1if680RZ3Qg>PDwLVquSyY`Gj{1t1uf|9Vsn=AvzgBZv7ImiAas^i<#X&Nkz%HZ zz_qc7)P+aQ+boO%vpyDA5mukHBVyCd%_`tGGe}una*qjY9o%$?1LEqf4P?eDv6N8+ z(MbqR)Lr5P_;YEsknf4Q*(`rvfu_fZWKSAh2qA!!;amCIX;YYw>hzfn&omE1 z16l}oN1sn+o1|+C^ov!#RcC{tkT;T-O;Qc;m~;T{7!q_}Clov&B~`r)Yzz#JDa&M_ zQyb!aWkbKu)^&hRn{{z0QrZjdks$VYV5!qhjjx)wP=zlvdGt6ZFP)Y**m6MY-mkgF z_U#XD?1-`xtH!j_18uzMX&EZU>0O}l(hvaBd>^pBJ`#m3SQudzuA(XeN-j^0(9NSK zvlW0<320*m$MQc!Mf0%b_6Iv#PVhCw9KhBs)&osp2)&2!e%|JGWOVgnD)3{&gov-^ zg2c)0am4X1?@wtAP*3cZJ}d0w_F+U`cxR~ZD|{JlDu|>n^+w6Y(&ZJL$2oT5F`Ay`QVxejGM1q^65x4C##s<=v%{c zr->?*rSUe5+Bgdoequ15ZBKEz#D33y3QN9Yi20;0l>4%x+gW+nekm8l!6k#$WFkFK z2A$b7s2Ua-cQ7+kj{UKHARaC`IT%iK0)HAiKnnvU<$dRyn%l8CAxnD$U-m4$voLmcvN#{O%M2j8lMW6rhLMuu; zWQa7D=;1T~ULZd>76!G>B+ELj+A{`Rgt4oVtw~Fq4z7#&XpUshGxk7AGRc-K#|slW zNh*gC2#2UjEnHnHYmrt5?+K^@4 z@y1c8r1@p6y*Ax4Iwn!gNYPtaW1S1nwxe3eJo^(^5xJ{SQAFku8PlQTiL)-y<;yEP za_>DYjL34NdS(^9j;?dfOT+5NhYD2;fdqy1+9=;};2b*lb<1~{>!@kVHlW}-9S65E zLRZ+JrMSa57Vb%B`dbB4z%*!M%@s*U=YS3>#0AZB&nZDT{Ukf<*!ou7`?Ru`=iDlF z^l97X?XIgCW-PYR3K`O&N+Dw?@ggO^+Fkv#eA3RvEX4ZG?dFOW58_jvi zNhT@;1B#d!3ct%2OwDJ98~DDf1UnF8c%(XXS!EjkiqPu6+euQ&M&uNB5^&$d{0j35 za9R0(P$M}O6Ywu}C;NY@JK2A$J1MFDg);u%vO4=;9OB=*b#~6b;6Xeg2Lkc$wx9h^ z6(>6vHxnl)D*iVonH-A+!253(v9W+gZvTV^$*B|oBAP!R!U`J6@q$+B|AW{Br49YZ zQvCn4{h$=nzt6?~AUglBe*NDkW`D;Pf2`&G;qnCedwiC>iH}W^bVh>!0Rk%^J12B- zZjR(l023|nRL|hARlRlP&CZeT)J@^A87PnDLO00>aK&Xrm5ni&#G0vZd1P>35`*n5?rq&Rru&%l%cbRu6P5RRKB3Cekf)oh|+#?>so6)~eg3 z!zNp9+&2G&bg{X5YS87GUusC((+o-bAhuB|sas7Jg3PaT`|P8bk<>DIWJFur_|Yv2 zzr3wb=tf+g!x!;>y{~2wZPh%<4M$c=KG6ckRF}En3+BdD<|x$28MRyg`D-&WS6Ll# z%tv5&jX|a1+2B}BNz=_w=ZVTiX0ud6CaPkwc!;}DoQ6A0K!P~vrmA-St$5SnJ& z-vx<-ef6uBL4L09r)!{ZUrJUP%o2UN2RNm_7}?d0vp}}11XzD<8pRue<**j1vlZq` z^XU?2I?lzl1SJ(`vc>5*3nI=-tN5^Y_BQ~{8q*}kB=LCtdz zVP%Fh-7ICl)))MFDPzMsEmm*W15b+;G@1HEwC!Ho-7nh9Yr{0r;uDUyZ}EI{c3%zf z?4Zwgwr!Sc4uUSI4|S!@j(-di8M4#+AWV9`66S3UB^|=Er`r0yqb~LI(2>95aaZ9}y&eJJ)nK6T4_jl=t5(aY1O1=g zpBB%4;AkP_8^;K`sqc4CuCu@dm`ST=#w8UKaUv_Y~@8$3dOp~`*Bti@=? z&u+|22&nsj(Y0GhCLWaDs%$@v@@pWBkQ^FQ-4RWjs=or~Ta@kx(s+eZW8lmvG90U8 z68*0fV|uW@0jFsB(HQuo{U7_ExOTx~Q`ZcjG+MY6{H+&dUhZ!{)h#H)-r?a-LrSYe zgo$8a5%+aB2I(L-=iR=c8%e*di)%z){8Ru}y=JLDHo5tpYwpf_!*ANdc;dg?x&}~s zkbrw9WDB7 zx`yxaAzPojnub(eW%VM>Z@tjfz4H_fRc%WY_4GaqmOr8gCwD`K$)v-OCIt~QVK+>;+db=^X>R(G>!dq?Z$SGSxyq~yn!-h zC$i`M_Cpcay~Kcefk5BCV=X{9;Ea-9(21u5lpGw%#?F{32tw0~aI)N%_%fr^Od6D! zKRjOPXK9o?SMY97>k-&Are?l_(m?;rgc+*tvhkWu@4-MMIO;EQi>ivHdFjhHm&smT z%RxxAs(6e$4WV?Pn@fCA%}MZM62@*^FzZ)iC8?7wLbhhYjBZq?WhEs6+_%7Z2 z1ig~Hqy#_%tH0Ep+5Z%gFT{0Gnf>y>rwK>RDP#&(i>ttlpPwHPot5|sj zK5t*3in?2BKxsRwN-{&s^XA?y$`mN4Ok2B6^j^hKoCql7<_yW*nM1^|6l&7z5$1jU z1ah;$C;mhUgW7XOSEW<=!?>=^<2jnS@d7p73Yy`mj&c=13nt{1(gsqNzi#5KIb5hv z_Gv@Ww9t*wyh){%T+oc+(wAS2;<#Bcg~Cu)KuhzYDhB|vNV6;oNe=05y~HEeJBxq3 z1?6eUOakjLeBN(*-t#z)TjNhke)5g7^w?-sx2l)KVF8}ZD(ZJIX<+GmE?I156NVwzXGG3g;hV99& zp-(fYXeYbZ2)zabm)KHg6p+_X<2}Tz(vn`lL?%)y{arN{h)=X>HzUkXJX=X-httu= zI}i(*m1`G{$3f>a(HeGkNEOxs3e_3<9gJU9cI?@c=i#?HZIc7UHmW)_dTJ08;O`oo z!+;Y@n1dq;CdVvH-gmc=&!4Y}B9~6WwQ&**5%rCG(DC8FG`LPQR_FtB9Rvteq^Wqk z7AExJ1Cmuk%tNjS^p-8bJnOHw!-IC{rXvEhMl9#OKdrgBWL#LwtUdEBP6_jW=F##> zS%37WIeQlb)onk6CW|FRrTO5kJP_UC`V}}Fdu9ePu|bF%6{kTd8mE@I3jX{=b7W7k zBGz{ph|1$xzI6m-(`_v`A*QX#SweZzJ73S(SdYhwDE0?oTv;knd4GdrDuWJxns`Y> z$LTvPGOLc!P#SDAaNF)_5%c%&3Cf3` zuwsYwXO88pZ1Z>Efqg1;cKh+X4(dIP;shxO5bhX)GQpS$-cSy!&&O6Y4D@U=>7m#g z>&9%u++?d?WBFiuOUs$kA-xv2*lo~G`xYrqPV2)8swEATJoz0;Wn9!*H06seiAWEN?<1g+!Ii4MWhWY0)E6A4v z6l|6Jg&lyNJi!h?{r7VYkRkwd|6k|O8~{}GKkw&dXW{@Ei~PP@7<7vE=PBsnyvYve z3?L?)Bc3z~3;0_E`7djazq1g3N+thyK=OA6Ug}S%@jI~VFNj9+uk_O2e|XTFzkv`K zW~slZ{@9@zzUF&`(yU%*bOlnuB-!( zJveQ(#ykbHSSrFnwngO&^$i|B2HG97?b>$hTg>AaSD(x8Z0pwQClr%k+T9d=%h#eS zl8?=`COlnH#h_gTnAy5AR^Idc1ci22;kg>GwP&k+kzn6=bZ#r!LDFb0H!7(*NZ4zEtQ~RpUsf`tk#)#PQxE%4s#^%BpL=^VHjGo_9c}Wxj#9vvrZ< zmd%ju6su63yDEu&y(X&-O9dM!mAmZxrE$e$BH)Jea%h-}%*|=ZrScCQ(vnrPwS+ljy#_~P}SC0FbNM4sf3_jZ>5?iHy zBaBbkC#|2Y{Afq8MMEB;Mh=%Jlq*8_QY}Pg0g0hjU=(#)EnSH_6CNT2%gvWvc6@@2A|>0QIdYDoof?P#`K1()NvjTU6C{HKxGx`ajj4LTix1f6;h+yq z!-*24rBs?y1>=BJxwAq*uiT#IWTQ@!(eW_0hiy%0E^ZnG)o*a&7~`7I1EyACETKws zhm%UWAQH>|`1Gj4?j$Jd_Ng{JF|O@v-aIFZvSD>Jzf&$iccO#6=?UWFLnGIoWt}I| zIRUn{NdvC~3Mh+vZ&r(RgL1ijo8|6ZM$?tI)I| zW9gxfq0laUH!q7bF-kbvQM+d?AOK*3;9#HVbx%Zf;_eqOKz=0iT^$Ad#@jPpS|%GE zx?_r#Kky>OHaCL;)*zJ$w*G-P(l>j#kiz+wH=XM92Powal6WpRu9?(3>UsiWis?G@ zK0EO+<;UDP!0eA{pc!FN0x6`7nNMJPz^AN*dpc$0h_9N#+0-SolmX9nF&? z7V910LQ$u?f%34%MhE?Yv!r?+)?0A+nrYt#gpUVSS3Wl=Nab7gNrf#_XfDi#^}Zf* zD^fkAaH`LGG{VEBe9bxZCNo_X9gd4&q1~7Ho~2vG1}vrzReK_wbn2oH&O9WeaM{xw zUhgmY$ZmaIV(mSxv0TvU31XD4e{fAeItUV9#*x5(-*a}j-6SWP*jQ&qi7QcydbRap zlKMcW0bjRw{k=*X=+yG+93et#T2L)W6AS~pW=Y#fI`C| zRoTNa5{RSK7RTx5&Oj3{BNGeBj7t-kjv>dq*8-+W&h$XLaAC4AOv?2bq(*?d5fHS6 zB0&71I3Y}fTvhHsmNbJxd?((JwdWU}iNY0j85`$H_IZm zc`>b1XhS%?AvHJjzC{>TkK{s>(d>-Oh}>NS8&#hiy}y#m=*M?h7-NxA4Ko`pIazwQ za6L+%-f`WST?O)FT(40^0BDyE-}fEqD+wDrxol-UDlk1AtZ<3S214#rxFrS(=*ec8 zDFE502b%N}^y@%28P-mzf*xT#JA%kesEIKVDC3LJ>qM8bR#&}v{e9G^2B|cnDc#ny z^$s|cFPH2B3kvI2mbF{2@&{zg%?OiFnKT*tU)T%6S^oe_vI` zB?$5Eh^QK_s+l(hX#cUuz7sv&ep~uDN7=kB^pZsnOyUu00fM zNL(luX>};N4YyB*e`=m57EU?bCVM092PWoj_+3_4&!P$V-OF%8EcA-?$$;$YWbpt% z(Jd_(+KUt@pi41B!Vi{Dpqj^Q!Ei^laG(p**a~G;WC5)V_PlBFZuL!i+ zFvGDuu^yJ(pAN9ioZfqV&dBN z_rwAlj5Pe{Cj@)Gin3q#w{7KU=gRq-RMAJ1QZSvm zFn>Aes~{@?D|&en181w~T~>T;#oT-eF*uROX`0p89g#0Igau+AH;myTvS+&4Zi+P# zcVd^_laKu*kJe|#bS>WQMe3oYOkRKaAh)zl=%^%BERlyH+&=fZ?k$XqIaUOGq1l#U zcXVA-t%-G#n48a1MZhC_USj8j{!x(kVEf^&Da#fyenBhl;r`Hy*ZkW8N8@3sAhzyy zdbxz`PDI;l&CSS$Egshg%!Q=#lddco48Xu1YyZ9UUWi~|V(6#ga?3tM01?w(IGJ1q zKAs}h&)qcsn5$L?;C!Z+GQBde5!XYVqSmRcajN*9o5~f?KU>|uAD#>>-wBlDazuEf&3fP^JpGU@$8OQ^BD{W{A z_<*JEHDt0^`^tx)x~I{t4Z{&(Py7S9LU7LGf#sCm%sY3}Q10H$2+IukbKEoF8lRoAt(Iu&j6t+h(&2 zKMYU%$1yZoTji>Hd`gah%671_y<*`aE;DVS^9dV0IfTF7C2z@x$(47L2SCMhU{qAL zJr+9NVzX6tRi73uWf?c@&8X<*8l`$pU^LKwhc<%8keV^4=TIyNdG^pVP71Zo$FaR$xli{r)mX3@;00E+BFxvYe?4{ufQupvHXQdL^|HKgYf=EK z%XIwmi|>GT4g=0UGpYCU;!5R`q)%S0nO%nQ1+WAA*Vi`2VCRIW8z>^~M}BX!^-Ggr zG^;UV9~f&tk4tO9j|%lQX{rUPJRfhQ?B8!`OdVS~ZZjlEX}*;#-F$MK=eflsjFjFT z#LeRjb~kj_8JvmG5xbvTv6xzJ`hKDaEfOaq61EhenS+PwgdN)l-ot{eeDMuig6$2e zG^*-*GO{cW)o)EUCOhYUqB73^6_s)RJ1XP+Co1FocT~pt4^)Z%!e6; zyRYtll?Wi}dpISJI=8tkl%7ssbYJc%VZNWg<#t>S7S(PmvYN`Q-Mf=tyxb370{k35 ztVecfDKmT!YOo~#d{)o3e6O&vj~@?cNGkCrBKUQnTX?s*lUBrr;Cf$@G)`mB+w9X& zCg7k4k>_Wneo;Jxa>_fI3kXTMjjd#Fb)iuOq!QJRAhYW%jb?xfF31$CdSl38JK)!40rG zBP{v^$x0(JSz&x&M#HmOGy+pGNs|~|Cp71z5(lxEb|Nyc;d-C^(0fCD|0!4K3*_AG z7Uf|h9|3=pTN}LAG&V|#P-4AiNXQv7)Gb*-GRVFKlSWYc*T`jB_`LHb-wlW5xiMff ziRab6+pD{lpzRJodG0Vq?`nvJH$0v7fHv&|5!7JM^{be_#i#hrTdVv#-zTj8v(gZw zR)=kmJrXh?5yY&+gf}IvU%3$nRDL56&P&wXYZ{+EK+3oCQqKtnjafSOaZ9jeuqT(8 zfVo*;)ej?#feK0|)2>`oOtup|M;ASs2$$yFdppq%sa`HOU*^&7Ln6JWBR2^0dQH6R z!Elr3D|b44JOVtt{vdeU($ALN^zW#usYDlJ*&J4YoTs@~2a}sGL4(>{Ej&i?ux5{e zz)x)f(q$a0orVE!Pp}G`Of_4f=-%DvqYLdE5C{y*i6JJqe9m)+cWsUbUYivsN|saD zSnuA=PmtdyUsD+RoI;(<*p>s(({NJO~qmISF1iPed*nUad@AS9uGmcWxaa*BhU zV--9A3g6fYW{h6Wd@v;cd9H@0fe3Ai&S<0cHLa_nRhFc&)LCuQdBQNH;oY*NJo#m) zepXdRsaS)#`Q&+#_KrH<>Z;iAE|YFDCXEy6d3d71v_4;cT9n3fxL$8d*bARjLA;(~ zu0$b+>0O0mN|GNl_ZR+@w=|)0 z8B8P!T_tv6ZEm%cD%C;DAn23vq4)7@AAzK`!WDff;Y?BEK@4iG9Kh=bND}11VpL^R z;gK7ZM~I*5$z*IM+T94$Rere4;28Kl2&dD9H5P%gXSgrQ!jf)D+b$oFCyQH^)jIGC zE@H(g>aZVb(T4=7wP*xBtvI!pX^Zfr=lt@2i;FdP$%;r&yzht+bX0&3Rg(81-T-0* zss|j8r1y2_nhM=AB5r`|G!^-k7-l1=PlA^lpT)->irsy3SBiL{bA;$-6zo$zanbCt z*x`#rbdBc5SQ((yJVq#oFu|JZRp(~em@>)aF=rhE+qP9gRUdip_#C}@SaYKE<8$%Y zS<+(QLr+g-v`I`pSE%IB`INLkBo|PE_A8+@3t~65WL9+rgwQ)MN?Jv55*@=2e2b!! zUgNAk{O}cV4VAWvMkA0X?0amnW0!w|Ny^ocb=@cbU|4B_`-0j(Yo>jsg!AhB13PP6 zk89s3Ll+rhg3Fufi@mYG@R?0|HVh(R6b;% zTlWJ-^5;aT4M_oK%S zW{`NdUvTT4)igXV#;{G!L=E;jAS>64|PD00t1CbVD$Q0zAfeX)RK zV3!e8Uc|!1@B9Bad&{7>)^=MIcXxLuxVu||yE_DTx5nKijk{ZL4el<1;O-6~xLuM@ z?pkZ_bL!TuVpakD_N)o~V2tM(lKr)(>Y=H%js<06_f28CWP{+B*_*cr@hW&i8W}fw z&1VKciBE|wLENToKGr#o&(DQ%WYw2y=WvNd?;a|ls56VXk}jM<%c^{CEYa(17CU4q%2` zog>|fD=Mn0uzQFu*3}k+_?Jj@x}S^Pf*WBOA4jn~ zn-M#X6lvva9E-@?9ZNvKB-hC33@x}MQ(vOVQV2GxU!BgF7DvrUR0siEIg0ZbDhNv% z_SgP)v^x971S(9K;m&h4^S9vCEy5Ia(}d~J+^7$;Lai$(z=ny~W9al8T7c0jf=_Oj zdmdpAwAUEiDsi{ClSBfSpHO=OjnWv!2{Sw*?Cn^GVy<;xWlD{P)#1T`f&d5^fw_EQ z;F5O6eVFI-__&39KYY8ZjPpJPW>T~m;VI9uH}-v_K#X_&=x}At)HnT9O2pf5R=DPy zI3c*)6^vhpx|K0S%N6C?Z~#%!FjxDho^UdQ(iHqnkNtRWgVU!KFPd5euC>Pfua36t zvyBWQ!bzWvddJ`pQ<;l4km)f<3@1*q6(Z zXGJlo;wLGvc<|kK$;tVK)laCaH%`!E9P?}btXu%rB8Hw#l+7&$P5Q1# zQ;KT92cE>N?9;Co2s{nqX+zY&ddp?%k#7hiTRt1Ql{Q!A2@J13DKpm!TpAk!DFgY2 zA*kk#*IqqZRJrszmlBLvJX4xf*8>xFSH=%2o*jwG3x1@ zb7NLtq0K*)_p|EB$>GHZaKtrp)9L#?FWnIArC0P!dQgHLd%puX#T2*xgmf?i2s==^&f>qOp^*H4e7R-q$g`wHCD^ zs*tq3CL$!?jzLUL*9G-H@(n+mzLpx@13rg(hn|)4qvFJ0P8;qg04GFxn=uCcJi0GJ z2w_f_9S!%JA>4=sJRX!fUrkr#8{M}nu=;!R#H=4nL(&L1G@=h&%7&V*-Gq_ddm54i zs#i?Ox;VSLW*i2DKiDd9^wXLc*?9rv+= zjYU(=3S#bg+esFf6aXRlJeF)YSww#n;a;3clDTIDqIhuUlC>5Vmp(_^ShI0&>+quL zkt2dX;6lA9RwN&^w=e!FAvgndl=-pdb=EvljCFz)!q9cqsXo zEO0!nVHep>lO@{_n*$&GM^hn5)@(%PKK0Zu6}A(6G}27igHNI@F8syksgF3czga4} z(whb)IJ58iuH`D-AaghVgtHZnW$&QDBW|pdJ93$^*h0;?`GdlRJSKqQr-zPAa5Qy7 zt6AcS$7EPk#bO{X8{hL|wi?_(CFd1^KM%Gj;~Ouf8vp6W3f_ypgm5iqEqs-Di9+++1-_cs8z{P;a|p{3z|E9&-99OQdw zcGzW-ML~Ke%QcKK1dsL<(^iai|JM3-V!P^fJ;(rpUZScSQEa@s<|Vxjj}(Tc={s_V zScut&X8cwihXK|YY749`-IvoH+IS%?=J3F$DY!jgp*K@8Uy|%+I0#QgGcCmn)l?%e zezx}#$Vb3}Y=9r7Mf|4BN2X%tCRtq6{_y@P3|TV?oJ+FWSi>)I_zwc9g(H1s+fON% zUT8O?66*9ZlEc`BL*vqC?aDtOpgyB5uPk^66wG6T-yQ>=YxCtbC2J z$p|X4Bq6F~PA3c&r0n0p4x#K${YHF^ zWs(5k@L0@@pK+tx8z|zbo3GMm9u(^0Z=48w$Y%=!xg+Bu6Xh`thrwbYs@LNQlkg!E z-OvjcY9R;wCvs4Mv63>_9#hrz!&D~z2)gXpGe2BtyTd=S>}J7V@jEx4&+=?dk_wyo zc*ld=$LAoIS2F98?u8LgqRXFFt)d~fK>7IG)pp)(K9>PMKZ z7^g`!Zjn$izl)g1A3~i93?QdmvD6U{?9y5?4sBq8{VC(P8W1p>*i`?vt_z)X0)jOpZPUnob|Loo%^4hK+L*L#w?Kl zo8*>@l?5zY-(!4axoRN$j1YpXJ%mrSj17@#J;cx-kNZ73^PF~8k3z;wpx(A`FH(Z( z?aJOx4;LQ-9(!?k^Dlf1#8y8MGG6^OezbDFT>2QW^pUqGi$?6zmpxAL2H}a;uPuvO z1C-QZ2`V2$jVO!BHT}w{b&+|76)30~0YlMXlV5T1=)H)JT7|rP-Thd`)9BuotB_w0 zxhsozcVostmKhMg;%y+_S#;aB=8rC+{?rmUIPaGZpx+h^wc+BPb|8FRK;adBB2+80 zQjJqlAxwM$q-=(ccqaM>!}tAxs_^q)d@66wG6MX7ruvyX8k1VeVxp$iR`$Pw|ei$yexFzW{1W{BRr} z$ym!df2bBYOZc`#b>e+|@BG2TglkVV&J9t`duW)SsO?YPTC1&oY)L)pZ)Z=?5ypoA zf_=IQdPV^S0Pa;zFS@|PIk(%HtL7l9UNA|=z4itlO(BBMG_JHnub zV9L_t4uxMyXiE!q_ZD@NfdUe?43w$Ac@xL~{CtpCo*rC2;yaFJTbYX!u0^SWjFd`) zBhhW@luR~9n7d`JewZ2{iQ`m%E+gB-MpmE{>-L5x7CAXof?~ zltta$8fYdgf#mim+Pc`AJqIo#F9fkWN8lu?&7BexmFT16-ViVuk*<(Hls)1w{=g;{~m?%*FC{+r2g+2KNlx3FMt69ln2Q2k&YI43J#6>zD{b0LT*4WMyDUB z!n%6H4>R&53CP$b;tqrj6d0*%EEL{?(vT0@;r*VpSfE{cdQe#kpV09Y(9r*q(GbRC zc%7?~2Jlw-HL)OMZskr&n$iok%NIx!MddPB9_rKQY1Y}fyED`{@e3@2m(ue8b?^NC z>|GfLy!j4={O^eN_b2_Q8jtIbi3jUHOzH1gJiy5TC|uyH6WhPjc$greMZwv)xWil^ zq2Di<_Y3y@f_uN<-!Fvs3-SFzYIcD{mO%Y|@?Y@+jF8aWzvBZCn^~}t2f%hERaj5fM1FEpc6uG&V@h23KhQriN}UDl$r(fx3Kg%5So3 zwdZ^%IGA1=>YrD5W3o?7I0OlZ)V`c$L`triqL^go6woj`fmI>gup!8gb@bh1;~{;w z;rdZ>+>aE;12}jBcv#b9a=_F#8(f*G!#X%?lhTII!RZKF3z%O#Uy6oyQ zGajwS`7U@<4K1?)m3vXIWDdfS-Vu3@#W&?v_{jqJ(7cDh2x6I|x9njL|5c%!t$k=8 z9(lFv6V={r(mb8rmDoY=$lqmVWTsrQDms>kL+YIcO&3)*r1sOc)v^ zN+}2zqLv^|?t1d4G_rC{W|D85q10SV0gnjl&x8aly*nLE0VW(IgUE+tVZi>z9N2qGqD< z;P!Sd>I{h;Fu41lWj`%6{INNt8-6`6n3+^bT{CIc3O7Z9880{^rjXgXCQp_)trHl z#Tm@jt95M5)COicI^A>;f|0bLcgJ=u-c}vKMhqTJM1|Jch4PBf7-oedC6gdbcf+0c z18f?hFVcN33}3l zOM6wnH1--vd6T%%u7(cvcolVL5)n_<>T#E$!tV?8xBRgv=} zUw`;C7XIM0-<^M}^(hPkKO2!z%$4g^5|FSWP_oc!6zD@_Gj$+6z?lf*8{-Tj-Zsu` z+|8^RiHIO+FHv;8Ty38P>M}13g^2DGtIm60lbqGPGP85DKPjh~T5Ox`k}sEW+|*@V zl}2+|Q{mt%Bxz-tib^W!SN)JvlET*3OU31-^RL z&`v?2@0!e0gal9+T(L>&2Cf9%0CdR4*~&e76MfQdKqa4!jaR^7F$%Ac+*TS|OeKWX zVC+fhGO?oJ$_bl)id|-c+@$W@tHdi6W2!aHH1UN zKeT;g;Z=b@-wc#&G}g(nam7Z(FrDyB8&V2JcY<$N+3vL~sN@{i)hgONDdb#y&!nyy zVv9j)vhoqNxD{G75jfcO&`!m7x{J7tLuLOW4bsM)O6A`g|0JJRNaF5xUt>gf9C0V>TJeB{dRJrr7}OmeCRoz3H2gYZ>y}NHrW@SyY0l;|2F?~) zR?^|kbt-Q%Yk|8eCTCM3F~@9CJ?+oN>tOJcn8hTG*C~uVLVK9ZmH;F^-{a1&&INg^ zD!vY|+!K8eoccHSW%93fjVvLkIg7X-``HA1E2Cb?K zuoWFpW*&~IM!SxVbcnH;t7~LH;bkzbs^M(FM-AQUSu82obU(zGvkuKIF=C(@Nihd; z6mRqUaAL}9q0K+Xk?QOqb9qpWdV z7=ZGXu^D0?^W>z5`Ab9EW{qbRig89o@0Col2@OfC=vqg2(U!8L)Y)w!aF;oR^S*B~ zt1=0wod&qCArq;Ly@X-MmrKfdEUn&y*O8MK!M%8e8KsEGr~&H83Up#!Wkvf*oWqdUMO)T1n$A?(wZOM@J&Gg2Z2GiT`JW_tCOCO4#j7aM&r^TM zu>_mjsAR8mKxgk)YV_WfZOtE_*v_y?UXpO`4C|-n%0TcOY}tgBy7G(NXqAdZMkm@J zXE{}uY=`Z857A0md#$eujqWmOM~pf6@Vy?&;9|8>)evd#Sih6vg?gjkF}6K7HMLzg zZ{DkKTeVsX)br@ae1^3XZOxl#C6<60Z+l}xfR$L~VZ_UAHR(78~5rJ(%g0pm9<6} ziwJ`5=S_X0CvX9YtE~PM-!9)B40ltNdj}x(w||V-!db5JS~rvu-@O;TYkC zxO#y`y)+V$G_<{XDbeZ?%Z$V_f~Y_$fbGoZmZ?ol;dgY#OjdI%ML_u$K*E#bM|D9uTw*8O0FX={h1hX5aug|Ch{<76q z930M1w2VifN!df4Y3i^fH)=;Z#f17mxOu^Gba~hJV%?(23sKO+E`x@6=JimkyxIYg zau{F0&FzG*(^BN8c|#-AvYdxai zph)KE>b*#C#S!Dop{a0{L(U19(_1lq^D!_7+?cr%E?la}(afl+=5L&qgt*~Ny_USN zyF)+=C^og=<+bU6|I`K59UYE#IhvGP3iR%w3vMIijh{Jnt@R0jBx}+RI9!Irvg|Z} zW6koJ0$KM}D=dRA9~%q&ju<+?P5UcyBA*aPr-WsORW+4yHqLEj6T`Q1d%1`Wl8&4f z5bYuy`Va-LJQK{J6`jo>8OCJhH9wL2DdfQVmpyu3Ms0Lr^I>DN`1?NzFruq~Vu*|% z&hDZmR25fj46ommKT3Kj;RYoV-Z&KnptfPNp6Qp;ufezOzKlRmR8&Q&5p0PHXMZx# z@XHn3e;NTi^lY3Is~&$?Fzz0dGeB-(1?1+<<0FlVox03`y-dwlHGs^c zuNoS3256~^E5!VVw^f?=5$CT0f9*)qw>8O!B(}+e-T@tOiU)@ShlMyY@RdyThYu@s z=Br(aG-ried8tdMNDisRexE2?&89VjO;2XG+wv8%$DZvY>395f@sVJ76C*M65U?cb zcKe3xU*Y*L&BXu0sDOM}+_0eUQJn9g>=^&93;s)yFdNtJtrPUWxfHN<6N(Uw`~CEL zFdFLbkhZ`2l(>OcIn3k?f0Et*_Wgfsop`tzSvmeCoYPD4$%BMzhk!xavL=a(UdEaXXdSvC)v@ED_kJx%fU$U$#ux>UE8l$0OWW0HDR^b{mr|MMP3rOHW@T zQa#czIIWy<<=9r>)Xv=j+?D)?L8-7}fLH4>l6O%JQ9WJp#q8 z3YQH&`_sSef&} z=$2qN-lrW_6mV+k1;d^M!>4DNeb(X@CmERHHp%x?;qLQq9^FL&Y`+FvC0BPL?Kb{I&Q3FhIAg_xNXH)of_F0*jL6BF;o zw2!a|C<4i0_YOS%g%MKo5pqByRguZ2ClUcxG2A`lyb>)R{0>VRP!qA{dNqiazeB`$?dh&w#7B&zR=#BcCB+tl;F+nZX9Ly%6}*;W zq7K5RJ;5V2m-=Qjjh0)oUSXzsauEXKh>xQQYMcRCeh^}j9B)UpzMi`YhXae`R)E9W zZ)(@Q7U&>M-s(U`bF-wq99PxBmYK6%fSOeH*ya(AiVTwqfYviLo{KFR=I5tK#4}8x z9cGcal@fe|*X=t0(WK?32;zTzk}B=`fsH-xC}+JGaDS%xIJNWr0Dybl#fy{eX`@uQ z7|b1qrds3=LZ~R%^LE{f+S5wjW54H(lZ8tgQ=&@)i7Nwe%+pPd>cCghPL7p^=*nqJ zXpJM!DJdubc*y4-qJa=OgGH(OaKt^J7)6_g(IobpqL%yQIWZ9kE_^21lZ-RozwZCZ z{-6S#pkw&W@=LvKm2)7MM5G|`V)@{zOFho&a@*!&qci-v-P z)Um7!b4Ufc(8GVo6b@GH7MD|T9qKaOOPdV^b^x~pV8R^qY-Mf{IWu^35c(!iKiS@k zs_0k_O*(8c{3{s5$$Z~SLmba&SB5E!_~*GOlz^C~v%G!SHo8B#=w7zdU7(x=2imh9 zH#kf(50$jJwQBh#PQWZ2o$Eaaow-bilu3xYQt764I|8wtkHh!2H3nfm1%uHZ^tB2Y z4G8~Wz*DnO!5nrKu%ho(yjTEF#^|SjJzVTL_yvK6kovf3vl)h^?_JZRBL{8RPD=`Y zVczgaQ}$e}B2oKA5uwcUSXp6KUo^&TzdIzoh3hhT9){ABw>;fL;q)>|vky}qqSzB_ z4lC6Fgrh?oIBR|1Qv;L6wXZ*kwFhpMjm-=%fI_M9rs|{K({#{9l=)(C3a4@l(S=c~ zKiG7x&3F*D>84fU8SXU=wgVdpWBCO$HmuU{wLp;V50T0SWIl+963J5(={8qulQ;J@ zw}SOhVcG z%G@vEunTjr`r<)2K`Vz?M7s_-$*+&bs~dL+cOZdRz^07HOR>|h8}pJ@pdzSTA4>Bl zBr%5YFIie+S9Nb?@E$6O+#E}{XjRAc0T!GGx^qIykcUk=Arx5%Qm4$5u*Db`j~Mjr zgi(vPO{BzHeKG}=>l>>z5OCDsGV>;LC+6RlFwF_T__FvGJ%SwR*jz5$lioT%VEV&3 zcodROpwHOjc5GKpMGFdY``g%tzmE0YcUxj`a;@T-g9J~?db z7lLQ%hoTUX1`qg-$yMG;A+|z`l#||f;s$y3cl+}YVW41Afr&Ld41|L^z8*8v?z?0g zZZWTknrdCT(HzEPM!TJr;KzRmNh2kc6P7&VfA?(Xy6K7I`J2P(KOHJM16pts;!q%h zqpqBV9F5Q2*B2Fh@lCpPM@AMeW+YAdf$^s?C(FJYU?B++tqz~l^Z!(&fT7Yn=x z9B@_j*!dDt1>!(K%;q0oW%XHW=uf8P9$ zGw*dY?C^eaxKiAnVUVhwUqT<--;q(Ton4~DW~LLDY82?dKCQ?FfIyvWguLd$UK;3L^gw_Fon4uSeN514~{?^zX$zz`dKs|3eB<- z3UV_O#d%0HBV*h}7$zoIb`l_-xdMl3AF>vEfcHh(NzY+ASA%&XdJq*jz-skNkS$+W zdpz|<6F`oevL6AOg<5y3togxggjq5%bqy%3)K$XOK9I;#b8!|}{*y4ZnC>piyQ!Sd zeQa#sd4&-F?%q+OJ!Aj6FYjoXPo0IS=;40RPdmK4l54_F#0>XwE(2iVyf`oQ_CvtO zsZNN!eP7YOsW|M|yYj`=b%=YZl8DRu4q*NIq}9Q7SK)T8H|ayU$a}w*7#M_h$fSv{&eX%#d0wBq70*!Q|#34)7CimJ9|? zpEDiS=Cazg=EJ-osr-h54`a{h_=)k_=u?HD!EH{~>|bSebo_jN$q6-XBEM$2)_4)7 zpRe9HE>xem9=3Q@E`p2R9k#*$Bm_O{sf4>h?k0<$NL3 zAaj3tG?oSVpR2qJ-Hdnn@y0y;3BS3$tvzoQTkCGPI)~wIFi0N}SKhAp@*}GgS&{E@ zy*;9)2byu882PYUx2uqqBJF|58j6=)f-EON4*KX2@_dOxuUZ{!Gx2cf(NBh0G(7{sW1Te4GiGvzrqZTcc;IZWZ1z= zqLLSH6yFccPw~uRo2qR-2EHm4Ui=Eg-9&+GoY1Vn2(Oq4RN+Ug+lJgQ#Wo^Sg_uM? zc4$erB9EX6?k@byEc}=f0tdIPibjWK#F)!ipdQ4oMY#%3(*YF)iWb^%OIH%!ZC^{V zX|<;i_96yYfk;*&GQ;o>y)tosvQ$Ex=}VO!HXUS!GA1==pe+^icKSG78b)vv@B2Z> z{t2k%7i*-NiDX+kTo8hThT~(^@#)gA+ZBWaY*!NEtg|=pqW&nxXx>A%Op-#L{*i9{ zr=ZCFr9h>9I zG=^^)`Mk=wCh_{Nf;*dE^V)b%l68H{6w*sM`Wx*h)fm>ze8WbM?^;~5T&>}P=eTV+ z#;Pg+ZxYR+*t77azMYqdM&M9 zhjQc4YyLp`S*`R?28&r0qfl~eCuC}#7DI{&P&UzLr!tfM1rHb<1{q8CYT)Kv){%U~ z(o=boX=-=fK|fq;Lxex_QHO5Yvq|uxE00GDjZ_u}Syxdq52wN0+qjd&jP^HKwhFA# zT}eTP*nPA1u-=2i9iznbSoa6LYptaRG0U>+NWe91?Qk-2lsoR{k6V%)n ztP&LGV+j-vNae?DFnY7R5HF6t)RP=fGz@{^%o7(iFV{P_YY?i0F@S0 zw~C2miDLwOXsUn*I!x3?$R|&q!#joBr{m>ceZxckS(eKmkvI4-oNqj*|O_WIy!F3^A7yYa@>DKVfVTh!0g^OXw_n-F$?Y=VlvY%-y46s8e zx;r3#As?O;fY&|Ve3e9c{N8qb14+hvHAEucxeA zBW02XLP;Wp4_)dR{Ua4^WGYtJ#mIoZ_N*j_0i$Pv)yg$rUQ*JW1CEI5z^`_bRPJ8Y z^3sDh2}1&lSJX?e&$Lw_3E*j&lmbj9EtdT;r*eOf;6_!%YtrEIWoC3?ljhCcQmkDN$psP8UVW*DjHfw>M0`j=4CKuYD5ON{

      7j2(8x;|Y1^FNTLG?OvJ-{vSc8hw}X z^x$S6;@;}1-aU=(eg#}aXMy(FuFb&Q5(`;g4*=2U@W7hupsAF)kfFO20#?(reLY*2 zs{O#u_^pV-L87ftn-O%lu+voTW+;{s^yDMsGGH^F}uou9PN z@#b=@M9KV)vDW>(W5nd<%hO0BN!#oHRO{lrTp)cL&vOJv_ZbCgyL!P+Vx{S`ahA^A zx2%KsBSX|lc0R6ye}v$ZWV(Sy}nVyyEJQ=uM{(U ziG>jpwN8(_pSf|83l|}@tSk#<{8u#)EV;k6c04kDRr5XtZqmHdio5{E_j-!=x!^x( z#d|2ydjb^Pe>5k8g22gVC@hHI>;Om_$Vkn|#`7DX|CI^6gWx}S{NFti9PI3jJe*wr z%6bLzy+9Gk|Kk7)CnL){qxm0Uu9+xl9ae{|G1$4d5HbJ?deYm6)^W4 z3h}qa8JK&<2m$zS57Xa>$KSooe^ojCWgz=^$Fk%ft z|D%NZi>n!oof$~V%8d@r%E1jpMP{M}OlZp_?KEL_PJLChQ#FG?ryp_jk=}MJR~Bs9 z7Fq4+Pr?ZT9gn>}*}x&FJbFJG)`hxafSy z%f*jY8sJ&dU9*F$qjiXN(zdByo)BUSWL`OErs99n*FQ);YcFmu4m@w>)4n_fxMha6 zaott1FHGr()Oj5rXRHgBd210%dDOiu%x`o(1gK}gsRhCeut=#v&hFwPWF{DTkbjJY zxFq&}n{P5rGZ&Wl5#3jM9(k&dv}0qpmAATW(?x0KR=IN3;kml7zg#Y~5ZLF;#63M9 z*jGQL!wA;1l_TLGkcW@7LU@S_xVwG(zW&NK^1$sX*DY!)=9}EdVRpaB;g-Hi{lP!$ z(Ucr65^g-^ToSTeLTx$gkvDg$Zfeb^LFL>UK=18L*v)8|OvV>0%>s$Vr<)szR$phw zL;d;VaYNoH3O_qU45G-($9s3f1SEmdCI3b-+@1#QEi%>AOE9eT0CDX^zzIQ8vX)bS ztwYkTplY01D7jjB$QknxW^_V=kN=zj!1wm;`O{)1LEk6+8XGp=Njxi z##$=M{7)Y~<$zS#XW{Y04ZaNG53|>2%F3(4vgq~oCl2tChi{LXI*RF-^%iHWXFQ1s zELE1VVtWWzq+KyPf&vys1l7vu&Fse#{I^)5S_Sz@DSNMtkZXKHbjF8x0S|Tcym8zgrGHZlWr3&Eq~Y&Y}9_Ya!c1Lqc0b_u*bDLb;Wo zTnFNs?O&NIQ)nU8-Du0UK>9&q)H^2LiZpkH1lLDPJ>8$176C#|x%b8Z*pIP9Z)wOhx(Jt9K+@YtKQiMqfEKR9rUyJ!@kcRLAU;c}m=Cjfj zhYT_{f=7ZaG#S7(dl*{>JlZM=m+++Yk;zL;SZ*QtdRYvg(0BjGlOfo-Kg~L_N&il6 zAJ6WfbINW=ZA6KW_cC<+#PJ@p8XEpqrbveuA?LA4rL!I72pI=G>~=I>nUFTZ2t$jN zSU*CmWrK+B)X#JFrLy((+8e@B2yNF55T~s1%GUb1KT$ zkN~e9)$wxi!@&t|kz$@hi}ydk{Xmskrm=X0;SQ!)Y7Uy9N-m_HuCToiB&bO@UcgGx z`5;=+@j0NpH!4yBQ?Q?br54QSeD9T(RHbwwsbycr^!W(ken)}SrJXmeToZ>F zAp}Zx2O;u}zWnXFzZ)_-g-yOD#{-k}pSCu|H})Cr`>egO{ z9;Nhy;uM7}H(`r71VCyaRaXL>lf7}$6Y3k-i&7zG!0+l^>Opv2pX%A$eZ8#=!%5mo zhy9wq63Wlc*bjt>~&mMl{i6RiUUkws<1I+R7lhGNX)UrkKVh2NKykSyDh+a zFxbp*0uCgZQ!orI+;t5xEn$Vq8*Hvf2B3f3at+hD-PYFI5q_F)Mc7|GPM8Mj;gPi4 zMdDRXx7cL_B94wni$TKYmOWF1i3#~ho54UC#cotr)|(AgS)b*MQ>yLG`vrAX4g)qQ zAWXtBo&hvJ4ZuA-v-Qh(vw$K%dWDgSi&rLIA$XQ=#gypoXWe>A5iBhqBrtVvc8PtN zxYud@uZ3LPsfr*wkgVJrs9e8ty5-eYUh1MC_jc)Y0mJGtXdtp8?;9OU8*^1G?ne2*~%!TRn(&{My%yluCcFVfE_H z(aboiE=BrK5)K`ZU2C`z42-4Es?+<{x^_}9f2Ff1OCg6byfTL#EY;ivt7ReuZU1FB ztH(R3)%X(~dyG^;S2O}s7~SNSral-Qk}PV;LD@i-t35ovURM{kx7RVlWgJjWLC=p7 z0Tuy{_LPxI`|}GMPpSCcwiEEF(aZX$X&0xUGetDnU?7{+%5dp~Qnn?2wg4_hQ)@A^ z?7{jKiH0T*&#-T4h8=B!2O_}MmN1Jj9QE05(7rfA9P6qI& z?+&QnQ+-kLYB-D5tbHQl7LfquZ#Z zq9c$fV^SXPgKSsL?gyIM?lXx_e6GPXA|37fY_*!?r{a_1cbyNYUq6sZmK@z< zv$?0zzrnNAzyUgM4loSHoQ&80AU0eD8Q$}FyZ#c)G6*|rMdl{@?kEN@I#M+0obkSf; zlwYRdk$Y^!u{GPH*QW)5uga7Yp$wEuGQMlulO#+8-D(6sR_zi2g01#u=c_ET4zDHN z%2KX#&6zW$9WHm?9qyRhyUpm(zF#OyCQ~|Raug@md=O4Z>q|(-SX3?$_Y_#?dHQqL zd2Xc47CH#}7=`L@Rn#i%vQ7;c-C;h$O^-E6JO{{T^-|2}m$@2KJ?^KU>85qYKe!D6 zY9S9Xwz0)5P21=Tu;aEZCWk8A-ymmF<%)r%wHWAN%xu6~CPGq7=0D^3zxsFCnOT2# zOHi^i|B2Q4%P^mv`S+UQFVx^2fg1HOQ77GVBmQ1aynm^*Nl!+@!txKG&(8dN3-B&= z_&0@M;bddvV&?=B;UWL2aQz>zvvDvo0~5As(0_y6T6R#}&;P5W;%}4xzd`dqgZn>< z``=!I_x1;l{~+kUhY9`D_4~(50Bom0MgmrLP{X`y-$5Zh&;hD6KgF$ZqIAB81S>)P zh`vV~!H@{pS7N7$EMCg4<6-7>FA#oD3rcBvI^m-TtFsw%3_Lp*LE|An5}Nd3+aYV8 ziaZ5YfaM5n=n8mG$eD-JYNf5MnnAKGck3q1$kxiv1Y+o#ab=wPzLx8M;L&&}w-rR5 z2t4vx7))rqRsdwVR}*8ge|2|TyLGf^*97kUDB_T3Nh5RxCPcc2jF~92u-2 zBA_{T&#J;Ewp-`-uA0;uX{FFD6H~E=AKh-NFWC`AlZ*SY)QNaoO~)<5J|S7~W8SJq z_7&FF<*h%cwR*W_aOzaMP7_Y%+FdLM>7X}rs4S;8^c>*G7(*3eJ`=v~+N?W0Xuais zTO4EW+ON8c927+^Ac)F>tbs0JqfK!4wbukB+TL>{<6u3#LW4^~1sw!h#IKCIS)I3|XT08ki_CjTza!+W&;vFdh(2FJ1bs}cF5MSCjYh~w5DMnQ zr(^JR2L=!bm4E-3$|(-I(*#leh#wZXQso%ZC6Lmr_q=VUdj8^m@vUHP-Lq`y6|dQ1 zJKt7=qrxh~=7B5r7Tn8EC4gk&```_wMtmDdq7=xF5e%f_HRMJ}@UK_LI=|xdel03Z z&llvhgyk)})p$P56r+c4qKi1KJY1Dm8)l@Dm;gpm>@XHx>!EZkFlM~S$Vjp+(C!^2 zhXO!yeY~9B29qGtf}mF86gFvb6QKHT+%G2hfW3y%@Z81*ReGPfU{hRO4|owIxkPz8 zY~v$3A>-9O+^0zML&l*YY%G}3^pa{~t@rr}pKnf2>Cg<4R_&BYhUfq{6$^Kqs5pHQ+xz zXYpIb()E$gecwD$iQAZ#QPnUZ>3plNwrWS2TcC-(cF(5MP>Y%Mb=_EG^pkzziztvN z;7i>_f+BO&pWFF+)cnti3*pc*R)r7_yPWM>lb6D z1t@`y>g$kF!xTO_J4DCa&>&1fS6`}9nsUDf9M^5}r^JVi*7|j)g*S{P81;QsXc{JHctN-!$GXAc0_xJGFoVYYyt-`}dhiP=?;B z&_@Oa8PS*QOX1zrYqW!mWD*XnSjEZZ{^E9{v-!CEm(2(-wW7>c+y~DCB!)Zmn+06d zNFn86R%6h%Y2uRA*b#{o74dq?5^;J{6vG+oh(1nIBZvC|KA=lZZ%e#C~oXE;z!dNL9`g=y#2a z$@eAQQ?j^^BxCIV zCxZRabaxhu^1z_72OsBWr6RZlNI5yaEz#uba9NM@fkdcI9?i(BHBr-9QT5GJ3C8H` zQaoqED8FoAv(P536(N)Hjn!Kz$UoO@WaZ&|FDDhu#-Oi>lj<>?AeQ=nNPEkmIJd29 z6u02+?k3H;D$cp>PZ);6p^wF$J)+ z3-VrDj2>+rUunnnLOI#Sd??dE6LPRBYMr&d8$=sYV3QZtk-!1$zgs8(y_+$_twp$L zp7bOI)O~D7&D_fxgOpY{qDSh+37)rSd1gg#RdiW2D9Z<0q1_%0aX)7`1lwWPdhB1y z&4lnYcG27wTpdNfF{xDQ7AjN9En=rBg(h2HfmCps6T2T=w6I^#8;fzvY_$#t;B@u)u-i-z+2Oga8fqmoo^8 z!M_CrU@hhUox1x2ANIEPI%>ReNGW(GbIsDD-}UX=!^z?K)RQ7L_aA3~RT%)ioDYRXX zHa3<;4e8k!X_k(L{WZd!l>-HU2ogaZQU)Oxr#ckK< zsV&Q<58n@XqrO?07SjHjO^sursF3OC90=Y`3E|m`(Ism| zMO7PKT=A0*Aa#Vj_n8_tD#IV$Rzv`10kKv*pYepX@ggJESNg|S%x&0Y0c~?<6 z>HE|Ml@!BmH54ax7%EjGciDM16C8;HjYlNy$VI@{@H(-kESyTshL)nO{m1i}{g~Ek zNhEWzv%n9B7Ss{j`*db>X?d;SToafXWOKp@q8laLS|SIITjvVeeSE)8A6Ls$bB31E zcIOR;3e-4Upy3TXyw{6fj2n=1V$7pjOo%oi&iTy4e1=khGn77Ml%KHo>nrMPy-%bL zi(WlUkO!oyJb(r5Fkl$=flfH?>Cz(79 z+Hg-!u)F3@TCWBA!XQD9+Gjc5 z>E4rcz(6coXH0<(kSJclo5e!g0u7PQ3Y9!;(akZcoPaipiaCY1kz;0Vum|N*(>k)Ir6uJQC?PLid134UyTqJei~reVenbaG0?u@sb1O<=Rbp3^xxHnOqJ%&X0j0}cn)Q<1sMCkzCqbRBkCi6tMYMgx=H_iv!-b!yl+w2wIA79i`45Y(2s{$ z_hVdDj(d&Iy!LVNN$9fW5*J_ea)NORpU3qQ&54oL4q`ozabd6Z!cN<0LMqOBjqhJs zyYj1>S76(C?}-KiCH(?knHA<5VyPW)o9C(RoAA!ZE<>@&5*AH;=Pl12HF=YV)WJ7F zr&T24VbWHxJoaiYFSa_a=hO1}(2H)YA0{V^5fogg-ZgjiZEs{@lExX!XOb2VPDi7i zyXqI_l9vjvR-f6vxs74edyxKvXL3TBxu&cSqVUi8R2gRYU zo_rWdnlXCQN8mc~Lx|f7)wW4-Ub6DnXddDuVtqdGhs*fYTgOTlMF!<5r6xlWp5&^S z!w>|EJ11?m0q{&%w8as;&19O$vw7S^2WCOtmsGeM+aNW=+GQF;nOB6aZJR**Ky-Ml z`%OZ(?)N|$jiN$SVj#(B2bJ}KV;)vVS7KKr)eA0W>QV5hMc%2Ayo zC$_#%Wspckd~w!JN-y8rot3tjR61i+^+jMk)10Pjm%`n<7e#MkR{g8Q4sxNPB%lhx z{Z(c;|IaeZ@vF>I{(qO*1P+0}OXPSJHZO?1hwc@)kN`q#S24f~v(a`Hi+u`;69D2M zz~gM3tim>j1l9cD{req@8f*zDPVSKM8f@^wX)Le74YUMbXaqm)0*S@>9}Zgp&cDhn z9p`_@@W40zD7#!-09JM`0LYsQjqG<3<@ui?`e#7Oe?M~nuA-n8BJk8Q$KQs$vLC?B zD~^9xOeg?X!W0=63@3mSJbG@#&ItUMimsdN9r;ciamT8B1a>=98k$rDvp>{|&*b7_ z6w<=#psT}B)u~E>t*X3id2geX8gX@lVK5gOe@1G^R(`|)tijJ8!NC)vE30kyFs>$H zn))nuWVn$k(J_1eEC3@bX++rerWMxbB=3r3CWxfjK2M|h9~P% zxrf2dt>(rlcE}b9!VVkh%{9*&vkq==b~2M)t@m+N*;7|cgWku?6~CROy#7xw9Zx%B zbR#Xna7=zo-AQ4J-e*vr5CjlZ`u&v45%>wykl{HB%x8AuAvuyGSqAJyk}{?aEEWuL z*jLyM`UoXqV#D>vI`agFrxse7h5# zFRI<#w6bpOwp^w5hTf1>3BV_x*7%a8O%_G8+Q7D~nyTyE$YuUGE~=go?WDNDiG;_X zoFmCO+tI6nw}S|*RJ@_cji=JC7Ve?Sv}&@>4xu)7*=;7DJG%)IErLhi#UPzgry8gA zI%}BzCP%cKQzRGyWO9pP%|HIhIN!ISLE@AxO(B@vS9xZ1DRJNQ3Qf`#>D0_nbB|6$ zJ=|9B=%?0TH^PrChN^CaXA;p&vy(bg1x(~ucd`{f#~#suFHp}|rB2U1EuGrpD3xtO z=~t}$;p?-eX2IWt)Z= z?1r3uZ!H}3;e$mJ4V)-DJl|-=!>jq4?{-QW-eTJh?EKO72_p5(qoSTqpw-ROg{Am( z8(A7wRhlIc*tv<_OI8)=gUqSBltFylRZ!!_f=cw zq~C0%rtntbT2#)5kGxse46@kA1b6a0mh+?)SCgXIY!F0Ty~gckpUQbuJJ=&s!y~kd z>IxIW`3e>Ngx+8j*D}OfQfwkem|N^HbdMHF+2h_}11V1=o|&aOrzSAd%_GAd{l1}C zFm^vxCX(vso0kq2k_*QTAaWyx9yKq+pFW!{MG-wLYl7iQF58wRW#a86GTm)spP1eyi+G`Fb-l%qcZ`Q@ zPvo*!0e-E-(EeUm5p|gtb;&mif<2ycuodx=ui6wo|l6vv#x|+YyO%xXI6F9{L+wzS`SW zf#_p4+gN&v4puU6VQk3BGU>#du+V0)(qv?!f$un&gQ-%D3`<--#|>g>+M8edUtIQ4)bQ!glH4iJ{J^nI0jq`ns9V3tUO-%f97(=>#4(F&)oca9&(mAOSy8 z&Tv45m8xt&IBHcyNO)XXhUg#Iwy)ibn;U$4R#Ls6Q2N?uAaHat!xHe=`)=}>)9c4i zzOy5X(4M85ImAA>?i*xzjB-@e*U5~4Ue5e>tVn-fb3sgZ-rT@uzIk=dMM1|n^)L^) z*xE^vhpAP>6TNavM#$0N`eO5Xw@u)kBH2SC<~DCyjkZO-8zqO~LaJPWB;(Yt7vtQk z(7ffsx*_K3-q*Wqwn*C+p`sL=GP>4JnTH-hXHT2()ub3wrcTWvYDd54!$O=(s|X2< zdfW94qtb(vnO&%L)w1GU{g6L@*5YckGPh2PE}v5ERL!WeJXIa~w9*@Md7!A^$(KvN zNploO0o>=j{s^ZG;^S5bZH2kq)7n-09@R~CAAudCd+g1{nZBBm#vhf(o9yHHUZ-V0 zoeFR26HyqPfsQbM-6kWsEba{asw}0}EfLKCa$)XW%0nl)1e(Om@@CrO4R_5+H9?vn z^;Qu>I}YG0#LG($6*%klW}u4oh%YONVhRDz!b{0Tv@kzoy$GE`oVK_dTA8}$dksq7 zkUo*P_Xns!j@BG-+!G?f)5ZMod^p)ZoNNMwer8%<6gQI@y^O!c#-n6f2^DgQj#J?3>2foRY>%43ThcqVP;tLN2aRO+_QVdu$yS3;?o#` z-y;f4SPJ~D)mJ^jK~|LsTE|Qrlf<6Vr=(qV1L8$8OvzZ%_qSguPv}EkNM8osx|$Ce zbI5W>7!elWC9jaC!CBQWP(TXqq`zP;zBn2RsEv&T7l-RNK>VXI#L4%oG4#Knk~qPZ zLG&b?plk{}F(@vskWC6a@WOB0q#$_x0aT-e#tF)#!26pYN{u0S0)>gAVS*fAvw(>z zuKxqW{yh)!FZ~(V*$5KIhyz*^19xdiR#=h#Fs%BM+4-*o(4W3me{_icO$V__{|SEo zA^7?yQv?!@BS3`Y{52=?7c&I9M?gmfWd^XqLxX!^zve~2_DNbp(O_z*{Z?y_9ukAa zj*?#*oqULIgu(C8m?{DK%`_iU{iqdUJUHJkUH2f44y7>)PS>>N>aI+inyhY5B2h|| znDeFgEL(~XliF0Dd{|qfKBO2LQ!RYiwbJkdUhyaoePP$#LGfFuwc8M*4Lo#pUj?m{ zHBz*yRTUftV8O@uHv=IE`N+HF=cVGv347nAzxFi(-%6RUh`|Jx|8M$LJ&aShLjBC^a4 z#}iChvt$#{XqGv|7mfbDJhkFGkokr|?eVa(|eF>+mW&8Kjz4`>d|Pk&1YkV6tN( zze!}0{CKn(BrvR8D#!4yD0Z~EA-Qd+AL$j3#r>+kp?;JCrLT}cz!pk_BFF~3dkq6nnD>h3?VzB0rHA(K_r6t zY!mx+mRI{}&laP|3`5FN${&N8F3KJ2t*VEWUsX6IPb;rYhBVNWZqLK0By3m*GJ9%tPu*tdR42wMHGrA_~6Mh%wO2wp#@;M~k=?bS;g|byeOvSn zm1bs`)zkGJg7Rei&#wcac`ZX72nxSvbbh-g!BX*hc8A~?blgpeYzOL$6U={eXaFbz z(E$_V44$q^I^J7eQ5Obetjv{yP8Gfj8O-D6F+(9S+W-4ziGO2{0&k#H|9JhzE`Gln+g3&owS~vPey1|kbV4y8RYh`cx zvFMZV!SvQ!QdsJ)i0*82^3zaJz09m+U_@5(`Sy>kJdV%R#B^(AKbbWYO8~LcAKIUI zN}8p57asd~@mASB0>8Q^ln`IEI5iqeBls=O7B)UCF3#wXTN30oJ3#+5wPGD9m{jE8 zy%{#|ORp2D7|?&?MCg>S&8BOU(xVo{E*jFbIymcyG4D6^Vsj{!zgvg2N8f5A$Sor%7cip<3QId7+fHD5CP9$Ms&0EB*Bm%8$@(W zaDV+*H-O?d+3-)Y|6h5kfA9I=+*%+b9z6i?t0?`yJjVeJh2;l;Q;HDLu|OQy%(&|R z)Z6}ZWB)@f@CT{!j{@?~O_&xFy&8=`St+5GJJ)_~;Iq?>)DTb$b4Wm+^h;HSpksd6V2+3?j`OvJ3(_($Y2SJr67o7z?mFO^@>}MsGnBtqFgDy|a48!rd0$@fW2ycqa@#?k;wtE&P zV2S`;407HfmCk)Wt1l}H3+96q@bn38ro$gK7$hKx2 z(kdwi#|)fs-EhCvih&jcr_P2Ch7ip<%INbMfa(CrZOqiLSm zH~Z7l-JWx6z5&FD z=*mbKN7iLhWksE}0Dp^;jm4cw949J4u|sumSUJ?LCF=NHCBp1xfxuD3kUB>vrgaU9 z>6lS2`ASA9-glasPpfRAseV^=F_v=r#hUi83s z#{W$>70jjnhQOxmBw|ni-jG6e67V8zEMzBRumxZEeYX)RlS~x66Mnvb*iNZx?9C*PweD4HUPR98nI7#dgOXSptyPD-m%Mn0pOG`?RHa$mzv$9f#*+lJw)$DuT1KW};GI&2#@RIuG^+Z#79!d`PLQW2 zaKtN7hb3-plYFT7MU9@;{6K<{+;n-!<2wChxU6Ckua19<+B;va9YCq0O9WKQsx0&Q z0V1WXumQHGJ7$$tszvAuhL?R=tbgs;*m9%hY$gFUQn*{u)i>uSUF&FdLL#uE>c?)% zs);vPhUzs2kFyO8Tys>$3>JE(DNsE1hGS?ln~3M{li7)VFTW0kz=;z(_?OJyOJ81n zDLFt|g-ePTaN5x2=8~I^IytfMC)}!-x{XS;4Be69gqJ88%nWzqLeJ5claNemO%!=2 zILm#4A^!!<^Vq{x48j{7z8sD79Zc44$$Isgj9I>WSg7f6^#wS=LzRhZMOLnVX=jG{ffz#U3X&@3rhX4Bh<* z)40lX%9SN03G~~w6|NToN}4-RBk^GRD{{n9AkT#E#KtYLw?z?Azxa#kd5e%BwPm9^ z(*;$hFc54uY`;k8`>zhra7hxk)|WypsY1m#)U!cH<%r{2<_sxopCUT9Ap=4U#r7@V z7*RIh)qJ!M_dvztTjM;rGY#@r4`f*S;MnSI)DP3m3S3Dd*&OylomNZ=u~BoVf*p`! z!H>8d&kA$ysTR&CsfNuIVEGgjVOc^B1nZIElkBerRD$@s`>?TvN$5QdRhXfM@$?)8 zRF2wm?lxpLw3E|uyb*9n^C>Y^&Jh^EPSH>GmCJ7Bn{UdHstSd|o4(SQA9NImOFp}n+kOaxsY<;O)tziwiurJt)laF8J zj@}%9JrKKm(OJ5XyvnMCe_95K5H@I|F~$XA0dZ%D!;aQ?Lbkd|7%;1;-$VqK&Qj4d zh~Hts9SD69h2d-pR|S4zaGmaPotCdnkUAQDW3X5FeF*I_!6-g+vpRD#{%ABiRP=|5 zARD7-1YPZ#guKf+EZ|C}X4qMkPHhh@8rh@fo(Z9qV0TGuDHnfa#&s%vf!eb4z*CuN z42V3Y61Se#mXec2_2SI4m{4tr#gP}o97>{HKoq^!kS4v!=p$c zy4vPP5Qtz1?9@uv6CX89L)zSXv^$L7@^k~Q%WZ{Xn$Qs7+h5&f|k zx?Xy%y?7I-6+X(E&^0?SXc|CGk7FG!! z4cdxo$RaS1GgsR)kUYV~DyJA47K|wv@SA_Z1^iA0 z1=poFAMITn$hm$iWz;~U-!KS3%hMP%pu<8kNhoeW2uBeac#(q_1$a?{7ZrF>gBMLB zM-lD%7WkpROrpVW{B05)8cs(GjrlwJ^Pe~yTu;E{3`m6t50&MYY6oof@lQc7Sk}YJ z{V%Jue~O9#AdD4OT&e$GD4b3DAJq+pgB)Ch9a`YHKzQIE^NVCb0Bevy8<4CFz!g3D zm@OVm@BrMIYE%Kgm#Bqh?RS_JNPl9u6cOg?cKE2zS@dU2@$KKY=Zop%G2hK3uY8VN zX|AVl(WqdIHxeG~Phi6mx<5x*_3(K)+c_4dFgJ~j(@-MKqD`a9+m^(LWLHlJS=bg` zprX0k`HCj`Wv#t^Uf>~Er2ya02uOGklYDjD&WRBujZ*yoAPE8R;tE5H z8--rLaoD7ig^#$6D+xylWfqsNSLS>}!9iUZTK%^2v3@e!>4IzCd_ zPRx_4_dPGYd}L4D)aU9Knd ziM>Az85gd6hQ8Tp%kO2NNt@$$qP(4>z+l+wbd$@hL&rk$Wf36Fgc9ZvhVAwHtejm# zm0>p&7Lw^V=ANz)-9Gf~J{@Q)8SG^nY>E$u503|-|6+rm1Mi@p6}iQL%8qOw;&J*` zewg4UZkyV&q~ACFJJbRGVyM&PPU4hw^)0EPYW(7iF@nNZ9>chr^Kc)OHbN4^ZJf@L zP~;!qk!RTrm8-27I zm@xq)(BVBi80b#WLl2cTQhca~^(?EKy^!zFo;_nRTd-g1 z<_`CqxlSG-B45VVRNVz~%@5UW2Aj*zXW*PI<>~Jvhx*iN16rO3$e_2Dx zu@EuxxRByt(yDA`AWb#bAgtwC zTQOuNbYawt=A^Z=8(y)A#agw)=9k!F*?yBf5G?Y5RWwF^mg@m7(!FI4M!u^L{xOlY zG2_b5@_B9~B~H^@Cm?J@N8}Q&YK=y7Cnwxbj9ogic4mH2rRC*?8qJ!rQ*`HBsQ+v! zJaLtX7ydJ3g7t;q% z*JoPyHc1(uRj%iuCBJ5+r4wYPYo+D)5Lb#R{h79n9dgW2DXZk6t>mHju}sTU*;{+O zTsM0s>Bvp1S=Rop97;tTRqv`y2s5`-1J1-2@jOt0oZsIIh%Ad_VOXz&FoyfC{cOxf zT-;k+JUx)woC=`V(hJ{m8A~l9)&k{0G{k7dd|~)jy-GyFQnNRVJm_}6tZX>-v3kU( zMETB2=FXPV+)2dQX@q~mXK;7sc)2jW{>P4$x2~+WZt7q_*G(KZp9E%B6!*h^@zt~p zTU0$&3D1))(9>rrS?b5q+bC1rwp@{l{Lqbj-~Vo8Xfl3#Yt~_<|)`4>3$2RmYOWtZPARRy4BO$ zYQAb&;?rLkmT8J_L77zV61Q+NglVgbVNlm;Ze~eQuOq?e*P`7F&fJPWq>$ zRQ13lGkX}};cwwJS{WWg-=^`Znx0B&u&EH8lF}9(?9FcPgaqVT1{-Kf^C{uh<+r6& zqbDUkh5=vk1*sSZmcD~BA=7MdBDRzcyQBFymnbV)?>zpH&+@GmV$eL@%X%wlY}nH- z+D~W3;M>W5H(UY&Q6w6RK$_ut!r4zlVx(LeoHjP~;ZFksDy8VSWiL}9kbR~8^x`$o zZ*t|{%zl#fB?YLk?)*JylesUY#Xa95@bkqw%2ge6sYKbZI zi8&xh&{HWHyP;3_B?vt>xmdC+2|3bt)_!oGuzU_IXxL?cj-_!?m8O!76h)tE$5~#2 zU&kEP`TltEp5$r8g9T#=5pt=oa5JP}(`2le>Q%2+6%!6#D62X^F*+4m)%?fciYv%>d_ob6my z?=D@@d!H2?ZfTsqkO?+?Tf)0*txH`bAyWAht_ zHK0yOQkKGr++s6o8iBR*kesIu_uSHZW#6RP6taPkZU@VpIeGpA=|r()aZ#fs9{&Sl zeq48lv+M19RmBnOW>3po=poY5crq4Z;2nlRsM-U|qr3+_2z>l7LF*D7nS zTq}S}kDP%0(r7j=7RYA_*sAt?Q~T4Ob#8i?o2miTQRw_`hqXg0&M|u@8)Mm1(27jDIDCAOX1l!+;F{rWAj1qgY^A^(W^EzEO|H zP6IyN|E4&92O%o`PY~k&ir55G3IDJg_$NC18*2GM!!v<6;#qK@`1pQfD-drg9SU$_ zJj!Wkj%Bf1ub$pN2PK^OKx7j0GrN2oDh=$IkN3oAMy`yfD zoWB@M&60i1zx(;rdfM@#TAoDn*71wyZS}NQApwoX-fZjG0T}@uGu_QWT1|#UwiLrZgiYcW%n1#0?MIWpxX(m>&(m_J`e8QQ%8{HFR&J3aaHaj*}&Q0v7C>qxDeH zJRNo*#a17y7}gwJ z&wlyFSWdE#Ui}UW!w$*a8}^hRzNz{xUg&O9Pvgxq#GUrr4-UDKX9f%PBqy@fK*ca_ z=!P%kX+Qkzb7~w40$xX)sch7+qzO{!d_eVpsfjb;aH=;pC zHof5ro#~d84(sF?qCb)FJM9#|P z(T$prWA`C^&jAg!d?4n?7V~(w4&2$oh=~=GgW40h`s&vYY$bP*##yL!77FTNs2~lEA^v$O^3DnDEmcTwwt$b9t#{$Amm2K;BmH*IX@An4sM) zj%s|_h(j^Mvs%^`%7>SSyS@+7*k}V51}lg(X&ie+&OaYwca8lSkxQWNfSJY#>fMF< z{DoLuQaM)?UCi5oLLWcAaZ2lieJ*+wev#W$d5ap$Zb?fkXUFV=VhtSZZMVl71WfHf z`ES>8^A!ceXOvc1%7qmx5X5?Xw_B$5ZRe?mzdW_yBn*kQVAJP%fjp8I*n-V^JZyqn ztP}rfG|6_pJdZd4=-syI3#1L-F(Hz7Z-QaA#e|Y}Uk(;QLr6lxJR7#8%BE05K|ROt z|0I$VNE-{?)kZCZGY4E}3sZ{A!7@v7mvtV#yhvmV8~-Vkc`u)*o>{EkPAzcFOR0Pr z^}YB>`e){pJ+&{VYt|%QQXIaK6{CbDOEbB+$;-3g-eYO{E9a0hr_)?K$M=23TbYBG zXCd#mmSfQDCTl7Wsvqu$-N4~_Yxga}l~PWxdT0lp+8MSW?bv|<-s5Mz5KYTV6r$Zo zvHpZySL$WTd_%9Ni3OlUf}2x8>4DQ6#R*Q}D0&8%)q~fM1NlU(wo7O89Y-0Ro;MbP zMu<4i*-ed^xcqd2Ep_C2(1Oz0fvs>cVT8^gLQpjbn%!|Gnwy0uv6Dr z8rGbGMXa+M{2_qOMZE3#iA93LSXtN!Li?XHRA{n~E2&8Qk+2aK_Qlb2h|&#ta}UJn zfb^BMQVsiq)vpc%%>r?#J(O{1Sc|JM9r#gPZaY<cJto_t| zc9X)kl!C;_H^s}Uez+flX)O@6+WR=ZP#2QLQ_HSSz$Z;x!Yw^uZ^FV#SaJs5>50-h zLm#=!dbk1W_R1`_%Wk%R{pB%FXK88cBZ5lc{?Wjv5i70vmVA>U1MwVzl;y;J;0*0K zc*7~w*zx9gr{#U)6=d$iRI|%9^faD72t^Dg^gWg3kM7S*ka>XmU@VTi1 zn(Njn>B1MD$Hgu9vheusV8h({DD-2jh#wAY4ZaL<(KT#x4N-D%!ADtVKOFi%t+*zn5!y=B!{2Tbm!J;iaiJY?&z(XuAm z$u;f)dV|>HXyGuD^8G8jG<~v6^zaI8yxYD&<`;7vc7cMN<$=p^2tKv5wl`wJr3`ZJ z>c@|IWme~=w&xx3dn~Jh>Aat*==-z#Io*JY^p{5sO5%^Y6cc72)ZvLsPjTki|@#0b#ucNj}_#oJUUJ)6{#3s=A>38(zdvoftB7_H4b z-(lS6OY`6>Rrd_{Z6IeKg`vN~$1Q4!OkbRE^@FOj1);5=zWtaqWwq|BmATmZ#{D8- z<*xMWo{CZY9fjNlGH6K3Mzh#k`2hsHmQjR$yc~~yQ`xd{mjpWIVf5-63}AqsW*ZkP z-TY8ctCtIhRaCr)^m)VWnY=eE^{~2-ab@nvxfvYtTUImP6bG9M_7)p0*C7ZmTC!d) zzQRE9I(~sc#KE(IR%rtV5GFZ z4YJ`1_W0_oQb~SSQ*gvbhj1MMe~%@DMmWPX*Vvaa5F z<>6p3nl?T?AgN$%N}2-dH`Ta9BhX(&=%F*Z;J$MXj{YhhZ^x5TXt!f2lHmlT)US>h z2=|&(;7bYPJ2vcQ1;mYudmatJRX0Y(Zau76dNyr9HeZoRUXj;TCibMwg4C-Z_%_O|atA+C&>kDZ<8Hke23PtM9g;MB_#PXvaEmxGt4K2zTUP#05%iTe1<=MTI zQijJS)IHC|+;IwWF!CFkdA5uO!Up!$GMWkgIKX zeGl^=v9_^LXU3_7h;~h(z^FxA{}oX7=Co}7H?{Lar^ z?k8CI>Rss@5w~+=TW9UqE{G^?n=f5zxkkpwU&C9krSob(EW8G(eNA&T>xUc4*z6!6In+g;4H>yj+-5+EerH^T6-8JuRx)Nq}e3}*fa$BJ4w z5!$zUr$*eY7T?+;(lw-p~GGVOAM&tHB91WyRt0lrhu*>cIdy#q*ygbC{Jn$wgS*@wftHq(p?OQqYdJW)g0sBH=NCuG)y$hwQSd^ zW+MT!UUG2KpqL&2@(&Cc3e@CdA*n||d`vPd#zF6ouK_-GbO!FzTY|D&?For|?sEZM zPV}SQQaNNRS1+Q&!`p$f^c_xw;cv3LkF6$-TTh=+Mm|n^{H4A4m01XOY6JX^M*p+b z$n(pojgIWreJ10}~2U_x?$R14`SX?XtAso}4j_WyBU;N<-k zTTufxbA|*YkSF84|8M7k|9+hK>!k1(4J`dfoAM8fg+D!*fB7wdHje3;paDF52^fXg zP#j?0ToD~JaJioZIA6R@1?x`dL}sT+Zk+@nMy94s4<+f5<7OQK=cctvrTBCIF+Bj= zlDm~@L7L(^Y};W6Z2IzfRjdAC!@uazjTdjt%l^ZU&>4L#-cv>;*o{QZMaR5~ay#5v zw(IL3RlK4;m+g)TQNesC5Y)C!h2j0e1ngoJaXnetz*nz{bH$Z?t49cU8#==ENU8vi z(%)t9F_N_+u}UR{IyZS(XwfanvqxQkU&c8LV#3|8B=n2pbOgPDJyTQU=qyYyoD*K-Hsv`BKv~ z0<&+l8n{*Yx`Jvhb)Zy2SdL`#eQA$~8rcoULv_q#2>;}OUrGB;F%mzcedZ7mz~+vE z8Ve84=X~>FXLAd-M_RW=&I&<6p0Awp+uO?@eQaN+ZT#Fs#S6L@4n$3Mr_C<>56gM+ zUKrh<5C+RWb+L%xns)@Fx<7pi9QH^op``*Q;}}+e zC2*WLRxJ7!t_x{=j2z-KDU|}``!7d<>~FNyO&$siFzJ^=ZEguL$5f;((~E9GqDc;+ z@pEe&$=D!jC6S^(EA20nd5i{e=@*WB&B8Q@%fhw5X= zlP+@M_(2_vj)#@0$`Ghu#cC-Y>gh7{p&e-7*gCezHrVpyFm&MRF^@L!WWM#8-D{!$ zbDm*C1naSGy`%N~hcv0WC^SXBy7x0?%T$LSX57-7>XkK^=jy z4T3SobPBP(&}Hu}5YN`08&=)T$X^0Ww&(HPigKy z-GCKO*lYEOZ?g@h1(nb2gG`s~7GkO902p-Q?8?(^H?EzUDE{;5ig;Jy1M4(EeQ5>v z=O?xO#X3S^82dA*osIVTh0o`CiLZhkdb~|?x!MY&t;A^#qzkA)B+UY2_#k?K3Y22Z zPl!wHu~rLXMh>FL)g@Bivp9nb`!@H+RpxXtxG6{fx1FbUB&2v z*@S&~>&dl@xj$EjqWlxo6L+P7QWx^cf-OO`xXoe|tB;&c9=*YI__ovC*ganD0=azB z7~P2@F%?ReT`Cm#?=HBs(4mn-GrNP<8BiUceju~@#XrT;_#lNzp68Cu#L7tVl~o)? z@&&;->f(Ecn)lb28a+ltqlp+F8YWRDD%(A&I#Q@cH)VT0Qg8}i?57=B{R3VZv+&LzYN8q zQsyzgk@Vo992S>MByBEvQ+L0@D`&8Uw-sRzY1550K%jlShUWva= zM%a19fYYBsH&AwiVW#O~S5ZbP{C0LvrkhyV=lr#0a7hg6;4SaB=8CfVH{KUz+iyC8 zB+$F0UU^goU-uBEnv57T^x|T?5x5XLOqZSOzP;+wzsf0h$(@RZA*s1S_<^iivST2v zE-UCW?Q497S?^?Qwg7w$S*lkaaORnER+@fCCJ~BWn)mqVNf55OTSr<85U9~Q=YN~* zV^C^sauRz=rXDBJBvPah_v8hxC0I$L6BU>qf|9<0Uo&CSYqkomCl7-srPS9p4)FPI zI%JHfwcXNP(>G-gxU7*)&t1O~>Y!;itbCp{#hJ(Ld&_ALqy{EQE_|c76EC(`%?Q{I zU2Ftk9r-lx^B(7+DAG0ZB#Qf_5{S(-*XW-si&#Az)-HUJU(-Ko@$kQjv6$_fZ+Na; zshE4LJZ%l6F??`-n!Cj*`LXy8^cJqop8PumMemC%JVD!vJ$m+thxww3jJX2dVOr;N zwqen5BcxxaCn->{vl?4Lc@KLpiETVy@&L`60aab2U~r9C<%&`KOv;>@`#g3B#wKuS zXMq9oWNR$N-C0hE5jTrrjd^L(=XkN{hfjf8+N45l#w1{T1hiEWT&z0wmCeA`Wu!Eo zGWZTT)gs3}I189EAj7_=Xhl3Q$d}W6)sv{0C6I8rsR`t*_7UwB_>L{ymS}*Y+7Fa< z*h@J+@7*Kno77dHvO77FsWesSw7(g#5a5(hjYc9-?tN;+lvpSGILrAPNo;9&x>O|0l* za52$3(19hY4x&k-0*h=<#>Ck4<37#bvL`g2{ir$LO$GEH^H|~D*w@gF<-hP$C{CYR zeqN|TKIPwdBD=VmH$ho+694(a^%L{FgEhIg!_J}`UGYb$C^0SfT@9r-@`X6aKQKMH z37Gg*U>`9aox&aY5bAS=^9EN=tiY*a7HsAwUnX#qe~KYyh9Mg(^MEh&fPbnqW~LPU zVJB#C26qoIF)6b0>fBA*NCx8F5nt{EBNd0?!fAiEdztg(^sTlx!1piYb zz|GIj3YN?M$`46kB*CKp^DY-J4=XQNcJQC3!C;p#4nj2C_x~M-{^7Oz2Ppjmdj0`Q z|A4Fiq`!Z`;J-Y;nhMEKK`fkn@GzVl+?;>ed(7&tfFrO`fM36M$B=GITYAegTuj!x zv4m41EJ|UJFTrPjre?J`Di>x=dpwlai5IotuFDcWwRqenNX?T8rvw&c(1_CMTom)B z0)0N+?ySIJDYrG|xaD8ce9BD<98!Ix7 z0%`~Qt-XE>$k%3{rOy{ahrnxF!YZA%Hyx$!)`wlZjTWDT<*NLDD0|DGxVCi*6nA%m zd*klG-3d-`cZUE$8h5uQID`<~Ex5Y`cXuZcBf)s>E-k;7-iKUxBLF+D_xNoYDDJT$Y+{tMtMIm_iKL#v1Ts$X*9lF**o<$% zrw4eAbndqbec|F>qgw=@3-VNnJk}U_vavl`9(BiOD>}p}9lYTD%0EQ+KH9)lI`iMX ziIXLFC@ZQMAyK~O*q0*@-+Z&17-8+PmS!8u{3}`C*DE2S6(bB_HIuTbj@*c1!%fOe z>~T%l&5O^MASwzw1eB0{NcH)iuJfilY?Tu48#$i0B9pHe(=CmuQj751dr;pt_^(MP z+MznqNH@tmK2(&@>=JsN6S&=0O-Xsm(O8L@=5*%biXD%w=aaQ;ZpYh{w%+&N9@;LJ z6n;lTS_sXG-3GBoV}p`;?W27F@ThojB5~r7Zz_ZH11|;8 zzNqx%TX_w@0V94TDS(S!2;KVXW0?Hl96}3*{iPddp?4}c*U7oqJ=EETJO(le2YDLd7n!&GxUW99|&{QlwIAH2IMYnV? z>(N&qHTESeN7Hxl$WZA@LSOP_B_2!#IO@RDM;79p1I=aICBM{!!NJ8zzKu7W48u0E zw`!D3=?%sru`2l;$wdqGJ?zg`~rT;SDXylxyE%mXx@`HXx5!W97rQs+i=Sz9@k#lf_`|DWrj_ zLfke*4t%27pG_%I!etswePuE$Go9Zwo;2lY3==ifqoYL|`%q+j^x5?Vxa4M!7m1?R zeb5w4+WU%GJ=?#PR#1~UFi!o78V$IuE-TFWTDZO}Wp=sTRAFSJZ7-#cvTMa^_wseX z>lVndzcKAMFp2?-HEO*yT;*wQ_?(aN3JNzB*A*B@07w=Ap8JxpSE`5)AClb4@!307 zU6bY_VUdsYZZ5WO}Ff?gdj-Rl>Gd$knYaALC!0c_A>2o!2#GzHjH%~)q#iHBE8BvA!9-1 zTx0=eOzw&APXsX%ws?oK;drwm@d*3QiWLW@)k#y5yihn#I*x4{b-= zj2kXMyt&DC>Nb~om&i09l}CpXoY|3SFVxz_x3@0qBykAq+jDIDv`$xVW0rfK{xsVq zi&KO}eaWwEa4d?kN43chyg*t}t`0>tt0i1-G5qnJfKK$S2%V6)AtRzr~@RE8L@*3CNNHA%(bXT(->`wL+OmY^

      Q^@RrCZ|D(*FL`mX{)Ao!k4^h8gl1s^VyMAE0vQ2F{v{FR{qNbW zynnJ={|(X{bIAVG#{KpifP-3T{sgo9Cq@G|4g4oYz<4aB(# z4g{dv*<`aY*z6h5i@tQ!QQtAhM>!OaGx#%6;sa4A~M| zWx`B=DR=rhJ$V$pQ+<>d3qmT8M-E=Au%?GspYkJOkU~uA%Zw3ZkA1cih+Kz6+#nUT z`0$KjBdr10H0;auSn4YdQTx?Y-ME~DcH(f4!0~v8!N@9+kKehVunk7IR$&G0IhQiI za20E$%K+8iC5()6c3Lv?LqR;d69$&h52;+59y*orRvqve=X#AVStJ8+uOQ!PhYMr0 zZEGPkFwMv(+)MY@SBd>2we`N$BGG1?g`FlzgxmKJl!d*1@j2*nU%wV|$_Z2-=egqV z59;txLTwf3eUzh*Z9X_>$(N7hj-~t_lFx)0J0;H?firYj0Zkz0J~qePb$-!8(>Sm~ z16#w$@OtPShbQG%oN(9=oN>`)66>zyzT4n6nP){V*>5hX`>J%lVV?O`Fy)?hAbFF~ z_#TdSLf8-y!})^X%V6*jC2rEh2JGF{LqcemGk#UH=DYJNp6P<)UdP5`@7Iv2kSOg3 zI;Ja!w}mXiWYA251|KZj9I=P6OZdc|UCj*OCc0mFsy^)1EZRpU04u9Ugv;L0tn7!E zwqcOrCm~o$pPW@S57N*S3@;gv#Tq?-LFMo%y<(M`--_8S1Cj61Fd!(T5VT$qEU{H8 zM)~(b#LlV7n|J2JlV@k3Nnk5(3Tso5rD;qnpmf`!us=<(24%s+%}6ccF2aIEqHEGH zw^c7{WJ33ogKGhdKq0#MUzHyk7}V_GW_y1!SbGy4>tKXm?z$0{$;L21716g5d`8>5 z;fIQ#*1F}7p^O>HYkm8Qoo&Vk+p3z1!M}vtb-|KgmC1XU*+jr4E9XH&Iy*t9l;XmMQ0Df z`Of&0EQ?pSHK8-OJkRjxSMiVhA4K)N>~XiLP(x{iUoXM&PlP%+BRJGE2woh?%_ zJa$v<4j8mNsW@*LjAl|Wk(z%!?CfT`DXGI_$5tfCYZQf9OVG!b<~i-tvZ#QFyc9ow zEDseLKa<=1I{ci|B{8R(Axb5hSir6nr&c9DA&gZj)j*WO!qPcDPA`-gTx{wkyv;ZL zX$e8-!t^KY6F)<5x=bXD5;Sbpu=C?2Yx(7PC#^kIhGb(0f-r~p_zV7|moKPB6dmVx zt@`ii@c*HNo$F5tJN195+x~7)_)l8^FF5{d8j}t5tA|b;oSwTv;Kf5HcFPwk@d{v`p|A&8&iAF}_q}ivaJAv%yUVVN`H<-H8t?%@X6G zsza)r_7LZM5}_0o_tgh}VG&~K!-SY@B$_S0$@x+^l;Y?j1~|q0lzwK+6@<3fns9m#SiYyClu3S~`&=oVKGL~td0al;CQ0qcv5WqL$FYaM z<~gDr>~0$N`hLQKN2*V=ng)m}#_3PPTpTT`|4e@rbl_X5`CL;*s?vH)m0T`&q{)4j zU+WRZEj>^S`3@l|1xHcV9EbiKy=w6$I5$`JOh^=vc?44$;{zHl_P>ymZm|C4>k3(Iyx7Wu?-?1TB4Bc#G>Z=6 z$F9UYV7xt}q1~i)P)v)=551$9!K`W4MwUyOe*MarBw9{b01ENjEf`Nje*e;HTY$N0 z0u3bnSih#ukwAp^U{*WBz}1r^Bndx-h0wh{73c=1qAY1k)S0c2=v-cuht@O%yW9&vG&zD~?t5^JSaHT@Vx^$ju{Tjwck;-JYIA2Uim(hTzz)Z1Dik#=^jvBuTIz2P1b=DBVRz?vvaDz9-XBncqe7D z$i1_<*UgzgabT1PPEa*3_Q@V&6TfL0GP>w#2uG;d@hyqmxxE!U%XpIB8SAIsypb;v z;BkxoUM+e*Y9EENdnonT=xtSZ8Ld1brT0ZxBs77q(~kK;j&j49_~rH0#0kPk))r6z z83yI@G;#SFn)h75vp!o!H0ar(bR-2n9d;~O1t`z{9ik=V6G8*qWyJeXwSoIR_ay0I z6CwGyC2IZ{LG)g+`>}Se3V^?EqxWW)j85I-0&GvFdTv*N^ z)^UD;O(sS&2&Lhx#o#8EQEe1xI8k7Vs*+J5-dFZLH`~2WqOfK3dPlRc8@U~ZCUBe7 zH~jsZy$Y_84Ji>jxF@{YI#6DsH63pyCQ~@B-7>&37-Ax50ZX9}7rdmJ46MjE5z0we zo}RUX0n8{Wa;NIa$yXJVh(qXiUzX9k2t1({R``%Mcka5lX9r6N`-+sd_5*=RX1Gr} zbmA9AgQ?C=-i5&^3dVzQ)xA`U-oi>5Z+452yMjkq?Vy~b_&FgVa#g+?2R)%e1i|>Z zCyApQ7tzWF48vHubl;R^*9_(2%y(=z4K|hq_!dCGS_ahKGtLFs8Ul_=RIeULC;-zg>4qhgRB_(s$2U8&Gc!$XpVoLz3g?~|zvX1$@=aqja(=1P zHdaa;{Gr3~?GY6=<=Nf0_Pb7>VuFfEn@f9Yj$u#f;^+pFewcGgQq324TgyEFk%B-# zj<5~q#FfTatwq?LDJqozvFpacZhizJw-Z3(44%1Q7lCNsN6K8s7IUMh)+IKwBbq3K zOPHa<{v;pS*h~)y@O@Y?+;w2(Dn)JJ^(vwnIu=_-rs>>SZl&hR9ua z%}{Cia^&!Au8vKpx&&%CvhrL;E%bqq=gSIBXAa&LFQ(~xGD3whO06&>Sd2V*{WMcl z0OP15ii*JTYdo1jxztz544^inu+n>(jxFrDnOttK`ltvFDNhF?cv*ggl*jyXV8C7t zLK2O~=m=;_tpPxbOn#t2v{I2Ch2cRc4H`D#PtT_KRUY*o;j7rkU(7wjSHM zg}S#mAAPnrR9Pde#qF*+@CmA;#y*m7WdDK+u0U(+>4mwu7+)&gK5&@Wc*y@%8S{-f>-7Qk%ze6lW`@Y!ZsrzkL#ju?_p>!{RTA-v)T6!Norl%TM~6oX zK(RM~nrxO6zpdlmvj>wW--4oO6Q^>>9CZSZZexAp2^Jsc{ayZFvLY}t`4j2F_veu1 zZ>KnXe;f$ZT>O6~|9_ZB|Ax`{{=#U_h5#@|A!@~W?GPnYUoevzM z@P!T=WT46Sr@)@;pZDP4VEJ7b`Datb7djOD-`>=JY~tkSVMz`&2Up4P{qakv{U;^x zH%Q1w&i<$21{^Z~_o#)x;lsb3H~mFO{Dy~beup~zI~yLHA(0Twf(ymL_ZK#7*Hv&^ z1v^tuw7)lfN`mVq$}{LVP0KFLs*PkwWnO`g>h=1TK|$g=pm$ZJ!b?gV1RYDQZR>%- zPX7H+y0gP^dfQDbnykv&>&3f&Qw~{+z>q)-OUe7)MU}8`K|kI;SiZylh5qG0>kPSs z`K@PvmG*1P!{FH*`h}EkO5rR}AHNBR6C+m;!i3TgBCo#c7>!j-?EOVKI8$8yMCTCY+=@W4Gd(7Zk{+p+& zeY;i%fmLtor?Ffa-h?uP#Y>CBi_+E)3yx(Dg(tZl4XAc;1{b{j+T&h_G9twB9-ISY zN?sqgT^pPR{ce`+CYHaY(RmXw@j{AP+a8X1=on-1rkwo zxani7n}@KVU!2B{h~2mb(_J0OCj62u6m#6A zxwZY3wr5iK-mpuui8WjHpOJpZlWLsvu&^1>C-tA*3Kp)gL79So|{t*-3s1tK7|_p$mf6kxtTAAhxE>*9yTuH z-u3MP?1vnq{0?)z)(6$yf_hb1-OP1wBP5TPB z34`#bTa|hQ6QK4*izs^FEChx9#)rfa$!7R!3kZ9UxqPzawg z5|dJhP5JPQQIh9ve1F&3H(-jQh*~&ZxC}8MUl7nVyo;E zYS!&j(}m1244W+qxPNN0-GIX&>h1XeX?o`@wt~bzxgUx(8j_ALF83o7-n`SClCe)r z6ORaPN;On9yo~MPs8&^VWAUO3|1A(}JNlwu-FW2y)VURLgA&CkJDk4pqf#O9*J9AQ zFxgsvMhQ@WPs8(v{2<$&em6zZ4>k=0tOrp{2lXa`QC%WSaW2owh|D6sSPR7W*m~{4 ztgU<@u=%*g##=qTp%0OA(#>)T#auoz?}NlR7}}riKKV2R^qx|pv)aA`^o%rbkHz*g z9qEKfx4IH{|(dGe7ZWIm@=V5Td587%@` zrf!B1CMUH_?l20Uu}iYv8E3S)$4SP3zv+R*Qjv{JYtV#JfR+}ov@pp&`<9DwY^!hn zY07ui(OnwYy*Hz1H7KU}iePPM$BZ zp~@oxJi6iPGRUkBm6mAat4U0!&=418x+mv77w}StbJqbn5>;LIU=VuZ@n;UXGB)sv zd|E01KcK3cp&~LCc}M@1Qe!tjo2$)z%;%KfVo4F#0IRZS)i;*{6_z76LmqwUscKA; z0)iDG*liP5J_cEM+Foi;deV|=1({nCX{bdU!$kc4)uO$o#=~S3)-)vJJr*_*@m(G! zAu6L7Xj9ITe*H8lN3fdA`d^5JJSTWmukoC=UCc6AtihO!N%|hBX!9M4eO!1FWqaQz;M>vVcmn zC<^^eV|LJQUuQGjv_8l+O66;mJv)@iOwd5yJuM}R|E2#~)Q08pjbg>b5`6UH5hnjn zp}8XhQ{oSY$@^Q28>rvD2VREBdkouHF}PGv6CwdN58~m1w<$h^Qnq1We~l1w^$vXR zdQ2none>NJzy6qF%QSDkd*%ZW!8yN*Qvg~9wuE?qc`ZC_bRMeK+m4;n&Lz*^l8DkR z&dE?<#aLlQ_L_88pt>NI(~vVBQ71s}SyB-LN1Ogq?6}^Wf>tqhTvt(6=aV($N*H`& zf7xLa4bDpmoxs|V%tu2`fNqeo(xD6dlYBRepva{K7pqk)rT}XmNzN^>4mBsk4#S6mX90K;hZnMP#t6$ErZk@v1jv3i8ko73eM~$ z(9>8ok8a0%xyyyoPN4@I)K1eMU}kYtO^C_#kv*5D5uQ;pZ#jKiDf}zo(%%Ke$w$a0 zUDD%?m}3$w8(E$RY9LvFsA_O9A^HD>O2KKX;6tasp;G=os1*KRs1%e?L-&`si2pAW zEGGXy(Ikj1o`njeQ$&YG@Eh~}sTTi_av&~n4j{+{fDT4|{C`lN@qZ${|2;?Re?MUQ zJ7M^ry@7ubhROL?3{c!)Ks&{X4b9FE_U684W&rBy#;@|A_-}yo0MRqvxs%a9B=OK= z;DGB5q9B&udJT@uSH#Dj$z{GgsHNG*w`Z6o8luDET`m^UCsB&{&u;IsbPqRa^XZG| zV>WMxQ1@Z<5z67P%bI4KmX9am7NssR`wbb%iwJU;f~ zRM@ZBH^$U(HJy*l7|dI)StGP~63&<&pJXBDR{%F7fN z$r4#=K!4c16u4>?wJ*`WF$nY1Hl2>z789hB-sN|MEgHFm-DGN90+sp&f6ha;}m^YDJxMyXrE+DF{f4qC3y8lU=(Pm3GfNBOyniAKB45}$N>kG z9lG|yL^bH=)-muSMg?iQOZrt4~cN!;Dp{FyHT@- zlKM6vKA!Yrt=W$rqRP98&sIuy}=;m$rR!nP@=H;&EPNTEe4M zn`YK`AGj~I(A0nCuf57PY|DDrRt(H6g&?D1<6P;6k?BkS!oI=Zo-l!?JJL}crk8WO zM2EHXcb_CWe}Eyq_#vTb$VAkpd<#d{9)LLX%Ik*DBzB8us9<}NZKXkN6(s2d>CI$l^N zg^n16RBc#`dvLW{V6o}f+JSub`BM#-m=T0RO2qyj(|ea4>takSQIaSDupErM@m`Rz zv7!e8@3!8troGd|lFNqBprSd7c+e{W#5a-O)6agREqo24r6!vR(ei=5iNb{OM`ZiX z50No<6o*M2XYwYSTKYbldN%|ZZ{>a&{=uGtiv8zW=xX%xf!s_yanBy^clbpzMX9Lx z12}lN{=6@KT455;oWY4a6yG`>OS`=M8&jc$t)>SHpg%wCM|Q$mqwKA&-ZnNmh$6C1 zOwWIKtew32@q&@e1UL@Lv4MqSJ)uNL1}>_kx(5?hMdyj+jx8a4vZMh3PjXPV2z4#R zA%;@lP%>+7V!<$*&)XcfY>YjU77>Qg^0*=}v$&QE}p&Iv52eW(0bGKVhcn!WdTz3>ae?eYlcrjxR6HU!;X>I>}Or{n6pzShrHZ)O8K< z>?VP3CXpGFjD{z&I=NSW!Bg0BpJ#OhU3Uzm^@i|N0PSP|71@5N7%)+%O0c> zwGq~WRgEevnf|LP@X~rq)^FJftrwGSR7E)ZJ#;e-yriM8Gtd%s!dQ}X)CptEbM^iM zefX1_n}0X-V|2y&=swDvMLLB|+d!N3!OKqLPCmYPmf7ckH;Rf(MU3YI?>83mr^y@{ z-o9O&h0fE7BTlUKDCSw%W53q`b$x|HVEb&0sjCR(^8IzV2S}W7m+4G;-CE!xQdGnJ*E`;mLq2s;980o!Se`mFU z%tz=$e70t`dofJ1cwFgPJBe*Uj>D7r4VCPx079rcls@b?hwJK~q7D;r^XOv(lu}&h zoVSIcB*V6L7r-agm{F&nQL_!a@vVTOrnE7MPsucGj`kGLeC^ORw~Wue$h zJ@glzTjQ|>g-qpY*6T5#ng{4wcAc1RKVIX(m+L#~ZJc{9c|j|FSlwiUZVrU`{=u^P z9i`oM1GSU@CAMrxu<5y2(6---@5#;#+3@ z?rIsLwyN#6Y~AfW`?lP|%G~9tr%nX> zC)S>P^j1F}R8>cC&S8O|!?h01+i=Kp5KU1* zFErUAym{;N8>w<1ynfie!D*1BjYvyj-CRm)?~ckjZ3N1fQ9`A<+)N&#hF^9YD4&&t z8CVC&Op=a~s%hW8iA!Joq`?z;_Z?ZEeLQ@JsUoV9Qy}@}@*q5^#!Ykuf%uwk5c5=# zvk1C^&AwbEcNG}N#xC(?f0Y;i zCtTrXWB;on`Cla3|7*_U{?n)Y9|{{VBA9YzrN!a?XLm9;8^>>}9tB9Y_Ad+re&cUi z93Cz<7I1eG1{*dA8Z5}c`THt24=)QhKS;F({HzsibeOpRSmxjcGh<*gU=5f)8|tA$ zAq1nOe|`cd*aQeJn(AHv;DE*q0e>jA|F(yllZE47Hv*dr16A1wz+rE{-G%>+CHot~ z`j2>#KkV7>aC}BkPCFeg33!zj^!b>cveWu4*w|LNHq|%V5V|F|9-xM0*)@VO16Ne#^Lr(5X;MLjI!{? zs<6+GIQB+>Y~r=A%cF@2wTZy*?kC)jF0Hz4M(Zxp+MTN}?ZESX!FSY?Y|8aOW9Pw! z7nyG(AsD0K2A)Ri3rg+uye}g~wYjcKYgLO^stt1!uZCo!y_MGv^Lv%6k5zLoUr28H z1(NmYzma>kA$W%>B5c{jZt3{gwtvD_iLtD%VO;6d>ur7 zUd1tt)cDiTTfdIk6>3`>d)bo%^T_a8wxY9e-V-!o_H{9t@TOm)(g?_~7}FThsmw;8i#5n8<0uR?2L2`^xo@Zl=RO8>@`sZ(D+tmEVitFyo|6=Zv>{S zfL+|HOz7E8%}tXjkOl#Ojh}Y`Wdj?FnvJ@zvYL&ML9IJ2NCZ!9YPPyS9wO`JR_vtw z2%Mw{eR#ME`lT&W+>nI(&qM9USJ?p+Zvg6^^#hx_|*go%(*5S>9d z0blrvML&>!w3HIC?wX=cs0%_EKMg57VV?z|FlJ0USi@yug*=v1-`aGul zxzBqt*=Xe&09tM$^g+u9jy2{ZHwH9lhf==}>euty9b66q9gNzxZh!PPIv4)%((|GW zu;{c6Xzr{Rb|lMK-dZxcKhybzr*y=sxQbb6FCP7!%hMmalXp${?Qy5*#a>6WL-0wD zr*oqjbQW28Om1vvYsKA)v6J0dC$w{5xaad?ymoL>fh=CHPKt9UkiZXRYJJaRdwLlz zCpOdP1lY=t>?CoYp`2UJQ3AN<{I1Y+eOLCXQ602){apY4*KLVEg%+nvY6#TJfpGSRy6&J&bz^}YA!C3pk0ka+{}ZX z^Kx+@7Sw&2h|zzg3is<~Rb8Hw>I7yN!Vii(ZIH*h!4E$dNUWhZ7k7k&=_}E6zFo6S z_91`JVL?l)Jv0}7v)L8<=_( z>D^b&bCNE!zlP|W4>9%CzV^4^gjEN^?msfcbdwLEilQstVeEGN5P^mfc@L4Q^enUF z*y8M9Waf|L1JuzM>*Q>`*RF>yA#-~Z#t6lPK_pD>#slO0hUh7-Hg3BA+i)}2&d6{& zWnfxv3^~90fld~~WqjdW`Uur)txL1qw2iD3+u@>vd}pjCtLYM zXE5u|a?lOqCE}3;CIXK(m5mncB0<|NZ^lrOEE?IV!4lIbRX4|D~Ko* z#E>}U^+dMbC10sSdWF#GT!`VKIA?eT)5KY;n|j&eH=`(w+hX>>)-_93XWk}b3nwho zDb_=?X4JHZ(vPNXr1OVkOL#fbn(U1Bi#l;-#-pQAv7X7Ci?}~|?Xfl%XBcPf2ApE1 zI<uY@YuW*lG3?~QK0QuN+` z4<$j>6UGQ$^J=b%?7TQ>ETg&=r{i%7Ui;r(LrN-bhgJ1LAkkB znp@^*S~F&vqK|RAQFKnqRDFC77)cU0=mj>_O%F_++IT>>ejd|KK2-tCJD2cO_V|H6bsrMf>Udl z&8xWSOVuv%W=a$`i^$Mq8Q=bO@KdzLs=XT95~2VWOgcERhpXmr*uszlkL5b5UL5$- zX!NaLyDSlE8ha&V1Y8Fje%nk^clw4DLzihJZOV%S1oX&}K0O%$YBP3s;TA?vh#u5h zuo{Af;C_}hvnbEZ)>u<~q7uFeQkfUER~*(Bw)jJ3he({`z>q^PH-Xd9N={aawMPU) z4|Q{PHEyl(q+nKI6ta%G!4UgKFemV9Wrp)U$==nGP4bEm`W)j9{Unw~BK+WkLL1yQ ztEBZk77^~bLNssXFB@~{*)i4UP5}QX409Xd42GF;w+~1D5HTk$jwn%t8Y<@lWPVn4 zF=0rwJ~g8q9ojWRPmNnFPWoBpEx1a8Y6et@8|D7O)Xe zyD|SVdpqXC_JNE8jj9?$oPbcM#w(Xz{?XIC)K8Jnfkp76NWTRF0uF@*siD-zXz7rk zOgqY173;{@C_B^HggcWxgVrXAFBY|w37y?7OPsM9`ImJk`wQ0E=w(_!6K))b)kqbB zJELN}&-#8R{Tws>)A4wWG|9QsLO_ma^Q^bv5GFY|Ljc39lg#oZH;&RjWKyGEJcTNG!S5(F*tMFiaW(iH1T$|m zc8J~NzYl+tpv&`vZ3@K^c9dh6JW{u-1V!OA74K(st14Ft@)>H*3}B%12> zQaJQm&^GMsj?nU(QvFO0QT)k81GR|9ceY>< zwyD02R}ZL*q*U^GptnL~q9|i)L7^aBHz9o5@P##*4jGr3DLEw4c`%QjQL~6g{l$3HNCujN4 zeZEQ+Gdt__?HF~)b)#@z<9qhZHwrG`y1$rPgaZN}YGYd0o3WY$i{dRh)z6*uw!6f( zW7^WFo#s@^-2-oh?C)u+r||ROW?TJuwc;l6faPX$@QqrH+(3WVqLgIH?%7WP3cU+c|$o4e+wU(_NQ~m{{L)3nkVm&HawfOoAf}E2!CEr~5?}O&zvmBZC~#5j@6UwiAZO?M zJ@<(HWW)xMYXAuTs5^oGR(JmAknz8JLjOkN{!P&N_tSf@>)^kdX8s;w0)7Z`Zg9K& zUtew zc@!+k*|1I3HO19ldTv#`R^*f~{=W1~;ggNr6VbfJuJ!%tV((0uAd&3Y<;`*UPKQ5L z%3*aa(ADVE#u`%2-3{OE+S$tEMaM6##Z)i(^1x3v1FMQ7IFj9x%!)suV-5!PXH=Cf z0HoE&2m9b)KjgnTsLa3Q`-#3Mu{Ilig<&g@1w@1S^t6~_=~pv8at{ zN}9?-8gN1}x+j4G&J_q244S(Kj8Sf85#PZxNBIWXb03$}Nb%1SqR49K${!OIcxyx2 zF+h()HqzeLR&?VSTcHfWH0Mry zh{4t@{@#G}%#=lG+Q3$sON~S@hQ*cM2AEPEtNy9VY}a^=u_`!O7-Bz`z9rHEiB)r|$v}XCW}b zQ78G?`PxtPR1#AR^|S=;9YkgIYQvmZyrzt4l(!~uQGm?Z@f!pu7AY#sS4X#CdQK3} zB1YxUZ7Tn0UfxRb>4~J5dI~wL;RCc7r=iO)Qhjms*`4lWxWeZbC95O>DIuRB5>e3r zm1&LyQaz5}mki2SM0-1keV8CcUCw|#^QzD-w?uLFd=Z<3@ORNHTk$_=W5B%;$jJT` zQliD3w+>_p=gGkXrDucqTV&!WqjWF}1XKn%*3Mmr%j6?xqxq{UbE-fViC}0xR0#YR z{dA8t>F`pQQ#1ZH%%q0YOtVAQKBRXL+Nx5eH?Ce273w$;h0b9~Ce0jVHQ7M<@Z;{X z_x-S_`J|X1%fBw`eYtZ<+^-ry1RbKdU|F%iz*T=UfvF}5p0BZGV<4uB_?0_q(g&u$UhBOXua=D$KfI7j-J+=Z+uKzmMvHK-% z&m%Xxq!C3!^j`aV*?(EmabynoIZ(%x+zMS)g29~v#iy#}@Buq#0yT*~AyD2^9I70} zn6v!RV@--_mY;z8=h7W_f{Jm5sz)tuotd3!c~toE_B#kB90XB3J_HOx#77MR7>Znv zZb*W7=CmhWH=}qgRh@gF-;N5y0&?ph3j`A`3m$n9Qi7(*=Sj!a;;-}Xl|X8)0ErLo z_Ou$MJtGP3q7=J~n%~c$4tp|Exjv;NAS3kw2@1D^f`(m$(8d+|zLnUo;h^W)b+^FA zOkO-fhE`}@QTA`}uPR}FqHvoB;~F%UQ34gn z@D@86&keZ{IgQ48Ads+1KrBtJisPzv9Gh_uWKKUSCL|UwzH)E?7oB4M0}`DV4>*F7 zs)XM;UV;*liMhYP{DruGpDy6mT+qA#Q>2dM*mDK#mIm-dwvPUS`v~dVi)F!VTu7eQ z@6a8Lb1oOK>L|quM0-B)dl=Mml}F?~Jr25QXvfoTM;9H9xUqfpqUFZy9Ion<8kLqm zp!jgy>IeI+Yvza>#%Nf$gnMRJ`LQW@ZwSegE*lAw_ByBE)p6K#gCh3xk*cB1;r{lpv;YZxYrG?vNBGfg(Wl&t*KsbpGbh~l6xL%8n}IT;gNbGnRJpqsAj+@LaP@pdWzIM7b6 zy-x+kFWla`z{uzaxHmjtwFW3!t}+ix&0{t8(`JOM(8I&%lzCJE4cpIwZ}vjs_<7R1skf#(ghL%JmM)ZDIbbbD{ybeKPWSDj+E z6gp$h?$eaGKX7b}OysnXzro5b0V}h%phF}iV2R2D1isaBv2X6e*s|$W$$l%e={&-`XP2OIbc8JHh+Yt@4EIh1^{C?|05@d0Ih$8&f z+UyQHa94GZ!#k|_@>|auh&z9=dABx}e16a>YVJ#B>sRqtQ{(5m!6IU1$695)<3U9~ zpL3mZW<}imAL3=D&mA^>#=cvwxY1x^A z8J9qS;d)upa)ic5T&9C2!87H+;0+Kyi6Pb(a*`>G>(x5Z$5;5$s*ibBxy)8O5QN+A zJ=p73`2H1*TtTGB-okeUrpksIi{J2ZpHJ~qE8tTlSIV&Zv=tJJnDhCl0*#XMl9l*9 z3BhO{MY(Ad(IBs1QvTR{2>i1Jgw~>eY5z^EV}s}y0H`384LC5d&hg*;tK1y_@~{3y ztb^hg03^vZuXG^1IRF~$Zwebsnr|{vg4VVHXj*?>|J}gK&GVbm{%@XCZjOJLS-Cm> zaUCZo3m6Ihfv7;Rm=o`Rx;Gf3CW@isf;hGT*tmbco(oLJ^RV%N-fsh_|FOiu$H&6K z#{*iQ2au(bLLveG|LafxuLzcnoRj;%Fe@K7IVZ=zUx2|j$8QM*n6!uc3+etv$Tyw< z&_L}2%;mdhldc{jK>vtttfWkXR{`Rs(DA@~-PEfKPWIjrGNlV8z<>V;;lQ^@x(vJ*D*&rrqaPM%;cSdLN*zEPDBLUPJpth7+E+RucL`8g1 zT6cF25<@*Sb38CBP5;_0Fb3kt`Skh&eZrpc&&7k8w|H?fUMy*xU8zKmYlcyK`~VJ8 z{z$iXZE&HteDW~^(!3RHVvB~WVZ91-sp4uL<05nY$QlVr5tH!*Z<;~c9?SYSG1kZg z6=k%i+H-MzOD8IAd`n+_4(ZkeyhtLC|k8kflM|~Qj2pPF*r_flq z2?IyeEbTzphu|X{#f+kn3-zpHL0I`yWbQdLq_$q@9^hRHVG*P+UsFk0;cZ|776#6D zbt)txq1ic~G%QwiTg2EXuZ$*S65LrvtQ9|8uFesA^*O1Qy3q{HY&8ib_a2I74d%#r zj{8rvR?^X2q%kgLpeu2L!PYy%U-kI!Mv_?9+~{R00MjiUs2l#% zq5k()`1jN1w|)_wgM^cf_0I{icA(~#ll^y)5+o-m9}s*C1{0hGh=#&U3mDY~1qJe; zgM^F|lYKpi>tyT$q@5qlS#hAW=D8&YqvGF-Nouv|W1dk3vXH@Ljp3-e zI=8l_k3nV4q+36?da*s910Lr4nWGQN_YyH;df5xYlRgi)rD!e*ksCLLp!#)rmsp0T zkQ5}YX4K=7VFw-(p>ch=n3B&lw`3I$Mh~IN-Y@*devN2!+i^~fy6w}o(o%XfuaWf) zM`$t-D-e#1w6!jcraSWf@No5wHpBVFd?31!!UZs^iH--822mf_3pmqwjf6j|!OXyr zRLD_~ZHR>5eqYySX0H2Q7(*vm-*#PyY-w+F=1}&#m7-P{t(0YPiyM!OC%Qv*WVWuJ zA)(tC-(j#@prGkE5%8{~m&;{kO~Jyti%=``YiT$`FA5s63*%9<;5FTy)3-$P8>5?m zuRK)-;?YyW6mwyZF@PaXYBBL)6^!!!r$ncaRIi!$XxO!MwKNeO#aB;SYpVGds%M@h zk$w+4AuPr{rjxer>ATy0Yb|fJ%eps&)0qZV=1vYbGbm#|dZeHg7?JORAD;X)i)cJn9(Zr-9Sxw8<{(vQuyzG^%@ul>w8N6oC_3@VfM zA0#byqmi*GM`!_6RF~2`wY3b160V;Ep6Ltst+y${oEz2s!U&A4+mYLIj)iYKiR^G1 zt+-3ACqu17=TE5Kj`A^UU>hw^_!yYa%p@d=tHYnJ89*d(7^L;SkQ6=6GIS{+@%L`p z8|t4NE`NlSE2d-8YP36cf3(IDEJNPDnZI{_9sShc6m`D|{1afk zjVC3STQ2j~7vHEWg(~oZ;cd{0lx;-M5BBdp2j~(t9{YQH5>BV&Z*rfGbyHzpLt#G5 z;*pR=`>xHK%;iTX`jA*~eA^V{MRO^Vvy)g#QCYwh<)x1>rv1_OmPd43YyJ4pP0(Fv z1Lo_-OXao&U>!s1BiTDB_f8^n4I>5)1ATi93Afk|KM{kcXoh&%SOi6y<4F)e;F;r$ znITov-ie=789bPHu8DerOsvB9aXQL4Ty!B$WT^v}39XzcWPO=WVDE8um8~ty@n8y_ z)QmMqhAMO(n2I@$Bb3h6Z!yV`O~T(1%s!_+XeGk~0LR98e@*qAXq3E>tlDDQ6%|{6 z3l<#DQXgzXM%&CVd0p*W`&kVlzyJ#Wc}?CT{$8F~zo|#%p=V2~1SgUEQ%yd8ar-Hk z`ib+jrkB&_*}RpxZO34n8E#t=BjH+}T_TPKpn_hvTglmMNpZ7$%0(o(=K(ybmFgum z7$tuhfVQ>5Wm%?@!3TlmIozyqME2(-ut~fv zY+_c;_vyWI;!T#ojKNfbYbCU(XpqQze~{);=2AgJc*|zAR6yh}kDHS>gK-vzJW-B( zhi34KNbLKuhh0|e?&R(P$b`?!;vpl06D#jC0!X6efFmF8>b{pT3>+l9k?GEYu7`r9 zRh(=W-+ngC_2S=Sw^KbwF)Rd1(o%XWvEd1XAzlpS_!(3}UE z1t3DQXRBGqChond2SEpv(Uy=)rvfKHF|?)$9wLMSt7+%WKDc)oW)NDd3UuV^j9IxP9!M_OMG z{8P4Rhpkgh@SE%|&X2V*(t_Q2?}qP!sR8h!WT_D46Wx3^p1uY(ZSjFIhWQmH-^Xl~ zJQW^J4qUy1_5)I2BJnVxU2fqM>J?7?mBkh}qsvRaHJT%;#C&lqZLT#0ED1nI=>qlLm_~}k{h@147aPw`pnfAaVGV$K=Ek=X56QD5c19X zF+Ytm0vm05q0shb=OQFch@%g4cxr9NHhTlI5gl*W>xjtQ?%qJ&?D;~Lh2t4|+Kx7$ ztZ~eUfBT%KtqsNcdBCfnI~W#f#WI0%w5ibh`~_Rn;VVr?^vUILEu@FwfyNCWx7f@0 z2#ngw)}bpQgDLq$(*ZTDK*WsW7P>i^YLLUR7^SBVyg_^~xpJY|_q)|u8eYRFeh;Tp zD}#rYXZ@*mxs)O(5VrBe@^k-YeSY(?NMFQ&ZAk1vtkLzx4G*8@b5FO~q+%QmFHStPSNHiwAnx=y(2(}N z2}&sCh`jc3x*K2J13Wg5C!G%nU@TTrBZ$9*x+`|)&Vx@j7GZ^EhJ0>o)mmSBvUI=% zGrnxOWPi2n9>J3*>t6dn6cQWdMRYUy*4Q)KTdNS*Buq5udgU-qBiER_fQ)UIzFcF0 zx!=7XUL-z()wmJcxh#6#uZ%xtIgf&*@k8kD=R+QPlT^mq9RUBytA3DJL;M;IYW2&3 zd}g~c-~4h51+MV$l%rE^?D=UaH#n-0b;B#U=Bs-ZE`3C=)N}oMF5cC%*}>zm@)sLc zX-P7RM!w?57XJ|4i^@;r+=~5I<~WM{j|`5F1q2Gu3G8P%mrHA+r zlBj>I*F|OWRsgh5AFF3V5HT^^%T>QNR1J=+o`0&NKF#Uwe#WCcw}4THLiwVPmPBq> zz4dT2+YY|x_mcCcM|tzBM=1|r!omX8;lHZ$zj_o<@M=CW6&2_2L{^o5=yN$aejyP5 z>?1f>6E4E2FgSko5Pu*4GiZo-N`p-D3)kTIPZRJTB`y~?2>W3D1AgcM{qJdrF#ffH z4Yc7mBS+22@k_h$_tk&h^Z#vG*myyMhak}gh|>f1-qWCC{e3Am5I)1h&IUZbr=b9e zTmL!}B=%)s!Ul3Z&|qNxYl)Q;L_-2U+tOhG$Bt=`5*U;JhEe`|`}3D{_n+k9A2YDu zF1H}L?_cVU|IQx%gBHa4b=E&Imfy_cuWSPb;0p{b(jV_wb~cde7{m?I0D3{*vDoSUg?{n)AH}7zHZ8}O8SD+J|f)6=Y@k(AGd&Sgf*z@k* zj-GeDda-;7%&VmHe)C=%VBzhxTTzyh+w9sP1Mi3H1IPL#tEtBIOIh6aC^P5x$ZcwZ zNbDK=+l3V$qPq73MWw#19H>1a1mdo0~CYpYzHt8N!&% zW|0@vuz#2qOfdD4Zaf1~0GUy{3~$pdqAlWgROY&?z6oc3)zMkeO- z#sMcTay*5;LpztNIrDrjQBE$I@j#6mo8l0^E70y^unB)em>g}!Eo z;@I>j&Pdr)tOMp%G{AQw$0LqGVWn9?p~XDw1369t1g|v4m7mLQzoscf#3(ouX6&?b zx_+>{i|{6JovaV?tK&qjqwli9UTgkK7rFrX_s0M%E^^mEYE~e=0NNAdZT4 z+g6`obo%s3*I?+(=nGPJ{&XuP*9*ziHC}OLc7>KaT{zWS1i%w+afY8Xlv2i32c`$zUx7#?G4LeH%HZD5}$9J^iqV-~dSM}Jw4PAG=Uc!8K z;RgAy;XPF=HUow{IdS?ZI@_QAFJh%BZ4EsAo)6uyT;l3CKIku+7+M^Ny%5RzAMZ6smCp16)q{pT( z>r0g1#s%rq*Jbi}i`JvVpVX1#dy7lg+F|;>&g+YTP*MHB%<=eEG&wkYBj7j_buu#7Gy|6(V?r2vt22@Ciy4C|7nPUX^kvc@A~zU? zMf~$_pDD~!`JAUb#hf`>+QCSRGxp~y-H|%UictUrD^pg@&FJcf1(kmoi)v7WS}w>twN=75+%Br%*g4gmjyHx&!ZyGv)JJZ&Kbhr*iO680ed(qw zk1z-(@AozILX=+QB?y_D#&SSW&HQ1@K|&7r=44a~B_Xv${S&?CTi*gz!B!aelFg<(AP-Vf z=MPi9dn2-zmDi} zEOT!y8r88^GgcM;UW83WHNk@ZH;Rf-!~R za4V&nbjpDn;a&Q97)k}VChsB~0W2W)V478U!|`qxd&AEHq4IDkH}vPk^R8!CEX(?D zBIBUyY8J0)Xe$lc^t(C>vxL1(Spx!(Iu^0?sA0vO_3y6enDMcxx#ITN-O9 zJf>HTgG;$rs;BX8h$?DQMwXL1Y)sv=Gq6Q?tGc+nI_^XY=ucUSRi0L+KF-g<{7 zge@?#s5}rADi1RTN_ivxh@dh{AGV9v3{jNkuH6yJ_3%SN3+I&ZFAj-}?5&|Cxf0!j zgo}CCNuM`!^^Ambb=4(_B0r%3loRELDWcs?ymAoZO|1{+S)4xRJ2y^X*13HD@%HS`IcJ zLR8B!2>=QP1-(JvNy>4;k}cE1+$!>BPG`t-FDSu}$~zveVhK0teHeAiA^0)`#&7+c zl*#iwG6$fz!OFJ_qO6`Mw)Lmm z#h|A$ag5R!7OO$eV1h-9!ba>eB)8_BnEyekxsw*AP%s|!HJlmz9iQNOfQI`AWyDj= zucEH0hdV|ccyxG)Lfy?7@<=G^1E}-X%LH{i`e#VohAhbRSkre`wVOK?lq11bh|^-R zFJuG}1s)WU)R6!iM0h)rX^jh#*IV3!U{)i4vUH^Az*?#uKYHCCyd;bm7{Y6gS(-Ke zGDMTtv)~!pJS3ru3R2p}Ds-bt)}<3WYT#-6AYA}Bp9keN#7U3?iiPF@mcCj=>f}MS zTA}DqpZDO-PU+y_9cTyK&!NGbY#3P6kyhJ_m(*VRcqBy^(FtT2oVV9MaVgIzX^Bw$G~#d%cAJMedI>0YSV9KOeDM{X zFgi-Y&PWj7NBXJ1c8_Xr6=<8$k%^*V8=i8?m*J3K^E#F_m6Yeq#W$!KQeidbYHwn0 zuY3I&w?I})KB%JT!nW1eX?l zRf%H?fR+~zc+ona+(wiqb95_XQP4?xAyddIy-T+>JkTHl_3_^#S^e+i+uwcVUrqym^`d`uoc|mN_^bQ; ze@!K5DEF7O00cXz5AI>62k6?=EZ3nupBm)&On*^BTtg{5t(8sq$X4F}r6F}};XYgD z8VRFSUN2u3l*IB1(-Q9Pd zZ3@Ax)yuK8B*(#}fwc4Qm?dln%N6qCRTRt{Shxks#Oc?OpPVX)AC72r2z5NxtPBlZ zovNWt#9ImQovc|?;Q+8-uTA^Ra>~6BAO}qS+YT|46SH7H@KDE;B#@UJS$odcxs!KnLRn~*R|07%AIwc%w2kwTTkLmI2kEWahQQ{ z*cJKJz$XnT|3&+p`%DbcbyG=iq@ilM-<9=3ti4O8n*LS(9Rq-gscOK7G&}A5!MRy0 znfJ}l&JBjD82OvQ-bvphXAR(^vkUdgwUJ*~)lRK$?~!ryTKSOMV`W91tARqzwzDMt zaf7w{+sXr{4}uT2yRFEzCnBmM*qKgj9eF>VR)*sz(W#fsuJdxPx0~qG4pJ(Nf+g@* z(q#Rq%(1nH0^b7strik&xO_i2xT`m2Fb@kR?olMxM*_-Z(*ymci4_%uOSzWaI30)_ zh92+5Z>9;;Y^{z>$__{4qXIu{%9Eg0nZviptfjQ1SoIYc9J?#0rYGMJW{q*TkGXKM zlvExUH8EF9ofk?9pkK^rCSE`%?AG_RV5>^Lv12i#XDI+|df|Xe7@-weeEIM#$CBN* z8h@H8dcfZd>bQY6jk`D1F9~hh;na}J15Qm2eyqZgLEc4egj=i9WQ$7ZLa}yuUB20J z= z&uW`h%=#g~E|KGBfVSA@ROB>X5Rv@r`^ad7;jeuJ``Bt2+Y>;9;vtPrwyNZw@1>l3bmtccjuH)T`?!Vel$ zSn)%c@XVGBhNaiD@sg!KMo@08Ed%&y*X@isL)p-6`6k}e1`c)Ul;C`71v`@3BsvY1 zETGW?n0k0BOuD=(_f05P5s5fQ-aPJh3aq?tR-&vRaJQ90Socc1YT1%&ax#*CQWhoO z?3Az^vxP01;=T=oIX?u-mq@Bh0THHoM!1Kk zci8VHRf91?=IH1k_VH5sFDotmFDtF$T(wRB#D|B?;t++R=D8U^XFslUPy}c!!=!z+ zL~Z(vTu+qUKzU$<0pR{NdUn)puYVRq(;CML=?-BdC)P~F$wS|AG-xGZBw=z6n8+5O z##GuT6rSX_>z2Rpai<9)+<%V0ZZAIcbqT^m$1C4+?}ALp`C=#|(9FzjCTPGpCz0+8 zz#r2yZmE!oecj0~>vAbBHo9InuV)vlZ_t zia(sTa1X$Bcy+YJt{Ao!MQL-8&Ny2JV0UsD^6+nAnzhDW1+sLex^!i``DoVWfi%Maea0$ZjrUf*j zAnl>_?uw!+TP#th{ImRo9n$8n4C>RJiEBGz$^C?5=P&nq4^au&M@Ez)lsWkTwrK>P z?)9+Vo|rL!_g2A1h{7=z)Bm(iVL$;bC~We^Y7S z$wOu;N2xd8D~qo{j_%W5G#uuM(C7x8+mQZk=-D&6E}VT}ArJb8Sm-3eB=$@J(&P}y z!6n_NNh?K%%>ipN&T7$V$Km!{zdulD>Gf{^*qxAd$GYU6jnlI=q$)GlhfgcammAY7abo>MA13- z71%q+hrDV8)k@Wq%voN`_^=5Te(pLz0rc#NZB?iYESqXXsdE|R`y|Z9)6;YV2-^#?GmeRrR z+PbxumKP&r;O_^_qv61Ee58%DS)V-25eijZW&1?a-h>4=aquH`*BA%CCn%qKFOonE zpMB3NvTRyv+otmqABuw=-g4ka`RzP-nzxO=d4Ef2a#2I2ME8$r4*+`w^OA3Gyo~NA z$2jme+`Qr>E9@8g;5h*{U~+H)FcaFCNlOTL&Xmb1Aqc(h++k9EIqmwW9gUc_jNJSM<1}?9pXQS@5SK_i=@igXQLtF zcY7B|O6MPJp~FA0MSg_Ic{O)?zN+-XiK$g2|9YnfVV64>9>$Kmplp(o4c7WaN*o^U zK+jw@P>-bbU0-nxn^Sr;JNBcUgEX;Ks)_*8&-ocr2NgLsBnp6_;>SYoD!!+N!un{- zYE;FTr1VKKTtBN@w!-7JV@kAn)vw79u3g4MZG=)2ukJ!gj)?Mbx$xd}3J%p9lW=py zX6GX$2f=K?eS9I`rOpxG#dT%|`On=#i)c(0gco3BW1&+-mRNJSwd#L_&UeG}O?3Gt zw$GkBNi0Wg5`hosdzY)shJDd}YhbRAEjoU)JBz^e>^ZA-#VS_iLYOC1&T+Q&x-f>v zSZb4K7K+4flSZ23VoxE=fM^**BQMvoZmCU`nv9c{EL%Y7+!G0%axg-l!ji4}2*k~O zrIlLkdj7`IHolLmS0`O~D1XXU6DJuuvzO8;Fzh-X+>;6b3m;N+k25z{VlQSZ$^Yun zAO1*Dio^3p6Ed*%2$xMA*_|q2j}BoRaaU>MUd4ZX$61<(69*4AJU+LZN=AR@rRgSl zd?`Jn>_XJATNl zCR&~peJw5k({PD|%B(iWGlm3u3isB9hT(7RFW1h)i;xIC5-w#{t7g1{rM{U}OMAG# z{}?Pih}Q2{oX6)1dbuy<0of2v0`tvFOBmi}i!0WbZ;5^%j8gm>h=&ewpIi!uo6^id z>*yx~RE*q96s~D<9J!%A{{HYv>Rmk$=>D4d062r*%q*I>Ite?z?;$%W8Oj_JG=HHY z7i@mfyhhQAo^bU~2+Q?18WnhHE!MX?a`Rk4LBW?<1kEqTj|r7cnWViN=-Tql&Wa-> zIGnUtf`OnxD9I5~Air)j+X_0qU%-NdT1=cOY?B=%niO==X%a5de{3%0*5~4Nxb3{) z2UxeI^!a4)OYX2L-92K3ZrD-Q+C-SL^uhP3Sx1oYeu>=C=3F}2TePA~%A#}7kdf%P z6H~TmG*!akVQ8;vmWL6)PWr+1wMY5n1M+|cq;#{dSn+IPj0NAfN<6G#9^x9jlL?y7 z+Ml9wA`3NYZ@Lw;M4no$fBK&dpFHHxJOOeluw4bXq*Z(t-gG>c=+#wF;xWwxb+-zC zOo?)szV7!NK!L`36FBWyT?lE=V(BheD?EzRXJmI29CFbz&+W!6s2iKJEi<=BWu0Ey zr`9bZ7G^GZ#=0t3c(twxSC9Fcxnh;T89jLcNg8G7iHx|a%SA*ZX+ED^oyBE=nE{Bx zuyzT(wIQU)2&hKjkG_Qo4uIEIEIBS7KZOFtPm=J1C&`nL5qZ?8Ql*ME(^6nm+5RNp z9{yCeIq~rrkpf+l{Ly&F`kV_>l$S8${A&@Zk@GY^YZ@Z$#^B^t(Ze^Uv>3mdxr8h( z{ODlP0p94EZXf9YVlj@d-npVRWJCZ9s@&rA^5L7OJ;Xi8l>yb~D|I0Ro?hdRp0P(_ z4eO@#vx+P6f{2Y-LzE?hGAWTKViUf3tdL0;xHzR%WD2ByBd$mAOg9QT$47L9u!_VN ziEsExt|jsGiFA=FEs=ni-LLH$i5vF}c~iO}jB>@uvD}F~FX^l1Pz+gv}eS zX5}$Ji;2LG$B%|HsQN0*tOM4SIDFbU&paiLx^2xo((R-8bQV}ELO`pd+4jt6)G@>4 z-fGahMWq&0gZ*Ikw=!xB#5&=DF>Ja&%&(CW5A8jsI?=*-2*5A9C!%w^nI29oclUEG z(i(>(Yx$eRL{QpB5lB;O3f6D|wAyy#Q9bms4-5+3q>u-A;E)HHM4$utm?}pzJ zf%cC*&c8RYu`+RT{AQgge`lHg6S?^JUXYX(6pI2wi$(QsrNO^;a`Lb;v9g2w4u4?{ z8gg`K7=Pay=P#@Q_<0ND$rCF_hmQ95DhD@L0>Bg-Sp1C^>9?iNzpf7Q=3(LiG0wl} z_Xb(I|8);LHwP0Z*YDp20g~VTvh)G`7fYYNga`l0Lit15|NqHl|4Fm|6WRD%d;1Sb zf)xK>XbA6r)iJPwyuH~$QsUop15zN72s<~+ALB(3DiXv5GF}ADH2;}l)&$KkbD_39 zYMj$RvUdM8nbutrm>>y*aSH%jBrugjhT7kh`Pg*uZTy^6XX%F*x25)usW;D4DErkY zqE(;}X`nu{%+r%wtH;AT7YW)r6}H+n($TmAD2$59CJ|z`m_=tv+Jwa@Yo6=b-G=g} zI)Y^S3bR|Cc_!XbzeKo0!(qJCmG?JdNoH6OF+ zY?^*Vrk2qhF~L?uP~4mEA8wO641I)a3PTU(I9?8X%|3eyGw5dm$fVmaSxOLPJewN; zJsQz=5Y)-|#B?BJ7#Y!q>-sNwT@uZ2~lc8lu$!u&NrjOBWjYF*7ueJ7+;+NkDc z3TzVpZ6%T`u`Ia=P1Lp148?bO<4$sgA^f6P(z7>NtjMc57qqB3?f#}~28KrK&4>@; z0ZzOGC3d=tfH8bYtOV`QS%Hn-NVj+sddOhe;^R{1g~QYLi)fm& zohu1kL&uTr1)SVIp))0plv~VG?{{Pb3CcJzqy(hck0y?OD}vNv{GPr*tV5v>EP>xM zO;3f0!uu~pghe1f6(^|%8JOIBxoZz%AQ~0|3=mp$)I+DX3iKN5+$gEoDT6QLLQq;} zP~ogg3Id`)@ddK(GXAA7C*2+kUnh83^fh~7AW;>{qVZ*WSxq{1bGnd`oYQC-Tj@!}ZdT&dwA!ID@W2o_hG8#Z$%5ULd(7!i0Yn77XGkD70aZk?9 zO_w30FT~Q@*vT+C9kOjl`cU@KAcq5qZo{1Yq7L-MDoxbKtT`BMD;yd0c<61d3mm@q z^E9opaVO8jen-Z7@+3d5euvNaDs)(Z`aS*#_$^1T z%Z`8}ce^d?yr;ZawxhT_^2a^sy5Ivx?i8OJIS86F3oOxSNYWn-*VjKo>8^8w*gV`J z^uaH!Ax;oX*RDEhjn3ai{kY@ebscjNYzfUqQe4+eFq*S_`eC*9R`|wK$MuT0k-sV8 zF1!;v{T#^7z#tjtQGD=CC1V@&FiE_o>ZJm(x9Xk5U?X}xKBc+G6x@gB_9~P4F8!=H z^k+m`5O;Ixtq|1|7DMqv6(nTjJCVRAm~C(5mUAS_Vv`h zvbK8KKMuwojl@Q(XJ)U!Q>9~$Evjy=QiR5X5nP4maMW`W7i7HKfQ8bL@rcnUC_u*m ztn&JJ-+OJcn3M5} zCh!~RbX*~OdS4QL2&;`!}vcH z#D7gJ5zbem<*svxBrr7`Oo+4f1iN+>(%<# z3;lmG4gW_k_z$K6x=!bcuvz>aukF+@nwX^#zCtg)FS@!$Qj83lex3jr8-i5?S4@uxe``0f}O@F z2$1Al#J$FXZC*U<0(O_9vF^OSyicRtJ|;aAo&M?_+r3x+}Rpg+d>!oQoF; zD7HP@bdT;bpRBfT7*I4oMm7fnc7FbJcMwi7-cF&HsA_!W(A9$7#iLTyJo zxMv&*JX*|W9+q62xvib%C2469I!@G{V{N+QXeK@TlnH;=Q?&y$zb@ZZ))VK+F>Q-1 zr;I9E?m9=jb>`x)x_2wQ5_nvIRHv;u^jSI$9xWLoZuiP~te%zJMd?-moTptwP;2Sq zkZ{EL4YbXnon>&%n`#DuA8l@|*;tZtVl6bg=Q+d20_cOM0io43WRFoBd#e2)mujVTlPxy||o|S4GxC zXFsIZ#0qWpL9?gf8W#E`KeXp(qq&3Gmi?wB0;u*C+h7-YxtPlr>5k~mgL3iX0A`5& zocsezsS_l2bTW(T374($`cWC!1)Y)DxKwv6{nl?y0Bq^;&%M}Cda$2cg}3FkPL58I zV1?%)Awor11P8Xkwq;$J$G=)eyYTQLRxzGg$N0QnS zO)1AD5U>lVzX%4}xpl%74*hWzIbuWV|sA!B|7GeC-Q zUdjhg`Rgm?nW#MZfk{kpN&XZvM5fuKugs$eRPEnl?Nr5C8}$p)s^r0N{7v2a1OeEB zpxM{#Q-oVj_Vqnznzrm2QcfDWrxVS){tl+Ky%PQL=mP&!m1*gev5QviKvm?#T~EV!dP4$*z@W!T(e1}`0P5`M5KN;;?* za9vQE9}G{QY{$%B?Ou0Q8|o$;N)I=KqZ`smF|rzeHo!G2c!H-RM_AI{?1ETZk}TkA zM$lc0PF=DRM5&2N{~%r)YA9s?^zpk9$!#vvC#d=su~d zmWdX`Q{Lvd!c>N+;yo&PIqLvI>`SHVXFK+b0$8_>j@_5sZ{N@bUQei>liu$ey9k|| zo83~GDeIjKP$4lEk`#PK`cj<5*)xzw65m0g8|)JUgraJCIRfJ%nLyZ3e-ciyK0Z*1 z3QE%?B?~LzbX>i|$u$`|&xLG3nYA6UnG^A_-6yJ=dDEl{?dg%b*45Jocjth?Ob>8{JaVP`_VCF^QRaL*98?-e{7w3{wJQq^BYgX{jb#^uvMFm z;Fr?-!yh>~C=_k=l`g9poHKz`6QdrqpbZYZx1#%FRRNNS|H7b>_5OoFfy%AlxW)eo zKm+-l@o<3fC2NqX!N!{I-xkgs9NbJSY#^M*nvUXM7!e0M2*LRk(~b#Tv8F@+mo+p8 z3l9?)8!*nA4ikuN^FIJ4c2+hJz*MyXg8@{qp~Lu>aWoq!mW_*-2k2%)NAa)gvVlM| zHa1|z|FXi$&BOx&t$yho*^9U^d~n;Aj*9}dy~EM)(hnE9)! z{YOy>l3x51KKe5y!@od-3(XBGQ$d=UCKxtgatIwV@JkTW8%TCG5Ii)?NDKI`ZTCxr z@#5FsMclfdw%I%&r$WNW1RY5t^O+u%1c;)oQ(r2Ud`s~d-)yjsi%c7(t<`K7&ukO1 zHSB19H^SciBmEI+{b?I3wjJR8co^k?(0nnXW5w;T?f~CN3uU2;m0lkuPXEGC7glmmWW=MP@bpn=R^j-Wunuze4YAH}5T>)#4?Kaw(( zU1-=Y=LjXfvCh^jM7CZ|bPB8xPW~oKvsWO7+nLCMzu#LsQG4uts41V%J%W$Q>;vdW zGDwkQ)rj`>)5+-e5(K15WD~94+8kQXs#OHSZF7mSS444$3^veN#@&lGPN=e5&6vLt z^gX7nTrTByF!1$AN@Oax_~1~sHR95|NNn)@gs@Jqflu>=_Kd4NG*cQ?#ec$Q+SbqK zhMA9GOleMzT^30}D1vIH%a4$N6v2A(ocp?T!-wH`mTeE}mI&ZJ^wqC5<$8KVvw4y6 zW|-nyK9F#x_miJ@2}-XK9*-x$U#zbOK1D?0 zaiMeAhMU+R6`^rN`9`wj-DlA_aDx<%W2E4!B&trjODj9Ow4`)uVsCspYkc4 zSDb>!(Bz3pO zt}2~SzV12nw(@KV|A5r-dqa>5FB}S~3L`Vi#T)9BiO2$>P~MI^!9Mkc6y`wL{Cb>| z)5l939pQ|@yStU#`Cz6zvv8lny94r}(8E5U;5+OmxQEl>$^|{WDQ^sbxPR_TnDs-k zza>Ro!W}o@#JNc2yt_W9N%~E6powjN8?&qE3>-HpGL{288_>wDVJvaJD5G|C4ujoN+(#M4|A-^th8#1b0fROxY;i-i^BeqeUGw)8lE^8Q# zFN-fKD5#7&?xy4`43Xr|#K@btu;n+T&1lvRZ;RydVY3 z>HzwJ^RD^Lu%6c__a?mAlC6vtc7VF0dGj$6sp%ub-jyVqdg!g_t@mirgKKsy)rn}e%+~+^pA5z+^Yw3 zi$<~IcguP|+_Lo%&{VK8oirvcH^e0ABFZL+!C4Kwl475&e0g(_*w^+Hg zu*0x`HfW|l0~0~%w5T{%9bK7&a8aHttA)!dxNUHjRT>!W7GKGhIzrbw<9|Sx5^vtQ z*6$jFB5jWC8I?8?EOO=P>xWv+RAEZVLB7{SlKaAMjY}CRxUS)?`)Gt2l19vD`wWoy zM81BlW99t0;%#-jHlhkrI;Fuh$#k#Y(Qv=&>{|b~SyXRqdlDO7Fl!sycYt1`}CgAlznk7pew};5#y^m5#p9VE1LPG4yfd17a=#tcL5F(f!wLZV=tV1mt~_#|6ae*SW< zSQs*e=`k$or{9V3K2V$rV8M#u5VGj`gxP%o>!m?@!9p`2cAAeg*}Lx;TBcH#|QyS9|jTvTsKT(=NhENeRsvy-lZN<&reBQ%ql(` zjy_cCG%%dIZ`ONE@EGHPEOTy+yO6MQYBV9I)Z~({;jWnAyaXStwyzpB^UTW;outZs z$mmDNGXeyr*z!}uB1qRs_-)7UKB#XBA0>Cee@brKXrL#5Bq+Ak(aa4yF4 zhP&gG#u(ru{L+$U`y*2=7Qz1D%>_FphI2`YJPR;kd^Apq%(-e$V2Lg5R@3U62366|AOnrLo0#IZd^!^E|-$!O#IUzQ!O#P$Z z_PRMv$D1!@dn^^Hu?JAgVMlK!tnQ{4yKzUQwH9o!^43R&yM{nUvaxl{`G3`RTt$6N3y41zc zt6;O}jlX0UqWC+M&cqo_V42tY-OCR9$mEihgE~oCO(dh2-;?I6v(k`Cy3mcM|zqtn3Sb zR@kdex6KSBHIc{`bM%|C9yZP-8#%aTrxOl(ASF67Yuw_8=?Zc^*#Ty^$B6evG^K@p zGgyGwM;C7mj>;m58F1(isH0|0O~;&N#lZYeLIf5((0rI+aJT|9@)Vy=Ce5$6^h!0i zJ>_u>eebPtj-aNv};ho(dKKav}53i0mE`hf0`f-!LepigK4^H#u$17!%=U zPHE3z8o}z}uH?s{D5N?1zN6v>iGIx$+Z1;&inh0t@KGM@F!r~iCutE3kkna%n4@{t zx^7_I2|2rLV2J^Hx~(lCwN>FAD0xBEDJk-i?>AsCv-Ewn*6$4K9oDR4rIq3Y1knge z!9wGNVCQ?J>bJ;p8b{bv!dCsdKunNj&AcuR-GNV>l6Tg+lvrkMpMQ885%APmcD2~E z`%OP>fr-OG9LP;VaSBYx56;w!EKOFY9C|QoLpzoMf|X*coY-mQy&}JIPaEb%zJqVe zEhW_Fe~A9hsB8#bibII`Bl0N?pd<4{HknLT7sgb#>tmrl=Bb%A6V%B2s3vjjGd&?T zAw&=+0W);;(BgsU>4a#pto?=R0<8;|73Y$77BA#uA+`kO@%ty3OoUxRDUM6gPX%2c z$tE48E&x0l{!5UusH#_OyUoI=V?3ikgt|bn(M0M<`i`{mo|#T^S|dg-lgUpVkw7=1 zHGe2!MD;Ihvf@A9x0F|&QDMrUh*cA0xzJf3ZTQ&VHG`ENWQR=yOZb>D=nh$dk;frW z87kX+{x(Tk+J2JbZ4;wy=vp7HxIPO9!AL!sxy{4zYy!Y}Aq2JlmbsrbcyN-93K6h4 z|0in^L=6%_W1xchkIDu51L*#XwaCfKm3$dajr#9y#owewAA7q0A}xY;{i$NPK?rVO zVgMZ$)n7CF|FlT_dnX46Nbhn1DFf&}{u}nq#=*qP!3xv?E&Zz_!ts|Kf*Xj|4vGUW z4xmHF`1A7Ye`!+SB|A6 z(zxC_;{(ldmxLZ^WHyXJqzCTjT_nn8g^rGcF;VAlWW|{+H1IcjDxN%}>2;1p6`u4h zPe*XElR_OnSFJ(_jV^uGRhrf7RW#0Vz5FdE^u3y4%A%p#?aS2$)t!fTYqR`hV^3RZ zj>lpTuWz(~#^Wbi-TO(Wt}0I~!P}?PvNaCJ5N!LjrthVM=M@iEi@)sk-mt@Gms#q|?oiZq1rXjtug9MbRQ+B}-8Tpo=Nt?hVUKGAo_Z@f z_10H%s=sGb{>j8>{&a_#P+o0%1$>3Jgfv(&ClnQh5h^C}5;m%QeOa7Pb?t@8{6M#jutIv%TMXVP}jcXM8LW?6k4K z+qCk*Q{Zm=l~(x(o!u@3y8><}kzjpGpFkKKE;@#|&=nd6wQ%)l4tpQICz2GA)Htfj z@NP{Epb81&h5dv43hd?Lr5^)DE8PnW8Q04Lo|t+pZH`D&oEIa`^rLRAkAEr1X74KM zfg1P-6aTZNdfBjo1DnbC)XJ7VG6}umBC{i34`-?nu9$p0Jq`=8V4-v;CQ}(K ztOwtTb|437?Qt()kZvf|(irR!^&FBTU_*^U08BNgVot11TU0=`i!E4x-7(6SGu#K6 zpC&DP%K+2)eUD7o#p;g6i4+B{Az<_CcrAk1rF>Ja-ubb;Di*VmNMYI_i(=m~m5nwW zKnL4gkcPLpir8oBqurX?D;e?}T45`=UYcu!4wID6N5wU6eIW^~S@imVI9lz#UmF(< zXcI*Z+e@8@4;L&AiSFF`kQ!ivM-5&6a`ZjvJcZKJ5Ny!3lKKTRa>~O}&ovM&b^c5> zU=VxtBhz_91!rU&OENGjQsXkxQkXUZ07vHT{TDwQ8)kCk8@suJj@u7*;)F_v^13jx zIPUD96v4k>a|YkwZw25OLUW>23j-`iRyqYTeJR&!&WsS6R%UpSpFttkiVXUPA0kJI_N<0?xp2 zBx*%wI+&c7U|lR|ja8>C9~=U47{H4kvlMa} zhW{8yRNpjO;(9)-0sFKN zx{?L;i~hJ)k%0XS2u_@B2c;PMg7S)0Lo6-V22z71b5%rK*vN2nLVz_(gz?gVxE0;?4N#|(R>ptGpFRn2Y z?{yG{fjt~OFPd7%J+~Hh9e~C#C&m4olz>WV3CIn7FBOISXhJ{S7)PlGSD$vVb9Nt9 zmRVm_mQNw-o8m-074xn1zdK9T=26z4%U0}@(V;K*^1TmS;V!Ow{DW&Z%eSmC0EkR_ zP3dl%;Vos8W?C^~cIc)2Mg~sRjdKO=Fy`OM;PD-oQziIw2Ak#J_Q@)T*PzAxzT<{5>=;(CLB=BX2=< zaakv*8f@7Ah7)H8SESqHZKtPe-*gnsfo#=LC4Nn#t;mp3!h^M8|{^ z=~OT$2WZIqxuJLUr2gLaXYG^*IYJuA=A4lK*UlX1yxxHl?~4Gr?J0(7J~` zu>nijyB5m)Jbe{eqhfm(fzjRE@8_Rb;Fnmy-p4|zb0I<19xOSGDUO08=QCJI8_c&T zeMZ{T*Q!iTi2yi01bve>D_sT1w69EroAoepjmD^hHh(7zPaN#ldO6LN!F2S0kvfx8 zw(e#`gzlw8Vr6jM0-DNr*vggl7o))>hvmfO?kk6d!bO~BM;QDjk+BAVp(4Pe+Fy)C zcl1ctr+xj!HS3w1YS(hJ#4;tV5-C?z$G;{`vIJ>_ya~uwM|W}^HpYfTn_P=yeL!W) zr6|Uc_z1~^{7PA<78hoYg{Nq$!R*b;E|?rt0}*t;1f&<7wVJtxXc3NRmOw^DLpsNR zq$!YNkjtJh1&vzP7NQt*_}%UvP=A>~L$1%d{0*ZPpZS`+AT%|HZO~&wE==|IyYx(x zG}h|dZyP}4)Bf;=*c@kTLqaf*6Dm|f+B|DS<>%kUHeLnT@>9=AAt5{ z<_$w>Sm%u%at7Gb1zpI6`tfAv&lWcen zvK#Q?bjn@xa;IqJeC`zU%f05VW~~J5JhRYP&>RRv578vpR-Cu6(@O!vCQL0<9YQBH z-FkfS5AZj^qS&M7w2bab@lWomr(C7_dyr})Ce84MztCdbWDH5-^p|PAASys_wqO@Z zb(-UB+eaLLSE{;uHRy$7!_U@DV{)--02VY)8whavKAONzWGGQ6GrEzb#9|@kq@u24 zdm#fJTt(WyFuKN<>HE{19vd8|CF zik6Xyyydw@MKGiJ%z>Mf^x%P$gW@0FV5#~1fel}t`;%A&?it>Fl@Le15W--_o&M*` zC&mnaSG#o~bqjr@!9K1^i%bjSbp|^Cs8VHUX&alGJnioPS$IrMu?9ymM#;EY(It$~ z5l3eeS)F5gYn}zdqH!g(q)jlUD6An-0}MqD0SZ4pE8db3Fzlb_ZAedIFWHF4$o<*f~G$LLTTenLH$1-uCW&~=O} zrSqU6!`p!EEnH~mUPkR%C~n9+Bz=e`EK~&Qah-p1Cl<1K4I_AkhG>nq1>aiFEt`;% z0;2FDFP+}A?-KpgaS6RNjG22!YY|F0Xl#i;ljE`M%FbB*#Als<`k^hexAu2$8{b4V zagAb~Sb2ceow{FZv}LR|*&QJu6o*vpVSpXW0ukAmXG;4q14~S(!k%kxS6`GpN*^ce zg_e55W{x{EP%RpX!p=YT37s%LFpt(2zA{DJrEg%89Se*=DEsA3tL|{Xfj_=DUVmXB zeAq=Co2#XyFUhidu5=5c%C9v(a7XX78yvhy{}>d+)17+8smhd~WCI6NS~jJ*V59V01D}v#>p8 zankn+l4-LW|G7r%Z|jVp-1CbkBNprzJ zZbW8GZf#*`05Pu*3SUSvmHjc^vVUXF-mKDcEmJO1$=8t^;NtmoZ+d=ymzPQM5owZF1*r>NATPHGnXx-_uBNW&+-RFV2b2!{zy18X_XGazV@XWQ|u;VI4 zrZ9N*Xo)2pFnshWtY0Pl_<))sz}&c*LtT?DlTE4dTe`w(_N)fK2q-JqrOz4xIQ%EP&~IJjJit!Fkgs!83cbLR2|^0qcn& zouUbQd|7`F1+W*fwoCu!g0ab|HrQzvgZdD)h!@=C_wGY8?C;DL32F68>NAK-^1i$TB37As7~GRB6xb){#JgV{5)EhP+-<_8XJgC^4A#*sZl#YCWU z`9S2Y1BLnJYL0p=m=a8#wJa2Cq?MJry=i3G6>->M>+_z-s6v|r^Q3C>nyCCU+BaIn z{T(4}PDYgSD^pcfq0|i55d+JSw`T|=Cqk$&IT0_eRY2gi3)HZFN$49R-=#SpI0d@# z94N_Gtt$f6|ILCgG9An_B4}zFnuBKBMEdvj)I6b1J@M=;tOuc8GwwO(!sUe2xbcH@ zuhp>K$Hdgb&6c=SP=aYxrc|Y#iS^UI-i((|xd*5Am3lwaGa)b`RJ`wt9k4ock%Xfva9LUWq)3{theT*-k7~_Cb~yZr2phBM+jWM3pWR zD&xp-8GEV%Xe`fw0kn9h`#Y0^>u*@vKPP2CXo|mp)$m-be_LQdrcRVlI_wXi%ndFU zP<17Mj*5zv<-cK!qT*f31Sd4vNAI*wmm5%Reem z|Gq6wR#35sodYNc_^TX*kAegMm4N;pCHZGv=#N^^A3lRW3PXQXeEzHjfvP`$;|4$( zk$=>W{yDz_f`$X1Zs;k12Oad7kZe348i5WYh#@!44E;AlZc|wmkE}0w(}6eKj9Q^s zMOWHet zdfPd#a)q?a@l$2%Nd-pK{1F zos#jhZ1>w{7+jdkW5|ZB4Q@6 zfC`*kD}z?+9IKhY)GuO##FV|f;rrGY>)8TZmWmjFz{82Bi)WjK_?mHNSE~}cD#Is0&A|{@%0i4Ej6h~=SYHMG!Y}NiUPtP|^pQDm{5)_kQ zrL;@y3PPOB3sQ4S+wBKa^>Lv2koWBy1k6#9L+Y2WU)$pH=EC68HuGL*kz=vP#K?OD z1Qre%ka-_!ZRU~MmBkQR1_gmP0d3Rrtt z=fu6XT#kXw2jCWvKI}AH3awmD@$?NqdcA(`^TRDF4lp4R8~|^~ji|q2?bC{})_Y6~ zW2Y$rCm^d#M^)SxmFX_JfIn*}j6F70kLMq;b>WUT@ z_nrOzxK=bpPQ#!KH(lY3<-)xbh6zp3 zOkkV&zI-`%Vcm`69xH7}7|X)nz9wz9QuA|c=Bo)*>H^n|y3$!c(a!XY){WW*qJ0Sb zmeeIz+bq2MMrr1#N%3Hv98Lf@*!osK5>A18X)ebu+C>_xA^4U?`!=?Gb!`_~l+c zNBQHO5y0wfW4u+zX*rRY3&IKs3xY}0b$y&w#Dqm&3~CEgYMTkC4F)4%Z!NK;e*)jK zoAZkJWp0?QM3QJ`AI2$hzg2HUEeQ{lx~|8_dHO__e92Mao&}-~e$;y4IG~j6{l!M! zgJ#|8C8ioH$Huz@_Cd2!Ox3h=+Ay%pO7s;_JFXJ6RHOL6 zpw&snZ3T{L$tawYwx0UbCHtb(MR9`h+&ZPN*>8?BmUOT(5WeXFPB!dI`1NV+DuH)NIE0ppb4{+N0v7^D2>r%JQkq`D^5eb-s&T zs+?5$Q=3*6=m`9%m$b6_)bL{R40-ff~Idi{1@A4Ym zxa~oHnpJ(&14mOXmaz!UU{8k1%0iWK9q|5IwbI#um!;O_2(a`uN0A+7qezEhN^<`` z7%&SZaLW&r&OGifp212UKuz=}E{33&F1sH@qM9?-;6XekE)OtF<#KjWKjinj^gB@q zu`$5CanV1nDz%SL+Ta;Gr3(mu)ETS$to9;!~rAe9V!Z-IUv=@W1nqfDug zqzYn;^poX71~7LAc^6}F=g#5FA(%B)mM=iCiR)E$_zUOkiA2PYT9uA^vt(eNY8Wn` zQq~dJ41QesZpc=GK!>q;*Om4y9me&CC>=cv0CqS%&}jY$H_dkbW0kfl7Qzhy3niIf z1w})7Jp^Vongr@D@W=hvfq*!3mBe*QBx-0%Ar$ovA;6C&c7v(}7N?;!P5n9zlms}8 zeTmL!`1l{_D;^i-0G{=*jbEe)aM0^#F5r+`-ygU|&UI-u4b&XY2ob||j(>Rs5L&E~ zM7;Bz-0360;KLN&1}!~V+0M~Z@0AG%O~OVH@nI2~ji8Qd{V4G2{AJFY-TaLt`fUCt zH09#G;*q+Y0CGOeXS{y zn7YLj`8AIJ_lVJsXJ^>{j3^!x3%gO`@E780#>k9a&J%=b-CstbS?KI@tcxGIxz^-5 z$$y8a;e3lqYBj@7_AmYxgu$Gg@L`q`Y)XZ(1I8D?L3RA;vgGW+8Xewo%5Jy6!KqD0 z#NTXYPVE48qZqAu0@bgWD<*b@rKc6%FIINmmNR=M0sOZ4K{I_o2Gv!r4Za#RMSs<$AAdk6_9AYr1LybZC!`bl_ zGT<0MS~xACv_xP(3eoQaa_ijfp^mz0hnE-`r|u2J+s}4PjF9QG`dldJuSoDh!gz#y zLiwtE&=FG~lA|qVxx$GMW9vqNt_0E1rh5uRP{*9DNlKgQUy%t~7njx{{%xZ3)1gx?DP97Jhj@uqwhHL>x=WT`yXA*Hwdk*xlbC$cDA=2N#mt_HzV{_Q##TG z*kW8)S@eIIDs?%{O7itpKi+>|6d^s-!J~ggN4(PUO;JGF80nhv#jPT(#{-~Tds?Dm zdERTE9^t+zgH!0Azm+&$2>nKZTh$kvSs|7&s;^32emWx%cope~|MaaZBF}fcBl~Re zis&1BX62{7i-Ti`;c|CfRAUs#13JtDVJi;Y?)|XB%+iV`XRg zS}3Y#E%Zp&i|?Od@RL^TdX5)WglM5k`Bs;GdH&!UhO4MsM?h zg@cKMmka1QM$ZPr&dtNb!NLiw0eygG2cfK4{_Ye%jnR|Afb#x8bND**HBW&|#dO1d@%LH9mh{qV;d{~!9{PnGb`Dfd4{ z`5M^0WNfdSnb3(%O7fflf*Bb~g`gayKMZLSvKBMfvDQStVf zm)h7MC*x~UVy(b5h_A>=7syM;`3AiDkqV;`P|T(#8^lPA7NiqTZGP*Atn+41#ps$?_V)(pyycG&&wX_x=cA ztOqO(bdS7`EY)4rWFZLpp1*$@+h}`v{Ee`cL}XRFnFLG3{V-mQVbb6@+Fr_RMjD#m z%k|=r@ffU&Se?mIW7pt{cyfGpFco4x+M8u8X8k*IM4t>Z4xOqx$n% zb#rDpM3(A8sIFg>W&0yaTL%(`JY5{Qf(W4G?A5mX5Q5uG7iYXShf zLN9_z*z&^|J$F$B-Fj1Kr$|A!RAGPtO(w7fOF0b1TsJH-uDBr)l^rd3h7>Y0Daeyy zpjil-!XH^kNPcQRZpir!GxLH;7MG!+ORq^U?eXMd^Oa9h45@nEr+QuUeA$I4%VXuF zM~Gy3UkryxzO^#b{^sSjA2vZSSOma{v|WblltIJTT|_GPqiZEvTBvL17B#^TA41X4 zDsg!pwS<8jb5)}14Xe>DQs@!7=Q*lRv87tJ-2ps)8`f0;PAmc0fMxGol+51PRDyy1 zz%ue%4hTSL~|G^+@H7fYV6whLo9r^fcuti*_&fsbH3?%{d&sy_WiT(k$GboBOKOXEYf8qG-59ia>_8hjItJM%yf$dq9wr zY{$@al{SmsRAt_o9l(Wt97%}7-38fKEtf{YT`Pa$os~GL023tav=-|qR*ao`KEW@T z+|kno=!?vZh=CoGUwMc~zdd5+#3xtvUWcHO@qp_MHNyq2#RUqW4=RD3)LeB|jECnP zTvB3IqS3f}cg9idwa@|XktBO|2F2XNa>bc3y>z3xhJV;q6qibCP4#Bw5W63 ziI%U6RGxmwi}OW%Kz0>+YM`7k9Aw>CY(l$uOpKNCxy5o!5o8BwVa(0e+gBrV$RWll zOOP&o84~>bqv0qySM}%llU0sgJc9~%S8^brkL}X$ha{f^$t=;UYjA|vv_^bj7>F2- zh-cAXmYGW?hHYaQ1-&PII@0_hWeN}T#V?~KUDUj`Jb{k%u=@At2c4;A^CvpYUmNwT z$r~u}3Rq&eO0up1C}>L7ZFuyMJ%)Da4VtZ#C4_HAd0&q*6=8R`ph>>25q!LsjlLO1 zIMYr5zN&m$XLfDaN@VjKbCs(bJCw>$vpPau;8dud+%E5 z(3{~blm=htl#rZSL%bE@y;J3IO||sTE+XYnwUug*K1J#Q6kr`93l2}o=)X=Y&)-@U zNNYu$y;ukJtW@}xC#H(mc3TN$1wG4@ljqm1E9`;#t~A{woWuEJDO{N7`zBeQ>#Ba4 zAKBV1_`_EB1k6_x<+BdDDC}CchP0SUC4~|3wqjIRVM33vi;=A_!s}R>!9*VIqtqK| zH2{YF0|K7_gS`Y*RP8BG4ji{LnWk#^^F-Bt(YQob{>CvmS%eoayGGj=HL{x=qp8$` z$=<|UA=BOG>vG&Kc3`ts+j*F9jznNT9U}u@d$!0M(K4z=F5C_ka4tL6tIFHYcN@%4 zSceFelqLgihiZH0h|N>M?L3fGcVpnGQzyMFs!#kIKt^^oq9Uc8Q6R>0eww7b!C{%& z+Ym7Gvv^Iq{!n~!b!}o%5c+{jTWG)hh{QEK49#)jxFWU`Y?FIv+!P^(=0w+MqQLQL z3Sx&_$e~MkL9h8_0)BKPI~Rt1VXvG7{yJO(fN^@og!sLs4*u-xYrgK>O}tg(Y*0?R z;zd8x)34uI_j?W`jqnDXER&m3qb|DVTnjJ3vb!~l_8lO2Gh4>bWoCaU8LShhYxUL3 zvRFhLj^47^kk4}shPqWh>WWLUPt+)F!X4#}gr|3o-uori({&MNiKI!+GfbdU`0|UG z0Yjq5?CDuxrx_H$m0*5}hkl>Zsn1P?7VK*-d1gdg9#*_*Y2sPL>JPoXxm^u>Gj#B`vZ_=O3$9p#i;d7TG(M}MHEizT>V z|K7D{u?xR>YitTBtmmKyUlg;WvM?)U915OGhQ7MeR3?AJ%q3?nhrSgp#`%Nitr~hh z8n5~1Y;$E&cNcgTI13Sp*hX@Wn>$3Xm>|qI5eSvxRtf_~^ntW|2NU-8bS^0uz_US+ zMXNa)+Qd-8=6ISbmE*E9Rcl>|7DiJr4_yk>udmdXvoRL42j^!_&a+-)Q|&k56}1nZ zmMQ8&xQ^w$5{)iU6`Q8+220by zvP^a6>Kx`xR73I^0gr_&u5gAlke}3WzLtFxd73I6X&cM!oVm~>uzYBZ@Z}*5Md^2# zu0^GY!aJ)q16n=%mPTw%`nNbAzJoih-&KT`=fzLn`nR7=CuM!bscQ180eB=VeKCtT z5|>Ns)O%-x3dGASPQ%-2ZIW{BBtg@1NlXfSgnG36NbH)&vYmk!F>~+qPI->AAjeA{8t~G8dvR&i-3+QrOn+s0psq3D0{)kw#s6Ix{PF((j~DxYH3t4v2LJ3I{38qt)V2A2N<#t8l{`g) z2?1gNC(JR@fxuF_pqWOjfDI5>3NMIfTmIv05sJMBB&Jo(np|?h(kClBdyODR+odIh ztDWads%W-TXZC0=VR9)kqMYYPWR!{}<~p0Z(>l6O?=J5rXQAbmVQCq2b0CeB=IPYkq%oj-R)_R?%+xIy) z9)#X_xZS6>Pi;8gAKx5%&per%@a*OB@@2+lB;odE92KRn`cFz#G}JHsVS2J~!cSYY z9erDO&qC)ZbbgX!B|i)(d+RH2;gns5W#C$DXH*|hs=#QjPWgInKOgZSZmhEgd zS--@)0=h4+9>a;g9htORb4OQc%ZJd$lET9?*NTK95qhTr9}a07+DjMDGRI46ZXI2< zamLGE*$QFGYoJ4Dz2%GGx%_jcLxY)aqz!+JpzerQh?KsMpt4?MCeBda^1bqn;^w>5 zlkMU8aH8GR7r}p;`?RHN%UKw#COQ}zWA2S137C+P@WR68Qx)7|AFg`5Dz6b;d=T5?q}g)A~yOfjXqx?gYD27VB=PG!^DWX#Z2q$!gj!yg7F z3ozUBnAddnrIJdCrs3OX{m`yAGJ<&Nv9}FBC0$kA{@cwj!AkfHLu@`$!Mj}kcmt(l zmQW0}j?n(Ahx12hjU~Ul8Z{_Bs5V;Y1n1-o>m=(K+}r5P{;I(Eij-0mG&rxBz1&r+ zlFNi=sy!H*CmB)J)=d~zBEGd^-ojQPdJnLbVH+&{D7P+o1*b7gNf4PJHsaNy{y~OY zCsc5p;X%`a92%SysT_|&oskJ9nzVpR$%pch=JRBQ!!RRiAe^jn@<_;P{i;JC??k^z z0wH>ARDUQ`u$pW|e!1V!lbF4DlE_55*glK9UY(=obAuzdE9Sl!%}B+CpX+K2X%K*> z!+!o47H>HaJ+8uo#IU`pY0+)8rU+afx-Uq)^}ONP-S-KA&O-vsQej&p!3%@z#`70- zqT6irjqb~UiJ#}eJ&#W<33q@@L0EKXJnwo&)^3mAM1Gb`gOtNCU~b6dwd~J#jW?am zZEXowRP&=ke3-E`SI6UQY5{X$R{*?HSSqSjV;O(#5;apLdO69YeL{aI^|JmtcLMq| zEu0#o>|~!F-Lc=*y!ksDaOqG#hh$n3TUC@R8$!LNsRZaRgjb^GJP< z3YYs#FArrz7T&Pf|7jrQdm<{d_BRNsmZTv&szi)mMdMbzL8-#QQ)J1|6Ju%Y3TFM2 zwZ@{AVJSAK?1iwKJ`TkgwfNk`41VS$@WWd-0H3KzFBqLA4O(TTWaUC(HRPu^@=@Ai zF+T616nIGYyn@vNlMC{aesX~Ez?B`ORiz2=n`J|j*l0$LPIf*^vem|R{!xo}9|`NE zn*GfuG+Qq|)@6tvLvZ2Zz^!;Em$^o(c<|qIM;Uhsd~|N8k#{tsbIi)%_iVzp;<^lm z)>2lN*K{~}G%9kLQ0d$BIxoBn{J6g=x^dMdqun-{Zw| z9jc%&h2i%;|EOTh@o-uTGa9O766@6G`1V9R~jkJ`Wa<9EE1fW|yoMa$jYaq_`?1=ays_^F!qaR9{9R zGS)O{aC!9e$W$zfZ@xhK|m@mBCrsMdOZFY>{@9Rf}2dflh5`Zf-dq(c|7>-mno_ zNS>UUaawkQYG(-m3G(&XbShF7bi92@aDiC|{XJc1XEy(@bdDVF@`BEK0ND^JbQP zP>=AfYMygB0Lq}&OfDpr86ATi2>sDz#-NWUDdAkQbAFb1x`suQ7GQ#e$JhaG z)=3|`>Qk3~Eyb9XCR-?^lRrj zlq>rr9a8E^8ebKpr)9f4bMA0b{%nat$YbN}&e>V}Afu8vyXDYu3fUzLYt(x!wi!}H zbPwyRrI%h7OXY0GuXiJ=Qj3{Hxdx4P3me;~dh(mbA?4Nq={oXzh4l4X%5+I+<(CVF z1HUP*BY^MkotN$Ud{MSGM#92g!!rwtG7iFPc8`+ex3@57F*@g}i^aR_4?K=l1luK# z>)sfd>F4=}IX(~*Kg8U&1|EmO?tVASMcTVg8Mqc9K55(WCp?iXd!QF#!Zpij8f0F? zVt0%?(N2vHWgZH2)1(JtK)4e}ys+c$i63zl{sJhn%K!z=M5?em^hR{Ud`*_GFQrp| zwp*dokp*L+xZ>?k#^cH~*Klj4WK)MHVmCrEQb~QuWreKXkYas#rNP+$%PPqT|X4uF6>Xq4>Nyf{U zKmyxX7Q#N=Hdu}U!bit=|GG%s_A8Wc^CN(hP9E#2A7I6fsj);m?zs@*Gd~OO>QGwM z8*v{TxOpR`w&(9czIZ#YF;!1_6MW>Wt1H;3f}prWUheRpJ!{>P(a8cZ zJv)~^zk+FJwCOn`jz>9|9)!xXf!*E-HCNZQ-TE!}BRIj}-l$^iFSJ^aP%rTF*Ew*H z@+=$JEd-r6j+1xj^^f}EAeobye{UyNn4Xf#$o%*qT1kX&ITJp?)*{Vx)Gf1)J0C4+ z`Y1B>nQy{%K|f}0qvdTe#!R2XzbOn5ai|Z9P%xm`;>c}9f^}$&JAyzUY((;7IdWqTJa3R4=ZK^nP z5O=fL>n-+kCh5kpy&>x{bFGSc?asliwZB8qEq`7T=COWlUEmC5LvFPTQ2KsKJiImC z_1cQiLZ)AUE%6C;CYdJe*MhjKXI^Z%iDMh)Mrh5+mm}hg4m`+MGUYq{N{dSr{!*0a zxFJ&!Z(>@yZ{J>xs*^DJandv_t`H2mLSXLOpSQb@TEz4(Y=?EFEbMQy){%2rEmn)e zXOPd`SjvA5larpkgDK$bfy4YQF+q{ae@je`|0yxq|4U->{}sb2?oJG(!ASB}3DApa?) z|Jxz=pVM-&a)7dh{{IgAxA*SP1BFRBL223?JfLXc|8dE`9{K;}k{qDt{MYDYHWLOl z+rK@Ee_n-@ot+)j`sM;=ZqkzgiPo49{@(@rAKklu`t_J4{|vzX-@r{XluJMoxn(CV!$ zVQke5xEM`3&~83Gc%Ho7cKIq5UR@9~fGOf|(74c}bNO_|WYG*Rcr_|3+#cplc;Vp?;e=3fJ_zO` zf{lac1C@;td-0drmkdCnp6_L16>1O}S)KiyeeYuT;pV_}&+*OIu0;#gu4n%a86VYt zPfWS5UIT$%X7Q%3DZ#kJCzp&i^7C`$Em%6gtWD2w*qLC*qCCBj;>0<}1q*E8JA+u^ zezKTHaCx^q2{P0m$lEa?G9~owK5l2ASr>aQ=#D%h+BScbQ49gN(k=85bCiTS`wWP9 zt$6km#S~iR6FeDPB0X4wLR?aR8ait=SN9@I_#$Zh=%3@S$-b!3(Omg)ws|YE>!hda z(I*E5sqI}EReNUUL|+=0RWC!9d#nJ>=jpT?0e60h(iWs;f2!Y}v0Vd`u&Ay@Z6 zbf#COMBazl@1GYQRE1|^?cF2YRD;Sxm3qmV{}qi|&xX7>Zh_Fd9g;{Qvc{r?%9_tq zMFuT@kzECGws>Mai^UU}R^*!9K1Y#(WqBI445rlU^GO~c0^Mf9_R6(=AnP~h72p9toF-QQnfuN-Cvt$*(6OooeGq4Noc1g$@<-JWTRdh+ zzr3_DL5*%e4k-~I7?|GL`7s&2PwFbmHYq8`xGQ4Bj|BKIB_!t-{;x$%Ri=sB<@!NEiKe0)Tz%rb1kn3fHS8h&9W-Y(YoKD0)%oB`_y8icO0!G3hif~K?x zcUK*%h}=FIkHjaa(n<9<4zY0C0@N`55`HD<+SM$8qbROHefrR~cNjNZZT9u3TOJSE zV`3=?vrEbtyGT%b-BmO_qzA7lrwA~hWcXxMpcZWcL;O_2DkdfsHJ51i>1+OFhC}f z4}TWte^81+DHt~gJp+6=tVFXgTs8VKAv^5s1;q@shOXhj@|#E!h6vU@q&?%+R`Qjh zXIa>g350Dzuc?6LG!HpmBIxCo4db2L&>x*>jxAIot*{ZTfq*;@q{B^Zi99YxB*fXW z34-_p$)C5cP*?uLRqj>~qlbiJuzxx?aj?j^N>~;6;ILP^_ zDuom5RbYkQty!6?hV3Yc!D3S@CJHhdV_R1Wee&*PFI5_HTK-ZiI64)J5n8qcdANny zPlW}7)$&Jj=$WkgdCS9;(7mSTIoJDay8Jj z?9=gNwheF9s0hkxV1)HbyKg`Dm;oYQ<|?EjiJ=89i9141Fpomf;r8(YH>mNmV5h`d zY6Xl9g15We({R{?6(e8+Gk%gM=Y2**hqWXaL1+VHkKvy~y3r;t2U!+NtLnG6Hb1>u zTPj=0QA98@K(3D&*SA02a<_cy?frt?p?T-P?G|l^v*WqKAf)eiF{p@Ypv#^QS^y6o zQ3*X%oAKJ+PYlDKi;F12Rq3-+?+0-O>WLDZaVFiu;S|q_J>iC10|tpo9573ame~X- z8KVGDqqIK3X6~y+p^DHjTxw9Cwxd!*M^XtIRrIILbD~SbOCnC!)*`-y7dX1jX3K+% z*l+H!f&}m^Jf$1>nV!>qK@!5IN041{MUTSEZ;BeNbAX(gAq68O-`z8#521A)6k z0P`(QFs`2H4vP=;b&G7;;D{330>v&`TImB6gXE?eZCoo-;2jNR`<;=XjuS*Fqfgz4 z6~>|QP^+e&tCZ&?ca60?94!7M!2ZeXbQuXvPea2HFW1!3xGk^%-o!lDqP!O#r%Yz- z+y#nFyj})jf`U~@;GyH4wgc)262DVC1FsZ$3G)_U>{%6&i@LZ2bLY$o<|8<*##R9U z{dFI1z-kHB=eipln5Q$MTf#ziNJ1P+60&tw@g_W(>&25>{R#?+xQC)oh)}$LlGDkt z2{J!$v-K|Vvy~ssT~EFIu15GF7qr??PAX!?6eE;C_ydx^IH}}ahd0gqxb56%eZcJ4 zGrJRmw1Nt@?kM6cqKdXGoXnCY3NId@?s*yH*V8$cV|VQW63BZN1l1QJoLHEqX`Cv( zTG&GBpZjq<9?V{Kl@EUL{Ry2*Hv-9SwO^06`+mZ;uVNV1fd%w|v=Sm=9T3InZ z;N&Lqr`T|h0mL6GGd2Ao^a!zvms_E>gS$&p&?&EKx5rh`ZuYrBgApKz#(mg*_JvmL zUnu=@)9L+X_j#L&wm#I0ltoY!$odyHnAC(Rqkq;m{Dhi@`<~~;8Gj$Ftw*8kMB2Cu zP4SwqwhHs>m-9%zLBCz((4?vtU{-92vxlx-zj#Dr2QIEe9Z~Yga$32gwFfb$%@6(bB)F(L-aUmE>KcLI*Vma|lL=VymXs~?s+geWd zAmR??Wi7mzxiAJlVcV)0eQP`FB)&OD{y0)XSUeafJixGU_q zHXGDl#U1hh2z_wzEu_55(c4ZxzC(|GtuaIODPBVl+GXJ;d@J-B3)l37V84&Q2lXdq3n2b358~nkUVdRA1LEJ%qhWCVF-`tg zBQeLjq>vLhdHwEz`Zss@?~|MyOspKgC57m~Qc#9Jns~VWb%u?X^|z(!k2Ad2?>RB= z!Km-1q`&M&VLEWJ!@F zR4HozD}i+E4gH^37IDIL`!p+q;I7gC94>HUvazJQ9zN!*$NqV8Hh>q(>iIq*5zR} z0XXb8Z#&<)Kjtkm9A&R2AETlCPG-sW`!xbE&@)(WE1dPa`T+tRo^he(4zV$zwp(*HTV^)dI@; zWCm5*QaVSL$T#&))y^<>+c7&PJNLlMj)(8*vPi($lw zgzS;#gWl$vH(w>2mwbY?F{1aSa4wow)-gRs)vqNUZYh$#BB0J1Zh;LN_ZA}GiY$Bx zq`-=Ag%duYxva$dJGXoUdE6a*55BGM14DoVviBO>@ij6*#?Fi^g=+`ZUW{e-3AD2dI}6vULCLfHf;y_qIrj= zA?8&TAJfvN130QFgvWZ82a8Q5V9}LvPdig66(sfbc5fs4wdO@xFeq<#ft1ozU@gK!H{b0rpsDTb5IE6&vjqUFR7Ob9@BLHZt2(Zz); z7EIw8lZk_x$}$!XUnI>j@S-LixZO=D#nZYLdJr1GdvG2SuyHPL@_Wu+?7! zi@UqTI$$qhbugUWzc>i757PyWcWqxt%F4Cox|VoIR%^H&fxKgs)fk8^pH&5=RNF>= zP-noB^csYF3y;$yN((4hM3q4-yw^eR0;ie&aAa$0MU%F2T$Yr5)yzV8njNh6WQ+gO zR>iDjBjsxV(UbfJ({o`Erjby&TOWPV|PCGA|i6@x7xw8D1p4DfZ zHel}a}Yu@gqhcD6J?@OJy zeknV0>8IXvT%+TD%ST&Gxx`ZLJ17@i!kFbdQX7N*#f0Tg#wq136?1U-G85_51ami= z35_IXovs9d%%n;x;xRT?A8OiVoyazI7{;E9s};I@12Y`#?60K#JrRB0+5T=P8j^8q zpbBXT?$j6Yz{cTz$MP=*!GlrJA#KViu?sq*N$L#qSa;y3accOwDigO}{^J;LFnPth~kykPyIaxj){r$P( z=0hsBBrK5QF^?t(fyax)gV&HBrnT~ICkR`I#(9#Q2kFuP0i|B5&#vQ-raK8?h(whd zZfV=}YA>II3Bj8A2Dg7iHCBuUd_>a6df^p=xhx4siM;W;SY`Mj(oN!5ZNbFbU?VWD zeurb1c|78+l$L>_?oP%?nGv^)*B1J1VK80IcBP(SM~#6$jgQqp0|e@Y2WNjO%W&FU zDLTe*tVKr_0Oq4UGtOV-hA1v-M7>$JYIF=F*;01BCVW<$J99xH4UY=SEK|Ro`(=fH z1Qj9cm%D-`SpMlwAi;0)g(VodzK?um2f{VKpZoAkWq z7XSFoyz>VqR-+D9=7#jMLqPrMI8O%Moe!dx61e|m)1|+w0P{AI7Wfacj5?*55YAu8 z_wpMtHkqzX&E>>*qHNPtYBIy^CTB|5r=CnCTPk0T{QP1Xcj|)SB;N?DlwGGd65VCK zP!&yd10?yiQ+A%C&36VtzGz5tP1%UF6o&uGnA5)`=M;k~?xrI67KN1(VenI~amdCx zucH}*f%4`UtA6ce{#fF6S%s`FZ(vyhtB-cJ<}x}*zTm4(Wu`X5v&a5&)x600h*-U` z_IbGhlwt!FCaP+i?|BqxEVYkj$I~~q%5X;zPe5O`cvh62%|}&U88Eu9_*QyG1l)5x z_NOUdE3`G#CHSX2HZAI_IFgwmJG)X5r%*I8oz{krC;`8!QnTjg__UVUf&F{tld9jW zH69mdm4eEuGWbo#>1c@Dx9|<^5MALcrTFfW5~rmD45@Y^Btr?mith(GOGpl}7LqAi zrva?>BK42u>b}xTu;;eu-l}xYYy>Dm8?LK=iHEH6&z@gunE!h$TI! zc;63$*TQ%q5;uJ2nEH%-o!7%7vJqeVS#K~rmci}?$UU(O8#!$1AwjFpPH)s!_d_U1HLmFD? z8=th^8Pa$`f*^N0*_U{x)cO!-VST|n6v^*TkI{qZJE5i8b8buosUY~hsIr)&3YdUO ziXrsKY$Cfh@-a<8x%gs%2r;tBd5;0>P8fNs4S(J%dy$cdxW_n*WD(Gg21|OHUzBn^ zkrAZjHvqhinzt*(Xpsv$0-yQRx0IL|OikvvNvl^xY=Hmq=B;2%ym6sWZXt3KEoZP1 zo468Xp5i_Z8J&+Ad10y861>nO*!7zK4j2PsQg$aM);m`GA5fd~kI;et!rIRGyAM1Kn)^|YtXPg2F^n2+5CkZFpT%ce?Sr{F#`J1<*-{#xmlJQYs9bb9ye2^>a+xS?&`ZaO`) z89SPc76qbmpIQb;v-po~S5@>YRlDhk6U(4`mGoCZ`uCD*uCtYFgX10iyDWA9zyXxpX_f0U ztqRg0zp_YJS$;M-Ddn!|Pm!@<^rz@>!UVb3hQMF>!=gwFJjO3=r;jVl&;$kU2GcIU z=BYL_)wW9~1icF3{#fxL=<_{_1<2HK`Z<^$Mxedt#r$wu^m`G_H=_IepG%t6e4u{W zs%WfZS=Hny2r+K}LB%<1K2BH(TLDx^Qe#p-lD(dzTxv`&8_y7d8Y5fOL@>c}lCW1r z4{jYABm~1I1aOnx>Nvj6AIaqF1+s#Kg|Io=h1hVgWT<4`3Wa%->)veeDdd*sbj8jn zqG>T?@IVer9s3_=W6su8_i7!(2vh`|W3gEZU>J#)VBBf|vCVc6zbd;Cf?*VF z8AYiwCiXj{@+Y>cf#4DRef*LsK~9G84=|gPb09E+;Hi=orXm&jfMyD~GO(254Fsa? zZ(-rP!xtogoOtA6Nne!^aCFJ-OCqKG&6I(VXq_hE$hD{bU$eza(t3kI=xN?j3TNT_jW zePV|*zNB!Txgd+ZV%66-czx12uroxVtk`UNF)EqI z0fG4l0POj-J%u`KtDQls)<6->jkQiF(XpfsOmr7eZi%~suXqRXsqusk>)vhXX;*7~ zjEhT6@JGGHFm%4cZt(0T%!&$Bx=n;Fm%NFVNC+`pyg-07DD_`wNlv-YN>+AcFMZ9G(LuzQlvpGu&^81_~O*5<81I zOCMD}qJC?r`vxVyTv~}aEdp-m@se|fzF&lXR`fuOp~mqZWJRgZ<&3CRl0zde^al+g zfJt9fz#7R0+#0l3(g&uu(-fII`i`X6;h0~UU>%le&|K=|C6#JWu-SpN+r5z%FqLcL1H3X}(ndMf5&o-X&BAGUXF}gb74YL#n2cuU} z=8JDOwR91rn*S+YMI%Fk0Fl^lB)~upNX<%03;Y z&O5qg6z7w}*}yAsKs4i-I3fB%;rA#2?3Z2FLL}=m1&25=XAq@f5`EF_{VCTY6mY$Y z#yRqqL=^s-kj8;p#DM59tgyr~1~r{-Djknr6%dv5u~tEJ&=Yi^@c3Cg&iGjZps(lX z{gH=TxNvo9DZYb9|H*czxT&w~!bZmrgbb6iIJEQhdzdya{Sc+@VEvObAon9@<+i1J zBMNZWCo{ezhqXP1Gq}yLrLAs!ULeCZRTd6fY`Q}$th?VhzV6UJb>61D2M1BW0Us&0 znmkVqByN!|UN&u`f%&{V$ou3Da2Ku^+0z~OYjTFW;X*aQaCMNUKF@re>kINnBkhmA#JEOf}gR?K;cv5o5MT@fLE?jan{lg2)-o^ zj9_4>p-DsIeFMi41aAKT;3q`0h%H$z&WjK>?S_!SBA8ezE4df0PpI69q(j$wPC(VZ zn*7Nq$1OfzSHr1D5!00VB61Y8rM)fWD&6NCy_!&Pmf2&cKDoeUFS8WweF1**BdnRT zXnW`8{wcr1i=6cjfCYDNDBT?^g!-@5SA1~`NP1d;(mRca(W^=HK$$UxB!ROLs$)5^ z?7pb=Y_%g=A?$~RAR8jh8c&*g#`epdj?u36hEk>+4eZVLieczkwHi&#>N7S2w%A~p zDg(9s7Ig+tt4#~}anUh3`Isd~2+t^=u48ouEcpHz$&X;0fLwDMmQlS#;!n6rIQaYR z4}>1h91)+%6c=eR1y8edQifU%mInzzGiqkvQC+TI${Z7!>X4e3CepVm{l2&lk6)IV z3IbN2P_SCAKTYB0jiP|1c{Xjj(lmkr8fFR12x<{F4FQ_~i7fkJ6``aur^OfQh0#QO zB*g3roBPcjKu|OZ+&oAlTM$h3w`n+0HHNQ`$~fAW8_EZr)Qb*}bJjS6H`4*}+S!}r zSD7+#%X*8lNcuWIElmpA-DJ?eYs`<*|LTY`A&&cK4$gIw$090!+<)W(&7n9rjxX6L zvicgKs#R;XWJRvTS*x(@YJ~GO%Oe!AAae=GQu$i>#puni`&WB#28w)NKX_RB!VG<) z2{FNb$(WwyzGzwdb_{?#Q7Gts)^yJDJ8ppNqh$zV5XE<~>Q?G1{wP+9z$u)wopFXV zy<|b!84&vtqFfV01ZZ$?e`tW8%dLSLrR@BlyLB%1zjRhyzZc;DwDNGV{b}Xl`a^B> zcMTQSzjZ}iK%?IGax_>}hCj;E-r@9z&G#&l znZ&UnINJ)4va&U9?bIBhntDE*y{oboF4pp1-6)a718`oQ5C|&X4By%<@I5}?0N{_ULnszLcT>XOx({Iz=okVv z0Itq^J)K|Lw~)vCCIA!Tg!Kv`YktTYf+3PpXXRn!+(+(wv8P5=+F748O3nI}8U)~F zRuTeQ03@LIbXRO6?rS91&+%pICEe$rkbj!!&GgHmdg1*X`A)Szd@H~nn?qnj87tIU zj_Xx>_W--XU9fP~=jWPxxNB|e;AE$M@MTh%JG+y+Ee8*9lNets8pK7{07ZSp!!tHM z^)1lH4==o=p-c~vvK^yfY=^DhNZ;2?0u9(N2hgzDX_L{?5V387mm|w7&6YqHbd!ZU zCmDTU<&5gQ*xOQ5_Cs$x-rsFe+UH`+byhBnnHlp4&MEWD(gD)|6;$xokxa{H^kmXY zCZ@ZOoXb_ns_?jF;hO0$-4b~^>0N{acWPVVwwrF64Dw_cu*bOH~G9Q1(G8sO&*r5OKiG#rj!8jfUvV%H8n_P#5m179+=a!KN@Kr zzB91!)tfQD!RZ5B+S`%R^+C({hh%JDx0wU4j7)8&gj2w-f5Q$0+mrowrl6aZ*LGIE zC!bM+eukx^p3qX@z_*}FYRwn}$t{S=_cA=LU#501)%;nYuXIO~O+JvNm9S-fY&t1zY0f2%QDypXBo-NW$q+(qM0dgudT&RxZ5;C7ZeY$)ejp z3?V5ge<-=M-q~f9br|~U+F&^DcoHx*9JBR_Q<)lfRbWXIuJPm!x*~fE5`No9;PG%%(dvXjJCIJPOFMV?UFj#igkM z%>$#w4U@wDz2X`Z`Y`5@5UH*IN>l&dDwrz4Zrn<6u3Rc{<_}by1C>i;dksK;`Un2Z zMVw7TBjUTzI4J;>4%C!%H?@k?W<%&A1>P2wSr9hT8nZ6`llOEFq?e}alUy9pf-iv$h-lUUUN^bmog{N-;0F_UB{Nzp{@t zNB6U*)84&y#KwXx-Rp-e0(~J#=?ZMEhCxQr`l+r;=I&(PENR%>-CqpAUif}ha`80J z^b13PX0-3iz)_eqrn30u>YC&C6FK0=pX1O)vrkd3m0cd^oNeAz!#||IevX!1v6*wS zcFS!z4?5n&QDtrrhSaC5Dobc0*B;!d zxfCvjvqucVDtUYQkPd|bR>W@`hDZgfL@>#G^G_AGl6aIyNM6pFPNaR6zUM$%AUMH& z=^X%sfvR1*H8G(u6#Cg8dqp^8zv&~nOyE2jK!C*dLVj&_;Dkvk({WzanbA&oTOQ{Aw2ejVCKuUI(5KiD7I~NeF$+AsN>^wL^yM869l*Hj6lO(R^RvbWy6v6 zI6o;Og{3I-_MZe3fc89NQXxd;kyBdX9d3`p>P5u(t#)|)$EL`6U)$~`wuz=b@ZqSR zl|zGErZvGQeB<&=>?18YVs1$-5QHQXwL>TENFh+Jfze$9U0k~DdsKU$B}ros{ZK=f z(qpvS(%XD;5-EMXL7<`NU{tgXgmtai+tN-Cb0%Cl7-`CE0e4)HX=_g%6i09J=Ju#v zD94S@2p-%+qAK{R-D5DW1ZddCkhj%a)iVTQ;DLF<)H(8}+h(s)pr5l`yj6tH%M8`C zLs~EnwVO4|dGIPJJJtJ_ocZ+@dAP-<0rzr+tIuq{&%Rk-uwhZXA)YN|%?4~lf94IT zIg-U8g~Q_#0ftMn#thq3nGU36i_0{NLp_)%8RT+NZ9=RjOdY0q6;qm3Wo*}MS(-j{ zQZmv*G&8&>P(oy?D-vlT zl?)Seao#<`&akcsR^$u0FZ#t*uUe{?QYB%H9;LajJ#hsXj~Wi>2$vmY^SEpnhXun0H&@EDZEMO#l-FY!!&w%m<^> zsTo*rL1;QIuabT8-fs2^8K`)7`jXc+_P_H8rX5IRmYdOahkF#+FP=4 zKy_UVMN}a5n`R_x992zk=F(GVyo;a*rmC2K1H?-7$XUy;3+r~Z^lMW1CN=WkMM$jzL8EnGCg>=v2@%LfKr8&ILc=3{tChj>`X@K zfM{1kz>XqJUq|qMyBGz420B9ey0k*hZO@m&>2vFKl~;Tl6VA>)PBzl+<&Nj{!6RF$;0_>2Kb*|1y;6y z=LP)h4}Ui=b8&J2LDAo1mD5Og5ODr4-_FX(_1-)sdh?zbwv6^pf-t7SN&cOo_=kAs zUCsX=QP1Bgh4*oRhlG{oKMcix*G4gd{#M>#{Gs@N&-s#1dM_>RnE00K@No`q0Kc#J zZnH1vqiWSh+lg)+exF>5voswH+N9|!>Q13pXyV*lpogjx9gs9sdPm%&;MvB}@hW+9 z_nXI}@Y{>y{cZbnq?ER5x`3}tX-|YxhDw%%WjeEXj~V|9MUSkc=1- z4BC0*hpFBWM3S$c%%Nx`>STDxLRv*Rz5|Q$Bf3ZAq3i-ykX{HtC0K$8?~cp9k?|v< z=#{jZkm4Cp*`r?Zl1Y#f(Yypju+IkzIz3H$0;Cjd`K)Cr5ikh!ai&9>U^lR$DNPvG zxHeg|TC7$l43PWjuLoxI)|q57T8W<>lMic|@tOB##3DGpWi%Y(1cak|hhl}<{n~eXBA6)?QIJBwc*vCaj7&cr@n+Lk({b{KAWH^L8~B5F8!ih# z0Js?`E4qGK21@ElY%;A_AoSCQU#LMIF4W0k9~FL1PQD`18kF^oZbs;_Kz6Hy-w!xHn>&)sc z&3a+N2|PfKt&1mpqB(13x2M8g0L493vq4tylePCu6aBA1#GQg^r z*eh^JlGA;7PvlDHI->J^ClV)Q81q9!o8yHkKw)#D#?y%1p4i4Wtje3JmLGr-x951S zV(my{&usxNQ!n(<>sSw;Z&j9aX2m?^+X!6T^nO%n4~uGFbD!ViRMSjD+1I2Gpj)ms zS&r%%cgyvU>?W&ithztyFgqr4@abmiA?>x1+ztr{^F#P=?A=o}n(?2vRN`5OhT|m< zU~O@t*+#%m9Bm;KuUl5qEoJ~>Y5c8j_LUUisDinKr5^d>omwog5JKGf2ky?z}=K!u8U9Z?3(!=erSR} zBYEX3!?(X7b}^JsC)#%2FZ*DdZbwE1hM@UOSGtJLg_ZI)gO%LFGtK~LTgD1T9|*FK zbpwxO&h)}RIA*71pbq$cm7G(vakI(;l z1k<3y=ut6;O3In|N(T8^E);!TUt3aC79@)`?dE8ePL4b!bmyFz@iXnF@HHpFPtZB9 zgm9 zwj@4;AEKJY6Db&C&kEAT4|PhPVjika2X^UzmGlo;(c9N2i>0@ePgj4fX1{S{pQOtsr4#fFwO^WDVPH z4%(vfQnsWUw2X1G4a56{6pV47_emMTF|#$7+~8brA@X}cecr}gUex>m75WV8IA}eT zF}+^K^Wo;Wrtsd1{%NokVqaeUH`#77H-JmcA^(CGJPP6(03&||c9k;01PVwYYd?i^v2;1&BaUUhM~$j-GzqW57c)3ZFZcKl zuYTuC`QdDl9Cwn+UwFeS^1Gq+(w@(@&K6n^O-J&KKM#BR+@A?5aZMt55n2- z0!d526~u>Ri#Iu+IKLQC(8BIq0*lJY0|4-W0NHNHTv8;Q6Esglg;NPL7>W&NDzF}_ zgJlXiR3xkThY6fiKW&&0_G?9$*`l%bbeOa8VMi(Hs`PDU_ zkF-#?g#9NMGd_klnwNY7HZ}K=3Fxx87qLMOV+P}Savgq@BG{+tyHMz~IM*wNw~i`I z21vtyhF{**UP(qDTiN@nS^9P1N0?1d7i8g^*i6c^I8n0GE9F<_jvog4sQpIh3wrvA zZ=0PGtM2a&iK%NrCxDxl&E3u^Q@rj#SbKyHVJ!h4;Y_T>$yrU2s$bSE&gzQgr!cNo zsy&v+o_=C|wl0APG$MoiIink$`|28CS(yEO)--;3s+Xb7rrkIZBX3X(w8|)dEW<&$ zlM*{gvADSZr}l;WFYU`;;FT1U;g6D4F7CesFy`dH1u#i))s(;mat8E&bz!i-`+#}b zcz|!@4F9glVEf&b`VLNcC>SU({sNVMEy-EAIG9*CQ_&ePfUJ1PSisyVKWwdk2eJPYjsG3${t0RStUIk>Wk3XG2Qxu~y(jV}_A%1|PPOG-R=7|) zo;4j;iArT5b`+=Wkjn5aK8sV|KA%sQh;I!HOW<5(1OuC^n;<-T*jIwLeaB$gUIYSW%(+B?MZZA$I zcwZ@-FGA5o?&MbPc!@V?Nc7p(DyJ7}Ym>71q{{}W{sRjISnvoMz#axJ$PM^3AK1_;%SBtr5tO}5_GDWNntfJ`1ZWGI>GZq{^8TW6YOIgkJ4s3mSIQzf^-dX*i?D? z4U(Apw`y^Mc)rhS62V=(*_JZoK_JGtm|KDJQ-(A!?(sixsfR6dOoK_UBk^fn6vbS! z_m|8(ajC(#2R`6@b_Oy+|B;UJ6OeX^+D7MQ){Uo^j%>L% zrtz>A@bunP!2+c!Tt3V(oO4WVU1!p`tX^It$JykcQBlmQY1_+U%wozrE5HcJrg^OJ z*-KThTq_U%2Ha!k2Cgz!N)jiu*sNS|t6YFR-pafKPFm8J9c5b2{bOw})q3zAli3*V zG|1ycF@4_`JOI8={ioX8s&J56m|VWJ^g+6Hs00^8r@%FC5FF03N!++?7b>lC))5ZV zt&z1Ps2D?(anz*s9%8&u7EI!5PFhhUrjAI9YnI5)&_^^HOw)W%jor(=7k2@~3Wir6 z<@&;WF^IY}&Fdq+A8r&Gj%B9B#mBI0S+QX8U`Y$#9s!G5_eZ<8aR%*tYtMC!Fj%-G z2*aU=3S!w)rpnwd*#;mf$qy(}9ZB>*tgl(&H;rldKma&|2__ zW>GQnweaF8FU^Sd4QwLgv>y{?DPVPC%Pw&aigGD^W1HR3#1-h_1k{g=>$7mm#ztDC zP7;oGZ2+ck5CZa{KFRd4n0}d-D2JIe45^Lf-q;!wZWxDB!DJ#TD`VB!S4J_8JC8iX zBToK=+T^y|DJ}9meG~@EntthFRv`mk1ocNu0w{yW3XO?il*cK{od=ZyDG?E7-bD2k z2ng%BECWinJDLp*+A%%uj8KRZjSnqZ^kwps7XZJG&?z}u3qM>X>v^n=uUl9($fy`1 z_NcygG=Y_$9pt9=cr@hEiv!LMzSsSF)SqE!?FdHuIR*Xzsu$^LVbLSuognI+(4Ape z@52{JAYWEGJ-qCjkLJRO*{6$nYzJ#V`m(p8a zMm-=7DYOb`vxC3#nyWPLOUf4GNfoDL|!`TFdIl2?yNN{ z*Tx$;J6&(aIK$%Ig5*8bmE4DChxrk0ig?CKeu|GIpo|(U{-=oad~2?~BTMmNDb7pl z$RG8q(CbA;teb1p1VsylO!WCqmge`v-f1QgREB&zh&XkwW}0n@`sGX?7#~||sY>NO zI(MSf$Zy*eR$>-=oO)KLABE$;Q;cRBb@G}D84QLlJCqT-cSnS$Ex?i|M>^B@85U|A zPDmN$Gu3f24|w79)7ed|i-K5twt6!T3kk>AHQrsj33Qy5kC?HYuZ?EF%1|@Q2SEU= zOu=r8JcATe%*#8_QtW~RGD}Wd3ET-w)ECBTZ>@vxR6=oNYacSLxdsMCBK%1a*ZUj8 zo%ltyWh7ql3cF8FOTTL#3aUS4CiPa}CIi#k$vvB*_2=r0+15RTRBrnO zq100&X9H`7UHr{1J7%!pI=Y`0B%^re3_-=dz499%vP1{| zg+RLBZP1pi6=)4-U7ufo*H()+#c@^&-rE!^(n8oEc;-cROMA7K4KC?duJFXGR2c^s z>Gu&v9TWpw9p){2K(gbxxI=xIkjQ>wfS9B+{Sg69e_xMR^jH}0*$@Aw&v||qv(rHS zL7oE_S>M&NTz_u6aM>8p{#9+x#mUXY{a%^ACH%glQe$I4rTNSD^%oZ4e2*Jp`M(8q z@Bmpc7_fi_#LSS^e<@r4wTAkqZ|onAvcD;C{|*hH98mv_a9|ffc8)F4y%7)gHmp|i|Or5xk>rSCd))|)h5Yk z9%ye$e7L&L1u0p4ogKYE4egouT@{=Qxm`zdp6hY$S{+kvt;APv)evQ{x9AwtD05xR zG^-Rl4{8IY>QvRo@&1C9?U)wqayMOpXFKWl2z$U4=&$?{#Di6a(Q2P0WLLuJqTw zK?YL^C0@ADMwd0GU1s^l^H%_uknOX*&PLp2{dXev$f{=}?2qfSdV*>5ovRt`OOjh8 zD(8b`)?=H>^B zn|MJ4H9z2-1%5pEViDsEh)eOdOcrnv7R_5+dP?g}Wk>*((cX+gvja5_2w8VPxNRT~ zE553(rr!cree=3XJA4(@)T#zQYz&!1{?H7GPqWIc!elh;*ONXPbXkRKF{i8nS?ekp zalhJavn;w5q!G@FvVsySKOkVxek!1y=M6q!rex(wo%O{4AWsF!zc!V05WhCeRqf>RYVNcRjtvEDczKdgfDB3;54^}QF9UW z2J6zF+SLNk!|BvvyB&$I3JNJ|Zn+f_jIUumRu%>gHe`Mc;0cT*q>%{xajlw9e3$v{ z#k{J#%A+w}g{&F^l0j`g(k9_%??De54+(80vWwh!qtRMNf+fUw(n*H?O+;3jg6T6=%L@=O{i za=@b?;n4<5<7$Z*eeUccGDis}j>h;QD@&KeuBT&JDB+$o7&ddED$2TwTy;Rrp%wyo zZ8UaYWG9c3FDA82qLgq6AL^>cn2667%9UruuM8ED&FAo0X<9AbHo0LlQPnw%FZ-(i zr3a&EKo+sK^@v>e?tR~bjaVd@=5Tz--9`zNb1bsnIpF?82-Pm|FfYpf^E}2EP6|7W zPXthr_g0usBFV77!nH&MQ&cSFTMQ@o^7KE0;rQ04GB3D&soavB6rv2rre*c@@aAco zWNB+7ep)FGGwP}z?cbf&9=MBViF;_jQQ&;rR&jAxg3aM|lkG~Wnc3d-a0U(`qIfLe|uAA{eW8^M-|vTL{-q>RNy7NGB!J2>qh z1|V!l&-}jRFo3PX3<$vNR;G7X2=5=a(m!Y&UXI@)F|5C69XMubX9qV&5_Z-<4hIJputtf2822~9!}}Kx^VfT}_nfcys+IQ=OLS`9 z-*@ugGphb|mi1kp#`bOm`QtX8;$Xo7{0?yX59RastMc!2^FJ=ye=tG+kK_5@xuoAs zF`tx;t<6kaNdyFd%8N9RkUS(@JnuG|7AQ8b_g@k?#f$;Y$@(6p)eTMqnA2W!Smi+i zOuWZNLm!kr)$L;WY3cej^>0tMj*CYZBgYL6x1`~g+>Nc9zdaRDjHFU!P@F>jAI9D? zDz0s97RH0SySuvucXvx5xVuAu#$AFo7Tn$49fAaRcemj7k-gvdo}F{PGw%J_W3JUQ zMvpaXR@GA#LI~FPm_-ww=R>}m-7ha3(V402_3G?!d!oD%a5_2NF2Ajlj+%6Q`m(nK% z6Bkqe;1AfAp^cM7p)CPRfb=qA91yeA%sOe&Pk^@JpRF&PauHE4ty0T7N{%I#C?!(| zP|2v}l~8EKNV$`jC@eyo24#flWmanC|7e9D#5EW1xs;V~mBv0`Aa#WO;$Snvb(<|) z_`1mPrNbyv{JgR$kV0FxEN>RobC1I8*8vAgfSz6=ewviKa3Tgw~6_J@f>b>T+A6m+2 zx`N%{``_PUALV-@7IV=K%^gA_M}*Nv=v_x;I41xj_8{>r1keIIa!}k7;>N5g01j{K znyS_q99Mk)t^+$mH{i#s&sRbhJjzPp%fZltIvTW)r@Wvx3V}Zn>w=WmL5Bu6lEED7 z#@rXf?FnfZLYA_^QcLlz=VQ8Vx9QeQKpUY18(AXXsNG9DLG2#gwobi&=?AhN>(}WA z?FF&+e6NdOXuEO+1KD(GJ_Es92Kabwww_iIc$F?MQu+RXGE0Rq0};?(eDkRw2eCyu zg}P7!K8;6ob%lH2G=V4v_mQC(8nb5e<@Flz48^RO)H zR&gM=mO+PXK269ub|Crftvn6;?j`vOp#QSs>d(9ROYeIaBZ=p2DiEw8CJMHg!88Ledd4N>JRjBp0L)TU4q|qVF!vHHOyacS0(^dz;d+O#h%8RAq zb6fkY>sUbF!QpPr_VjDj8J^(s=El6}KHk_3_kFSH{uhYH3(GbNgVj+}oZis(>UCEV znrh|%N4b}=?DHN+0RhI%XT`Y1O2`5C3G^+{KqNr&DGr8uGr?`U5nwZEQtyo!am(;n ziY#%S=bKOchqCKa#Kl!kAFk}q0S`ChtW5kAkB-zBYu0Ab6n_T;^CO9Mp>_?Eb9Kjq zX>Vd$Z3ix-R{t`NSmd5E9qw!wFyrfiWUtS3v=aMDhCZ{M(Bw1;4ieze@SxXW03SEMt^3&*FQk8Q(z;gqfd z^%?(pc8)LeO{UPI;^sTnTC*w0BKw^;?F}b+qPtumf&l^uoFPCi(4tx!SX*QAzJXuQRjKL@}gq52L z6jy&J4Pp(q)wK3hBzime1O?J{y8(&psd`b~#~u6b%oq%5LXQZKP$K<%xs<9*ihhYO zbO;q#0!wl-{y6~aq&&OG^+{ecUWb>dd2P)TsUBR_4)U8$bI_?&Th-}u(CRhzsF}}k zePjQ~LCZ5<99O30K${?hsw5U2Ztf~O=#Dz>rvN9Pb#I~STi926`>mDzqU_I z1sJH^D1YQAk+W%T@ha99Csu`FmVKh88Q+`QY3@|a5u2e=A>%O1 z`ZRInK*jOjvd$|z|#L^AuZQt@?eJp6hNxON5 zg|bN#^^L>K?afmp-_APR{&>;uPd^yri7{GsvUR*i5@RYRs{suIBF)kYsh|$Mf~IGS z&_MY0W&;6lTMU-En?#wjp4X!@3Czv0^Oi)j5t$aSNBjy~$7J#_F~pbiOnb?8K;`4g z8_5E5lUR{K7}(S)F|7V9hsrY8x?*@XK#JTpKDQb-0UG;#ql;)eE2bj7^LsCS!2OTb zZ-A75kp=Qi`}p?xNN9T83FVhfSwqI4H{R@yA7O%~Vv|amhlM;2zTDi+n2=R_Y04F_ zlFuXn0H>Ix5BbF9O-;p&)5G<2`{jqL{rxM7W41W+ape08y-T3d;VP4=__H@i=>SZ* zpeqo>Z53$RAtMzo`xHf@c9TrKgoFYzgM^;6>I|427JXQbsI4?3L1*rTiEr6R^zG8Z zI=wxaHq$9HxY`H9hvL5%jCTHH50gS%FR=(f@634l0r(*Iotas6C1~}n6Zhmm?jd5^ zY-wdqW9-l%zaf^;AZ3^U+B{4)@P-3@ZBERB5$P;Us0hS#<~xd?h2^8x zA0dSgKCxV{otA3DqElM-Sd}TQ5w&ovt=09;bw6=4fG3NMI&4+hY}JV{5|tM2Xy_Q$ z5QT>wM0Ht3GuFV9!=GnZlaM8}Q`Zpz6fP=|2hJrkgHD~zTVXH(RYRt?HM+sLU-@>9 z&7mw3yC&?;V;BWRKoNqeo~4scDFPZ^z$R{UDzKuSil4yERQf49 zWc`JsfAnF*wcq z|I03Ma4@p5asXp=-u0ceeX-ue=f0dzNgM|{$~X2`v?8}hJy+CV-EWd z9qP|fjQ?Jo$W6@kf811mM6LdTuK&Q@|H9DxD(`je|HSJ59fkj=7WP~Hq66n*VR`p$ zp@Fe*05?GyX#l6Vx^~MFSF4@=QhL+|JO71;F-({>rRq`$(hf2(xEn!=XIP1niMesfv6%{VH(0$e6 zaadwT6nTg?X7Z-n$I{Z}UkzHA5zZ`WY-3yEwi*1d{A8DNod6lL$bpzWMV%It(zdd> zGtH3hEr9&@%GFOvOpQNg0O-5A88%bmM?k?_=(6 zTcKj%5-L*UXcu7^L%&?xr9o5T??H{BAtAC%;lU&tm+Q;!!v>+@5CQG{Af(dU8l zIRW&OT^%unYkBtZy>QTbW2K8DAaqi}IZK3g~&b{(G}$9QTUdRgkPguSA2N1@JSd_!}getCgSoqncF7fZyYAO`Z;i?U(J1Uc)XB{g_(gSZPFersCv1^P@F)h?{+TZP_>Zz185Z9hN%J7d$ zv?@!g4`aZ565${4VUMG=Uk@f+-3zVtEke&$0aw}E{2E1n6VV#k7!!Ql;$-X^< z4yR6}BumnvMiQzaIJ>6by8CMDx_LzXL$~X@o5kcxJ2>e@L|UMK&ZExmsf>ga8Rof3 zKhrSKf)YJ?=%~R)66CmNer5JU*K|2>@VTejaxtL3+Xf9(8JXxmAy%Ti6#WPwbMWb8 zFcY%d_H$cqYp7fbjs7}q>brE{8)PdA;w6Ldn)_fRIR;YW0BMyP#^U>2gyVZ!gwxes zgwsK^nhFYLI|E;3q71g~X1iroIM#J=V2!*psLynC(==qqV5_&zOtMt`If;>NqwLjU zXe~@6LDDIeIPqY3dFLmn{Dd&zj)3_W6Z~0a2JMt_6A4Ts9By3osj*hi9fv?+To!~A zUtB_5)2vSm5^jfI{4Yn}L%o zd_!k)iX^IbM_aCV&&jO`9V`C59#TBSWhrBDn7^W}?USshE)}|;oVm9EHrjl7Y@#On zh~@{lp)}FtO|$930v~pl67hwB!C5h+5RN^S5>j7ZYN*fX+$fw536YAU%*M984$nPp zv8e`TOD|XlOJ?-T&YFaXDK=OPEHsk<%!uhRxLpeo;j>-Qu$C!|dQ zCYvE${RC>ugvqaScazzGOh&+)Oj)BQRwh#_JPBGL3@8dDDl*>tG*nl!VU?aFF~=6M z$9G9LthZMk#@5EX1ZQyMD>PYlQWf6WR9Qbku7cwW9TvUdWRedqv$kkLzMj7f7>hyy z8GMm@rkE(9R$^!Y-T0;;pmM$Nr>wnMSj!LFv_Zs=sK}>Ic1%A2x4~Xt>Kla;PFXcL zTS~QgtEdKI-*Vdvz(Qx$;3I$fHkFqTqE(eZC8zrjk*9BvVM;tIpKm+(Ol`%~## zp^_#m3J0bOLEI&>g>4o(2)~r;Rw+lX(1d)Ca4c{TWGUYN=EU;YIN|#=lG3MlV$Cmk z6LxY28ABVLMHtxxILY6usd(k9<$Io@yOFGQ{b??Fu|vHgK)ADYps{;&71JmR%iFTc zLI8T)FbqLuPdR_vnUA_PL0CzU2Ka(?XQI;@Q=_xGG+p!{wc1N4HTFZd`m48dOqq_Y zrb&xHbN!JA|3Q_U=7VS5#HKywj&R|$YsiGkd^X~xd(0ULAhnjlaH_mM6x3MAr@Why z75n;QL~J&p{XAoM{1_XRToyS@6vV(=XDlTf>Q~o>g&0RWa=abk$hT5|GyvMREYbV` z)M3%3eKPYc;+I1F+egJ(oLnhrKqvsAjLpf1%gM{%LGC&Ju~1!0(4p-XY+L)&=yLdq zt4sG`)_O4qK@IlN+|La10I@_t;bz4~QH zgoZ{R-FjFW9MKnGhTnd`q-W_}mma_v>?`TI0-CqE7lvZm0`?kNa@_<3tA{YgY9f#9ZEl=H{?^ zyg3w4z6~h!wn@yv^va3F{LNd&UTLhYM>uZ%o1NVf{8jeKR>9Aa3n}p713>lZz1Qyw zJtt>J;JrQrJW%S>yXFYL4uygF4o`klpnu{&9$>dQ0~O@o^lSO2cauHKdmbhm=zFXq z_g|@%TrB^Vfyu_j$jkzK(V-^-Mk+BQ=>5yV{s*%9C)N31Vb#Bjg?|c(|3^9m!U!`U z0?XQ|puyh7#MoJecWkBe$!?hw-Djc_dFtbW(CAf;RpUoz8y)KfQA~HCDL62l9D<6P zoufF)mm5A*ntnCwK`h8a-}YqA{vU%*FYdjRQZ>&hZ!AdrkM<(D&8 zMY|}G%-3ZO#@_gC?kxB`GdStqJ%}Aj>i~6xkIJX{ld}56EC5etQs;Y*=Rp(+KS_eY zqlU#%ox6kQmyBA4LCG&M(CMh3`W(RnHxnwhiBCKB$I-Go*@K zrA0f7f>Us(+5vTQO6AB1tyT~VxG4T$+@GQfm#&VsXc;ROW=&?h_~Z$v8N3xKK8E^?L_F=d<@BfqR6gZ zR(;q#ew_e;Q=9Tu%2OU&$opNs3Ek*&>Wh?dS>(I#UBd9a6;2DY66h>qA^P753ELj} zK6B!;@P_Wt2Qh)-q?ej@vsHAg4w3lj4;ekQkD#k-mJx}wGO_Z|h-xz=6pb^>ztY5$ z7zOy#In!$eL<=v~X@A&S{PqZ5&j+V}mtSsE)({M6SjFwCZx!uaBS@mY9}Yhqj??#o z3JWaO#p*>Fl|G(;okp%RAh=*UBtuY?zo34mr5vH9Tf z4YS2KkQGAjV${0Np&Q3$J&UZ+1I@20{rdA_lk^Ihpsq#`7$ETm)5OY1M+w>zb`Ja2tNGsD{7C_vd zed$i)U3psv9pf%fY>mbZ7?VLijq^ZNt{zCt1Hj*4v5#L|o!Jnp!p;Ug7(u{gNY3CD8aKrFpPY z;JN%Osj4v&3}RmV-Vq*)Y$t`+Yv_)(zgJrMUPt04`v5pt@XEeO1J~&F6+l`uk2&fo z{+EyKlI1>%p!z9&{C7B#B9^h#jbiCY^PwMzcbyTXo~Qeqp>p)Dd55&7>DD&LxXl}Y zO&8H!#E)QA*z_nN@zK{s}ChwPr_ZALEov5s8--ay$jA=y~d~WC9f1qWUL~S|pF!@b#3Z~(HVLy#> zvV5$QdatC|{&pQM*!g+1a9fV@@Ux@-?6CDTgHOy+6qH4Bkq2jZoz-_X$5Y~H{Cw^zN%7AvnQM~Jh^BM;SuJ`Rxy1Ierf-(U?!W8Cu#1)7%!UL zeu^n^jHj-fN`H2Y5rR1!CTZZb1aOL7k($Ok)yCSMOI4g`PJt4DKO*0kTFG+eU9FzF zG0uN2ID?#7C5zTRoKHU%&POIh8+3va9H6t_V%>QXZnTtppQjO;_{>2mAiQu3@BfVZ zIr2iv5=(JB#*92)3anAhbGhpp(4j=iN{5wRHbn-n;XWFQ;B(0otrE+pMVi+FlL}y<-?7 zT@nzVuZquI_@>X~`ZVG6%4nNGtaUB1GvB~Iar4{^LsrHs0AktKvOp6Z>R48buNbH&c$L@2!xG4W;^*MiBRK*MMJC+ znIy8sh+pe&QZmuTPBv7+Rb6qEA?xs+9?Bk9-*$%6#04VJ-}YhT(Pfh-#c-rJ$F`>Z z&GR9y)8dQQw|MUa2T-uiU(Ji8eXOwTF6{zGk=fFGJ9HS%^ys9hDF7108%JL%)g29! zWi(8#+(uyN*<@0r-e{9>sAH4VJI_mQ3{+PG0&TRclZ2*4+bbJvR55O@GG{a0D!a*p zv4``($HOMy=W9`i&3oJxAZ$5{_IF)}om(0|Ze8*-*kFHsvM*|3UawQYDJ(AU^*_A} zsj=LrI?6#(G2f3X2mlnH-iCg@NgF?tEG8InZfF$to~#R4F!)*D{gPwX8&k5#z?NXu z>dmsir}-L$S9g;hP;8Y#$%?gk71ir_@{u7(DxxAa3mjkmmFKxE0;GHgJ(blzL)`tm z!HLSkUcnIfT?_}=7bQ^amoYp9?|X8A61=ESB&vvRdMLlQQ6r#%&NTev$JD}lDz?#O z7rWNN{2dFHCMrUsPz7O=Pv<7-4vU#y9sD*fQ~z!R4y45nSxjg&32Y8fm)oh*-s zz{_~^F4$YURqb-0>HuoQj#~6lQ|-@0?B&AH(g-V8Kz&hY4Sb+;k-SwBwh4l*Zf08u zrNeZ(iivebcoqOZHbG>`SzzlFEqZjU%=fpHl%6<-tE8Z1q}jL7j}&nw zlZL0T7`dV}Kn&BYh;*`}G#G{k+rN@6toJWy28JJ>7!3l37S&djN^iwa;h5}4IpxIg zYSmD{PjG`Kp*2+T$YU1_C`AOt6Pj_nzBArpw7`2S%zuP3*8iG5%*^+pP>8+ga$~HK z`TdWDt(+H{{$aIJ>uUnx;&-ZGAr|i`+&xrsv-p!ucrvA+6Av?8_1>1YO0RNEod?FV z!HM3C(pfD)5eDWFoJq{qwYa{<_(dad%mAHDyX$#0Ue$!lm3hCDdB$b(-sh?f@(fh` zCJd5@G&>IlO>{2;54JLy!V(_&Yuk)-@Q|%!Tf!p|DGLM-Xs_uKA=5Sd6tX^52NRUw z*ZH*o!zh=Ja}3P|banhLLFYegr;xU7uS8lmu(4bK=5<|#yLVi@<{Ul+cxy9oxxRu$ zI2nmXnU&I%IFqA6#?;L|KRS8^K%Ln9X01qmhgym6R}C|26>CttTMba}Zo)z!x0xwieHAa^P~`WHNDY(XF7go(-6FM71^6-y#x)w!ivg zadXrX(0V^tiA}R;VEAB~(jq+^2Ii$mzjWw4BN6wR2K>!LzgKww#YF!#gZt-6gq7v5 zXCUcm+d$|n7^J~iIU8Lq7-+D8_reV5z*;|s2B3}t!(Wm8T&%yTYN~ix zL4@D4x?HUPMm)cpA-VsG6XoanYaZesR*wI;mgU{{!TSG0Qvd#Xy-e7j{;#%^!F)dKgK!QL9jNb+724{@uzztAFTELjj>U-li z%6rsk59FC}#1g!q_$A`qH!x|x9Pz0=9sF+yVCChl)YS}o#S*986hnQN=wm-UQT!O3yJ2sa|kR3`S^K-hNoMs2SzQl!wG zUswvvFK^muBBp&-U7wy3ivVKP7ALBht)4~OD9ZScXVpH|ji&``_dJ_Go8(2r!47Z! z^5qZ8u;fjxSZ&-kF{d5N^*6V#A#Q+&Eh_`kS85iFDg~_38Xb-BgswwG?iWiq_COk+ z)_wKKm0CmZ6Hi4yi|q_yyq{t-X@v@7@O*e^d4V3x4K@y)d4e1!Rr$d+FCU5 zu{EPM8lZ4}=E{o?7@IPT8j(_DFCe9v*n3H*2_A>d5ddrfBM7;cK_uW-#VXkNi z&}4C^KF!&FGQDf8vEX86*M3@6fU>M-{z zpTr^4bX}ZhklMO*YxHRIpNT}BY`AY=)(|@ zqM_c&D7+s&a3SU_p4F(O_GY?CegX#`N#F|56_zu~!cw%I{HdQqQBMT6BXRbL1 zlcR!jJv+vbr^RAA0hvaF886u2j$Pyk+;)`^VMBd(BfolG{6IRf@k+yzq#=?mJrWL) zZtq$v*H&LVv2v(CV0ZD5OJm8F^n1G9y&ySP`w?~H5btY509uP%gW>`cljdA6S6A0R zYRLC0XF&pjr2>k*M<~0ej8W8k9w2ibMHwMbbv4jT))pcJjVj4QyUF#w+eEQu`u2W0 zT(2nxNA63IX8Wd|Zptt9=|GT>c(LcLcTp(u9CV+!(CTG<$1o zv9JMzFUL@z1I5grjsrm=QAYuF6xpMU+#Z#03~~SNfFSj%4>7^o%2{hAEt5L)tR5=#W)}9Ot{@5(NjA=Ry1Ecj4u_A|SUkFu{Dz&Kv3bu$~XzO{rL z6k#*H^3IF+$Cd`y)yxJ}bHbaTNYnyWdvglbAW0NR=AKth5SNu&f30SpBA0^Eo$&)U z+t-$%`Wgt9NTBL+uv2e}LCZcN8SPvte!efQSB2;VuP8=ZcKs-_3gSs6(sA28_#;;6 z#IA}$ zBQkw*xI~TH*WVvfL(ltx?0UIl1mnFQ;z)5U%2I&qsEI#7Gze|gdB0|r?ebx8j_9m( z_gA5v%_aEB<5B;(M}#N7c=EgkjLR38CI7A7qN|{#txjOWj%po+S^bR=k8U@BsDWQI zGpxe>XW~VRe-k_G1-x$iOif==Y2y0>h;bkaE6ulw8I-&kR%GBUg1GLNh+;EkLgsWl zb@!dHJuvfg7bZMvmC8n>4FXJ0Oj}K4+uI~v2FCeBs_77?)5Tc(Le|a}X56(Of=DWX z7jo)()nXs>oKo7A%Ve21E50;9IkI`QA3Dv-j}7{plddG}H=Oqnyhql6NB)e+7x#wE zlDJ^2Xksk|6FHICiPA6Os5u9Lnx*FKAWElS?NnznTh+6l>@cE1WAr&fgt2LOK0&La zB5E5YX_|M!UR_kL4HRqjH~-LUx;EO35BTF?QiI>=6Ga@yuy#>;@?=rFp@`PTGE}E9qZQ<@!YOW zpl>u9T~`Mfsg@8XIoX;3h%Z&*uN->Ir!dFWVK5-sOSNP?qp^0+KJLo8Z#KGbBEQyq zLNO`XtKN{dho)g9Y$)|O_=VUq!~n5`6O4qxCiEjc*#|DJBbEJcWlN^pGccL#pu0fT zEx*czp%1BkqijOQ-mh46yDu$W+2Bccb)nsw19eG8sL}Z#?|t3?Xi`yH#_;y5I~jmX zNkBHGN_gWQ46{nB0ao?ct>h#&DATKq^ogLVdIj)W&d){qq~iXpuDqs+=ryY~%5bV}As*n`bj7?7> z%N8GAHBskGm)xHNNV2{4VOEK#ljlg8a?wQW`7#=6rL`dkDr370D=$T_yf*$rkdngP z&5cnDug3|Y)A$^0P>Lc?oRDXjsmH);0e!*HJu#d|9D@YlED8MNDVNFu))lyfpXM{~ z$(=n8LC-F5+r>s2<{O7WDiFkjaAY*v?xF@O>Yr9%%u%odATQkfW=AA`%$QY#yFDN$ zv=`ixh5?8mTHc@9X3ccF%!IOOwmZ7;jsoxJJ{kR(ZY?#nHX6_lzOKb~E-H(m#`y#j zgbo3sFmhNQquHl=<&6A=n)<;dMdg)$P^LJ$Y+KPtT!2D8rcCYDD3CUP<%}yzQ=@jh zX&{Uy+IJ2PP{~@T*f)2)hr9xnrH1AO_a)f0BYUtOl)A5XA7)PG&V~p?Tdkeo(R3A& z#eQv3djT~Bq)9x@mL8glOO`{g=Pe%xucT1^I88E68XD!^&?Rf4Tzpt$^RQJK_cN54 zPKd(<^M*{BlOTOY?sG2+cX=a%>*tvAb4?M7?a|e70MF+1QMdHnFzs@5AP%SULZNE2 zkpO$uo|htS4>qR?(-kz^wMS;RC3qZDr*h}=0t~-g*XBMBKb&nBJQ?2*09lg4I!w#LDH_v(ghDT{m~&p zw4n&WW+wRaniCsBnQsTrJ|mODSu;lh)MiGSC`EZwYV!eM80ZMH9Azf>XE+aa?$r%$q^Z3n~foVE!Cq&NPKCt(|y zfi5yc1{1WuN+ntXiZJq-A&dFjqag-EFd2{H=qF|Xm;Bmb|KdjjU>Ds2skKg3d_Nz#XG7t!N@E5i%PIFqMqJh!edQL zE*d4|H9c_D-*4-LZQda96z0|5i7DVOeFkJuR^TN(6A1>_-^B}mNJ^|glzs*(ioYHG z|44!5V*4#5{c-ksCyw69EZ~7W1L}Lh@n3Zi#0m^(82{5v_P=%`E;dGP=68w=0~8JD zuFddQAQKnszg@)4`8xr2iyDoQ>pk`9-#_RNa*UOg?YCe5Z*mOCBF}&Wlt*Oxvtr_( zlGUHh&wrfU{vS_!e|U-hG&=n*mH2z~0OP&E?VskRe+|~t0Y7TL3t+zo>%m!gxc^qb z>a{;rE_0)*zD>XGf `T<^dzZ%sYwHLipI7m<#?w% zKZ%9mj(a)ne%tDQ^2ZVsxZr-h1Yy4dgJte2a|!|-WFIuF1-QQiV|{wOSM5%5D7aUY zY++LR6fD*gp?f(I(kbY5_v>O7X$~_Qz!TNt?#acvo#bES zeGC&88`qDU?98epoaM-DK$S96k&Ij)n5YB=_;ORXaSf$)z0Xk|~H~ckJR`Ec_5c2yd3|Bmyx6@VEo> zydu3=k`Kw=A(&M~F)&=j(8&N-nk0iHn<+nq0u+2|jBM^w!U(W&P}-SrKtfRZL_NA@vSR zg?*#z+Zqc*8}FP8wvrXi!8`d+fYXE3?IX13QX-IoVhE|ENyx+Q!051t$S$*psV*Y| zrONDF=dA*zR0-LK>cZX1l2bosZauvvW*;xHPjhM4o7ihG>f%ge1~*MfpA(4~ZyFFY zQ*Tk^Jt|^uimzto5^os2mhf+hhBgZL@h4_GiotiYzcktia4yT%!$o-d0Duj!NU^r6 zHl;!=UWd|(Kvl{&gMwm}ymq)$39$z9+D5%WC+`t8(p_v^HYRb#FX4vf95~eeFwFgd zp{vfPORxozWDV>gj|%IgY=+cnf?v^Klx;&mzGCXsIn*F-SCGY_z12-}xeQ36S#40@^Qbs|xQCf6(|3?k1Im1;EN4XuuE0UUS(O^!eJQ%?dNu zZ7GC|e8s0dcPt{Fr9U<3&OH){xng9SCWaE%wi88u%Y79Z-ut*W;$*g)?8qJsDv+0s zKtr{HF)b!dO#u#5Tx6Am%A{ji0-++{K%z2NSb$J8?(*rWhooq$4^TWt0T#1#TB7RC zogT9}X{zdh5#?}nv&udwNv#=RlS85)kG-yYWaJ_VvxzQ14R)p!M4crlK&!4XSm4Z_ajE3=GImqgF9?^tVg;{s{b8Ye*75-Tun>+uSChCp1W4`dZ_S;XB z5O~+z#no)8JEEBLW56xbf?S)K>XXzVSG;-Vxi`5AL$>vup2yc;1KA-AJUQbF`aOsV z20cRw>oxd4U%hkjB={xn7U$LTC=oE@NZ~q{ z#h@WlwMc(?a-kCyM8up*HS)~u)3Q^_(!q8rFB;^MLQAEkGXds&$Wc0cHCht^Zr$?> zr?WDu2LwYul?Hge99FN(z4WqS)$G^tu%8wjs#!gy+%ub4f=$P6-z*8Yvek#NVdx!f z%-$gS7~&24H8dtvE1Df$35d7ix6oFd#v;+?aaIYuxdFXDMbUn_1cyCBWEp~8DQhYh z{E5n7)AFlUK^8Fo>q9mT1@Z1^5e!<%bMs&l?+?un=L#io-v=V!RbbFUc8%fQC$JeTstJe>jnisV={_{U@8y`DharR>LF zF2M-m@u0E=j-vx&Uckj83Y;nOLtMzzVj)p+4TaXvL_#>({!PP#^8mKUgV9|me{36P z`ZrFq54}Q*8MnHWv;3}U`XP}+mxfy=Cr3Z3t*ZOZr0Uw%zR^Z-6bH^N9W| zPM`xEvD4lFcHlEq(VUq|?-3}XIMs}SLq!qWpQ#F7K3eHyu_mQ*YMvJ1lf}%Vk_Gjgx?vT6j-dSI^8j5xi<5SQCL)H`_X( z^h|kEFAfgMra!;X_zAA9byy}XAwT1BjSYNrDVm&2^>b-t0*F^+OfaR!!vO`qPI%?Y zCK?MP15^!W1f@$8JM9vaaD9H|qQ3gaOZ);RuDT^gpqG>=EHU{fvc}2z{o*2IRe51( zHN#_@>7Q>#^wV}ni5kjI85WM^CfDqkBeeEZe%iu(+Ow3i40rH%-!2fqiVw5;?pA(c z+o2SCN#)*f5V)G3Iku-YiZ+@H&7<)zc4y*oVng4)QY`^0HDBnHC z?7%~F1_G$xL^m7fUjPdA9jyEbc-Vj}F^r^NSpI5*{U_vN`!grtw@monVfCLfA^X2$ zwST*jotx)9|8lecor=fRVL%}I``i41vekd0BCN&K!Evg@9{g!h=Y|Am}bC0 zhW2l3Ebs3RWSN3O18OQVAOJt2(<1=>Wi`LX{}ed? zz;^$@X}`xS<4dkcfQE()7!a&1Y+U~{M)?m6#%e!$rBEX5Rvp0!hpv^iN=U!7whg>scm}+n2UF04H75kjw1_C0p>2 zze&r_yejeAs!_dN!Err7FF4)|gGuP)1Nu!FV<#xf-QwiJo*$C7aZ>RJ=A3@y#5?OW0muN>DgXM)LzVn`NLWl1YQ=h$u8hrBM5g z2Owhoj`$Q!f_v}`0nA8g?J`xHeKiqNp$Y7{-c6zSSL%k9&1jgNk?6GF+7&NU#IS16 z4(rL9p7u6(AvHHnG(5Xi6B6T4XPW^#!V0JW;8!tO;hT{n$p65l?330%XUZO{YT}*&@(TN|m`= zF<)#ZF=Kj#(6I!VG>vptxINjtIBU&}6)cVIfq^lkj@7ur?ZV0`R4}f2U&d7%I2)uh z=hpH7#mu)o1RW(LnZ$3MkCw7X4b!(cr`3?jE}f(9-attp#@5H0#!AKM&4_28&CtO4&@MxcD7c46?8N3&%^SbTr926fReI%A3Og>89NS=Ls|nlA~@ zu|JQOK16RQM@7Y5x4T;}v|;u7OPYpftY#^5NBP_Ypmabn{X5;8+ip2omO*>*hzr5V z;>p>IXO+`a>xuwu{)oQv8GTE6Lk6SPO3&6Z%JKdj+E|5;j=BMignGGhY1fe`@hYd{ zu4;P;aJMEm=#J@=-lj71vqAhEHT6zR=&0MSDxIdAkg=OkARnSTS*Th&6V{XCM}D)K z_3c66H*~YZ4y1%Pw>h5hQ#lVnCW!vg0ou~g0R>I|*QMnf1Htx(M&E)Zv|dI@R1OSC z=0I+7dH$?|5bf-1n|6yim*%UVhwBO!H$C#7!wSz|SVx2khk&)shSo|(E<*dHfP);C zHQrt3AT4+stL@`Qbk-xhFy#%AS3G2bUEL&5l1x4mOhUe`YPkH4wt|`SZMC!;6;?9O zAu<{A!t4N5V~alc&9c1l#F=yzmGqezhaT9rg#L%w`7eHHUaUvc!$asysJCDU=ki^Y zw(+tJk-8DhuOl+z4)SDtn2_D(P5P-$Y+KLz*s={-VM_&1c+lqQ*S#CPhq*Arz^@k zY*k<8?r6zp2Ujd9xtUFrN&r>K{bC@8Cll;s_!5z84=6sE4=G?aO~pY=x6aeX3WRMM zO=VWw^Cek_KMAr`_maNzHCe3sZ7Q{>&o;QNOdox;SI)9-Z9SVv>n#Y7p62}46@i)& zVeH|gXQRm=Rbf|CFQ$QNns>bjYhIP96#AJf4W|*q*LX*7LnSn$QUkENwArY7!DkF| zBB5yQRCn}Qp3h}~GT)UB*^tIspLX*Wp{ zCe+MyEP2Z~pJFqNGT;H4ytlc9nxj_1IQFhx@{qa-&M8;A%}#=N1;H|Y1nf6>xxK<+ z&xg8SWLQ<w(T$&Z=27VF3rM~0`8Q@)cXph>Aix?3kS*P zY%w|{`C)sxZgL_8uSwixz^LQLP@-%?7~o?!Ti_V z2y9%;jGXK|e_s$kA%p|m_h&$d;$(SGq2vJa1iag=|2xn1-{IFk>sS9f7W*gs`U98! zbApdp;*XTde;~7W&g{MamF=%uRv^o}SptHE>;2{5As5=i(aYS(?RT07)Zi#&XU3*H z5YkZ4Pyz5$A!pM2#Gj6W!L*O0Tq$4fXc%k6(@sq&;T)$l80W6;OTx$FTgeq)n}%L) z9(MbuHC4!QEri7!J<_D&q|$TKM|NuD*7D(D0?lv+_!ZZGt$OPwifbd(M$)DxB{tX8 zrEJ#O0~#BTU6t3BgqMp$n;S$C1YJ}jDqgB=%@XoT4R2qsZU(XnE13t-oS22NPkum) zs=3G8LXW%ok@}&ACm83B?tdW$6DdGK(M=98 zvCcu@Bl+keO58o95qy!HgYQ5uk^QW%#X7Fc2r!8=aF@K#b;y34Y^Ls6P@P-CAq!(YR`PP*H=h{1-g zJJKvyoea8Quzj`<#du>(&Lttf;C!B~YRM+v8(ME|w*3z7UGG~7-{@v#Uw&wa#|%*A zAqUwK$5E+DDde-q3OT|zgJTi`Lq;_yAvH`@9P&X52n5S$6zSv@X$!X|>SF8nRB6#p zC@RQ*V(Asr*Rp04m5x(w^`hKI34-NL$=E55boV515Pg& zNRL@=qYMis=jamoF6zA`!`eRJsRA0=DTpEYgd>dbNJ>2C~dxPJz3qmN__ z69@Ay7<}kyFelVT_19McjDm)-t8I1pP1kL@uSJ2IvVJ=$wD2nkke7fF6Ju%eqbpp# z48FhI3nEe;I5gG%<>vBTg;3HFb_O;vhG!x6O+HQlAxQCLs4ibP*^`|Q# z)v}q`a&GX!``K1Tk&!$QLUhY$7V`eqP{?3CNhE1{;vQ+DBE99$T3cMjkNA)=KMgu2 z_5-dz0bCuAncle09)_C=%{E`VoAXIvnBh&)%f@y$+h~EB=iX(S$Wj)Xd<%zok0iMG ztOP!aW5@GEM4h^Zodnt9p^*To|BtbE4vzfmzkOrdwrx#p+n8u#8CwW6o(AzJLGj)y_0Mj+(Cc(;zp;a2JX-oh}LUa`R9MnoysTX-e?^Z7G}q6${i! zW=ZbmVaLub7Y7Hz82#L{Ey5}}HCl*l&y z9Iu#HJuuo`rc2HVnKl^u!}*OcvLvBYS47?W_K5pQ|mU~fM<3U=T31~NclFbt6j=* zwSVAiDj=1xWnloz(7ToNT7qoRCKV-lNWp$5X-N@*gb*ZNVvo)?_M7N<%utO>wz zdcCi<&Yh9=6_8|u_vd;OVvz%eg1nR*J(eG|MLR4-6Isg9nbS!Xpp9eApv;cNt<0e^XFR2b-e z3$%CB>8&*C0cS-EIlzK8#@=nmxVidDVClUg83irGj}pl z96cM@7u4ztuK3TriB23n=3k}h|LqFoKY7r9U3>hG8~Xpb>;6}D$>00-|L$Y|yEL7X z;~xkWDk$q$!VDRaks7d}GZw!#h`uqUVINi!N`Ke3R!J8xDW5nd&mD%LM90WP#^x6u z!_2M9_VSYM0|dqu1<8(=m=PpRw%qLP@VdVCh%FW59 zleGP*v2UtRA5ri+SleaINr;eUHCg+*^ODTD)%6y=mPwsrC@Qs)@fZT)YXA6i+*Pj5 zR9N>0we{2Cor{uzt~Y(WnOjH1qOr6~JDox~Ld$A8qTh=t=<-nhk%KvdWbov|`9mpr|HD{~uJpWcJ%o1u;{zYl zxsJ{iI>vl5RO#jj^$8Xt0<}H!O)=6`@e>L4wnjBJK!BXo=ZmEdW5RWkELa*HGBN7{ zWhNIY*+EgbU_ox%Sn4wFcc_oqk9W9?5@hD27=vW!$fAVmG5WaYX%M!?e2NCEaT7C3 zWR+}E1F4K(9k#!zD3c-(oV6E1TnOhq zD7a2BhFqBreiLl0=;qWuLV`XE8LpyKkg#m87mDG5Y-u$qK;NLE(Fo@gyT*q|i1 zRNdY+?4#^14$r|C>Fxn_YdDSnfJZL9bOPRN&^Vu=~ z!K8(FLu2Brv;rIc4s!bDQL`CTW8ap)E40fbe%oDv<6DDduJmHayH0f9ptECij=@Pp zWj%O#}zs6VF}cWQlkWcB2(V>_x>Qwrc8 z>bb=KsjXVpK#H=83hm~B{i%<>-AI~dGhUiH`Z5&~l~abFApl6aRYxPuW-oA{))B2nbAjx7Nn}r=Z8nI) zvCs&0SlQqVuMV=yZD6OEhbtVr@)9r#hV>gPY*y}~$enaxmO$l<*svc+NiM!qPFcY! zjazb@b|Khcyc)Qb8>nmB z;Gny8JtXad6(HQZL#9`M4UqWJK2`-OE;L zj<3l)@x4?;S^#c!pIAyC zW$O0xkH(Iz5ZblJrxnv}8F~QJv&Ge)N0a7@ot<*Dk4^iENgcQM&Q(v&?+AxUswm{N zm7ds61}z(O#t7$mgNi<_ZYQ8Nq9F?pWNYDK4l3oR<>etg1p~lM8?Q$@y&`M20pu#i z)T`PX1gT(*py7`VL@21wgs92^Z4jf4Dgi_D?hC(~vl*Zn>Ifq?Y|sHPBL;&^iKwOW z(Y68|h$s05Xio>bEl4y3IR5ntZf8ZAVxdsy%o z#59ug{7aV;-&_=0a{mqrR>S?l<4nS;xGG}q4BoZm^g?Q0du3M}p8c0MM}Me^wP7n zCJQCRbBm&uR$u91NHt*|3RDtwCw5dHje3P&(0TN1dGR%{qk-c-`-3j2^5)=i{-mzO z_0oKDl;t)J#*b(jvEDWrvEUigktcz?CxNEAlx(CtInECher~#7OQd9|FuT}u6jw^5 ziQ$!raT8%YVgWD{*ab(Yl0in{s#N0pWXu$l`!GF+D$}eC=qyc5w+x<{rIaaB+QgsU z7GG<8NHQzYY3@2rl`Vc}qiZ{AV>7fi>Wk6-=pwJU!Y=D^vIYn3v57p47SJB)@F zBNJo}sU;Aer9ty!E?<}+UznW+J(m$NMDn2bK~R3>k>7h3Qq44 z+9Uaxe*q;jdB&8+oG=@mC1)H@F0sM*C>dqF5^>R z*AnlXDGlTbP3^RK0KC_?Ks1U{xcJ!M^z`u<8~zizzcoeTeT*a6eXlVLQ2PpO1=&d5 z2w;~W*)qqIX}4t2LFjk+gR2g1~CaTXH;L#0YBB*TA}YFtKrZF>7lY#F%nk) zAcKgQPC(24)WJ^E>BBuboTb7K1xmtaQbE|`e1c8*;eKc^Y_@WY)`z=MY{^)vcLG-l zL|4MARbR;=2AuuC+{5eP`df0<`Zqu(AHeuRC^N-9>3K1Fk9QjxV01gDvDO!H%%~S7 znqgTnSR?PEUNM&*x2#UXn>qKXq~gBb{5`QISxe*fo}>JTr!!!q6Kd-cCn=tc0?oUU zU;NYBl0_QjJ1+@ITzcr!4b?RPVH8w>@ty?yEK;h9g5V@Ei5WpNwoMsfJU$lc8NiE# zWn9Fa5Ro}9BovyrUv``Lg{*_(3hCLJF?-N`xQGogCvYV-q`%`X` z^enKW99j6D6W@>ma(w*xpdDB-xAJRt&s^QL$M}@E5WPWk&hc3m=c@Cq5*I{DU0Wb}L>Qr{v zz_eN*L#Uua%qd`{?*1_c2|EA!Nq{#u%|I$Zc;(9lz^0-BwND$d{!91X#WGP!AglBlCZkjWnMn;po*o;eGKZKUOZ5rp3Xlp)QDsd4@ zoOMUjiI~iwn)?KmCxd$Ucb1lU0D=UA^J^UW?=%aJe`Uxhk`2=6AyF8GY;EnForrXZ zI63}}ut>g2r^iX&Y=VGD@C~NMXa35CeG!V;zwCwF9Lz-QY%C0HU&GHo#gW|1$wZCx zVJQD|0|)c} z$7Sq4-@T6!!}5QC?EifM`*pSYUxK;#U&GtqGunUB`~TL=|M#6~V+K7&!eJOKU_oas z8n*@6JFCi^h%t3J*Q0CsTBi1NfFYjf8m9-V5!syWMl_hAk*)6f%^M+Yqrx=88+T;z zU?86BM~!AVPf>Wjg=^Z(SrM$Z*T)xrzfMEkEShV=<>A0sJgn{s^-J7#H^m}X{e3pU z^OG}96jf?({}(eUg@BKCxj;f+&u8$XFxJRLaY=tA+~ax=*1Z>nQA0Ir|wZdK#Y zXXwV|{IRGIr}8Zn(%JhE0h> zImuyng_eYD55HQ?*Ce@@GW2AYPOyM>#U&Sk6Qg{ec_ zU^_^At3-6l9i4|Rvg9;M16C7I!e-1kkFW-!>E`MwIs9+u&ZymmiAC_rlGLe0P$>-T zdCW$mr%>aW(kjVH0yB!jkxzE0UTN(`pqN{%U70& zXs{GM$FHV1nUM1f{b+MFUIG9wr|bP(Fjk7{``8jXQoPZLCCp3y=`#qx8#oe!@Al_J zTP5phC}G2>Psfv)5Oy3x0U1|aH)E>BLe>jDrg! z#uYIGiwqdO>)Dr|r$ZeXLPKK^dD3~wGl)z$r4n7E){<7B)9Os{<^v&Dz@y2bs2c^sP4>oW9csVI%vy&3UROlv%u@1+C=%$N=d95{c4O zJ~UTn??=YRXyRy}nQxagsP6e{mvoY$rYtk%ls8=sLOGTX;1N(8Avs+?)GJaYGA;UA z?1TgRFyBnWeK?)m+T!|gjXM9-9uM1ZYYfpEPuuVQf`{l zgOse)jX$%^;{U37P%~CN&k=-vXN`(E4A=1?j~;nXCShwn{;Nz(IHZF12_U(uO~W_1 zSh_I(8+OYRAZx?ha!p)_5lwa2Dr@71b(Oz7Uq3KUVt6u)!VllaVpV9%EMfb~1G66* zE34fuB~C_99#A0q{Nn^qh!jU?j)m}WnDUvMR|4;+{23|=cu=qqhL`jsEZ(Gc)J9!33) zV)~@Fzsi<&7ojE_d!*CgT-koVDi&&`BnvEe!;o`EWeu8EBQOq zvKcO1;&2taPOG7Mk7H@wQk4MhvOxlV*Je9LA28Y>-&^bZ=>SkCCg&|adg~+kv*p>S zbq3R)ZUdC`!DZLbk--OVQ>L|2MaZs%H$Tk{zBP>2zwJ!w9qc=c?}30Dlveug3(34K ztA5Hx!fgGABKeJMeIBm0Zv*Q=HUlCpi0W8Gs4{u}v9R8EdTun} z{MUF%EFrkW9* zxjh~ew77W-+oA$Fu;kD1}I3iHIQmU(hLp+b_Ln?Fp{-4c0{M2ID6EwWH*(PZ;F zds0c*k%C-Ovpa-8GQ-WOa#y>*Rnn{c@$SXXVI-05Aov;on{Cv543H?yFQ%dk7GVKZpE-``pPakod4;^m=oRUFOI4W+>Y(Xk-HH zw5^dIg6=m0^j>rJ8r!piK z#-aOr{D_oGH))2VNTSQ`YAoT4UWFd4UVev{@b4%F6Sc*J?b?hgkXYq@obLP=>(3}{Ue1|T54 z_vVrn?hL^6*K>v~0J$2;J@w>x_L$JZ3q}+=05-4}C^r-;B^W^d<$8ZWLZYzE z;9GMkxA8~6l>F}kz8C2L$wnRmK79fB2M;Liz8xwxw+#~tOt!9SIF$D7rGbI@_HtV@ z(3_yUBq&Ity$%->^oFInc8E_^^XlcTiCky0tZH}qu;D+_CKFQ|Hj58MO9Fh3s{LrI zMaV73-N>C%xr%Os{(Jyrwm&NyB(G54-ShqT*R*$3ymnBb^l=UXa+8(@+H?S+dLp{k zR1MGP0NZH+UHKl<1i-Ts0)S;3VC^>ccE^J^HotjzeWXShwRKx@30wDgn%FUR_&moJ zkH`sHhQx#=9?HaG>4ES3$K~qB^J`1*w}Xrqnm>qTPNF%C1zLdX82Y;?ZAb61rt-wA zo09$R>u1k}xX_a;mvA~gR%9LLu68lckN2n(LJs`zuwF8Gr3p5pJl3T^_^N{(8}DX6 zYsDaGA>*QQ-V-=LF_Z>@3F%;#`c{q^*mQ$p1SLP#)~>EuywJR6a7V>9udeJ6i?*iZ zz~Q%v;!WOElpg&H9nlMbq}6@9GA~2o3`^u5Zd(St;rgISOSL zb(xq#i7OEN*Z{e4b|Uawb68QUj z5n6V8gUCKhRao7OtiJQ6S!8ZCh|p*3@j!zVO1|uLq}jprDG(v^H=5=5rz#6-6T}kp z=1Z>r?V%Hy{3n%F;nEzBX+Lf^#BRoKroBj^sHU zcOBz^HW(6wS0+B}{pKhZs(IHWN%Pm7eVp8`AGf4;w4htYp^e$4imNUV2f7|@R6Ype zc=L##oC*r6r3Lb$;TYdvDkja)q~oZPP*KWQw)YNRfY!RsLtNboR9b9SGa&#b4UcRu zOgG(2cV5eSCDx~}8SBA%mOrmd1|Wa6yIY6vo;aVjbw;rgq2i$3Gr0~pW{sopI063X zq-2ZK1UUI@^eos&$nZxB`WIcNb2V3*IjU2YMX;}ogOO&~6MYb2?=*B&M0mU8Wr&Y9 zY$BX1etCR9&0&DgnPUsZ6QAgWNv)&PXnSvVvea=_bI?hcq|@Dv$O$U>5Ob>Mz(fI1K`Vb^rhc`p zP|)1QeJ_RB3a*5wVHom`#rW_a9ir4++!TN_T(ps?jb8Es`>9dNdS3~Hf!RH^?D~pERK^(#k4|w>Q|9+SxPxTBIY2pW;~9BQ z;PPLm=%I_K{T$ILZ1z2T(tq2|iSBylM`;jIWSU{O_yEV}Aw@}xmkmYh05`@u%?Vv; z%lB|jI6$@qP$Qt51-X{o#Hs1rsH37f^FB4ls{I5yPAXr@iJ;mcRlayEo{Np%lw*QU zcHp;A&`nkZeI2G1E{S9$o~P@sP$g~`nh(+W0W zL0)iR8#s5g__q>s)=O80ZbBv4np%A)4l(_iP`rl^DC%%Ph=j{-=;6e|mrlY4o@`MS zTDSL&BoP>TNvs7rfuF`^ngzso+?$L80HD>6f7)EJ;g}=_r}6d_2bXfAw{tzn&@30} z%nj{Q&(EpoTvtp70?jSAPlwEDz6XNxOa(ba7$hirazp&~LN>s|Tep|@ZIE?pg;zWz zrYmv>fL5V@HbRDqca!UghN0zwm8XG-4T8u}QeNz^d%?b1hd%@z5%y}hC?H|?XpgYD@e^V* z4K5H!a%yVhy|h;JT;AHX%o=KbA;r!Ti5dY1l=5AzW{^FF+`EH6%e89~_6Wzduq~ce z&+$v8Fo_s|0bW$^9Z=Lzyg&zgJ}kII_=qX1cnVuk!6LlvbZ!0Vy5QBKmucmh5E zo}l|WG#iczG2voI(a8dl{6_?mg7(WZbRf;FNFx4Gz;@DMx{iS0UhDpJ1D0^O@NY=L zw*(#Bp6v(j6N<6*DM2{LNXUDt2=pdK>Gp$}KdK5o$k3#CD%}HI<8AJ7G-7#g*%*F! zl4=GRb#&QfuVJbfzA7un_fji@|6&-e zruk6a8nT2E`BsP}pK38qNqpU}4IZy5pv>T3KR_-ciJ0!pgQ zwD(k^3p=Q~eSN+OeFcq&#^L4m4_zMQ9TH-*F>Mnf(mnWa!)&9# zZH^Ok<3VbWcW9e14oC_+nLbQ4eu%p}%-?)$d>syjwpBu7_=w=P9101E>HD>_W6XHz zqaAJ8kEboQ?S}JNr38g1WUZ%|ebQZA4hFJQ)K#su^e!J^kFc*r0WJa<>$Ra%A;wwW z=E*}0Ym&+BmpKrmwnl_~bwCrcxOEZFO;iQ9g(>E7CLDw03>3jMg=miocKIx^q8gLHl?P!jn3~Eo4MXcYv zqmWU$h6KO=46&(-1?1L>S-rWd3?g$F%M2Hu@RC7Z^mnKx%OpT&IB7o>hWiN(y2FCj zdX{9~f&MW6=DSA64_ZNDU*KpsantyC7zV0Hfk$>Wkm*FFPh1;VG7wDoy}6&91o*0D zSp=%5qYGdP(ZJFoA~b|e zjSbaiUNy2Kk^nMrbL~LvyRfEqhOET5Zic7N_O=It_CXu{DhyN%nhK9(_}hJLRb(xm z1-z{9yMEN{h=42ts5629*aJ&C#m({*3a2PsZ8gl9g$tat_dE)y1>>|c zRB)(BU*R^-J_|bIMJv_=N#8-HEI!C(KZRi4T@o!!<^gus-G{kSo+xsQ%S}&NX!=;< z9~v;P?Nluo1i&);$6w(~4<4;`(MocBwJ`Eus81nf)(!I@Eu~29q6(8EKO-n&=S{)@z_Z znArdAW$Vz^iCJq#_u2X?R0I#jzLr04L_FtM%Qg3-PsO0-@t&3(6@}GGm3EEYTY8M; z%@@^bH1j{^*UB9h$y{?|aPIuMyx%6^le~L*x#j(MKw04mPK~D0=0@nsO&u9*_Z)q} zwq}uVQCXg$iX`g*79%|zc!Tn8vGnWza(9_4VcwpD`g_%9M77X+x0Usr5lseZ{YfH z2UxyQdpy*Xr#e`Ee{HI@MR3!dhTeMLF}$-IjvMCh-j)}%J>nC=OTk#lNgv&Zip2_f zz3Dt(Z7uKG!f@@u^!lAHspZc9F&#Z&XsSkpFmJdgTg^h-R>+IM6zHj^qp}|E zAkKEgx?-mup<_KBT%N)Znl09P^$tI%2@ncfWYe41T`Ta_iL4_Gf;{PgM3u=3c5^+}WecnnbUW|Ip`O;UPvT+^)3pua1JQ);;~(_Iba zBc3SD`P|=&(R@L!*D~z}2na++-8ZAqEg`D)8Ft6uPZDkjs%Mpw`rMqBG#P)p0vK`_ zeIq#fDV{`n2+8|vS7a@q#ji})O|~QyMQDFUuM{H#CjX}`L^yK6zU@>uO#Mnnnc+EP zI%J^)%tTZMW$27&Q;{gz?35>>dvPt{w5qcsl@v^?&UnX|NoNf=WG+hd<$>2n56Zj& zRvK6jOs{M|_l!tGZCJWnuINs_EytlPSkio>5pY5t5H#x%GZ(bl`x zR;(cNp{f$td4tTpWih$yw8)a=X;tQ_k(ELDi(_!CB*tth7ny`Jo%9P7U%+p4U+WqM zb^wQCd#H|{I!4!k227;RiDJKCvloTF!raK$zXOx|jO^HUirA)LUZGKou8zBWye?~K zyT*p7{|OGmiHfv#aM~Yrdy-%qL1%Nw93`f%;9KdGI(rc1FqwDKacf**8W2w{+{ku=z{pJKr z;v284UmS7&R*1@YaOc*tvx13`W6zxV8%nIE=hS=Dr$^T|EH7jn9SI#OCvo1YGxf-x zN4|71S=@<_0}DP`M(mGZdx}h#TF*I$VkO2zA>TKbYrIgOT#)4^DgY683Q>Bk*$%due#mAqrQS2}TO*G95M6eah{Y*L{(&)QQt8vhGW?jMj^taouC4^{uBq zUbACwjpH9beAsG4NU&+(L#|+&pSjbLR6~wq7&$OM>IOEWVf1;qWj;4= z(Uv=#Ljq~U<|rlL{RhWvT(u?beK6aCh`4{1RU_xb)*790Z~z=xQ{G*wQU0KjXV*|I zsxPglK-1_<(T5whYLUSf<454Re8gx78BZhh4I8-LM?@^;p~S<H~1{*57ih1scVOYku(#X5NTK z&|*+u6C@D^GLE4tT-h(YH7d!NO0r7J>tjiYC=rBuX7!0BZwA7FKE@H{eZLION)IyS zjjg+t7$H_8gRZ_JPIIOF^EYGd_9_W#Q|WfG@lQZ+3}?3X-g@G0=l(7BBE&eD({(P~ zjxF;D0z6=;QubTQmJP> zap8ARxH&nEt7dYk8{8`Xnx&srbB(OGX_~(-8}kTz!~??wG1dy%RLxtPZ6)qnEA|+3 z=al9kslnvI(V6$0A}Q9rJ}K{tB6=0jQ>5)&NjN8#$)oSD^3_$5wZy!#-JOovv@GkE zjC=r^^6CYR0osuAQ}m2igLy`KV zh}dvF$*qji%2m8)i_U(-PbIvcdp4J-nMEVUam8pHQZwJ=VTG}cdg!w8WKnu!8{BEy ze+bG^rRzd&@43S!opJ{O#WkBeB$YmH;pqdeemWDkVZZAH=-Yty?F&klym3YPiDpN0 zKhF=ke#G0Z{|p}RQiIcV{Y4atN2A7W91zh5>>?5z3BkM@-~@!7d!23@!Y@|;UTO6v zTkm`BPI!rlurIPjpy1*(LtfUy5Y?7Pd=qOG61&%JiI>JOY-*z>)dXuDw%=F>Rhtdq z#fZ5H;}9z$hKLM9=N=*VpVZd{p%Z3!>%(v5yyqy(jbS@!BLbv30MZnm(%&!e1dR-3CGEN(z~l?EYndg5^Q^QM|Ut#!tF`;d34jlcqu$~I^$i=r7IKIS9b3{Z$l zzIvS+EZb~wEgg5Q!-v|KmySyCQF}{@p$7a6N0L?Z=_N#IZ9InF6^Q+m%qB|^+3>+K z%U$ns7C7bfx=3o-WbKLdmNrp~fAh!E9Tz1b%!TN4`fj4(Q+@=G2A=6Ia1B>FE=)-8 zS5DxYRKOHvewXey*ttM}U$Rf1)^ZTUo^lr4K}Z*8&;??!LK40;$^pv2F<0dWqlOl? z+k>&0Q(XrVN*-~V&V`aO@hE?EUyr}@MkUVMb(iuON6h)+_awL_Zsb@eN?u>=GWcz( zp@-nyJMwKoTS)4CX<;m#efS=jYQhrP)`!%1a6u@wtx=e^o^S&I5Ug_=x>E!?!mfeF zh<0RaPhC#)Z^i5VTK!mvZ5eL7iF1L{UIE-bJ;l^-VJ;VJ?0IbpYcSz-O(ZN>s0*eHCn0HlB&p>{u*P8Q8G z%H3Zt+CG8d&EP=(H9vhZ>~j1Vh|xH|^ql{0O-r^fAf)_{;fd=X_u7BXNL#g8lEy{u+}wn3=wKcdY+Mw)d-&{{Q|#Hf}BkHa6zuxR$T1&|4Ed z5(d}5+M)i}0LH?>!obbN{_h2)jr4E{^hy6SBJcmFJ?-z=ik0Yp(bWH*)cywU{f9dC z4uKcvNHV_nMFtDANi~ERAbx$%zX9Twh>exr5qFt zI=(xi+iwZdayZdqJl4w56!pAHK}~?mIy@#$-Rc{pU%IJ4X<2DmXQ}1PL|?G&hnGm- zZH%2==gZ=0%oOtqt?oD@$2MX0?+;*>aHP2>FbDT^1 zF^JRZY6#9q#YB`B?;}JVip5a4SI{Lu;`$j@oVuq}HTsE%DO4U$%Ckcl3haArvSRO- zD<=|}R9TuNVbbM7KYE{j4MXjV9I)Th#ar(&)8F_p(nx6QMig4hFzTrfF2yowCK;QA zY^tn8P}0=gyM^@4N_Q^c%()A*7v@3yA;nH?g|?R8JS6RS#BG z$(EsYPXVpotpI?r|BdE{-r(lY;KX1c*?jm!v`)OA{YJVyk6&-hb~@RepAi)(TeHt) zaW1MQv81W$SzRt9&CKu*9I5=qG@&8^-|J~pNAW=+U@aE%EF!`}wmxh_P`F<`Ki2HL z?5qaUCU(R(Wyc|tgm0F&L)J0?sm9RG^=D#qeug7#_T%yJiabKxond9r`bc?R$P>ny zMMk29AzdXV+x>aZ-ixhopRpQm-0d$8qv}YbkO%%OMy$sZ18!#Z4yJ4Kh|e?6*wjs3 z=`x?nu0_iY#-HOGaRIiO5=biOpU?;v`yLMyq3MQfEXQ>o_$*;!^l^^ZQ% z-~!-dAub&Wg*wvn8JBNd=ifudnTQlfNoC7$57!^dUGL;01YrT{hkK3I{7#jruZcqYheE1*1v`BV|_L&@-F-Nf3i)4x0ekhhV5( zC5>u_B`LY_br0J8^|@@7`blO+l^FheynVPcTFt%i=N+fN|dnqvHFWLh=OOK!f49@vVi|2gr~R=kwe0Zfyn5Gy_92ZEBBcT+dz8%p#sxM6_0n;LLP zTPE1ary%gY4N=pZCiv;ey8{>Exi>gRYlZZs8)ThEk1u4M(`NE4>5?EG6Roi-Vpu z3wDNq#q$N_VSch&D;b{h%)4Ll%lh5xw%a`=VR577kkt;MF_zNJIAc-$s=mWA^Hc@a zzk(T&&(BD7zzEA#y)}{6#M!leSDd1JR1CDMO(Nv~x;ud=Fe?X4*i(oEw2=1MTsb5c zdp^0gtfGiCnD07XwW8!MvzG3l1(Feo4ZU~N2W5%H&nkO|v&*V2(Ye4HV2Qjpcl zq#}fH1ty*?!H`1->Q|M}&whPqfW=C#44b9q;tBHbyjlk(w(M3=u z)gi~shsR5WT4UjdUE2y>m@oduva$V$CAWeWlsWNmOeO)PwX8yY^Yo`DmSFB>=_H{5 zbPfuFHXG2L4Ut2bq98sR~D1A=O z)6?L7vDau`@k38<#;HtZU(jG4uSBt%^FqnZ0fT7g@38hN;Rmx{8C-kGUVEzky1Knj zzlV-gfOk(Iwd8IcXv3I#u;1Q00V1QTF`=qslX)uOM{L$bygMPU?NKYGGL0oCP9Qza z#=*OD+KVt5l0+Q}(Y3i3D}m!=9Pdgv4JLxVKro4@{u0$4gA+;uez z0ezlU&TbdX==lyoLav&;WJw2)eZT;vd)!6Qgmt-6QYqmB9(|@AG4XDOd+domDn`y) zxEVUbiem40pLgg;ur<#==#Gxr8o>U3=WPUlj-8B%r9gd+{mpTd7Z3==_HTDVGa3}> z61(AjzfJDIJLehvs(fgq0g)+>m+SueW+|s;6D&_R$#w_$UINMe(ybX?#QuL|^np8{ zQtbc~O=jC^Amt8G&Q(Jw30D(9(FRMB$pNjO&hEw_D7o(`AZoY({EINb~Q9KVB9c` z8ql|ZJ2omnMY(ACl7=H#l!qGb#k8WNlo8IQtv%D5Mppt_^?w@QQ??x}y`3(6q6|_S0?ncE7y<4ct z%jF>PfA%^P$&w{A&=OJTQEi&vlRMz=0F^%$X@r7?0!#+S$D;>_ppqs(-knp= zSS0=OfU#oX97mX2Q|~zl#^fp0l&O;aR4FM8yU=DNdz`}%HKr;WietY*cVe%- z?A2B+ezsxe7IP6~T^}95A1@R)_rLbg(cV&|9q$Ez0kY{oi1e&5y>2@xFbJ1mrHUGT&I=?Xz zIIH!=(RQYP^$M5%7#_P6h70Qfyp5Q1Pz-8)-$&K*ybymdL3x~_r%3rx0!K+k?p1%} z(vAxA|Il?-0dcHdm&Pr)y9Bq!-Q9x*cZc9k0yIv5;O_1OcXxLQ?he7-r_cF*IXN?P z+iz7t*A08I)_#@W>2i` zY)gf6S3OWpkEeL@?p+<8tlAZixr8^$*~`_!Niu-(GQ|WvGDK!I6(BMzqR09KO^=Z+=zc#ZGXzVe_CiPe;99n zMjijD*#1y}e?%SsA^MUy-S{1;sOjS6HkH-IiSvAJ*VPbWd~4|3bGv-IJ4o69-e$;jgE)X% zU3*(VePszqR5mI<^gjG0h*wQvlh9xM-92_mtBd_y;A-KcL@5+%%WmKYl*_nVbLw(p z=|fkW9Ak$^R||w!Wu&A=|K+g>BBvC+o~poAFP=tiiPh?GmEjAG_UjR4 z{!H89oAT4ML2k5hw9$uWbOSeShbJxjO60e(L04alqVW2J?8^oITg+qOBfrhr@#ipe z$m~`fJM1DcaZUT_5&Z=zbm)8xI~uqp)Luv&AyV~|VSb|2g?o!JbqJFXTW=gNeXetR zVEs+ssU5UIIw!P@@)WX-Fui&=41T<|_^s22=NAi&JWA_Hb}pDjo&ng?i7v_74co}A z*Smyh27mSy(w^5XsI=aYS*ni5J)hZJfeJ9WXqT?4<`0$X&!&$JOHhc!cc9BvFffHOd4k&sVMpDx(hxcesW2pjVw zdXTgdoDB*u8V0XX7{*8|n^@tzBwmgOXm`tytI&`fb=o{g{`p)PV!UIw0NqR8Y8z@a zCXrC1MN+4ye0aetfDSX%WNcNG-ocy)O$Dp5whNz|*(e}uSGGrnw8nM3{LnTZ==K@n zhJzc^HVhY!8lO0y=8-##FwtS($+&%z_%j*<8RpPfVn$cRg_;Sfv1rP zv*zxel~Cky~>wyv^^6u$ok5>9+Nd<5%O5G zI5w5(ufEXdvw0$;D#LT9MOp+JKpj$mqZMmMkci9RB0|Kp>UTgMD(U1>0GAmqq-^3Z zaECXrpe)F?A<-$xWYE9LI}xfG{!ZT2)-5^wm=;OtI}qTSn@1VmulNy-i7CvFb||2{ zy7$iPyDv%@4Ur#bXFL7g_f*YM(MZcD9^)vFAqn9-JkwFp%p9vBDkSX+LUvtbC-<%g z#8IqB8eXb*WE^2_{QKQQG@z_3Smajz_!LA|4m4*$uwnQp)ba0kHi=ChSev=By!ikI z!#Qy}zmk^hyJ4>^LQZWYWkogkDgNHQmMZe^nPD@LkQK^z5{X71>SIY$kHo%bA63Du%fDcLmjC|Du7Z*4F^)4^F8Z-LM9hAi8pAVQPB z`5J$1eLmzxZm#@(`bjcDCCCQZv)g5ibN0;4w5N3O!Msv zPDWM;h`PPh^3ckkN6jFHR9;t11q{`{ve>LWP883iT*s!;8^#mvJSh=_P+a(J;1P`gX~Q?>V{1Ip*NeQ@472Hh@UB(U+n zD&=Gmd?oH_40id2PsjDt5)qW!0X4=+e0Y*f8M!bf{LOh|6rsU0HD2k^ISE zun6iW_abSYThqL|{vcF7xd5P-R=Ii_w&j`=a^wXxM*`Cr#i?K>)o-En!nQmuc-~Y} zXTtPEZppY$*hGtuAvsC{0A^4K`V@i!`)Ht=A7JL?tN4R3Wo z>V;{O^lCm+BK*ol`?5_HR4*7snFQC$)`NC3r&Pk07AIts;l$0JFDla8D0@&W^kdpM z$50K0%nT?i6upiHfb!7fSV%Ap#HwLP9q$0p5{dIK!s+r{NsH738Qanp)k?aCaB zws=1w=PA-^b?fKZVdzhA8pOMc{pfWGdf!MIH_oy`jDAWruWk$`Dw-JcHq*Wo-`_@e}b7r0J|9 z--FS=wz;^C>?SCw=hQU?282l?bCp0ta?`Y+ev)HpDDo4?7`y*%Ro4%#pC(2AaQ?G@ zr9V~$%TM}ZIG(pre_Tr%W#NE2L&*Q8AUhhNCr96@O7=Lm)svxlIi5KKPg+GZogU6U zL^loySKt3*3!Q^Qx2I++R%L0xYbxsT<>r(aZu*HFvJ&nK(@lkQjX_T|qEaQo~91}Iou>-rABL2!Bi}xY@@(tg(JT8 zfDL-S$xAwZ4uR2F(A?qqEq*vpget2~swFqD%-8{Hn%4Xz1k-UH?KLd7-Aok&-@_JV zi%I8NV&0ZEAXrRc6o7j}JdUZF7pVyAkxkg4l1~^3VYUz&AK>ovwNN@-p^JJ9umlBE zqSMquJuJ3zwhDC=cpjLDQ_cyTdLpE(N5HC?pfmct{eZPh{SJnCEaAJnYTIzCrs)N& zvpa5l)+0KG_C-=)jza4_y<0P4o1p&HT2U#*slVt;9|(pk)xV63_htS1Wy4Iw^(<(M zXJft{K%^#cI03O$eKT+yABhS(tm9b{ z_iiJ5_sx9(LwqLzr#TA~5y%JKD>n&b<_}OY$X9hB8Qt-)_y|Qs5S?ur{~-P$f91g!oMWWq<65*BH{7(n|*!vY9t7o*3rwNlJ$T603?w0s387bkq zZQY)g7jW^wje4<6MHq|;B;`dq$tQjGojW^9w8t=w_~T1~bO^=XtIzra5(Q~MwIf63 zwes>LxerRxu&P2IedSk7P6uhD3PQ1{46c!Eif{5wV8}7b+t$SOdouZ%Qs7)y9eY5s z!(oPv?^G(U*6h%N=$6{ZMX|e@;WKpWnxxxALhhzQ~5)OD{Z) zI7#6%?AT6UBZ{MJ%#525M*20-YB0^o4R{A=vQ{s4Mne92fVRvt`qA>JdH(C$!vuuK z10`&a?m+Q{*IJwXFJA;XwwFk&Os!2yLZ9AmlNa%f$XnPZ-krRskaw=Y)eWu&ftvA4 zZ#FN+VP=d0jHw}uPynh5@E-4Cp!oK=_ zf4GH9Gt@GzrbVbwAK1O5xgE_pI!OT;5;rzr3Bd_{XDhK#g^*&omHr|2)0xWwV=wHp z-k5wbb2fEPMh7~?`9%gBuvv9tTJs?j%v-O=EOeCl^6CQR6JNR?%;wc%wBA-R!`3BmI9Uou zHN|vXg{4}u7AP9LQarwL76|e7zw_cFIV$(FUHT_7ckVxbCGIZI0-E~^Q(Xc@!){=aMfrqhOo!C-`ub1kcw7WekTyE zwpZwfFT#j4I8fvsRcQd`I)N*Hi?0Y7r%CVZEjq>1ZRK*xlW}g#MdS6zW$2O%c}6f4 znNL@-yjL;ROJA2@1XyAq)k2XVir2UU%XGF<65V*qIhM89uy!W2(`0&YOeC1hAM_Pl ze|t{EgFu@L#C^>;L%Cfvh5e2J)J=)Gxdx5c?afcqY7?l#52IU5w{rK{JaAY&zet*qvo3kqmLLL({@^7TFDA>m z3z&8U3?Fo_y~BW|K#mp`aT^`pH47@LcKR>pHPUQ^KWDv6F>Npo^sT&amAdp@48B^` ze40g@c`c zWc=I9OjT@*fIedx2a4?a+Vtm_uD@55e>+mCHjP97(ON$!i;jH@F zy>&CXDB#$9hq!P1gA!}F`ER1jXL5`JH$6OAZd|v1+-lkOzAE5hQr9W)%S2Twb3r9@ zdCPbegV=tG5m38Av!oVNxIDB-%NK+&2 zWV1L%m2CCQrtD1`1edeKG#04=`YVVweSdIL$a0F} zy@9FSb)6F*+*E~nI}!=nmH=lCZXB-#)9rbc9$6o=)iR1R32QVUkum0h*XRYScz1r9 z<|Vym1a9Mrb?v%6m8#7*5-e!8K-O%!E)tbKT^3U|X8zRoasDj^GFeeM=)n5)o|%FL zE)@69)n<8-59$u1-k5YqZfxb6_UG%sYzZVLvhq+c$k$QDHEb0$qjW~j{?^vcU?-~s ztyf_=G!q-cr#&8^q6psBY8QVr>X=J#(G;^-KEG?~U9`Ft9L8RqKzlp-QCE3IqT*R0 zPhLw=$@HrPijZB|^|hBosTf4?AfR5J}cZdRd^FBH%%)DRhlodLF-=M;Cd#Pjg zoit>MO{ba|NB({(!CXr~itFsp71ezr$d!`*hbF6m=L;vB*44zUqjClo6^WnZa!hNe z1PRH&fs3m1<(5){7pAtv@SnZy9BpJN>=FW1%=muLU_20TaV!@zt@~CRo@KbOpMtI1 zzjW!<0;SU^Ymp`b99(N4Fk!R;Y+0?*dG7&O`T50G#NH(P1ilrkg;^hr8Q_+3P882qgiNz&L{qUtNHp*pyCS%ThSRtf20B2aJGqHI zuHY#{?JB}_ZA0f?e8`29lTAT?tFgCcrwm431dd8fGH+j0Ec1o~11(j`#cH?dL+u$IN_j~i zp2Ur_WOB(W*@(m+^TKH>yl~1aSoVTRL-sij{cz)!7e)h(5q%bD=Rb*iESp{S{XjoZ z0!|uEQpXQ)4sFf3b*|g2J~ep4t#N8_?hYz=1hb!9tF#-me%({&*=aU7(5rpWjEK>E zfaX&tNcZcs_-@nV6ke0e21tJ<{wj~8uvKo@L{natOj*`j;w$L_t8b@UQRy8Ki%#b- zmV1JInZ>4*jQ955a)VwUr8dNY{%*Em2$Wvr=`dDW#ll_nlQTiZY9HSGf$lZ~CBA;3 zgvv6ed%RJTvfBily{5V;6n9u{po|x!7-Fu6sFSjuIpb1)_n(?9P`KEoHF~5px(!E0 z{KP&`Qa4FD%YUMDnpXLpiiMvDU`+r9zqOI$xA=Kn2&MZQiKth5WlM{YKMs6kH}L1w z4hvEtS%nGyRf?0i)1^3v(qbRuLem(p?e8I!NdrnM7$S@Sf@6nIEzpxikalFhX|@NC zRcqH3%0Eh`AABnc4}l<^S>73i*Bsr+8!(3)XjW_$WBwSsz9x!junkvD8t&e#961OdW9-+svq@ zrdpA~*kIXiILh3~JB#4_1uk#4!N*4>wQMMihSN14md%ti@S{k`JT|IrPPAU`ttRI?9s&W9E#>e9mB{&UITgiBn={l z(QnBJIVA6lCJ_^bP_-vYp2OTcvi9n>p6wfaxkxcV%rCrT#K#|S+4*+f2$Ov~AU0`} z4BY~JKaxhD-&ad`9Gk!Tia}m-%K(tw`KZrWOk!+pubXAyUFLLCD6$ee7>H}x#fBcohjX)&TsiP}!_eR=Hm zI6L4m$x?!QcMiU9bVdPfbbCgUSgU2gMV+&N8)R$?Z{mlg^!RKO+~Tyc-eQWJTMBNV{y)~SHYY7gKZ*#MIXo`uoZh=7g#ACeM&Z! zLW)0#5AdK}O0MP`@U(k2J#)RYA=xL9$pbKwMz%r4Vu%|sSlHame-*~6{IhP2o0;_= zGp^MRBjI18o>4Co6%DA0_RnY?H}l^ly8lVev9tdLl;cXe+y-q^RkMR*CmE11K?9lp zU+joK=Gi}n);|W-e@?J}%(;I~u%N9i_P>LLf0dm5BPjP*eOc0P0vxQwGaAGs|6N9G z2v(N=U?MWKwW3x*n27tzWGUpT6>|fAn+FjzQ))j#s7sh=)V&;c>7SMti_u~tSD>7n z21gOkXiD{KAK8*d#)d|}jJsm1%l#}Dt-<@%#dxF8{!#^|Sz*mu@1S0VTeG}G>Ghge z{j;L6IN8-}dpxJY+vmo!DX*!Nv-|s&DVeqNdZ28iNkk)+)g9{*N-uZCU`l@BmV&|j z#2Pa5hpgxORvh36Ohir#@F z4Pa_;CWUqhd+ZPmxqQijF^7l+7K8U^vH?ZDFd6 z+VY9P2clo0IMGxX&GQyzE|a#-!sM3YvH>Ld?6yi)TIK8>A+p!!sl+b_`C)utmyy|j zgY|aJ45FD|=lNulsj9k9GA|Giob`@mIRZrm)GMCsfc8Jkm@e$MO>7SNXOs)Ytu+@W zosmknoEOMnHJ2uZ9;26UH1CbTo-BQqHLx%OyPjpWhx!)=-5uBELZBU5E#pEmT3;o=QMCQVV8)t*HNcsO8zm6}J)#lV7- zIsS1EsyeOH+saM62nn6-@1?|gQk=@0t&!&bxi-wm0*c)9=aW>Nsz@s@+HN5% z>c%$%+H%O8E%+E&t%iRcC&I|my8z99(Qj1K(uN?v<^)@=%EL(PvTFOqnbrC4$miFr z7Fo9eN_d5Wzy&R+{SMp9!L&?CXTL_dFGNv{iqd@f<=mmaBvz0jZPt)^0kVK)dz$0* zCoi@9O|NBoK1BJQ0*#!CsUzKnYHV?G1B=)f+E%T(cSuyBk~K_!RU8nKaRNQXNIV|$ ztP6J*`6oWO%{sQAEX#U0ZW>h(iF8=w+UGU;x2etq7o*vJj?HymLT}3c?=*Zk+?t1j2@qBuAM5cRYN5CRaY;Z7!u;J?SUKu7Zr?F zl0PUyl)(QrbLHu<#bKL(ITgFdn!syIGfHo^)%trilgFHF@M;)CJ$Oq4q8!gTOoN2J z6*yA3zu8xT8{!b_fgEA1Ne4?_$lNc{*)Fv5F_rgAvcKZ9&I;TOfM0>0J2xZR!fD3s zH=h@R78U&*-a>1Obu4IA$mW-3#vb6_zU(7?sOgkuesF+)4#Iumjgz}9AKVwuSe*av z2i4#`d|;#h9o>H_tGuj?YFlr^R)k$TH)3tA4BhKfEIzZIJ&k7gN1^)>IfQ!por*;8 zDd;COq$gr)#-VB*dRa@jwCd=?@@lTW!NqW0X-cl zNey=d5<-lpj|{mEUF}DWQMwKLEM19}{H3Eqrm*Pm9-0a8Y1NQ#Gl5|{qK_C<5PE&v zW*p7Vo0*+x%@s|S(7zxeA3d`eq4(L)(a?uRtgSE)f@v~=a$sZS`$5_;>GxKL zdf%iPITlpE;|YHpXr+(Io>f`A`psXN@f?!-O{^!H{$QhIQ|jj@2>F!>yDSwS;+6(GMK`V+yRfKnJb*bvjz zK&3LN)a3;j)T{!ez&E#@YM!y51m_Q*Eh)O?>=fdQdMLWQ@jj_DOQO*R9AsAa?CiI# z)TcNlvYoKr2Y;Uw0B>&KGUZ^-0mG`Kl8i|F=mPOw@@X9@3&@TNT9dM!U5pb|fNvN_ z_{6`OU^EuY4_PH}Lv{%j;Sd)bGe3^u8fi&)Z{i;ty#eU5_afG^?)m(suUwlPCRsS7 zmzbbjT(l8R{e%>UV(}3^mD$fXxq#*fE z|GjvUmdyz%9K>$nQ#2>uT+cMe1P?LQDx~(#0(g(Ebl{5@p??DDvn(VOv+BA$pD!>c zX3^NZb`es8^ASE?+0*O*`vql*F+bh0);XMoFbJm{dN*ShtEhx_*&2QGI;_&rwry5o79Dgi|gEb*6;%UPfq0prpVTx02 z#i!@`HXvt8?oA=LAx&naubljRgp<-ib5-JKH|4jgG=Xt|OSrd`i#3F3;QEOHiI30d z>lPcy;}4%5iR5kF9pu5K`fZSpCTq7LfhdWO3$LUY9t(!+RkAJ+^@BrI;K>d8+PDDp z3|~C+ApP_0Q(H>XIpPuPr%y&+JtN%V-3jZrz&8j%zSh$Y*VS9U9z6@E_60mT=2Rq? zJyOIAm<9Yg&MO6ph&6QGi_sX1XddAgPjCakk=(BbBqru&nxCP|!GuRsr*>RA z2=yJ2>-a*Z=RG3UXr$Mb@)*juuN#)~0p%-iSxhu@vd9*!dFZ=|1o4FFhMj z#D>vqn8c0JS=$aV1f-*^YS2$SiaPyz*NIA5UqM>Ib#{n3zq{vDh|`EBcIZkfbpC(~ zDcDq!6AJ1Q_M#;M(HYz;e@KU$DK5_!E~e!!V+d9LQ1tU+=r7?(C>Yb)n)eL11~O9G zC5B=WU)hCGdg%cBOW!{HF~#xY&jtIrEX+1nnpQPpgq;+P!5tb^qK zK{UiAqN1Nb_rVF^nomrs$vUM8s%T_oM-U`RVJ&L2LeMo%U5W0R-DRG5aP_x?D3ivx zA1W$Y9s1HRy6ilEVKbxCV$(MLBu6XAOy=a}8zx#5UGxo~pTuE`dgKQ!DiF#pOmS3w z!ALJ`b@RZQG2hIchv`lY9~xPEz!cTz?L*LZCuCOw2HkI79}_?Or;y# zvj+zsGx*A2Opfi9(Asx!Gklc-F)D{-8n?BHb*A0#p-Z^KJke%V>o0CZ89*g0zds31AXlwtp23UfOw0OTY-Km74pL;tRv ztyOgofyI!A^2C}jH!Df>gX1{m9kV;3Z28F^CdlQ%B;aZoAU!jiH}QTB_1?S{a8sB3 z-iC*riUWQ8Qw{9l*P|gGIl(uA&0M&$;vSB672RppdYy0`%fL2Ve4DBY8NqG-ufZi9 zg<0L6!xY#V4+}gWK@GZDM&7b^)`m=e9>%9$yRlZeENyRBgE()`2np1_d%6sYm+N;0 z@ME6ZBh|C6Wnmxzsa;hX`6D#eDdoL0n2T{u-ZIn;4%n9+6K_EVwjE#oQD!74VYT0u z6c0&62wEBEZ2P@TbO9Sz%1A8jhCXr+ZB!~hHKRmIO0>QThnf|au{eA!Bu3-@#^Etw zr9Y9|->jJpfiyPZ^U(Yl7s|#9Nkz^0)PE$~(*>geI7^cDC8O2fWk_))qR2@{myDRu zY}^1Y=A`Psu-t4(YnO~9FsvZDHwSA{H0bodJ^*zlfgs!9!~l%AH8G^W?!$m&Wn)ir zC}qZq^AP|0Nf^+q%%H`nB)@G&tR(C!Mr@mZO0R!95r2raKV{ti-(vVfp#9N__;-Bn zZ%-j<>gunKX-;<5|Fjsk?nM81WVO zVR`sLfqi1(KrKU6Nn+>hl44|FDrCEDgL_HfJa)}sozmrX_O*2b7~5ZAC_z=T_BtC` zOA&LyuymP$%{PvbDBa#F^xJ1`VJ%|lUR8s$@Ywz=fA_i6?s6aa);o!KF1YYEt(m%I zYIk|ySSr;5&F?{^_{NY8Ik)E`j883kUfnxfVr`!4Vf&0`|1`U4uQ)z!bk+H~RO9aP zZuUOc>uhV5O^zay3N{a1e|P;ECV`|CQ%iwU9K16nlsZ^wOQ*^cy4%5S65wv~%8wM> zbz5TUo4K({n{Wm+fLok#jgdjmvflWp;k5CKDRRN__9ZyZ#`>KTFkuL!s}%@9^N=B@yI++g>mJ3c;swxofPAP#I#s$_RG$MSRBdlA zQyz=l{;1E@ zS>CRt0@_``LaqzaiCT6O(KtSKy`@hId#HXI-YkiZBDs)VnjHp(BZzSB{@`Be7w$_W zkpb6vXdJLkG+MufZorCDT2ao>xzmq9#TJ-n;^-e^E-hU`Pdj(gw}2 zjU@wVOam}|qY&+c8?r34LyVbY;QlL!jLitKgGs(LdE#=2rNXZ}8;u;AG}dPaCqNHG!{povpO;E*Ex4hy9Ue(>TeJy}d%2X*Q#;Ej z@QjfHF)`BI_6I2tm)@rW@iKZ4k(F~nkt#w+#H=NT4D+FC4jTnnoWh@ce&r;5UYj@K z7QX7>zBxy*@9WZ-(-DkM=HhmBjmHuj(j0-o@+D9{KUs49%NcO+Fbk2|^!hBl6Oqjp ze+-L52hOJZ@sVvQav5@^X|60KrCT7#YdR1C{a7#jgreD+olIwT4@-YWyjH$aDGFc}V+MF2vcT7u`8;3> z{M6yTuh_u4yo#fVMi?EI=qipv@I2_pnjKkO5W7eE$sa<1!b^?{=~5^w$7NB4j&OL# zhVR-(Y&?~g(tT4oyB&h1ZFmZ;6>rq3`2+H+T|jPoT;>WFp30!;hm@eYb*5!nk7BXz z8~Jl;-fRQDi$o5o6k9Z#SkD_zz^9rvq#-lkeYp+k@_J@XtN_p51=xqBr3%X`Q|x4h*9&QTiWo7V!3zwvS)J!@Akd1Z*KPI09h4b zBnxzkvvjGS_hKDE`-qBqF3!h>;IuCFQ$On)ajuI@vj?Sb&T0y0pxQ8BsJ>GF>hJe2 z&kkX7i9FY#^YrBYGv+~w`nn*2fq?K*2v)CKzCAo)XICTbCV(fej_`Z zdyqMQE2s9U^RXenbfInQWyh+w6?iSZjr!1&VY1c1`69wL(R6`dwBl%!r1e2fy`(QAJD+$U5O>JK?-7*?w6x{NbB+ZCH(L}3Y?wGW3V;h z;e2>oh3xnx8T=^=lX*F&`aRMoJ{o26Q+zZk{1dqDPmL?@Lj*8!PxLyT+uIxcS)&bb zU!A~B26LcKZTz;2kw+7;Je)hv#K*`wr@y8EHw^^|ZbGIF9IuWt! z>_J=#4(4~0Lw7R?(lv?8-|maz$-ON#ot1Bl9kOSQKfAZm;xKtEf2$fV2-2}f{a&SA zNE(c+z$N5a6W*UfJ9yjA3g*ochxe0#F8L^U-!Zi)+PU`wpj(@#P6r4*I(uHz`E~8h zjs|%`_jEweHhLsk_6EB|V+|}AtJ|G9T4cH)=Os!|L3nCR?iW-90>>pMMm8$p6!6+yP}+0WGgY7KM;YMAIeJk&38V3R?$ya_YD%?Sca zSQ=on`zg6C9r_iTHQm6)j^8$s(FwHSDRvygOwG^61Cdecl{_sPxRkgjE4@uDLQBfmLp~VN= zsLAtLH%-nKeN3Md?xTqQm$--bYK1FV^_~V97T_G)MZ}hcvMjq{*L2w{rUtyK4F;tK0)g^VuxWwpvLY|*j3`C~wysK;IehF_{Chu!KIO}5#t z5W0E(?Y@%;oZNW>_T6VzGVa$!$+q`n6r-fSHwvdn&bQY~l|F+REXn4KHtzN8VPoDb zQ=27s;vq7=$>nD~Hhep8zC`{SH6D!Nl&5)Owgxez_KYD&KiGbM)w~3VG3m8a4mz&0 zc@(ro+nWF)9rZ1?ZD=;GITmOQ)D{cb8wv9_o)WQN9i0K7eIsoNDn4{e^wn(c==}JS z2$2gmnI_6+{5}@fVPW=Ui=nJuJU^m#@GN9=J(+~HS2WJp0Pyhr4eXl^4kA~#X;chH zNyjMl`J(y-trAX3+Sy!TQ_pqDrr(5!U4!-2=lt4KFJz--X$xMcZzW~Wm3Y$--lE5+ z(YHfRW%MD%xWG?WE7s$BY878ds9f^oRw$E!96qAi`A{l6a#KhmJEDf4_;;Mt*e_7s z9Z91R1ZGT^{BaK~`>w}?gv;U1YwJ50Q`7m%f5z*j_rJ#L1Rj7DEGH{y3jT{J4H}XY zngF128pI1=W=Zm+2Vf*z07zk3IXMArAd@2$89;fIN1Nb8iJKQ zK@LC&&q~U|!wTA5Vf*`6N}>Y?V1N1NIR4Ku{g2W7PaoxUp>)()VC^i;0P+LzoBn_}1U(b1`;c~50)H{xvGtAyU=}0V%H)D9!WjS+Ym^}$r zdz(j|c809rKoHXXh0RoqP=e=u?C0yy#z>uuEi2Do8!O*uonnDAi!beT@KO9>ECO-hN?4?P{L zO&3evQv1Z!mrla}MxB*>Wd5g-dMnr+fi^>dg0wnKHeZ2E!V<4Go1GD5NpgMNoZdI@ zvUu&Nag&9%Jz4uwTaw@gSC59zFHsw<=Cf^|)m@FMh9nhPe;=P|x7>E% zJBU}7ZEb0nr@bm6DPRGGetl>giiNDj;97&=3Qhp{bcVX1Gwv9vMvXszF?KDvCwD zcw4$*g@*ZRgXJ!e+u^27O$K#iseU!STY)wLOA!4I$5O-w2O$o8n*zYEAgEh9esY!_ zNQeNlffw3A@3>CT#LC{xwiv)FdnP)@VXmy#Y<$JlKh8Q?o4r9XJlVg7t!*a)lZSZcS?6SSCAa+Qz{F=UvMUf)1NlJ@B$pN@b zVJ@Mlm4%`zYp4L;35=1iE#G7&+<(WcMu~F8xyz-}vphMFr)~QRIK@f9{7C}V;k276akui9UyM==w1T`S6e(mjfLG$E+C6_{dC@YBHjqd z7bYj|)a@)OD`2?9?XIIuNdydSJ_p^f%NWa$_4kCOS`E=+WLFxg+EzDxJoF3lbCG$( zlk4aSL5lh)*nu1%r`5DApFk(Jz*q(w<%Cvh=*t&3uE3s_eSP@->FfX!Zy`730o92; z4!0BN7$5B59B?|f))3mvjHg%Ik3{7v?qvlLPxW)Wp(p)1n5L{@eyp#N`nMlW=*L6< zBmW;ccC-=L>!h1OVppq_Je{QG68R8t(zOQ|_|(w(b1g&F-rxLqX+?16Y-SX?-Ux|z z$Xc=otrswklp@l}KnuY0@sFkMyG>Vp3%;U22k z7(JMj7+0MX3YRG}b4rnXZ+J6v=>F1|q3j9T7hZ{ukfp{FXLq0II@E)Q@fa27m14|* z#HDvhVyY_ zQzD>QuFHmcL%P+zvaN~6vMeriog=6KV%J?HvO%f?zicU+wwWI9CDUm5&Xj`H7Ar(! zz~|>oHUAo|ea)w|MV_M;HelTBZS>4KgaAC^HP!t39Q;9?Huo}wi(nml3_bn0dgsCz zpg-p~3KwXIGEE5%;r~GCqIZ+5;eM~tsjC1!A)CePz|5jlI(~K>Lh@++VWUF_X!LPg z{rxVQZ_%l%7_qIfj7tNkXUR^7d=rqTUSNg_Np3q`Z_4knpd#$A@b&eE)=E}3TL#j0 z(|jDeD zgDNvvGV&DrfDgl{u8`8J4BDU+NQl#yx4me72{y?20YW9MAGpk=Sk0%+NMqAe=@yAM zC#>=D5!M(@^Wr?8-nW2R8nW&fKQJtL1_}p{qZGCm1<)^EOdXZ{Dl*3Di$^F6heFSh=yR=*fDy%o8(Bzjj*1) zgo;X)2P&IN2d|W@QJ2$5Qj8Ois*DURPvGZkCzUP@Rufaft@&~Spd)sHpZ4rn{W*gy zjb{ei=xQfTFHgbTpqWI#Q#%A7HAM_#RETyJGtPH|C#^o&xv{6k!AEN+`( zR-Al9#1SIJmyX}ZwzYFNDlpf>S8*@46AeaTiv0)9>r*8yQF3x(&;Z?<3*$>z{WyBZ zl9vy9l`Bxzzutm+fQS%LT!P;%beS^6blp0IooLmzeKKy(xGvk7(Vt5DpR5ku52qUx zNML%ZquY0#BLXlR$Ex+5TCy!faam(9DX)W`B1COm{H-cK%CTHpuX@FI*m1jRFs?&n0 zB9r)m#2V!jpe`Te^XCvu$Rmiky_P{5V%hnngsNKqeoX04iM8bOMH!_b)O83gZovp5 zug1}RIcthstHx3S!J!Q##>lRMDPiQ2^OB&m)h+ms&Zuc&<) z>Bs>+AFSP*4zUrI4GAv?(2R@u^hKS!D(u~`PO^H5*m2H>u$=A1JTsi)Clt5%We$kC zF|!C2b{Z|7T=-M(tQH~8DFfA(d0IFu#aG2_+eU-g9bQ$jGS5Z01w?L9Y_FwvZr}*J z+kkUiQBbk#qY$X65H)vF)EB8)b?WRWGpHb#<(nV|85(##x_*gV{hLXx2+wQX?^C>k z{UN>v&vXQHVilcOhgB%Nd-Z|#gp&%%^G1|s>Zle5M_4iW750>)Co`&Og;#ML;oYwq zrzb@E*AVJEnm-JDE>Y6H>PX247Jh-qxKVDj-r-MW@95GtsfO1SmfQI_7 zW3Hrk3Q)}Lhyj3%D^9BO?}u}6vH;lP{7f;DJm>((*#EC9*m;s1hyhptZnnRoc>mzy z{a?>w;{vdAa{otUCauu{h_L_lRY1*608Uo+Bvg6;`M=LtdDuZ75POmg=nV5;_x%OD z12GVOgQRF2Jpldxx|Nj$z{19w)cXIpm4$}|z>(xggMyg^!vK0c|9Ub@lH(XXPLd!4 z=*9l~2$U7%N^(#Dy;u*>o&Wx!EG%3AZjk0x0;%jI0ZaxY9Tw*QTCMq0r2e6D{}8tS zKau>0W%W;u%brv{zzEuC;ooSwl^Sh^f7C9n?fHD~H7Pnz!3lB68t zuBFT&DJZ-$-;I9FlbF8>04Ju)If3$m@GjP^9Xz)|Aru}z!y&vnM3_?^g3L=`=~Y}5J*amKXwAfuZ9v(w*DnWIA-fs_!IU5QmRX%$<+2p=GE_`X@RA$>{SKa4 zDOO(W9Y#>A5!SunGq~wo+*}WMrigV>*NLShPUP0CSmwDL@&1~h{_r=##!p$16>gqe z5-|k4?$Bc{df(&=nSr#NBLwlDXG+&YXH2&xX0U`kCBHQ=zM0;em5cEbAW6lvttma} zl61v4^zf=ns&oUP4hSom+o%ql0KJC0g)1Ekdzbzq@<-T zND5LS9FSB*5u_yqB&EAkq&p>4@^>yi&-*?;@8|dZ=iYP9?#|B6&d$v4%g}#`HL~BVjQZ z2N1Yuj;`&D?!=ow3tEDi zK4F?UvQ7>oeiAezr7nr$R*b&Q3{BWq+(5H6$7Z4Jh#Lrx>=Ua7xu{?gs}Fi}89LrU z!x$PqT=@qN&Cz&qKVE+lES`d*PDIndFNJ>X;9O+4p)VP{|0&E@E@IX!)P`y8fl{wf zcGRA-wLED7$ro{nT)Rfe2Ubhu;YHgnMm6E^PcsdlTH*xF3_lqk{-R8niLNu`6L&G$ z35yb88ER-8+Eq%5|8D~;_y;7UKOR%o4O9{@%5Ed zO5@sZDqQFJ3L*33FGm^n&N4;#hmnq*)@5JF9lYTz;yaq|ah0oq;P{E(l) zFY4B1O!?M~Dwu@F@pc(ME(nTOaGRa>B-b#h(@9|@VG3&3Gh4HVVW4E(=A!I&3K0hpyJkA|DdRXCF*P;XM)M$C%fv!wwZHJ;l@FE|T_^vCKzH1yVLm)3v zaAwUOi6d2%PNgjMLRO%3=#5+wpJMqtQ^H4DEVsw9^?EWH$~XfUOQ;V}G8PRqRSCzL zCEpm+&T_w{(=NLE3!lwg_hF-oZHp#=|e+jJq#Q&UV8|FcnHl2{m%87E369vD-8CqI3Y6y~);ebe7u zISR$xn&DE*OF(-8aAQE*CdzHqV%#+ECdAWWc=F}m&~O{-*%?Y;R;9csyit9y(>*3e zlO5$cqVKy+)hx}6r#8|Aj8jE;0S=*hM~k8_vv|~lLmV*Oq8%hzPY*4!^bkBN^aMgT zZxDs8bWePgrjK&@a(33nheNIUm5ds_jtuWZC0!Rg-yJ;0l0446{cxoR^h%<~z%_JR zoUI%8JDurHj-NDTNfb8ITPKCZi$3@$PPW%Pae^Sx^f#=eIebGa)M?9Llh%noZ_>;A zs`QDP3O*{Q_1BB zPVRgU;ko@L$lB3>;#81%zbGU!>#SvK5p$7?`}K{F1%$idG`uD`9)1?yOw9Ar26uF3 z976k^hY47H)0R&e$=uh6O}o4=t~~Z2w+ld9S1lpNJDRcT*E8r#s|I@SU@WrZO+REW z_9!j*IAQR>d*go0aV<0o37M}`3E%H;eYr(>h!9iCt25;H@r#HoWzqHhq~xr!u47KE zJ&|N6?_e8UdI!Z#gdCI&+H7VwC(KFqy$?4(YdNq} z#0tD9XWr4M)|Cin+6l~f!A$X~Y~jGk8Q)C#10N?Q=C4aHn-a~tA27f*v&3s&jZrg& zPH2d(H*}abym#&v<8x2z@QgH1eb`#(7BY+e;M4o8j#UaZ-_gjy~!OO=%`LeEi zTnGk|_OFqnTzNEkHp1#=NYW3NK<>T0YP)YyLp)9X9P6t0}@r98mHCJuQs&t%W6 z()N&vAG>Oi&F9^db90P(eb*i;!WxQeIcZe7h;Any^4kPl54q!#Exe54b3@%n;eu%5 zdi9WN_4)IYA9~h5j(e>mT)5j__cU<}8)2-dR^r0;$6o}LJ2ZdMe`9-3?@_2;kk4^& z-4F5CwvQ|_$$9eKWyGE=o|Bzhy?xiNfJfo2-m9F2OYQ$GcfdwjRsl{eE*Ra&@YW!B zg%x23TMM!)*i1F63yxx(A2z&uuiLNwi?J*$sj`8<`AthT>u|=zh6A32%4KIs-Tam= zkwHoQNR`;xh1`mvI( zN(Os^^7GRtcuqdzS|LjSI!DB#7pEdew^XP#H8b=Ews z;%0Jwi}y&a9pl}`x`^lCI)OsBlN8#AB^~+9mnMT5-wGv1eOzkRlKI}al(5TP6bV$g z2qRQp%rJYre<1Thk7qoxBuyXvmh~&aC4B+sz;@YIQqo%~v}R7yG9MyOCMyGFr9L;C z07ZNCg>*$S1Nc;YN)=ngqDN)sG->2c3LCob)r*hksrG_L653$~I|4RFhuY3TmFEu2 zGy6KqjEndcr>j&{QI93x=9F9JZGTVJ8c{@`3}N@bMM%8P!ee;m>2P0II*6g<>=yfI zkNVk}ucXE@g)(%td{v0d>$uP4K8ML!PT&G-2z&VJ@0sI1A;3Z*E_^jf z_+vwpFbH?x=D_-E(g;TL@zY=+XJSyS+c!)OGI3$#JoBFuFDSu;n*~gkG)+8_1b z$s#lrk`MzwOY*Z*{Fx#m0!?Qix8V;-ezt!l35$#J1JEG=fD}L5zu-aVkn@XPIS0u> ze<^;FemA9B%~ZlJmIEDWDXhqD@}&Ro%%WAe698eDcOT zE5C^QxscQp0kH|^^YbEQ#F0LHmfm}Rhfx;NZPVvOF0)j>igffdmugSn-AmZQr7xHu zuRXQ>v3p%tiQ+V5%;?%@nYfl&w!sJ9WfgQMW4lCe5yFF1z8@FGpN%9d$q=S%5^)UY z6ks)6_MgjwPT%Urja@`XpANZ3DLm&+JZK|&8e7bfy5Xi_DSQ|@D0@De+4mL2kB)4e z@kfMk?`yAOR%x=zx7yRXE)Ul2wO_uuZ_jYY*_U?WBZ$U$Pc}V$dn8)$+E2M`Zhafb zy?pEYDlTGQ;F^f|Zp6iDm*s`2#F_ts*oJD(!OUWhy;*?Uy2xM;ok%53eevA7Ip5Ej zT24bhYR$sS`qwsy3cKyqgNt}_l8N%-`Hj*b1H&*M?bg;Ei;vvV9vB~VQ1ImQoZF{J zZ-y|2vOw%z?>0k?0#!%H-rgQ4Xf` zjaUhVM#YFcIR#cvPwCH}#_&X+m@%})JeB=jz6@o)+QB3z<_6&iJ|_cAWu$2SEhcIw z)-a-(sta;%#L^S}++O`=S14;sv&7k*sA|6ESHLqLS=d#A>KXf^pnbT*(Ty=Vljs6x zy78gRwrUaP_I<;F)`~+(U7O^@LyzVjbiDb*xsMYlWX*EaIA>*-i zFiWx7BI($Huo8;kmVgRrj_VRz;d?>@5sU~1WeJRa7E@=LIJ@d;QFrC|7tHy#k@?r2 z*^hLC9HJ;oj>l~k71qSK8%x>NO&q>+d$VrWA3xxn?q%`?+NiF%?26~RzMx?UkP2*O z5aw1->^Rtp4Sl*JUK`^pHr-iA=0$3F<}>}CnU`-N*9P+*yPpU*>CLY5TJt?c=Ri|?H^EfBlPpNVlK0Vso+yJT_TorW2R!h7#KG& ziu-osoH>r{_UGqzDQ&LzeR36=)nZEPWUVmAq~cWupLq|(acr+uc%$o|;oOXnLxk+! zN`1~Zm3d9!TVwgJ^=TK=FpotnqYoZEfv#;#-=cLN%h_vYx>!ib@ecH^e`nC}2v@Sm z&H?W~yl%&_6>6)D6?VEC>34)r=(ax5)PF~e*mmO>zjUN3+GRNS%Sy{AWyWW|3Ny!I z{e+Es4!3i4E6+#6zGRm*jS?sGTT>$g2<*l2yk>yK^09bQxKFQ+4ZGE`Fm24ON| z7(a>DzE4q=pw-qsB^jt1+wWdKfHvxuM&~kjL)|Smm^YDZAmayNpS$ID`Y$dCT4Awd z`yKSt#CsDDUTrU(J&iy!Akk4*;%kKTePVADmc#w~Sgv2z(9D7trHjnG+M`bps>f4h zwwj;c@Gn^>n>1<~;p3XLbkFmTzQ2t>{8>Lmg!!f=ui~}pGYyt0x8w_+AA~cDCpBrG z{l6NnNN5ITJVQm{B75M`LwvjIg+%Wf)ph=abI-$@a00V6ug2)rRpm^6e+o~^XXsAH zaWpuT0UxuzCagwMbP>biji2D_cp`2m^qQ!y?xlvEVT|-EONWmnR80`R5Z>9r#0W97 z8FKJcH|1IrQN(AXDoC*#kYZL;WTCB-S>G`t<(p)UKB;ePS#MQdycajY`+>QzC}N0^BlB#1 zo?$_jtN6`>f#aQbbbwtvvcT#QH&lX+8=%a$1LjPv5vq z)-;?^!mu4f9Nzr3Ijc}F&un3G`b5i}etkXaf{4k+D#<2Y@+<=_;^*7WIe@d>fGO^c z#!U~}kF25M4=|SN1gc#W4g|{iXUhR5ELf_2LVbxa5rG{OXpw?&`jn5*kp@q<5ph?7*nFY1V3=g%BwK9u<9m z5z~K7oJ$P{9o4M*>BO<8;v2*VwxgzT?Vr-Psd}R)%8L$6m^Nm&l&q3MZz;~8Y3wB* zQzV9N+);IC^~#sB=ssI>sC&QUJ`JajGlX_Q*X#Q!#OfF3tLE!1v!8~4k;*Uh!pGs$ zv31zQdf)K;{U`iQrt?P9;zi4?pZ09G==i4$n6|+)oMd;kmvz;$yTtK`L+3R0cU93o zX_EUBm~(IJ>bZpR1pLFC+1c-wsggZ>%!)$HF?wb`*Xu`}13y_+9atsIdy-G8V6%Kp ztxJ{id}fz9AQLvF0HklKPr`F z8!ep_NE}|~q7$iErqsw;Am&s|i0@Hgudzud@JsPHuMAD<%o_@FR~Nj(h4wcDqwY1p*RvVn;u1DSRIPBfu zSqBtv9foxsH!FOaA0l`<`MOI<4Cq~YZ>Yq{AM06l$2=@@nN9tn!QImZkuf7eBeHLc z6)59fHao_6K1wU$Us@2BGKVw!>OWb8JIu+RAAzq-QRhXbWz0BPXa|}@26 zC**h{2t_FZMEH)p&IqKOFHyWCxY7+}E6Es9c1p z%#42AoB;V?kLy&0xTc*&y6RkhEtdUaRg<@56omDK47K`NF=i_}J@~a5k(Y<3PZPdC zr1Rd=SWvXG!P2Zva*}y%b7K{_Jj@fYd++g_hBlwl`7&|m`5T?mBCiN(1OK;zwbb8- z&xtNE2nt)lU_(AK81jaq?>x*D;=c{{Kc+k)fBDHo|Hn@z@^3$x$ZtOxh%3WS0-a_C zkK<Jt4u^??ThWNcTq|37C;|H>;UD#DNSdLeOylk-w?|1(DM|9|>{ z+!h4xAM)^klN!+6flp8z3k@!eye=0y1=~>FWl@y)^Qytxb+l6M=OK;By&jm(p)I6MJz7o&7kfJCE3|GGl2-iK`&8m zRH({^G&p!}t=E-DZvQ-Au*M}v^HDh407t$jb zV#E}zKe=e+I5X;HW+_dt-TyItt~uu~5PfUe)0Jhi^HhlUN88{S)v<+T4?|y!XNYC7 z?ObI}4es0Fr-qJy5qCxw# zIfnX~K@+g^`#OQ8pT|78eIOjO%NOj1NR!I0C_JF%AZZ|tycSVKCGcFB&%%lJsmdEc zE4heWj#7&mvv}?EO z&qJ+HP2BDv_Ma>Zp%t9U1U!|vlb6!2;!Q%#0pS3G3@gX0c{`7qXQEMn|q zjfhEG#9pz6L`x585(Qb0huf>N^gH1E1t`|7m;LZ4*d)^P%fRXCJ!b0|eon0X*o`;* z_nVGwQeSu~9yjr`=y5wAlC+3tN-3iSk+;NT;AeD_Vt+Mes`y|vl{EOvV!zYp#L|8$ zgv8E7<%{S9U0$wMqge-Khk~K`lTQfZ7?FuLMeg-tT4^8hNx5#mh z zQ@3sEFRy2F7PXR*8t^x#8a#b2Lh}=QHu%YY>99X5E!GIS+sl+BEWg56ld-3^y_)F` z*H*YRGO;R;*3QNnZ^10^s?X{w8r7uyZ*W9U4foQ@7I0`*tdt$cbTqvZQkfCVQ7AUY zQ$Le-kTte-&-RY{*(XIFGPv3J4bitY_*gBV19h5FibHTE^?IT)S66wQqY7i>qxw;1 z`erZmmPs;c={MXV9*^RDW=aV6)=QFf#|cn2XH1tY!!t3OCSU1&5ME`8$&=uIj~nRO z^^5*;P8~~NHrsNw>M%V;7EfEM!Fv`x6lv9jRuFHb|OaHHOELNng z5{1CJW9cM!KG&+z-GT)>TbrepxoXo`7d<*yv;nm7jUs&XB zuk-V`6o}TpQ<~iDJ@{IR7M>{T-Yn{~QS^$|hD#=AM`X{m+UY5y*^pSl2ZyoRatTM- zyMe1P+F|Ss@>9n5`G*bq`Z(-~yagA<`ET=YcL;Yn9C_z+kDNM^XsV>tRqN^B9yQe; z)zhCx3H|_nbI)HWAA7~oh*+2FXx+M{BEEM=<;=8;U8-OY^W}lczS+c(GH?uty-YJi(bAFMyavVLLQ|2=hG57<*^hX7o%`t|{!D>j{3EDCOqgE+F7cm${J+CQ;LvK#0HLrigbH0qzbQaM`R{ZgC?o~CC9x?33fFiq1VGmp{tJMRhy-%S!Bqxd zh5su9w8=mi3TlB`3F2r0|BJjJwBbNZ0uI8mf&WDwx&J{J+65pDCH@ccf`TH*J;X@J zk=g$TWaNb#V$g~wTn54(Iw6XN@IMzJUM)m|k8beug0pw{@xc$DIk907n)9gqT!?MM z-nev8@`lyoIcy!*b5zVJg%{4=1s|Wj;NV#vSZ~6+zlaG465AY%|CsFW!7nc#%&WRB zle%C2t$jDZ*Up1+aBcj7@CVs%H%_6AXe8Eey4)GQ20p`Opm;{g9ko{Z^x~OX^YaF0 zgp`bus(w;qh!U^W3o@?nEuR^7?xns$IJZyUQRR-3uAhGTOua^QI8ODYE^VBb{jOfN zC|^<5AvPoLEDqO-*HG|TiHyklsr+tUhlBn@Zx5f?P}WSNI{X@4cVCUiUazY^u)U(# z_-Z^_Ve-j4mShJ@-hE)$@ep*Kq^0ZgSA7$y|6r@Duu>{vwYQ z24K34arE-7DJio-|6X|;Ntfn!B1N#mY<<NgJL@S(NG0YiUkJ8pmq&eBK*- z%Dhr%cCwX6jvd}wWU5`%{flCAgrW#K7ghI-#3}sjX`KiZzpWA+MXmdp20TBuo;pgX zQ>tRT62#LeT`79#$5^A&=HO<$PhFzedLOkZ=ws_J8_Nc^8O_WSfzfKFH2)VQp#9@B zgy%kc3USwox#;X;bo}WwD+RLAsKf#w1>eX=qz4D-~7Sq{-`~=nx6J6A&!7`UD7KV zS04wyKsz=Q3)sW*ks9sbZ$Sld_TC0DIPOjTGRaHnWm;R`S*M#8^^IO{Gu&fl{wlBW z@LfP1_MQ(lo3U$_ zm$BniNoy=tbfXg1J^IiP^sDzk&isQUY?sNx!4HhzzM!=W#Ec0b*V2jN?J^?Nm%YCd zyYfOeGgn&ko6yfzK%LrBM~RC^WjR(7Y#`#_%-}Y}8DOkf57|r`li>F`L`6_7TXS!{ z-wC9-D_aC7zQ%K$Iv<+1E*{iV?a{T95%BzjmKZvh&2?%DVLANWs#W7L3r8YCOrOs1 zz+IVVTw$pyi<>(i=ZZ~d5jr`Q9Ov1!{llM{b?%vN2{Ef0Ej_fv;a;XWXr76>m(1X8 zR3*c`iuxn0Ra0K1v>J6gvK1F$)#Ko~I-Mh1DR&Ju%cvjsCbWxmd{zy+tb)Q^Yf7k3 zwY6np?#0?Gl!3`7X=usrCwYqX*PcDRKXIRt>J-g!0cRpbT3ex!IKKNkx|sIB9Gh>T zQEtwS zG7J{mPN1CE-h11huO`cu)Lo^a`AtE}59Z`Mb#aRy2XvI>@m0Cz5lQwf2UlM%jEj_( zrN{C|pETWx$z6)}dQzZ(;O+RSc1%0sAsfn0Oqf?xEm8H)k{a~oXJkz`V@#N92Z!H{ zJ>P9gi0Inas2UD%4RMm%^+AZqI>lFROs5)ID}TZkx-HZcw`FSm)(kaa`FhGA(~qvh zMZtnz;se}L=Lpq^Eu7mv^%nbZ>z(>k9(d+{T5ibTxJceJ8z4L>_hG+pwd^p*(9sT} zYS3LA0mp&Hk9ng>s z^Ir)I-P~u47TRw;XxSNExM^e8V>|qQI*n@87B&!yr9RfVK={qZ3{|MsRyh2@U)6f4P=lGG?TXFpaiSYLBWRof{YAopyH+0mhlP})ypID1bVoPSH-}|Z2GGo73XGjhg;3O0Ox3>=3iif;07(C4eNFYu7 zm-p(g^S4FC#UKwF9AtY1ut19PUx~sJ{E!w#o}H0MtxuqXbPE1E3#8;FpyBT9>F9Xx zAMvJ8+~dCui9cbBK=GDB!0$6R)b9SDu!SKLK~V7jxWQQBUpFNG8!2Jrc0;i%Ez2i? zG{F9_g#N@s7%t2Y7yYXNiKT`#S3#)%YNe2v5J(a(K$&Q0M40UY%Y3|3Cu{ zxmf`q5w(;oG2{s zJm770D7W7UKm;NR0ScJ782IWFz?kF$#{g>!0TDEDh_t2q00SvEzYrJGKLVD;pyiv7 z068d81n?n?k&FP0U}O9!mN|XQuXyTC1`zoth3Gf+u6S+bSlqp5lDh_Hh z!zn<`UH}7ZI0p#8&r?vV!b$;M=yvbD4S@Cv&RHpxQuBl#7fksGJu#O7&tc*c;65sx z2J9~b$f3NhTL2{zd2*1b9H@pqkZc2N;C4B(5(zLE4bBFhF95ut=0^YrO&oHk&$j|B zVBkl92$^>WDxCWf2!=^OyJJrPR`5;*R1kWB=t=>)R{#TO5`fU}GWL}ahA%VzMkc-z zm__Dk0XqKw zJ3t4@A(Qv2fydzEqTht10pmVF^+kQ=$4xSXQ-O`206#PdxX4x6#2u3V)&>7fN}?gC znwT0O5C+-O`x^i&DHJ{M&#sdYgih|kfU|<<%fM|g?g*d)J8A(Bn1mpbpvdfS;LrTv zqb-OEjP(%UxH>=@ne$NawotFp}B_& zXG`Rz`ETbz;p|8nL(P8$lYm~TAP{0*SBw#a2B-WF)-0%?c_W0H78V>AoW_Q;fVJHa zLraKUk(&+N>PBKEf}}MY$kYSO!z4tnI6Cp176$}+kv##493)pmV{Q*kLiCEO*}w;V z03q}y@_)5{whuWnM6X!Pqe2pYo${u;iQdr-D}^8gRHhXcn3cLsoA7&IWSy26Pb2izM(_O#evQUl`Wap>(Y zsuKT{--;kQ-rU2-TW({0lpc5q@INM6`Lpa zaAAX&BS?CP|EB#_mc3yJx6D=m7uiu)Nl;Ia2=NR4!RgR67Rl*XB_zfGL6FNz03Y0F z1!ypYkP;V+w-O)+C#xY!T;-WNf`%}~IG_)ckoYZM;>VHlMdEi))X#|Hg7I4ri*$|y z?GRm?XyCsG2eI%U^+Fx{-_~3)Cd3So?3)B0B7q@AQ1UE*pV-ff`5zG^ffPa3;1vpC zQ$Prs1eEhi`0-Bz#ApC?$^gWodoYOAkv#z3ow@q@7xn)}O%wE=gy_3F1F=;~#9xgC z#lHf?r~s(N46y;!&~PM>EAGdgMFN5UllWH%#LfcZFsMePpaD0bOvsnNIUfV0`UWv9 z@(Ysv>F0hYL!@Q|HRgbN2;gs_LMqHJ{!hBVp(3va0L9;9HERy)!mN3~8U}R?B+P$v z1@Ry13l1e+4Fc5#zzCdd{;NTW(t_Av{{n!G1_(le=1NE|0NqGHNZNt}OOT}5U4&Q= z`f?@N$(MjvpzoKz2{N?=5Q8SO5T{qOKv>5xK%G$^)YAZ&bj}WoWDcNF(qs zF+2#pL1T6Wf_jE5Y{U!+K+|nVGHcO83gMC!q82Uz1n^1@b;BU2W-EX#NW2H26Yz8W z&Fyfg7Kr@pVC^ch0?3JR#Vycy1Hd2#2xM;?RD;$iG-^r?AtDjtK;MFP0LedKKmrWv zox~XtNan5q*f0PJ>e>Q0L6@H2bj1J#E}@F}e?qj7Er(bFv6<+2RHvMGal?n;UMU6vVan1*0mB4IxUqnGB3G6l9~vM6Nz8rVE{K4^ znbA#!p!;%O!Qk{@O*eoC14MqCD?!ruiF;E2k(N;4-G7b13Kw_~Dg@>)VUcox9MRB$ zeh^SWBte;f^Ckqo8#EGzC;?f0G#HS142i!v1xUYCW58p<5^VT2FoqtETP1@Imxka$ z%Wzl1NBI~zx%(;L{JjwVFkzacXtM+PpE zE*PL67TgX7KxzOfS=N6dfkVbJQm6h6JQ0ZuQ5B>#T~V(RkwT{M*YBKHtOw%4m(c(y zo)WU18HxWTV#KcOmn-`i?8AfG!yv(n>?Tri{y)qhIQ0EWv|QN)kiCQfGC_m5DiI&f ziUwAjLzMD82k6isjRLv`0u+!{M_PqV4BtS7`dPjM8X4k$8tq7cSF%Qy6#f}mtLr(y zPV%q8BLV+gapNL~3^`I<5POG++6 zT@XV7XF~%ZEfb6hXG@ZU6M_ZLq0d+12str8He9GmiW1Iz1@KDLlf&S|FgTE;1&Jpp z*&OVogX1H4;~JPr3*SaQk%Lk+@G$5kN%=l#*tnow75Lpbe?$F8u_~w-4-Cp}*$?H; z#DEin-LIj#pQ1r6`VUd7AfkRjMT0}V3?VBBUJHkG=#|EWGs0V7a7c;#CHk?!EIc?N z^2;CHf(xoK!TZplY2a^$G{uLLKySY_Y?UoDB+eilh)19)2-2!2FvR&=r9zP8Mj-j} zUrF^B*QP<`{~9h-q)2GcssC5jDm1CNl4M^Xh}ok68#xqW`)3Ej1^-gGjO_4vJoweN zMdaMlq-vW3&W=iO?>{mg4q4Xl>yWjDTLu}jc|7ntXi!BGRj+v9y3i9e{fC}RK_Y%Q zVU?u-+z+A=w2kr`0H=o@guzPyKKD;(LLybfg76GvE>W;V2u{WDUq1)5`%xUSXZ}&Q zkVMt85Zo1p^pIB>io#zbpWs#J;_zh%0(6AtvLrkLdJw8|k%DK!{#lW*a23-HcmuM4 zXw`xod;o@e4@{^A$g0*9;C0B);#KdI;Ni$8i7G%9o(lsVK0!_VrUoa#K!Zbvi|%T{ zsh|fT5JwyS19}jyLeqgGV0dtmznwfLRsDMKeRL>Iw5r7jK9777t9oY!r$RyyuWGV} zUqVC@k*I2U0EeS;!A1Y+Z@FXR{J_Hw&Lk)%DvT@e`%RDuT26pA<2HGSLdTv83PL-4 z=VyhkBYbW2OsC64(8n#9(Vdv8Yiny2_Jjw-zp5;fvQ?A8nx52RczfgRJfD-l=?WIR z_xXvf&g@?Vh6MK*>x(?>&968PMg+-BtwzZ z$^~`qzRiPGrFX9q+%QpJi4vCx6XTMi@5vXUIv`fG46}uTpp^xb3`{00SV+2MG$o3V zW)Lnm?#QtR`XiLJU<9gXB;Jcw{56;fW^kcnBNL`!B>9)Y;mNix+7l@(D!lI9I}JJP zMyOG8?oyGp(HR6N*p(>P%koQLddxdO4nYtD3^OJ8L-27jN+i1+-63Xn4tvgfjQC-_ zVTAU$l|>l)n470ZsQ9HOpN{dAq+1V)J&wK;4T=g#!}KmE_x!X#6dS+bTNF)pK7q+) zFPi%qeGy9z->br6{+6a=KOz*uAi9pp))ldB#HbQp0sh`QVZ*#!p)d0SFqF?C7m-<4|f)lBx-DH#( zPCfD#R0F$AMjhXx2>~ukc|ht=HmoT$=%Ua5vP!BE1O0?5Mr2^Q*wDt)(4Lm@D2t|)GFON?JsAL9qb=EKAEa<3==!oLOY6wPVPF(aaD|zIC zOJ0E}CX*o+^uM~_9GqU8Y{8`TTAw(pFGu0MHdA+5ftjZ0E(LV7VlI?SBUZGN+^O7BdAb3yfA%Vm$%qLFIaQEsB|`X@$Kdc zFbiu8h3pdIpd6kNDhr%PN|#?%%otG8zPJp3i==Ag_=UBPI`QU$DG(*?kdY0=BJmf| zf;Co2=Y{+=6wyzzkz|b=mspQbC&(|DsI$H^qA%+H3bF9dM-V^L+(yVoGPb?Dz-pov zzGR{f8DsoHpu0=-Wc%(a(Ua263wglnvn+Po#fq#7O51}ytS0H;OZoKlk~ebMpLoa* z+tDbUjzf(ug>wk&n`8z`N3zENUD$Vx~|ScXzw1_6qf_g9ymIFTH>C>b71 zUcCG&D=%Ggt>hJ~#_$rsN^*z0TQ;8TZfb6C7Mp3qt7+M?3$KW3$xBw$p4JUU;=3nV zhcf{C2O0W8`8kA7qoe5Mb^5m%y$x!sLHDv9E1?RgY7ufNX2+L7CC}+E*9L0I2xW&sJ&Xjy-zI?kH&K`QkgI;OhF53;jl$o~V?-L=)&RF@y+Aj?=E^{Te zUX)8bNq1tpT%*T&HniUV=~s-YJU`+d-sS%M@|kr-(AVS3$Z(u9qF)jg4mD?!{2x51 z;zN2H+Mljg5p`@cs?P4Z1wQJfs?XBB`(? z=POECQq_Q{&O>?CC(01MRT4pr)kApt^IO)lOGUYZ)nC8j>{L}FBgF8;wgfHa$>)NP zV4{eUw~u~Z@Qj`9f(Z=_K_v=D4L^URp`f6DM@h{Q=#%dWL(EQdj7N~4b}nhWU>d|O zVMr#4s@Hy|YJXNf)nhLVZv;BO zVy?$I)ZJ%oN=~5e9I+Y2xua{eCt&~1YC^ZCXHZ}%^Y+777Y?koXIpAGAH8O7xd#R` z%c#E=QzkSt{X6|YPjwseX+`YavY`^8TSa2 zDwoS#h;~|Fe98EfSxtR;t>$FOh`uKthgKgy#PBc<<6c#oHhTR`#sFMV zi;s@N@J72&M~~+PX&Qb|mS1sHzlzUW^7S4WKaZS<e`u^izV5&D1`2yn$|%qfk$je)PP^Y(bFT+uJDw zv*qB1fM4~}{eU)b%UW z)Q$^kBNph+2xdn2iy2G1R5{TSRu2+51mdQReNUWHhP}%5aBrFDIJDsFhB z6!XDgejs3c95D^9$?VkW#ZPqJOeX!FayaUC>y|KWPK~`AHp(*>OHp#^FZ?`|-g(z)&iY^H91KzrcJOw#AmE*Fwb*<+`qfzX z9p#QAeTPBUM>hh|cb;d!9EDC``_bJGZ#$eC9}z2z$!#JIJw#DO(@B>MCOyo7as@S-OY?V&%^DzO(#j zgul0n&-jvzNRgp)eyBm*r+BQjMD`v}{dun~MxmV4i2>G8SAcgfO4t~dtgOcdY5=65 zKW7Yd-t51KlFmy7Q^}cVFqB3H;doy3GV#SPUQ{%HDDvEP_p7{i zgD;Bc(KVv?S<5d)I{bz!T65HHc2{>P#5}Jgt4~wb5tXggU(bu+L@;qUXOx}8Zy&O^ zud! zrhd}F56FpE)AhNbDVYmD zP(Ay;`*720yJoMXfL%2E3!9-R3(e0x{uD-L!P}$5zE)G$C(cfPF?|lII_k}+vSw5d zP`-m`%m~b=_s0^S&5H7;2oV0p%DmNjSa6#&lWm`&f*OyR@5bGV0dm_WW`{8}0ak*z zT4$?Qe)Jb`{5rjnrlmR_+fC4zDk0ERN@;3Hf$^pP!pfs2+VdB<%Y2OsA0` z6G6#9dgEHj9KmF|@(nBb9NYUGx*r=#ZlM$eQ*yMe@gJNSnZH|;4CV_9Eq5o`L>Z#X z>DloyfC9Mbw!B)!9`0EOo6~aEI^7uM)P*e}GFALEvXh-%9z~qOhw+0a1wEVn1A+Sv z(|n%~PS!n)#FPwLea`Rbhr7u=FjhrbXh1FG5LZ zEfxOh#oJ5++Xu#jUEX0%k9W1bk9ke=X`b#<&wn{}V3sW)WGYjze@6YyG@S7E!SVA0 z%2!_dwMhw{k$RLz5do)91Xu5Wh`Se})*vmQ5%{4?=|Mye*Gih*iIMQv@Ub}IB+eLX z1buyBQ!-PNaEGBF??KS6obE)IeWqw?)V9Am!&>w+jj1geo_i!L%x2uzF>={TmD8r(HeNt(Q&5HX@?mJj z1vBPwih=gG|;Co}Y>ciGC7 zf+mCD%R>c)DoN$SZ65b69GdJ3I$#VZv4w?BDU;ZJ0H3m5d-@7)F+a^cXkF-`S3Kfo zYv;R4td|{4L-SO;8E2VbiHQd_rUefj+LOuO0$S00b@ zb+H-M*I48U5$wee4b6>r7LppviK3%65X_&GDYXiT4g!{EJ=48&+69x;bIfFv>)Y9W z(Ih@E(9Ew0rc=Fl>U(1*g)@z?9j2&V9)0QDhsyh$h4(|+4aoPJEqK?j`@}2BE8nl7 z&ZQ~ii+NeRhras0Lr02ybKFn6S@8+C$w|MdsI(uWrn8|v+ne8iIAaTAY&Tuh`6G@U zPAC)wv`a~Bel_erh#@LtZuj9HzpW>>oWq;E$44Wu$T46-@&sV~9uR00v8(b<)QxeB zfqz5s(L=U?nJkOqC|efQNL%M?^^PvmG2C0}W!wtv*B@2cxHBuF`?;e9j(lTwtLRhX zCJ?CO_cq6NdxI}_OWj(0;I7=8;_d^)kNzp4pfvH)bl#?3MS{2Q2Ex=^?g0-ZuXQiZ#K}&5V?x-N^Eicuq|9Nmk*?_CugpKW+CM%nK$GNP{#nqtYv3qydy?wx zRx$B(Wbq2$h1ihLlH{AwVJanhLcstF_sEg^OR4&6ZVbtkO`ByJ!UR~&S%~$8MplyH%+FlKhA;>1k(1g79leZ~P1QRw5|!1D zvg0iM1WGfmyHdJ86h3$_@U^r=t5i|7FYU3wC;f~iM@5(3r$V{-sxR;B@a*D_mOD|% z!Tak+gKvIscq%ToGx@x-p?uYWT797Q++NNB``r)v1LufU5muu9=o;Ej4+0U!xAt}i zW&0nn@=uwdemZM2eMuW!yg<`sx5;ez<*Bdsg0?Kbz>&L51Gc9A11$*w>bo3WAs@ig z`EepF!9f_zV5TKgA$LtSgf+{1aMb@6=`)0K`LB*c=T#BLPL>GW8u^V;iOL#EdHqFP zR2>3OQ$VQ7W5&DNcR*7nIIt2yaqwl;44ic5s4jS%V)PiNGx$NR7&E8D4AJ;9mgJql zKyh~8z~S>O}pqTKjRJRv80&Rj31Q~S?n1JvGpt>PXjSC1~xywLFCo5p?=36 zpQh$2L^Radns5t=SozENNcFYvRzH6+lu@~X~WUW&1YGi;lUpN?f$j3$~XrIECWGirwLkRPfgiug9M_Q6<8?V*NZMZD9P|Cnf?vBu)OPx%)Ohwyv{o1FSj`14u|S@B}7P3w)V zA|BD+g~E_%Udr0@e9 z1_nhtGcr3UxbSLASE_~G(mZj0cI!JXW34!2sUX8GgIalubA=nl<9Ir{uab^iMmm3a z4MKj763t=G9BDVacnB@!rnD_0mv4EJ^wnMQZB#jMC}dAKr9iwQg3D-r(;-_{1ARZp zJDeen2>h9y7qE+}QFIz4f>29C|2=t*wbe>GXLi`=fLi>RR`%zr5T7W2fhjjS*xhk9 zE8bY%>^j6p;2VYe#c~1YIv7`YYD1vj82gi<2Txo@t|0v56XjloR@M(LRWYsCYbx)S z%Y;+Dv0=B3^fP6Z(BcxCmYwxCMh+7|N#2@%8eDJj2;DgD+2+j6h^V{0FDlKnW2se$ z!d@yq{jf``NJUK9W$+z;DvCq>dYu>lwx}7(#sT`2sMRc(qPRNlI9aOG&(|8NSsR7E zggMdqTtI{jWs>1g?rv+J$m&;rTQ|m_)~4PZ)XA^Wa5og=0&&NmwM;gPr$poC10ntHdmbkEs;RMo!lq8#nKUsap5 zYphU+@_kb^s5Y1YC215po@H45;Y_7Z8SNe2@wI~;o*wRK++~N=PS!pB^`oJ}&V``3 z-`Y-bq(mqgsr-0Ogo)Qv^hxFDka-vzhFbRrhlB6v?KiFYgT_CB{Y=npUCrg{_K(CU8$pghU^l4$r8G-PZ%M75%Ej& zElO{-E~U9Aq8cv(u>ldVPk1+)Z=!+zj{s-Cb5qE2z?p~eF|krW5J~SB)@M;7>h19N z;2QU1H6)Z}B3kD!QaAKY`#KUe zMEd!z+67pDulVf_Ik|26Bb&zJ-g2B7whV+Fj8tI{don*SG@(0T-&aovn3E%PJy7xkW5a4@C!I?@y_-M)=btJh!v$9$R$;fx;ByJg83a=uS zm_ust^(RIr++{`I5*vG`?)3iq`3;9%3mdtA6!Vt6NDmaxkxT`MhbM2?SS=;-r1&1#WWP}893@sH`BnU!72l$71a9G!uo9mHpiR30m~ zZH0b=`N~w(TB6(^cjsMvau2r{!)>&JyeXr9 zPdO|w_jyDGA-)|o@jT=kg^o4bQik1}e{9S7FnFg|&@t@f;8~~v?@cxZAAj12p!uQ{M&G=H>CV=hFrqq+$xgVZT6)^N$<MfJpsvux!5MLujWU-T;5dmJw=%{CVoe`>4H2l7#|vcz3DX)7rhawi&PSf+rj=p{%K8*v$kFj-m-lA#BTd! z=w$|9w|tvbd+W|Rz4EkKor!aY%}b$~vQ$AvB|g+$IyOm&BfR{oM`Gz)wFX1O%y9N| zE6Y7M+rW^=gaYosJF;`W&(TcON&&VUntRT_eofmEd=BEbY~&b*{y5)%YP(X_qKzT; z8+LKG%VR0)V}FOQgILw&1m}}}4>e?#JzF>OopX^e4LwgmD-cL0?w$Bhk#zP#uMks4 z0@%Vurn^6XXf{45vOSH6cfMYJI&F9u^va;V9KTd}{Ls7@zPP3-zweyeQ7Fr$zv3o; z`&bqVe~5gyJ%?{9SogZ#;fhgGU`lgIP+qOQezU$>sH*$n6P}1261rbbpY^tg zO^g`RyCSLZVMoc*c25#%N#9Z;vP+EixppwBoZ7nCaeuHS`q%a9GX$q#hc(SpreEAw zE#$?EY)uXtCxAqMHLFy%sbGJdrMAbi-p&WRA~Td)sMd|t%Lx|fMt_?BI$g_mq5Tl} zS}omc+_eJ|Z{j`Us&J?r-o+KQfr3{LVHF&IKWgpjJVvYS2*!sVjn-vHLsY=Jz^t*g zy!*<>`9P;lubr&P_<`|fhz^#!=OmhcRoqM3hPcN5)t`;#l2Zs6dJsd8 z6w@sIZJn&cwwF?_B#bMcDzy6czCGPNW`VNYtGUC<2-0bZVk65tgMPS4ft{o$m)uzl-n?mLW&R3sGrswY~SF~CRpl;rOWF<-4c%+A<_ew%Z_(Yhr-#&1Ax zo|tGVrg$E-G)b*I&?)6mcO!viBV?j6X^{4R1|Hi|fL{z{FU!H22j?qe-wYZZ$z(C% z4@yFJgc%Qou~ufYuh!@e1xm8{X8R6(YRttTt}TXAd%Vi z%P8ki%m>%Yd_jHlz-?I0K)8&jGeV=92EP7A zvM$_dw}~aCy2bof+)ek0i_e?BslJj!6uZ_2reO#Fy~f>uTjK((tvz}jHG`&JEqw<5Z4@n@XdFm?Z76Ln znGaqnZMfo#OYC9;=rE4~FgZV;lyD(7NvL8BWy-FjUpF!a&(XIzvg;~jWyJFN$4c(_ zQR{gpMkxYp7M4wy&C^I$RRceO4tM6+#CBUaqwk_wfP5lDE33Z1DZ2*B`Foq4=-1-c*}j} zM($~}A9lGmTV#k+s&S8s;=l$-;u@tDYE`kzs7-@suLfyTg5Kf|o4x>l^?WV*^hOYK zF3FUxBZzM3QAgCjj9=bROw)$?cI}*6iHU~;A%}2ig6bW0oIL+b`I1o=FVljK$NHRD zj0iWe6WT-gE*g4^Tgvj zVl(Egu3py?O>byczqTfS`ujCL1woZGv(ie@OQ*@p+`+h(X#xAipKo4ZL<`s$qgm6e zM4FYWze~0v&G6a6vqci;;<(<$nS93oVn_QtjA+#@_Y@l{cFu&D{R-nvXjNTP{G!x$ zR86|`PrY2;qJ3QvZ=L*-$1n0>mTG}k1|rixk>R(mCxR+ng!0sXiCiB8_TmQ#dB-JW zks_Ei7t=Zfvyw&Hzjxv&;U#2W^So@Ocg*0o80JrkOqLXkoQiX6KIE|)^Q-(;UMw9; zBGxRU$WOMM(awmjD8}=Cz7#oU>SdcuAE`WUqqkEdf2gEzOy|d6pCw~I+CZ~s#~ua5 zJ9C>P*AVf{j#VLl9V5VrAxF&+#M>YEaULfwvCAIqpZ&q{>X0-Oa8w+R)BcjDEizp4 zJM`dhlY+@9^}?YgaS~lpk>2B%X|s8c3T~Q7)6dy;daewR2}cjHZi`Wx?E5gd2YIP) zHlFt?YsRY~V&|u}6qcMkjMA=0k8e5Pa)qz7S&4a$l68}RDfYNcXZ zMn3(ZPg?cO?s|@M_?dg^NM2^SSeV=A*_!zLsc$GAM6aaXbrWz7q9pOYR5#E0}eGNJ*pdPGop_FHDTd#@8}c$7~*W=aT@w%+;Ac=@jtOj&-B6eTXd* zeN7e%Nvy%d9dffR(S$d>X+k?%MbG!@F2AdqkkspcZkBTD!m9;wBxssO!{aq05*Rd% z4bB>CnJO}yXr`>1xkiYZYQ2K5Grtq0e1SdkY*VeuhyA4mk$J*nTL^fu1UJM`E1Cxv zI-Izq(TEdcOwm8X(PF?#lKxWMmGsLXOAINLOK7f8S3Ijpw`nL87|_=tR6hQs)h&d{ zaiVm8KA*qYja&4YaLw=u&a`M5NAz&YKxsQ*S)uPBT5d1zE1&Tx!ovJZNHf4GE}ZJbY&VyTi}3;P?4C3d$V!b35! zC6<3};GwPJwiCEYyf(vKoCOQ!*S~^T9y(|B^iH^QDeq~cWGneYddK<4S!nC1xY1zGF<7}mW zV5!tKa{ktrq1zHKJw7MjUzyObgn=(vrM*sa{p0@4%;#^wxYm3fE4UNV;sHjwC`3at z8s|gQHGUAh5;1Qqc8CO0939IOL zC6WZ=K%r9R7>Fs@>+KnJZi;W7QB}Ktu*d0)k3Ek;N;gFPHr>iS>8rA9qqYTj2ROd#XrbJOeES)*CyJ;WXYz(PQ7fKH9r?9 ziiun<6igeJvJF$9ts^Zjm`;CM&W*wyppJ40a_o&p>Sw*-S3K5b4z^LgTkTkX9!boa zpo|y_!3Y3nd^MNBAE_o1Hs{umAGV?+Kz)Nk{8Jc9JiW?%U$q;&acxzmFE>wuP-08s zlX}TePmS>quu-O0w5=54{y4VRdm`MH!9@Xh-$k>(GCp2U#lIq;tHZCzjD5xJ!xxE5 zJfBdE&A+b0Y}dgVgYjKP$QGM_5IYJV$G|P2o1veR5CNsQyp! zV#l2{!>BDzdhHlEf2{TTemeP>ulS)<=oLJHOEYcTG|IAX>7>oL6t9TMLu0y=SOe`z zs_xM5-usadPa7E6oKc0Zj~wf~x#{jXmA zioG`-5V+eCM9PC4snb2 zvTq;MzL%e|nX*qba{DcB2Jie>#YwN#$tF4}cr|fayTqto)RMH6QO9p%Bn=pf_8$@d z`m`c(6G=!f#FRUa|K;kmt1rSWi7@iIQNZ){w!_wB)CvzZ!SKO(c{GT=#N^yxMy=OzdEEdb*_O3>lN}=7?^WP$vkL6E1on$3QG|VM?H(F zTiSS;JYtP9WRcw=%m_2SxmfjjQ;id+oj@obSl+XUcB(G=SQ^1>;OAqk4p_kb!m2-O$P{ zf2-*Bi(2&a4tO<+q-hn)?#DU%Yw6m!IzC+@5JTn(Goy-sS84toh0G2E4^p6S3hPpY zn?_ZkDor~)-2zLzDo+rpN*R-d02h7`z-Z-z^B4XiHvNZ*a`8Nt3eJv87gx{43JV}7 z0<%hypUyY;iadEYV>5??%LwFIcbZ8gQokVSI!Msnx?8XHj-bn%7I8H3Ng9+!>gG?O zMsU=evk8)aNnRx^sByVA$izW8$uvewDF*C~1d0O!2lExr`Ojx_*WCqTdIBQEpSV6S zM(!jj-LEU)S2J15Ki&dSJTZ1_1};n;SC8X}?ku`l(xsBu&G=nFYP` z3wVhh2hvyYD`Kx-iVT=|{=$v6VIN>uFDX`u%5FY-%$zJ+ZWM5GdE_SEUUV5Z-?Jr@ zkL7&b`}BS_I%NJG?P18MiI|m^42A0n(c1g2!E_AAE09Xl&uex~`sS!Xz{gn*XCQ=O z7Z3%17uW|MEQ4uxIV7n)z4w-NAe3MPzG`7uC#AJKQK?R^he895Fpclv{g*k0clpQ< zQ%Q-Lv3uPPA;5vmluK_52KmP%1nH783ODmrZf!J;5?0Y7+QF`B_g;5&%${FJDb;K1 z8lv|ksYwsVo)J>X_jdGG-x}E7d@N{sMz!I8i6E?4CQ9^$^_58|jqgDOg+*izGcsSZ z%|McI=fZWPWx|X`h=3|OK|^7&w(OE`ERXv`3X`ln_Y!Dp# zB*M*m1OrXsGQh9_U~~VK6n*N+n`Upah{dG-AAw)1y6mG8#t`)3KH1qi={3Dd;ZBWz zXUoHs+v*M=;~RRGl<+Mk@$ykXPIX=IK!4>^l5#EL;`;4+EU_=`c>_n!S?DRMD#=PP zSK_#(DfCt1>4Uw(iL_ZXn&>s|pyW+&r@-~TA%1SLj;fkR`lBHJ1a$YX`X^UL`P^9o zboWPfO{20g0lTG9v_()~EE`<|a;|%SmVCQ}`pCy#G8g{BuN`}zUMIva`b=zLtxoJ${+y*$ZEosLx#g(5p(%}}tTvde zLQoH^glJqoO7LKj-)BavG5N@UKHcA(kdHG)?DPj?IQ@uVLQM5NOTilm&=!AH*d0|@ zDSw^ln|6D8@$R|3;(Y(7Swf7=lhQ|DUgvpRXvAl_cMnsh+U~RL?WsZZDq>*xgw+_2 zsG~^(U>WT%kU6?EMLHl}r^CKm>PQjU?wh|o_HuSI^b zPR35QhjhdAzN}A14PR$0X^c=`NHzKUU0och?_cn;l|8xA8t{FxVBx)@daM_11> zQxj97>>Dw|Ha{kRx$RlzscSqP-1lytE#NZx#hyBHk+IdfDiCY)_1=H+=eKc+oTZx& zM2mrkS~2bO7*STQeB#iXGgQl`W!;0A#IQy+H7`J#amzuQbXr1Pxknc*l*lIz6NsX5 z<+d)>KPp9PwlMZKSX^ZDi3aK$?bzC<`kgu1$wQrGPLJ=d>hE>p?+tCubYxvnv-f3H;di(obW2&+y0u&p?>8T%l*GY<(PdEV4+k}(; zgqYGSztHM`(81ziX>#C-jKrs$Y6|wK74!-Ga(@8(*)~yNZkj zbKfynqep=3xe~J|ehi8LXF8g&l!K3g-uuY;IzYv0nLwq@nNKd)tmLz5RieZq(1<3=!c*OnquUG5X)*;h43- zVNwL?XOlI)of<28`YIw}FBmBBN;NkmMNtA-gq1ZUvaNKIhB9fDWL_IzkdDedQl?&% z4=$U3ez)!0J*#iqAZVDW+i`0P@j5FKoC9!wSUFxzDE>eGdFS0a{o_lWGp*-A+}*fy z2-j~Bhh_@-GAxS|U)-^+3@TqQw5e}Syn;9`yT`oc+RAVJ)TVE1wm8<>@5+dU{YCe?_6cA~!;RZjNiE%h+^Uep9;OEy49oBduGlZTai- z4mD*e`WXo~zECX0^u@S)IjQ<1b?!!}-7o*n zBm{?<#potf=08r+-6UN~*$t zLgl6^|8<()-B5;%^)qAA(88T9SFUB7VTZcHDqlij$-c*$&`R&k$8Vq?iZ7n;sn;?s zQ(gh%{Tm0qpSpJFpawiXaWoWUuUS-EqRhYf?(11BgKXhS(tMtQAxP*hO}-Qauj0!6 zhVfay>*1F*_EiS2@lv~p!Nln`0~Be0V$YBCvR}$SV-Ydo%@;%hbVzx(b&n{0k6go4 z&zpL#qirAzsi>4&%*mtbJH2yVrAt{d-+09D`HLtknlB~>e#mMw^2A`o2F@pE9zjWC z9wf6pnYVN5duV#n7h;rjGVb~-C8@)|j+5(fQnbv|w4f$gKCW zYg-Q!ztlynrf()jUAtOv%AW1}rJvimJFVIX|FpqSdkCVJ=E}FKQ3NNaB?1mhsyl0uZaCA$>F2ri9b9 zwRGS1V7Tv(UgY_I=|feEDkDe;R7`B5>1pFS@@R8KQji;ib3tJNwxy>bZ1Be@I&AJ8 z1z9c_UBGi&KJt{jDTClHxj7{C7Vt8A@ATq#32@&IyWp<|0(a3qe;BApeQ$8_u!=%B z-BJC^fDy@a#rz7MxS{45Nd79Pcu_w;DjPwk_IUPqWkh<@)9kqa43h+RGL>_ zKek0U0vmrW){~sqG5RZ6PqDfJQyLQId=FWJUh(T!R7R&s%Y^%xC$h$u(5sG_b&%^( zEJ{z0B!|zAx8S1Ui;lMpx9_Zp7_51Lm6V=LN+gEL(p$P*;wK@8zD(<5YX*OV(L1FhW+<9B}7A=WmMa~%AX!e=kqq3KR75BwZt7GeWrQ4rbA z4Ydn@z4)}k`#CU$h~ewRmP|}eKN`^Cs5Ev^Q-kUK0-ElGmr%jMOrsXUr!*pJYZXQ& zxaj+NgR*%hf-zB&8IANp^ZS^#H!mw^caK>G^hmK}aJuH%w-0Qb99&eCw7EVZZfyNf zBCT?^annl+*QQ@s5p8AhKW zn(0CQRxx=Yx4T^Cx$n^ob$Zm87F@w$H1WQUf@H+;aR4;aU{OuHD?@_w>~#UvdrA=m zCJF3T6TvcHHqQ$SAvATmWO7TfKp_|n&ZE67Z_{gav z-Zf9t9gbEi0NF5}>93lKJ?$EzdnVaA3;C zY+8r%ke{D%vRv)gdfC793insQ4wn|>rqpCd(jOpMs&8O}%Z?Ss=9N5H zflZT{V#nSbjm5{T46P2>HkcTvs(uza4bfBo?6a@oI3E^!+3>T>OaY9LBF3m_ac3gH z`zvj^r7@LQ4x-qZzttdmc)4~eY}GQZZ8wfRusjfl}(x>N?PKCC&fF^2pX5ImZ|_F zR(;x7{-Ql|?e9x+NA!3>B@!oBT8>%yG*8(>XpK1!QE1;*)OJ>#sYA_waFwf{0Mh$#N$yB|(?6($XC?-hIH5Q$4ePu5LoiN3^}1VBnF%Xy?ANE3Ag>aHR+6yT9Ygc5+qq#%z_Z ze38>iBv!dch;TLagYAoPQzOAce##38jlAjtiBi@A#Yi&F%2jK=!OItYlS32*EM@E* z>$}D3>tkJtWt2xfh4QwzY)&~4vK?+v|VFSZDaOB$b01I zCAQL%aI)$Pn0xlkl0$8?KPH4w=zLScwSk@=ny7fd;cXQug6bDmJ{QfscN1lcMCfoA zG{EN;#dC~NlzamiaN zMswI&x6a>x`4HF1T!!jiWly{9)I0$lLk`kEWgE}$FB-nP!ALGy<2 z6H)^Fgh{fkkfTGCEN?6ncE4rWk=z+(aAY;rM}O8B-o4~ydG>rxaW$99o~Eyp#o)jn zr%2y?)!r~d`UPXi;;wMGU?T-HdP!i|+OHc3vy!h2?^zeY+c8?&wI7ik>%(^@AcM)W zd$fgrsJmkN*%{84&s(d~lo`GfizL>(In``YM>>MYtr>^Y<5yy2LGSg+((kw%Yxvwo zbxQ9rJNX4EpS^rgdImS**b_54eg9aSY0w;0p>gVp0G%0t8@@eUv1paXO=G)@vs+As z{=c@)p-C76V&W@ zu}8AglPY$@*(YW>+{UmC@mLU;Sj8|RImn@}-C;6*96%arseai4g*t^U8>-W3eK>S~ z3(&Tv`HV4`G%xND&`IfsX=><3J7;(@une&?`&mD%unH`kGc5tMNo2{qIsVV}Tecix{87dnbvUe^{M^&IktJ{{}>I%NMkJ+e~R~ z;5Uh!X3{^jcjk0}<^z!^KeK1iD=74TC7OvRf6xbDdF^TnwSb57vZ<-F`355#g4RHb z+<*vqkWGs{(`#Kr!Y<+(hz7H!qc&Pm{u`mir zFC$V6;VQXsKBIQA7$#oye+SrqNbXSeKzfb=ZRW&%_iZl3F%^J;<@-u*O>N(kobhQpr)VSanZw~m4komlKBZJ9qgIvs$29@d-LcRQD~ zZ82s8UZb#s5ruFlP=&lXQ^}$pK-(;2oe_ef-^|yN*H);V4a8gByAS+xOacQ9UXqpC zoo>-dR+WMo75Wytdq~5B%ULffU;JU2N;r_badM0DBWJSVz%$ADh_$WxG?N)R(ylr~ z!*OTU2bCV9n*$Ei6Bwd@l-zh1@UZwH>kD-P?Se@Kk2wrypz*oyhoohpY_tWycskq} zz(8`W^D2>k_zePEUTH`NL(OMx`DbB==~kETo2&Xnk-HiK>h0V@+l;-usj!FE%TFSP zi$|y+xkJ;R!euc5NPkhFX%W#8s!BtIvQcVetw>sZR^q?){ zd3T^7RFqj52?}(_tC2&96AuQuh{5w7A|7wTfdO;?Q4@xch)EXtex{_gu*`R2R48Bf zm*+7x;qTu?1jOH>^+TFCp}zFCdc7vO${{%eepr)iu_cdRxn!bdFMqXr$RzCXGUSm~ zvxaQ4+O*sMnkz1UH9SP6-t==tL(YV#re>O)YaI~g3?5C@iEoDN(uo0NG~v(o9n<05DYP0!cvrn!gm}0@=;6=nG*)6`i z*47_|p@$&1rC8vZQO1ARWjal8p{WAo7-p?cmM##C#<7Th2cG+t0sg4wk>#0CpRBw| z3)W0l<}IkW%6!NsyjFii+uKAt>{f?{BQqvm!x_6H9rxiBQRLP+kI{qGdG7*cyHeVR2C}hEOFYt8rFrb5YQj=U2`{r zrNqh$ry&A=u%*2yUc4tSeI(}kOL^o`^;$$1tSD@01vAR7)B`CCA4h0QN+nClK8PLb zP;rluR*6&B)NA{CBt(h2{5xPk#E?ws+nbwljeRDB?FZU-6J$K@eBtoVKpJbU@ZbzI zFd#7sY7FbyAz92A?FzIM^~l*o@y0IA8s%{`ePFSFV0Z1H6LqzuC0O0pbFVs1{k#o~ z{-LL0=N{ec(IRk5NYUD*o<@obZj+A?VxtvmNi?p=SH4d?$$f>&J0 z)`IF>3Yj596`7rH#{Nli!aWnw7K66EEmwfwQ?UbJk0mH5*{*7EbI+6EZ|+#@9?%X) zbJPKUIQE1-CCdt))2WQ*iA3T4^_wufII_2LI$h46KY9p+ z7UQ))g}DGJh}y#IVLyledESQU3%MRWj#sFEjx|gBu#M25OPQJ8y_WwZi>IWT>>gKIGq8*p501*)b$YBm0o} zn=2QorzvHEst(VXf!&eVQX{kw59Lt?a)1JwcB=?R_eaMbd~dN&fijVdX29X%j@wv& zga;*~AG=x`BNLcZcO$@iUc*S|5eNoiV&o7Bcg9hCH*$jVp&V1`sv+))b0v# zfEJnu2^a)f3s1M*FeBw9878F`;oYkYDSAbbd)k^-y&& z?c`VZlGLM$jnJzb()52 z63h7B5f9Zz{FVLNJv?JEV*!u3HMEn7*ygVAVA(AZy&s$WD}o%f*npnHp?Wpmp^Z45 z69RQk<`1%eV~xtoqRI#yU%scOG#JKZI>B=z)wrkCe4p*>m3}>c-)=faX{JE{ zL_L#dOA4(dW@?ROfqyh^rsoa=bck7rF!k5MtNf~bI3v^_TU`H{kO|^-uGaPUssnwo zDjV#Nw6z}74qo>tfjt=ZobG&U7xawyVv_?!8Hj7Z)N1T;QTE;GTV)TQN_f)$IeTE4 z_0o>iI=T7C+1A&SN=wau{JUU(g{Xr+YQjn%vem3a`AcJY7isU6W#htsPhe#)r<+yQ za$_fzydxhXXlDpwT$ZL4Y!uD-1vG^2a6??<7JFoWR3^hkBcMEmjZF0`Mh{8X1zQfC z2z$nnMRc^m>k zvK?G&^(;^%c^{N+vS9sgK!Z-_VSvBLgtU6iZup}=JtkOM#usk_`>%!MC@2Y#@GNd` z<=cTTwZV*{;f_fik?`f7XS6f*=WZ z7$uaG9WgPq+Y%BM4kMoZ0@(ff}!R z#AKM0ctD8Ft(7uY>L9Y!cmy`FT1t=jN`yndVwEKmv)y0M+nHln(#;>@hZ=0b{Yyq_ z?@$!^wNP4!To_biLatMdw9t>tVkaj^n0}aoBP}NbCc~WqnPv}8zn3HWn&^;|NEf@4 z%HbgrHr-5rX-cL1{kUcWNZ_%JF_1cF-YF2sf{?;1o$y=EJJNkQCoj{ufKCxtz5>H8 za1(^gV4vJZ{#&kf-dUo1?(t58R7nkh0xrl{3Dj=cGEDb;a;kYv4g8Zi3QoodG)UD1 z_0O!*(1L+=tTK=(=7!CZ|CArG8_6AzXkzJsiNT(KnoamJl-(xz=~Uo|VTH94af!Wm zJmpU`Nv_GoK)!!K6o(oMHQ##1kvs%nTYfj!jYNrU=289v41JXCFl2q=^%9qdM#N;P zgT-N3=Xj9)EJOyOdJv&ew~bM}j;;vGdw=l361Lt$PoGp{N5X6=A=3*H-DJ)bYsj@~ z04lnF%=(`(*t}2XE~>KWi1TwX;|G9-8q;|!H7(e2ZXl+`J#fYX)=h$( z!Xdke@i;2Hz#y1ei!x1OBB1B_s3C_Jj-n%f;P&(-ny(KAbh^F(57aPQc~|khAD?#s zq{{Xqli|3DDl>Sq9wwXrZ8U}Z4;&Yj?M0|| zZ+nray;~g~k~HiJ@wJOC)t5L=QimvYab{4sO`|@Tt{|77?RWKfwqr%AKBssn0q&zWEh@9}4Q$Ubrr`WQHXyB2cD`p4A`e;~`qJH3_SU z3|C(>TOmLW{GTLsngn+jO>-TiE<%JpK~7HeYgo&pP@`nt)Q0I_hf{J7Ep(VeTW1Ex zJm)IAhgDSyOZWNO_+fq~Lk{wd>P@|l{GG2@#A%Shmd!cF8B<|l(}W+&l-zZHGK|Rg z+Oy;gOHVxauRuP1=MCQ)o8o9vm&Fc!x}tY*b!m01qf*DhW)0M+vj*xXdY7LM?DU-Be8LLxIL=2u z_-W`)3Y}fx!SN(wLs>Fv^wPj}E7gWAtUY<@s(@f;PMG}pVh%XHD76|ktBRNFwq2DW z{SAQ2Z;DGE;NyGVa`omCdO6kD*L7}L2zRHXPstt;b1b*)$1QV8Cfr7U@*-`W!@h|a zcIHI~1Ur(C=hlcC?>J6%%bK}MMdGp>>P4zW0G5lT>^5K++>-WNzTDfLYW4HaR-hFp z1f?}wp$M;ZNj09Q~PI^BYBf^@MJgpE~+WvUE<84b`U?k(F=vT7T#$Dy=k_G0F4%Sn?u& z3Fg0|J4w_;OQE_H60#K50Dj@;TA#{pp+fqfYF^2^gL`s{X)_?=-QEO=^dhpaqJyoC z4fKGpv`laOok<|C#IG&Too?hKk{`~caRC(;ZdRC3MCkLTK%^MQaY$x zlr9q%{M+neyy+-^RCU^D7A=MHz+AjMQrmH7@|%@hZCl0xCWQU@Sw?>fkWtrH| zBJC^sdbDiC&T_UuM8b({&s#^sI2|9`83@*h#J5VtBRRzW5|1cdaPVQLC)CYv5>CH6 z6CYKtnr3r2?!03ST0-BW7ukG9j4}@iCS;woc~No408H;o#gM->G2vYr!2J3Xu#{Ly)QZ7%_xa5qO4?G* zBEP>~xN3@1V@k>PV@7&QA{;Nog87WRgR6urP?v>&&}C7BIWd(MtGNzj)dJ+{aT2T` z2i-BV8H8FRsQJDzc(4ZAJ$}6Ow8Hf3bsp(F3J#P-1QvVkmZnM5)U7`mIw=jmi<~JU z2GsN+v`DxU9imL32&LIYN(u(sTp(7;M3Eu#As4B1#s{>Q_Q6`T24Gr-H9km~oSygE zsO!^zHx~0E7ZQhh@Q=^YHV|bW|4|P%Rs{LhQ(U79!07IB(5z)%JD&3jh-QVrZ(OBs z^nQq~Oj`I7PiKkx6rEFQ*CB3|Z@OQ?u?~6ls`j7)n9Ie-9eFk}A^Y5pNK?cOI+@)3$o> z1E%~Sywj?D=Y-FdY~+e~?F(~&Twi98gkO&PDHN<%204Y;3wKlvR|h3fM=bOH^p1bH z3A2lx)6DJm)Ow~_xV6Eo9ls{Xmc2Po2_YAue`9hd29uBXx&VFCw5c;W#XBnU%YmJ1xX2O zWK7kBU^Be?Z!1~dMEOy{fg?7(M}^b*y5q!Wv&5qN>G#gWIfGFEx}&TZwdsnWW#&w` zhTKAjGzPCLXMCzCflViDvy`5%?g8=a-(+9e5Rc?nXxHo?h6woNAZq%a3?6vf^lRg+i1Zqwj-Kx!F}l&$-3)yAVfe}0jpi@aV=zRh)NQTpyWq{i+RX9)3i5Uo z{h2nF3^%BTnxq<(5HyBkTpDA$;t4QbP@#sH6m)h5SLgk@E*O$QJ1rJ8osR=}f05gr z>mDACB?A7?E@%TBvNU}@lr12%XSO1=;oxX!UItkgNRw({r;c~50J3*-gjeHnl3}q# zbCa&x2%E=HVV8x)FTtAk@_$9zjp-b%*I2HyqiW+C4yTom3^+Z|t^$m&<2ed(GVbyY zs3rbb?9^T)@?pq1U+3OzYa~Ope|>m**E21(%lo55jGS4>hWCodBlnFJN;|Lxb%1E7 zn?~FDZK9Xaz$5wpa9)@HRzi#N{yZj4Ie;8BzwseAu}(3tnpl>S*s)GwC6(9a3N7}z zq<|jQ4IbboSsGk2RF}#X+w=iXSGh>Kekjzt!V;?0B!rN7$Xs;j^U-O~e+RIsn79WJ z!NNtFStUk>2SZ?_{#Ml93BuJXH+(TIhA~d5Jzl6(;OMMt9s1SfnPA{-YK*vCr)T)3 zYe;!b%sl|ZLtB43-2om7BF|hkCPXE`&Iqqc1i{#z*`m9nkFM$8TXw8k$2n-*a)T-rJbYKQmYasYMUTlVAxux4O-? z4oXJwHyqkM!ngqV0o>t(8hFYP3vqla+#5W$f3#>Ki)1WZeeo_; zLH7|8#O&#hHtNBhYDwqV5{Fm^Z~*L?4k;B znM%%o%`j=p`P5~44r^E3fC`RnaO>o42w0LDe$U;CpCyv4bt|yG;VctePUo{`udXED z(NTD+K2y=^Xw6ExvWMQleo;D(hI$ZQbN0wHmiX@2W_#(xf1+N=X$9;MQd>Rb#NJO? z5}W5n7Q8BiJ9R0PTRiW3UNNu~^Ne4Rr8cG#w#_J>o(ET4n2=QIo^uvokR|PBa{cnQ zl(fMBu~hoj1BBBHDR7YgH$Bny1}0YH#8;5ektm|XS3-*)X`+5VjvuM8z>CCXBm~BY zAoZ+Gh$&-ee;O1;`XA&tn{4Q^hA`222p+uNu^U{lrHU`7QbX8=_)h#-#DfmAHWOJh8J$f4y^oyU)# z!YA`Fz6KcSnd<$fbxO)J=nTTul*!?Xn&*@G42W6=f33Z-bWVjts4CpSF&#mr4=>A) zZaKywK<%9j9RMMC!p{pm>dbNoqO`;G4LZWewhwPlET(nNSv|aEZJGrB7CQ{BXV4>w zGCe$}cJoBK8V`o~qKb9a+kOBH74j$GWbqL*=ME z{Ap(>Vjyb%B`T7>HY!Q1xmv?(!f<~Iam{03^Ic)FxQm|1tP!irXXG~YP zrZ8&f1P#~6&Y5r{WIizzOO-Pi93btX!Jdo?DU=9us+;NCC*kNp;rFZmut7Nn7a7AMPyd z3LzhoX3Z*E7?4NwP-^(r7+S1G0_v6aRK$&89M*Y$j)+{vZ5_6<0QuSn145I`5_MlJQIf zXz**4d2)T+Rto_Y*S+$!=ZOkcy1ksL`wm2@*ai#8Wg=%6B;yF7(3kEO8e=qmjf>9lJGfBp^bDUhszlYvV`4kY%P7g&9U&CVv91Sd> znhEkvg+L~Cmka2oNdx%TWgA0HOOAC~2PEF{X5qH8ZE-*c##-yezy$l%u^_IWG1j99~Q_!kS1TuFpf#wxZ=EchOIoV9zr+RXHofAeic{W()II$*09 z<)Lky$~AoCG$d~4+E{13h)@ONRL=4%#>CUO@dU>7z`{**6?@3zfeMAY+VfEV4PI(l zP`O+^+5vOK^)zjw-e`%Y>r<9T+)ig(R6?Aha8p$B4L{t|Qu^OYUqXn`rV_6biLXW& z1>Hm_v2N+nCf(Cpe;N7oz*t7sxrs*ZU3oO`V(q^t2e!!eK5?*7WWgUCvXsy|y?kcZ zOaxoXMXfx9p2R$kJ#GzM4^k;c@*)Tc%2?bn*_gdR?@QX$8;Y$Kb-`t68Ed~0trd!m zv$3m{T=hKBkzoeE0<(Ayp4fhtfLcH8FI(~_t;Ad83LYWae=<@!|H`PaxBA1h>R*CT z%*}8-9o<81Us_|MiQ*ds#lW!Ev(qw*sN4Dg>KZ;^yEUA5jXHrlmQdWm8zy`Fei3y= z=V%Z&2g=Mu^@dFZK}A~3cVP$0`!`rk8k=~$gDcK!*Jac#6ZQ?67`1?Oz@0Yf;bEHX zJZH)>;2vqef8d3BC7_pI`@p?^HyeL-@Y~^yLm5Gl>H(5a&+QS1fj78vMyue{_|ESq zB(zwdrM_?byu|9(DXL;mtyOciwLk$I)70uvkps9L{}lqr=6RrRD#`1i!gy(A8#~&? zv>qN#mOP6YTS?Q>6roU{+pV*3A^Ln3x~Mc4w5NZTf6&SA=R`DPQA-}`@Xo2dh`&U< zr#h;(g;Abz<7ZQaTAsecm;C4Qn>a(QgHkpra@oYSo8)yex0xojzyVPi!H=qg;5f8A=uETZztVy}3n&kSJsks`$qC-9gH za~l}DUpKR-J|>JR&P!2dyM2y-*=qY$ByJ7Wri*ROb=_&BK~k*R9M3O9IRiFNvCD@p zxD#ESq$vkgX{0b5Wpi;BfFcp}0W0M0zj=NFF9CX-3<=$bf;67AYm`nd@!8BXp3r?k ze+`1STm9ewT|*{0Ot8S2{G7BshYvP;c89P=;1C*U&;Mr48EXF#>C{w=pR{$LIM5Pr zct<9*ZU3mpQyDo3ObmUJw`gH$5_D~A=zwH>)DIYuzh_V)hJ76a+D^{wWk7}hjq?ha zi+U2)LY|C0yVuO_Yz@p@S_*NM(e2>De_P^A2EnQ{j^H`pIScFz`wI(8Y`GQ@+@PSH z$-gL6PB5D)A{dP41T>9sYl*~G+t++62LQuQK^5x0-HDq#-2y1rL*+i%f;keUh5Ed9 z(~M~o3YVh;X7vVeWYrmjYO)5m9xC{vLzTFq#;!6UYwn{&;Fuy~t2!(3$AhN^e~4^D zh13!R^xEIqlg0<^Em@*HZ5re*z>#@*c#62hOXAW+k##Hpx5~5hN2_*{fXkINJ`0 zqofm^dZ8QhV6Fmc@5f~K^{y(P(Nm}F=Uf3WF_e=dze z9>YIoN6vmH!mGG*Cpp6ra|qO?oVw{!t-1fc=t)4J404%Y*b}Hoy>}QQ@g)=6RXwTEpgg7Ph@-Q3?-EPnigq`WtZ1@#&wOEY!$3`)z4hGCo zc&vu3SaY_z)rl|4CufF_f96IPVSs8|?2+;FD8gH^#O!Ck*y?YWoX9enq(36%oO47e{AG&<5QD)W#9eS zl;U2bRp2te@4EXwwt|3R1ETj9p)DE0ZS3@U-esEI|Nh%(mCL<>6Q7uca|Hu=XR(G? z+jg2c|7h1n{zE6|c+w)j3ms%&nG9qIqvf8st}!$5e{Rm;@pb!1>@(}}xvD>;2mkJ< z@MJidgiL&`!d-bEf1_OAUAWZG{FshLNbgG<;e=>dm^^bf zvAlO_!Kq$y_-op?(RI!2uz*?}D)qzS@1}|;Urd@z+W%q;e_V^5~RD)Do!A2rUwzW|RlaKakm5@kAv3^N+-_tRR5+;L0-ne*5+=22{J@kSb^+bEtQ*wTW5bRV$ew-R$xv;2&foy^t zBJ$e7HYLd$JWlk-3{b;vR+bD_fY7vb&C&kj5hj;9jeRm zRMU8a3n%9S)o>+Lx&%=T6+hK*TRPe=v3e)+N9co|Ok;Tn;1OpK;Je)8=FV zG%+#W)uG@_wREf!^5B2cdg}z`tsfUL0{r14)HMLnzmMKvH?vjqaA`hKFpH1?fzmIEut^g2+2{09y>z(hz5OrO-aVDc-eh35~*bm@Ef<_-O^ZmzIOhSvHbd&_YJ zjNi$gG=^qD%#_#69C0_GA=CM3MK&^7e{;ahl6&j^wS6|Lj}H%F_i zR@ep>n2^Ec`w_EHBz3bPJzpesl07=gHiMO)h@dPd7~s4Dng*lzE1Znj_k)1Af4xlv zhF9C{Z4T3t>uqFNPx$|t`JrQs4R6vdXYT+G&hKZ-Q&-v4p$GzD_f^nXw=`sahYwa` zHfFhklcgITV+=$GuBCv*r!u~yjblDOl%1v1uC2$^A7RI`U8n5*X;V`f6N!OoM?#HJV$=5dj9#FX>>yM`56>F{Kz{U;<`lY zvnJ7SWlB)FdE$`zH%%j3oImbv?Ci6olSc%cY3iU*i^?3&@VZVgak`V9z06q;FFN^w0a}Uu6DAHqR~T_&u*t4blIYn`v{_JSfQC zl>mdVi0F(a!5F&gG$5&s4>Ow8;4n3n0`Nk=Ms-u^%j5hE)o)|F1G@2SbRo}+R#jCf zhL+W46pvV9Z@3GiUc~k?S@)OGx@e68k#)K3_KvN86MAj^Q%JUNe>lsc-XrU08)wDR z4D8krse~ocU3?ZhG@$4}$}p&G(x=n*-3oz~$ME|l?{lLY=xfVy=9!fYyFUQ_I-*i; z5=SH-zBS<=w8)8yr_2EewFxGJ?`pjaF9eH&ySJB*jC8Q&fa5;q?D2q(B(Y76JG5wX zVhDav=S6Lzq-Awuf1e3M;&J`uitt&eK{$gM7O$G5B+4ajxTnl-m4i-FDT4Y!#O+R6 zxCj}xkXwBS12d^#D9K49VY;;9iBs!iav6_Y_NZ$UsmpI_NF{5Rg+JT$Zjmw=V3UbZ z!T2P)Sl(9=xQk4C$?9l{VzfG3^K!Kid&sJ%zq0Q5r1CO1Kd@Ff zpG|FCXl4}Qyo-=C8dq=JpAgRExY<3q^_UJTmD_?Jxb!v7MZmU3qdLS)w_^@x=-1aua9_l#6eq4RK^s4U4^A z6(c~hJW4`fUJm=IO3;RyX~Qz==Ray&aT{|8d=z`GmPdOR6qPsdg+48n8e?zZcIMEO zcT(gF?}We5fE#a02=NSYHSOLQ6C>O2-r*d+SGOI2>d5C0Q7eWlaq{;SdG2!I%;)RT_FHr!m#cw35v$})7? zGwp|Pg{)Yp(bn4rdnI90@f@$dIddKMr|xw*!Lb&Y3ht8PkwoIDOFuIc2J||#+?cc~ zW1=CWf7M2B4mWm)&Tw_8M_514d$5n>+p`VbAiDck!j{N4yjZvGyEV-{7mq%cy8WqM zU}DCq6pQeYvQ77Cx^dy-3LX{Y)SHIRI+;Un5oQo987Ba5hdeA&>U%T<0>-WopxI{A zBQ~^ONiT=lcGxsSDz0l(Vf(KkLW6-s`ImTie^QJ#;X``=AUsGRZ{D8Ecq-%z`{Y41 zpJmuPEN$exx8uT&O9P@enzzPIA&`MT7DqcAY8}UI@lbDVbMHGN3E6)@F(!iFCr-T% z4SXqzn9(mGA;MqjydQ;c?|UU0oGqQS{w+nC931U(J(nS!>P_Rv(LJ}5d0Lvuj`z@jQYKdYr2`xm0-y^ zN3=dMYqfHGX}lV9x)B!bskYqF;3&HRoqJ{n)qo8^%!E%UaP_}CM3NWl#FU`DHg&AcInmar`NP}CAGMX1b> z3yh53IIw4jN&*?z4^$D+k&kgkoV+1%T)NqK`Fzon0*Ge2!ciy};#Q^kmKCbEe`hP5 zSJQQw;8|V8-y0*#W2()`#4zw3HW0$`Gug5qv`|vdJFv3R=>Pykru)f=M~Aa#jII{4 zDK`k}f~4cv7lOt3=9OSZAT>4Kzn&8pelxB9X4HG6Fg5&~sfa%_34Zo^rzZpj+lgx7 zY$Exr+O+=PW9u4Ci3^Hi#x;Rmeu&O)ZCI`BVgFU300aJZuJm+ixj%F9zc+u++E5CpFGhU zVelSQUd-QI4O?^n4E^?6jG3)N>qwDD%}DLF`}$8_Jn3#51Q+&sTyW-%oeGS$(|ScM zdhpTwZ2to?E#Im`L3b#r8l1}oCjXOAL|IG&?Zf*eMLUMZzoRJ^e}DRy`>H6eNAr#% zV{?-5kxrXRm6M+i0u>kEg)tiq+ zi+@6pc3%%b5G{Unf2@;I?qZt+L?wgzAWAQQrwxLeNs8{U)Mg1U$R9%#)HzEsp%>Rc zH`$IcZ${k|N`cpa{M_z!LwDS$waD#Zv9kc36$v>MAT}RpR})S;0(vPXC(bPnFo&DL z335WOAH*DkbHO<-SmF*O^BgxP^9VVC&yUjt;)1~28G)_ze|I7aX9(N~69M$F_j}-i zs5sR|fqCp?y%$!vcRT3^y5j8+?U_TXW00hYuXU>vt+k9c|B|d+gn%6ju-P~fD@%*6 zuZkvr?Fyyz_fcODj~e~f)#nLO%W)h)Qn~`=AOIyosdk zCwa2=`AFg_1y%R{Gc5#iJ==2@u+~ z5Q(1hEocjjyU#X)lWbOSe}CS{w4IiV!|soAES;bGe=YxUuz&GcJ}SOhL4;hXEXV%5 zL^K-{-VT!E%9OmRPeuA8)$2BqaRa-qM}yoh_iX$nlFu}T!KwTcUHN%FVnBs5QI47) zf;#b@DRW>jm_Y0OjW1j&MJL%%&pp^A@QrCxKO*Vuqx0d>8bp(0Q9+#~p^O=iSfBm? zYA5EBe@Ri99(Gmc9IZT{i0C3iIw_yB*}^?B=GoGJ?JNAPM-|!uB!7wa=v<2#>7pw_Sd8@rq22g1%qpIb zicK+XAE9(U?#WoS`r1|fJz;7>bDstCmr<{A;yVAqA#C4LN~JefOlwD@Ig(;YABFe| zNR=joZ*Zo0**aZb;NHqdA|~&n3t8+dmM_FsJgD9A_l?=(GlFnyFC_#~)ELkHG~%7M zf9P+Ty6~Z>nfp7A+e31o_-{}j7?T-6Hmc6Eo=|p3cJGkZV9{P1>sopvE)fVG2t%?2 zIX84FZojgo3vxitd{v^m&{sVJCx%oKdd%5yR`d%`A2BhYhj>_VHgcU?$|N6T^G&S5 z8T{C1u5G>@{jg|95pBf_loyCz5~xv9e<)E(ueu97ra*$E41M^8bwO_>;dEP}EZXge zb_ghc#6QS2MiLleGBW9cdK%TI$)?elp0Pg^d4woE-tOYPe9j6hq-=~i!4qJ>E;%Nr z#*LD`sK#IRxPNbM;;yQWdVN?2*lmhCAj|r1ypmRAU^2nQ#epk!yKnz5Ki|P?f0d!B zuzc$beC_InS-+4F68CiKE|zR1*f9CNYCaszC-LP2(j!Q+2Ft!!1g|2gp27+ALAUXTuM%S@U*e1R!F z9GVY^nk)D*UL3F7>))7?&e=o&S+z1Ow{!om>6Kzb z6gQ~>CWwR(*Usi-#5?8)f?N?$+D&*2Tf*dn+>pdT-AtBQZ_4$g=>N0EEV5Ip_Cm$_ zaebygFe|lw4>|OD6`wWu3s(b~%YX1%CY&iq8%KKja^vyWd3->j(|rpfe?h@;Y~|z9S*|(jb>QKc!zG|MGGX=YdKrl`Vk{yY z1g!*df@NaM-2Q%qOdwyd=YG?FjgC$$A;4WU#04}W0e`B(iX|e}6gQ47-hWw03F$Cm z1LS&lM7CCM`OOg&2yt60f5_vU>zUg~bs_JxWHG?bg!(h^M?z`Ve~J$U4>6d}pw%nNhyB#xl2|+o#mGg*n<#EmD~%IYg19P#t-? zNjMf0Z_)u+GE(|9e+--8+K>Z^Tr|2Nmu7gv^M2d7?Czka6dwSMZ_h4N3t1a>kH1Pc z5(!|q`6VU?UnvvqX61qJLcV9q7R*vJdwUFUZy^g^XgJ&FhEymiWq)wyNO~ot*6IH& z&ZWk$5w5G|O~w=}kSt}QOi!iNV%QTBD=pJFy8DChl#efxe~cQ@mO$7GSQGwv-Euxh zZP!7M)%zVx`QBmHkp;otpYX;al6`{#cR#nh6kv6v+^7Jq?(f7O>6B|{U~S|HaFWdZ z0>{xim)>4k4!rxDUKjZm_N*G_(=3;uZCwBd2MjqS$+!%^QX$5AUI5fsVMYm) zG*tkbPTc=bf0Lb9b^p3a7LbuhiQ6AWe-Zu&9Z;-fQ5@fZEdkm-c24RiW1kT6B#lu@z_;olI>#2TrenbXHJWo^RoXrn0~aKxi!&NgXAbs3t! z0B1+_G_H_(fziG%WW2YRL*F^#Pet!uNrjGdELwbpe;A*(b#%|#%t`v?Azl8Et~}n0 z6bvQcDpqN@_pGZRIc2FL@l=AZI>xnxJHu?ZUq~Epos2$qP}(m@>hlS_fZS`Q*s)?m zk8Xjxm{;2v${6nEL7^N$#FpDqIUz$rH71r(wNv3btYk7aM&DiAyf*|2-o8iTIP2ShyjwY7k;`b zwKm7mmZD2{+1{Efo6C&=VFc1wxh{_D(<1=+?OKitrkyt&Ok2O8)RZV7w<;1X8@!ir zkUq`M9v8Q*#;1`j@4CR4g!;Imrazn4DG4=?e}4?|#`oAOJBtdJ&k706QXg#D565if z;0zee!ovl;u|%naGc}y#d~{5ks2q8()&015#o*EH(;?d@)gC zg?6>N1u5$uaJ)v=KiqubHrxlDTsL}{;GO05n_M?1PLL?4*%{F5JnHg}y4y^Z-L0|H zTp9p=UUmofGdULfSMp?yY2#7=(pk|VBQ;O783b^+FRTB%CD?G$k`1lmp)+5z4ezo` z|2Pd|hkEDtzup47X#9(F^JKV#_g&I%OE~YQM0jDY7pn#SKT>aGikERRFcShXHka|x zGb{#FLQYp%QI{>~F`f@bFGnv(FG(*wimobtp6BRKaGB`0e3NK7$ZfA68G9WWBFf=un!E`nh1v4=4?(V?}F2Oap1PBla65L&H=b3jVnW^vZEecuN_d5Fs zRX|Cqti~u}?q~{>baZfIWMyLE1IR0=I@+5!u(C0VI@*~7*qB&YIN&KM#aw_UZq|+t z;wElDJ^;6y6+p?%4dmzoU}Ir_;f1FJNC6#yE+C~jz|H! zNr4HV=;#R&S_5bt9RQ|4D-$~lfTIOK9jFb^P?Jzq14yYVX(+4FGJyhrtGPQlIlBB` zEn;fw8d3}ZaS=sz2>?)&0U)KJrvCe@I?w@Bza;}eQ5~fJod;z2+g(9IT|`|+S%Q`M zcMkwofCtdU)%thZ|EY}%R2kq;X&_e%7f1Vl5&&qd+}xb_n3+92J((=sUEP=*T`ZZL z?Ea}w-OAb(;OXdM3jlq8cLCY~{~^ZR!5l=Vn-%b10e&wDK;GI6=->+c?Ih{=FQq+* zN{|ys?)IO;Kt#Cxj%oKVbAT%l_+M$POkDr*l~-1l2iTifJGcQIOdQNWhHfTq?ydmi ze`KIfpgHxw3Iqbg++AFL=TP{!%H=<4{$0ALBd9ZdJ70ej&;MP2F%t)OSD(MQ`R}&P z935P(UEN&&6%h!qu(kvKuHN2PQW!w|}gE z#}g5k=L7JtZ~<6(IRGr6A(e127jv|?2UYC~|C>H>YY|BBV))qj}H+WxH6AvK3&BYz)@B6pnzY#nuH^AK5%ndZ;pp63mPjndv z3r7I&zr>(Q{;m4I<)`^)lhT5AsJWwqoj1T7XaUcx=;#K28U~vGfA-k_62QjE1u$`OG4Y0H0nGp#Cnvy{6*S7`K(Bv>1i;MX z;OGW&0XVt4`2#E*UEqH&Bo`-uS>(6qUx*vPEcOTS0GP%9AYK5o#D5Ss3xHYj4`Kx{ zOZ`FY0A`s#2$VtY58?ta%l|>3d^dH0n%BTDXf%2*RL2LkK)jtT7 zUF{Fz05GfnL7?oKe-J3U)_)K$2$}o`v9W>5HZd`CcLV;h0M%#u2Z8D{`w!v->C7DM zKx_SP2?xh-iM{=wn5-S^w1?D46wscgzYpO_^=}f*=#yzaWTayT2f)Q~N)V z6~ynKY@8rh2hdLYt9X#NgPXOT`Cl?tP_K@Ee@fy2G2!^%C2@d~IQ|`m6~v#@A2lec zlL_di`Y)n5SpQG@-yCs(x^n`$SUdhT2CSfz&VRPqZ{!Yi{pZ~Hj|~^wAE`O$I{3>Q zMEYMV$qHiF^$!K0(p`b}*8e@3oWE^=9)B$iCn$)kwbx%^Kz079niJHFo0SXjuMq-& zHSOl<_?H8SZ1+Dj{?@zy&&slb*!TErNgvdm`CX+@;w!(5yRSy~Mfoy(%kxn_s zTy{rd2Qffn;!upY>&rtd+teG{Wg3}&RmWN(lxOJzYb&OU9lF;tDtq( z_!yIZkrldm=DyR_YZ1Nk4nH-FI0m$y~qu7&4L_?0ayFzAVir1u7-*VzFh z69`?{jHZANQHtbK9bWY~ThUrvtv}LlKqCk(JJDR;q>*qUcy2vVf773b8}QcOGWq&LeicT`eGOZ}Tf2A|W^Sm0(g+LdQnh4$JO;VNoVi*`mDG zmuv{{cw71lC+(OaBk@Ei1I6==e3*00iHUhl5a%Ru@<&gq39gAR92;Yv3$*I{QIy9C z?5CI=!w*Z%is8M7yk~qC#5-+_j{e*A2-%LiVhY;pz+oJWf zpBQ*uig=5)&F9EEU`;Fj+U3~qp0NB4962!{E}Y?lipmk{)8h(OtS8zdrrku z&-(F@t$qQ!(Ki)xG^+2JrP$`O(UZVRPa)tX(_C~~N+a%neAi+X=@i{BFJtXslz+$W zcA;UlsCJj>ND1a1;=`y*vu2Z-iU+JHHPL9-XnF0-Tk$b0Zv$l0Ja4W5smpx-by3+m z#CsbgTP~*SAhy3Ug)22v1OTKh7nyvHIBKn{SPwov$?qAJ+N`}~C+hCIWepj(s5|ys*zI}E> zP>>L;lyha#gz4jO`kGBk)S+oGK~31nI#$+?H`a6&j}~Ij-);Mb+lZQiEd5^@#mj_;i)fyKC9?&?M=qr4H_bJ&3-nfS@{yPP+o4(Fmdhx8NtU9*_ zEak<2xP4Hzw>*=8PR(UUvJ=7TK}UBKVWYY{*n(ar}tCtSC^BV-DVu^W^Z&fEKc!tUU;Pa(q*} zY3s9-5s*SI2lBIf+Z8njV<*U#&&Tb|`1j&}bUcsVN1_UfvJ4k|{QQKtQNAF_g~}-P zDWRRYgiI_&u<2KT-9YR~Cu3WWr&qGA)8iIX!_P#154)m{fkzGfj@8SF+twoN=VU1; zb%ro3(JqqjRNuFwre>3WM&nK8beKOMNe!-yMB#{R7Lq^pq!X_QdHaDMhC+L>x~WQk zleEUZzBKA`N!0Lq&s|sH3{#9Z>4m2W*q>0*ofsUDd0i1OX$dV`q^(4Pi3_n!TkG{f z6jzr;JT+a@J&Y!jkKlo6i)(+d99X5PD<$tZ{NZ~-!f&8saO13w1gr7L?f+;MbVC^t zYx5p2Xk->jL-wlyO!Xl#619br{gcCgTSP3pm9YeH=8OBw$4&A_u37We9?FM%v=WOc z$o?r^PsMGTXbLUs))SWJM^tk7rLlcD4uYFqL+vY?c$bVNKvEJj47jUmmtPwC^n?>` z6R+&usgnnegP$i3AL1&)S4k@Y@^r9i%A8xP_M5SPgbmiT zHo0F(H^eyFLJJkFUKwdT#a`)E9=UFtO+}gODNUFU9gi+J)lSPRGnC?`61S1aCmg(4 zp&FQ9+r4?NHqq-8tonq9r^r#URs_z5$fh+<%C0bdc}xzFK_f=cxFsWhHIvfoj4{fRAdTJBS9GLAaZpz#m5&8>q!gFq%Y{0yJv)Gb_$<;gAAFCJ<+VDy{A#v7%MJ& zQa)srI{lz44JXAIB76?-+rh$~5@Gm^+6`{X`jaka=GOe1J&%4L4x~qe?_`O-Iij`@ z_A0=M22ooJKFut&D&KE^H`!fP&3fEMBl`>)>VmLxgpN7}QjdtzPr$(60p?mAdDRazQw#O&Kc(l`1^pS-}ZtqI}IsMEi$BHs7_M zaQl5krj!Nhm;%afT~CZSF8byWjI*$qHl~ZLT)G5eg6ObtR)$}HilrnHFLJd6>s4-4 zGLaxy8#lfb6DXq!nX%C#t1@5>C##|>qN4C1TJW zpyBTLhOu?yf2*8-Ok}2i3oROS(xrOt42+YQU|y+Ws*K~of7chKp11o*hnttm z!31B;?PGqX+Ih95mx3X=*06PFwlg`HeTnt<^wK#-39Oa6DHx9khQ3iZod@?n#M-v0 z?)}A)6KA}1DVE2myw<*AX9t)?x428>bs7mhv)2wZ3+0{N&yw~!q29%Motbky-Ae;+ z?AD%@?Dc$q93ffMRZkdA6uk_SZ{6dhe^(;C(Cq`ge2fCNml<}fvH3aT<*4cISx7kf zs{=-xQ`nBlPd)`J)AQ4!u+_s*vDZYwN`$O6e{g;JxMHhZ_bQ%dGE$2{sWv8e)eR_T z0-jJ_xyq%`K9iClodQXIoU0%E<@}Nd811=qJinfQhb>FnP+Nd1c>$Qpn+WYQ)T!Ja zeB(wKSjzhxkdQxN+k5K^ajzlRx;w@2%i)55`IPSdauoZ;vNAs-HPdu#aYn?QXqNF5 zbD*)s7#&q}guit%o!IRa8&8F2`kBXRF)0=s9JeUFbH1mD3H@LY&mV<{vp0oqNjgwJ z8!%RXnw|(9UfHuVQDHT&TGI!wDHZaAf6-I>1=G+YS26O7*ldFGs`lHGVr#>^Zy~p8 z%b3MTA+LWBHgp7qs`boeKtv<1eKL`$2%rtmayR;m!II5(nlPEH%Ev3O=1D3KBI3zJ z$6?A!J#OEsu~O;eWy6uigCQsdE=II2%@Xp97LwF z5`^5VJm6O`29+1P_H?XLNeq4)j>w}^7c#tDH>!MqZm<4Mj+y&@KJq7e&Ca$&@u^@$ zujO&@Zoi+kcX`z1Ux{q3O51NBd*-G6F)7AF+P)eWU|B+E`1vEXV_bCJm$w(WZ*%B> zb&&GEzx5MAJJ6KVX{G1}CfdH99ejbP%MDwnYnPU~;^S*__h*P{iCjcJwA!eF#wcT8 z0qf<4W16WH3j6T#t#2wRn%~EC%jkSpFid1LuKeUXcJ(?HoDg*lwOv3@o;vo2RYR(h z@xy_1tc~7kHmdtH=;brrNsT36sO;N+{VU{cokMf%6~dpyE3ixVn?E9Xo#tg$!|!Ck zZCaNn#`tp@m|keP`dS3%+G%^)%OBjcALK2fzeT*cHgrKU@fR~1!?xwcK_E%iADmOT zqi%b0&O#ZoVG5=fq8d-bFnVibv)aryJ95x3a=4ohn&A-hlR58PHtLISON1+bH9}6O z9f+e_B;!zje|DLSU{I44!AhQmcU4lKrysI-4_*uwo7!X8S1U#D{%Oj_ww}es6_?A3 z^SK}I$Ky)*-CQ`LaxY2hWtW@S+mgioQKT6L1;nieb4c01G~E{Z{i&i4v>BH>XOYS5 z$A%&Yc~UJYrsSA+VV<)vK>EdhJTL~$rgc&N1Il#-$<7b+0!#MLIc-wKSX9jMN@xns z?>Axvvblv{nQ~*_F*0(-EoUcb@5ys{ZO2UbdrUw>i_MJanUftY`8qd{{Gn zLFdt?o*8>LZpvZ|t`!oBr}@`LP|F6CL4OQ^z(Oe!OyI9t3bSjZiVTX`p;`YCWDFw< zd%Ny4&Way?jSS!Bo#(I|7@;B=^v zezgeGHbrWh4_>r%!W*xD&tEJ(36g&(H{4qutG`vHIWZF!`|sTGy^46ffGEEn#l zNd=-GeDGcw11$#|x~Z^3@ZKVgNZL#(4jXtnqH;^39DaVWW%6VlgDrv{{p3JpkrEp) zuxaR%eyPy80!#Li3)qiKmG6GU5scKRvBfS3m7AiRmK!7ug(CxhSphs41YN-}Cn6Ce z574x)Hi&#oiCshy7A3DQXah@N#$M8g^6m@XPjEh;c_7&opb&1BCHpcYWBD_u6N`+_ znb@CZMoVvUmmR49VNK4cA zCM^By*!b&v&0Q;sYK}4=Z@6N$#XC4p_iLI4+2wyKFP`BNTLpSM7D8$sp^50RM1&ZkmK2i}T2iXW_=* z2GeDFJjIF>7Zj4+An&g;)3b}TJ}5`3?hd)j{8Zl$A#;QmU!OZhdkWbWf2hfhYdbszb%Y^g@=+3A z)CN#~)Y=40ZC163=el?#>7zNl=An=#|vg`JyyH~hh{ zuXW=-hA|@b`YFTisr%)JwyRuTe4!(Ik%UHivy%CEy3MHep*SWn*vq?8$Q7vB`y4$P zUkP?}{N5Pv2aKLJLba_H}h#K%N@|eYwA;ksQl{irYS?AS3~l4M2Twj(DG>taUVOum z*H?S?a7># zHb=@~wZ|w22%Byo=a+UJCqj3Huq>hee8cH44Aqm%cZ?3yK!i4E-JO zGj}$=!q|%C_iL`Z;l_)}j-iRqb&9%8fC|BzfBQrA;2HSQbz#LR-++$J_)suoOpi(B zpKoC+Z9O|kg{U>fZ-L%eE|A+k@|_dJ{eA*OgZ54$eF*iYSVelXi2~m0&BJixxjgD) zhaXnSJ_#2$McUXwiS`m!n|iRKCPZz$v%h~tuP8JTTY6-V)X&Z@@YU2SMf3k$b#tJ3 ze{2A_7*^W)78xeyk0jVbQp?@6Fglm% z+^z6RI$e%oGo%L(+A9gz5*hx$l8Mfxf98+;N*}w0Wg}@dq8@ zal{S`II>CM%lGJ*e(*&ydMr1Q!C(aA)$_+|*HL6X;Y-p;CHT3}5JxCSa7iQtZ9NhBK39j(X(mr=m*CFW{cA=^dpJXM@eN86-_+VP;KJce}yw5 zmeB-#G>ju*JI&%)PS3DL>XW%M%$*ZbulVl_pMx2JKbo32&&sdc^dXl!8(gmnX$($t zt&z!$eEap}LgA91T)h!5-VJnSzg*buWDs=$a&8*6<-cBu#5m+eGhzlOBBnY+(fHo7 z^Xa2#VAhs=1@>zl%i5uEh>Xc9f9YU$<48C}pMIN`XMHIbyj|nwXrZcpJb1xXT0Nz2 zW^;<*VWk1~-EkLnf(`B-tWj{})0#+y4Y22akylVirIwrCOs8Iw^-`Lde?s1^Ea~&A zyulh07rv3CTX0*zxA7+A{Z#m7A z&|}-mtNLL{sCt~BOezWce`-W?1W!91WlLjd<06xe_ETk5g+^gTd$?~({f2|kX&kflR2|&1c zFG@O@N;(?GEmpjyW2(ui^6RuPb3TXRyA-6)nFyEseV1ftmY5J_1;Tylm+wyJB4E0# zV&dE3E6LZP3Iv@BE*P)#%g(FTyiu+!6dIv#QM`(BoRLZomB6kS=>>J%=m^TgCX!nD z?yHC=h{w_zbcWBBe<)H}M{M;IMhlS9;kO^HQtIQsH_r;6b~TA#SRbmn?W;sQb#Ymu zlyR3OcGN1`Viqzd0!QJs99EB1mny_kkR8c1v$9u23#HKo=RZyyClNA@Bu4a*vS=4e zJ#u2tpcf4#XhdAC_*I14m?YS?&SHQ35X!<-z=G9SUx4Enf3nbOF~pjA$&J&**RSj~ zG{E~RQoz!2BJ^!SJ+I;@!sh|*B03iWj`ZCeDaOF-u?`HZrOUM_euoAtb$_C-`ys^b z`SR;74YQDV7dlKjKme1R{KwT#8=h5igBoEdc@`jJ;X93okrzML4!7za4w$LRk9aJ)M|riCI>=YwiB-rO>DGSOJM?e<6=`3GD%6G^xwg|25tN_8~-@ zkjifJUeSs=-OZxSe>@8Ue%+G5?TjM)9cp7x%(GuFd7DY&T;-QSebJJw=Kwp?IJmdK zupc!zGmz0H9^Dl-!C)L)cI?#^IB7Db&vnTN(zBS(*^5m^xUVFJYlYB{&|LMj7fe=g zlcBJMe<}>r1Km*J8TN<<67C@f1+B$LPf)NGPOWMJT$z#s9rL)M22wBw@DReCzBX+k zQP@gz@9YNIGz%RnY=tHIjIEX%{WQhG3&| zJ4NEd!px4|I~g`5P4Gu4NzW4WpSb$2m?nuqufgS|&4P~m zbA&teDWef)nd4&|zeI~!KL<*#c%JPFG&~=YK1D$ruEd;n!P8?e9*s$T3MThC8Ptw0 ze{AoWYIulw_@=t#-6!|j=Jlz!Kd`K>*T^kchkF8spzRQ0{aKupZ^f88x+J60ayg+t z)tSx3*@ABNLRdD`CI~;p(`Nq-jFm092i6JSAOTLXHTy!ROz#~XQ}r|R5+6k{JBq;7 zo^{+$!>i$yFCRxt@?Dfk10~K$>MxA^f4M)r;@|mg_S$U4$9&isP;~MSxFB3$V~Q=D zL+=L<=0Y*9uQdIsIg&#*SM^EWX3?Y`Kyq|6EW!#W=@&0G4DTnX>@}%CnJ5Bub z*qrxU4J>N2Z~$s}!y>AJ$i&8YrSU9nYG}+8N3wy`jqW%Yw3G=uBfrb$T^xnrU=D+n zN>uUsyVijc=Q1Z>`0SL;o`(g0e^ON+exjg=@NsTx4lk!jDri#ez&=M0^q-Cy@X`uBOt+SQwml);Hb2?xi>RlX>HWCNXu^J=`_Jzte^Y(t>&VnL zg54=uhaUrOzGmkl;0zVLb=eIjk>c23ZAuWJz<2qH!`hC)#)jSbBNX2jOPqdwrfj4! zTTQE?Yv|BpxW@e~Zpq6U7hScpzVClH?QYA-L~(mzt6k*_X64y1Dm6p*^~>QqX&S*A zCR36n#i=QCb}Yiba+W&}P( z(u%dc?B{tsCJJ(oAN{M~k2sJ-(GdK;h}~p-@y?m+L$%G$O}akoG1~cg+?IH<(GsMS zC$&p_Ep+WYnO2W{VBD|wVq{ZhjJWGe_aC8z;c?(PHegV zBL%U7J-qcq zPjV-k{%*I41tLV~O=ooOkniTS1|Ns$J93nxit;QU%p~KP9^N6E>&B^a>MJ9y+?ndP zxm&~nDtqO`QuQS9mUpIL2U3MHi%ssEbr33PtRqVD;dj}Ze@B2>#hJM=h4U#yB=$>XJ{Bf?&eR-sQxfpnA|E6wWHtupP7Mc6aK?gdsixzx38B_Qm`8~d57B57) z7+LZ>N1AZAfAsz|x;Zc!Dvn&-s-9#AM)O3IdaGBaUnzZf=W{2oi^FipzFzrAdu07| zW$26Q=WTEg1u%dB>BWpn?K;}6(dLCh1=yJP`*Fl2BJ)YtG!4m9E=V{5?pb^XKJmk3 zK`?IK!=QCwna~_K9M2{Lf$&^A6B2AaADXE9+=~lQfBfYXVPyL3A=k~j)fb(k$#BS< zw~NRyEyQJnmdq_Q!nTSDhmt^kl8?;|?|l(%4FIVBRan5dt(K zyXV^}o?*Yt#1{l1eT7O|_J*TjnG)5QVtw=K)*VtGsg!%+OKf^uxKurMQuXHE6~T4u zIs{{6f4YqNf;)Ot>#nV}NP=NXU3%2ywf4@4Z&>A3Of-x-&Y?gwj4hURD=%5A#@G>| zrO^KCgGeeK5fEU71$iCE`XI&Gh)jYIC=*}2D!QOepF~Q&uaX45=rYP_{Wuy^o8BG5 zuQ~oH{{C!qm1ER(*Po}J=sJSi1;f+-^(QpbfA?&Ou;p4K3=9{v7*mB(7Joqktv!3C zjqeYXahK@3{lSv_xxq!UVGR(9;_#Q!$>|BOgp5+gKYEh#k3Y!@LDCz@R61W!lE-c- zDJ2A1EZUoOZhyZarni;|`QA%9y+!JG>EiaWebRG*x5tE6@9^;&jJ|42VWJH!yoEVM zeWNsOWJJR{A~w=u61aI8XF67}?QEl8bgWW7MZ zw@}AlqF#E&*BLY`-6r$QgOAjeTz6XXyh)?X^L$Wb%GgH8G{o$HlV)RWl^t#Rw1+sPGNXzHQgR63K zZ-^p6#i$JiC5Kpwbod*_tMH{SDZ^?NP5Osl^tOvl)D9!d(`g-s_Y(A`3Z2PP-10UdPY!>Q(KG*gQx*{8zZf6RIR(bKwbi{_T19>lF+9`@;muf^=?q{%CjYopjf z_}{m%HxH0aGFyh5bQJlWASJRsrO|VY1;J=9sTi|qbKgI%PA@v*YIi%>g&C52FMMW< z#e1|@hp_6%_x;i&oF4*xDT|w@RnXk$)yigNTt~;@38vdR{fr*@BdUi_f1|u?#A)Gf z-~1)7mEWgR2*Zoe5!efrSg=O*?pZ0hc+4QcG~pAW94fZK{=flhrcA}N@dSZnin8tnr)C)Pj#Ym_%Fu-bR z-VH@tkJN=7Y(0sN(A}=qe=J4$1Cx)BVGabGm z$ds**L82^PVaD^i=tF#@fYg17tS`mH$G++)#4>|{-#2JQIMw49TlVf1o40a0agMLr zA}yS^8es7&O(nO&2R$q2Pd)R+tvt)TyPNn60N6fnEq>r#sq-w%QAF=G=jwKLIX0{Qr{3h7 z*X$3RdSbn{c##3k6ia*hT2x25F8LgIYS0XNpKDfZD|fU$f8^<2Up_U;pTcaWRvp`I zC-UhE+eqlkZgz$EAGQf=q+p%-Q4Gf5D$);fBDu7r+9NWnr{P26nqEbFlL>-e~04)u9M&_mGb-Xt8S)TufSebg_@+D^DcD#7U`$PWDK|x*05RbwfZnm zw9E-??ocTih!1A3DMMZm-*bY&gU|RiAUu$V33a7vwz>;`P1VvN#l>8isEHP*C~PJr zlIQuo&GELwJ!wIRVhj6{6+@nv|J(#!FN%c;U*+MYe+OQb!JO5A(D%u+kw_R1z7ppg_{NJXyJ zO`vCyGk|_ozd)KLVffPAPz6mwJ+~?`p?lh5caYz?Li^s7JaU@d>2r^C>yltaQh`OfuTM=*;?7rc8LEf3Q$=t|y0FcwFB&OJ)adV*}rOo&4s!D7#8 ze?%9otsNeU`u!+E7b(5dxzvYO*=xd0Q#6%d?vTTue*Kzm{$Fb9cPQP&_&wnaVLeNh;P9e`bv0M9Ej>dki8il*=)7#0`&Bh*}KX&08Se zJA?Hz$xE82$1HlCfJ<_C>Y`!nU@mTxWr#|N3{75vt-j9${63QVk{k}B2qw;G$({?^ zv&jwj#KoPS6wc#@I3Wr)*;=zd2#-C{9}OL7PB*3(nvPe3)?(T#S7eB;={|V%e>53z zGk|*)gxaL*tE8oyDmO1R65Y@|N#Wu(4U;z4q>$pUp@uVGsxc|(i}S^n&7;<5w7>~G z6p$a2nU&A7=$TR+8b~%;xvxQKp{OxAPiBRD>>#{y51+xtFDaYwEMmNf7b>y!88nB zPk1gs*&H5#FKbR6TX#)91BD}#I!TVA4-Jt1jy&-@yj}Z9YzTo68Kj}#MpgqO3ua3y zOOvXu8$wX$M*%?IVOdF|D6=~zqTS>j4bhQ9P2QC{6SPyRSwHkINCh?VdBK^g15;t; zg&(VwyTMOXEc;>bLo6a=e*){^#zEM;P2h4~QU_@eY42|9rtqLvv#e`#MKxZYe5pKP@waHROT`jdpbe_g8*vgpS{^F)qF zWvu>91;;f>0W8#!ke5`tR7l^$Z!fhk+;!L<_DXsY0|j>{-$ImEjJc62<`?#~T$iGQ4&o9*Y(E5=BKf!qT#iwA zoyDFw-WE^Ub@mzvcAI$M!5#8P7dF!+FDb5wYq@rGOTi`df94e;HdiDn7O7vE4GLb_ zsTWe_z3;EA+hzLz;h(s2S{ec$|B_Y=}^tq+h?au%oOmn zbY!%^#N>}-Y1X!F*-scs68s1-b_%XVA@>BsB|Yy*K_=ucqI1~Z<9=W;uWqY*`E1G( z0-cf_V#juKfBpY>d!qLyd`T5n9t^V>zDSE%xgtFSdZEC4@MMF1W&Snh_1xytP8P(A?97Wl3)G@Up&Y5=c|jO|8R#UE#N zgdN!4p>YVENWWAfw`u*5pshkSEyyr42LCGqIw)A{e<3g&&alCIiP%CX_(UT(bg-Bf_-;;>g*B5u>y6pmL#00`T4`}` zrL1;ae-N-TMv>A)6{ro<6*j5y6To{H?nYLO%49|1j5i8_b)hS*u%vynb}|ku7Xk9y zpXG7$lXow=lgw_OUB!5R!imp4Acbi@fqKe@ntIube67Kmek7!IxSX5aOn{<~&!heP zy!VkSccsj#ZxMf5x2Bme6p7uvEQ}!Un1iPbe+x&9*fiTza#apT&?F*9`nE{{x&dc$ zfRk9eOXa80#)k2^8WX=OoawDVET(w_-M)3X;nFLPRoi|K>ka!n8c%>RW*14J63Hfc zV5R7tBbt^p3cI7LXlCU5!uW}akWfAL+#;I@;nI&*dh8)Z*MoVmCkAPYogU z1}=y%0|~?D=I(9jMUit|DL0y{VrNJ1;7c`4XVE>GT?VXCkeGCAG)5?#NoLgEP+S6j zl`+W5BgUdua8$u{Z;FB zQFdxh7CRkHEQFPh6}KWsjv$nl@*ShKGC8}6ngaV5i}f6DvU zI;3jZ1^UoYhH!;;t1Nj)pX(ADcd$O#cl+0EM309l%*!(M-3*PmoZl^B>~TYT-p*xl zd|Xk&uKE(}$D4X~wF=WU>wI3bM`V^?)Ukn!vs}4?NfO)jo;s6UPQG9!mt@|xpwK%0 zYA2-^*!xUSx5gyLB)dA~Gq?{Mf2vrzbqR}q%fXAf^7NTZpP=q;T5u5jCfXbp%a0p% zTO{lJU~eh=pfrD0^Cw16v+ zpS{ePU08z>J1*$&YGV$aRQdcB$lb>@NbWfw6FJau6K2##Pf*U(-r9*tf7w)rVtG{* zvu~6rLZES5nuL8EfGSYrdK`EbNHF=%3v>Es8stl-*~1Rk*~OO!L!ql$v_n2E9wgre zril$kdW{GpJzFR&m3RFi%&v){7_qP5*F!+(Fc{JEcY%RfYU3BDm zZFOySwjTuOJ1f8T(TWk-IvRI$YxZ2J@0RJ&KFte@aoA18ZC`8S5p?uR$>wnhlR7y-25*;&{4lh$`bCE zDcpp5SS)f~p*2*q!}-#}bm>X!;>^8xpcJLRe<5a~RQi5Rk+D*jDN!Zj-H|5A9&N;v_vtRrK+iROsGOhgbkQ~E zw9fDqTsLXYy*B71*el^PxvT3JDauF|QntF!CPN%zq~FvOrF(JD!k3-fux=c0*7=s6 zIW`_eIGaQI&S`AnPmHDeuozSf#$~<<{W)jV33!{PTk4k0mp{Fb9R>zV)HTbpSp+NLsy*=~f zD1dKf9cSN3LKrFg;&@kfcyG1J+e0TM}d6K7iLq(medj{9TA=pXvF~f}j0Q^ZI1{aa7}lv9g}1=P_GI z_O03d&@&HCV-hPn7sDQG9@(g5*FNTj>HWc4>|6M2f5~Q-5d>`oW;)C(?~h~JrUbUt zv~Pg3y*SIA_)jUg3fy6X$A`={2>bBaern(*vn9x#hbj^=Ln_-*Nut+ct7)@eKlU(C z7GLL`LH+8%9uGfS(Jp6oy@6xh3&#Grmayo1gVls+{dslM8CE;Bu%pYg`Me zFpziXdxqugosdg`-!OOl~pz}6;`b}u!^IH`y|7`dQ`u3jaJK{ zdpdvBK~~|l^*v-jFst6sl(Z4O>qMk@u4p6<8C_j}VU4a}R5J{)e}>ANZM}oSe^?Rn z)R}B)Iv1u6#`ry45Y$EmN(e@`D5k-l&i?#bBC^%o~xWevq?lWk3ePC z>b!8|J|_Re`^TrZa=6PWn~1*9f7_O*S&uA|I8G@iXV|?KL5IPyi4LvB;1d|+E4MHA z-|YrAUscO0&XcutLfJKss9%lV`TC`g!_xoa{Y-Q1*cMPMK}fsHStO<}05&vEzJ_=t zyhitxEZ0aRyxA}yxXeDx66$W~K(RySIhCPHb=O`9Y8>fJx1oa&$y~hdf1xVS-G$fN zAzXKAy$sd@U>)G?Ok^(Xr_y_aFI?N6yY6&uPS#~;DAS;Vv`dDu8(u&hjh(Dhng`=& z+7co7ZoqVK^=%`gMMZTw`>Wj#c;$^OhSv^8#pq1=?yoG$i8>R{?d@_+aM`&rVKS56 zJVRgM7&>yOOzn%)&YvJ;e-Rt$w%B|}U`4pfJqHAX1DO0cLuIkSG8woPSF(Jn?^Xq9Co@P&v)4npu+ zRKdW0nq1M&ULevI2@q>wM(a9Tq|dYab%;qfd_(gg5C8rC(e5lNf9%tWiHwlsRt%SE zsC_fKH&X?iu6aYgC7SqGw`OjqqV@X6MsZR7%N= z9^Y*(&{NB;oiYd~S%@7vVV!Ypm}7p4 zqTHcsM4^+CjG|g)wkyb-zm8@TTuD-rZ0!3i(YS6Q5e~RUQ;%=bN?7UKF&}q)DguKG zZFR*r?Xqeo;5$M`817e;>|uj8M;+)@4m05k{dt=pYb-(Jf2VgFHLX7bnCG&ylT;^_lNCK4n=UZ$?|%`wN)f4HuqA36;(Y>~hiEOJM4^mq8;1G#yu!2$ zs80aBD9q=2e?)tiF%O^iqbzK`iJJZ(4eD;_E}!Rs9)9R~(i7-zW@#haUzQ2jq5s9) z_nml-OcX0`jUZq446;2FJ3c|9lA5xj4YBNiW~=RKRbyI%j|Oq=gu9$W>oujEtPWGH zELPk8FedApR+lw8xcxc-9+`OJ zm#?9y+m~|fJ>NDKA_fLdNWTiJkF8~^L0Mn2KDnd5o(Ng3EPBh$zsF{pNf?hO$sp(7 zNXkO7f1Py?ZXW)Qvu!Ms&1IzDoaarw__@^zN>_IIfspzlCp1p{qMACSXW2bbmS$G0 zpJU9&E>Q8lzqClys_EypPuSRA1CpqW2H#~)o%>XmoIqSs&Ig=#;95}LT>UpGaLeYd zy?*2klyYhO+2JsTV~)4L2*gkeBJT~P803fNe_wowsWunY`k#bmKit^;z@69Mx>+Fb zu!D6nr^%l%c{QM)t9FFR9D|sRF`MvWHyFD2GRryK{<$eM#NkdzaZDK7p*pxvvqa?0 z9qNCdZ94oDzm4cIh#{rJSDRfa<6G3b##4W7Mst)nUKvVLq<1M(`AUSUA7{>Yjwf)! zf68&(wH#qaH4RHG4t56zYh=i9q5ZeENuV;uVqHBv1RprW`~_#zr{_dGT5C%tD!iU} z_E9iY9mJMMCb9+!vCc_=W^V_SzGPExVgzX!x@21%d^rL7fBDUQy$t>Wf2Enpb1Jigo5)JXUXn`DqQ1awriVf2$>p zZ2b%%MXkwUk982jFWLsWY@)R9dWGj|MZrt6iD)-!Eog!L3-i0oqnE#k-E`k`>7<3DGjIGLj3HSWyR(ns_$ zh1BeK{(o(p(~>9vmIT|jZQHhOf7`Zg+s19%wr$(Ct(}+Ir}>Dg$P*{B5~xDf1LbP> zEM6ygag@l)FT5(zwW)iSa9v&&X0s%xNaz`Jt#%Z^<7SWm6le`J+olZJnRw?nZm;h7 zmijum?h~v0D$aFB&Xu$1as2?jUzwtBt(ml)`<`D(!N27h9BW#Y^CEEZ7cU zv!;P&_4NPP(VfTFfwyH4mEIkMs@Db&gR-D{VGcdmE!gf_2iMpqWR3y#!G2Np2KNye za0Q5fdT*GN00mm81G9cme`-vdnUSQ6$^-iQ&ML*qQUDG;1-wMDal`Bj(*LR6jcekP z(BOjEp=m!cJTLt#2j7fwx*mfpcGT+YFBc@Wsh_jqZVT4-@HB+RnT9N{hm>`d=z)^I znvt8wfZU&Jj@}aPNmqKs2s~Kg5O+uzqZp@pg};og=kGoEH;;i&e~mCo2mJ<}!%J)Q zX2%n%G+IQOi3?SN#Fq&U_$i3OKexe0vtz&tZTTI8!Z#`denWZRdHmxA&Ty@bbQC{I zu?lNm<$!rdYY#7b{LH7MRz1);*xQN*dRju`Lu-QNerF-I9#yzS3^-V5HuvvDoJ3J7 zZTs`7x){DA2A>qCe>ty~vZxjeaLf1}>Ka?&VA`(t0b#N|DN2dV$&Z|KgW&CKNLx*g zvm`(h`SzMM;&!&o>0Lv&pAGD%S!%eg4a-6@JQtt;u5{w&yr9yTFAtIv9v5!ccsf$K zhSNm81%?SPBHA?v_RvSHQ5VvJ!FLPTjfj6SeTWx%`u5!JfF`cJaajR!D!ik z0E}7i2wHN#&PktnK#7!Sy+zVjwIYuav}vdU4d3FMA!-H!W%U61Ys6+`CQ(rX?FkeB z3tCKm$kTw-`MC;;M;4UjC(nPd)J*{nb1WzQy*wM5$qEx~FzRm}S6+4@Pq|COEusYg zuVmGx*O%pFf1)~3GX8~TqqzReohVw9e2u^hKw8lM+(VE>UPsdFt~7}zf1fK4%q${8 zwzu%U+$RD>o~}Bgf&K%td^3bp`nyyrF%C&^K;BPHyalnt!M&~?H*eD0OKPaSvQy&5 zB?~n$xdeWL3FmvACJ~-c2i#f3B;0Z?d5-<>nBL{ee?pA`iuhhT=w&Oi7o0uK#`sLuk9Z{!-AOf1oGQoRVAL!%O(2v zVSYF-G))}7x4f;YLe1s42kARJ;cUE-?1*mqS*wg+Nrj#*B;tP^Fm&DCeJA|ZZ#EZ+ zEB}iHfwaX(Vn##-Qot-|Zp*E#yP;u@e`i#oWP7P!W!rfGRB(b%+P^25X z?sjD3-50k+MEJC8YrR4?h~FNlY^zL)0Yx2sOmMN2uzDGL zx4slb(xwS*+&r9!WVc1@BOOaLV`ljhzPlO>CRYUg@!J2CeN@G2t-Ju_yxhhi3dKS#eulMcExA zHeSaca&od@pVd?Z-9I0i3e%5te^`GkfWY`bkIhRBU$#Qz(3mtx$ZVaWN9?f~Tx}%8 ze+!2^Qx%T7?dQ`vM8;^LlbC|ER<)|HmefUL1X6m)2M?~!I@K2PFU{qjvcYu2y?9>& zoArIAFtiFEqH4a>>}^I2q!s#x$&EvoHJfM(&f>UC6?x>1UV4GBMf5g_e}>mc>C(~> z|7z&JL=yioi*@-HD7F$%F9+Vjj8_h*dlU|(zZX|rt8gYacRb$)!|_Q_p|w2{gcDJl zaS3&560jd-kVTu+!gVlt5;a?Im;gZHf8u+eJkJ-n1T9Qb{^j1Pr;I0{h)00~ARvO|l^Is7?Su^S1}%qw z3m1wiQBN&1R^s&G9npdpR`%Mk|AP58uqy$NUwiIeA#KH?X)$w`+zvu0s{OXC%#s|O zPrS4vWq_s?OKWf9oN@MH^$aQ0VSFQrgLgM6i{D1AkdzBIe*}3?fi3>oG33L`AX0-^ z$o^}0XLYGdV#HFdw?ZcnhJ!sIk5SDPLbtt?Lx3xrhM>a2M`tKx=!me5ggHf}@%c_b z-aATI#JpmWD8qJr=iBM~h6az1xCk2X1g@ntNrRAM;B~E2D@)E_iop`b zx2sGz0#*mOe;>jYR))ApY>{m$RqsF9QXR-hmVYV1gyffBMw7khB!ii*3T=hhpVPF{ zRq10)U;n#^mhXv{jr8d-IX;CQd z)&KFlTdq(}HJlNXTl@Z}Czc(Snst&o3CH{ykzm)Bf96=n_?b!?ZO`nm3~yj}!u}gj+SkT zk}MVO=Gh;n?1e0!REgfCMO2ZP%trlu{rFY=L ze^HWr>n~WC<$Aye@X{V_wQqh_8;-D*Xd9sfJ0Jm!xU&p6dRuf(L>#LfAadOakv z)LV`h{BUmiQMy*53Qj=a z+b`Y|<~IdV8vGnP z-X5NY&YOd_&zD8fFoBmZP5rF%{HVFi)oE)AjZ8|a2)WU8_Mh(nzVe90`DR0#f8;h6 zB#93~3QMtHNRdz%rlxCc$E4W#DRI-}P%N}&0*eD~vrx~5ROhcq&J+hu9kLDq$LKLS zCM(*k)QZSK`QUBS76w~0!~7Zme7?{fdTQdam3oon>z>(X1Eqy(wm)S(ak^4f3WIax zXd=r%&R>!xzW7;@uA1>`i^vK}Omc6uZU1?Ew!runYa`vf9f2+z~O=*XrTt z^hs>Ae$v<8Hm}|xsj-=SDbwhbbp#RK@_@%fcVAg+!Lj!&T{VWN{YLRffB(s*C9ee< z_Ym6h&9(x5u&r#V`z^yNU5*2V_Xv5zOuM6pDnn-HHE|!ics=j}TVD1uT)@rEV!qE- ztFT1v1geGabmVSEJRFWhxP#9~C_uQ>y`1(j6m41(TtW5*q7sp_a%MdEyd9)g`oaQ^ zsTm22L=(}fw?`?#)Rjp@%_}kV$v+Agbawm#B1dQUz31A9j@6}l6g$MIOZ&$e?I{5aSLkbpB?i~ zYhmf?lFFNRPxUPeAwT;ufc6{$F-Ff;u+XVuj0$#HuCEOjaz>H62#}`%z4VsV8p*ou zi1+~S^|A#p^ni%nEjt-b9o{<(;^qF_G&12su{AXGU$9n(SlVa}Bn=B$F}f23OsBP= z>bPd8`9+C?Q_v#y-p@h2Djf7S-Yth>noM#nfQ42{vm z@0jhymye8{u39r;vbuy^c8Ac#&Rv}87XfXhOt12G8nBG`;prwsv8gXpt0s z7j@?y1PPGf6ytlF#`trrZu8`@WHn~V#~|pvwfUF)l6llLO?kXc9HsR-Zy8XOV!^g# zqcprf?ci)Je-cNXZf?Ray@Ot<3Q87JvBxyD*;eETwoWytj=mO<7futtz@NJWNs%Cu zB523^ux!#5nV%i99VzOP7U^PPN*%_7H^yRqaprwkm&{YSN|>;U!_RCJXQ83h@`w}z z3+H;8cpa!kbbN0$Lg_SFjdE_A^e2K|;c~nC!Nh_ge<}zq2z@WvS48R_%eauw$_ z3Q7-kwZsxFZ28daT|6eNuWIG5jUP2Wd|i1Jb0o9fyVg&;i*DIDqn%VQx*~K^TFo3U zRU;p=f6+-QH1QwAsjiKkT!^1hsgc1?cEGvY-O&Kam+*wna^IK9O-}p#~7tq!rT$izV^wbrbhfapuyPs?JWUxMc`dxC-sNUbEC2u` z*@)pf^dZEFX=e$m!r9Klg~5sJ;&#JJZvxq+Y4bE#>Zma6y3$Fx_?;qwFeWlqz}%{3 ze=ULOB`Swn&QAy^Y(r%M&}`0fy6uS8iNi^b2=guVE%wK15cg^#SD!qbWd<@`KfBT< zFBDQMc_IV~@8tw#b+Qgqnx_+mMC@>(ntBV@$mph2=+jY*z*aE=VQMrhjzx>|M$Ker z?}f9t9ik1iN>$P<5X^}oeST+;u7q&$Dar*yUGj+|Ce^cb_+Ut-P>sG!Vl!KfQSNeKR%=Eg{H~F;xaP zNX)}CxajOQ4+3Uw@LrOnZ@banlP`Xp4?lf381T$^<6P0h>L5FLAO_{wuxgZ$e=EQv z_~UhbBmI+%VW_E%Z$08EP`+}+9jx$t85<93>+^ge(9g@l8xy2h6bX#r1&4PqB_jGp zWQZ-ws=lH@Jw-23HtAI8M<5of2&zRWL@CAS$H5KRJ#pbh_A5rypVg{e7&9Jwnbnlp z;3De*7+gG8$P&gj-N*aPQ>;n4fB3f_A%TA+O<4i9V1QiW)QF{`fQRVZZjzb5$Hf${D z!9nA1(w&(&i|zcu)pgwDIBSa^c8LdLjO^-M^c>S zd~@5zlWhL0{HOgJ6$|CqCx&99H-Wwue(Lp(EHC?uy3#RATt{#j93MS9?td-1x@R~g zsSYF?&{Lh#z2!N_PszCq$ydWSF11io1_ZRNS%Io4)$)O?Acz^Y`#@*s3e$5A7ePKu zrYQ%A+Kwf`fOWYtRc6Dp%4Qb}ra(TVV*nC`6Y-}iOUg}k*ofK;I$tg?kzr*vzcZy} z>I`tkke*@`9pVo<0%HD7>wg$zAj<}Pe0$moDnBwq)0Npdx4PD>f^q}K zQM5?M+7=rz>?2#&oZp4X1}$XddKRKS55*BBG}9eIzh?$ER>MxLPk*R##W{@XJeLwA z*Ms=83r;WNsX4o6IIxyW4=_hqdehvIT;JH{90x;|ac?L55v@yUe76mo)MMO>JF$US zfLS^WIVV14*xxKu3V>g(VS`{s$PTBjRnc7Yin;Fl}<5~g3;(o*> zhx`@gR*QzvvW%>a|9^<~3gyPx*wsot%#?Yj^v$~_O}JI?oWybA+Xbn{iC=PPN6dw( zF=2kt#%p{t>-o%qSz$GEmLoXGS#E3E@kRI*uSq5n5)BHik~>! z6AdB}3372KgCiklS}HAYaA3t*-jwNSj!Dp>_S8k`H!v~sHh*ZtQI1sVRLD04JT<(Z z@7}DTi#L$aT$j|1gBlVT9XviDsuR0!B2ymx5z9TErGDktG9`o?-|-U2R;-}$!9mO$ zDAdv`{=aUo8aY~A10GCv6^z8TILHB-F)dw{LYa~Drqn(E#91W7-I_r`)i3s9bE#&ee6c74YF~RW4?r`TkY(1Nh}C=nlgR=F2CC{>>=d8{)cLp|cA* z)~A^!4K_@^%H^4--;7-nf~KRwSZAGW+sZgB&1fxDY=3KyG2zX8KAC=ZHZaeyqx6lR z17HzrK9l>05qXaFpq=yG!zl2I{bEAl{SV-_N4`r|53r*7H8AF|h=eHN+iC+T5KS)p z;iChHNP6PmFIk)rm|KtrahDV7$4H4PL6O)s)#w6rp4^di)Rz~>C1`D@(CGrG%R=a~ z=)v6Bntv!kG>$kQnqnRbRP$h+d-m#MPxtFX#dCvAcJYcw-#;LMJ2rudf3mj9+VB-& zJlo9J&Q@OiCi)&r}0dp+;ww|PE3UGYX?G8=# z(V6BoKiJO(>HANK8k*WH`7loshX88ds0HR~dA&_>WRE1k2!rmhp1&oG&KI7Z(^&|d zU~>$s=XWTxiwb=fd!SH_DT?51)_>T4{iPVzY?ufi6aNoQev@zaddKr?+DnA=X0z-$ zNq-$B9`sM?3-x=sQgf|UY8ehL8WuAZ6}9wE_DvpC7z*2V2tcRM)u*g#0%`HhI>;V( zZUsqh!1eG*3>`t^nqg4U@6?tjkX!jdpTI@7v!kW;#WP+G^Rk1dX$wS3SUQ{&TVg4` zAch+p4nO57RUKf0rkQnV8Z4oq@3VZaI5Js;IOQ+T4L*XN%rRyV=dq#fPnk%XX8N<$z#9C0!r zq^f|AKh0$8tB+C}g(u=-O#dRLQOYkmUx{b+_R4JYHB`!Q+>!K-jE*OrV|Z-3yeiZ*Az{koIn4pLgmbMWT*@*xBg_^AVqa>We6R$dE`Drk;(rIe6%|p; zF8D9bnok{+x#*!eHg%2`ZwV0o#!$9&S&bNhwvc@IGg%)fv75tI$k&=#m>)Gk-*QN84+>cRGy_R9)B5g2QO#cyKOqVhu^m(w0Zmtif{vcXQd? zu3Y+znlA&6aFylV4IczF&hF-CvAe%htkmMoh<_<>6OvE1Dc*aYQxnSu5Ogl%|w<&0v|1IuMO z3Qo_?giR_(3_tR1v`J!V7p}Nv)(^EH!|#0qO1ObceuK0#SCqYy5qQ^u<@u$gW` zMuQ+4vWh}Q6n{h@jh~-lUJT})lAMaKwgWGu6X2TPty_ZUj%#Jgpq$<;J(BI5~ zj2O~LX`%s!QF=HBvjtU$fet^+y`l%3hGgO&6ra;$UNNH z9wI*4Y70))+=y}FbiL1yUW&P4YLZ@GC{1X^GholG6VeQj_rL(;dBakkXhB46VOGsn z`^u#qx_?i3xQBw`p$aadXq3Eq9KyQH#r*71vr2`wWGz1eT6Nqr>ME%tD6FhZUp8*!%@Ii3wANx*Y76QzgVh@zw7gOBMEh2b3qK`6e3p|DB7qEhxk6>5An3Yw} zq7@94h)@kB4^4tRw+^x>wur1>+#H+D6Iho=Z-1?x2^Xek6^!CWz-okT9oY)a&kAo6Eh%KZ z3RE%bXtH*&Nbp04qJa(}Y<%(a(VRd{@)Fgj+n1p9_AfYt{pTZ`LY*dMtJPIKYw50A zI)76CT3NK@PG-f~BrnbHgZjf;W%~-5=U?9gHoD9Kgq9b$UsTUcHe4hO(0AU9ylG}; zQn^{)4js16I9YH=NwD7%PW%fj1bb6_^I0}0w(n#H4KdjCI4=p$pnFH!ftagGk!QPGT z6WF*~xqhfyii*l400rXIsEcRs6o0xx#Z;$CrB{t})$l2&F*L&sgr%EG-jb@?UDr&tMV{;l?OR0Our=ecv?_M`O z6Ers%xooPW#?7{=TLB6mobr9GWt{QoI?hzjsG_{t5Rfb@)v-hcMe76=2Y=dx`FqNU zA;?8uO;jUa^KkDNFZE_!pO&VXn#QwswEH96*i7*YFFjhPj4*H6tPj%OopG96SG+Zyqa2xtfbf4&KmdMd?s=h@K>&=2iy&gTS*&aT`YBXF38X$i`qpu zuIZqDd~-GHmGT5`0?bKS{$%8#uI^5mmM#IS`X;W8D-PBM5V<@MkKs#JJ7lt+uQCrH z_;`pUp=6zz=@1;<>?Vt|u1XG>SQCJ{w)au{`_{=YRU$(~tjx!fEPp|qXdpKV;S&Vc6R?16AI}Z@ z6#WTD}A3}S}zeoLa$ zc$o25#F1NPK_%FLhJRDsS={4>KZX<_F&j^0=;2on_F!)3fx>p|*b!QxkHy#N02{`B zKwz&$CW)?#ivgx~PNx?9C zYi!F#@=|7B?J_7yr{wp+6q1tLk^^PPxkN}bAHocjy@~~=oqwvEdE2><-Ssd6a0yGx z|IY)hu7+5GMp`>48MrsSQ|-@NM`89?lV2_U&K@YwG?s7uF)6Ci)rU3OcQa_oLndey zBQP`^{_g;wCa);~X+FZ!-zdMd)%x4Q%JCR*Xzi}(HNhSd7zxfvkd%xiM_ZQv#1i`X zg0zaJqj=VPw}0^*R-=XNRJ_WQZ8XylnRg=lsF&J$D8)t~bAbhxd{{gOMe1kBPt^Ss zpEfP8zU{zrzUZ1{LR2z*qx|m_;E&IKIZ$9{-}DBBCm(d$!=sIGhyOm(;32U|9`d9b zyn-F|ImiLhNCE=3yN$P*u?WSCV##rEL8GA4bbN8y=YO2`;a^$)mJ-#PUT3GP)Kxlt zUI;r}Z!5kf+F{j8OOI`tk0bt z27wp=wSU*Q$bi1&4wvpb~WMhdI)Em?SSk%$4uMy>==s)jtU*ax7d z{R*TrXDKo82!)et&nQFceUP_&s7>~xpccslR)3ahb^qR6`fjD2LHW`PX_>{(71_r7 zTZp%VP*a8nF$Gi}FY?B+rDF4pmk-xM4{`MF)8qM8t5K0jjL&OI!p^UC3m^GFc)732 zx6`9JEUX|wS4Tgs)q|nH;_;xSac@{WIJ#{*Y9*kWi?HT;*gp^gA6PvFV<}l3HGm^$ zIDchk$@2$^+{An2bDA%yYS$*`Jl-5Oi!!{@qY{WVI7FT#i}<*4T;NTW;ijmE$_|9| zD^F1rd(e1C{WGy-p`99VN^ILm*b89j!%Bm7!aFp*t= zKU+&H(f)gr#4lX@R|_}PQOz&87t6$#ocm%|i+-OjwAivCDLjJ_JQ==fb{M)kAsL3f zaWewW1$zPQ$l3hAgh?}%P8+$cAEjm{gX^=3z|LBff^PWPcf-gP#q~tI_=1iRoqxNq z6O)Bk=?Z3I8ZmOlCHh$-vZVt9iNa1%1>p*Pf> z0GxgXMoRE9R+IRDOba)&A`VBz=;=-0WkEw21{eQJjt4!8%b>AOaRs|RikAToRLMbv zCjjRc>KEtLIJ7HkjQA08z($)Rrhl-2-F_#%focz3gF2haagi>tRyZ2dRANN&^d=#L zRCn_XQCk0mr+g;0q5%#$ueQnFpGde36<pm<}LVZ=df> ze@X?q*(I|OR(rSmQm%0nuuBa$k8)hN-?YI-R5#4dejJ-wxhw3LW)Z*SF@L1>b!C!4 z?`HewI_*Kyp9*OteOEmMfngSI7*y?n1fcgo)9iJDaR1geE#P<9S-00Ydlm8JofG z4~2{9JZG`pTfs}c)no1kA%7QJLK2|l9|VG;?#p^NVJ9yP+oVxc!jM8YxB<@sacUl$ zPjAOwWyKJx%+JRxFERYcU(=YB==MC{&VIZN=99}YrDG0Sb|c(_-E@T++Xc7|?fkqB zaqC;MTuH?UTbO7@D}FqcR2$&tyKqfA5fL;9pZA7Z%~ZGDQ6SzXj(^fl9^Z22f7AvI zTX9N6cohjhMW=sgYSV1$>gQEQe2$SYcG%*HXFic!r!dnm3wG|bD#nF!r1NOlj+9h1 z1#hL^6|sC9Hz~_!(Z1;V2N%Jw-fLB&tZFKa%ClIuoDfJ#X28StSB%<@uz0DWo%BB| zcH`LG!8KEh7$t$~Wq-BV`}nUTZl$@wZ>{9Ut~^mH_Y_nBo!IxBiN(Czy@$KzhiGE??GW2{Q{z4WrbQ7s1z$$2%C+c z{NvTf%`k6k1{wrAqHuoiO3Ulkcl>&n4@Y(IpY@W-*)}G!wSPd-h+cfaXS9Q~-IX4a zY~XSe-I<5BpeSok&Nfu&HPt?X){pvi&r+wYV)(OHi@D86`L50r!vOXTqLQT2GJz39 zoW`~SNubW$n4Fa+eYBsnr~E_Z(-c%gHmFA=K{OHwwEY{`P|l5UBrRG}J_wiebR!NE z76odbt1m(etbY@GDIWfm4cBBS_%k?YIvSExzERav!(McQ%^~|q96N&=EQTkwA911I zMTH9S3&r451EUsZh6x8cmT3Y}0ayi$sc*Jg9?{j+BL-v&t z%IYl;UZ?WUqR&rT)>V%BUO)#TDy7Q%v%8^&U0NWgx_<`k^C6qjP6PE6v<3gz#Vr^& zn&=qScPIreq|p^+H(2y$67apAm;L(4^BRSbZ2e`T__wXc3Ne zIN9DPC;=O0>Xqs;Pfw(iF&vroBtohq8|1fMnOuz8G?UhcjY;W)?Pe2^(7#{oiK1dr z>_6*&jDO=9m2OThkly?ASh2f4c`@^onJn?qrxz!FMB$nDt8?EP&An*@v#YuEr(GtD zCj9rp51g=M{Zw4W+a7bv%>z`nys7phQC@oRv$#Rh_1_KJN4~&BXP`=wJnI7d5xkJK zp|xr^E4&0Q?m;r%Q|y;SAIJS~FN?c(PDM$4!hgFa+>>2H^FO3MgZJ;*Q{A2*9fPfGYBV}N;D|!NoVIsmYko7eJVuFD@s?@x##$7$YJ7Lub2{AmGablD-fLQIDbYB|BHkZBKe7d5go4ir zOMjOYrgQn6WShT(>VBe16P~PdbTS-p3I}5*sIF4Wy{prApA8}l@=faICvH+}d=ksm z3WISKHI)cu7IG+EdOg6^E5ZgHQ(kp%C6&v*q^*C*EvLQZ)3HR9|8SR7O4(%uP+CN$ zjyeDbRm?YKyven@>n9r1-RN6}mE6M@%zv%C_P=wN@U6o$;=JPE@MI6asBnDwYmyMe zk8YQ~5A3%GULXCjlL)~dF`hNhv z!}n7air9};xBKeI2IvX66PmVF2c8~NjV80n%AM5TwzPYKTUcn<-5z(|SM8%a`XTG- zZ6$W54v5#M42t&)wR3#rbp)qDHz8!j-5Gq@t>s}yN!W=XnXjb8$=vTUY63Tm6%X+$ z<9jK9?E@TzlJQ!E^ah3;AnXFyz<>J;U*~t+K5pJy9k4XV{;BT@n&!v+tukf}@tLr^ zc2DKmB)`(>u|!RsR9ly83k%cc1+e7jrz+5B!nhFj(PLhc&)n4m%(x($hb@6P97gSe zG@+nq!d`y(gad)U1~tq-*?zV<-Go~4do0%Y^aQ70fl3jugg@x?<&_MHy?^VjIfQ`G zz)X+79&7KTMKPTpb;Lj7ov!K_p%A@fNC|rQ9FJKP^u|nmAI^asZj~2QOp3RA19`P@ z(6^+gcKsN#DJy70Pg!VC+K$wkBK4s0(fuMdNtl0vR*<^?)bz+$PsJ1}L6%SZ6ARnf z->I<5pX&YYi*Ttu&VRgh1#w92J0AdO$wo) z6+$sY6Q6{CIvNELOH|!ZeG~ULyIcR=s6fc>+qHB`lOIui{)|7(`7R#}GQioGDD zjwq$+@K5@|Fk5MnaBM9}Z!AK)=E_j=+N=maq{??Cnch;YsV`0)3is=7OkjnV6BfSW zJqd!dY-iQ3w#rkJ>;PR6X5-Pm9d~O>FKPN z=S4Cz&_~RtmG{6IG^|+M7^RduP&cGtW?G=)0EX1OB&J_UXOKEF+k3B6i&(+=8lw}yEwO}Dt|hvtNPZF!#Qoy37H`Q1wK^4%u^ zJ#(pfkk04m;q#ja8kwK`!^yPDSDg&)HV}+-2Pf)Qg8UkzDU;T%D}&+C%0}#pN5Z_bUseZ|c#L`E>?KL8o#WX*4OP2Y{d+n7mivwX z3AfnJ|5t+PHHvU6`&uR|>*wW#JY?_6&N*yc-`

      _;($QRx={%OZH3Bw#Mnecm2oZ<_l$L0~C z+a&bzGgb|;>0JnIrI;(9Ab&}25eCm$NuZ?CX43EesAwTR`%onT=5(0@|F)nSBruR%==mz4{m+H3iO(9e63 z8hl87l`nMTWhYQdIkudTU9OV~h~3j+xq3|Km(=a_PJY%jckq@vN`oV-iehoFh}9F9 z*N6g{B`!r3G?J+^W_qTC)Xh|N2GI#h6Fqrt<2>=c6CyFj?7i1-YP|GCLX#)djmo_X zZhuDz#Wt|%#w)De&osm?$R^e8E*H#^L|{hbhw4KJ=ED!x!+up8sml_RALJ4@ck@q* zp<(E>CVb3V{RtLp+I#2v^nh|>CsWoSb=28=HJozGy86jvZXdD0nYk{^xqL^$ViHi@ zSX1O|x56qvl@1Vd7nQwz8$M4%FYA-Nrmz52r=WPbNtBvbq-sfXwRa6u#ueEH!pL?eUNVRnaHsCrXqu=e?0*7|R`N-!^Eplz zh4@rn|0*}RsD;qw?=G$Sd^NJ*Jrh8uB|ema7S(1D^o-@_Fc1jMifrO|1;96NYXHcx zKVG1qZIg2GHJ`WOLEKZ)+VB%MGgucd9K(d3k)|qm+bmNxO@E9CLm?-&O(5Z2qN<&Q z`_nZaq<8&v9v`@Klz%AUZ+)b9aOFGJU*xtRfG9i_XGse_oXlBd;VFAyEtsVqgMs&< zX_VlDjbR`u4yH*}r#v}2lTa>P;Gf3*G_$6HGs!?Cd*t?4eAu0^rB&pp7YfI93dWn$ zJ6+yrkMWnKIIRcG#^XXA*%XOAhCPwoPrMe6&W`Od<*I3z7Jt@xD-oN?`c9t4;%NJ2 zAFTuTQPAQ3n$~X&yN-ykiDQ(Hn=hvpolzOp2Pw<+t^WxPWqTrh@XkWo3zgCrM#0xI z^&22XjE+3L*jAJRLO>=hQzbz`tp;msWUPFQP@RoCFhj1RQSJ$g?d8 zW4Vqv0iph;OQ;Cv;)gG+xUavvBwi8klV=>G1u}cUGU((mk2ChO+2coNov}Uo6^p>D zIie=9xJZ2#sq}_3B(|DU5 zua#0HpjcTL77qRW2d6<#Jf%_sTFiuT;YNW_x1rGjXI3!g;Q_I2>X>os;f`V1I4T08=@B}Vknw#}rfvU=MU{V~nO~_hwEH0b=A~%klXBWgF?#6{& zO!0E+-)nxT_t1ULx46YL_qzOJlAm^Y!QN8W6t}(+s?Y4G07qjzhJ-ubGC~w^@|=Qu zY~}v}_wiHkYB^GZdE#(lZYPIX5ynm%(&46a_LcI5RPq z;odVSxA18)bOQ#FkycRElb333GGTv@`0ub)|IX?^WMuuHb^O;M_K&RL=Hh4v)UmPn zIKcmxi;}6Ei;b57>j#tAKJ*{2|Ndt5Zw09SX9)gRw79sVmk$#cCntc3gOwA&#>2z; z7b3Uczr~vW>pb~~#UBm-Z~5;q1Ass;pgF?IqNBM$sBKzHc!j@I(M%;Y6(4`|c{Pr( zu6!cYO6E)_A)aLZE;&%7IH)Z!i@MlRQI_AxKP3oMs!J7$ZU1MpJ-KH3&O%Le&(vSZ zpAbb#Y&=h!St~e8X*sa6o1E@MKCe)(jPqyK_r&ic0Il&;3BJyr=Q#GMcl4W7a>L5+ z>jluBCG%{pST6P$Udw0%U4(zjGhN_r@6TBAv8MfEEA(@p3d3>6 zD;B)LcygeCEGHp9YJW~l{IeBS4p?~f4$-fFmR?dJwqVId@6(Z_9u0pP(>aq*(=7a} zF;j&{ziDGDH>hA7o}rmw`$N0eMGPZ2!180jlJZnmMDH>Ua`E%ic%0lr-r*RT)0IvG zlt@ybdnJfL>0PjeAd#e&RR0#uJatTyZ!Gizf368?H9ePTP9QDDNBpDp(s(fCqN|{W zkcWv!&al93o@yNU4@7@cenrNHoP+&@!)CA~Y*-JMXKSFtKeaF)RCuQm+{pmCaCo~- zkV(#OVc=jH)(}-?g(Esg7~{#Nz&Ge%OOp@X+8#^Jc(hTbEb4%n!ka2lqnF&PrK&Mo#v9>EpT<$H{FLe{yp&8wG!6f&!9F1kEgDET}rS zJa0=7Tpzjy*BY`X6xHlwDTF2Py^3`l3Afc1B6Twj)0_{?nlZre0{(19elwEqXgZA+ zX$soBE^6i7!-acii=KDs@L|YPr4)7TXXwOkU(}R5&ATHFEv6Q+GLSmuJU!-kFoUV< zwu7}PAhHqx3?+Z+$rO=CF)9#QIF*RI--2CE66El{wfC?t8}5%2H`_@hFgD(}9BD`D zucJjkw*98@ize1-f17ki)x5`ZX85J8S$I+yMZ%fXofzpeefeFvo|@b*Ifa#P;tCN4 zQBaA!Kqrrb_6GqHAN0|saIWC^i?+g0TQIM`T-$k(QBZ&3z6a*q!p-Yh>#nC%WDQMY z(G!Xir7WJ^GsUz_sfo^ue3T3ek-vpQq{j=RXAYvTwhNJ|Nv|a{i22P@OYW49aOZUF>l0>&F2=kwjAw_9{f(o~Dn?*MSP%3cT`sUl|!sjdfkuFd9 z--|bNYEFMtMTs9=&$PkST3$Ap2eX%2)xXr|=SXnl;dVptM(5=s>&Lo|SsYH-KI$m& z#*|M84LsjS(Ywb<#8X&D-;LMdtXmG@WUim$3$lQo9%eB~xI?KMW1&~r9A25BVO8C@ zP1F~G?|`1UIx8maKF(-$|NT~L;$2=wU4zG@P$jKdHI%Q6;GHG$Md7aB%Yd#WQc%moIw=cOHLa z$q^Kd$rc+z@VI>%nMReFbIQ(~-FgbZC0naWrs-G%E|z%=<-q&;Z^pi@Gm+))SkJ~n zE7P79`-EHDg3gEG?RH9Xr06ndFh;E9A#Ye;MHJ8{(3y@nz<80i$UCd6?P#Tc0igNr zMM6YiX}o^*@3q02UTUX+kqpQ<^M!wBWZK<{a~v$Cmmy={#j=?CZr6Mkg@uc@>f}>> zOf+lj^JhnG&zC&k?Jc^^NHr-!ZdB$G06Zmf^Xk&HrX#UzS2qkVNfHy^H8}LsnZQ&X zRbQlngLeymI#yX{q2ScxsS-{c2i!xYifp2p`*2!Owy)i`5WZI zx1BctgU2l#q0YI08J9-A-v@uY7X1!RwvvcTJn>yqRk&I@X_;srE?$^rrv#v)1}+W> zK_W|h_ZrlJvM#pO2`SSNB7mG&?)Ge8-TR|*^yRG3>=T-aSBZm@9X_Ak@6yi72i#x{ zk1?nA9zV^ti@adMlQXpjKSwZH6&UleP7y&rITyi3)jYa{Ot36Vs!4y1+|;(R!^o$> zKFu2(wt5xAzU|>X+NH-+=kwpvUSbyy_x#BM@M+!rC&rh<5e}+93CR3Zq1=WYf}!XG z5?qP1AqnBmbVF?kdtq~NfQlYR^dxAb1t~UW#O1W$uLhU_FQnJT2SO)4=3;e?*MsOg z@qc7L-Es!gu}V58cxr#KOqGXFi>qy#+DN6nL0GtqUkgz?=%ufW-$CSA)0H+G{ZML# zv~&mOw_%16_iY9==W3t_w42r-ZaBqq9=4^_-kD8CBIO1OizWbfbXVoHk$Vz8DQ?6@ z2O~o=Sr=9=CzG}=59u1Rt@1swtB|ZFrrB4u{amRYYZufpayK*obA?XKo0B{z zLW&-FAy{=Y;glfZCJ1?$I`wId%rfcsYsei3y;19XSoQXe@ic4E8063$KO2oLpY)2R ztVc2CpGn4Qx<|6ns>Ra*_V({XLY&ylpHrZrwGcxA#YXjS&+RIxY0X26Ye_e~ zx+=_z>ig4z{yg8-KKn#xrwm1>ZH`S(`eQTzY^#!+SO-Y zYGhbts%@iFi&qO;90fZMVK6`wWiD+QqpM(~JO<|s&Di@LD*8U3Us(FpaEB~xoJ+rU zS$GbGdG@EE90Pa2wXzFF<`i_oP77vbTOOb>A>RCei8LFZUerfZBBd_Lw?Lf=W+V!f{ zq|V5vz^^H$7kG;{Ylq2?{=DA-J@oxRIZz`0Hxcl}fF&9aIqv*LiC;J4thYVyKxk85 z!WMs2<~n03wVO1x*vt#P;vF5byGbhWi&9Fw=Vxe+Tr5Qr&-wZ{PTgs}7sW&Gh(=Dl zea5tRaN=owxBI2@r8pwUjk{A0ibBYNs3JiqQ+;Y!IW>p zRS}JRlM(fKcpWZ@yaeElm7aR!^m$sRo){gF&0w8SL)C$@x6eM2`7S1g_5;uf;}DCV zkiTXBsJ>W)=0DHfovu-n3_!L-e4Ktf8>~Bl6B&GqN38Ab*sBBrk=K7^u#M-{|FVB< zq<}v8PDZ+e+?tk=e?B=WI`w%l4STr@!5VV8LD^l)4$X46xR~jnc@?$8 z6u9sWclS5jkK9kJ?M}Zs+3`PR7g4-m@C!eNY~NR_agRxfjU?~tlDATRLUL;mO9?;;w5u?^@gD?DqGY%*8V+voJ#NKC7N)1{dJP#}L96Pvy+ zu|__u;Y8~ll)gJxFD1N0LogVwgf}=Tmj%#J;us|-ckIjfX^KZoc)MxlDZ-`tHI6WMD!XPU=0=w9$;jI}S_RhG20hEJUtOCrV78h!9=Yt< zh(qURocp8=Q??CeA6g*GcTyI(Y2-p%MP~CM^TLm16Cj`D)V8)H5GRC%b)YFF`IMyr zgq+PGB}UqM?;2fUMLvI|LgweM*^x%(AzDkId`xIt+eNeYN(9>j&lq|_ml=$)dUb=8 zxRx8~Nnhxz!4{#uJ`~9IIYld)%4rOmR6Q8;UZFEGR7_RII} z0$a+U^84LZvf`(*o#6TW|5?Y#y_P!`M2br_vnCvF#m z_#OGcMux33SNxdy#bmj2C5ijTTet&QO}w$M9!E|0XY>}usu2QWvsJdm$>b8np(#B& zMv%Ir9+)-|faH8~Sr)3#?}4D|BgEgSZou^wC7qbLTXH8a|2J-N4o__>*e1HCfCX0t z1F1{iG4rCChkra_4) zUrNp%X6MRqIG>M<2PSH^`eGr0xaoduypNW{;RAmg&T>vF&2!jFgbLOPIm{=X6jKmj za2C1z-)lKt7LQlDCWs2znl)l3;HM$_ef<_((<{a7MkHoW&5h;sFzD{jcwKnbjwx8T z+Q#|}8!0l9g+&%sn%f3qfCdH3{n7-BuH=T*_wY$x261kVBFZSt7UqtgcllGR*4Sc< zNnn3NmC*E9x^CPk7ep>4lodN!7nrj=TYFceG)zx;`P;#kg)K)H%9Q^RZ zMRYyOwMhqBamwpL+Fvfy3@b?=rTvhNK7kJoJ}j%N7fe^mDcGFSkICk}&D|N*A8_;! z70kt&HP5|5nN`b~3+Nc$Kph4$S4-z}(T9J!{Gvuje(N|LR_H9h=xLltx4G|r9}oA4 zLjo!}j}+4b1=v1EH04BKZduX!f-S(c5pP`IVh2vNdtMmD^R$zz>FO?~70XKA42Ieh z5=N+250->&7bOR=h;4;hw0dNIPdn3+A8v!wMA8y^ zcfZYtN^zD2YlLZs<3fCAG)-cLp~3i-4&+0`uQ&`07W>vl$%(9kdMvtwg$>b17OUkc zSTsDh72Y!@k;x-QAZ`2Lui^3s%y->kCaXBvAoBQOMUVF?U=JNE-<0Dt>}Y@CTTlt} zrL&K|?>E75qlIcBiKXkJ24X~Wn3h+U{RX>`b@fppX=GJCKnXWH(xDA!6%B9UM5DPSS|>^Sgl?e~4uD;3uEr=#e!Oq;X zmjrm^OyC00KRZIiu`sloxY1U&`gfXcYh(M1b|Zop2_1suvGjp!?%JLgT@{!rs_qnA zar^mpn*NQvFoVw$6Y-ehFSPFp&@H__zbU*4^p=J^3CzYmkzkTrR2Y9m)lLN6SXzKB z=3>%Uyhy^mUs66rn4WHZ1*x^SVdB&b)!$0_x=ab$x ztI~YS0G{ls5FK*HJ;&;7*YKDL6Yqd!d`u(-vG+F*>K9TZv0qZ$R{7lIqNW_{jmZp%gH)8^q zaUnYrKs&HWvbd&gCEFs_cAww!wxza#`qO%X%Z?v;J%o3JrVW`Xl}5F+A1p^Mf}%vD zS{pNxm74ouG7@1I10F}yv(=dLEf+U%IyPa>nj@_v=Szo1Dy4sWr0NuoVO<-zd^6KO z)u*mPdV!xelZhv+50!0aAw4e$u9DVb$?%xi2*F;6MT|Vd(7ko^z9oOp*x)k@(<$dq zDM6loQ~L2!m|pz4=+{e8(;jvw`?PUCU&RDr^f*h_lmr=JmSZAX4Nc0T)!crHw*vES zM8as}QY5&-^j&}1*HQ@oBb(n*!mi|Js?CCZU~b*0o4`MoiP8TnDoo(`c1A!;k8<<4Z`QDU+Dt|lXQQcJP7 znoqzYORUmBp-NjyIrh$Ff4a&d&8qG~3<)^pNf9^&itc}mF+Vzpq*bnlz~9E#Ff7<{%kcue|yk!Myo2xUjP|}%&JW05~RD)Kc65kS$Hs)hdYbU;< zm*$Wp`nAe2-0}i;?`NLNP;e1(C`i%Vm!OB{V{j~9BRlooaV4X#!&|we%XuuZzuKGz z;V&?cVibR~+wB4D^tAu4L66vI=d zb0$#5O)PxHUyaeO5i5I4Dl275jo3|mMLQO%2`L8dK%OU6aZyp%XPRKT=$La8{!!n9 zeu1PJ@a(qMl3&DsFDL0el?$ye#aV%zTZRZM$^(Cv=||qYXw5Tnc#97<;jN&XAjPQ{ zn>W)sHr%M^7fW|%w#qCh=q|+`ow!H~v}{8T6VjkcQ+-mECT@(#5>)jeKXEY*Gu>U9 zuIR!nmezRSRR|518;W{V=t*9<#T1e#U2r*5eev&42!svs8Of?F3WD3FDf7(Cz7XC>V{UEj8v_|_j_VptE z+z~^M(r{}Y?`s&rvO1d(ce~a`vMiKozx(ynrq(HRg>&!`rZ8?eW{v+345?X&= zrM`&bNZ%Qk3X~~#3^TVTuv>%KrjP99w)bE9sScDrDDs3lyC)U09MmwfG&Q5ntC;Q{ zjezj-7hJm)4!$6xLw6MQRe}wV=;(m*_eZa;rLiaoXmnYls9mx?3D{5dsskqRly1u( zq=F6ebbpwCuJE1L-2$yVy&xc}?J<9jejY7zz|kY%xs)?ITHYZkW5YrFreYS@aLl7H zFqK?dZJ(pOWr&LXMdM0Iu|UJJ9}Gv#w;3GNXNR}#jqQ-)ip<8R$4B+t7Q1Ou*!o3V z{Re|&u=pZ3@fm5F2krHYyaWf2!b%p&Fcp#9*|Bzl#&p88%)Px4sz;4u^>2UWJ%Cqe zxt@UZDP+l_lT0AC(a}*oLQKXHN2NuRD=ru6h3rPZ7q#B?JxW-4HNGP!X|dsv7kIJ2 zVrR>e^zR%UnN)%ICTj#AU8W&l2>*eYh*6|dI%d)2ahuDzJ7=;8^K(E33KwO zN#YhO!|hR&iv2~Md2TFpj$|)^DK(^~*!vG$QV!!~SnO(Ib69(P!Gy8J9)0qVnSprh zO8}?0nT9;<4)WEB1#yRy&gWy=4Z+&I{>%2yo)pH=xR!)B?CEJ z3`;h}>B^@Y1V=SFWL$rjdx=|rhsWpx66_V}~Cw=zTK8!u$K2$%c$_z(X$Gm=)2g8787IC)25n3R55uGUU}tgkX@y#vXH zoz2{jvE)Xq<~JoeoXp|6mU_t|(MmS93^N@Bru|;8@-Fv6f)GH(GLF=K5IMd1o}7U- z*pjFEU>2WyZY|!LD?ZF13l;}QKh)PN{`sdeV}^$uqI6gDd@VOli_;@~vcG7QAmcqC z9c`O)3tJQU5R3HufUQD*wKv~4^1+_bA$}9Y2D!(;Sbl7^7*nyS9nFtfD=de+vl$E5+<`e>Q8|MC}PA^?(D*5}-RyJpFwiOaU)hQYBn z1~Ec`nOlv|^Ey)kt=Ym^u879N10eiUu12UcP?Gw7<4q`}#yM@x3Yt;8jMcDFt%Btg z@20^H5KrU6Rsuun+Kb@Nu+s}Q>TR&XLwJlKYD2{lUx!4FgE*@@=2N&+kfZ(5Ic3rAeF>B`sCJG|y9v}S@iNse zVt=^Ms%uQ$9;&Mc*&9eOVTKGRy4~lqm1}a?EA74y_g-~>3_XumhwE4T@YTUL5JPpN z9c$**k%sU0F&(6TZ9<*rliU7W?5fcv2^|v_s{IBvtf^)X(@$vjDXcJ|Yns9_h#y;* zzp6nZd%OC_H>xF$9ST-Pq%3IVG+yiQU!o6Eh=^+iUU@yT!3-QdLoZAGCJ_G1cVScK z=!Z`j7{SYb@#V<1c>4AQPQsmPjhyiclGm$#6zHVc+p5J5xT{#TtvJ$uYz{e`J;f>2 z+5A|T*3@(U6xt0OEv-;`;G-uRY@~2SF>Kw=uM3VZ!Z^*POUe~Irw`zj|KXllfIz`3 zPNg|akA6krz+828Z@NNl0{>abq)>mDzw-xeu28OjhE_x)f?V9`2~(sngEoue#WnWy z;&B$2LL;opX2$xuL(op!h`JO8Gg#h=%MjFv%scN!>10Ta>&>D9JJ$A0%$4@Dxfk74 zA*oAt;&HkN!9VH6EDqWd;^=g_c|+a3^V>SDmnen9UG*n1e26^FAKEE)bFnjP=3KAx zb~J~7A;oQMI6u=yfR>#85XG_rqmqus@w@}2`ZzDx)PNTJRl{X(1fn-{y^s6w*-2}U zCT;+JS@$;UhH{?7%T`(@P zLxY=_iGYe|_r<7KIcY6~zx*WF=$Lu6QCmEJ{j(JSf&bun4Sq4g2gDc5lVv3$if?1oPR zyWhe(rgs!!1{3f!;{`&>G}Ri^--K+aUo$_s(LRzcnI5D-(W}&-!tbcEWk%;~?HvlV z#`yKg9fvUa}^#GiJY5HrdfV(o+8Y`Df96Iy7{%3 zcK=mt{*SY?N(+5Z7*T0&{0R%GZX#hD(cOE`9L*R3IkkTN!ZcTOyu~C^p+zNsl*eS` zia!H;R>-7RHUAa_#j3rgi#aC*CPvKILXlF+bm|)uWWjeTCXaIIzE?&MB=kBkKcgkS z4K+758|IxCboL9dh~-OT*0<2TlW@`UfyWiUp%dBUokM=Vz)y(D2IvABTJ^hD=)f=B z++X=W4QaL^>ib53-IU^P`F|pRKUqMeWxxpC$SpPH=}#n?n!cC_QTa905T&dUnwDXC zm-?sVM_=xQ)ayH=S&Eb?4c|*oxE#juFdZBddsZhx9H`29%N>5R;~AZhP}(U*<1$}mxn8hdNwwla6xHI?&!r+ZrpezQEB zt#zChYd_?@QTL5?%c8wD7I}%xtLvtDW2FYaig=Dl@+uT!Z${#}Ig?ei-W??jLsx|L z?-PveG|n~lnRogGa!|g;5(=4*^M#O%8-e?KnGA8Gp}7gSbQPBha1`heySVE^u%8AD zUEDY^=Lxj6L2Bq1ev@E-S&fHlh|TCCZ5~?Z;f4aIE1S=~&dzqhk+ zSr`XU;M#SeseN*Vie5Ty1V|r2T} zGNMbOLP)Z)$E6aw^k{NLBBQ;fE7PwxMqH_$B71@(mP_D_LTd4Bu7yNTOk1b`v`)9V1<291y6nDz_ zhw2}a(!DCy68fS;wpOtKG9Sca`*U{DoEXb_BbrTqm{Nt5-LT`DuM5`hVA2nec)s>R zQiL{?AVMgZuR0TC%Mxi(Z|c9}P8p;Jtp_E4eydW#U9dYBp8XzWSP#(0n)4gCWSgsF zqV<0f;P!g6$A(f%@0V*IOU6Vh`Hrbt2In)a@iR1dQ_ZTnwzwb`%zdiJ* z0dhg>2vUvJeeu@7j$e$bYtmcuppNes(Q<7pkD0?~h}^q(-YQS?Up$D`!X(nar`Oeg zj;YyzsTEo>b>kD+mRm5(U8ra{o%D$ySVoeL5vV*|SIrj39NT&cENp)@$lUHnrK;e` z<)bXLUsYMfY$rz4xFbYm`}J@z&V7@khU>a3v^?rk#Dr@+Civt+_<3@V%CLZ?zc8gc zc)HReXq#+YA=2`Ws{m#V{3XTQlRxS~w5be}+9v7Z_R>>xVmkiS4+i z+Oz;=h*T_JO?FJWnREuN96yz9X{HJ1Q3TB2!#l+(Lb2jD zUL>c6Z)IA-lck2ysvH*YWh?K0E9_V4p7(kNQ0~lb;Vc3bxHy{e`+;%8+48T_e;yXU zo#Q@~nCe}mH>n1K#?TPN;@S%mA~>vt${K6o__IRsnk3)GHk7A`4S`O4=cM*PdWI6F zUfN>b_O1Mto>0TRFC0 zhRN*C6%*Uv+ts5x44=Kwg4eWzkbTM=+J?>)1)`4@QLfu_<8lE zvFa>)<>S!+ebRiUS;`b1nJ=fVOM;kS1f;c7rsl|%UW5;}w6b6S@!egU;Cl>7q3?}J zAC&v+vZLw6UXo_$-is8cV!+(|TxpCSy(JK zIxmg@Z=P2peX^9S)xI-NT3OD^V&=i`Mowj2ynf2*7d_Y@k)HkP6uzcO>5g=&lLMKI z-gklq4v!%3b(-W5FMnEnwkZTWRpB0-SU95n;e{{poU98`;?Y0uCqUK1EEGJ>d&uX7&rv@rV^q>8eYf$FvRRjc+nHPFS; ze52{SAm_+!Yta==;{^-Ma-S#tOybAV*WHL7!5aVAT9T~hdvcs-=w}H3QGFe!Lff9H ztd?8c*`$CKEDf8bI^lVV6ZV@}(oS*&X&sqx^<|rXGbdxu+7WAz3tz3>Wu)t_n6&jc zj^*#my=vEaTPGzuT4#)R_Of(2h*E*qLgh$thd~ZLf);YsrNI%1{COh@jGKFAgB14@ z?Ock|mf&8q^@MO&^JISrmn9R4;mTHZ)aBHvN(smj&B->|lZkbj2hsibT3tEcti{DP z9TrG`dO3gJHG=_Z%mil=l$=fKiR)Bjk9P{UJ)6?CG)Vnm9_E8a?80o;+>XuRKVnwp zv1AFq3WeZm${uWmMwCpc+d99np4;8CsgaEPs<*bxJBfd@GxYJp*fb|S9AwT!{k#H` z&CdUGr9|`<+1h^9!*y#?&pt7q z>@=Flqb>goq9FeW#c=z##4(_9TGa2G^^FHA_d9?7&ul@Li;GCb3UcoB?mdG63gNcLG&6GchJjO#DOrYy%sA zl6!R+YSXaz3lCcVSb~Oe@z!MJWLXbM&P-Oi-)5%8Nk~q8dOz01WYCw4e&4TaBIAQaWqZ0s7GNxzG&{pT$x<_oy-uq?O`)Ys=R34ud5f zL6q-2x;BJN(~MXG%W3*)hqKiSrND2VT5&0tLgiOV9q}f)w3UnGG9=W0)^0F=jJ0i))QbBiINb9^(Poy1;UvkOM?l`__4QCl z{{B=E=JczlFc+;*^P#R^>1T@e>Xxri{(wj>Tt_y|WB1QQWMS^wzr+~eP{`{1h$=+k zk(;9c?PN)zE5t=z$~};Vf>$U|noP%hSQN?@;sQBhv64{QwuDQ=j>NNnNsQ-+Nbl)F z0Q~~loDw(T!z{Y3a>?Oua7MP0Mx+rQTs7E$v}NpDVv7M#z*vuLO})Y|%ZSh37`w!X zc$Zab->Dw`UL>p8HtUq-RlpVZ^atKA8gS8b!Z!sDg3ieWnBl~cN-D>7uD5C$&_OC~ z#HUqA^>E_E*ukeX-eGWmfDL?*@~$~vCo4t<d6i65}_6k(Kw*w39Aq>pBBdCSky!rk{}1Ztx4nI|8Z(p zt6S{kQ7Wp7t4td1ezXNlF8(3L)GaiAXZkTdy~unKhMW=7`n8FF=5rCV!M7*s$=I<> zuhuV3d}&5HL&0l29I@?MfDWk&mKkZ29UQS9gTtiZEllb2AB+f>&L%zwIwH^cW#exK zG!sXDr`;D=-%}@{(#V6hLM^3`w2y>{uS;-TB;-e6YE2n>0`IyIJlepAIBYKIFYzhJ zQVu%~XHo9H%JKSt7p4P{chZBKi@+DbAF_BVNg2H)$_Ok*T(MYWDp{0fT47++SdJ3U zfVC8Q(Q3PskIqWTCv|4wo@8%OoEBw9xrp{jC8(mX`9WZ4`9y?CHA-s}D&E3t=Tx5@ zi)gup2vv5uH#Use{rVrWrylZI6$b?Zv^{!%;GX6!f|r*f;^VKvO#Rx&%1|`N|EiY% zCmeOB+;Jkg`1^~W?Sg-g7G z`DWk5JlY4)mfR(|Bfw53E4a861H^0aya%jc-Ic?CG^ou;dXP-bmJ*lr#@bIN-W%}0 z5hbLVxUEPz#rfZIEyE0xj$7l4ca_Fl>#fz?|jgV_Wef^r#qt2RBcvLCK2o)e(dK%;X@(L(t|@;R<`FaxBFItEVfIv5S99+ zyyO~x;|!%|6TkcIxH^vACsN?4P3+Jc7y@U$dZm3cpqs$eLp9#d4?6sV7bR(kTL3 zBgzV!kz0K{S3ns!diR=c;r4WOv$XXnl=5>6j!pxG8lZOdjg#%WxB|2JXPyY`)*f4b zjyTp#?N3LGkiZ*nIkh?AFXfi{vL7YhUWqNecwh?%p;MY`RNT(ZlAv zmaJ6}Ra%0>-{EIp^B!4n#Tgiuv>(`i*r*AyOjZj<>>>_H>q3+HfNkOK%a7PQ;PQc* zrPIV+>e)pl&izfW%CL0%XtiMvQD`;z=)4T}P@8eOI*{|0=!$$@X`}nX?gI}U#!sES z7tXapd4yH(s9905Wj*J-Be~chJ+)A`kl7pW;jBEg^q8X=(|f*&2y{qf%8*BYtlP^w zrFJoDN&)%4h5keWeEFk@!36imq`3htJt>^I0-m9-4Y+}&H<#hN!P4O~VI3EoCjOvi zKWOB^N@S?;R+D4q$kTigAgrf<$A}D+KkF6`;*(>6Vm~E|k7bm&%@TfSJZbYH8jpj5 zc_lsES(^}T3?)3k83~OUwgCyBVTBdC<{;-`j36?c^bzSAY%u zaWOcjFAjzquknQ;e^Nqvj9!bQNorYAU6kWQZ3VzX+QyFPz*f?NjI)lV48VtEbmrMSC4P8SG_a zbzE2#C??;j@G`kGE!e*oT)#mu>=K{awW$bt9sxU?uxzUN%6EG7E(~_)E%#b-pJ~Nv zrBySs3WHpXQ;Aitg9mYc7uZiH$B?`Vq(Xuz!$Bo|bUDcYAyPvKKInNoTnisRM)UHv zCAe?xU{@*!OI$A}>y(^%bfz+)0~|R$ib_f;6sXWy)?DSpchhq!k|RwBs{aiUYw9zgP-2^Nev;MOdvi zhz+*m6sgdOuOb8D2Yn?wf4DbIXzH}VWBbtW7}vPA%Dq(*m_wzf0?HEPn(UMdQek4J z=(@I9+{Pb;+cfr=a@~XGVbAu8SsFAr+AOU@8y^(w5Nj=ed&|uhzxku0YgU{ir*sdE z^%=2435NQiFRi+|sQs3i`G$dUggDGg^BNfBV|BteZ3E76al-QQV-GIt=&oNmCW16< zDoE)fxpAAc{!{CLUlkeNWW*)2!JOWgA=-p2N(m&esXyRpp%9UOlFd#ar%ENB&bt-W z3y>gX?Qwm7TyxfpJrWF7MWOk7tr>*M2L2>YgeB9syg8{&I zPa<&i?n!juNM@McB67}tW%E2ZT_)s6-lR!8RW({i&=sF7Jv@+A_z_ehJ`VwA9{0GX zmuFT_Ya8+>-0zrURY*08N&)@?yJwtuNF$ian1+~tij$=ICw!&e-f?)R1`h3H-f9G1 z5Le^k6e?|8;{WkL01?)@VnbOtwL$=dWcgtQDg2{~(k$V$bY`r>fP;SdNyL#KC}lMV zx#w$1xjXOfu)Yb#?Die9u)!Fb?vVILKWrKL$m_dwkqBZh93-d+o?qTO$6mpciNA_c zE+&0{UHmLnI~PW>{2)0}I_Fk?3eQ;0r&qrIOTF+78FVdf!<7&jMwVVJfp)N9I(lRC z1)zpyU+2jDdM_HZq3u*;?XhT?ytg&6A#aj<1Q+sl1eMIrpEdPpSbWCz*(_fC@v=@A z>YZ0Nfeg){v<^CAe&?}DiCL;b)oT4@)}I-F`OPQ|l}DSU;Tr)*#0olA#1cx}sM2vr z-jFx+wS$Mjyxfl_DRuP}E%9a&#&phv;0FyPRqT{MJ0Y$ym)z+LKDMrHH%5B&Yv4T& zv$Q9H`DVI^c?Be+f*3`~FiXOe2iuAulv!r%cem)tO|j0Gc&%!rWa118pVQNLOkHsrj-$_h?u&wn*4M@4nqzz9lFg>g$#RtH|luS zd&1yI$VNJscM(EG3@DJjikk^I5`ZNy<)H6bKgdgVC5p%b%ZTLg`)9S{bgBmoPY;?n zw!sb}YYkL#ip7IG0lq(dI{YK{r#utZKL@_FFj?|k+l{D``$Ril(H0u6zna$R3}%%5 zTn`ymA)2InG1OTua@xivL}kW*s;?E_ zOQ?^b4e5o&G*2pMS{~O4yLGjg7U-@}sCYCbODg-YR<8YF!X4Na)M8d=~2bl3j9a_4S1(GK2exVspLZ|M+EI z3Vd9JX^_-HC$E9SX29@O%hN-46iOuKN*}DfswDwEEyxA{BHtGRR?o{r7g;JWlq8)& zXw#N*qAzcU8%gy~Dji>n04O3hHP3Qkyl^|_IPkJXIo#HdzxPR%AIkr~03#6G@3$+f zGPe$Y4uhB1T0od<8x}s??W6MeglaYC1b2C1K^Fd?!wy;ZjPMwAeo^nwN zWM07*d1<`e>o9qOjFvEmW$&@?JH^kmw?5jmNPQ8@Z%u}38$b$is8XmffL3=$9Sm|m zVH;`O!|9*Sq_Q_KV14Zg!$DIJ*(7uNS>AA-7;zW{#!Vj~Oc+3{}rD=2K|WrcDeB#)jzh<*wEn0dyvZOp-c zt(#hvUs1y%^n{fVe9x!^YfoI&0Cw18MV-btn$|Y2718CcqGzai)3tymbVIJG4j~?q-1uXMfvli8;IXHmN9b z@R8QprX5r{Vk8P>Ze(+Ga%Ev{3T1AWeljoy0Wp{Hax*RtMoUmxMk`EBQg3ZxZa0^3 z@-`cndb~1t6e$WXMsIF(MrmwiATcpEG$1e_QkTAdI2xDkb2ACIE4?yzGy^dwimk^FK77;f&I0`RJWo~D5Xfhx-H8e7p z!E`nh0XUamB`hm{wRUw}lv~#}NJxXUpfaR14Bg!&9g+hK%?!*8-2#G?gmg%ksB}vs zEhtEfq;yFL2>1@3bDje}@B97t{pL4w&%Le{*IsMwwKpTJrVfX+HPjNU0EHkpfSlYS z05x@W5W-I069I<6?V%7LH-|RZ*3Ah70{}UBxVdo{8D(LAU=RWc$$=1H5dcsCVF%Cw zyCA^MmS7kFsUnQS2v7t=z%V3k4Y2eAsDlw8T`w0f5Wo!j{h|qlBRDKUa3lpRUD+^mASgSuC%U^raX}AY7GD&z#R;`%FKUpV?r_m z{7VgKY6F8h{|*3PwnHFXM7X#-JUlpU-QWmLD9o0B)5YmGKV3U}IKTr6a|9rtFt8K& zcVgTi*2r`s?7)9HxGE4p&E5)G74Vgj0`xD?8JS9?5mJu$4>4pS5LZ5({!$0P!QdNV z>_G6}wrZN1Y5-@DJp@^65X1_phyWqn-~fx?GUOL*{qQe>V1TR}40aVm{T~SSpD_PW zmw_UGS7zem;|KEivtl5K8{GR^Zf-8y3W{tsI0F8cM=-#~-U)og9)49bd&qB@y0nI} zg1n9{hZ?f?AROvYWOg8&2v5Xs?JIxMa%v&~0bxD>5c$38Q+bHBEY#T<$r_Gxl|DIp zWS$UEm>1Xo-Q$iBs0YO7|Dj-G53#nns)eG{n{kj4ab{k>1sob3*nuaz5E#O*jAtkWb(b4B56;ju0>$ z4&eLC42(?7AIy=}xZ(}qQdc%Gl6lO3_J6n2Z+&@)71Y`uVhiBm7XW}@Fpw7xH?l`~ z`1t`oK;#Cn27CT)A^;aB1d2eK09@PPD-LHsMf?#tQU`agisbyo{FKp>F+Ul0NI{5K^$JluaFFgS7!BKz=9 zQ$A#ITtLV%|L5uj_-_K&*1&sz4Y{!Z;7#CK$po(>*D7{B`n6UTy6)*(x%j#Nmj72` z1qA*;uJPr&4&5Nk^9OQ`vCs|ZU&=u48yv2azTxe9lOd-D7Yu})(jcen;d%J@{*_;= z8FK#oBfjB<|36~nfWID@2Z*$QyE!|9{e_xA!zw01iP)D$Vy*2VucufU4{$Tc=#@xs=2#Ay;KmYtQy%B)%-{bR|wTukZ z(}#nH55U1AjGP5PKIHBY6y)){VQTf)1?BhghaAcOykFf80LaM*w!)bjhgyk-I3(9T zE%BGn8!5$L6z1G2BbP9LREa~MN*igWrj*NGqytOl2h|6rGv!0oltfJZ6N4ayhKwO( zPM32HFJ2EHT5Cxyf&A6|sR`tz2VUxP>ODzUpA0N*p<`KBd6{ce#P=z^F|P3eKyP3} zR=BzKG@9qbuRGt9=uAo*XLB$-3dVqSq%bF9&q*Sxchr+3?@$qczfMV?M}az|r&vcV za-Wh9s9?IZw-Onj-BT@1@=5bMxdm4gI2b2_U&M^FeSHh?C$jV2O`wr`t#{fvL!ls; zr~VXnH#s_!`m~2PP(9aCZTdT(z~0FQJ=VaI&Ev17M!8aGHda&HFU+Fosw_z?T5ipJ z85F(5Vn3!Qj0!$~Q?)X%WApYqFei7okPOcZ70|m}52*pfHbp!7pUfOojL_8@TJl#h zr(%fSrd)8`@h5dq)EQs8a8h-gDm`c2Hc(nf_!M+tC)joOUjwMV;E`mYJt zXu8@N{r1qx5z#w~c{nQ~8w?j+BFC&YjdQsC2B(Mp7vPLjUPadOXLRWIP4UmAEhH9f zF3NnLO-EaQZQUDLT$GUS?xoVVT6v$y!CV=d)2S>NZF;+=bz(whc0O51;>5|ur&cQ^ z$WXC*r^)Odn#rnqlelEx2>$4&=(bSt>918i-(-{kilt$@`ohyDuUd8n1c-$b>z^rn zoOr7=(F<{nxubKEk1gpX?}74u#oMtSBUi{_dWwL5V>dy!*VFXQw5Gb;fGCKvM}yj% zLN(V$1IoA+QBO&pPQ{3y%xLQid*-Y*mSfz$SrS=7`SJBH`B!W0mQ%dIU)=X8W}l_d z<3@Q=Vr95|1Rwe42@p~Kik~~Tz?7h}XR7nWaT|7BnA!OdS;1n?py6GQML3Gz(tk4d zu1lbQ`fW-sPo#f?f=v*`pb&)7CD@l>j+N_p$8X2gu38|QmmwpV>1b=mDUtKs`5}qt z+oIUKGIjRU?;;~n$vP7{9IDiL6ga2!Up~h)$3zU1cXXPv1F5D%4_pBkk{hLFiur;hREW*l zVg3giPHd`GWIoHD?BPf6Boa|hX%se8@MzPpAbO!JIl~A}Gu;J7hLYi_uh&ROeA!Z| zgjm-1?Hr3=WE`(w2dl__F{vRsTnrMj`{B&k8y17JIK*CCd^8pq7E@^UwrZ@}w>7|j z=xIh@?q|{k*My2r8?G&i4-Xq9V$otX(iou8W}2R|&RKXlc78EM$?E5EBHbazhho_; zgHSJ_{lqK}x$S+>gOm2haFn*(yboy;0ZGu&279M86r1l84 z+oxSq;4#)BkeHqi#W5@Uq~u{Gdnal zUgZpht5|%}*=qfl_B~A%i3e**O{=e-V575UwY|40t^-1QSI z$noD+bm0q8ev=niTx{k_Z{9KqLw&mPY({3o`Mtuyb^@XCw42VJ%E=(@kabgrUM0!_ z8+woFm*k1{o^bheVGiIbe($`0FwSPod=z8@uV(E#M2W$7gR$ylWbs8L!>6KeW$bUn za#8{k)_-*P0FXCgBv_fil;ExLFl9CueA!B7cpSxkA)7Q^+7RD6{)(4qtW^IR;mqB{L> zauN`6MC1Hzw@aE3rBqRWnn52gv;)EWF)LSpx9sPmT76m)snWEK!QHiKF84?smZa02 zJBp4UEhhaJ#dS?$T>>zM7>_%;X^R1gn{KFRWhV@?#hi6;Vb&iIn723q?!cqhxWfL{ zerm~IezdGmlwm{rV0o9^dscgB`~liYO|L(I)Jks)xDu)fG-08CVh%Tfva6rfGI*qZ z!0lt27Mh5_*toTdM!byC?jUO2O+uJa9>ZDGT~4Zk-Lp+!>Fm&e&q`Jm{_$sByADR< z5Q9e(#fNR6{(NvpGA06tXa=V44|vBIPIYR2hBIZKLf%sgs<^l4G`LK5P?c!pqe$UR z79M|~Fhfy)Y5;o6c>xrDa-PPXdhj6J_H&WhZIoy&la(bDESCkmz|Ny>_hbW_@6RAu zEZm{OSf&a|=9ngmLs+7Ah5oh4VSyX<+8UxcpD%ta@`>2%59F~QcRsZ%Khuw3>nESH zX52+h#{Jx`vV>JK7lSExsr{}zeJ14d>_~7fhC#}IaPmmTQ>q$4JL!8~!vgi#MZ)vm1$^Zj60|4dC#FEAg=fe;ON$+Xjs&(R#Yz(|b3&fR=~!-T?miGtVn+*lz<2Jp%9KTz zME=8%C0Ti;|8ZbtYqcpx%#rz1`s5}Nfr6-kQ_sA~iPqvE$|y(2Xia*@||IRPqsPXi*N*`Hd*5I&fJqTSW+};t(uKJ;}%uy#@`0)dW2EdwJE6^c>Uv#-PsTc z%01ImX;p2Rqep&n=iMx-?U4ZCQV;Hb=G@Jib+#B!y3b9%nwSE;{Fz60pU^7H?UQQ} zhn`c)=gzgai;X?}3g20kb?If1# zswY0PgUfNnm;;*Jgex)H*hb%dJ!$tkhKqAB(+sQ~Qfl6?YjAD3) zb$*F|G9jzMTV}S+e)cw6hY_}oB`KGe2JvdsW^gePR`2dz)1>A8)}w&KkNWKa-$WP| z$N>&koER^U1NCw+5Ts=s>?MSNlqNf)JM0hN4M^R2=6UNbc^a0Du7A^i(N}f51F46- zE?HaKD|P|q!{kqN-mo?aV(Z?^z*x1H=dnpVq<{NiOt~35v*|RkTz>FdEk)cW_Ae<-$s+3oM7;cG0FQtfN-3eUa!mUlr8HFyyeH?6tj%o`z!;?hJU!{$t z4^@Oeki3xD3~p;>bbLq$BFOrZZC7MdAk}X$`-pYz!LQe~)rfdrpN|k4Z)HiT9(1-j zY}0Zq6sF3%t9i-`T8}Qr60ARwT8_zTB9e7H+YcZ&s&CA#+0EVdpHf@y)15*{LxpGrg2MIEGPapqGch@fyIDl-BkzRV zQ)W-v(AwLVkp518`0`wbS?$Mu+H&qOjol~D%WUEn5psTxc*&^*!@b6Gih`W*oySG_ z8C9ao2=9GywBg~cS2&dq@m3AKxJ=U5y+E)Im8TU+9FAczU`oeG&!lamh-L(|J~EgJ zTfsPA@XjXtIL>QmxsuPhxsw??FJ|VBVhsJAp3J1{i1p#xBdfNHnn!3XrXulY_=uw`@mp%`I=eB-iue5V>7~a zs#0vlYK32aFi^^tYdnuf`y8?Li)HYuUc`2CzwYlZ%vq(Xaj1P&KXei&;Y>>&91^yv z3ZHiIny$x-!BbU0;Z+;h^_R&v+73ZOAW|LC<1@%3EX=-~AVx}@!y8(hTMLgOZ^sm6 ze%;$zuSYSgN4wll&uMz^)+%e*U_z(FiDAT)>?W0e{zg5;lRIayr{If6t7?k&ZGlI< zBy*I`ArifIoU$V`MVw5~m;8sCCUC*>`Atgap2%Vs^<*ps2{xMC5DPD-v6}hv4<^rv z1FL7HeK)O(5qCbcxr&vDo+5wu-g$mJ$~?a3WS+MQLs4M+$}{Ko zN3-^SPpD#@Oh3v+X!X%bG3>mDy}F-*eL|*bV+dMuAT`jXZFJzang0~+no-d*&44+! zDm))pLldjYY~Z*il4VivBrsQCel)^3rdZ`w%x6!uT0P22hZ$$qTMf>2?=72Slgf`2{BspLmf^_>4A5Twt!lH*EF0~Eb|TFcyQ*>#lWMo-bwr?LNQ{O zY`)~pEDarf@@D#rB5U85+uzeOA)NR^L9OxhDopszX7dZe$Et^GFy+waHCtUt1Y9QL;q1f%)^FO!}( zmF**MRAOzTr~{_Gy)6&w2!V$%a>shleo=6Gxot2m3$bPElIa*`MWV<)fSL}sO-FcW zz@;mVi*J)Wvp35Rul;1Eq_(^^C~7Nz3E`Bv>yuecz-r0EW1XU6`B?Pm3BLC-_ zqz5jc8G>HR6cm@*jXxW>0QhL(k8AwW(@1RRBgD48@kL^E=wtl~l7H{gA@!BQA3BCRxo(qGAjzY!lQA7 z{%CHl*y5F|YZ{f#Qde?uS<6>{vs$X5Wa`hitIdCMm+?n^q);3qzwJq?KI%ZGpKLrB z*81_mk*+08VI|j|h{#NN_ClP_%gZ0>IB|+VjL}KE=RvCcw~S2Pr~EZb(Hf}^`O~Au z2DQGlv)@6##U*{~3l$I}jxJMfpAu%8NR+Sv@11*~Qj0j0&L$40vW(b&PsEfL-7g(I zt5ai3^tgO9)WMz+7AghOl-YWQMhHmzI$qzWRLc*l@)18j^}fJ$Nb@DE8j@T)--o?@ zA@%domW|ZxNfwK~fGwr0Xu)vuYOlUolPWh#n*4sit|l$ZPqRyfo~OHlkw>Aj_6Pjc zZ`Js{x zNqPNHg3Q$Vx04mm%-QE7njN$f_&(q16Lb)qP<@Hzff6rDxe@?*{BveTMu ze~PYPS8%N?zS+sGcD8c?QR>^_q+n;|H{MgErNK48JW?CxQP&RF7h#y&96RQ&=C4i$ zv8BSQ>5{g89;0Gd)bpVWL>^qIFg}6DS=RlW!Zr-Y<o%aEx z^WHr@@kvq;e=}@!oI=C>KINt0CwQF61R{Y;OC8*5zdM^^pvR$+XOJwZwIz4)JthOu ztuwRIdH7867zb8~J!9~QmTX(_@q4`w4U-!e7PT@`bs-}M4c~0j3Pxl_LYkhzKWvH_ zzGe`A%ch`|sw~Ww8~zG7hpZOM@63u{HRFTph ziJiuia-tv({ztB{QT?RY$5T>2=pPoM)CQ3Ze#alUkRqyVS`CXzi{+8?Fzq-kS%qr}UN7EWf>5xc7o%}q+o}%jk**AncdBpp z=kH2Sf4cWy=u>C;;C?WY79@O(V_^PG`YfMzDe;ru9LjjJ`yu{D9bHm6@tA-~=

      ub59B;Abw|^6QmC{bB~R7J)~^hJP#Ukh^>HQ(4n=I8@3Cw&kzwYCegS;a9PnO=xPE5H+=rLA1FSA-8k zFz8A@y`C;-#NWjB6Tt}P+(}j>U4`U^%C*PP*{^A+pXK=OTz|_-E>v|5LszTvLwG`V zgtqe40@AkRN2gI@Dj}BC3H#CJvO=BAFoa^0zc66w%H>RM@K4zg$kTp%+`_j5gQ0q&G}Bt79N?@^F^23EXsDDcM^ zX*AY)qi2<0*ME#rd_mAZih>wlNK8SnXkq;QJS(9Y9|G3Fj`IDr>`+0`1oZSWP;@aa||Y@3<>)v|50Uoihq)v&@AS!|6oOe#W2|PdnW1w z1LoYxiM4kU@66)$L~@2YL;aYQ$18)HHWwZepVQtRtQz6JuHE~Z)hi;snH%j=&f|(- zwZnGTV0C(=A#5L7i#$vjf0r&PLCKKf<%6<_$l%i5VW$>D)hTKV&ct?PLrwKVn$VIIeld zXp(hlawQg+$1s%E@3|ZgZs>}{h9fMdVJ;)mPc<+iP$x7+d@KyUUf*lbr8K-=M!wx7 z`n3wUg!sd{4z!@62Kf)_R|#iRhsuc4;v~hUuYdcM4L6yFCvvhu*4?dN=ydcv^(>`* z*u3_3Cp~36)V@7AAxCz){VsD3_={I^0)V_Ao#(E=eDvs|0Bd~nbL$hfi;=kndU2Yj znSYbKTb-DDl(!8E86jkfXRuG5x4))^ zvVXXvKES~k65$>uUisAkgJq|GXhLXJ{VX(uz!gn z@CW-JVJE4k6@Q2YA~pqy1Z^paZjEq})H)!cLsS+`T8xC-e))pRL6qwz&O;b|c7EQ4 zTT%+&pna^q#9O}%CHj0u7E`FW**=t~c^;3A}vrL&Y&(xJF zh}9NDU~mdo|Ck|Ldwgk`1Nk%6H-C=EW)5L`Z()<6`Rx|N3&pe0B})P~0=RDMU@0*( zk`$D&DfkYcK}Lh{)z5T~R3oj{d=`6EXsu4S484(RdW4u*nM$~V$tO6vWoE|{NeRuy z#r1~W8l$;~?{spDL2+pAoHBA8_j?Pt_l3(3+CqrzeL6}5ocmR8L$2Of!hapH0&C~N ziNV4#g3P}2snY8#$bPM9}q2aJq zs3X~_5bn+U=0jZLHCj-u%e_iAOZ^j`0bUIqHIcqqFvC{nxWT0GqT+HYo-uI2@2D}MryP(wG5EF9WVtKQ1Txqw z)n$+xTJf`Rw4Aw1DwN~^MH(|uoPTIn-p|f2|41h4%=O?D9?5IlxAzjxldR&7;=kvx zSK0WCjP*GadQ`^8hbVVdWel$eV8X4~C%3?ySS}ewzl|WuzV!0-r;0)3w7iaZ7>7|n zFIB^i44`g7v484K9V7{4Z<`wLs>n!5b0}X0&#s4nl|aM-AhgWIZQ&0mcSFTYHv1lL zwSBM7(b5Ojac!GD61(p4KMtZqOYnV&M`T}9^(210CeDxTrHjUlyY!DpRh~A5Vp3qf z=#Q=2IB0J4S3YG^?68SSdOBoQmYKo8g|p9XZ(%w(nSV!Zl6Y|R`h`M7^`m3_t_Vr` zIziQ8Nyi7jRREH78hbH};}C2=$B+xDtqZylaDA?!AHx~+0C9PS%!)-S&Oc zAF*CNo_}>Mlyq`X*Pk^(-|&1BfqGpTt~g{?t&Cl5c#svc%r$R7L6{|*0!9tb6zvm| zKr1(ee*mVwp=C+Nv*Pz{D+c02%}BR^0(gd`=H>Qu_NQa3??-##KcLviusnX1VZe-d zxF{re4+jE&j+BK$63HQ)szKo_SEPm-J5F+aWq&n%wvdnhg5NIpm=BC0m|xY;E4-?7u!^UNNHRWv95`BYVE)q+cvSZyO_(GoCxFv|Sm z9Dj7}lsZoB3>!PsBzen0bW&;2bLyK{sx2%H9@E6hhfaQ3SL9nvIE&D5}F7duVqhUTksFAfCF32RI~NSZM<;NJA&? zcM_=}(V_KB&5^qKcDcK03qK!?U16Gm$ro8hKJAp$DIaN;@WIoGUGZ$Eo6-2HGt$S< z0)vT;6R7#eP&!)d=bPnq6bX75C4Uw;eosKd>i2#RXGOW8gX;%o4PgFEke&miwad)k z?)(9VBz6!TW#osYhqc?VjuxfHb^4)RX8t$v&zHH~<2dLTA*m51q;Pbb`GX3bQeyz3 z^~IV#oo=QZKz+-d2x%!uWMAF4DC;omhU20}(6fwrK`7MmopT`Yaq*C%e}AAC{Ac$r z|HOIttEQXqvv}3JSWG+;r(Acn|H)`(WSx;~$rUOHN7%wsSNpG|YifLTn`GB-ulRrq zS}uEAh9B|56jrqDy(uVL>JR@FZqqiYILtb;kGEz|eqDX6Qaq5MNL~)K+OA$Ibp?Pa z(kdLFu~7OgK~6z0bEn$U+kc*@WNK=*2cN2rz^BioaP?X~|FOZv@vK@_AoSajh6}O2 zG}7}z8VLAXN0ZmOiMDh1^%szybwc2#Ya&M*@GOs%(pLs`Tuf4P_p^4sTD^;K+$kaj>+iv5Q>dvpoJ0eURfPURv z>Ydy+MIDN_Fn1hqIY*_IL{H;`JZgQdQ8K_5q^=&u_>1}u@cbMIKR@XrPyU7g4blV4wUojB0P=11YTM*L<;RrGNeU8VN4|)pIcPLw-^{ z1&Ti^DkLVbzwbjhbt+=#nC|KJTqZi^KpV{G4HH;&-@~9w;Sn^?%ecCTv}X29Qt%hD z#D>GeeJaH>j4fB7%3)yrO-}Ua5}tcDT;H2>1`cNDKcPI@!7Hu5t<55 z>*|AB;O(IYSbxu-T>Bf_gv`2soNL&f;4J#B-_94F2ABV_RsGsnf98bi%cwWcg~kWFE&Kx^3KgVNtcW%0}=^9q6v3}ej)((f~L^#z0hFTd;4AO?PVF&|lo?;M2 z!@ssL;1m4)h$1|1ox%ZE6vBI~j>5aoM9<&=psVB?tCo%F4Z_1k_^Qxelliq4CUZGs zU5)1O=*K9dtV%FXRdz77-A?2aSL27>CkfzNFJI)XhLofqT z&xBh-{kwTSEj*Fta&%3Pbdd7JTt0H%7!#X{P=AUJ9BTd_Ekc5%c#Hlu#E8FVc?*dK zKhp{i;eH9zK1zCx7}T|eGpJ%pg+xRO9OB&HbrVH5!qp9of*Zp+A&*c{rdGZ`w!vx{ zjP8AZCRm-#uar_*?>0s;PyAQq;>+q7l%g3D8NqsSNc_oU33vw>igroZ(L->RMf&8p zv42s+D46>5eapS5=f!R3ja!75@4Uvw#hQi>vSJo6=uG{|LNWPo%7aBnee*|asO|BS z<7M>cLMOGOC_Xxzy_doZc@Cm*wxW5W?)gLvrjG*H{Hh;;WqFTVE;k^wjqXbc>YprT zPz~8>-gm#->5{0unVuA8K%3@VxlT93On>oMc6%9`LYd;QRl^_6jv@MlrB!>}!J(Nk zXOx&5y$z0U_E}*!p#{fcXR2 zricPN^pib%tM(UOW9=u4@ajufG@TQN^PeJnGVaxIP*tFwLn^2o?c6Az_{`jl3x5yt zh84p-z@9~7PdqQTUst%8(0#8pCrsgz6$%EVH&!iP#@*n^1)Z;AHG>?lg*X(b(!u%@ z{0Mm_ScSv0oLY@ov~15PwOYI01$h6Qm`~&t6H@N@LIpyS{26yB+wj{AE?w*JP1`t% zD;brF%S=e4z8JPlPUaWB+n<36SAYMYz3x(KfWUe>Qh=M--zT|PC4m3Mn~{;Y_5KxQ z4D?8PG=(?4l@75?8+Qq_Nk`z+J^q>Hc|@`HKa|`d9J0%l4`~lc!@q&9Zn5UAJW1Q~ zPentVHyLeWIqb(%FNxF(U%?!UPOb8DpgF;1V{m9N)&EgAwI(D**lBCiF@Ixn=v0o1 zT%W3A<%F=pkIy$8Ly@$t7r)?8O{9;RyB(GM{_ZmIi3ey_6iIPvF4Vue6!izXCV(Jj z14`WT1R+yNqHVQY%g!!v$kqz$Ng{Tmy1PVTWzW@8ajWyMv(1NHKeK zx-byzrvlja34!gR3y^yO!+#Y#>T))1nec>~;B2Kg*UfyFC8Qskaonls9NU?4t#A9; zw|l7N6z0yz=0uafgjJYWf8 z#_Pz4KDX{DXnZ79$>o~S{{aRe*Qk7*!HYC`Bpvv#OfTJr)}}WXi+>EG^iNX%gGn|> zFgR4|-XN=WQvQw({NG3ebeGc;spnatS`dWXdrOCKf7@g6#6Y;;1vZdN10{QD$uGIK zsl+xUDGH-yRTw*y2j(a{-^5F*VF({hhBh4-Nm>8G^szFN(wxtc)4== zl2JS*LQ;yF^|YK~nekwRy>m6I z?!i|NgOE}-h%n9?%#F7*7+zZH7#2$gXHI8lSj_oZe=B;+*IUNbJR;n}0W_+QB#|+; z4e}7mBel68y7XM_ndC$|v9kO~cq|y+S$L;?w|2Z|FBU-ue=9voStOCmPd;Qk!7& z23n^*g21<;jsF!eUP0Zq$yZ1UwLW#=%CX5~{b?70ANrCpSNla?5)h`_tJuc}d_%YK zz!S9Ex)M)a;_)}+cK%ukj?AL0KDW}o`_2^?iSrELE`M+f0l2a+I8a6^!TWVOL1&*T zwXO6F%MXi4kwLmapAN8dH$|yh4jvQ^azvB~Skbi)4XnvSTmak)15zkUQbpn{50A?H z;Z&^W5KKT2V`V9`1G*DHb3Zr#5h;{ka1#vYSxJt>Yz;gd>_Hp`< zBkvf0ihr_db(UP4z+90Q@R(kgI)JzU&Kk>rYzCz^OTCz?blvXhWm_Ow1-z&{Y2 zus+}J(*&bzHmwJ!#{tlFg?KZyy^qg4x&biJ1b^iHE`BmLR5UN=iPj&xqwUsW0@W+P zU!UtScPekhf#k8hy25F~WYlj}fVE?uzl8mi3DACOdv3l3{-8XLPXvkisZE#*zIJ)( zwGvMnFN}S9N5*`EuuHdo%z&`gG>_FKQZ=Qny?Av7&iYTwvIzz!34wpy0PIZ_Y=tr< z1%Kkh08T)$zk|Q*x?Hya8eF%ZcsB39oyFKXvSnus8{+o@R1h4P%ounBmGkA9BdAq# zXc+)0PJ#loJV@am*9ceDvvsqI^2oRb9$6itX1v&0e8)5^>QO;%}=jAj~KI zhB%7}RgyC2dhL<@Mw-5T!sDOt8?d3c!cBcy7sr2fs}0!DhBL(#gzLc5-ZtP)L!*GE z-Rar1yElUSlZGhMZ$yOX+j|Q6A+0CdbyFCW;$N0P(PdxGH_99UfySf>5vhH_O(Zzm={h;lQM3+m$N zQm~pTJq!;{BRjYiohhh4r2WPUMdxkSm!*H%@9_33OWt|jB;f-QT)I`h?!2B-DGy+1 z06$WAEF9(WzR}V0Dn(j#9W(dHa_U~C;p!-5WB`2O=hX4joDdfsYdA5z^$5w0@_bc5 z5S@^cSH2X>^8|x1SWr95j@pu~FFzq^)Wwc{DXj&ygy~zEg$Y*)yZGh*ZXIQgsiJvD+QydQr1oTlVN5 z0yc`1Rd-gu>+Fy5Ii+*-&|Ub97rDy;Qb6PEf+e9zY<~FThj=giN&UFAzZ$-T^U3ce z^QCEhHS`Y4V`YtR*igWg zzX;hr1#Ro~hcm9OY&G1)u4fw}J(_H|@Kw+HmOP#b0okKXKcH?co~OhSKIm^*ZZQZv zkA|XX=h(La1fuYKdu&fI@Nrj;?KJ_=X^bw+s^r{|`&nK&$PaE{6r_7-KWTrUWsKun zE59piY{sM7G0h_kB3W)|;34a#gOy+Dc;f~%ZPNED;hcQ;`Kus_Heb)ACL8EtL99sX z(9RTqh2@B+jQk&F8B~uI3)QMTU&+1IT6KC=@>2C}|E}x|Z1zvZ><0O1k@+YGP3u?LY4|SO4;ebZXm*5uSiNF7Z;f6c=iCD zRXw$~ygU1WjB~;Uf_Z;foFq8>BiF8RrG+neE8cZ?HATla>qS^7FB0o=#crt$)pxG42Pr1rxak(Ut ziNe)?BdlfB7qy3fxp>TON$}Cn4@-U4B^82kpwK}7hX}%G6_=R2jeLSRvM!(!dp22z zZM%2#Fr}xXzr@AqMf9=)w>;hsXd{!rY{>J&hByd^2pgIS2X3j=8UyyW0@}&plyO|1 z;1@1uJ&U-Hlok2>^1%@78WjP-_P^yQ zpg>2*>}ROAFPfvL1*CemhvQiPMIke+p>4P6;D<8fLcTr+8styC0{_%t7*;_vk# z)t;m6JCkfjg8k-XGDsy=;EpmqG#o;6VOOd8k*TRuEpHK~dj8>YzICsWZm?<*PjCi? zUxCPd#o&Jv8l>ETh@m{dfgq_jaI0vc-d^)j7h4pLjLBtNAyW$AGM5`3*ANFr6SJ@~ zL>TC@FPdDJ=#=#>Xf53u$N&iu8Qxq?X?x2ng;!@r7sPlt?b3o-j(Uf2-o)hQba{;# zG0LsI%kf`;1HCr2wGG7X?8QaV+E^!pTR`k5x9vUy&}HEano)s(h2eZmIxpTFhwd*j zp^|^tkn+(%bdH+!&99I<5|+gWFwe4C<46>?0LYrfO*=F4yRio!9RVs-Y%lfdKYKM~ z_H_f-O)4E@tID+d9uqDHI{551o!^xI0?#FH21oETH5q*;drdv)ENRu!U_pan@%|D| z7A#GjX}l^w-w$_Y-g+>5^E@!=5fVyYJ>h>!()oTM0)z?+ee|p|O(5V(wW4VZLmB@g z5K`iLOj)j8sATrnd*GGEqkkY(`d2eF&CEs3hz}NVKqoYi zM}xj#N{$?xyf#EgU+ht9GH^_2K5SVF@_HMaF;Ssan{hOlN<$P>$cJEUl-YmrjOEOS za-XQaujwUoU6^P}e^;qG`ZqUv-%nOTOX{p%W~u2F(gl<=%Yt(}Q1Sjz|Myl=3*!o| zO7>(E6GtXRh#^6d8MqTY6|<|@VFY4J6LKse%?~<&Nw4b^-n;ru*AwIq;D)_c7b7`a zBB+y1p7sm~aUhX9!s-=1S*(9<=sjF8Lv5~=|% zx6u>aJKr7bNf(7i$8FgC$@oU|oQHy7Lt5 z@oKuyy6FYr=sA2<{4?L_qAM6Wn7qNTmO z%wsKs;)Pp;^o4jL%bg1vLTUA~Ze>TYfWKeAoXP$z@_o)%Stx&?&T)Zg;2s~jL76OF zpBQNQqh30xEu)XVsRPOkBkTql>W&~HsB1(3&O2QomX@IClH=VaBwwgMH&)F_gaQZ5 zyQuquHBU}zadD}LPkKu6kHue9WE}BOpw6jaep}6{DEbGv8&n;%_1apbVns` zhG=O5ymn)c{jPK^B}=l1FpTIv3&A8V_?_TH&Z&N&MGzmZxwF*Fn|dMCG8I6NMq5g{TO{-Nr88VNA#WqmEGoY_bG(z5 zkL;npWbLG`UaQ{d$Utnm^1Gpy-qs7QOeqIbJXzCKv{KC2D2J|^fOFqiiG(l^o!zMHvusF&6AH7~Ot)qk|W z;%uib<@796w$gYT1o|)}b8E4Fb{>NiN#rKtHD^LC<1$;)s zIqrJN#B~i@xNGt1gU5kr6ZM}g`qnZ&{z@|gwlR}()k98#BM2PRw#fjw$=Z& zHhsw3E}_bGEiEc4kk!VsG{Ky7(HKTgf8c*tSJiHW3@hOxwT2GdUdG=NpXfXK&{c7W zR4yOKGl>sfyWkitu3q$$(QVDzBb07rs2BP_E2VQc2Qw~x8uh+$3cZ_BF<8!%e3qfv-t8E*e`$D zM^CVf2*F8LW;o~;qrwt!cS9^Sp4W)++*u+(BH9{>HHvbhMaEqfPbe~yNx95t_pdXy zI&KFmRI&(pFK80qxcw0l+}pGZJXFZZc>1xv29CGTYXe{eNgv^nX~+Z06g3`z=Z~^3 z@2hK-Z_bx@ROMyq@{p6WH4!1J=ed8wkk`Pd>Y2b_!mwwG)ao|b;DiAwJj94YMCbK| zR|#>TH#TwxzG2@Tb(jys7Fb`?i}6ricNjVAa-g5sym}A(*JW+za>1?%T$I)n!rMdn zAdFN!6#0|O6f@`yM%ubY2KU4 zXVKQY22^c1)1jSmjfxYXaeuy@ZA}M61L3=xO|Jr2!}9i|WiqFFNrWx2ufYhAVApfv zl+(Mt@X3Ckvmmrae*e1Kl?F@B*!*4#eJdvVd+R*ARUDvAP}G{QESVee&EYS#k)P*3R`+lHI$c29*SL&B-s1zWTYcAJ72sxu=O&4zJOx$oIveoRPVtK5V z+QWIz`DwuEunvn(tiFWTrMM|NQZU#&<(XzH78}{ffK7khB^xVOCJ=w2O`mXDi# zCd=UIMXlpcZP>9G36veflWc%-`}u*n_&C8eDyjW60t~mKC^v>Ja|3_W^bC(LF=k*a z4$E*q%0|_j#3lWGe&v;#R1iQb#RkhEXjyT`@yS32vk4ZX}e@O@ZoK zHmAluiE->zTtn>f5=frw_u<2W{yvIrv@$}bx zoHih)(aOA;={k_1eVf3RHr$pg_3eZn!v-gy3T19&b98cLVQrUtGB61PF*q}q@g6fP z22x5@R7Xaa4^lW4mp>mf6PLewG>n&0do*sB%X>6Fmlu3Al9y0sHw2e3{WS%bx_mU3 z12H%4+50{UZCk2-f^EU*SUyL;tmv}cd$Q3a-HXtw{QVKpk3T19&Z(?c+F)=uo z@wGP<5;!q33NK7$ZfA68G9WQIH#Iqz!E`nh1u`%>GcuRq-ZLnF_GMI@?Upr+;t(vs zfnH;WfX0#4QyCx6@jLXRtEL}COQTN7I;!pA$y6N z1bhdX0pyH8AE_UI5ey6*@T34SpbgOe!)XjKbOp!&K?cgMc0fh|g~30DysZO>*3iJ= z!ws}CHMap$exwN5+PT`Bo0@_C)?lWk{afj8wjdoq(!j{l*4e?*9AIE$43MOgp##X; zI)8xX018_hfFaP#z{&(*YXVRPssmJ%L==?(Vv2Gq@=BC{bRUJ49PR9E?f;95kdm^B z7!5#JKvr1<092&`h^Z(k|NW~BwE5s~N&}Ep{_y|p^AY$rT}DJ%Kv_dxgpvO5I{+8~ zPC$DH^S^EXgB#fgGr+&8eWaS$+gktA06<{|0@-oW(>psm)0sLtfaq-PP3i2c{^6%= zX6^uRwzao^1bjU0fmXnOgmJVn{*V)72K-lnzlQ>lHa7y=H~{}9iQ4|lY5gJPN74rl z`X6E+LV*6(wE9;#zyS#SUv10`9RA6bmY0_XSR0tzfPgjzHbx(TAOn!213>>D?Bf?` zO#Ux|K!A{=z5U-FGXL$e|DQJhO5uD z@h|v;$$z{4YXm6%Syal8Ej6~av2q0%15Mz6>1Ay}9|J-0|DQekk6xmVR#vhG)n?(e?+JO|8k{}wY9f4u=)?5xr3;=3(#2J9AsqnFJb?MOMnbMW?#U@ z)C%}KaN>D1=F4A1MGkN02AL#MU1E?_qvt2hhv@h5oUanE~`4!Bz&={{t~HdmL2bRsz}ES_0L~jXyp^{+|#T1CYJB zix$Jj7&Ct0A3y*7pU(ekK>F_u{C~0q1#Mm2X<6CW0JO{u%mBvk-ml>0|}A(&C&tUWvXoMe3vh7*=oVtqGOWH^vJ5I|g1dUbx620^`}L zbSi%7GD|*XT||^elG%A0#VoUb>20xX1OS!sVT2!lR>WvXBLc|l*tC1LD(yU}*RBMSLm!YOvsIUmqO zC?0>Tuc#csYK1yF%m|TZ z`5$99qWoNX;$Xh^(BN18?UyWa`n&Hi*^-1a)mqF=F+Iq%ov+!22f>*ukxB#*lb(Ab zS@$HvKABE)>-ezwT6d^vt;=R9V){@!jNRLeCaBA2F2E5P-#$#9 zpx%0ghzXpoeAiY^x!Ef${0)3@u0&aveDaB3+ zeB32XG1EG_{S`pV@wv=yZr|M=fqvBeNL`18`ljWYn0T}WAZt0Zc|-3J|W zhk<;bo^iv4ncD2kYa37)Gr0)aGRrtzvW-0GSe=zo$K{iMNu=X60utqIzbix><@^c5 zt)*-0tN885vT0Telj`X>c;FiMrPt14E98EuS5I7SA;LeuD=N1UG^xzDJL0X}q@{5D zL@~pYi0uM&JmCc3=6J=T$n0?zTpo_QNW!YjKY8%Dje6Z#Gv+cp{ITFP1hsM*cyRd< zzEWJmR;*9)B}J0EIA`ACJ^$b_E^or0hwB(F4cJLVD9k?>l|spiOG<^N)1jC zryLN})rpZF*`@%LCw)Sh!n|PXg-@a7(Igvd)FBjqYP}sX=E}vx+1E=BQRT79~&oNm1Fe&)&Q@M!IGa zTp!JU@|+>3N$+a0AjikpgsuF(#wa9j@X>P$8i0tL!(q<--3QEsG<$wVs+RY3xi7>a zp)^FCmZ&f=$eTLAyl`Wn>;SyCGC9}YsP%#^-K5QGR{$>QEME11^l@$B51*fKvac~r zQnQ@E@ca&qqF!Zl0O~0;mlLJ7A&A??7~zh83{Y%Mbu5z8IIN>ZGTG9ME-L6t-{03- zP(DezIVL{vMEeal`8x~2@Th$!4%+wx!bCLtbMo+QdQr3 z=MB?C{=_|(F^*ZzAFeDiMkxjpiC2t&#m1O&vs2{r3N7Za77C*>R-N5iB1U&p>;Pse z-uJ9{B}p4F!+ZP_XO(1rI!@0Aeld0nk-d}AEz%r_qAgSS_FAg3$X(|C7%^nQG#`e< zx&w0kKUc(P>m*%ZkTFrQ8&^=gN+i_yQP#vNa-Ga{Za!r`TjxIf3&EW^$prg<#JM*D zTe!$l9UIKQApJXjQU2bl>Cqg?T{&{>o<$$+644I4bC<5do?R!JF85q7!~6V6;V?Rg zUQ}~oyEX#h(!N(1I6DR>m5mO6VOAP>i2}xJbSxVgz>c}{YLn^DA$Y%z5|mPVP4PJ< z@9BY7fb^KJKrOFcX1tep7hl4{<#xKko)~cjEc*NN{K>C*)0LrElQhW+2mOZ@JG6Sw zn{SL=aS>pfCOMpHz6F?^quie}ETI?JF)fWh$3Lmbu#m2yuJ5VMb%!y3u*NiT_*j=+ z?_HkKm1n)`t98FCA3QfT--HE0r#-KbX{@mKZj}~6Yh$WqqAwB3cz?GFzGD#i{d25! zqGNXklQf%?oZ2nLC8YOg9uZplC_USeA%zArnqNzCV2Pqbl+r{GkMWMEsNa#|_oZp( zc(5UaA(7EbBxLK6pg{hAcV4w;zHhqyG6*Y{Yf5BqCZ`hb`g(1qtel{vsmmZ|`guK~PlSDcb<_yeW3O_AxpTNJ zpBwwTGFEJJ6#P>VQK%uj6FWBW$69KzVIq;PisC3NS7%my{0dF=u2$b++ap>x*0&;C z+*g%IHP)86+`Ehj9N(z{SqOINJJ)+$YXcb5g9~oiulG&gQq1Z;i)p7Hc^MlyQ2tpa zHEn^a7qVd-J&`ScJRr2TX%G=3qzj}fs}N9MFF*)fe;MqhMBu#;kZvZfm$zYdaS(VO&g-0kF#|fLjEyO~q!KU|91<}G z^I_~B$JKksh@AYumEbrTUUVSpe>)Z*YS`#(i1vP!aAwzy5)(>mbdJ{ zR-0;Ort0Z;>k;RF1FFTLLoGU8LZb8Z$Y|**EvZJiqWEXkXh%!CQUIq+zJLB2_k;CT zA))my*EBhQxr;G=w@^5^M3QjR&)Pec$wB}_`vtV`G-kz!A22ubqgPZraZ~H(T@z$g z?9tIhiK}u(QRdA#bQzT%td82!(-%aSY{@5cG^Xxh97u_KiE9T>GG#vMfOhpKZT_@y%0zSFG^(V77*Wp|;8|4Y5ilSXB&*;nfil z#DgqB<<#Hpn{T!nHckmig2L|$q?NX zA;-1B78JofU`PuN5X|(;(z;-$09=%Rl|lG|qNhUf1nGsEQGQ(5U4qs(ANnC4njnK7Wn;V z8}-u~TD$lT$Zgf5G&TGnvwe8WAylO8vxyvbU)jJj4GWoyEm$Rgf#kqZH(4_mW|NVg zb-|O_K+do@b8uXuE`;D|vJUl$n|?_G#gYR~$L;J0Us-Qi93TvoHkgU*-2U9k>&1{poGMBWQ(b~0``RX-~5_4i-^7uK$JKJuX^$`>;MMQmD1%U z8LN3*W;ZU9V6U9jVzgG#UcTR&+;nQmw}jnb8>B|f6={8!-IDBol!-AW(VLltjU92A z+AM1k&Uz({h%Do@P-7|{hli|baM24q(OEw2J<%;fEkmp=tx@HtYtJq(cM|iGt>Smj0J`@(0^5;KK z)6t*atG#*N=wTgfPb7IHUg5XoFe#>*d?Sf8rO+GzFwbkS+yx|NDJgB_BTuq;VPcl) zNY`+Y4de@fb)TEbLe}!w;7mWXqeMR8iFH_O|Gp1*_iSr__P%Kg?bUr~Ucm0l-BQratJ< z?GISGx|^d#z=9%jC&a`?P(7LTIBOei{Ye#MhN>i8L=lh_0%KKrL4l4e+NckP6& zqdA}v)$V+M%MzTu*MUk|^!4f!@Y~mXF`8}YEK?P=Jx*`Gb1+4+tuIjcmvjlC(A!J$ z3&~wjhr=YjoW+_f!bdR~a|KzVV84go((FC4j#IN{-44qt;Op(ZG%k(FLvx+2kZwMV_yewU(!_f;IUgKR=ct%K>sW zEfn&iJYqV!MvyetRNi2Y#vGQzU-5{(S(m&PKfF0mDn`2q(HL1ZX6$Kz`~&WPUrz88hTDJs%&X=h-l!aQ9lL((scfI@TM&tS%#o+cx`&tqIr&Wp zTCy9SQ~U;r)<15Xq?PDVb~SZf1!KtJRbDB``Nn*Rl@^#?bZy5soQ4MfjYGq9dTMEi zNj-n=B|pc5oU=1Bb~Tx_G5mC1Y^HANfS7oHk5Ta5Sa40Tfd|^{1XmNXxfpX>8JiZp zJ#T8UN^usvew1F#CEYMr);JN36PF9+bMo>}7YWa)?X6_6ig&N^PQ}2sLL=7IiVkiD zj<3bPl057tw^9YSbEA@QS*%y>a}hBmbiK(^((jmpzEmwn!jBXw+T`*lFWs~LpYIZX zCA-v?Ko>++fpFK!AF7b++5qoir0>urdH7#GRgZ{a*d{GcvKJfA9NX<3HL_|sPh)~H zv4jq9oJhGne!2|Hg#1J_dcnv=bP>fFbz@+Ie+mK(yJ5@L)z;>U<^yu#se!%k&Q32> zza|2bNHg%*Fw~daqo2gTx#H`Vdy{H^(9wys^x8(nqAJQ8oIU<#@rRnCRg&QRb67Lx zSS2QX0O6L<@2h|cgd?%_A$a7bK%Vb{97dNoLRdHkwj8W=m>1ultD3^9w|PGauwRyY zw9O0gF>TfaH>Jejjmhpf-mZ{ZHQ514^Ix?-S<*T07wMB6F|RJ;;&l;5RVU?tJ||#{ zyAPMp=|9w{;)%Ox6=#n-8=^Q;B*Y%%0_A8!OJY=Iev%7UQg0lD6us2P@278hon8|@ zjeLn05RZ;Amanu6rE;t|4i-N?|dM}8njpAVxp5r5QDKA=7 zub4C=XY!~_YUD}%?LV%wjyEQMnv1YV(Vf*t^IjpJBzy6S%4;RMjbn9>uGxZio>DIj zGaf{c?SH77#vgb9qt}Q`VT4abVVPoBGZbrIg*PBDSEpBq-qw1Lp8SlUXS?|vG>E68 zD=2MU=-ZHCmqn0*o_$=7v2pOoPeb}?IC8GIX^AiOcu^<`H5?Hg7_nJ@00fz2cqXGR zJDN&}=L}n&tXd@}&piv3J~GBHN{L2%`NRichX_wpEvejQM^kl|QB4f06Ev~fpNWH?&4 zq3mfz7(y@=w`No8s&h29zVS{?zk9c>M3=vPP8Y1GWJ4~^2=TmG{Kl?^O6$0Un7^oJ zF7(3E=U;d#7N#3+le(T^jSi2g*I?)e!L9VXupVP^>?DGJN0*#`io6jZJmG&??UL3E zZa`pnri(Qg>QR`@Dm8n0jcA>g)XPO*yzi8ts~X2F-(G=uKZSPb&JBy>23_K~R+0Z+ z+1wQ@Y+DHwpSik_4BI}hKK*i9V%@ReNFtZ#nt~8p+jHbUb3Sdi*s;@y{hs?|qr5GW zbw|OCO7-4dB$9T2)-+sdCicgq725f|P!AI*D;;Gpt* zSoOCGdx}XX#F{;k`!;^yD3G5jN|S^rq$KPuW8%7UtnSH{hZYDS*dW8h2~Ki@AGvV* z=z0NF?K^UwogGGTzn(G7_ZZQ-7#Gj z<5~XA$a4v-M`#VB!!Onmd9+AXr5NX;8!m&lk&H|a$4F7xk;4b=LQ3N9hw%lgsSz3f z@@Au;u0>PNRq_0Ze_0OddLCQlfD_hQ#i}_{+U&0RS1iz3CobTrpY8WA>1t0SI^`?)EDhOp$ISv zASnp9n&<5s3I<30X!o1<)xEihnm3N==;mF2D-X_?CF!K*nhWMS9dRff#!M>q@euPs zr(DuA|Fr%vpir0}ZShsLEnel5v8^jeQ$U42@m_>&1o9Qxv^EE_^x<@2&_SS&T-#V` z`U0>k$>%H7QA@Xpz3K1YlxMz7v6e6e3hTW%%4)G%4N+Ejz<77zUWeC2VA1uLZ@KY* zA9>vbi{cxc+c%Q+L8Db?3PVe08euXWoC$W9@;L`&4B0xd3eE~bBX7NG_zYULR*Gim zZ-pVwBYMTV-&xfDXw@>v@WpIMUnYXzG3oL26O))zdfCCe<%C6Ml<+su=L;cK@YOel zNm;Va^lgxECk`)tM^R*LXIAc5e~kryljDuE1QA=YpMo$!E%9w6wcum_3B5f{AW1~iY=`|{p zmCglI^u1649BpYmwiGa8g;bBnBSet;59owIONB{XgDWt>E)UaM{i?`U4SHs?;hZPl z*h_7wCC@FRnA%7Ph`fv~ z#PB2o)A!kYf1btE#>p{F6>_Lx#}kYeMBr~@w-Zg6f>#TfwRZ>ieiGGDpOc2;aNi1? zM#6Y|DDVkqBI9v z4yoi9tC8+DrYvo1W>qHS!VmDfiXAY8g@Xn73_+|=7z?6uhy@xXzD?eJJZBk>t*iWB zpmNfB?insAgj``Z@p89XSe7TKV7Q?7R2*th>mFvax>f0uGTLKg=d$SLv}eRNDv3Oj zZ0OBoE$;g78B3}?d&V1oHujP)_#MkD9{MRHbehs$&R$Lz90SK&u0rS1_l9vEFB3~n zsn8d9)AuQz4Urv0@1ZQ3=X|kffN~a(3XTxyH>V;2`!m$f9Z1+UEu|-znQZ&+F~pz7 z&RgM&LnL>ZZTU`S!rkK=?w9Rhni|LQ3*xx}0mlC>;OlPoj~P`i z06v>6rNL(fpftL@ZDI!0jO@_F(ENacyxs1J#ZR&~c}b8=U7u{;>=Hux?&q_y>)qc1 z&tBmYRS~zTLkin}ZZ}9YOGErBq3rWNUG@X5jhRV#7=f!Ggy?H#SAvrCSWpI)O)r$_ z!Dra{9|NhEjyc7+VL&`c#38Sac{~jdoVzdIl5L7Xd+fNJC@K&s){ZN0 z5WuOkW!@m&5yqymYB=Q&bQOIKyQA+)9XZ;+{zaLuZUrlU6bwzCDq3GzCVW`t>7o64 z6>x9`cguh5GKrt}qAg!1N6KyB39$N;Jm~+fs7eeE!DpUQ*a;EPWQqP$drg6bfu#)OA0>{Hziu7wZ!7b|YO(WCc zMEes7mnO)6lIhC9Au>=+u2?Rv=X@BKCYRf6UZU4m-y^=FkUN=%H-HW6?BpLHnf;J^ z4Szy7B4zs0pw;VB%?;Yx-u4J0SEks2Zf7*+1l|6!TqN=FSDSmqLi53WeLpjK?gAlk zoROP4G1x}xutV=m%7#tOYRkzWG9E0B-RHjDmbG4gCgxlY9JO0SvwW}YGAZOb5Fa=& zXIXH|H%-+0CDk6)0Q4s0dP^3d$FxCq{yOY-noo<^yYU`Ay@Ah2-}3@)c;nr$v*$YCK7Hp#pKl*p@V&8EUxHMU}W92a=yE-#pWth(G{D@Ggd6DYD z&4IOl6H9sWS2ufKgr~)=t@{0KPxa2u3#t;n(UCz|GpF)9FKbW^!_P*Qsr^7RIoVv#@WuTQXV3E(&gx2U6};Hc#bzHsACw9TkIpY2M+r8xo_$2Bs@@mQ38dHpnwzrDiInMz-2k-80H9x6nqGf zUXx%@*>-NdjLI+X)3(qlF_CfBev|ey#?OFtrbT2F%fS=lhX_{Dd;7*c^XTE<)e5UL z-BYl>v02bJ0pn?tOLC%f2<)?6`U}v0N*RKeee6DEDyyvC;xL?v(iEe??%95g(C zYce-Qc8~~g$_smhxSr%O3QsNk7Dxi?7{WWzDP?#49yPy@BvQ<$t`q7a!<->+`m#{@ zAEBAIeb3J(_;h6s5vE!yUa{AS+OGMVXf^we1mH?kA7B;I5{2}$$Du;MTrWbP05g71 zL0>pMQ1 zLRu(WbR>NjIil_K3ezU_38VGAQth zof7luAwEraXd3G0s?X-!n*~5$3OnGm9uPr0sQDuQ^_fQU6RC-G16ft;GO4M5S}v6b zVfsui26~;$Dq@=mEv*&tbHtrOv1^3-G?SZ~L@llCOd+>rQ9byt8@jWmu3710<*QN* zxD@S~_zHyijS9|-0n$D@V|ONxD8d8o+Un9$YgVki%B){B8y5jTdv<-u&odaSl$Vl3 zk}g#~^&HtUmBY1!Z(Ou(u^R4wN8poYk4@TLOkC25hw%|{U;3cl8yi}lJhIV|&QfJq zOkwq>L_~_#5K);pS`dlrMxD{!*-8BQJ(!;?la939>y0rNQ~X(_3&#pg8-;lMo3*0} z0G|CvGg?8fQa*9$1&hvJ0)JP5>m!O$O?G5TS*Xm@4wVf3ihF?Nngn8hpX7Q|?W`%7 zJ7#1#aod1no84rcitJ@{<7iTH-j`=Rp*GJaH%noB%1tqbw2Tdw&r8fxcSLPp+Bk!+ z`i?)iY| z_Qh<2+>sXH1wAcht-_^YzixS(G4!#28baK_++Wx|h-h6P9 zs4StJ@+vJ6{(=G+1NIUM~l4m)In>-i-p@f#8E6~Fwv+!uMNz#e8rk;NsO z5vybTPFsJM9qG(}s{Ks6nJ>f8{9LT*D}}9jxBt=`8|`kYiYFzjn-+9%Ox*-fTdbGcJ#;C8z1@fcyz0VT}mPoI05Qg?%8w| zD8a`67Ibar`uQGh{*oG8;9TnqSJ}$0@M5ammEUI{1;ASG6QLn4p28&BNd(~f7CKnk zSk!s54cS5R^w1D&|fk6p-qs zG*1~v3BD1+dkOUEl)=eMsq`mgKaQg^Mgf|93X$y)(x98EN|%*Tam(~F<46Z!hv32W zjOp^A#a)5~grGIuCablvwPg6wt5Bk0n+GP8-0eVI$v#u8kY|HpByf-1@XZWC?aPk)Z~C4l z)fegfJ$3xqelS;(SXpX0jlC|-OlJDkR4g8UKRS*TYX*GEB;7@9&g{6!tEN`pqdO^w z#)&XAzyGpbr4TynB*#5vu)#v1b{;^*nmHPK9)S%bE0?2u_?Cl#rpm_WU#zT9tN6-e zPWFskMQ zEwtrIf?7sB^NpEbf|RGQRK}xuvXgH~C}&4} zDgsnLsb|{zcI*moE!=gexoOU{cy%(~zOGFjr8N$jGu!Z8+KW6*HqIW=!mnjhUE-5- z78h2!GU)ZeB4?T&BEp01rq{UW`#rpWcGCj{O8AjThnxPswY*gohj&HCxAZqisXV$E zN%-HeOG4FyriNzf(WYenOxD*Z${xxlv`UBOBg<|vYtqTo<~=HbokGEkGb=v?$K3{# z0n@5n0}vuS-Rm4*XfZ_N*A4p^#9gCl2S>dE7KCq_;`fNm^XWIClQ)d6M648l?xAN) z;au)3e|9AO9vLA6Z!`ERi1<_$xgGJgjIOaDGD`p2k6I<0-E?2`RjwMcVluPXpYt1E zHr&R5qoYf3SN&aJt)HE(PQ&m(2Ym~U=O^bvs~mmiTcI=IF>;8)??Pt%Fy&hUR^aHu zJFdRY`rveEj7KXqV*FWR;d-TiA@CmR_ldAyn15i4HEAKjwtH_;ZV^YljdYOT8;~IE zIxQjoEVW={+|snWT1>S(Z}-BHLrIi1$=s5P@hBIL;uz*1BVbd5=IBn>W~h6>YRG$EiTsfLHK9YMe!GJ$%7E5#sjvb&F z+;={v?m|@GLQ;&BBRHggXXY6S_ZaA^br!)u6RTPeudgcM{fiafk{wuhUHLT3w*RfXw{7+rHgiI%+2ZC+SL|wb(mIs+@8mBn-0ZSM9EU7C5-{s{z?U zmQbp3yBde{>8&zhVpNBne|QgmU1BR+*#nB6K>Yqz%$(R!!fbeun|Zw+)at0OLt(YX zS024I{{uHfKQi)tFiXg9(IamH_?i4wgzGF3bfBDPBlo)@h_)`#l&0&U#|8f9)K6BT zKWO)1N$OO2b-1-Lk@UI_B8Q;_2-O@F1&9qtfXr=N*R*q>uEADBf1|svEzN57ClJ z@FyKft1U-u$etrfn4fL!J@cjKo;tss>4AEz$`mW8#wNdB=gG^vLo08g^sSS4nl} z6?;l8g?l&*g)L)WoHBZ`Ab8WH`gJ>xh`8qH{)g_?p@H}KE9RvC_uLkxVks(2DmP+H z)}Vt{UYjp?yt3j6?QvxnRjSo#?d&=X$Yu5ed`7l!v*K`ve|pt3TY8OWQB`<-!-%`8 zj0wLlE-2pl5xN(3rGn%;6%)}_@m`EJkPV%*8@3(WDqB{?g{*fX{&x&c*GQiTSx+ikJARPN6fUR)KtO&^`JK+N5u} zg(=AWEw9VBX4NTn;)LJPwQ33^^pte$ZGYPNn{xLce@3z&hsMz6#_GI0A@{S_@Vedo zAxG6in5*X-=7ng4(OHL)F|P5D7wBwtFZaR8bTmBJe1jlQ+NW<|4GNEfd9Qr&E5R}` zJVmAI#i%(-aafL4DjZ6#Lc!878AuU2=Tx%LE_GoK^CS7w}))kB*l5GZFgYeZIRNvSzEcumm z<5eAReEzr{m*FF!*}%fozL*_SC2g_Ou^q3?p~EQ@&^5xrsL)JmC@R2tZ-PJ`p3ha; zunVZfAMbW@#n!NJ6DSKAlg7_y%Gd@KfApyAWf)VAC-vp4&SC%2msE+87yWTOkNBy6 zEFu}$YW!8!ZaYxLv2qji3O#wz4_&7^_EJeD${|-KevMYa=e(hXBFO2AHM@qrR3^}` z{j{Px6lw3@k8f!6Su@t8_68CQ_!Gej*dF)vabvFw8Hn+P&2o2w{+GIC3LDa(fAJnyCDgk z$k@|=?Zi#jov&lEDE1hW3%n;Fn6sAbKrH;&Fl;ZZ2IQ5MCC?cpwTa&o=Qf@rbh=Wz z@FI)81o%#5FMV053+F<{dtzw2e_q;`xQZ&WMjd(0pc3DSmC z{nZaebtCK}WVS_fW~Zr6+-=dv5-!><&yM7u@N%kYlyc=b!c@bkth7?=6E8>A|HT^- zVnDVi3EaoUHqKxX*=xU^q#jltB{jwFq7u9D1UFN;{Xm0Tq~+TB<@;D&f3g#O660CMMs5}Ka14jdWi_((w}unS9plbz~J6Q8TyqpDB1U5l~}zKbhrhaWt|2ib}9Bv zyEKNBP!O74ToOf9j`4sn=Gn)M*^~DhPA&OvDksR7}$MHp~>{2&r0T67^JC zs1K!G2s&3iwQSs7Mq*D0SEWcy+TX3Lu*vh3NM+Ag@@w}|tg?o)g+kPC#?MmASHpO*j{bbfkrnT*0fAS-U&drfu7}WDQ zgJ<~DS>oh_CqH37yod>3XLYS9w+=FgsyqsIp`yxd%!F845B0zo3}D^p(Z)?58@mDF zO3t!%y>oY!|4VIHmlm6@ z6PrG)pr^mFu4`2kf9v!!xXw^6am!LTo?R{&9csuLFO>N?;8fL^CK~(B^^?6uC6iY@ zxcN9EL-~POPi5qFTF2iCD?V40JE__}!?CfA=M}hJ>Niv2lyhb?1Fg8WNU^MWfUW24C84D+t> ze86=C3d&Y;f4M0rW;~Gl6Z~?uEooyTYfI(!?e2Qjbw(l@q`sGJZim6#LWdkRlna2} zSDUzH`AFFG@p6y@9ju zV%+Tp!R=2-pa@;^t6%<_(8i#cX$Kp3uQC+-yA32*fA;ulsXoRpKbkuLl*)X5o^m5x zpEmT?KELTgelm7BQ-g9XJfh4jHG30X9(~2uPuD3CnfG`@G4lUk2b+3E3i~??=ibV( zBV_kC4`#&A-5yCRHX^pM`g*}P=)6Z?CYxl4@<9yJX61{?u`yj*)*UWaxg}|GNtp~X zp_5aLf0@l%`z`_7Vqk{u2wW`c zyg13+HJR$&F)><7j-TvxJf}!LiY9njs+NQ8f1}8}o{&s>RhyjE#SDkrV9594&Fwtz zsX>%Ibw3I3r*_CCM$uWvVVDU?Z!Xr`4CAA*R}pD56Ymed`81m{g}*4#Oq0Px)l{_+ z!Dm%J5{-MT>5aju(^b2pQ=4SCYLR1q3;6j3Y_;kwUy*|}4t#WPO1gTSF5;7$OdA*{ ze@*q2Xk3G1M0>ou$%`((*<0U~2T4TP{T;%SXDdZ7FT2lIi(Q)0Gsy{WE5~D^?cO~0 zE34OAQ~v=IjVEWuM>zewNFMn%8DDi|dZSV%rTt8^J;%_3W-i4~jSFFGh1ZsUoFDP% z!blUy%IGshLE&`gZ@69&IZgQWtaEPytl>XBJ&*pzjCwm!P&`o}b>}3P_0C+4;(5PU zz+o~_A`&Z6L-PBs2Lo7VZBr_Qi0FG-SV6h;1z^xZi!2+xHJH7)<*jwm*+r5sf5jTt zQZKa`803mut(Tr7A2m3_g$CL?#q?GRWA8(WiX0f=YeFEWxuC3_Q^390VtSYnix0g` zP-=W}D?D_FK{ccs%WwlAT$m#ry>!r9pB9oSus8)o=FK@jHV`N`4VTgBiOinmZk&N- z-dgBRY8Js}z2B-Jn4e^J7Ut*kf6s0<8F-70o)0g54F{!!sr%7pg=g>cvC!L#`dKj8;J>=X#Y~P#etkcTIG^FMhqzp7U|({KF0YU;UtEXtfuo9R6=my=(%HGzvXyCci~p8whJiqe{TlGb|`Uo z>MB7mIxDp@*u6A*CvltDR8y3dU$%}}I7U#x5qh5B4U;d|iCy$OMG8=s402$NMO|$BunlY8>so?79R}u-Q#k*) zr+8gGY=?6S=9Z{@z@We?e?mo4ZaoTAk@rp@+Gy)L4wg{~|18>4ey*Ch=GO}Q11m@H zMDfH0jNHZ%VtxA$39(Ji?h}=TOs5+k2E%P{OV#aO^UN;c8#=5l_QM@N;9O;Towy2Pira8l#p4h$LFrSzCy*ziyTm9fhx-T^t* zulOjy5-}sPTi`b`aclucw2!+{mmLDmv+G4Q@E!nB$39m3Ji`G5G8(uR-4WabDUr=P z3Uh%vwI#ecPz0_%f5}CaOOGO;Zha0<6}Z3#bw;5g`UIQmj@rC#PwT-+A8cd1J!RaN z-UVK5NLXxh%rUa=Z0QHIls|P`%w)@{C?ey2#$yRD7b10?$e}tEI2{oabx{uuo2M}1 z6LWXSD!cGtffbB0s4;=*&~2nZ8=%DbVZzv^plOJ!8d__;e}G*IC9vHgu!}K%Dk2(D zM-2NKF?g2WIY6z;Y?Q0kH>HNMd8qI{)YrN!A?V`*~BNq7aWf9wKMV zp6J!Q&gf8^HDfe-v3&nn zQiR{g@vP_?(CS7cz5ngPmzhzq#fLn9)aJiXo-D) z(T9NYT62fQSX4kfyyogpc($N509id#nu{MUtqVW9maVu={Q4t;Ja5uQ;OLQL>gCzS84SErUo$b*u&JHo5~ zS3~9m%Xe2>Wd}O0nHn7oAQURnI7&!hD`NU7`uDiJ2HJcSV#rVkR_WtcPNR@R8$Mkl zAH+}E$`bm~@sB?umd+h8GnEYg>=%#|Qd`qMe`HBkCJqdf>$SBj_+Re1buMc?bfFw; zfY@}dY+{KKu(_ms-<2}Ynvn7bh9){A@UAlSka8-anOqsIX$SH$Sp(sFH ze_N|WNy0$6xOu0Xf-<1A?tvWt!mm1P zu6SCmGzn^Fw>*mNOoHcICy(zuQ(SapN0zqGs&lEt3ycl}z(rCb9^PPT^>z22AK(Vq z2si6@$&RmWj+CbRG_9xe!sFYELoa^>e}wivr^UFg(LcHOV_9n z=#(Wj{4N_YX#K<3J=%I_jOr?L2vLt^TFnP?e64s<{pU~uOnPUgy2af$*G>q}^7cNXR!%IPxl_IWH)L`dR@#gti>B9JvA}jlIJTKS94&5Do8k zgD5;vE%Mv@d7;Hio2ont%e#`>kA)ktFnG#a@G z%ME>|Q#`zTca-(Y7e7xWe}<*qj)mXgd5YIaU+82)Xj|7`>OAm*2acnqob~In@XJjR zg+W zHR8s4A~bCARg(so!slyo!YbBUcoALuqg!2)h`9An54k&f_e3N0e>5;Hzw2wK-raeI zQsywnyfm8}bqhWX*_%x@Ejx1H_l_h!#GEWgQHi770k^}TH~<39*0pN2XEzm$@H=Tw z#RvzTIx`Dtrjz%?BCa^v;>nQxRKACcLL=ReG)IB$_SsoD@PFeGfT}k4Vd2vQo?l}c zFT$GE27F-A%zC&#f9x5>tJpj35hpok35+B2!hS`&d`EsO!EqM* zo$R*z{`S;;;W;uPreDb;Edq``guG1>fp1VHRSUWp6(EMdI8JC9?mFrEGbgMl*bH5! z@li{wL&03mWTsceL)vyq8DR}mWQi}(n#5f)1U!U&5!c#te{xa#N6@ko66Xk@qW@3@ zsaeBH-z}Y5>njw4lZ&xcNC?(krT7Rr@W=amjV{E8MEDI@lsLPJr50D$&BVOgE}_w7`8B< z^+NKjA-+))skr$EnOkq%JA*iOu~O@Cijlp~4gj3PkIU&H*V5D2cd$fxLiEq^UJnaZ zwXdK2THQS>Tc_bF(oE)2@4Z>cwST#M=b19q_p_5nWN3B+AVXTu` z8uJYce@9Q28&5@IAo~FdSO%T`A8LJRTN9KQyJS3v-IU5Jv4yKYw#y)8M5O=X|GoU@D-vE*%&5xuV0u=>Qj~+ zB{mygY+#-r)@uR`EWBLxA2Q(hT=#d3x4JwgGh1nGi^#&bsT!ZC2rRbS`nX86A9eNac! zGt@cd5S&6*;Ybs3e3rv$_=Be4f1F{eK#?05IaLIWfQc2?x>$vfcw9CzC%jOtge*h( z;F%SwcIlgBi)dRwnsw6cpJ6=uy0N;)cy~Y`=!%oBPHc6V)>L)<%U=>X7lF}LUS{Cd zbxHg1gFDeG0(SQ&G~1V{0_yq6+u~=&7~?|fxhGtd3fZ9vHCd|*m?a;P8MGlo1lzr5KY7d@ z!W$>6`cw3-E@Cg)&6U_-c_cH#-x=^Crg(oz zS`@63TYySzB?y|!2&7Gz7IRr`ihnfXV6>B|_BH+ZvxCz;KS`r-56>ES2`q6nzC0t2 zzOI+*KbBDVEuLWUkmBV$`mf!091%S*S)*Z`c+qxqJfT8;kf9lk`VqRHN3)`(dhA&@ zsguom_kfbCI6U3*#+n)J0B^9G17Yqkmq?kkJLx?kD^wVs{h)RqC!n3+Ops^=84gG+Lk6UlKc=SfEXa z332w82_j$*5HaObQ`+kkKGtXeJ~5V|uo<(fUTArCWe6eWmJF#LYuQF2KkQ)~!ix8m zKS32l3)tsVk7FwCKBfcPYD( zsAZ=z+RZ!u5VpcU9D2$*rV)JP+mYdyt~PuLM8`^&_J7SPkbK!WfN7<3mP)uC0@R`h z$J{7|1Qpq@!N{m+fE$?%;?itD6Pf?7F@W0i$vBtrFcM^3PK%+oS*n%7AvBjxC)wDX zynri8oq#*mHNabrV3%!i;w^kK-D)KfLC8+suV<6m-#uS=BD1(8rwyP&#$RZCi3s_H zd0Xze+%*qRCk)X2sf?@^+>cSG`< zM$K!tzFe@qc|7y8TN4)tFzPcQL*>z_N-!Ndytv7^ynzx?kRCyE7Fouh?X=bqzzO2YIt_#(oFXPhUA-qM8hWi1 z=|t%?l&N=KO(wn&+HO7f0MybvrH4$M8l9`dHw{Z{uehxDq7YZsMD`ZnEAw^$S&Zh& zIje!jJR@WK=@NQ6M<@gW>9?^2=YMx;!ha`-GfI)k9|F#2UBO6UrTfGF=q0h+&ImqT z(@+q&e3P#Ie@Ge!Lr1C298VGyUav?l@9}8UI9}1pcrz|}KF2guOOfuy-Qn23Xh=Lg zAP!MG-A}!hU=C~=qt<}vI&%s}Le5Ho%XT5L=jqw5nxtivEQ}f170<~*5zdKlhJR19 zlwH@BJ%I=sQe-Br7Z=msE2RH})d&PI0F4~nW&1<_*AKP1`93D~oSuAEOfFQ}!E zyIG*g^%KhE=%wgg>_Y^5v*cfO9_V4Z)=+w&_NT1y0Z~8~))nnnY`~>#n7smDH8CXK zwJcACP#(C*Y?>Rr^Wn+*Z3Tzv)Ctt(n_ zhoDNYMA3-3f*kaZp~lug+<#LO6N0WWS;)D96gxZhZr+MmjA%5^-GowH*ym_238^=N z(`G>6tllK&=xsGnE0s+H${`bww?U$IU=;aDis(qi71A@in&IVKbGv4?6DtgDc0PZX zG>_JFc3^e71SOh!iKCvLdZ+X)32Z(<{U*YYK>xgHq`TL3nDKGz`hQ#%r}9I1LUx3< z@+tM}ag~()rzc};4Fl3KPiLkB*EdKEbrpHzfBrFOVIo%b6f$RDNiJ!&%6-|@8wLtQtLX6Pl2UknAfi->i7ZIkd56H*t z6I(_BEtTWue=v#acz*^QrK#epGR^76rHB1D%tH8sKP{4@abKoA6{>_6Wi=yf2^dC+ zFd2c{n745w`K9xjp_E=l~?*%uDM zS>2m$9vwt)Y^^g0WsbCgbqyCD8xSt;WmjM&(;_12V;H8LMt`cmGk?saSeOgCSXnAi z0uN+ke!*ck5Hh|=0$gie=rieSbgq;p<=cCS6Y)NNG3{sI>GwT;pR>C&#JJJhyLa&4 zIyI}w0Gq=z8eXHuP|=Ms8;4g!>1ZLGP*%WWl-5)*wl%p7Q%r8xl~;$|prqylc}Y*) ztQd$6EE2~#bAMN+OLb&~DfT#TN2Q4@^r6|8O(W5+nL@HI{`gYC^90X{;1e`v+WX`B_LJCF|}5FGMZL6EPA)O2|l%SOk1Q6VO1}Eo>mwx9n8e9 z2G@cI8k?tnn|8lBaO&_q0$s!5^t*xyOsF--8laygpkF`^*n8^YqSEHAw`R&s$kX;p zUx(04xCf=%TK=qi*}btnMU8p5$+YCZ)h6|rmMx%cgN(w%lW|LDa@XEZfG;x?hMi+a zk#~)4vvjVh%Wus0o4*YH;9nqboBz3!4ByQAr)-VCu-rtPZqtvo{3;I9S-&xDctS zCBQ&aR~wL{q^T=V0Kn^N4Nx(6eM^0Ri(q5pN2CVG03CtgH>U-_%nP6dbT!rVassjg z=uH1IR6#DT%x0!8Z*HKYm5n2i{w+lUID;0GpvjFyJxpLb25;~Re~CV;Z$oBvOrx4=K?N>Z9) zn!2h|?5uz80l*G$2ZCK}{hh0@K!BxX?ivCkiOj1z*z{kb|VCUxou)T>?%F#jsUE4W= zJRE)gFK%h$Xkqzh@)mA?POMsvHqLH9Imv%Uzd?w9V^%;{02=`43;=qXTeJRY_m^7! z!0dnEw=wwnIDwo1mZtVDKtCHx;M)b!$Hmkg2yg|v0sVab)A8RHB0Dd@!p7Y7P3Ui% z1@W)ya*mcD0RKPWHzxmb{Zj&Te{EFyw_R!ha>btv}nz{!O=UXOGRFqYJ>y&c^XSzBfsl+c^SVTmYP0f4P8f zWB4D!Z?peH7r?52siQ3+t;6_#H1k)Ol%qMw!p6}Gz`@M}Fa?86y%5>nguubg4e()q z)3gQ9^Dm_USXmrFu5T#-CpT9=fF%fw_-8eFcmb>uf1tlCULF9e;@=h@fK~b57C$?H z)eQW$L_k-2prz~II6r{Z{NEPOTNKdQ&D8$i2q)(o;%RPwZ|d-Gi2Dt)w0YCxzX6Un z0OSV#H^9!u4PdqT5A%(t-QOlV8-UgEKg_qLpnscOZ-hXOe;4O^3wAPnJ5&CPHW&Lp z(SIoP-|!nXC;PXf>F?rP0M@^WalctEHlBamZ)IGq!NC8xm$!DV9-#jy@HR&GzfF!e z|KIssZ%%K2Aow5Q|1AL3KL_Andz>ONv|CMY0k3;&e zL*Y%j|FZv_kN_ai6KIaO^c`d_7;Kx`99rftRWMzD4ol6?a$Jckq9Y#4NU0)xtW1~#JiY+nBndFD!j?2S2_4Q!wWw#%QY=QhIRS#RavIyNJ zFAqf@%+zq%3Q+0s6 zo2)7|*3`o8=kn{(b({ZqK!`v8T`tUSmm80N9fWQCyd$Y^*xo%^lRW2|WR1S?Jt3zM zR4{WU#5dH1!2=)B^j`C(#dml=m!RHPNCu5nL%V|X$^}_3pqvg2j*a#0Nes-(gini3 z-W{i@Su4Ke0fu34x+7vBzb7Yis^MoK7`tbuRL!B#YV7YZ40UnR$eQ-i>km(Udcetl z=B8}_aAtQU3B_JFCAn0kvR#9+Hc6NSJ{0=}Jt@24+*7f%)j;2@@1MT${drc|H=&SN zUGrlH_v$CS=nY)OtXY{GKsP{zi;)yn0l}4NSk_RKW@TN-wlkwxMK9ytz2G9@1r9Do zld4sm-(!7O0~RwW9&E@+caEFKC{!VT!G)Fs_)x$UkDZ1t8GxluScKj4UU38KBWHm4 z*$Z-kHqR5?Hf<^Z!!!*&%cV|Dd;d09($$6l?(UZ>!90v+I(XYzshQ@prHM2`57Qt} zJDUqU_m%pKcjubK(XVKmgJU$O>QPtY3!{x60-p}!3o2XZszglbQoWN?A}zgt$tj=9 zU6-!$UlU)N@8EO9Nix^jUTl56+BZ1xg)Z7Ye-|I$u3SVC)f=erZgEwV2nw8ZNdL@^})VkX7_Bufh0;&JPcILHSr!27q zX46F)L23Qk{_gkSqmIcp+U39i^GGz*#%)e9z5BA_3X5TE0?vBJI>Q-=&+pJnNsbu! z8wee+sEPcIlqf5>-znQ8)z)6BR42E{?tQgl{oEHis$^|=2#q!f+2|I3ON^{H5te_d z`W`5JAl>mIRk=^w-#ycmswU|7gSWWrRinBN!@TmVL>)ZG$MRl8&>5_qAy87vQ-wFB zCNvXg^(rG2X(J(_fET2Lr9V})4wu5GU;En3rSHcq&A^Z}x_w2}P1JwI^IkCz-b8H0 zN6JV((FZ0C^A?gZRS95!y1&^~euI>iD^iHFPJOv52Uk~yv|YX?D;y*ue`uC(l&+kv z&-gJsu248TKo?!UYRbzG`bGlr{gpu>GS3`ZzQDoggSshy5MG%DK0(myS z0=USAW1)_yV zvJl{MHet>MnTX^j&cIN)31?LL_Zbs$n@tjQd%44uI5Ie%Vc6O6?|*6r5{VSt%nBv| zigkBn@Xon5Nn+EQKqwi?*Z=S#C#qqZBi;cLHKNi zI)n}4cHyy<4%#b!ta_>q0Y84p#mN{CP%`lSxQY`F94(+v%xV%KVhwn=B_=s3AlnK> z0e`F$_se2k>*83u9HG6? z0^wuW-3Xv)We!S(lpfx8w>_L3Y36RJOrhcQ&Dk30svbjsGrdRp1d`9M6as=A!Zu8b zaWQ*lpPp}u23JK?YRZDd>=EH-1wWN5pZJox?k*_ni*Sx}2g{l6g^N%1qnceM4E9-8 z4f1}>D~Z;9#_}#tej?8JSyu93Kw_nO-4%4ujAX_ba8aRd{E}~MlQzt4iHPA8=r|8? zHs>;HUT#)@X>6zFrLXbp@GROz|F;ZI%a)W9nr$-4}Vk$MLxry3#nIMwZ&+rZQjn?3xFPao;s#c~5qnVu=`sen3yd)nnG4%^u)(Cm@flp>>( zmn~&CffViN03mjWIFk{t6H)?tT+!-Op>fk8@|Iy05*Ia8F*5SYjd$WLDxWX|LW#(R zvodmM!j&4@maNetC)siPFMPjE9 zP9GqD5XHKd&b*n38y2FD%*-ExLaJOLC}Lk1o4uV-T$oz!ms&j^xRPOl`RmKJb}0#A zS2`887+qhu9MWgu*=p9HP<&`IuH)tUy2%_6B3k3qAzS28bse}}9lX#{out~>XaZ1w zWgGxDIpVPxj_&%`Bu?wqpMFql#YHV)Tt(S`XfB(CkkmGCsfy;v{{VN8W6F7%@1y#9 zRpZH6UXX>;F-zT@*>$g_PdAXgG7s+zLh5;#GziX$w>5A?W@ji%2CY#uxR#ZLWpxBJ zu~HWmZ4?^TK0manpa^2bd{v2k@7iXMH#AqbyGZ>$F;c5MB>#V#qc#?rvQY&L0pDrV$=e#9LDl&U}Azk7|R62*Twg+es8hr)BX>DmuZ z@ahT@QT%m2f^t?|ofM!`fHG|FD;}oY+&+b&n97(GH<lT5`?)0{Z~vKcc7YlyBQJ znbCZOHO#zG7v{ZNs{YA}rHy1}F3oKy%sgFd>LX0I7foq;03pK9IA3`n{5q{SibiyoWA&7 zJA7Mv+`hF+^Q!pTI1Jx9aR!%kkrJZyq`w-qY3++eVPEhB8SIeMOmPieXN3drbbnQg!EetHCE?N}xi-7w>e!7Q7tgvt?pQVUb7WCc2H4o&zA5`=?*{Un&}|rbQ7?|HdI&$xK~bF$)vpin_yg5-xBjGp#9 z9qB=3YvZnM#U=2Gdl(XbhrG&iE`RG4PjeCe9j4zl>mj*&n+2^hZ=)d^hC;>HS?dwb z?m9GpzVDY1*|e^I&V_wdAvM9eM6NPOsyta7k#GKBjn6b?t>DOg7{e=mw_`5803(Hg zT*+IIxs%hfor!t~@Z2;t_NxDcv$*uL>XM0-t82 zLWJB!_9_DoLRzp1H>73DC@2Uu~g@ z=8q)FK>I9N1DyTtX>DP5^H87UL*+zYw8Q(&lvowhUsI|SDmZiGR~shc?TIhxVbdC zz2Sh^a<{;LwdF4T$ygPMMHI6_`Gg@Q+ir00d$%J}07W_iktUEn9gmV>$|pD2mQ zl?F_;A+%NILfo}6+E0Jm#Z)0ibZE6qE490 z=yycT)QOw3R?U3xpP3YxiO%WdCzpU`ihH%pk(950N$o6tsdKuM>Bb@1j3c9!#Iez3 zOV!Ejoc`_}dY9;2SI8^kY~pup^>af;wjrb2eU6^9rvcx9AN*QZ$@P;jkLRA+&Tk@j zQB?q570OAxnhwD5Y1f}&72hCOIR{Gmehj)jn4JjUU`PyZ0#E(p?@casiJSs$u$DKd zVIk>%xt-{!mClNI)WE&ejJu#=KHW9g7YDuwMlf<#e5_=+s9OC!eG27v5@ER-dsmNu zxpP*Ke>0t#heY2#zWtML8?x$to9QQ}MN~LfH@_C)h~}ISBy!-@d#2C3ULT1tklmkM zv|DR|8ARV)cvT(;g5`CCiGAHap&L;axOSF*;fL&tp-HhMMnML9%)kQ~7qTIkJ~XU} z3m(!$&_kPmBH-UUeMPm@hGxBU3%SnA3#jW^N{KTNogc>8t+0Yct)2V&8A*jyL|wwy z*WPNyUcxAN&8kb@kdvu&l?5b4;I2mOnbj9_e$^>wCUf7*L-Y5s)Smn)kRaimOp%K-Ppq^06JAs2#bDDFBSxEf*Z>sh zXttF8m7_AlIQ4}HGZXBS)MzaEgo0y03Il5h3amB)lpTIvbBixW-y3B7CRzB9zeB{f zJ1YBFJ2KNB#`x8vn_VBDohkA#nYVv`M;T1WLv-Mkhme7!HTRH;3J-cS#X9Vz9$>?1CJ6UZVP zclE-bDfagup9lmMu!M9Lac8q*7xR7URBqib2o(%qlek;84VPPM5_Q1PR_UqASU;jn zA}21GlG)@qyHxPV_YwSDI?JE@^JqgxRs6)`ujPK?<)Q|!(adn$VK`iiRg286R2Zo3 zzV_bG4mPFhz8G+t~oA*zT?Q@Gy-I@5m zJ;Gk>l$@Gwn(LXF&cZaDm%IlT#@{l$TZDjUXg_m=gl#R96yOz#-qN6CgTsqVx9f|S z+M?#Ea%~PwhmFdb53=%qe@8N@PP`_cA<;$_C2CdY?xdc)l53HSGFUP#f{~}Y1o4_8 zr{C73yjW&F=1$!wyNky%ID_TDU~bIkB$wN-OCGCkJ(?ehlo8v@u^f_nef7@1x{7&K z6`gPdl_!9#{EOv1Ayn6u++!X6rAX*#m)R4Fz*zi>sE>bGSJr!fV;1@zOE_04Z>PsV za%q`L664nDPK&@YMaP9-vs$na&@ZNaGx^FsVnehuYg1Qc`8m+=UU1Vw4hJAFO!WS}FJ%`)N>b==OwQ39Ea3Lau37xiRPR~O2 z**je8kosve81|^nDoe3diqT_mGvP|QbI6izF_`<4s%&Tvp;|muH*qhzVDtDaRdf8C&@UB{lxE54QiiAD;tX6sh>_rnv$;=xRkBM!pryu~KeIjBst^eiQP4rE^gyl_>T7mLvQ&mpl1xLzp3# z@F{Df7wMO*n2yK86T(td%_s|?S5DFwUOi38a7CWRYY(k>-yF~GkqT|b9<9#+Wn59W zqgnu2(A_b3khH*dh3Fg4R4o(|#>~VhzCDif0-P9Mi{HT69$8LIcn~cwz6tNcZUrvU zXTTSK=RMXf(omGJJG^FD%0=~=pj>urhLfk=pAP|}O_8=H8rb)mdA9wKB&D;SEZ>9$ zX|umOwrOpd)R2s$M(Bok8+F$I@Cc{If0E*;FNfom2*Z?2<&^YpJEpI2Avs;y50_wr z)QOAr=&f{1wzPEBM98DcVRzfpwLqYDA;f%th!O%EG%jdC(6d*3s$N4{rq?*}@^`bj z!!fC%t0B9E5ckFSuK#^?$K+$vwAfau*E?fE867{2F3y%2oX*{r?uDFa z0rihTI6r;^3tLrP9(|n(o<(sGRy%UoC7izR`Q2mYhhw!z3#S1B;=3wGgFM&Cn0*k} zUiC)EHG+jep1d{eWGeUW!CQ5r(G3w z3sTGt)i4XpS>T+8z-vKf<`imvK#e|@QNCdWc63kUE&Mt`RZa}A>9A!+pW|+SvEdp! zwr%y)|84upBo^c^9tVw@h5$K0#=nii&#`j@wqX1L#bgpp=tvkspQoCgIXDT0 zMgpP1=+S0djrn-L zQ9C(c!gyiWpK%FD2}LG4z3mK)qrHYcD(M-EOL_>#%#?IkaGd-FPZ5iRG9wL-f4MGU zl7T%k^I-nLl1$?6xNZvj-WGC; zYT;M65DPC(+Kz<)1Z9G-cGpST`T;FJ1(^LiXLL1+k}F7a91kf0-kCHt$w~@7!73C9 z*jUZ&Nr~&crhy*M2qU=(&}}B2e;<`FKIPlF_xsXnRwZp#esp0d=C&r^ayn6u4=RBT zNv6wcA_^HVVe$cDwgS?5AczIKsHq?z3}V=>=^GK)R8^1CsAlH)`Go^Vwm^0ungE~K ziz@D86_tDn@%VBIm8D`MO?BH6wUu@rgD+XebRG_NgFj!Iw8-GHaz)S4f0k%@A7gP8 z4MjV9&rd;(_IHklMIuka5|Hv?rdMq)*LtGl(QD{p#ZNO^$dx7n!6_NEH&py*!}8WO z>aTr7QBZCA65}QOH-6dG(#GAlnGH^SMa;wiQ8W5h3!-c*Q9#Y^+@h&-Ix|s#UYy~2 zS^zgzjp#&12`WEq^IhAhf5HR(gKP>T5-hu=ETIY0Bdd>2+kl2HJ>M?826r?%s4fJBiVv*E={$Zi1n(^bjQ(uYry@@3OO_r<)Fce{70=gXOPm4yXoJ$rMD zM@qk^knKiuHd<6%VZBDA(TWsrv=qYRs~8ig494W2OHqiu^CT&_f7P$;duKQ|@{2!5 zv%de3|LG&22j___QCgW!--5`IK*DYpXlbygJ(z9*TFk}rf-VEogx@p-}6FFZ3EQ{FftwBEsxOiON+d* zTQ27Vjo>*`GjjGXfA`B5G6mXQ;L#$5WYWINMY5W8x_@9tkFb&y;%xJw8}T*ywDePi z+9??W`g+`}{=l@kQ1;dXK(`Xf;?3&0PQhv;sBgzCHmImNYku3U9PCMV7N$aXnJxzx zIYZ{|ESd18_dxmFd^lG`<#<+V&C8EiYDQAe{<1bx>dE=yNi;?czGT| zp64!>f1^n{B9@Gu?1zg0vna90?IQRybLIIdBe1HO2C^`;ez7(zb+U!MW1yjt0_#>{ z63Le6?xX?9w3{M_n?nk+8tn^2R$1lXIpfFqflXN&PgQYDQSD%u4r~#VDS-3{O`Qpv^l@gOsWW&^MvTsuO*&I%PZuju$7WzZZfK0_u`qS9$w*( z4#>-2-|70S7w(gSvGMKCtIUwgJ*~Sm13{+bGf<`5z3}q;hCsouF)Th80%LZ9P0Bi8 zdy)fQyGq_41pdXe2wBd*3OAugdZ70}!oib+8!Q`4f1>Jhaxy219x}maj98f6ucb$DhJ^OtAbip}HW?c0e1rDEn*20C>9`tNqS5r_un=?Yis!H(2 zGM%!{6+P&bz7M%CLL^d#@Xcf(h7GN|<}YBxhQ^3f#uh-vllsm+Bk+-_rFqGu)HLX^ zyjU*Ye~U}p;o$=_6cIjSeu8}7no`Zqm<+?0P#_X~=EHQ#d7jc-zI(hqqZ`IU&<`$1 zhP9%$ijtcnmP*YPtDekxML8KMKkLtVWWPbWN*oTddtL;HXw|6A>EUd1!{2UDL=p%d z5E^iPJSkOF+QwoXEu(m5f1u$s<3ekXD$Gcqe?{MFTy)kmXBDEzYZ793MxRUGHVK?L zp)pF?5zcilMtD+l!+_~X`E}2(Oi3}IeGHsdze!N6E3^1C*uJ7bVR~;B-zZU)h2r#+ zGzs!Gg;*Xiavo<|CxHx5Qua66xl5d&p<<4Yg=NS;x4*=TPV-eL?SaJD?K2v){vK`WT*Oq9-9Z)2^9J10%CY;r#A^75YoutK6w~nJUJPw?O?OCjmCB-y3E

      ?ui>tjoXq@Plw{i@PYwVin(n zsIFlrTYSISdMP2T{E1Kwcy53hPM*3>y_!Tpb&rs-CT`TuI<7yNwE4N=!4OV{>wc3> zjrkTG0=Mf?-o=Sk>PG$GVPj#QW$5B*t3>4 za`auk{q|fFt;`rsei8&tRSF~3;XLIp{-4rEiylOJO7{?ACPMp!OP7`Y(M^K5S=lAj z+ZvWX7fCfWMSm(3UnjePqj4aTe{qHavxG|Hx^UJ3Pi~hR4j&1aXv2Uu^-y^)pkhKI zQAukju`BO2n}`GBF-pSW#!^w4P$gU{S0~L05i6;{)`JL3ZT#dIn!)0m_4rA3$?Xm) z!nAsf(=utFT60rFg9_6RHrmzr)sEjsAdZ6ootG`YK0r%z`A8H=EHI10e}xsMs&%`>su{+z!APAk66E;>mcA`~GGTIq+3x<_NU56A^H0hwoj+F#G zNthh$q%9kqI=i!Mp#-+@f7$XYWTR4C;l-&sm}f@Vnn3y}>-oUFDq)#?TRoY{WWfrG z2YD!_0OZv~%q^42-ubmCxf)*I_xh$0I=;m0v67aAX#-IizJliYy9R|`(!whpyCJ1B`yJu&!qR&A*T4pLK3a!l#CG(2 z(N|qhYl`=T%_?e3f5nNXyfBpEf~DGnDn25efOk=5m>cB+>&I(ezbCvUsZW+mt`oGe zV_{#_Upn2&%I4QOzc~a7;~+Y(3q8!D85bHi2oBadz{|`vj}Z;(KL9hwj6VV2ipAG*N0F6 zVfLgmY!?Yfe+$kl>-Ql|*^ohjc}|H)^KukY$X#P@3COb32#Ow(T(aL|(7TUQE7(mZ z@5Gl_Otnf*xM}&SJkuaYi4s=9$-i(iG3riJeZ#A15D7B_3MDG5PO;(*3<_1Qi6!_JO#M>+2>}U7D7W_R7;5nWbGiVzQSWsu_*3zmsR9K7Y-3QeZlbL-tg}D{I}Bq} zUO|gQ@_m&zSfmf0kc_;|zG<^w49=p=uOL+S{TOmP7EMbe9{B+jN0Nl6OBAN&ZF1c=McRZ%ydO zA2F`7rreZjfn-llv%C13bsJuv1XNKTM=b1He>MsH52vchguaizmU^QBWoImMF$-skd(oim}0f0T)GKXO14|yH-Vo&#rd(<7puM|k6x0(C4 zb*j_`Sp7+CR5q&c%+MksI)O{B74orw0S2g zWUQoE_HPJSb|?-NMa>kV{60S%PcPRye_c_gktqny&QJ*(r3kf4l6T z)*{n6DCVy_GR4D=$)zahL%lh((U0J;3{xXcKBdHLiGU3%?nD^lTb;0ivCQHZJa`JF ztm@pX?jz@&jvvs@ZX1zr@9%l<4zjo*h<7_d4)o^<~jwT=Jt0QML%36KLD5dBE*NdsuIP<}$w^s-=8Cskjb4E3x z9z>s)`X=h(Q|%6@A(_-ndKRlJ^Vj_{YuaJWDjXPpUuI5uFg3Z7!<66Me>Q-*x;Q>~ zsw8Wm`jK&Ns*cv}_I8NuV_Akdb`Hr4nqk@~0%v8#@y8{i7;{?jv_G=gD7ZI(-DppC z&=UFu{TCkXn$x`BK4CCuVLDk;$+L8{u_KOUpQ|ORD=LSS=Wgh>1@F8AqGoP9n=hqo z85y9Wy+C#Bxo1RZ-;^M>e?1IyEMV%+J{T9zt}~MFkz*TQsu`dtFkCM6!}uGnvX4ie z%7M@Q~iRK-sBiFQQn8^77o|J^a}@XHQ^%_;MRFgQX19pOjT5 zQ%uXJXGb%1;jc7vG=j)W^QD6N%L{nalYBDiQN@J1A$Lo8gZ5m0fAlFV8U|wMciGS* zA?vr?)$l}1-GtNZUF%ZGa(X<*67si0H;@n)slmjaY?p4pGv;v2*^suToT$%ozaNfqPysSA2vP&?$H-Gr;K>+^Flnj!7ZY>Bdrf zcGn$g{h5d2ljDfce*p71cw_)juX0gCG%g089P3lGflAlE$}iMJJEWZ?Pf_o(USkky z_zO;z2yKwtCG3Ea9_c{ADqVs3%i`B|%VszRzL~ zOYCeUX)YvP{orB|tQ3?U55At^uyiryS!s=058N+}fieHQf4=FBNUF9(@+$5c^eM-s zSLcsg9>dNZBl2wUNyW$hj1~hcD2nk0OT72p1ZU3I6=U;K+fn*7yT&U7&Rv_ubZF=Z zyDD04Oy@YHoBjrfg|ZUMs{Nf6}86mSFvt)E_?|eW&4RN z)+WY|aJ4own$==0fF3!{s^C72TJL0bKe#bm{aL8TOw@?}cmm1iu2rq#O85O~ z(MJX{<-U{S?K zIbWj(XS1pU_FNi!tptMBPnC26|GXq5Y?C?z6IPaa#io|s?gWd_Y<2W!0LABdCnq8l zpvi#Je-Q3{CK3V~{HI@n7~;crJW9+VH9=juN*~HQ&j2ObkNm@%<11l2A(yIzc2A5p zX$C*g4oaFwP+nH@b2%`Z!y9~Rd`s`Z(IXYR$o>txiR_Up?l#}T-a}?W>?les-(r`a zqJ+d1`u0oe@-k$A(pc3cgml`gtD*=*)xzaYQmz5 z8u)_@-e)b^2C(G0Re_8S$^3r_4T8hA^UpuTOuh}JZm|wTF*f!TC ze-3>Jrv&#vFu|KMs>R8z?sn`?4Bvi#$CbQ->R|Gn5slShKzP++vEF!^uzx>Hb*~@q zHgWyE-$%q(p3I=Mn&4O1e0k$3*ah`zLiS+m5#~=hNX~_%v(bIfnRZB!+%!N-vMvx^ zA;kB{yTauMYT?p*7*RH8$t#v8D@Tf*e-^jQB$Yds$0^Bqnk zwpC-8i+|P76y^vwykjVU`biJNU~j9gGZr(q&vqa2bFa83I86ODu5o!SMp*H8GdL;Q ze(zN?6E72mI{JrvI*<~+G;S;%|HAW)9y1rYr4sJ^LDOdvM22()A$QJ7rm*N7o-=AZd)Us@4@7F?2+T(I4LD$ z{c0acSj0OfMcYEA_XIRt4JHFie_i1&M)N;}a3*3x#<-VxDkxEf<4^kdR1&IR+tehd zVYOjR(ae(?KuysO40%d{*9k>7nqL-e(XaLmcn-%3t2FTmL@YfmbzzYr&5F?MG;^g@ zYEbN7^5|)Nj!7B^>9??1<^^s}Ro{O|Y}6mMy@ySGP`1|Q-lrAyrpvSCf8xMKNJ$uJ z`r4(*C@k}New=)BZpk{u8(U^~bO8qhkT`4tbLIL0rQYL6L53>~OU_wOY4vJTludZV zr&<19XVfaKg(lh2>TVUjPbHpU+Ye9LqEh&Xnx}W)XO|H~e~2r&LRxv=51u${rbYUx zeyfAvXJEAmRo#OWL0yIde;*Y>Otn?tPm-QaT#psBQ(H+XEmFrBPnMj}iaSh0c(ru1 z366aq8L>>xQirMGUCF9n+nLobXuk?AbZ`YT2XU?Vt0_XVPtgC9)S$@nXXx{Q9{nbd zUj0vlA@3$w%#>YX^LsJ8ZxeTabu;A2G@zAbDn|Lt@ytWstUPb8f3S069o5`o=jPYd z>7k2#L~3C=&GWr36FO8NiS&run0aDf2#XO0^8Cuk&LjCwK4G2NyRPpTn`(PNKqQC5 z&(;Narr8BhMsTa-fZj({lZt)hl`GA?o2$;Be}~QBE_q`|UU#-!)TQF2t3?m@BR|Bz zU$`yPkM9=cTu%fae`E8@9NZPjYml;?Oi^C+o+{V$L{5(7I^&K3Gl*Ct`y2|8N$fr_ zB%N$&J#Nw9Sr%Dz*|^S%B;%+)7x~bh?)mZV)Ci(bt>zTgf6LB5#JBo~eMr-0+~5ek zvfOoBmRR~nJlc`I(xkCF3H&%|?V|$|Wv{ZQ%#AA*7GU z;9g}twJiewe^~7*dInS}98Fo}Vu<6U642&>DE0sGcMAz+1F|4p?X^-z!n2o1f!~l{ z;<2J0^mMl+dedIzq z`@B^LqH4MTVX#%;NX%jd6SZ)xNosG-jItt?HXea&e>XApEXzjBz@Cx!1G@$f^@$@f zI|XyP#`(5q24z1hlRuez?ZYB;+Iy-3a#;@-(9xXgjsoY2=^WzyCiE3#RnGnEltT2< zB-p>xoN{;hb32_iFodQ>hW4q>;u0J7A!2BjPCoR>%Wr}#?G)Y0$8GP9et)||-`t8v zXy~g4f0i;cSwo58uISNbOB+C9OPR|Vjga&PalY$pg!1cy*8+B)u=rBs>uqol-X ztW<}X#{TEMvNeE>EnFm7TQAZDQ5#Hp_}#Nax766975wv*f?0tlr$0V>OChS31#{|& z;i7FVhU1m$w6Evk%V0$HeMyRc(s;%Fjkg{4e|8j4GQE1j#Hn@x&>Bfr#Eim98Y07{ zInSz-&kwHJ5WXPXBSFcq(FU?cIXt$y^G>N{T*^m{sP5JUb}s+J#sR<{7olRoU(Ye^ z>6>y^sJ9!SvumFC7aiyjnI*`!556;8fK%1YwVsj%a}+727r@ ze?}Rv3d3Fv4@Pn(^uUqrBYK*V-niI}NM-#k%L3P%czCqMDwwlS|G71hj5v-L+`{o9 zgQ=Gq7~ZWG=$aT0x;H1BoN~?D9`jtqV36_y{@G5Ag^W>ke&djS+Ya1&-`KTJP zd1za7G5kaO3!*zv+KoK>M=^RSE#-C-f6~v;4$4=*nSJN82D+x8k@siLsN<9?n|4Ph zkmE5)U#XapqrT_w%m|1V$!2g>^G$xn_+Gv@%4j{=^uX?H<4qga#2F2E;oYh?CfGRR zuo6M31)Ux9e*Kvu;hgwdbt0;~A?jzMSqUqB(HDzlcmC@+Q+;6h6Qc6#Ljq|LrZ1<`rc~8g!aZPNjGVOn!72n5Dw&1v3DUdAk{}g_2^doU zz)>`#a_G8p=Pz^LG{pkXRgP$AL^EqC+P=wYj*L%0u5MFD~VH3+a+36lRM=)G*HzFRgY^ISH>z5gJ7^hg~dk2{_k0a0}e`i;3A^fbH z=22!1YZ@&ki0)&YSQil%)#ci36^cnLB1TQ#)$|^^b7X93wLQ`Y59@Z7>~=tD=GLM$ zC@rr*kYvPGEf{%Mx=1al`13!5#mPDnaYIv})5bOZcXeBY!Zl|BqO|z+{pfk^99?Qw z!3cF51s}1H?QcIn?)p#&)%BaB4#HkcSJj3EkJ$et0SNzAYLisI6BzS$bS<`H>2r~A zMtW2)3%Gi;QWg&!$K~1g)N;%DIO&>bG0?Kw{D`b$0B*x-jd98pWF@S& zAef)OgB(q_pILa3jp1wCXW;d^)RIERgz$)EiN=jNf4U{D8Z0Jr2py44Y|wM<+?pZD z`u*#!Q9rzc|9H?`vC^Czpe&5T4f5)W%Z7uP-H;^|^=0ulq*?ipi7qfq zJSecK&@JB)t5Z0zzrLIP%~TdDL8s@oLIPo7AraNi##)mvcs0bR4T>t)?yEx{xn;OP z>%@#rfAM%p!Q`q*rs~_3G;fhe+%e*Q@1LaboEKSP53?bHa;l%+9(7-#{)65~t++?b z@Fp-wviXxO4VDVBPNywT+!4m%67I4HYwMzG|1!Sn2r2ujxH3dEkL*{rk>$M|^exh? zhu_uZ{S8GE#Ho_h+*Tz)&}O_$yAn!B74B}le<(+7ociq8ZS=`F4tKZShcG-Qhg@;P zCyvrT{7H>eh|bbRKGCOjD;)khK@=44D6io$!)&{a(j0|>>~K?E&}7)D{xCjs!NW=d zGc*8zV}@O28i8ByzeUBhfaV#UY0sA5fP`#2B81fI$nX?Pm?02cQcmlg zf4GBMI!1@E+>}E;jV&p{mAyJZ;ZiX6Tf(Vu4u9?3u2{>x@TEYx!kptqpiR`eK@v!O z)l1K7U+Z25zUZF7;NMQc*N5|d=j%kK7Qow0-%avYG2K75n(`#|MC3Z+y0%tup}a&y z1mjsgEET)w+#|h5B3*f^H0g1#KQ*j*f6s|=&ObyRt3>zdFpYf zAcF0%d#Q=oCy1!izKhF=n$n&Kf26gG67nj@(k(Cztd_hqE$MIII?f!SM*0`8L=(hH zOBQ!O-UeQvFHs)dC^66Jj!+{`LKjw$Pxh#bZroiouhpr2uKFjA{+)8$U-w&M6qV3} zD(&p$#tevRA6juVT>T|L>Vo^9e;%eS5sXmf`&*rvi3^p{o;t|C1B7X#Db|@X zp5=`@cM?CPL##Z1z$sAIShDW!12b*q@kr?+!Sv2G_I6n3k7*NjPr{nVf1@!87hf5| zGYT|pj?YI8A?lSg+(LvW7VuIX@YX zP@=AB-iK6-nzCLSf*>94l?V%V0UyIfRkx9`3w^mJP-L~Df_Wy z>4AG<#P)q37tqC1q*5@^e|$*d_mQ>P_`PK_A1uhmr!-Tk=g})z>5DMTy@jD?4E$QI z1~Y6gZ-^3ilq~vm53B?wn}zUAXsA3#UGzGsj4JdDTYk`q;WJ?B05w*cDQar*AwgRU zE9l0hb1XLd(tOfpAXSeUlk15G8U%NAvxQdqa&LB`5;|2Uzi$34e}T0=34?r`xQgQ% zgo<@M#7Yb@Ty3DuDiF0`HQe+_4yA1ZfQZmOexRDZdUYtda6{e|+?YHc|J=`1j;i4h zPkpkN%5o!P3!_ra2#ll-sQ5bNK4)CjuQ{1$v(OqaP3E~d{Isaut4Je|Uzi*1j{s|= zpFpov_5b+qG5Xn@f0{&YTE+zoq0)FDhAWO-JOi1m0Vz9jJ}b58&i2f%qXa8ZFN#v0 z4cDrnrxqZvE8rKZ!jvteSb))@2DiG)&}F&)>#j(TiY#hyWfRR@j@xMfj!Xh#mnPd* zr=pF?Wg}>^pm}?*7u6Zkf#8mQe@ePBn|CSPYRe}xqecny z3-R%2ML?k?dYtIS?h_gl0)~dPB)5 zsm;o|1_c2Re;hHy>RSLr9hc{-j$KjgZ_PLGndn<>mRO~MJps*TAVJW#pSZ^di_4Qe z+txtO;VLNt)Ydwl-~0XTGH_c3Goi6JuRlw9oK{vZo%G|LvdT+%cR^T7ZVEh>zqOd^ z*sC$BC15}^)+-6Cc6w~pz@941(Pa5`I>v#5M`P7Cf4X0(UcLnq7y~v#aYwL>Sy<3b z0o0c)uml~+L6nF_Bd%G((&hM{zPQciIcz-#ty1&%xXCCWWu^(XpRa6Y8;Q_xWC|SN zAaWsJ4mBUhz)?8Oq1t6tDWAL+4B`rIfRO4EMmmDoLU%bE?V z5+x%a(CZQU`qLW-IP-pWCa?AaP{O zzJ{{ljmTh~r>^gbbw(S#6 ze|AgDu2swSvi80o;P)M#>$?AVuKV71CVHY~(Mlc3Xo_kG-y7%?bO+g_%hEve7Bf$b z5i00w9Q?f_dYd19Kti0Ij9NyAyV=`Gz$nV=oOkzMF}f$d3I40ObXIQL2WQn!aH((! zUL0K0ztq@J{}4r!Ae?J~emDlt%JW`ee)2dfSG^swbmdJqCjQuKdbEg0B8QSU+ z6<{7wdW984EyCsMLiAKrQ}GretJQ5(+=7oL->q(cR9^DP_%vCnMMTdseOO$!Kfdh8P5ph>`xHKfb78Vcq z1x!UJchuF7jbs=1IuoMM^;lWz%NdK8zq1}RC9i?udHY5ZyEn+_{$@yJpcvp0F2Mnp zu+}?I;mE_6V_;RD!QtnA9O#}&6s~}+j-Ynnq0NGy0sOH1%r;D6%|2<3e=)|NuyoXp zS$9Jgpk&0RH{cC>(u+2(Rv82T*F8=$85<18-GjAWNWb0HCFZGw{%~$c`@>>Zl)JPZ z6<@KWx9ZvQK){Wr@uf^ak=Z);q-52YJd1gP>RzNF%(D6VHU@-!FGQU*YQfM(teEEC zo;VJR1CkJXP6vnmAZq)Pf6qgqPO>WVwx8 z5Ev$pOiunm5#gs`e;trUWlwP2U?5@Nx-75Zik>;Ub%M3aw<_0%HPME5(RZM%P}Yf} zDe|KvP`3W}I8@W3ir`j8R*#4di7l+p7_syjpEcF@3P-w7DNTu1eur~9LTd1f0`N6G)Z$i=UPJPC3$c9 z8Pcp$^sd?7^=!`lU`y29u#3gz5kegeW7e8tkwgRfo zd$bl(JxJ`GM((iET{gQ81STUm7t#-PJwxQt(ac8Llo^DkLly%5z4oX)Q#REZHELC> z=)9xT;G11Hf0?FBG|?G*L= zc!0NO&QZ3MdpayUReNt9k6ncGm=K5kWZZ7*VYBgfcG&?dU3)(uvlyQ)gIM3jp-0InB8+cre`b!wci<=Erd(P7VWJ zV?!d1fARv|&v`fAJ62Mst|%^bMrio{<;yX2_;GD}Qw|s{3@zOaEL9BDtf4w_Kc+TH zFkq%Lof7PO!`h6x>XYBQ<$Aj95z#3^U0=+q^(jB+9x(3_beUFGegcUt4E=Sl{~_Fb zK%ue(uuGB}>JoPM*d=M8sY80zax4!t=id90e>(ktAS03{6on%bt4aI}`G}U^*_*zR zn-^X#psXIGUV$BP<=c)8sK$aDvWdG>p*kYcG-P)Q2q;x|>XxVgI8(q!DtzWf=_mG` zMf@YhGR%!U`XY;|9R2gs%zy3bvarsfce~HtBFkK=l>V#9yOUGGh1v@x7E>?NI3Ai7 zf46FCfX(j;_}B2^6g#r=+@ewkxS!ntwp}LOmfYX2&^14iNJ3|I9?o$#{O0f6UG*4I zMm6C9`jw;1aD|GE>4ac2|U8X3az?b0`$vjN%Sy`9&F#Vo1j;$iD@*cUm+F|R11 zv!9Tki$A#}GS!ZtJKEauJGsH$j}Cf1fAX2wsuIVgkDYzDqh26bNhJ3`+3^o9BhJ?8 z6mmr;NSS35O+$URRSGFLwMb=mge7czI}V5=f0S)G zmrV(>B%|cP)G%Wkjlll}3t64e%IdC5RcO^2qSUN|XL=DexQg>jrIpSwi~@>o?BlRP z6VBFNEu)%r7L>krs~{!H2STH(QRnrmW`Z~-<}I*a$R6$Pipw|QMZRG;%zw?Bz7N~~ zD>OHEN8R_4Zjrv5D-|nx@g{G^e}G_EdLzCKI$Uo`Sn1+W$St9JNLI+U97Vtu`b~9Z z%2La*|B(->|LSfI@Dh$0WlNI}{n+XQ4%tjrK)2l8i#82{{-rs-k z0fb=NqN=Z&I}XJ!I~kOs+ENQKj~1Y6Gn5cZ4`5=4Tm7y(&j@t%2CWEme-v{=1|5&<_uuU;dT3r^-i_fs7aiA=5f33$9NuY zd=d*r1=Qq+eV@6E&V^+se?y$1(5@HN?*ypIL~En|O~wd_qKN8qI&kS?{K-MVP+7@# zmP&d$E&*2yko*>xoHfSp^j9R;*lX z;U9E`Ib^iDnM1Hvx54qtx6_jgJRr)*NIb!GU96GS8T+Twm?9_Gf1-&;T*fcb0w3p| zOF6F|$8*$G@sh>)Z!tW7AebUH2QQ^tF<`sDK%n4>vD)LubKA>{OO!6HpBKM3v%9?i z14>hhhpjfM4IDgS)xyq!U^mH16XpqJzY`I5NEMolFDnVo&DLXzP) zIM$gkH_y|@!%(q@e--h$$oY*v$A>NUu~5eML>Je9bgOjU{2SWxB-L$leGJ8rWrv-b zSC3J5Qd9`JS2w}?uRal)DbZUrIN#Cr2Z4Igd9o4CbXl#RWaaO<-nC3(5yD=(5W=H{ zLHkQm<{F~xJEwIO(7~laO%un8b;{U55G#8RPhB^L+%%YHe~NA@3za?=KxV{K1`)Dv#{QDuLVti6$UG7b$&^w*`z{og!!5% zW$>imDi&Kje;%?B$3Fv2Xe#a*tetQt8|GK#7!|FC6ib0NcvN0jEhL;TLF*U3$&^}OR`rP;?mn`d^Z+y}o*GBaH!4`C$tj_X-}^SsKaP|o%7 z(<+Nk1AJ24+GJf#Xm0lcxqbbLp}CGYv=-SFT3#O z#?cs!f2S~Ew=zOekILsSv@RN9ZOXTHeT#$ZR=F^ZDVF!dYzy`H7vb~`#c-fSQf&;0tCM!1q|IpC4Ds}gKOElf{FF&NGRb)@MM@&g^C?e$FFr=G z;}2dS4s5NXL+CS(d|4*$w9}WQD#{xQy>+U}f0LQ6vPnqQdIPSp&r%(@1~Dz)PF%dX zwDDGiN5MdhDaa&2sH?Px*fQI$r*P{K;tw5Tb+y<^rcj}=zz`BjYfJq5zF-Uz?E2l{=|3tg0hd9=0*6ois9@{1KLj+YK=$EEn|2YIs zG_ih215py}HEkvki=VQ*v8*Hq6Dx!>JPl{lie9_=L@_{2+2adRGfE_x&m6(>dqumN z(_f$tN}OJ{-oBFC&uRf)>iwMfwyqG3e`4`0gW46f*<5o_P050rpWAE!&mIN_?OmRV zeSJNrb~Y*38mIYW4a=diKrknTx^fi-2v4d6uQ)opRn!(}NIT}b+&Z~;gbFr-cli~O zK^2dv&$(J-QLW5$sAk-XRP_3gN=t%kh_0puvcLOxVaHh(+CU6y;pLpa*I`}F zgm&V$xS&Y%isC|J>uy=hlG%_La4(4xJ#o=jrYN}Va#bYb+7|VeMW#{U2gA(vg9ETMKly;FCT}+tyBm0rd&&< zo-b`0#v2hda9sQa#eL8Z#mziM%S!>Hn?9kG7t032@C~z7MdUHc91h6}Qhg5l!b#%Q zCJD!B`=}hY)?}+5tu5qo)SK|s`qJbGk0W<%pMEnw+#G#bTFWKsOXr8wf9#vnKv(#9 z1&6m4<^MwzLd;5mDVJ}@+UCvsZND*}dsPDwe#hSk?}_vG=>i#Z(4 zs>N`gU%$6R_8LO)oXJ_ve<))IwPd(IF$fuF_C!d2XWm?L(@^)!AFcZ0q8*x#-P{a3 z!4mn)I$D>^72xw9&w0K}zox{RI@OC~AKML@=c~ATkY!q7A^c4SAqPL@%K(=C`{;A? zHin1boDFM0vLOyXHE`T*rgn*UCaRQUWoX4`wPWNzd<`a{Oi|N!45hbWt*oBoJciuvdFob>zyf5ync+`X|>zUpslR57Qu1a<$Vv$YhlRiyyns%ew)A$e$fr0SrPQxGd@ z!+BCX3*f;l^}UC{SC<Lige;cRTiYLpH*>1#hQ|HOo-Is`) zn_h1H)@sB5Irdt}PUR;Ga-JZUaSBlZ#V>6Uc~lhAf8OF=0+kiB%gkk~^53p)si9l8jsO`k#Krt34Voi3U-+TZFC_B$G-(w534 zNiye%=f9gIQ3&kX;XjQ-&U22(`&G_lUrd(8-SR0>mxkQQx)SgbDCxd>ow}Q{d}m%< z3DO||BhjvKUt?X6A+i^5I<5h4xt)kpp9l|Me+VcgO-4gW#UB6RD8ed}SHjRZy zEY1V|Wg{**UwgRR^oaqduIVq1h%vXRsfGDB=phvexO&;)PfY#r-N!z~#m~ zE6LtB`=`9Ep0xIYOZNn6Tq$|}&VXs5bf?l1gG(yDf4PQ|!ckbQ_#wF^YYzQBAVqS^ ze?2&2c_A9RLdGx)2al|RrdkQQPdbqw*{ffw9+L#TJajmM4t+bW-7`rmO^zU`8iTN+ z{bEwGuQ(lH61ADfSWd(Y0tFNi-w)am=x-LnDad`&8H2w?I5>4yKQUk;KE0Q;3;~l^ z&u(wtOa~y(U|we(h#>FU!&WZ3Ck5D0e*;*vQ=|cL2wU*A;EpYXC3tyXb`a@1lt{;= zF|uSiD=LnbtFooj+aE-VB-K5&L`#tblsXWR#?>Jjo6m6sQS$6K^pANq&bppt(N)S%UR&VgXeo8v56mgCOkkQgZeP zv0+;CZ+Y6V0o@^^G_{_%U-cv~?}>sYEPF-;=PGfm@PT_qB6*^sTGbpkO`!m;?u3&3 zj?u&QR=&5E2S3Z#y0Y-Mf47WCJisybbJ)8UJNX;D;yW4$SaJkckr%DmZotNgi?s8X zAD$VgYv#aWH6gu8){%0yr7mvmgiO@Do{x8+Or}a&eCIOud8-a3TvPLO%-tZb`s6y{ zJ^W$?(9DwFJ_iLCluW&+kWJdbH0f?l4ITMMoldLZ_bu+zw>x-Le<^xQsSq#^vdMoI zoJVN;h9aAhdeTz=g!E3p3*j$N8S35}) zWP2RmsEr;rSY|}*MTj&1)c&ZFmvlih*OD$9^4PLU5&;!u&iG;$&zg1pjRN>~G;}ej zT{5u5o67*JR;HHpf5+em`iba%5Z5StkJKQW^S7%PoB*c(i3-WnR^v{Obi-Zu6R&TO zribQJ$%V$;0~>p}Q_~4l04vBohpxKlQv(5I*5SqeK40)BpsYK@3|9Hm8@GMgFHvyh zgrp&OyOAmE`D;Tx$7aLETh{lDI}(|OOZ`7Vx%VIEA(Tuze~@-db18j>!3r*w>eSm| zvU~sRVsQepx~{57Y=_8K`eMhe6w2b^xk|dE{+%vbjJ*^J3F$}EG%R3csY6d8oSh(x z9Ue#_h4eZ?FUzVzvdcu*`DjAQZfwa6$=&|X)HwcfGmVb)k)0=c;JNP_rZg&^(y+I? z4WRK9fmI+We|&s}8~}bUMzCil$BJfgu64jKne1^poS)x}sghP7#TJ6Ojd$t>WJsG^1B$2vUnICC$ixN~NIJhS zK3V?IxhAIFrPps!P}{0U%q3{{ay#%Bed-yjUK&71f5$Y{d+4QC@5aJYGDZ=J?7;Ta zLO7~3x8bS|1i9<7GR58t$@#!c+q86&QbA!uv*j44_ zi^%#%j(<%5tI79<6R;)8(t)do3h*r$QOZBqo+xx+2%SO?B8J%CH%RCbPokg8TO1$M zd91T0e{w$mY2ds}0<1WXe9h`6`nW3E+Z=vP0QJ1ay(K2f(iq1ZIaItSx&J=v>*XL9 zxr;+($?nzoDZMqZGm|wGj2glRfC!jUsJa>M^gIxZeRWurUAH$a-J#Om3`5P(ASfNu z-QC?VAT6CkgVIP!42?)5A)QhRNSAbd^Z2~yJJ0+1Ugta4#UC)-v({d@_g;Ii`?qXq zlCAem%-;F-`d|QUb92wcvV&Y|gx}BMJx9=SS#rHJ-g9tjSd|6HLoRD`^t}&cAx}ZO zMB`^pTknR}q&iZk_VHPyfxM`_&^P97!#BxsR(BK&mZ~~o+NRNE46@WAlUKEkbPt;= z$)qy0;w|pK5P6}3z1L&ztaK6IevmTNgpQ76ROMgO2Q``%_+=~@n(p#&K6_*-q!k+J zxXF$&BrWr&=8R`q)g=}7EN*LutT8yO25e_=m;X36*twEMkE$xnM=L#>fA?Bzc%pR_m6);Lpo;b_|=pm=w&M z&wbK96l>(P-Os1ZZIAhiz0_&sZR5Yg;@NPjt8ZFU&T#iyVKQFcPB4xehTQvhy!LHC zlR(M1oJ$$*!Wqf;xM1%s#9Q@%;vP5=?R1PnZL2RsY!6RU37#!pG#Qb)d6eTdb!tTt zCQ6cwKiHO%%X!tCeDlzs5RWk$7%y@60I=PjF$z_GPQhT!{ZW9EOM165WJokHCGweK zn%Zwhc4gcNt>;U0l~i#l@GhX^fUv#gZzDba0GjA<*$Hc`|Q#ObXj z2T2jE+^x4w?EgjqXWPn{NpPl=!75}TQ;=r%*$?N>4Y zNF7@h@9y5WFH_5qH!LTlsq;8{8`2dSrU{IYuP$bfocQOgwRK`gK@dwF1xixCAh^4L^*gGMW9NM%y zut>{^9rV;RT!}*wv@zQC`}t`WaXLqId>p@ynh!li+Te0+Hme?zkd@nQT1biYGAz^1 zB`V7_3_3ZhF2kPJH5u7)QFXv&&iE7;wg=CxAHNd+;Oh(-VL&4One@up<%k8ww)nM> z+!b}|{o~iEhRb}Y?!hlZDG(TnqVK*(aGqo%%7%%!}tzz;csjsxD z)#F@o+0>89Uu&U4h=wL=Iix~$QaDL;vy{(`M)(NciW3trb^w&OeSd0=HUPUSPn0}dwz9~fG ztDg!G?fuqq%slYyx$Kjt)q$1+h8q*xn~D7obS`e>CDQYa5J{F+R<@RqMdI^rjj_}Y zfu_3h;T`)g3fkpiqUHfV!7h7*&;`4@n_^2Ejn^CCD|_}YhTl*18a{I0hVjJ(g*W&k z)Vxsco=|>vI<$KjS%NoP%^dN{la_Wyo2f&t>JU5HMm?^4-CZg~JFlw=pHm7uNjzi4 zfkUshaFLgGh`*_i3w!z*!Tx^#PClpY2*w-54R1ZswE>a%T_+PCj=|FF8`AfOY+)T~kuR(FJwDJI$11w!V zO&tK1e`6U~*?L(5teidF0JeYQ8vI{m1Bu_r25ta%TOWXjjhm(AZ+rtUfX{!xI1uEf z;igf;6cfX=bh2@e1$kg$_xx1y$Us5f-#`kmuQCEp5lP_x`14ulyA@tyLLMG& zeoVmMI0-y7e1iPo-@phc0z86XD59+ZE5y@VWai)zV#$OJ%yN*PHF7vx02VBR_1FE*q^`H%5 zjHD6$>IRa5n3;%DET8!i)p>a-dWgs++=}sc(7_|mf0+=v@*%t{!;Us4wAA3Bkoe#H7-u1U*Cj zjwTUdP;D@n{bw|ND>AY7C$xqq4v@O1_8cZAj;8j}Y3gAV=9wC7;TL#hhLv$u-G~x+ zj!vP7p9-HKAnRA+>~-PDMqK$*AdEQD2(sfA4f23`<_jDtIDqJkvy=!ZYgm&%QMBf} znhzo~5WC7GOAh%kZAB4i_J&MU`O{MG?(T?1Gdv>b!nfYZGFG3}pD=ty6o+7rk_UI% z(hwM^V5h`JP7WQTK!i-vo^UfZhgb*=@=TWA5hoXDym*B_c0~uiUnaTycKgC7g1Ph0tf1IDv<)=@a1M)VsB#EKf zBlCv)C1CRwN-WT_^V~h#TjYS)h^i||;1na#6ySYO0a~utNWzW4UzYqC!yFZVhKh(5hY^8t&vkXy8>;%`7zKnjeew0@ zaiu?qu1y_bTIH$PY0c04h(t}TFeZ82=lUYyir5Ip1;Po*g5ijbk^7JN<+tqVVkxqG z14$AKkAwTGyI{hQr^k>-o-2h3TniwSzx1mtc*B?n$uNHnZ-Wy98#JD8`w&eI#}G6q z7^0HK52n>1UYF(H%qP^J?In0O8!<~1(zvGM*4SmCI@ju(A}K_v8d4J@!2*H8`}zi@T=s6#T%P$y4r~5QW&Xf2cKCbVeXVvH^o^;#wZJG*@e*a!QcjQU-q6E1V*H1SyD*!Yh=T3hxE+&g!on~TklU%CPKY1 z?g1dUJ26nCjTPLLU<%R_6o{T@Kkp6gW#B>A*l?b}N0*4k_Nx>Rfmli*pGt;T%XZga z0DGw(zhFlrrP_dPUO;L>g;E`!|5Qe~-%->Sy7I@R@q`E=W`(XMf2hPhu}X$?z2iY@ z!L4JuryhU^6f)Wy*8r%mY7XzVY4yd;pYgo~*~om78ozR8QyrK@e~5Rnai^i7xVgQA zo>3zfK{z{BD?L3}9wfOfi4mmACBMZ=lp*f!R?tFpTJHm1&w7*cNk8W4?ol8}LcYdX z7bI+yctVERTSQt}h*NIcGo+pug98oM5<5Y1aX3M)P8dIjX4 z_Q35RmK=jY#rjn49$M*kUJcN#><+SUO><~ikfYs$_sZToTD0oI@x(^OS}yx_1#wZ? z40rIx#fhIdP^;{`udwT4U=hFV20?uD)lYh~wIPCcr+)aC-cwP+_qX2Y+A+VxYgPuY zPAt96M5+-*X;u%Ci8znvGg9=7+j?9zr;DyWUbgjCGj>OSXOiA0>r+QPOIu1HZ8@;-I{qg2%QMlSJw^fKWR(Fih zP8T9}Q1&Jz!|jWiPA zuv{~>BhTl>k;?H+2Pe-x+LEswKKZT^q-<8FVO~SBYFOwKd zvx9nPPz)vOXhlJ-+54M(?ROPddUa-6t#kM_Z#QZi@{#Gc*=QvtekO*M*y?=`IHH4G z;D0wSHJlt4iI_aEfbO{+LEkjm6o>FMV7ThP9nUOB&iPe|NUH&jCB|=E3L^#&H^q!I z9}B3|Ty+1E*mg{X0WRS0GQ+<9WWZWY>gwx_^NX@>IE1XIbLP`0j_#>sZQkpw2$)ep zy5mgKgs|C26+PSHm-X=_=Uj8hkA*LgCYXvC9?8>dOSHG|xKOke50VJT9{eO^MYTjG zo-$c1JW=Ov0DmSh-}YPJiYf4udxeP{gKt`-6xI4hY{NZUvEz{9k&EigaZ^#?KuyG5 z&g7G|LoxuhMMr%au;>?wq))of1u*$=kq=Sa^nl+#%cX#c`~a-D`P6TSI?lr&@#=_y zYP2Ey)GA~~AJgR}8SxpoX>$ytPo&rh1)-@{`Plm`v0xX)*B*&j>7Byg+bX4O8(jr}WwP+?|X%h7H=_18OLv}`ai^i9YMlG_&nx4AN=N_w_r zGfv=ysG3YvwQXuhIa3RnHyXbTyq&}A zysS3!$nhh3%g_#3fm9^c@m4z*(0-68*Qy=#m%X#BrBVw?_PkG<-W*AHn$oDaO^dfF zQK?>Yui@M}Gsbjhc&3RFhu|Xpd;Xur1LLA=w*gmgm7XILts79djL#b(ZH8>`YdGqp?!JF<-#!g zf^g%x*J47AJSIG2p2}kU8 z_HS(yA8lUls~cfvq#CBn9@u>z$JI{SuP8tew~znsDysJAD800wX`076%FazR6K zAiFEtjE2hAoB;2;K|!PI+1&-{dE%f@#RJkjfC@d{(GRsq(QIvN@kb29Q@_Z~hqO%L zN$RoD&bT2q;kgb`q@ePa7oWJwg*b1nZ^`VwGj|q>XGkkP{o*r_oI)tR>Ek5cn4Rha zoV!-U6~EPb271v2DS=Al3_B)%$V4KVQJ$w2gz9}`k9yEDt%tE~`f^a;CS4xgp*T45 z04StT+rDK`DY&g8=Q6xn4)^lrxVj*~`ttn@FJI%UOJ>|p*6-4QQESk%iF}wa z`m8Lb<7%2oJ;T)&myFBn&ofv>jQeQA;Lsp&i-tJkdGp>NWQ=_*as__&vGskb?a0i( zD%4-GdNLK_T>*JX(%hKlL|f7W*0HJMN?!7Jnt^B*(eVP zytdY=ySN;a>VD~LGN>AOP4xuuXS$d{Swzg{GRfEFU8fA^BIGPN>i{ymYU?)CbGX7& zQG5d`hetI*5FoxCMG%ZyrjP9OLb^9g1A1W_;NfpMHlV#47b1pW#4-(ncxH41bwka&Ai+@uaPg(kx#D1_D4&JsnpOE!gl&+ z+lJR9=ha4ZVpHrNuTQwY)lwSBerzc5!!)MbW_HaqgwP|V)ax&VuDXvHt+Yqq_6!HQ z@nZ_!qz`%Jj_)F{AOrtY9YwpNW7HEM=Rww!-;m!B` zCotM;;egoHyqwm#Q*QCe5JARu=Fm#tqS?baJMF?V&b#ALB=tw?^yk*Yx&Esfx6)*T z23sa!oeLa2aCo&l3s(S;Cv}wzAic@DX7@3}IW`}9l z;w8=L&O=33Xd?3qxu#;zwZ&AsTsIW@Klf^UPpFR-3Gj8}>PTztvL*6|Zt)sig|GR( zF1?8&PI z@8<*AjMeY%tB;g?;c<2j$_L%zSrHn)3D#`pejT;3!kUC?=Jqal$w` zfco1n<=YQJZr{&`cN3hkCaGrI(~kBiJ-~;Prlx~VCVi!D7G^K+ELzsRp(*y(V&u7C z(K=_}(vdgIv2qFJrWYh5cgn_X<_@LjaS8R1o;P;+)dHlv;LmCar^8{huNS3(c7W>u zY$wC*v34e}24haQ`n8$2l(A5kUoWXL)t7nmS3@yiBu-d22Q1NC zcIzvhl93UaC)c6YyJiRJ7x*S8H~JlXx72GI7>YXxY`M(wwN@l2<>i#d8ZLXw0*eO`0r?vq1L_ms3P1 z&K&PfvF&Nj80NTP=7{lEh2)?e%|1`3rKfaU0i#9j-f4M^Yu}>?O;l2%R2CbcD+di6 zH`CIB3IvB+E}nzx>_Bil8;@>EYaZfd(1Rvt9bctM33p=BxNXHaOHT7FEyD6S{7MunLh4w9uM}A zH_;rjF+Js%X7dx9=xXy7FMTMi;xtlnG?LGBU{S7nI$`yBH=S!;Mnyafu>DOF!Xteo z;QfO_)ca)wg~PLDH?PH!yM@fy7A&cumLJ!kVK2tz8eBbPJ`KA*=VS0EDwv73mu1BL z*g;lRLgqIbQ?1jngTurG^11f4-L@1S2QfV5wi!cPJMidZgZ%2@>&(lBbyq?4TO|S< z`j}-vVNKWt7#5zAuh-FD9U++ki7ac@*f)${JQ*c>>?{AaAyFE^M;Loki_h^1FF^w& zf0z+K>eIxuX!t}wCK(1I-GA$qu`M-tt~Lcxgef4zaQ!l5=@Fx~mFr~H3v!sB_;P-h z5#1h+6_lY;_^!#m`bb%&emiE5Cch;OCz>fJx?&XXi(4wx0asPrY$`Vxa#h#r!y)YY zgQM-_$JEoSI1Q%-R%qqYguz75q4d#Bs_X9HW-a^YR)DyT2`?8uF{+nbjxk&1F}w%= zh9O`;kud1;O2_g+#@?<`Y3_%TY4Kp;D~eWYyng0#_&tIa5uT&e_W03qLBw7`;cqNy zUIhVbhAmfb)vwP-Gh(3m5Re13=0uuuxn9uRVff1Mrz?n4Ltag5jck2FMy+T7SnMk` zfctW3^D2icxI@@nyrt-a@W<8yo9TRam%Fd2>*u8x_nUGHeglj|ecwZXAd;5b*Yub& z*hMd^+{$cySyo~}uhByXgek4whMk2u4u{UB2TQSA2%H-Djn#h$f~c(b$AE zjgC`}raF;>h}@pX`ggw97PZR0&1EO36VA8_V&1JJn)JFx9ety&X-)S%{6TYt3)pC` zMJK$CVo)4|^ZFQLWCx-e-cnf$9SyZkHtkf_+b}HU0ORQzc^*29cJ6g`TPm2~-K9-j z&N`?Xe;ueR60-Z`);&~It*aCly_LvPI^p*r=<4BIZ^>rFH}UmXXKv@y_Xeo3(VlhyNAKDAXNYlkvj$&6cfbHbBwCpowv| z7)pMczJn-NA}O~+MF|g=#ce2IK*Vu_Pfb?j=?YPJsp6riluzQwv2B);f@D_9&4WX& z;QnPWbPF(~UZljm@p;BHkjOP)+AzizK+h~;N> zV}iG2K13$=grPnZrfpI1EoHRPl2bswir6Ykf8&=hrC)5OquYH=e}a;8^FhGozAvh8 z`8~|u+7rV6HNhxhnbx2jJxhzKEw=ax4}`aHy>CHg2A@9gtBwcDvWO&213n`yG+>XgTg z;WvZ$TPV2?=IL~Q$m3g2x-i?rp&!vSyh4ff^D=|%_7j>_+ziOwcE4(T)$qoM@>Tr8 zvb1;mOQS6tL=0fDpQZ@Uu>d-UhyONn^M`v#mP99GF9XQ z5OAKXj!vZX2da&QPC2g+!|dIt-FCc0-5cW!T*bYSh?MfL-|Sbr?I<~IJn3q=PqgM@ zkl9+TkDjSCj&rZu!%Z#w{IPs)zSdGPw`vjm>*8+zjaJ}oMK|Y?{@6z0#ht4{XZ`}S z)Np+=fGj?bz<{{nt!U8q6%3q&7>a^oQ^@?=0(T{$%a^D>Qn*`$+2$b9(Jg8y4%`&` z!ncz14{hw$|6q!qGc2lVyqWdPltETI0<3j5}Zbxr?Q&=!{#D=^iAz zBHid9xsadp3|5N0H)O65LH}tFX8SCSsm3vSqC4Xt6=Q7g$SPZo`T#S6j%%utS8k4_ z@q_+ujI=uI{p-cmq_i|s9+6ct@AG}O(V2tY`RSI;DI^G+!@*aqs*DM~RHkITFZpC& z(9@q^{EBB&=V}W4d4AzuPgfuJbSg|1(gT>T(7gHR#a-*xDg8b}16a@hMydSMc5#b4 zlkj|?y3n|TjQ4XlW7pj2FC}8WGLsj+1ThC4#!2Qah*w0QozzFJrs)l`zeO+64jC!?cWab$SfbFajGfRcs0Glaz-5@fs=+ zalTJN5e`37hELR#f>2}f3C%1t%tR;*X}WteR5Y${_5w+__SyTJi5tA^A> zA^4zOsFohE+@E8j=+X$1q4hmNC0NLEsyH zG&VN2^p%^A14`UZOo4j(HNo8=2Mr{#|JRc>W}^2JU*gtPu;A)L-;;e_CZmQxmLA%=d$w?b-WJ zm2vRIjNW7sAO#E(M-AllWk1Voja_)Uq^Fzl9b*yfb6K`1z}GCSfg&8$u|N97+984$ zg?s57F|}Ik(~`P7+fXVgK0>`!^vR<2tBBj)5@2Z3W8K<=h8_+7udYfl3$~$15GrA0 zJcHU0Hm-%`g)=sG^!=v*T7d!xvII5)=IMphsXV|L7w^@HNi*a6JCEm-$B3*PEIIqg z-FS7Xq(10K^NP5{R5$hOb16?Tu@VPY9DH_6*P}SCVefCgB81j(kNn8qS@l$vp*In= z{q&x3qAb-U809*O*3s6%M{xQP!gs09iG>?(hJ_}v``A|3;@O*hgfs(X8Ght>Lyed3)W;gGN*zk_Ye$6Z+wZ^ZvT)aWk?kk-a<8gu$73y6wV3&aM)DQh6tW zo(eTWrXshF;*%BphCC{KINl9eJ_;&l4Suk+s;vVUrNDiDJs2;JwV%9Rj8r1)v|y8H zSmKGqXE~b?<0m(ik?!=8I`WDd9h3hyt z;|C3hQiqA+Z5 zLPt5>^{P|(T~}Lteg_}G{f1%QLZr58;LI%6AhHqt-mB+1Y@Ga(wD?9PF9_V$xf8Z> z_IbnJ5T^Z>JdH_6sAsRIT zC*eaRo=kCZY+C{lGHV<$$1g6E9@^5YaD0ymV>S`sD_j6IrN~um=g#qsxPj!snas9! z!m!Gd{1h$`bKS4yXEsiURi+a5vCgw3qe7x>XJ`u-jR{8rj@=X#!Zhv?1Z?HQUEh%& zPCrkG5SHDA*;kbZ`F5{M-@WBFSg5}7KQNX1p5WXxeolG=33Ol|2Z$#_7SPC7@8}Yg zUsjE-`!#7`zFc)}>2An37^Niq3>^JRI!$6`l$ zwKyoKPda)3qSswZ)StfQ=qV2$Lz7>k;8Q4I?xo><3JEjmn@F^?xOQc~s$E&1W$v8W zcM9>!PY#IHAUZ+OM3WDpc>WkO(v3?4%DpzLyIL+klimemW_-r!sUi)`q9wRr5SX!l zWpU0&oXa~V5P51i>){79N8nPDRe6as7dyECkWFhz@QPRz62 zy5%6$u{SmB;K{p@R(3i4ly6@Y>v%lcT~o?xhYK0yUO*hW)W&2x!}m{kfp)a!Z-OwR z@;;2(e`8p<$hS+i&=BoEBpwxAwwqHi?g|ia+RlUA$XuPb5|6DA zu5Nj$s~tYuQeO&7i`yt>z95Ml$2@IiMI8dP8*iVBds+J^6XMgT77L>hNNB*kq`97exT8EBYZIpVPYj zcA9owSa?zFXU(phgq-nfGY;wc(vSJgr4mrmqg}|an%BFcmHFHLt^B9UGCw>-Y;L#t z!@WtE6ELecncSV?sT_cFN>0YkB5k5633#av^M{+HAI3X;>r{)@MsB3!hU6Jh$(Q>D zhIj1fzFbDW+PSnB0z_Zfelh;!I%B>S;d)(KS)9wGz?;)1+CRO+Jj#Mg-M;&BgeIa8 zbfpKu%1-(sy0q~e*417sbZlsL{{qq?Rj$!(*}`Inu5NLJoi=0~c6mHmOEx-~Rr4}D z_SufML3f$~dB(Q-g*8QW^0|3WLX5khNIQo-PN5@k7GJ$WAs*R zxC%Tp(xu!!=wiO_J;)Rl#<^UdoQT#|dHVysQfer= zwrb|+`$zq2T_7Z8JEMfCR{_PVJj$K50i;yH5@iGo}ejCtgp;>hO@Vb%VS zf|A#pMQS$tgKJB!xQFw@0ehnB$RGP+n~U`e=ZbK{ENltVg&HM3Kq4$6IB{lA81tu{ zFGTa>QZxX|k;IK+-DM>prTxL$o3_9qIkCY*!u)Q3vC!ThDvdMWg^viw8g*~R*c+Ls zp7DBPLMR=nEj7KH=uFH!e~Id^dcIeMT)Zj%RyZ!Ik6T>CSsg>dj_0}Ayb25&*bwl@ zbaivSZy8H6T`B!$jO$a=`b)xEd3KKP`_xTdg&IkVX@Yj&^&70EO$E29LnWbv_Mob| zEoFo%CMz$lX=O8S2d$SYuWLCpm54u)s=Vm=p87G>k6-`zx4ZYf_*dTq)DP(5E;<`IGtpIN@}J5s$| zd701Gb^E!w{2f4)_8a?@p0TuKnfvp4WucOzk;v$f?H^08c8|>Dls~*;u1yA78G96O zxnezpKgL$?i+#J8XR|o=^W19EOhAStrVQ%4>nz!LC?P%T`ZawWGsdJDp7S;aaY`^& zWoy0iBs2cKLt!LDvuj-LhcK6T|EitLq5*m}N$#Ot{AGJceO*_29^;P%$@!J?OAlCz zl&fa->Pr9euxZg3wOXM-tyda3;#9pKKIA1Zoe#owlW-1d9))vkaUUY}c>vMrHw;MYpU3G!(3Xy4nmTNFGiOxsN$HN|qnPV1A#yrs&!UGt637X*%K zFR?B6<|kEklTFyGzP>1`a4X_~Ov<$wrcF;2oPT1TnlR*JJA3_kXFOJ)y--^-mG~YvM6J@<^4SGb zDIxv5%ap%Vns7;kih4^YUSDo2R%OQZGxO z{W&-%4{+bqRxdA=7k13?s}9n>h`h=D_#xZ0Loe#U z=_F^u6ldka-E&yaoWRFf87Tui{S?hwGhLFk;SJYWXChdM7!Lp1WWV;r>NBUd;1)g&P8?kH});C zR$KDh%w|QcR_1nJ3&%KxG_i#|IkqyF-o@y9-b=r3_NLgnb4XmGgFWEE^Q}DmL~Q#k zLKmgmM4Ti7j)~qst)b3xeDS%XnaFkiJ(goh`V4LigJ|fLAYjp|n&#ehvlA<=DrEAt zEXK&gLg7u7%|xRonI!|j`RZrOl`n(1A!S#TP+kv+)tYd%{=-vj_A+45WMkHcYixm}%VrKbhRNnKc5{=<0_|+l9o}Y?5(rKsdMZi&xehx<)%9#AjgG^+bN1GiW;e#G##P5s-G5j>$4 z+MX6(Z~&Lx#k=>Y#iy~(JzvNY=05ap2li`&H1a#={h}jc8ylBT&4NlE*JEnQ>5__Q z4cE67@RX3mDQS#Y$x@UOj{9YjG`TdgEXEgG(UTyWl)tiH#R9HemW6Xxt;w=T&=r|x zqek`L^(u^PZA;C@v#nYi)UnTy(>bDmDc8)vW0qS`e*HlJGr6x~gUvx$0WRn{l zwF8LDRUWX!MP6^Q;*e4$i>=*4P+O9rv~FBPNI)Poq?VZoihl+|ff~p1lcK$lf2pDQ z5*ipOkPD@V5_ko5i4p*i0tLbUZ~29Xn;X^`B@keX#KZmjPA<&&RDcB$8U8u+))!0# zD?1b5cTJfvBK~jcFf2<@79t4`_aB#J;WYlbBnum}0(mGw%Y4Cj(0eLgYM4s{$N^D^ zhnw$D_J0+G{<@4SBJy9wA9yKeocqIsh2gDDr33Vg0K;qP~z#8^s zTxwZA!EDiHbL(Neqcejv5U%e*UsxtaGZuQBxco=}u0-@F8(Ld%(wX=|%M7rY1IR;4}%5M!&wId-VxMU(hp+8l|!8x9L7Pw9R_@hl23DCKOy(~LlA^@4`(nl?N>8t?`^_V_9|7=a=b!u+}W1+}^%2R;IA zXD~YpQuqT6R$>!280fR+U=NNJSlhyiwxaOJh(qBHqX|Ybh{8C1X%m$(juejICoBQ; zM94v2}BU+MMbn`e?mbRWrB#7 z&&bHrO!qX-`id8>=N@uKMd%np<%j?xc07gpf~Lz3R)tWpV@D%`$>dq zP)7QxZD4vLzQy|^uI_PMXip^am83DJK(BROv14s7(w&vq4`wt+PHRDyu(34<7k=pO&kxkV-N4wR-)f2Z>9v7U|{2o*k< z%cQ-F%a82zIGP1uew zeTprG^vt6=ao`5fO>^tA=mV-F%w{lLJFMklEzzFW5{(P5D$v+--T(KSBUaYXHw zNQ}1i!{m*l_u7_Oe%fVGLREX{i6duRcWO9N*6z>j82*^8WJ=0JEi(w|7syJR@$L(9 z&_1NMRDu|8I%v|mz}q&J;`r5UTLYxx5AHGBU|POC()ojuin|{Hoaevj&UD4tLSI&E zA{LVGc|gtYBaA^smpa*Zda1YT?~m5rG-}_tV)F2x)M07h;0$5%5HMQpFt%*@T6vy> z92?=M*t6IS)gO1SGyJv@qfbA6ycU74){`n$mLMNkYN?fu_(f+8O$)4!G_j^_y|un- zFyrlo#jQl4&zz8IPJwi~&e>TGI%gQ1GRm;d{WrgPT*TPv^k+ooZoFj1DaBzcvFH*S z)4T6S<YIA73((x}e0LjlA)h5k9{P|K6#KfvTl` zrVpu0@eWE+>FZPbVR-7I#nfQO|Iu*jFe84^|NFkCOiGy)hSs;L@t6BefOmEu(Z1%% zMoP*n%vS5^DxwaQ*sfa2dGyK3c@3PmDZ!2y?S51>Rs^{SAWeu)Zc>;{EnlpBQy>k| zPK|RO7aFQsMb!3j#`P?Uw|YALEC1vJT|^GVHV3m_%~NU2meTS^pWz2J;WR(X3?AQi zrLvv)WEzfBSU_?jZ0;er|V3x=hW`!Wx5(-Ek|_=Y%1V- zi#pO`r}*}0Ik$&qC4<(-@=vK7p%&uC;83-V>^n;t`-h7)-<~)X&GwBUbE_fDy!$zVvomZ=p3t%8u!z^ zBYWYSYluwZ&`ud{B42yusG-J%f?fk;ba|b*gduA=3$I#%v;*w!?!&mnbvy9_Dy?Gm z!<4_osJr4Pc@LsHj)Z)xH026ZuGlq>b%kH_n{+n!wqE3p} zKvh;K-k7hM;6&ZX;g{0V(QJ0P!|ke}>&O}d9lNfU8k<;x^Ii?bGM1GKsKv8^0|F-P zZ^w#0QC987W%t>DTyS2$W_swP;B`ZUR*F}LKOPm8_PCeo#PTY+gP+Uy-PABL*Ee{y zb$4(uQ7`qO?{fQckpd)eE|?@6lUtga@o4HR2`DMmHC(Cd*^ym@Y^{pQq&67& zy|Oy^1xpKri8IgWMFi2fYq~mbR9Pt9r^`3JU(4`bDilvpo!ZQIDf_g(F@`EH^Qt0{ z{pXvN&4!faWURh7-YzJmbl0+b(HBU=n{DMW^@|>H+Wf8g+{-t*aeHmGm7>YLK^@0C z@4%Qg5no)4CSA?lx6jElAc_8ZmM!n@=Tr{+jk|uH2knzZRy2!>vTZ?%K8JqHpzu%I zYM-jYL;u>7?s5`8*{Fa6Gbr%Scj)X58LJkptf?I7=$T$9to!=$*W!Kl^4h15BYgvP z(FcI%8kZ=)KxLlAsTEJ34Qgyok2@9$uX4=RUE9MoT zPHjl-5rRUNWfXx0ry)0+HU~t)VjbT~@A>rCHB{d%9S|aK=3nlC8^A~DOqPF-#i5KYaVSV;Cw)mH4U7T*dE{vC>*=@7* zurH03n;?8>C4SJ)IDo$T@_H}rj0*R@Na;Y|N78n?4Zete&uQe^z884g^P{#OL}%HW z)Ame7zvS~)o)e?(hw-=hOVj@9jV3n4F4o{ngQor@; zl!r zg;6rmeUjysD+LqV37xRQLkoHDvv;)@U9EVG;D}=V$PR7|qYrmqHzWfub}tmi_bsOG ziv9VqLUPjBJoMVpG$;6-HBRkZq{lI?@jDiF@Q}W2K8)*FKY21`==;pgVx*ugSD21k zZ*PO;{aBYgAX!>8X1@Gu&_ch$l$GUb4Qk`a9JO&kMZG^&tpe}SFDNDONA8h$t{UZW zfPoPx{3HWe_1FCer`-o~_j%i@-$$-c+ppZ%&>JdVIvhC#Ic-%%b|v)}ND6 z0kJ?|kAc(?!LYJ1kPjlBAUD9()6(6;)*0R==j{Yl{R*-{2J-!WlnuK16(j^zngC@( zF(yGGP{<@G519tc17)28(IV3bazk~eKs?a=DUc!*X&S_YZ}@Kwcf7#A8CFb#@HoNn zmOV=kQyLy1z`@kf%)%7l=t;xF4{)&sxY;}Vl0dh1TFhCig0#F6K2B-nl0U9)50jTW^NC1Tf2o!+6n*ouhtg914 zzs`W9p)|7~38>>Nh!znH&6x$gM23GCdNm6&g5JG>Z&tdL@lgMI@ENv@sUw^@4?qJx zLTLINh#85G8@fIQB7v^Xfpnl!^B@&y?mS2iS`iHY-j^8=1(aX`M25rzOqrl2f{8AG zpvXwPU}(}I2#BWfLRnk)H5BI?Ttz?uAQbow#3l;l|J!_kmrmx+7Pd~-@Zs|C|K1=0 zG@Lb^Y~i0;(g1mYf3z*~!1sH=D-bbMd;tW5nXiCWkWzk7{NDc2peekTlhKia`mMud z1VX#O`=o8=wqis0KU|M+5z_ z3F3sy0D=;4f#Byq{Jj5vqJPQo=S~s6Wt{*J!Q!?+X>dge{;eoAc})$OS5Q1PFarq? z{4d(CY~9>Fq-;#xXyE3oT?aj71@iw(PydrFf3bz0c*EtVaNYbJ8vmmypxnM-(v*`eVkmsfFc|gmZ&G}}2M*;v1F^yBfuM%) zUxb1Dg8w_U{4K^mI#PL{-8Edqu-P-XR-k?}oH)>&LlDz{^~s7WgXwL7g22Ct|F>QQ z{<=6}`d>-{f-wQwwiX`nRxY?l{V$#D&r|}0CWUelL1_@dO0dK$kUTQ9ZWF`{#km8q z{?)%bbP1w@wylG3;Ew#ahyIV+`^y@CJK#U11%m&tBXhvk?m)K4NCLlGgGr%@LSTxt zKrjnDiviQhz^o!b-v1?=KhhlB54f*DCNM`tupBZJU!3E2ErSNSivnhaljnt!qJr7j zfIR<8qX|Ouyunl{->9F!5>UYz$jAcl=Hb8M9IB52X8Eg*LV^lr7X|YCFPsXl7M?%j zn+FIxzyRMP!f_$~jteC@ZQU1oP)9zZ~HcjkhzWS*?BpSB>2B_3>*C=IpBj0%LC|p^n3W93_b>bXQ-$z#*Oe#SyF{))=ukM} zCfFVicmN)Ye+vcO&=Tyv_Ts@c6gU{u$%Ef6d}VFgPz<6sWHdm={mxm4d47D|SUCHD^at zClJ(`5=;h9j{MLTaWIuEknbO{&ify1@t@fK8SA{iV;y=U2X2QQN`O`WPhn>sZ0S)Q z_L_b4kY+TRP4hG(?nst}Sl+wKxAesXB#=lHVkCj>EMm}%upqM0KDa2`a8bF8t3oKG zQkl<=h)c4uKtvK^iG&Ph5JYTc6qLj!fdUMU%T)=B_#<(pVmbMp(|x}C_31aZs$lLr zxBF~;`t<43r~7W{{_BI|v?vdP6=u&&?2g$}Z7@4GqE#;av!)we8lHaqKV1Qx&4lJM z`M3YV&%frCS6)O&BFzW9|6Akz-MzoDcE;m~a^}{} z(-d%}2RJ0KkSTi2nRxlkOD043`{=aYWti88{_M43%RQ6pQz+^c)VwadXl+uL?xo&f z;fRy=p7|x`-}CGvTf0Y(g)_Rlel9%kWmEHiuetFT?-*UH*hZ6h7D0rl>L2k)hXhG% zEz-Yn;p;yA(0H|b?#%U-B|;wGO+%ItMrS&j#ub8pRf%j&(!Y&zJDRq-f(-XJ)6m_2 z=h}fK?w5PqZNd>_+tD<>Ny5L0&3R;h7TLe&Z~t<&d&kAQ2i(5KVVsRqj~HEzW-;nu z+Y~W!lA?;3MI8^hops+k`r^I0cD*uYjS4xMHEIZ>S)0&?1P?lAMza`{4$)WRd+t6p z(8Vhq=haxJ#i)uKoKY16A^wdLRWTqKRh5zu)ZIknQ$!1zx*#t_G=ignAQI+Y9OLvC@4 zcmLCH`75U8^WtE)(T|MUq_#HA{5Gkt4Ux+>=<0v0yZZYtIn+IT=h|R0t$LhEg20~O z*gp#g&x)fTq6K!h{DZaCC5FppE9+OExc!EkPqO&tyoF?dA!#f`0~{)O!fX&NpWog5 zhHxgMr&9Np9B0=wIzhtQG>Mbh&6+stsyN6wUh)*D$D3@enkT!BUSZTEPqLzRRX6*vk54vNukQnt%5Xj3Q4W@qX}nUK5(c>mVGZg`)Y{l*5T4M`}Hqscmwi=El*y2vQ|= zBf=zRB}t(w=x+MOu)1Y34w1#Uh(#8oO)mxSk)=_IOJk-#qF5c3ln_-GQ>{VIVu2oiYaQg_!~8_ru8-PBh!6x1CIWHCC)%tDlVD2sx;EO7~l z`iYBGiF5C|AzeX90j$lg$9)ryz7O}Z03#)Wz*b3T4#m@S!OHj)Ih@r%ok`Pnf^ewn_Pk2M%9 z2q(v-gp)4K!}f%dhBzts>{a9Q7pC19phZQPb3a|*xK!Cxi@aoRb*wE4_69SsNoM;q zr=^i(NqT9^DcGbb7+3hnd6R79v{;jR6V@cia6~n3@SMj*Kat3nuElZ)lV)Sw-fO3c zf@CyA5e1FG?6V~H>BO)D1;p5fS06XsUroo)@5j<|>S70W)KQ=^6~sXqvZp5L*|WUA z;&ihw8TA}9*X4U`8)6&0G}va;#(s24*iU!YTf%DhgR{rGUTXGedsU_9C#K;~63i3qMqrUlkITfLqQp$FAjmjYc`oW@(;Teo)c+ zd1hD>n#6g=su+!D)zU+XGoM%lpk`)bRF{%x$ep@*PO~bLBw3YZHeyKnlBWB$uQQ%+ z{Ee_8?

      L+PMWBHh77eDb|=xik*$S#k-lV zS3b7BJEYLT0&yW`L3dJUk3H!##>Cxg9$a6&+<3K!Tf67;tLUCjFOIR^@Zt6I|51-A z@vfNi>E$t5qwrTg;_phJd-E^JUn+4X2C!ab6S4n_` zCows+K26?u>$8|!DdZDr{!=!-X#^}1HWF&A-Ffe3dc6F&vfD33bBn4slzMK_uVIS3 zFPV)Ea$e^ad|x)2Tb!L?f8Oi*wR7A(a(nMP=N4Z}$E2my(fNwGMPP|9o6*srd#;l` z+tx2RiZIyU%r&>x-F(OT&a}ABEg%;r@>$hWRW;93+Y9hXlKuR;HrF>~L0X#QL=R(d*ZrXG*a80Kw}fncpiKv+v z7k5ui)(@HVZK5iD-BdI7Qr{$3WHx5UhSsHNY|q$o?pc^^vtyBCx41W9FXoWo=L39jcB zI-A5fPZrijo>ELcFfIMw32c!x$SvwL#H<=u!Y%(RT zhkVNSp3kI1LGEUh8+Hq9qZU$FKESTud+f^zW(U8fg`9N@bQ5wFq`T|?E|p-RG<;f- z!)Y)jfg+~F^pH*Y-mw{zy=n=Tlr`jD3E9j_To19!_a6IlW?5iu*mEUVpqp4%L56A2 zxi)avEzm|W7Kok(dp5ITtlqujhiiwXF@~AP<0I9AMb#ct%K8{fe9YDvY<7pA;#O?y`Nbcd&)wKXR;u{ zP&rI#olTe`*8@H^zIA+Bm@LTikT5J9_G~I8u7}t+m`axR73@igr(r#tNih)b{^sGe z-qBlXA50c8Z;Z);+^B?@?(Y8lk+nmYCIhtyS}^4sBsc69%qC3Z?$EzoJ7Nn@Nsl-BrAgr%Ltn`jIPefkaEOBd}1n2xfUu5IyZL`x<$<0 zhZJ8A@s+bBSa2-(^4a3GWU0}l@YFbI$r9XX>G>x?mGZzzO_`RuXKo35$HAg!2%8%= zy%?paml&^hXJ5Y@S__q>ubWP;?{LKl@dSQ2Vj9mn4O>tw$dmgq#ukP>>L5kZ0}bo< z9$(Uw;5*&o6!DooB%NBYt(K?EcXz%!oQsi%UEQxg5O#JSeRp`?wQ;2!z2M4|H{7%~ zxrEXY<=Oz_ODNA!H5i08vlz@6WGWENR2pO^ka_o_XTs5QCbLV1F#vYa-T%83Hy{74 zu>E*N!)TM%wFZ)ov=dK_Ky;j}O)HRike}KFfn+Sq1v2lR`K@r^FjP{zx#y+nZhL@o zYna(~966>jl1j~|NMEILmxy4B^i}i+)`nhn^zQ~i`Z`qzq+T#kb6^TH`_H0%4?Wf$ zK1o98xsNa!kp;xBAB(sp}XBSu3Qjvk{(&)G;=-HX?Q0DHuegjzPRZM7pL?CXNW1 z#6;~!Wj+{{nJ6IceyqJHAa2MEA_|DRK7)t?;)F>MxS7VimjOgh?p?^J91$v!n`-R1 zsmDuhPE?|b%wj81Mf6yPK~#~MO(m+x%%&1m#AwBO!9g>gC_B4_Ok$^jo$gr~q8Hv3 z_FPvXe3MFgQVWD{QejepAbb;JfrJHW)3|Rn0KzvhLNN#=x##hd_k;s`gh)hHPgEP- zkG~58&-+?fi8fLrbQ2>LYlzTI44w>v&`pfc3<4WXjFb!_LTCP^7WoK!fAT&iZa-Im z=1!!ZEeGXzEgFcivEdaB#LzlHAT-M+O(Pn}oLwUt$Q(c;VseW}nSn^u2~fvOwPfbH z21SHy!Zs)(*DN%N^0l5Jp=iXxbkd!12|@xzJn+t<|k5r zkj`uXZawjq8)SJjO~t?IGBpnuAvBpb%E)I4l5E*8C$u+;7CXqoMAL?iKzez+BeZ)}T=!p2{A+$g2awJGl z`MT6Z*2kHddTb&pvb7^Z=rv=*t*rDanffWzsFPJzrYM02REKm>!Yq}6MU~15HcM4> z2_h5RmViiEln{d~<5z?X-EIF_v?4PowhL}LH{G32ikbXQ*#1UQLaG&vt?9^DJ>ze>e&34;7pX0J0y^8)S%!oed#BsKH%rcr0R|9b31%rP?)mdjC<>0Q>Y zD%IRZgtA0dsWdb}MEtm+NknCdBxJlAi#@yN1fb}nJM|Z=KEL`vI8#hjm(I)%D`c;2 z?NR;60#?VwgyBc_I+f=p9+17x>`Z1BVH&2o|16;r+Yy~~r*0!md-!+5Stn}btz+`g zzDM3VRX3&{$XjRAxJKSO)g7lc2w7Xmsyx?FY^aYC@<)VBYUraQ0w`kE{oU~ogss;h zd1L-OVnOmIvlU$(&4I=?NZzDc)JOz0)6CWB>R3l+4%d90+WFw9NiOww!nPB-ep-m7 zgmnE(70d|%ifH1F%}}C`Hk)N! z3;_}gG*cHuZ!O?Z9_ci-)h+^1eVh5P7K&|m)o+J`yM;!?1dzb&yZ;@_eES1omsqB( zldbKIA}+*jZBdC3#BDQcX%V;0TuLkAX7Jpeau7Kph_A-hlKt6D(RjhQEP>H+%KGuEbR%Xe2pOnoE_HaBPe6Vdv z?2Pasb5a4}L*|kK!iUU?0>X#P#URR*`j98@3kOyq5?SzGtL-*@4L82{P*}NqvNl

      h^ZY&+RAPa{Gx}|0VEdZLDki(xEQDYh%9|WnX)KKOEXpai4_``*te2nj1{%FPZb` z<>-gQ>Wh1FaAv4x%7S0_xXQ+4K60jf%m2VJjTpP{{C?QJnT1o)S8Ia4s_ZX>u8B+a zyIQ;P^tk@j=wHNL!pM;xtz$%59qay;j2EeZbGoZO7`AU05=?nT(<&NnCVlS@5V|I~ z;==)L!qZmzS$NVR`m7)Z%F^yoc=`*{#9thkq;{P@ghd&SwUci8~wo&%P#Oq+f zKZ2nPV`gYLJk=WGEvjqN8r6+I9QJK#NuUUOO3ICBwHDUI@;ra{-y27C=b5$WL68P& zO+NOauqrpW_;=q<)lVQ2)4$Yy18aZ!3pEG!-11lViU-5CEup5I`@wKNZv$NV;jsT4 zzsca1>50dvNxk7s^8UjMg`_R?cNh$$wgmPt^kr7m!_bq31U(EFWxK*2hLeiNc*iI) zz44|SPu?-Qh?rv^gMNjx=Ka(nH?O9o|4TekJg5)2!&68@zt2+JO*XJP?|VL?5UbepTk z43&v3YSs=pCl+2C4CkKS3s`b{aj#opp-1UmKEG!DHKy+W`*-1hyw7m(q4508c%{I< z-KmGdfvxCp-aYwHIJjAU1N)({ZyRdG=N)~FBp}`PpYwt{-gdolg7u1DE!g?&_F z&*$%$tf4ael@dc!IQ31B2;R1P*CS!yc39_iMET4mQl_c^x4{Xw`8Rzu9Qi5fo>3aF z`KiO@Kgq@3_jz2&t&fD2?Xb_|1>NN1VK38d^e{{>9u3>K$dw8K?m#1Q8zTLIEED{k zeAC_a_3_qCllOmv`H!4CH;ua=KN>FRR&F8REZXay{+J@FQ(v(g7EI|Ys$`R)9}$2& zrGA7N9Hf4f#`xDqaYmrIklWhNegr~~J``41iN)MliKXRsF*ELH@c96jHRcg0Hbwsv zA7|w8M*O>1)-rxgU55U=?vam&3pUGD$a@Fc*ny*xse?YH!_~0Eix6qHEv-bnG+(3* z>%e?;(I(%$K@UaS?fC@MZv6xvd>Tc&`x7YaLpPhkcK=z}#*vJsHv^naY@5>W*%zWRex?4C7^aM1C5Cyp`{(~2^~Y^ZH~9ep^n0E}WbALp;YP=@ zchyUgS)jUiJ|521VGHB#zQ@AB1L=<0(8$}hs(bYDaA0So`}LINB-`wp|+t)XJ2SCs;lJC*2L73g>JOs+I1VkA=OXpo*{%VbCwATF z%*eO7(WNQBJ9}A zTNdVdc5Iq=&pr_j>;#{pScgr`=Qia>aIo(>70yyDqT`la@*jtTIDZHdBHjNvT0Huhuyf0dorioCH8ErG`D=9> zOB&Z0F>^@|7Yc`Dbs=kon$ma3S>a6NJJDOkq6>9y{ZAt4eRVnD>@YAk#ogWaSrp0b zPes7osu(u;%qutKrLGZO3wPV`-xaF@U&&yLX4p3ghof(V9b0CwAY{9be}%mapzZk+ zUNfF=Q3IE)o^)m-C8&0)OPf`yKKTprW(@sLPKCn+)gtB@Q$l00Lbg|5uwg+xtV9gU zSHsFS#o68V1y(T`vt!-vo8m5bRaP}D6jR>co&99kx*ha2*mK0!HoewSAw?Y{a*^_qI;2&D`J2TLR(V|l6(!KACY<5~%lMzr5ZUJHUxu@8ox{+<-6#5~k^o=(msLDfRLChaQ zz3Q(1A`b3?r!eQbd&N`X$QJCsyY8uQQTOAg!nOm>N6DU3EO=d1$)WTa(KQJePFieF zMbml0-6Iig2fI}HO8wMMX^H0B?!G@lo?E|!ZM9gMs#T{^%i5`GjX1mGUqY>J|1D}w zVc4$j*)OA4rfkcSqr`Q+1*hsy7u=ThQT2D-m&3Nre5LM5I!eqTe~Sy{ZwX2Jd8?Q= zJeA!oHOcJPTkk8^G2|9HC z$PO6ogsK~zVh19~4uQ;RJ+?a5ee0K#0iPidSf`(`u7BbSP#uJis8?KPTS;nNEpYSff%FU{K7dyS~zW*4uFC@yZ?Px0D7VEZ6X#&X% zvb=r*i8aJ}wVnkT1v@=Vtq`Y;=YGpQ-nGWp`yM7!kk_9}y~N6IRe zvza{ftYgWXLBum#$~BT^t*c|1UrD;@p8k3`cQa2T9sMtqL0P#9n+&byBJ@wG1U|%V z10P~w&WBi$^YgyKVWx-lR(E9Y8YC_9zGK|-@IgzFpplN^_z?Fte5my(__}4?fFf43L<%=QThrdx9+4K{;=ZC%l?Zp1Ft)y?pFXMK9@SkUnu+#s_0H zrIvvhZPo|LX1{TH0>*hmJ~gx?$7?8+pn%C(O$8@x*-U3?4grzm{ehoO=LgHY}nvnFuq{ngCR2u7P zVgoT9rX3Lw_ilQ4-_Wb8; zlO5f$?y6r3tF75jItQnR@fZs|We;pROSNM_c(Q`c{-#y~2MsK@P2@nUd)Hr&_y3Ii znnRD*SW45Eha3}29INYo9!Q!FGhSZ7z492ig0tyHz|nj&9R2D3 zL7S`IcJi$^-h2bi`}>}+J#mx#4bJWz-wc5*$K>%(eKY*p<}%#w)%Z z4(5>Sza6gE4a%3k9ma32BpW3Ejcy*T=m&0n%5XWDzCe@1NXr%Nro7DS`%YzX_zq8O zZ17bhCgRYx;$Iz13)XWOwpy^xpyK&lyP0?`{#y)WoM|nhYuJciaWD=A3Ygwm%-gXa z#s4{&PRJZKt}0nrav)D^6@;sneZ}?P4Hqwpuj;9oOpcb_1iFPXTD|a;x1&xG z$C1OvV;ih)^gU|qKL1@(?zQ;EK|3mHIZDpO0oG`oGHA!gx^a4>9UhFCJZJ}u*MD<) zfpGw-a&Y-J87ZU3@8&Q!2c5^5{Z!Ti2b)RlRu1E}q+AgC!cNhbP-)n=yX5=f#S12! zIE)MBXz@ z4h4*gP%ko-8xp=|_;}<@maqg{L?=N+Eg?YGu;q0iZ-g!NKFiLjFHg(m1CRPS&h`wB zIp;56i=YuyMtDp$UePeXyZpin=RaK)71(GUrv9Ku!(!W=AQrY>J{JW<%fWU|no zzsfsvu;z_s!h6teM{6B$)T(NqAaJ zcnSQvpZp~&RVg^3MWHlmi3{c8ZhX6OTe8Hs6f56krk56wyI-khHLs3H%rsO+RWUeD zK~+V{(M_s~O`G=)T&33Y*&#k)(_9dY44}qxs=`K?bz|=THw)zakCLj zc2|SG?5#KStHLC4_vW8NODx-$R64mYTRFfM_0D%(W`8K6qH989rq#BhQm_ zI1fDK186KaEX0>pgx&Pvqc|4>R^k+nXIY}TgZzWE5?I``oU|4jc8yRi4uvm0L zt$W^C8kXVGq|uiv2SlXZy!40dxby@JU9NuSAFrJ|i9raB+%SRhLSx|rs7A}JU)pI| za?W7zwjk}eYA}jUzF%etii+rNLPT7saIVk6=0xUHP|2O4*_I%o*np$fTbLnu9ZtNrslmqI#9e%5j znAC4ROGN#8tW?euNPj0iAE`8b&0IY?h0Gy_Bb&MyO;vaR$8r&G65OFP{)=Y)BKH8)mi$Jtzg zPu~b023gWjANO?#{l-z+aWqpP)Y4kl*Uu*Do9**t{1sS?C+{jt(s6)L_73Idi>zm9 zm@MYGeMn#3Sld-eCjg^MXi3b}@%S5Jyr#IosxXTlKf7Q)X-4LBYMV_aW`f-sMnn$OB9Z`%}| zk<=66@`qHN3?PF3bU9Ie0dGeD1^`Z zBHc{yjSTPsqnb4Le>l1YA;yv$*-Ie_=Hq4&+mCY5gc;`mWe@EGBQ})a%<(~G9^-M* zfA17$)Xe9xgLEDjyAAwHVe}A@RAnZyOsrfu@X>WJ#5(>E!S0LBYsE>ku?BTEa5Qd_b6ks5Jj4VJX{fxRXlO!hlKmT ziz1$=aTb0&ffdZu&DaIHtfFm~?FD zBW%e$`2>DF9m+`pY6&ZOihA!7Np0Dg$SqT(vH%X4TNW!_woxt z2vu{Ye~C>Q?@fEcY$;qGQ;3jbbVNv*6*Ho(nj*kv2TL)~Uyy|;WNeG@=B%|H(fiBn@JEaK`7j;T>)H+29Ot0O_sG3U?SiYaf z-T~?(T6sfRXEKTL?1UWoXh~mw^gL@v_FY2!9EKM3=Mo$Z{Eb_q;6)!38#a_&jCaIB zL~i9~?U2Jq2;^*HxJyIR0xo1F4G7aqbx6*z=gs;e$V^{E z88Wk=^Ke(FAqNfh;mTn{5W;qbQ2YYxcLsw9$3K2XunhX?Njt)qR4uihJlpeeeVK`ZgNBb_F5DoR^fMG*mdf9Xclg=*Vgx7BL zCrq+-n3z97Boy(SX`kc&wX~j3Gb0;Lzs&V;v z&RE!zP=$T(5F3x87*CM?UuRK zm|6uNYkEHJ?2gcCZf~R_rZ$HpxwfdD!~FB1qc13P!h&yjl%h!&>0BJx2tsF= zGClR8{7^ccLLx-Y86-2qd2RvYH)uUff}nhwzzjPBC$YesRnv}akCP6V-!svUQkH@S zPZtRd(SK6EAY|}7ha4Cb%*?gkFw?@E#|sOINlUmPVG@srGeYP?c-{8gx7(UZ+&DPQF zf~4=jo9VfZ%#z@Z8t2nWvFLD^_-(rB!X?Z=$mY@+97Jk&G)6l%#%|gH;|5=~5pUOw(JMf4H- zoI$vm<3RS%Gp>Gjuv@`YWZGW`OySi+04fP7ADX$|8TSet>?1KtsLV zm2*wer8gwjPM2&FX6Ej|PGOn0pbwCkH+QYLOwOhYNyyQ7Lt-YDL)ZAT4QNoj>t_V8 zg^yHd=+CC5voCfQ7->mAOf0E|W(X&}AVf$>Gt2mo_q@pz7YOyK^i2J@l!6F_5+xB< zK+g=-I{7dW|M8N!&twaXot$F^%XEdXQjthx=i8AgDJ7oGj9ltJXZlL z@;d|z{y+-C)Wn%|F()XIsJ_@aG(!54d3W(2Kvro_m=P%$#77kj%8{Ax%Qb-lA7_}o zW>Wme&suUL8OGg#+_q*l{>S@y8uCzZ-ca0@FQ9=L z!hSa+U{HUzAyYLQCm*hXPpbuF{qK!Ih2wlw^6!>jQuPwjYLL6oL6G9<;+g{EWaZ3srN^p;q3}=g)%#ra#3cjGD)k6I_>+(yK6f2|aIE`CAAe#GU1SUSTc`CougnksKc{ zAbV|bq&b`C@t>r^s3-O+Z1s1)GK7=|xbR#0vd+4`T$FQJGik@+acXBpD3oz>8sa;1 z*E9DE(%Bb<1LIZkvadfwly?3MakiislLa&<%yi0<1V~QjB9sysB~E!?h>(5pFnoH! zAnw-1e{!`+e`h6AH6;iebk--WT{}`=jxYt9Zlx3&`ddD+?<^jfkfG0x#Z+Qm8*#}d z>C7WX&zwKsyKs9EzGB;v$C?UrISPUKNMB$qt)6#M3WYqR6yjj@j#E0bdGMV{DR_e? zKUYiw%Kta$tG`>5E0>H@Hq!hwH|`4;>j~qm3a*P|W$9a*iL8X4X?4W~jd^g6Q*HrJ zYvdYYp)L(5?I!M|PGG~Fq%5ooE6fR~nbXp70(9XWkYax#U5U9127Mi`wDX7X0`uC! zaRPKldIBph5eTeU0yq`2C7}1t!2H6BAbvvz4cU-+$I0=c+hfp>5+FaGJcU;d6FD|- zM>9#$d2JCVSvzx__$nV?VCTZO?>sLrE>XJb!UmWoFW_gBoV#Y$PvC_9I1hA0(5lNn z$~_}0YXBr}juh5ge{{Eq~^Yw4QP^+6cH9s@UKzR;f+NqV!{%#9J((ymxb*w?$*Rr(Ikz2nB2 z&OXNsVX9`GBy{eNe3wjfy~uk^>Q7zVD}=ch?wMYY{dHpk;WFt#*4gb@guxB$gDV$4 z3}LJ4Qc3is5L}oM{Vyfq^xus;T$e#JS%#8nP6C`QNMEqa#2M14dgsHG75c)B{^r}T zA;G85J4-u%5kO#mXOF76MBtdA9a|{ROv@c+*O1PwOL{nBI`z}ExE(#$Ao%bM})F%DjxE75Z>U5FZ;t{im?gxePy#6nHj`?a{1DC=H7HM zBP6`?nxUMum=WY3eb6e`xN;{Y@gLRnML>xqc&9>Vf3l+%Qv{xz^ShiiJA00l3gI|L zaPKC8kb*j=ema+KSuQL2m5r(!cb7p3m&-BjECaBN|0oXjs~w$jn)$d(5wSbPfoWD= z=SAu3i>{>|mrgQ##D6^P>+(>-wZFKo?MfBGp<|G~zPeBPlJv_61H-2`F8-qo$Cm_X z!`x`ZW=NVk_0zXp^W|z+F0u3_WJt^`<3IKcP7-NYM7%Wth+FL-Oo3A&oxi&T;mX&# z%@%YOZ!4Lzr+lDX(8(*frYD7e zl|91Jj?(^#3NEi!I{O1f7$ogl5GD=cq$Al|obhsxdO7XP(3=I5)*+-br6^uHafKcx zk!lX3FHwCCqhzYw4s*Fv19-9jrRTz(IcDh0$)iWe@>UY|k1n7sj*$HHl+&1jVG4bw z6MfyHOlNFX=1q01X^h3CSvmQ#_tuf=$BlI9mIt|xmzAndCngs>fQ z4fancdUzxr4O1>}dx_bH7h0eW+07gXm-%znoLn>PpE#g#Kp7JDa(+BHG%Lm(m^&qB z`(Iq;6IhXDAaV(FfAN6aK{1`E2Jw$wN{&H)d>Ab)4VY!9SYXJK`NIM5^~u6z{71tg zy##FNEM!Q?X_c!Tr|!jiz}pPN8&0t=``mmuiT{Y0{kTillCZclXA1;0MF2wRSOl%? zIhMsnDK6(Yan9|3(O|DaRKs2*hf&bGysd5v2eZzv@3f<$%=cv<=%=<+SlVo|_>UsJ z(y6esDVz$kuE-uxHR6+dr0j|l2)64a%X0=7=udyyZ>R-eMSgU`sJpTZQn1C12TAF& zSIvn48|F;ai}KK?xO7>6mg=XfUwj?-L3pE0i)hI*FwemSELyjP5=5XO29d!n2`K%>G zCC>VRak}dW^V`QNu-Lx^ARIQZllBcsGkAp5{(6Js{DC0J^(Fh|ry{RaWG|TteU@03 zcW13cdcG!%c2vhYOQ&#wVyc|5Bs{#kB_b>zbQ@2Jznw=SGAn92$Z%2+;)#IL4GDL6 zh%9_NN+JswWrPYtep5dwQ(sgn<=B+KIE0j^xqCcvHOd#M0%Pmsg(GCm(w@+#Ar;kb zjPbzoIEYN+C4=}|zocSq`djvSJEo2w5>7vT96-p_E?i+KK_*Y6c!^1SxPqBB-OE;O;$g_9<`KCo|^KSVe;76rM&>f zeEtF=67!UwH$sZ<{AQ(I@MfhC7^L2sHpUy!p+y$e+w>`SZw5vFiGYmyiDbCdWqn*8CkOPuza;?YH0X<`vcgvcuDri!Qq2s#mZ4e<4xc;Q#;t diff --git a/docs/_main.tex b/docs/_main.tex index 77f0822..ff62917 100644 --- a/docs/_main.tex +++ b/docs/_main.tex @@ -124,7 +124,7 @@ \title{Fundamentos de Inferencia Estadistica} \author{Alex Sanchez Pla y Santiago Pérez Hoyos} -\date{2024-10-21} +\date{2024-11-11} \begin{document} \maketitle @@ -4966,29 +4966,2183 @@ \subsubsection{Acerca de las variables aproximadamente normales}\label{acerca-de \section{Introducción a la inferencia estadística}\label{introducciuxf3n-a-la-inferencia-estaduxedstica} -Este capítulo está pendiente de ser introducido en los apuntes. +\subsection{Inferencia estadística}\label{inferencia-estaduxedstica} + +Para comenzar, vamos a definir cuál es el ámbito de estudio de la inferencia estadística desde su relación con el cálculo de probabilidades. El cálculo de probabilidades proporciona una teoría matemática que permite analizar (o modelizar) las propiedades de los fenómenos donde interviene el azar. +El cálculo de probabilidades utiliza como modelo básico para cualquier situación aleatoria el concepto de espacio de probabilidades \((\Omega, \mathcal{A}, P)\) y una variable aleatoria \(X: \Omega \rightarrow \mathbb{R}\) definida sobre él. +El conocimiento de la distribución de la variable aleatoria permite: + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Análisis deductivo de situaciones. Por ejemplo: si asumimos que el peso de los recién nacidos se distribuye según una distribución \(N(\mu=\) \(3 \mathrm{~kg}, \sigma=0.25 \mathrm{~kg}\) ), nos puede interesar calcular la probabilidad de que un recién nacido pese entre 2.9 y 3.1 kg , o encontrar unos valores centrados en la media entre los cuales esperemos que se encuentren el \(10 \%(25 \%, 50 \%, 95 \%, \ldots)\) de los recién nacidos. +\item + Modelización de situaciones aleatorias. Por ejemplo: si asumimos que el tiempo, en años, hasta que se estropea un componente de un ordenador se distribuye según una distribución exponencial \(T \sim \xi(\lambda=\) \(0.3)\), nos puede interesar calcular la probabilidad de que un componente dado dure más de 4 años. +\end{enumerate} + +En los casos anteriores nos encontramos en una situación muy común, donde ya disponemos de un modelo sobre el cual efectuamos los cálculos, pero del cual desconocemos la procedencia. Parece razonable, y de hecho es precisamente así, que si queremos adaptar un modelo a una situación debamos basarnos únicamente en las observaciones del fenómeno. +Si queremos saber cómo se distribuyen los pesos de los recién nacidos tomaremos unos cuantos, los pesaremos y después observaremos la distribución de estos. Puede que no sea necesario pesar a todos los recién nacidos (jde hecho, no es posible!), pero tampoco es posible deducir la ley por consideraciones puramente teóricas. +Ahora, en lugar de partir de un espacio de probabilidades, partiremos de unas observaciones \(\left(x_{1}, \ldots, x_{n}\right)\) y el objetivo que perseguiremos será obtener información sobre la distribución de probabilidades de un fenómeno a partir de una observación no exhaustiva del mismo. + +\subsection{Problemas de inferencia estadística}\label{problemas-de-inferencia-estaduxedstica} + +Hemos presentado como objetivo de la inferencia estadística inducir propiedades del modelo probabilístico que representa la población a partir de un conjunto de observaciones. +Según el tipo de conclusión que queramos extraer, diferenciaremos diferentes tipos de problemas: + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Si queremos utilizar la información proporcionada por la muestra para obtener un pronóstico numérico único (es decir, una única aproximación numérica) de una o más características de la población, tenemos un problema de estimación puntual. +\item + Si queremos obtener información sobre un rango de valores dentro del cual podamos afirmar, con un cierto grado de confianza, que podemos capturar un parámetro desconocido de la distribución, hablamos de estimación por intervalo. +\item + Si lo que queremos hacer es decidir si podemos aceptar o debemos rechazar una afirmación sobre la distribución de probabilidad del fenómeno estudiado, hablamos de contraste de hipótesis. Este contraste puede ser: +\end{enumerate} + +\begin{itemize} +\tightlist +\item + Paramétrico: si la afirmación (la hipótesis) se refiere a los parámetros de la distribución. +\item + No paramétrico: si la afirmación es sobre la forma de la distribución. +\end{itemize} + +\subsection{Distribución de la población}\label{distribuciuxf3n-de-la-poblaciuxf3n} + +Todo problema de inferencia está motivado por un cierto grado de desconocimiento de la ley de probabilidades que rige un determinado fenómeno aleatorio. +El caso más sencillo que encontramos es cuando nos interesa una cierta variable \(X\) con una función de distribución \(F\) desconocida en mayor o menor grado. +La distribución que teóricamente sigue la variable de interés \(X\) en la población recibe el nombre de distribución teórica o distribución de la población. La distribución de la población es importante ya que, a menudo, se utiliza para determinar la distribución de alguna característica de los individuos de una población. +En los modelos de la inferencia estadística indicamos el relativo grado de desconocimiento sobre la distribución \(F\) en función de su pertenencia a una familia \(\mathcal{F}\) de distribuciones. Por ello, en lugar de explicar que \(X \sim F=F_{0}\) indicaremos que \(X \sim F \in \mathcal{F}\), donde \(\mathcal{F}\) puede ser un conjunto más o menos amplio de distribuciones de probabilidad, como todas las distribuciones normales o las distribuciones simétricas o las distribuciones discretas sobre \(\mathbb{N}\). +Muchas veces, la distribución poblacional \(F\) está completamente especificada excepto por el valor de algún parámetro o parámetros. En este caso, podemos concretar más la forma de la familia de distribuciones: + +\[ +X \sim F \in \mathcal{F}=\left\{F_{\theta}: \theta \in \Theta \subset \mathbb{R}^{k}\right\} +\] + +donde \(\Theta\) es el espacio de los \(k\) parámetros. +La familia de posibles distribuciones de probabilidad para \(X\) se denomina, genéricamente, modelo estadístico y se indica como: \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\). Veamos algunos ejemplos. + +Ejemplo 1.3.1 Supongamos que \(X\) representa la duración de un componente electrónico que no envejece, solo se estropea. Es decir, si en un instante \(t\) está funcionando, su estado es el mismo que en cualquier momento del pasado y la distribución del tiempo hasta que se estropee es la misma que al principio. Esta propiedad se denomina falta de memoria. +Un modelo razonable para esta situación lo da la distribución de Weibull que, en este caso, podemos definir a través de la siguiente función de densidad: + +\[ +f_{\theta}(x)= \begin{cases}\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}} & \text { si } x \geq 0 \\ 0 & \text { si } x<0\end{cases} +\] + +La familia de distribuciones asociada es + +\[ +\mathcal{F}=\left\{F_{\theta}: \theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty)\right\} +\] + +Ejemplo 1.3.2 Supongamos que queremos determinar la masa de un cierto tipo de partículas elementales a partir de las observaciones en una cámara de burbujas. En cada observación obtenemos un dato de la masa de la partícula \(x_{i}\) y asociado con ella un cierto error de medida \(\varepsilon\). Si la masa común de cada una de ellas es \(\mu\), entonces podemos escribir: + +\[ +x_{i}=\mu+\varepsilon_{i} \quad i=1, \ldots, n +\] + +donde la distribución \(\varepsilon_{i} \sim F\) es desconocida. Nuestro objetivo es obtener información sobre \(F\). +Si admitimos que \(P\left(\varepsilon_{i}<0\right)=P\left(\varepsilon_{i}>0\right)\), según el grado de exigencia que queramos tener, podemos suponer: + +\begin{itemize} +\tightlist +\item + Con un enfoque de inferencia paramétrica: +\end{itemize} + +\[ +X \sim F \in \mathcal{F}=\left\{N(0, \sigma): \sigma \in \mathbb{R}^{+}\right\} +\] + +\begin{itemize} +\tightlist +\item + Con un enfoque de inferencia no paramétrica: +\end{itemize} + +\[ +X \sim F \in \mathcal{F}=\{\text { Distribuciones simétricas }\} +\] + +\subsection{Muestra aleatoria simple}\label{muestra-aleatoria-simple} + +\subsubsection{Definición}\label{definiciuxf3n} + +Para estudiar un problema de inferencia estadística analizamos una muestra de tamaño \(n\). Se trata de escoger \(n\) individuos o elementos de la población \(\Omega\) + +\[ +\omega_{1}, \omega_{2}, \ldots, \omega_{n} +\] + +que sean representativos. El valor de \(n\) y la forma de elección de los individuos de la muestra es una materia de Estadística llamada Muestreo estadístico. Por ahora y para simplificar, solo hace falta decir que la elección se hace de forma que todos los individuos tienen la misma probabilidad de estar presentes en la muestra, si es necesario con reemplazo, y que el valor de \(n\) está dado. +En realidad, lo que nos interesa verdaderamente no son los individuos de la muestra sino las mediciones de una característica \(X\) sobre ellos. Es decir, los valores de una variable aleatoria \(X\) sobre estos individuos + +\[ +X\left(\omega_{1}\right)=x_{1}, X\left(\omega_{2}\right)=x_{2}, \ldots, X\left(\omega_{n}\right)=x_{n} +\] + +También podemos pensar que los valores muestrales \(x_{1}, x_{2}, \ldots, x_{n}\) son generados directamente desde la variable aleatoria. En todo caso, los valores muestrales no son únicos y podemos generar varias muestras + +\[ +\begin{array}{ccccc} +x_{1}^{1} & x_{2}^{1} & x_{3}^{1} & \ldots & x_{n}^{1} \\ +x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\ +\vdots & \vdots & \vdots & & \vdots \\ +x_{1}^{s} & x_{2}^{s} & x_{3}^{s} & \ldots & x_{n}^{s} +\end{array} +\] + +Si todos los valores son independientes, de la misma forma que \(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\) es una muestra generada por \(X\), podemos considerar todos los \(x_{1}^{i} \quad i=1, \ldots, s\) provenientes de una variable aleatoria \(X_{1}\) con la misma distribución que \(X\) \(X_{1} \stackrel{d}{=} X\) y que genera los primeros valores, los \(x_{i}^{2}\) provenientes de una variable aleatoria \(X_{2} \stackrel{d}{=} X\) que genera los segundos y así sucesivamente. +Todo esto nos lleva a definir el concepto de muestra aleatoria de una forma muy conveniente para trabajar con ella: + +Definició 1.1 Una muestra aleatoria simple de tamaño \(n\) de una variable aleatoria \(X\) con distribución \(F\) es una colección de \(n\) variables aleatorias independientes \(X_{1}, X_{2}, \ldots, X_{n}\) con la misma distribución \(F\) que \(X\). Esto se suele indicar como: + +\[ +\mathbf{X}=X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} X +\] + +Definició 1.2 El conjunto \(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\) de observaciones concretas de \(X_{1}, X_{2}, \ldots, X_{n}\) se denomina realización de la muestra. + +\subsubsection{Distribución de la muestra}\label{distribuciuxf3n-de-la-muestra} + +Una muestra aleatoria simple, como vector aleatorio \(n\)-dimensional que es, tiene una distribución conjunta o distribución de la muestra que depende de \(F\), pero que obviamente es diferente, ya que en particular \(X\) y \(\mathbf{X}\) tienen dimensiones diferentes. Sin embargo, gracias a la independencia de las variables \(X_{1}, X_{2}, \ldots, X_{n}\), la función de distribución conjunta de \(\mathbf{X}\), que podría ser muy complicada, toma una forma muy sencilla. En resumen: + +Definició 1.3 Se llama distribución de la muestra de una variable aleatoria \(X \sim F\) a la distribución del vector aleatorio \(n\)-dimensional \(\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) + +\[ +G\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}\right) F\left(x_{2}\right) \cdots F\left(x_{n}\right) +\] + +En los casos particulares en que \(X\) sea discreta o absolutamente continua, la distribución conjunta de la muestra suele expresarse mediante la función de masa de probabilidad o la función de densidad: + +\begin{itemize} +\tightlist +\item + Para variables discretas: +\end{itemize} + +\[ +\begin{aligned} +p_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\ +& =\prod_{i=1}^{n} P\left(X=x_{i}\right)=\prod_{i=1}^{n} p_{F}\left(x_{i}\right), +\end{aligned} +\] + +\begin{itemize} +\tightlist +\item + Para variables absolutamente continuas: +\end{itemize} + +\[ +g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right) +\] + +Ejemplo 1.4.1 Una moneda tiene una probabilidad \(\theta\) de salir cara. Queremos estudiar la variable aleatoria: + +\[ +X= \begin{cases}1 & \text { si sale cara } \\ 0 & \text { si sale cruz }\end{cases} +\] + +con densidad \(P\{X=1\}=\theta, P\{X=0\}=1-\theta\). Es decir + +\[ +X \sim F_{\theta} \in \mathcal{F}=\left\{F_{\theta}=B(1, \theta): \theta \in(0,1)\right\} +\] + +Supongamos que hacemos tres lanzamientos. Las posibles muestras son: + +\begin{longtable}[]{@{}cccc@{}} +\toprule\noalign{} +\(X_{1}\) & \(X_{2}\) & \(X_{3}\) & Probabilidad \\ +\midrule\noalign{} +\endhead +\bottomrule\noalign{} +\endlastfoot +1 & 1 & 1 & \(\theta^{3}\) \\ +1 & 0 & 0 & \(\theta(1-\theta)^{2}\) \\ +0 & 1 & 0 & \(\theta(1-\theta)^{2}\) \\ +0 & 0 & 1 & \(\theta(1-\theta)^{2}\) \\ +1 & 0 & 1 & \(\theta^{2}(1-\theta)\) \\ +1 & 1 & 0 & \(\theta^{2}(1-\theta)\) \\ +0 & 1 & 1 & \(\theta^{2}(1-\theta)\) \\ +0 & 0 & 0 & \((1-\theta)^{3}\) \\ +\end{longtable} + +El muestreo ha especificado la distribución conjunta de la muestra a través de la distribución desconocida \(F_{\theta}\). Si escribimos la función de probabilidades de la variable aleatoria como \(f_{\theta}(x)=\theta^{x}(1-\theta)^{1-x}\), entonces la función de probabilidades de la muestra la podemos expresar como: + +\[ +g_{\theta}\left(x_{1}, x_{2}, x_{3}\right)=\theta^{x_{1}+x_{2}+x_{3}}(1-\theta)^{3-\left(x_{1}+x_{2}+x_{3}\right)} +\] + +\subsection{Estadísticos}\label{estaduxedsticos} + +\subsubsection{Definición}\label{definiciuxf3n-1} + +Para lograr el objetivo de realizar inferencias sobre la población a partir de la muestra, solemos basarnos en la realización de cálculos sobre la muestra para tratar de obtener la información que deseamos. En este proceso aparecen los conceptos de estadístico y el caso particular, que más nos interesa a nosotros, de estimador. Un estadístico es una función de la muestra que no depende del valor del parámetro. + +Definició 1.4 Dada una muestra aleatoria simple \(X_{1}, X_{2}, \ldots, X_{n}\) y una función medible \(T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}\), entonces \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) es un vector aleatorio (variable aleatoria cuando \(k=1\) ). Si \(T\) no depende de \(\theta\) (donde \(\theta\) es un parámetro a especificar en \(F_{\theta}\) ), entonces \(T\) recibe el nombre de estadístico. + +Solo por su nombre, parece evidente que un estimador de un parámetro \(\theta\) será alguna función de la muestra que sirva para aproximar, en algún sentido, el valor desconocido de \(\theta\). Si añadimos la condición razonable de que un estimador no pueda tomar valores que no puede tomar el parámetro, podemos dar la siguiente definición. + +Definició 1.5 Un estimador de un parámetro \(\theta\) es un estadístico \(T\) cuyo recorrido es el espacio de los parámetros, es decir: + +\[ +\begin{array}{ccc} +T: & \mathbb{R}^{n} & \longrightarrow \\ +\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \longrightarrow \\ +\left(t_{1}, \ldots, t_{k}\right) \quad \in \Theta \subset \mathbb{R}^{k} +\end{array} +\] + +Aquí tienes el texto traducido al castellano manteniendo toda la notación en LaTeX: + +\subsection{Distribución en el muestreo de un estadístico}\label{distribuciuxf3n-en-el-muestreo-de-un-estaduxedstico} + +Dado un estadístico \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) nos interesa conocer su distribución de probabilidad, ya que para hacer inferencia necesitaremos hacer cálculos del tipo + +\[ +P\left[T\left(X_{1}, X_{2}, \ldots, X_{n}\right)>t_{0}\right] +\] + +La distribución de probabilidad del estadístico se denomina distribución muestral o distribución en el muestreo del estadístico. Encontrarla es un problema que puede ser desde bastante sencillo hasta extremadamente complicado. Algunas de las técnicas utilizadas para intentar resolverlo son las siguientes: + +\begin{itemize} +\tightlist +\item + Uso de la técnica de cambio de variable. +\item + Uso de la función generadora de momentos. +\item + Aplicación del Teorema Central del Límite. +\end{itemize} + +Ejemplo 1.5.1 Sea \(X \sim F_{\theta}\) una variable aleatoria absolutamente continua con densidad + +\[ +f_{\theta}(x)=e^{-(x-\theta)} e^{-e^{-(x-\theta)}} \quad \theta \in \mathbb{R} +\] + +y consideremos el estadístico + +\[ +T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} e^{-X_{i}} +\] + +Si aplicamos el teorema de cambio de variable unidimensional, se obtiene fácilmente que la variable aleatoria \(Y=e^{-X}\) sigue una distribución exponencial de parámetro \(e^{-\theta}\), de donde la suma seguirá una distribución gamma \(T \sim \Gamma\left(e^{-\theta}, n\right)\). + +Ejemplo 1.5.2 Supongamos que \(X\) representa el número de averías en una máquina al cabo de un mes. Este valor varía mes a mes. Sea \(\bar{X}\) la media de averías en \(n\) meses. Si \(X\) sigue una distribución de Poisson \(P(\lambda)\), ¿cuál es la distribución de \(\bar{X}\) ? +Como la suma de Poisson i.i.d. es \(\sum_{i=1}^{n} X_{i} \sim P(n \lambda)\) + +\[ +P[\bar{X}=r]=P\left[\sum_{i=1}^{n} X_{i}=n r\right]=\frac{e^{-n \lambda}(n \lambda)^{n r}}{(n r)!} +\] + +Como ocurre en este ejemplo, uno de los estadísticos para el cual a menudo deseamos calcular la distribución en el muestreo es la media aritmética. Una manera útil de hacerlo es con la función generadora de momentos y la aplicación del siguiente lema. + +Lema 1 Si \(X\) es una v.a. con \(M_{X}(t)\) como función generadora de momentos, entonces la f.g.m. de \(\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}\) es + +\[ +M_{\bar{X}_{n}}(t)=\left[M_{X}(t / n)\right]^{n} +\] + +\subsubsection{Demostración:}\label{demostraciuxf3n} + +La demostración es inmediata a partir de la definición o por las propiedades de la función generadora de momentos. + +Si aplicamos directamente la definición de la f.g.m tenemos: + +\[ +\begin{aligned} +E\left(e^{t \bar{X}_{n}}\right) & =E\left(e^{t \frac{1}{n} \sum_{i=1}^{n} X_{i}}\right)=E\left(\prod_{i=1}^{n} e^{\frac{t}{n} X_{i}}\right)=\prod_{i=1}^{n} E\left(e^{\frac{t}{n} X_{i}}\right) \\ +& =\prod_{i=1}^{n} M_{X_{i}}(t / n)=\left[M_{X}(t / n)\right]^{n} +\end{aligned} +\] + +Si usamos las propiedades de la f.g.m tenemos: + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Dado que \(M_{a X}(t)=M_{X}(a t)\) y si \(a=\frac{1}{n}\), entonces \(M_{\bar{X}}(t)=M_{\sum_{i=1}^{n} X_{i}}(t / n)\). +\item + \(M_{\sum_{i=1}^{n} X_{i}}(t / n) \stackrel{\text { ind }}{=} \prod_{i=1}^{n} M_{X_{i}}(t / n) \stackrel{\text { id }}{=}\left[M_{X}(t / n)\right]^{n}\). +\end{enumerate} + +Ejemplo 1.5.3 Para una variable aleatoria \(X \sim N(\mu, \sigma)\) y por tanto \(M_{X}(t)=\) \(\exp \left(t \mu+\frac{t^{2} \sigma^{2}}{2}\right)\), entonces + +\[ +\begin{aligned} +M_{\bar{X}_{n}}(t) & =\left[\exp \left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right]^{n} \\ +& =\exp \left[n\left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right] \\ +& =\exp \left[t \mu+\frac{1}{2} t^{2}\left(\frac{\sigma}{\sqrt{n}}\right)^{2}\right] +\end{aligned} +\] + +que es la función generadora de momentos de una variable \(N(\mu, \sigma / \sqrt{n})\). + +\subsection{La distribución empírica}\label{la-distribuciuxf3n-empuxedrica} + +\subsubsection{Definición}\label{definiciuxf3n-2} + +En el apartado anterior hemos visto que a partir de una muestra \(X_{1}, X_{2}, \ldots, X_{n}\) es interesante considerar la distribución muestral como la distribución conjunta del vector aleatorio \(\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), sin que intervenga una realización concreta de la muestra \(x_{1}, x_{2}, \ldots, x_{n}\). Un enfoque diferente consiste en asociar una distribución particular directamente a las observaciones \(x_{1}, x_{2}, \ldots, x_{n}\) con la intención de que, en tanto que la muestra ``representa'' la v.a. \(X\), esta distribución asociada a la muestra \(F_{n}(x)\) emule la distribución de la población. Esta distribución se denomina distribución empírica o distribución muestral y se define así: + +\[ +F_{n}(x)=\frac{k(x)}{n} +\] + +donde \(k(x)\) es el número de datos muestrales menores o iguales que \(x\). En la práctica se construye por ordenación de la muestra + +\[ +x_{1}, x_{2}, \ldots, x_{n} \longrightarrow x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} +\] + +y con la siguiente definición: + +\[ +F_{n}(x)= \begin{cases}0 & \text { si } x{\centering\arraybackslash}p{(\columnwidth - 12\tabcolsep) * \real{0.1429}} + >{\centering\arraybackslash}p{(\columnwidth - 12\tabcolsep) * \real{0.1429}} + >{\centering\arraybackslash}p{(\columnwidth - 12\tabcolsep) * \real{0.1429}} + >{\centering\arraybackslash}p{(\columnwidth - 12\tabcolsep) * \real{0.1429}} + >{\centering\arraybackslash}p{(\columnwidth - 12\tabcolsep) * \real{0.1429}} + >{\centering\arraybackslash}p{(\columnwidth - 12\tabcolsep) * \real{0.1429}} + >{\centering\arraybackslash}p{(\columnwidth - 12\tabcolsep) * \real{0.1429}}@{}} +\toprule\noalign{} +\begin{minipage}[b]{\linewidth}\centering +\(x_{(1)}\) +\end{minipage} & \begin{minipage}[b]{\linewidth}\centering +\(x_{(2)}\) +\end{minipage} & \begin{minipage}[b]{\linewidth}\centering +\(x_{(3)}\) +\end{minipage} & \begin{minipage}[b]{\linewidth}\centering +\(x_{(4)}\) +\end{minipage} & \begin{minipage}[b]{\linewidth}\centering +\(x_{(5)}\) +\end{minipage} & \begin{minipage}[b]{\linewidth}\centering +\(x_{(6)}\) +\end{minipage} & \begin{minipage}[b]{\linewidth}\centering +\(x_{(7)}\) +\end{minipage} \\ +\midrule\noalign{} +\endhead +\bottomrule\noalign{} +\endlastfoot +\(x_{3}\) & \(x_{5}\) & \(x_{2}\) & \(x_{7}\) & \(x_{1}\) & \(x_{6}\) & \(x_{4}\) \\ +1.2 & 2.1 & 3.4 & 4.3 & 5.1 & 16.4 & 17.6 \\ +\end{longtable} + +y si hacemos la representación gráfica: + +Figura 1.1: Función de distribución empírica con los datos del ejemplo + +La distribución empírica refleja exclusivamente los valores observados en la muestra y, por lo tanto, no se relaciona directamente ni con la distribución conjunta de la muestra \(G\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) ni con la distribución de la población \(F\). + +\subsection{Los momentos muestrales}\label{los-momentos-muestrales} + +\subsubsection{Definición}\label{definiciuxf3n-3} + +Sea \(F_{n}\) la v.a. que tiene \(F_{n}(x)\) por distribución. La función de densidad de probabilidad de \(F_{n}\) es una densidad discreta que asigna probabilidades \(1 / n\) a cada una de las observaciones muestrales \(x_{1}, x_{2}, \ldots, x_{n}\). Así pues, tiene sentido calcular sus momentos, que se conocen como momentos muestrales \(a_{k}\), y también sus momentos muestrales centrados respecto a la media \(b_{k}\). + +\[ +\begin{aligned} +a_{k} & =E\left(F_{n}^{k}\right)=\sum_{i=1}^{n} x_{i}^{k} \cdot P\left(F_{n}=x_{i}\right)=\sum_{i=1}^{n} x_{i}^{k} \cdot \frac{1}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{k} \\ +b_{k} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{k} +\end{aligned} +\] + +Observamos que dos medidas conocidas de la estadística descriptiva adquieren un significado diferente: + +\begin{itemize} +\tightlist +\item + Media muestral \(=\) Media de la distribución muestral +\end{itemize} + +\[ +a_{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i} +\] + +\begin{itemize} +\tightlist +\item + Varianza muestral \(=\) Varianza de la distribución muestral +\end{itemize} + +\[ +b_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} +\] + +\subsection{Distribución en el muestreo de los momentos muestrales}\label{distribuciuxf3n-en-el-muestreo-de-los-momentos-muestrales} + +Dada una m.a.s. \(X_{1}, X_{2}, \ldots, X_{n}\), los momentos muestrales son estadísticos y, como tales, tienen su distribución en el muestreo. Por ejemplo, \(a_{k}=\) \(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\). + +La distribución en cada caso puede ser compleja y depender de la distribución poblacional subyacente. +Lo que sí es posible calcular son los momentos de los momentos muestrales o, mejor dicho, los momentos de las distribuciones en el muestreo de los momentos muestrales. + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Si consideramos \(a_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\) y escribimos \(\alpha_{k}=E\left(X^{k}\right)\) como el momento poblacional de orden \(k\), tenemos: +\end{enumerate} + +\[ +\begin{aligned} +E\left(a_{k}\right) & =E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\right)=\frac{1}{n} \cdot n \cdot \alpha_{k}=\alpha_{k} \\ +\operatorname{var}\left(a_{k}\right) & =\operatorname{var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left(X_{i}^{k}\right)=\frac{1}{n} \operatorname{var}\left(X^{k}\right) \\ +& =\frac{1}{n}\left[E\left(X^{2 k}\right)-\left(E\left(X^{k}\right)\right)^{2}\right]=\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n} +\end{aligned} +\] + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\setcounter{enumi}{1} +\tightlist +\item + Si consideramos \(s^{2}=b_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}\), podemos calcular: +\end{enumerate} + +\[ +\begin{aligned} +E\left(s^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-E(\bar{X})^{2}=\alpha_{2}-\left(\frac{\sigma^{2}}{n}+\mu^{2}\right) \\ +& =\left(\sigma^{2}+\mu^{2}\right)-\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)=\frac{n-1}{n} \sigma^{2} +\end{aligned} +\] + +El cálculo de la varianza de \(s^{2}\) es laborioso \({ }^{1}\) y no lo haremos aquí. Su valor es + +\[ +\operatorname{var}\left(s^{2}\right)=\frac{\mu_{4}-\mu_{2}^{2}}{n}-\frac{2\left(\mu_{4}-2 \mu_{2}^{2}\right)}{n^{2}}+\frac{\mu_{4}-3 \mu_{2}^{2}}{n^{3}} +\] + +donde \(\mu_{k}\) es el momento poblacional centrado de orden \(k\). + +\subsection{Propiedades asintóticas de los momentos muestrales}\label{propiedades-asintuxf3ticas-de-los-momentos-muestrales} + +\subsubsection{Convergencia de los momentos muestrales}\label{convergencia-de-los-momentos-muestrales} + +Los momentos muestrales, tanto respecto al origen como respecto a la media, convergen hacia los momentos poblacionales. Es posible establecer la convergencia basándose en la ley fuerte de los grandes números (convergencia casi {[}\^{}0{]}segura) o en la ley débil (convergencia en probabilidad). Si nos limitamos a esta última podemos afirmar que +\[ +a_{k} \xrightarrow{P} \alpha_{k} \quad \text { es decir } \quad \lim _{n \rightarrow \infty} P\left[\left|a_{k}-\alpha_{k}\right| \geq \epsilon\right]=0 +\] + +La prueba se basa en la desigualdad de Tchebychev. Si suponemos que \(\alpha_{2 k}<\infty\), tenemos + +\[ +P\left[\left|a_{k}-\alpha_{k}\right| \geq \epsilon\right] \leq \frac{E\left|a_{k}-\alpha_{k}\right|^{2}}{\epsilon^{2}}=\frac{\operatorname{var}\left(a_{k}\right)}{\epsilon^{2}}=\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n \epsilon^{2}} \longrightarrow 0 +\] + +Esta propiedad es importante porque hará posible el concepto de estimador consistente y en ella se basa un método de estimación llamado método de los momentos. + +\subsubsection{Distribución asintótica}\label{distribuciuxf3n-asintuxf3tica} + +Si consideramos el momento muestral \(a_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\), entonces \(n \cdot a_{k}\) es una suma de variables aleatorias i.i.d. a la que podemos aplicar el Teorema Central del Límite. Como hemos visto: + +\[ +E\left(n a_{k}\right)=n \alpha_{k} \quad \operatorname{var}\left(n a_{k}\right)=n^{2} \operatorname{var}\left(a_{k}\right)=n^{2} \frac{\alpha_{2 k}-\alpha_{k}^{2}}{n} +\] + +y por el Teorema Central del Límite de Lindeberg-Levy la variable + +\[ +\frac{n a_{k}-E\left(n a_{k}\right)}{\sqrt{\operatorname{var}\left(n a_{k}\right)}}=\frac{n a_{k}-n \alpha_{k}}{n \sqrt{\operatorname{var}\left(a_{k}\right)}}=\frac{a_{k}-\alpha_{k}}{\sqrt{\operatorname{var}\left(a_{k}\right)}} +\] + +verifica + +\[ +\frac{a_{k}-\alpha_{k}}{\sqrt{\operatorname{var}\left(a_{k}\right)}} \xrightarrow{\mathcal{L}} N(0,1) +\] + +es decir + +\[ +a_{k} \sim A N\left(\alpha_{k}, \sqrt{\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n}}\right) +\] + +\subsection{Muestreo en poblaciones normales}\label{muestreo-en-poblaciones-normales} + +Como hemos visto, a partir de una m.a.s. \(X_{1}, X_{2}, \ldots, X_{n}\) y si consideramos un estadístico \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), puede resultar complicado obtener su distribución en el muestreo. Esta distribución depende de: + +\begin{itemize} +\tightlist +\item + La forma funcional de \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\). +\item + La distribución subyacente de \(X\), es decir, la distribución de la población. +\end{itemize} + +Hay un caso especial en el que el problema se ha estudiado en profundidad para algunos estadísticos de gran importancia práctica. Si \(X \sim N(\mu, \sigma)\) es posible encontrar la distribución de los estadísticos más utilizados como \(\bar{X}\) y \(S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\). De hecho, obtendremos la distribución de funciones de estos estadísticos como + +\[ +\frac{\bar{X}-\mu}{s / \sqrt{n-1}} ; \quad \frac{n s^{2}}{\sigma^{2}} ; \quad \bar{X}_{1}-\bar{X}_{2} ; \quad \frac{S_{1}^{2} /\left(n_{1}-1\right)}{S_{2}^{2} /\left(n_{2}-1\right)} +\] + +donde \(s^{2}=(1 / n) S^{2}\). +En el estudio de las distribuciones de estos estadísticos aparecen algunas distribuciones de probabilidad que han resultado ser de gran utilidad. Son las llamadas ``distribuciones derivadas de la normal'' y se conocen por el nombre del investigador que las formuló: + +\begin{itemize} +\tightlist +\item + la \(\chi^{2}\) chi-cuadrado de Pearson +\item + la \(t\) de Student (Gosset) +\item + la \(F\) de Fisher-Snedecor +\end{itemize} + +\subsubsection{La distribución chi-cuadrado}\label{la-distribuciuxf3n-chi-cuadrado} + +Sean \(X_{1}, X_{2}, \ldots, X_{k}\) un conjunto de v.a. independientes sobre un mismo espacio de probabilidad \((\Omega, \mathcal{A}, P)\) y con distribución común \(N(0,1)\). Consideremos la variable + +\[ +Y=X_{1}^{2}+X_{2}^{2}+\cdots+X_{k}^{2} +\] + +La distribución de la variable \(Y\) se llama chi-cuadrado con \(k\) grados de libertad. +La función de densidad de la variable aleatoria \(Y\) es + +\[ +f(x)=\frac{1}{\Gamma(k / 2) 2^{k / 2}} e^{-x / 2} x^{k / 2-1} \quad \text { si } x>0 +\] + +De modo que resulta que \(Y=\sum_{i=1}^{k} X_{i}^{2}\) tiene una distribución gamma \(G\left(\frac{1}{2}, \frac{k}{2}\right)\) y su f.g.m. es + +\[ +M(t)=(1-2 t)^{-k / 2} \quad \text { si } t<1 / 2 +\] + +\paragraph{Propiedades}\label{propiedades} + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Si recordamos que para \(X \sim G(p, \alpha)\) entonces \(E(X)=\frac{p}{\alpha} \mathrm{y} \operatorname{var}(X)=\) \(\frac{p}{\alpha^{2}}\), resulta +\end{enumerate} + +\[ +E(Y)=\frac{k / 2}{1 / 2}=k \quad \operatorname{var}(Y)=\frac{k / 2}{1 / 4}=2 k +\] + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\setcounter{enumi}{1} +\tightlist +\item + De la aditividad (reproductividad) de las leyes gamma se deduce también la reproductividad de la chi-cuadrado \(\chi^{2}\), es decir +\end{enumerate} + +\[ +Y_{1}^{2} \sim \chi_{n_{1}}^{2}, Y_{2}^{2} \sim \chi_{n_{2}}^{2} \quad \text { indep. } \longrightarrow Y_{1}^{2}+Y_{2}^{2} \sim \chi_{n_{1}+n_{2}}^{2} +\] + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\setcounter{enumi}{2} +\tightlist +\item + Como \(Y\) es la suma de v.a. independientes \(X_{i}^{2} \sim \chi_{1}^{2}\) se verifica +\end{enumerate} + +\[ +\frac{Y-k}{\sqrt{2 k}} \xrightarrow{\mathcal{L}} N(0,1) +\] + +Pero es mejor la aproximación de Fisher + +\[ +\sqrt{2 \chi_{k}^{2}}-\sqrt{2 k-1} \xrightarrow{\mathcal{L}} N(0,1) +\] + +de donde se obtiene para valores de \(k \geq 30\) + +\[ +\chi_{k}^{2} \stackrel{\text { aprox }}{=} \frac{1}{2}(Z+\sqrt{2 k-1})^{2} +\] + +donde \(Z \sim N(0,1)\). + +\subsubsection{\texorpdfstring{Distribución \(t\) de Student}{Distribución t de Student}}\label{distribuciuxf3n-t-de-student} + +Sean \(Y, Z\) dos variables aleatorias independientes con distribuciones \(Z \sim\) \(N(0,1)\) y \(Y \sim \chi_{m}^{2}\), entonces se dice que la variable aleatoria + +\[ +t=\frac{Z}{\sqrt{Y / m}} +\] + +tiene una distribución \(t\) de Student con \(m\) grados de libertad. +Su función de densidad es + +\[ +f(t)=\frac{\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \sqrt{m \pi}}\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \quad t \in \mathbb{R} +\] + +Esta expresión se obtiene de la resolución del correspondiente problema de cambio de variable para encontrar la distribución de un cociente. + +Se trata de una distribución unimodal y simétrica respecto al cero. La distribución depende de \(m\), que llamamos los grados de libertad (g.l.). A medida que \(m\) crece, la forma acampanada se va ``cerrando'', acercándose a la ley normal: + +\[ +\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \xrightarrow{m \rightarrow \infty} e^{-t^{2} / 2} +\] + +Este hecho es muy relevante en inferencia estadística. + +\paragraph{Propiedades}\label{propiedades-1} + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Si \(m=1\), entonces la \(t\) es una Cauchy y, en particular, no tiene esperanza. +\item + Para \(m>1, E(t)=0\) y para \(m>2, \operatorname{var}(t)=m /(m-2)\). +\item + Cuando \(m \rightarrow \infty\), entonces \(t \xrightarrow{P} N(0,1)\). +\end{enumerate} + +\subsubsection{\texorpdfstring{La distribución \(F\) de Fisher}{La distribución F de Fisher}}\label{la-distribuciuxf3n-f-de-fisher} + +Esta distribución aparece cuando se considera un cociente entre dos distribuciones chi-cuadrado \(U \sim \chi_{m}^{2}, V \sim \chi_{n}^{2}\) con \(m\) y \(n\) g.l. respectivamente. En concreto decimos que la variable aleatoria + +\[ +F=\frac{U / m}{V / n} +\] + +sigue una distribución \(F\) de Fisher con \(m\) y \(n\) grados de libertad. La función de densidad tiene la forma: + +\[ +f(x)=\frac{m^{m / 2} n^{n / 2} \Gamma[(m+n) / 2]}{\Gamma(m / 2) \Gamma(n / 2)} \cdot \frac{x^{m / 2-1}}{(m x+n)^{(m+n) / 2}} \quad \text { para } x>0 +\] + +\paragraph{Propiedades}\label{propiedades-2} + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + La esperanza y la varianza son +\end{enumerate} + +\[ +E(F)=\frac{n}{n-2} \quad \operatorname{var}(F)=\frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)} +\] + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\setcounter{enumi}{1} +\tightlist +\item + Esta distribución tiene una moda en \(x=\frac{m-2}{m} \cdot \frac{n}{n+2}\), siempre que \(m>2\). +\item + Si \(F \sim F_{m, n}\), entonces resulta que \(1 / F \sim F_{n, m}\) y por lo tanto: +\end{enumerate} + +\[ +P(F \leq x)=P\left(\frac{1}{F} \geq \frac{1}{x}\right)=1-P\left(\frac{1}{F} \leq \frac{1}{x}\right) +\] + +Esta propiedad es de gran utilidad en el uso de las tablas. +4. Cuando \(n \rightarrow \infty, F_{m, \infty} \xrightarrow{\mathcal{L}} \chi_{m}^{2}\). +5. Cuando \(m \rightarrow \infty\) y \(n \rightarrow \infty\), entonces \(F_{m, n} \xrightarrow{\mathcal{L}} 1\). + +\section{Estimación puntual}\label{estimaciuxf3n-puntual} + +\subsection{El problema de la estimación puntual}\label{el-problema-de-la-estimaciuxf3n-puntual} + +Informalmente, la estimación de parámetros consiste en buscar aproximaciones a los valores de estos, calculables a partir de una muestra, que sean lo más precisas posible. El problema, claro, es que para medir cuán precisas son estas aproximaciones sería necesario conocer los valores de los parámetros y, como estos son siempre desconocidos, debemos basarnos en el uso de estimadores con buenas propiedades que, en algún sentido, nos garanticen esa proximidad. +Más formalmente podemos plantear el problema de la siguiente manera: +Sea \(X\) una v.a. con distribución \(F_{\theta}\) donde \(\theta=\left(\theta_{1}, \ldots, \theta_{k}\right) \in \Theta \subset \mathbb{R}^{k}\) y sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra de \(n\) v.a. de \(X\). El problema de la estimación puntual consiste en obtener alguna aproximación de \(\theta\) en base a la información disponible en la muestra mediante un estimador de \(\theta\) que definimos a continuación. +Definició 2.1 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X\) con distribución \(F_{\theta}\) donde \(\theta \in \Theta \subset \mathbb{R}^{k}\). Un estadístico \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) se denomina un estimador puntual de \(\theta\) si \(T\) es una aplicación de \(\mathbb{R}^{n}\) en \(\Theta\), es decir, si toma valores sobre el mismo conjunto que los parámetros. + +Ejemplo 2.1.1 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de una v.a. de Poisson \(X \sim P(\lambda)\). Para estimar \(\lambda\) podemos utilizar: + +\[ +\begin{aligned} +& T_{1}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \\ +& T_{2}=s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} +\end{aligned} +\] + +ya que \(E(X)=\operatorname{var}(X)=\lambda\), pero también + +\[ +\begin{aligned} +T_{3} & =\frac{2}{n(n+1)} \sum_{i=1}^{n} X_{i} \cdot i \\ +T_{4} & =X_{i} +\end{aligned} +\] + +Ejemplo 2.1.2 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una m.a.s. de \(X \sim B(1, p)\), con \(p\) desconocido. Podemos estimar p de las siguientes maneras: + +\[ +\begin{aligned} +& T_{1}=\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i} \\ +& T_{2}=1 / 2 \\ +& T_{3}=\left(X_{1}+X_{2}\right) / 2 +\end{aligned} +\] + +En cada caso resulta claro que algunos estimadores no son muy razonables mientras que la decisión entre los otros no está necesariamente clara. Básicamente debemos ocuparnos de dos problemas: + +\begin{itemize} +\tightlist +\item + Dado un modelo estadístico \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\), ¿cómo podemos obtener estimadores de \(\theta\) que tengan ``buenas'' propiedades? +\item + Dado varios estimadores para un mismo parámetro ¿cómo podemos escoger el mejor en base a algún criterio? +\end{itemize} + +Para poder alcanzar estos dos objetivos empezaremos por estudiar las propiedades de los estimadores, así como las medidas de optimalidad que podremos utilizar para decidir entre varios estimadores. +De entrada nos restringiremos al caso en que \(\Theta \subseteq \mathbb{R}\) o en que queremos aproximar alguna función \(g(\theta)\) de los parámetros donde \(g\) es del tipo \(g: \Theta \rightarrow\) \(\mathbb{R}\). + +\subsubsection{Criterios de optimalidad de estimadores. El Riesgo}\label{criterios-de-optimalidad-de-estimadores.-el-riesgo} + +Una forma de poder comparar entre diversos estimadores consiste en definir una función de pérdida que nos permita cuantificar de alguna manera la pérdida, o coste asociado, al estimar el valor real del parámetro, es decir, \(\theta\), mediante la aproximación que proporciona un estimador, es decir, \(t\). + +Definició 2.2 Una función de pérdida es una aplicación + +\[ +\begin{aligned} +L: & \Theta \times \Theta \rightarrow \mathbb{R} \\ +& (\theta, t) \rightarrow L(\theta, t) +\end{aligned} +\] + +que verifica: +a) \(L(\theta, t) \geq 0, \quad \forall \theta, t \in \Theta\) +b) \(L(\theta, t)=0\), si \(\theta=t\) +c) \(L(\theta, t) \leq L\left(\theta, t^{\prime}\right)\), si \(d(\theta, t) \leq d\left(\theta, t^{\prime}\right)\) donde \(d\) es una distancia en \(\Theta\). + +Por ejemplo, son funciones de pérdida: + +\[ +\begin{gathered} +L_{1}(\theta, t)=|\theta-t| \quad L_{2}(\theta, t)=(\theta-t)^{2} \\ +L_{3}(\theta, t)=\left|\frac{\theta-t}{\theta}\right| \quad L_{4}(\theta, t)=\left(\frac{\theta-t}{\theta}\right)^{2} \\ +L_{5}(\theta, t)= \begin{cases}c>0 & \text { si }|\theta-t|>\epsilon \\ +0 & \text { si }|\theta-t| \leq \epsilon\end{cases} +\end{gathered} +\] + +\subsubsection{El error cuadrático medio}\label{el-error-cuadruxe1tico-medio} + +Una de las funciones de pérdida más usuales es la función de pérdida cuadrática \(L_{2}(\theta, t)=(\theta-t)^{2}\). Uno de los motivos de su uso es que el riesgo asociado a esta función de pérdida \(E_{\theta}\left[(\theta-T)^{2}\right]\), que llamamos error cuadrático medio \(E Q M_{T}\), representa una medida de la variabilidad del estimador \(T\) en torno a \(\theta\) semejante a la medida de dispersión en torno a la media que representa la varianza. +Además, del desarrollo de esta expresión se obtiene un interesante resultado que muestra cuáles pueden ser las propiedades más interesantes para un estimador. +Sea \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) y sea \(T\) un estimador de \(\theta\). El error cuadrático medio de \(T\) para estimar \(\theta\) vale + +\[ +E Q M_{T}(\theta)=E_{\theta}\left[(\theta-T)^{2}\right]=E\left[\theta^{2}-2 \theta T+T^{2}\right]=\theta^{2}-2 \theta E_{\theta}(T)+E_{\theta}\left(T^{2}\right) +\] + +Ahora, sumando y restando \(\left(E_{\theta}(T)\right)^{2}\), obtenemos + +\[ +\begin{aligned} +E Q M_{T}(\theta) & =E_{\theta}\left(T^{2}\right)-\left(E_{\theta}(T)\right)^{2}+\left(E_{\theta}(T)\right)^{2}+\theta^{2}-2 \theta E_{\theta}(T)= \\ +& =\operatorname{var}(T)+\left(E_{\theta}(T)-\theta\right)^{2} +\end{aligned} +\] + +El término \(\left(E_{\theta}(T)-\theta\right)^{2}\) es el cuadrado del sesgo de \(T\), que se define como + +\[ +b_{\theta}(T)=E_{\theta}(T)-\theta +\] + +Definició 2.5 El error cuadrático medio \(E Q M_{T}(\theta)\), o simplemente \(E Q M\), de un estimador \(T\) para estimar el parámetro \(\theta\) es la suma de su varianza más el cuadrado de la diferencia entre su valor medio y el verdadero valor del parámetro, que llamamos sesgo. + +Si en la búsqueda de estimadores de mínimo riesgo nos basamos en la función de pérdida cuadrática, parece que los estimadores más deseables deberían ser aquellos en los que la varianza y el sesgo sean lo más pequeños posibles. Idealmente, quisiéramos reducir ambas cantidades a la vez. En la práctica, sin embargo, observamos que, en general, no suele ser posible reducir simultáneamente la varianza y el sesgo. Además, incluso si fuera práctico calcular el \(E Q M\) para cada estimador, encontraríamos que, para la mayoría de las familias de probabilidad \(P_{\theta}\), no existiría ningún estimador que minimizase el \(E Q M\) para todos los valores de \(\theta\). Es decir, que un estimador puede tener un \(E Q M\) mínimo para algunos valores de \(\theta\), mientras que otro lo tendrá en otros valores de \(\theta\). + +Ejemplo 2.1.4 Sea \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X \sim\) \(N(\mu, \sigma)\), donde suponemos \(\sigma\) conocida, y sean + +\[ +T_{1}=\bar{X} \quad T_{2}=\frac{\sum_{i=1}^{n} X_{i}}{n+1} +\] + +Calculando la media y la varianza de los estimadores, tenemos + +\[ +\begin{array}{lll} +E_{\mu}\left(T_{1}\right)=\mu & \Rightarrow b_{T_{1}}(\mu)=0 & \operatorname{var}_{\mu}\left(T_{1}\right)=\frac{\sigma^{2}}{n} \\ +E_{\mu}\left(T_{2}\right)=\frac{n}{n+1} \mu & \Rightarrow b_{T_{2}}(\mu)=\frac{-1}{n+1} \mu & \operatorname{var}_{\mu}\left(T_{2}\right)=\frac{n}{(n+1)^{2}} \sigma^{2} +\end{array} +\] + +de donde + +\[ +\begin{aligned} +& E Q M_{\mu}\left(T_{1}\right)=\operatorname{var}\left(T_{1}\right)=\frac{\sigma^{2}}{n} \\ +& E Q M_{\mu}\left(T_{2}\right)=\frac{1}{(n+1)^{2}} \mu^{2}+\frac{n}{(n+1)^{2}} \sigma^{2} +\end{aligned} +\] + +que son respectivamente una recta y una parábola. De manera que para algunos valores de \(\mu\) tenemos que \(E Q M_{\mu}\left(T_{1}\right)0 \quad \lim _{n \rightarrow \infty} P\left\{\left|T_{n}-g(\theta)\right|>\varepsilon\right\}=0 +\] + +Observemos que: + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Se trata de un concepto asintótico: Hablamos de ?sucesiones de estimadores consistentes? más que de estimadores propiamente dichos. +\item + La definición puede reforzarse si, en lugar de considerar convergencia en probabilidad (consistencia débil), consideramos convergencia casi segura o en media cuadrática: +\end{enumerate} + +\begin{itemize} +\tightlist +\item + \(T_{n}\) es fuertemente consistente si \(T_{n} \xrightarrow{\text { c.s. }} g(\theta)\) +\item + \(T_{n}\) es consistente en media- \(r\) si \(E_{\theta}\left[\left|T_{n}-g(\theta)\right|^{r}\right] \longrightarrow 0\) +\end{itemize} + +Ejemplo 2.2.5 Muchos estimadores consistentes lo son como consecuencia de las leyes de los grandes números. Recordemos que la Ley débil de los Grandes Números (Tchebychev) afirma que, dada una sucesión de v.a. independientes e idénticamente distribuidas con medias \(\mu<\infty\) y varianzas \(\sigma^{2}<\infty\), entonces + +\[ +\bar{X}_{n} \xrightarrow{P} \mu +\] + +Como consecuencia de esta ley y dado que una muestra aleatoria simple es i.i.d., por definición, podemos afirmar que \(\bar{X}_{n}\) es consistente para estimar \(\mu\). + +Ejemplo 2.2.6 La sucesión \(T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}\) es consistente para estimar el máximo de una distribución uniforme en \([0, \theta]\) : + +\[ +P\left[\left|\max _{1 \leq i \leq n}\left\{X_{i}\right\}-\theta\right|>\varepsilon\right]=P\left[\theta-\max _{1 \leq i \leq n}\left\{X_{i}\right\}>\varepsilon\right] +\] + +ya que \(X_{i} \in[0, \theta] y\), por lo tanto, podemos escribir: + +\[ +\begin{aligned} +P\left[\theta-\varepsilon>\max _{1 \leq i \leq n}\left\{X_{i}\right\}\right] & =P\left[\max _{1 \leq i \leq n}\left\{X_{i}\right\}<\theta-\varepsilon\right] \\ +& =\left(\frac{\theta-\varepsilon}{\theta}\right)^{n}=\left(1-\frac{\varepsilon}{\theta}\right)^{n} \underset{n \rightarrow \infty}{\longrightarrow} 0 +\end{aligned} +\] + +Es inmediato comprobar que + +\[ +E\left[\left(\theta-T_{n}\right)^{2}\right]=\left(1-\frac{2 n}{n+1}+\frac{n}{n+2}\right) \theta^{2} +\] + +que también tiende a cero cuando \(n \rightarrow \infty\), y por lo tanto \(T_{n}=\max _{1 \leq i \leq n}\left\{X_{i}\right\}\) también es consistente en media cuadrática. + +Normalmente, cuando se habla de consistencia, se hace referencia a la convergencia en probabilidad, es decir, \(T_{n}\) es consistente si \(\lim _{n \rightarrow \infty} P\left(\left|T_{n}-g(\theta)\right|>\right.\) \(\varepsilon)=0\). Si el estimador no tiene sesgo, estamos en la situación de aplicar la desigualdad de Tchebychev \({ }^{1}\) : +Si \(E\left(T_{n}\right)=g(\theta)\), entonces + +\[ +P\left(\left|T_{n}-g(\theta)\right|>\varepsilon\right)=P\left(\left|T_{n}-E\left(T_{n}\right)\right|>\varepsilon\right) \underset{\text { Tchebychev }}{\leq} \frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} +\] + +Así, para intentar establecer la consistencia de \(T\), debemos probar que + +\[ +\frac{\operatorname{var}\left(T_{n}\right)}{\varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +\] + +Ejemplo 2.2.7 Sea \(M_{n}=\sum_{i=1}^{n} a_{i} X_{i}\) una combinación lineal de los valores de la muestra con coeficientes tales que \(\sum_{i=1}^{n} a_{i}=1\) y algún \(a_{i}>0\). ¿Es consistente \(M_{n}\) para estimar \(E(X)\) ? +Comencemos por ver que \(M_{n}\) no tiene sesgo + +\[ +\begin{aligned} +E\left(M_{n}\right) & =E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} E\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i} E\left(X_{i}\right) \stackrel{\text { i.i.d. }}{=} \sum_{i=1}^{n} a_{i} E(X)=E(X) +\end{aligned} +\] + +{[}\^{}1{]}Calculemos la varianza + +\[ +\begin{aligned} +\operatorname{var}\left(M_{n}\right) & =\operatorname{var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(a_{i} X_{i}\right) \\ +& =\sum_{i=1}^{n} a_{i}^{2} \operatorname{var}\left(X_{i}\right)=\operatorname{var}(X) \sum_{i=1}^{n} a_{i}^{2} +\end{aligned} +\] + +Si aplicamos ahora la desigualdad de Tchebychev tenemos: + +\[ +P\left(\left|M_{n}-\mu\right|>\varepsilon\right) \leq \frac{\sigma^{2} \sum a_{i}^{2}}{\varepsilon^{2}} +\] + +lo cual no tiene por qué tender a 0 cuando \(n \rightarrow \infty\), y por lo tanto no podemos afirmar que el estimador es consistente. Por ejemplo, si \(a_{1}=\frac{1}{2}, a_{2}=a_{3}=\) \(\cdots=a_{n}=\frac{1}{2(n-1)}\) tendremos que \(\lim _{n \rightarrow \infty} \sum a_{i}^{2}=\frac{1}{4}\). +Observamos que el resultado obtenido no puede asegurar la consistencia de \(M_{n}\) para cualquier familia de coeficientes \(a_{1}, \ldots, a_{n}\), aunque, obviamente, el estimador es consistente para alguno (caso \(a_{i}=1 / n\) ). + +\subsection{Propiedades de los estimadores consistentes}\label{propiedades-de-los-estimadores-consistentes} + +Muchas de las propiedades de los estimadores son consecuencia directa de las propiedades de la convergencia en probabilidad, que se pueden revisar, por ejemplo, en Martin Pliego (1998a) capítulo 11. + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Si \(T_{n}\) es consistente para estimar \(\theta\) y \(g: \mathbb{R} \rightarrow \mathbb{R}\) es una función continua, entonces \(g\left(T_{n}\right)\) es consistente para estimar \(g(\theta)\). +\item + Si \(T_{1 n}\) y \(T_{2 n}\) son consistentes para estimar \(\theta_{1}\) y \(\theta_{2}\) respectivamente, entonces + \(a T_{1 n} \pm b T_{2 n}\) es consistente para estimar \(a \theta_{1} \pm b \theta_{2}\) + \(T_{1 n} \cdot T_{2 n}\) es consistente para estimar \(\theta_{1} \cdot \theta_{2}\) + \(T_{1 n} / T_{2 n}\) es consistente para estimar \(\theta_{1} / \theta_{2}\), si \(\theta_{2} \neq 0\). +\item + Sea \(a_{r}=(1 / n) \sum X_{i}^{r}\) el momento muestral de orden \(r\). Como se ha visto en el capítulo 1 , la esperanza de \(a_{r}\) es +\end{enumerate} + +\[ +E\left(a_{r}\right)=E\left[\frac{1}{n} \sum X_{i}^{r}\right]=\frac{1}{n} \sum E\left(X^{r}\right)=\frac{1}{n} n \alpha_{r}=\alpha_{r} +\] + +donde \(\alpha_{r}\) es el momento poblacional de orden \(r\). Así pues, \(a_{r}\) no tiene sesgo para estimar \(\alpha_{r}\). Su varianza es + +\[ +\begin{aligned} +\operatorname{var}\left(a_{r}\right) & =\operatorname{var}\left(\frac{1}{n} \sum X_{i}^{r}\right)=\frac{1}{n^{2}} \sum \operatorname{var}\left(X^{r}\right)=\frac{1}{n} E\left[X^{r}-E\left(X^{r}\right)\right]^{2} \\ +& =\frac{1}{n} E\left[X^{r}-\alpha_{r}\right]^{2}=\frac{1}{n} E\left(X^{2 r}+\alpha_{r}^{2}-2 \alpha_{r} X^{r}\right) \\ +& =\frac{1}{n}\left(\alpha_{2 r}-\alpha_{r}^{2}\right) . +\end{aligned} +\] + +Y si aplicamos la desigualdad de Tchebychev, se obtiene + +\[ +P\left(\left|a_{r}-\alpha_{r}\right| \geq \varepsilon\right) \leq \frac{E\left(a_{r}-\alpha_{r}\right)^{2}}{\varepsilon^{2}}=\frac{\operatorname{var}\left(a_{r}\right)}{\varepsilon^{2}}=\frac{\alpha_{2 r}-\alpha_{r}^{2}}{n \varepsilon^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0 +\] + +Así pues, hemos visto que los momentos muestrales son estimadores consistentes de los momentos poblacionales. + +\subsubsection{Eficiencia}\label{eficiencia} + +Como ya hemos visto, un objetivo deseable en la búsqueda de estimadores óptimos es considerar estimadores de ``mínimo riesgo'' o, si nos basamos en la función de pérdida cuadrática, estimadores que minimicen el error cuadrático medio \(E(\theta-T)^{2}\). +En general, es difícil encontrar estimadores que hagan mínimo el EQM para todos los valores de \(\theta\); sin embargo, si nos restringimos a los estimadores sin sesgo, el problema tiene solución en una gama más amplia de situaciones. Supongamos que \(T_{1}, T_{2}\) son dos estimadores sin sesgo de un parámetro \(\theta\). Para estos estimadores tenemos que + +\[ +\begin{aligned} +& E Q M_{T_{1}}(\theta)=\operatorname{var}_{\theta}\left(T_{1}\right)+b_{T_{1}}^{2}(\theta) \\ +& E Q M_{T_{2}}(\theta)=\operatorname{var}_{\theta}\left(T_{2}\right)+b_{T_{2}}^{2}(\theta) +\end{aligned} +\] + +Si los estimadores no tienen sesgo \(b_{T_{1}}(\theta)=b_{T_{2}}(\theta)=0\), el que tenga menor varianza tendrá el menor riesgo para estimar \(\theta\). Si, por ejemplo, \(\operatorname{var}\left(T_{1}\right) \leq\) \(\operatorname{var}\left(T_{2}\right)\), diremos que \(T_{1}\) es más eficiente que \(T_{2}\) para estimar \(\theta\). +Para dos estimadores con sesgo cero \(b_{T_{i}}(\theta)=0\), el cociente + +\[ +E R=\frac{E Q M_{T_{1}}(\theta)}{E Q M_{T_{2}}(\theta)}=\frac{\operatorname{var}_{\theta}\left(T_{1}\right)}{\operatorname{var}_{\theta}\left(T_{2}\right)} +\] + +se denomina eficiencia relativa de \(T_{1}\) respecto a \(T_{2}\). Si solo hay dos estimadores de \(\theta\) puede ser fácil ver cuál es el más eficiente. Si hay más, la cosa se complica. El ``más eficiente'', en caso de que exista, se llamará el estimador sin sesgo de mínima varianza. + +Figura 2.2: Comparación de la eficiencia de dos estimadores para un \(\theta\) dado + +Definició 2.8 Sea \(\mathcal{S}(\theta)\) la clase de los estimadores sin sesgo de \(\theta\) y con varianza. Si para todos los estimadores de esta clase \(T \in \mathcal{S}(\theta)\) se verifica que + +\[ +\operatorname{var}_{\theta}(T) \leq \operatorname{var}_{\theta}\left(T^{*}\right) \quad \forall T \in \mathcal{S}(\theta) +\] + +diremos que \(T^{*}\) es un estimador sin sesgo de mínima varianza de \(\theta\). Si la desigualdad es cierta \(\forall \theta \in \Theta\), diremos que \(T^{*}\) es un estimador sin sesgo uniforme de mínima varianza (ESUMV) \({ }^{2}\). + +\subsection{Información de Fisher y cota de CramerRao}\label{informaciuxf3n-de-fisher-y-cota-de-cramerrao} + +Obviamente, en un problema de estimación lo ideal es disponer de un ESUMV, pero esto no siempre es posible. Nos enfrentamos a varios problemas: + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + ¿Existen ESUMV para un parámetro \(\theta\) en un modelo dado? +\item + En caso de que exista el ESUMV, ¿sabremos cómo encontrarlo? +\end{enumerate} + +Este problema tiene solución, bajo ciertas condiciones, utilizando los teoremas de Lehmann-Scheffé y Rao-Blackwell y el concepto de suficiencia, que se discute más adelante. + +{[}\^{}2{]}Una solución parcial aparece gracias al Teorema de Cramer-Rao, que permite establecer una cota mínima para la varianza de un estimador. Cuando un estimador alcanza esta cota, sabemos que es un estimador de varianza mínima. +Informalmente, este resultado sugiere que, bajo ciertas condiciones de regularidad, si \(T\) es un estimador insesgado de un parámetro \(\theta\), su varianza está acotada por una expresión que llamamos cota de Cramer-Rao \(\operatorname{CCR}(\theta)\) + +\[ +\operatorname{var}(T) \geq \operatorname{CCR}(\theta) +\] + +Antes de establecer con precisión este teorema, consideremos el concepto de información de un modelo estadístico introducido por Fisher. + +\subsection{Información y verosimilitud de un modelo estadístico}\label{informaciuxf3n-y-verosimilitud-de-un-modelo-estaduxedstico} + +Una idea bastante razonable es esperar que un estimador funcione mejor en su intento de aproximarse al valor de un parámetro cuanto más información tenga para hacerlo. Por este motivo, la varianza del estimador y la información se presentan como cantidades opuestas: a mayor información, menor error (varianza) en la estimación: + +\[ +\operatorname{var}\left(T_{n}\right) \propto \frac{1}{I_{n}(\theta)} +\] + +Ahora nos encontramos con el problema de cómo definir la cantidad de información (contenida en una muestra/de un modelo), para que se ajuste a la idea intuitiva de información. Fisher lo hizo a través de la función de verosimilitud. +Sea un modelo estadístico \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) y una m.a.s. \(\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), que toma valores \(\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\). Si \(X\) es discreta, la función de masa de probabilidad indica, en términos generales, la probabilidad de observar la muestra, dado un valor del parámetro. Si \(X\) es absolutamente continua, esta interpretación ya no es tan directa. + +\[ +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)= \begin{cases}P_{\theta}\left[X=x_{1}\right] \cdots P_{\theta}\left[X=x_{n}\right], & \text { si } X \text { es discreta } \\ f_{\theta}\left(x_{1}\right) \cdots f_{\theta}\left(x_{n}\right), & \text { si } X \text { es abs. continua }\end{cases} +\] + +La función de verosimilitud se obtiene si consideramos, en la expresión anterior, que lo que queda fijado es la muestra y no el parámetro. Es decir, fijada una muestra x, la función de verosimilitud indica qué tan verosímil resulta, para cada valor del parámetro, que el modelo la haya generado. + +Ejemplo 2.3.1 Supongamos que tenemos una m.a.s. \(x_{1}, x_{2}, \ldots, x_{n}\) de tamaño n de una variable aleatoria \(X\), que sigue una ley de Poisson de parámetro \(\lambda\) desconocido. + +\[ +X \sim F_{\lambda}=P(\lambda), \quad \lambda>0 +\] + +La función de probabilidad de la muestra, fijado \(\lambda\), es: + +\[ +g_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +\] + +y la función de verosimilitud del modelo, fijada \(\mathbf{x}\), es: + +\[ +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \lambda\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} +\] + +Aunque la forma funcional de \(g_{\lambda}(\mathbf{x})\) y \(L(\mathbf{x} ; \lambda)\) es la misma, su aspecto es diferente, como se puede comprobar en la figura 2.3, donde damos valores a \(g_{\lambda}(\mathbf{x})\), variando \(\mathbf{x}\) o a \(L(\lambda ; \mathbf{x})\) variando \(\lambda\). + +\subsection{Información de Fisher}\label{informaciuxf3n-de-fisher} + +Para calcular la cantidad de información de Fisher contenida en una muestra sobre un parámetro, es necesario considerar modelos estadísticos regulares, es decir, donde se cumplen las siguientes condiciones de regularidad. + +Definició 2.9 Diremos que \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) es un modelo estadístico regular si se verifican las siguientes condiciones: + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + La población de donde proviene la muestra presenta un ?campo de variación? o soporte \(S_{\theta}=\{x \mid f(x ; \theta)>0\}=S\) que no depende de \(\theta\). +\item + La función \(L(\mathbf{x} ; \theta)\) admite, al menos, las dos primeras derivadas. +\item + Las operaciones de derivación e integración son intercambiables. +\end{enumerate} + +Definició 2.10 Sea \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) un modelo estadístico regular, es decir, donde se verifican las condiciones de regularidad 1-3 anteriores. Si \(Z=\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)\), la cantidad de información de Fisher es + +\[ +I_{n}(\theta)=\operatorname{var}_{\theta}(Z)=\operatorname{var}_{\theta}\left(\frac{\partial}{\partial \theta} \log L(\mathbf{X} ; \theta)\right) +\] + +Figura 2.3: Probabilidad de la suma de \(n=5\) valores muestrales para 10 muestras de la ley de Poisson con \(\lambda=3\) versus la función de verosimilitud para una muestra observada. + +Las condiciones de regularidad son necesarias para calcular \(E_{\theta}\left(Z^{2}\right)\). +A continuación, presentamos algunas propiedades de la información de Fisher. Puedes ver la demostración en Ruiz-Maya y Pliego (1995). + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + La información de Fisher se puede expresar como: +\end{enumerate} + +\[ +I_{n}(\theta)=E_{\theta}\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right] +\] + +Esto se puede comprobar, ya que si aplicamos las condiciones de regularidad + +\[ +\begin{aligned} +E(Z) & =E\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)=\int_{S^{n}} \frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} \frac{\frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta}}{L(\mathbf{x} ; \theta)} L(\mathbf{x} ; \theta) d \mathbf{x}=\int_{S^{n}} \frac{\partial L(\mathbf{x} ; \theta)}{\partial \theta} d \mathbf{x} \\ +& =\frac{\partial}{\partial \theta}\left(\int_{S^{n}} L(\mathbf{x} ; \theta) d \mathbf{x}\right)=\frac{\partial}{\partial \theta} 1=0 +\end{aligned} +\] + +De forma que \(E(Z)=0\), y por lo tanto, tendremos que \(\operatorname{var}_{\theta}(Z)=\) \(E_{\theta}\left(Z^{2}\right)\). +2. \(I_{n}(\theta)=0\) si y solo si \(L(\mathbf{x} ; \theta)\) no depende de \(\theta\). +3. Dadas dos m.a.s. \(\mathbf{x}_{1}, \mathbf{x}_{2}\) de tamaños \(n_{1}, n_{2}\) de la misma población, se verifica: + +\[ +I_{n_{1}, n_{2}}(\theta)=I_{n_{1}}(\theta)+I_{n_{2}}(\theta) +\] + +De manera que podemos considerar una muestra de tamaño \(n\) como \(n\) muestras de tamaño 1 : + +\[ +I_{n}(\theta)=\sum_{i=1}^{n} I_{1}(\theta)=n \cdot i(\theta), \text { siendo } i(\theta)=I_{1}(\theta) +\] + +Es decir + +\[ +E\left(\frac{\partial \log (L(\mathbf{X} ; \theta))}{\partial \theta}\right)=n E\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right) +\] + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\setcounter{enumi}{3} +\tightlist +\item + Se verifica la siguiente relación: +\end{enumerate} + +\[ +I_{n}(\theta)=E\left[\left(\frac{\partial \log L(\mathbf{X} ; \theta)}{\partial \theta}\right)^{2}\right]=-E\left[\frac{\partial^{2} \log L(\mathbf{X} ; \theta)}{\partial^{2} \theta}\right] +\] + +Ejemplo 2.3.2 Vamos a calcular la cantidad de información de Fisher contenida en una m.a.s. extraída de una población \(N(\mu, \sigma)\) con \(\sigma=\sigma_{0}\) conocida. La función de verosimilitud es + +\[ +L(\mathbf{x} ; \mu)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{0}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}}=\left(2 \pi \sigma_{0}^{2}\right)^{-n / 2} \exp \left(-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{0}^{2}}\right) +\] + +y su logaritmo + +\[ +\log L(\mathbf{x} ; \mu)=-\frac{n}{2} \log \left(2 \pi \sigma_{0}^{2}\right)-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} +\] + +Si derivamos respecto a \(\mu\) + +\[ +\frac{\partial \log L(\mathbf{x} ; \mu)}{\mu}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)}{\sigma_{0}^{2}} +\] + +de donde + +\[ +\begin{aligned} +I_{n}(\mu) & =E\left(\frac{\partial \log L(\mathbf{X} ; \mu)}{\partial \mu}\right)^{2}=E\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}{\sigma_{0}^{2}}\right)^{2} \\ +& =\frac{1}{\sigma_{0}^{4}} E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}+\sum_{i \neq j}\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right] \\ +& =\frac{1}{\sigma_{0}^{4}} n \sigma_{0}^{2}=\frac{n}{\sigma_{0}^{2}} +\end{aligned} +\] + +Este cálculo también puede hacerse a partir de la tercera propiedad de la información de Fisher: + +\[ +I_{n}(\mu)=n E\left[\frac{\partial \log f(X ; \mu)}{\partial \mu}\right]=n \frac{1}{\sigma_{0}^{2}}=\frac{n}{\sigma_{0}^{2}} +\] + +\subsection{La desigualdad de Cramer-Rao}\label{la-desigualdad-de-cramer-rao} + +Una vez establecidas las condiciones de regularidad y características anteriores podemos enunciar el teorema de Cramer-Rao (1945). + +Teorema 2.1 Dado un modelo estadístico regular \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\), es decir, un modelo donde se verifican las condiciones de regularidad enunciadas, cualquier estimador \(T \in \mathcal{S}(\theta)\) de la clase de los estimadores no sesgados y con varianza verifica + +\[ +\operatorname{var}_{\theta}(T) \geq \frac{1}{I_{n}(\theta)} +\] + +Demostración: +El estimador \(T \in \mathcal{S}(\theta)\) no tiene sesgo, es decir que + +\[ +E(T)=\int_{S^{n}} T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta) d \mathbf{x}=\theta +\] + +Si derivamos e introducimos la derivada bajo el signo de la integral, obtenemos + +\[ +\begin{aligned} +\frac{\partial}{\partial \theta} E(T) & =\int_{S^{n}} \frac{\partial}{\partial \theta}(T(\mathbf{x}) \cdot L(\mathbf{x} ; \theta)) d \mathbf{x}=\int_{S^{n}} T(\mathbf{x}) \frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta) d \mathbf{x} \\ +& =\int_{S^{n}} T(\mathbf{x})\left(\frac{\frac{\partial}{\partial \theta} L(\mathbf{x} ; \theta)}{L(\mathbf{x} ; \theta)}\right) L(\mathbf{x} ; \theta) d \mathbf{x} +\end{aligned} +\] + +Así pues + +\[ +1=\frac{\partial}{\partial \theta} \theta=\frac{\partial}{\partial \theta} E(T)=E(T Z)=\int_{S^{n}} T(\mathbf{x}) \cdot Z L(\mathbf{x} ; \theta) d \mathbf{x} +\] + +En resumen + +\[ +E(T)=\theta, E(T Z)=1, E(Z)=0, \operatorname{var}(Z)=I_{n}(\theta) +\] + +Si ahora consideramos el coeficiente de correlación al cuadrado entre \(T\) y \(Z\), tenemos + +\[ +\rho^{2}(T, Z)=\frac{[\operatorname{cov}(T, Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)}=\frac{[E(T Z)-E(T) E(Z)]^{2}}{\operatorname{var}(T) \cdot \operatorname{var}(Z)} \leq 1 +\] + +Si sustituimos los resultados hallados antes, obtenemos + +\[ +\frac{1}{\operatorname{var}(T) \cdot I_{n}(\theta)} \leq 1 +\] + +de donde se deduce la desigualdad enunciada. + +Definició 2.11 Si un estimador alcanza la CCR (Cota de Cramer-Rao), diremos que es un estimador eficiente. + +Todo estimador eficiente es de mínima varianza en la clase \(\mathcal{S}(\theta)\). Sin embargo, también puede suceder que exista un estimador de mínima varianza sin alcanzar necesariamente la CCR. + +Ejemplo 2.3.3 Sea \(X \sim F_{\theta}=P(\lambda), \lambda>0\) (Poisson). Buscamos la \(C C R\) de los estimadores de \(\lambda\). + +\[ +\begin{aligned} +L(\mathbf{x} ; \lambda) & =\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=e^{-n \lambda} \frac{\lambda^{\sum x_{i}}}{\prod_{i=1}^{n} x_{i}!} \\ +\log L(\mathbf{x} ; \lambda) & =-n \lambda+\left(\sum x_{i}\right) \log \lambda-\log \left(\prod_{i=1}^{n} x_{i}!\right) \\ +\frac{\partial \log (L(\mathbf{x} ; \lambda))}{\partial \lambda} & =-n+\frac{\sum x_{i}}{\lambda} \\ +E\left[\frac{\partial \log L(\mathbf{x} ; \lambda)}{\partial \lambda}\right]^{2} & =E\left[n^{2}+\left(\frac{\sum X_{i}}{\lambda}\right)^{2}-\frac{2 n \sum X_{i}}{\lambda}\right] \\ +& =n^{2}+\frac{1}{\lambda^{2}} E\left(\sum X_{i}\right)^{2}-\frac{2 n}{\lambda} n E(X) +\end{aligned} +\] + +Aquí recordamos que la suma de variables de Poisson también es una Poisson, es decir: + +\[ +\sum X_{i} \sim P(n \lambda) +\] + +por lo que + +\[ +E\left(\sum X_{i}\right)^{2}=\operatorname{var}\left(\sum X_{i}\right)+\left[E\left(\sum X_{i}\right)\right]^{2}=n \lambda+(n \lambda)^{2} +\] + +Finalmente, se obtiene: + +\[ +E\left(Z^{2}\right)=n^{2}+\frac{n \lambda}{\lambda^{2}}+\frac{n^{2} \lambda^{2}}{\lambda^{2}}-2 n^{2}=\frac{n}{\lambda} +\] + +De esta forma, + +\[ +I_{n}(\lambda)=\frac{n}{\lambda} \quad \Longrightarrow \quad \operatorname{var}(T) \geq \frac{\lambda}{n} +\] + +Sabemos que la media aritmética verifica + +\[ +\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\lambda}{n} +\] + +lo cual coincide con la cota de Cramer-Rao, indicando que \(\bar{X}_{n}\) es el estimador eficiente de \(\lambda\). + +Ejemplo 2.3.4 Para calcular la CCR o, dicho de otro modo, para que el inverso de + +\[ +E\left[\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta}\right]^{2} +\] + +sea realmente la cota minima de \(\operatorname{var}(\widehat{\theta})\) en la clase \(\mathcal{S}(\theta)\), es necesario que se verifiquen las condiciones de regularidad. De lo contrario, se pueden obtener resultados absurdos. +Consideremos, por ejemplo, una variable aleatoria \(X\) con función de densidad + +\[ +f(x ; \theta)=\frac{3}{\theta^{3}} x^{2} \mathbf{1}_{[0, \theta]}(x) +\] + +y esperanza + +\[ +E(X)=\int_{0}^{\theta} x \cdot \frac{3}{\theta^{3}} x^{2} d x=\frac{3}{4} \theta +\] + +Ya que \(\theta=\frac{4}{3} E(X)\), esto sugiere estimar \(\theta\) mediante \(\widehat{\theta}=\frac{4}{3} \bar{X}\), que no tiene sesgo. +Por otro lado, si calculamos la varianza de \(X\), tenemos + +\[ +\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{3}{80} \theta^{2} +\] + +Sabemos que \(E(\widehat{\theta})=\theta, y\) además + +\[ +\operatorname{var}(\widehat{\theta})=\operatorname{var}\left(\frac{4}{3} \bar{X}\right)=\frac{\theta^{2}}{15 n} +\] + +Si evaluamos \(I_{n}(\theta)\) en su forma más sencilla, obtenemos + +\[ +I_{n}(\theta)=n I(\theta)=n \frac{9}{\theta^{2}} +\] + +Así, la CCR resulta ser mayor que la varianza de este estimador: + +\[ +\operatorname{var}(\widehat{\theta})=\frac{\theta^{2}}{15 n}<\frac{\theta^{2}}{9 n} +\] + +lo cual es un resultado absurdo. Este error se debe a no considerar que el soporte de \(X\) depende de \(\theta\), por lo que no se cumplen las condiciones de regularidad, y la cota de Cramer-Rao no existe. + +También ocurre que la varianza de un estimador es inferior a la CCR aunque esta exista. Esto puede pasar, por ejemplo, con algún estimador sesgado. + +\subsection{Caracterización del estimador eficiente}\label{caracterizaciuxf3n-del-estimador-eficiente} + +Calcular la cota de Cramer-Rao es una cosa; encontrar el estimador que alcanza esta cota y, en consecuencia, tiene varianza mínima es otra. La siguiente caracterización permite, en algunos casos, obtener directamente la forma del estimador eficiente. + +Teorema 2.2 Sea \(T\) el estimador eficiente de \(\theta\), entonces se verifica + +\[ +\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(X_{i} ; \theta\right)=K(\theta, n)(T-\theta) +\] + +donde \(K(\theta, n)\) es una función que depende de \(\theta\) y de \(n\) y que suele coincidir con la información de Fisher. +Demostración: +Si \(T\) es el estimador eficiente, entonces + +\[ +\operatorname{var}(T)=\frac{1}{I_{n}(\theta)} +\] + +y, por lo tanto, \(\rho^{2}(T, Z)=1\). +En general, dadas dos variables aleatorias \(X\) e \(Y\), se sabe que si \(\rho(X, Y)=1\), entonces + +\[ +Y-E(Y)=\beta(X-E(X)) +\] + +Si aplicamos este resultado a \(T\) y \(Z\), tenemos + +\[ +\begin{aligned} +Z-E(Z) & =\beta(T-E(T)) \\ +\frac{\partial \log L(\mathbf{x} ; \theta)}{\partial \theta} & =K(\theta, n)(T-\theta) +\end{aligned} +\] + +Ejemplo 2.3.5 En el caso de la distribución de Poisson, tenemos + +\[ +\begin{aligned} +f(x ; \lambda) & =e^{-\lambda} \frac{\lambda^{x}}{x!} \\ +\log f(x ; \lambda) & =-\lambda+x \log (\lambda)-\log (x!) \\ +\frac{\partial \log f(x ; \lambda)}{\partial \lambda} & =-1+x \frac{1}{\lambda} \\ +Z=\sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \lambda\right)}{\partial \lambda} & =\sum_{i=1}^{n}\left(-1+\frac{X_{i}}{\lambda}\right) +\end{aligned} +\] + +Queremos ver que + +\[ +\sum_{i=1}^{n}\left(\frac{X_{i}}{\lambda}-1\right)=K(\theta, n)(T-\theta) +\] + +Si reescribimos esta expresión, obtenemos + +\[ +\frac{1}{\lambda} \sum_{i=1}^{n} X_{i}-n=\frac{1}{\lambda}\left(\sum_{i=1}^{n} X_{i}-n \lambda\right)=\frac{n}{\lambda}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\lambda\right) +\] + +Así, \(K(\lambda, n)=\frac{n}{\lambda}\), que coincide con la información de Fisher \(I_{n}(\lambda)\). Por el teorema anterior, se deduce que \(T=\bar{X}\) es el estimador eficiente \(y\), por lo tanto, de mínima varianza. + +\subsection{Estadísticos suficientes}\label{estaduxedsticos-suficientes} + +En un problema de inferencia puede suceder que los datos contengan información superflua o irrelevante a la hora de estimar el parámetro. También puede ocurrir lo contrario, que intentemos hacer la estimación sin utilizar toda la información disponible en la muestra. Ambas situaciones son indeseables. Parece razonable que, para estimar un parámetro, dada la dificultad derivada de disponer de varios estimadores entre los que queremos elegir el óptimo, nos basemos únicamente en aquellos que utilizan (solo) toda la información relevante. + +Ejemplo 2.4.1 Supongamos que queremos estimar la proporción de piezas defectuosas \(\theta\) en un proceso de fabricación. Para ello, examinamos \(n\) piezas extraídas al azar a lo largo de una jornada y asignamos un 1 a las piezas defectuosas y un 0 a las que no lo son. Así, obtenemos una muestra aleatoria simple \(X_{1}, X_{2}, \ldots, X_{n}\) donde + +\[ +X_{i}= \begin{cases}1 & \text { con probabilidad } \theta \\ 0 & \text { con probabilidad }(1-\theta)\end{cases} +\] + +Intuitivamente, está claro que para estimar \(\theta\) solo nos interesa el número de ceros y unos, es decir, el valor del estadístico + +\[ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +\] + +En este caso, un estadístico que considere la posición de los unos y los ceros en la muestra no aportaría nada relevante. En cambio, un estadístico que no considere todos los valores, como por ejemplo \(T(\mathbf{X})=X_{1}\), sería claramente menos adecuado. + +Las observaciones del ejemplo anterior se justifican al observar que todas las muestras de tamaño \(n\) con el mismo número \(t\) de unos (1) tienen la misma probabilidad. En concreto, la función de probabilidad de una muestra \(x_{1}, x_{2}, \ldots, x_{n}\) es + +\[ +f_{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\theta^{t}(1-\theta)^{n-t} +\] + +donde \(t=\sum_{i=1}^{n} x_{i}, x_{i} \in\{0,1\}, i=1,2, \ldots, n\). +Como se puede ver, la probabilidad de la muestra solo depende del número de unos (o ceros) y no del orden en que aparecen en la muestra. El hecho de que la posición de los unos y los ceros en la muestra no aporte información relevante equivale a decir que el estadístico + +\[ +T(\mathbf{X})=\sum_{i=1}^{n} X_{i} +\] + +contiene la misma información que \(X_{1}, X_{2}, \ldots, X_{n}\) para estimar \(\theta\). Observamos, sin embargo, varias diferencias entre basarse en \(T(\mathbf{X})\) o en \(X_{1}, X_{2}, \ldots, X_{n}\) : + +\begin{itemize} +\tightlist +\item + Al pasar de \(X_{1}, X_{2}, \ldots, X_{n}\) a \(\sum_{i=1}^{n} X_{i}\) hay una reducción de los datos que no implica pérdida de información. +\item + Muchas muestras diferentes dan lugar al mismo valor de \(T\). +\end{itemize} + +Fisher formalizó esta idea con el cálculo de la probabilidad condicionada de la observación muestral con \(T(\mathbf{X})=\sum_{i=1}^{n} X_{i}\) y para todo \(t=0,1, \ldots, n\) : + +\[ +\begin{aligned} +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] & =\frac{P_{\theta}[\mathbf{X}=\mathbf{x}, T=t]}{P_{\theta}(T=t)} \\ +& =\frac{\theta^{t}(1-\theta)^{n-t}}{\binom{n}{t} \theta^{t}(1-\theta)^{n-t}}=\frac{1}{\binom{n}{t}} +\end{aligned} +\] + +Es decir, dados \(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1\}^{n} \mathrm{y} t \in\{0,1, \ldots, n\}\), tenemos + +\[ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]=\left\{\begin{array}{cc} +0 & \text { si } t \neq \sum_{i=1}^{n} x_{i} \\ +\frac{1}{\binom{n}{t}} & \text { si } t=\sum_{i=1}^{n} x_{i} +\end{array}\right. +\] + +Obviamente, \(P_{\theta}[\mathbf{X}=\mathbf{x}]\) depende de \(\theta\), que es el parámetro que queremos estimar. Sin embargo, la probabilidad condicionada \(P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]\) no depende de \(\theta\). Tenemos entonces la siguiente expresión de la función de probabilidad de la muestra: + +\[ +P_{\theta}(\mathbf{X}=\mathbf{x})=P_{\theta}(T=t) \cdot P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] +\] + +Esta expresión muestra que \(P_{\theta}(\mathbf{X})\) se puede descomponer en dos factores, uno que depende de \(\theta, P_{\theta}(T=t)\), y otro que no depende de \(\theta\), + +\[ +P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t] . +\] + +Una forma de ver esta descomposición es pensar que el estadístico \(T=\) \(\sum_{i=1}^{n} X_{i}\) ?acumula? o ?absorbe? toda la información relativa a \(\theta\), lo que se refleja en que la probabilidad de la muestra, dado \(T=t\), ya no depende de \(\theta\). Es decir, podemos imaginar la construcción de la muestra en dos etapas: + +\begin{itemize} +\tightlist +\item + En una primera etapa se elige el valor \(t\) para \(T\) con distribución \(B(n, \theta)\). +\item + A continuación, se sitúan aleatoriamente \(t\) unos y \(n-t\) ceros en las \(n\) posiciones. +\end{itemize} + +Cuando la estructura del estadístico \(T(\mathbf{X})\) hace que el segundo factor en la expresión anterior no dependa de \(\theta\), significa que la observación adicional de la muestra es irrelevante. En este caso diremos que \(T(\mathbf{X})\) es suficiente para la estimación de \(\theta\). Dado que esta propiedad de \(T\) queda caracterizada por la independencia de \(P_{\theta}[\mathbf{X}=\mathbf{x} \mid T=t]\) respecto a \(\theta\), se utiliza esta independencia para definir la suficiencia. + +\subsubsection{Definició de estadísticop suficiente}\label{definiciuxf3-de-estaduxedsticop-suficiente} + +Dado un modelo estadístico \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) y un estadístico \(T\), diremos que \(T\) es suficiente para \(\theta\) si, dada una muestra \(\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), se verifica que la distribución de \(\mathbf{X}\) condicionada por el valor de \(T\) no depende de \(\theta\). + +\begin{itemize} +\tightlist +\item + No es necesario que \(F_{\theta}\) sea discreta, como en el ejemplo introductorio, o que la muestra sea una muestra aleatoria simple. +\item + El estadístico suficiente para un parámetro puede ser \(k\)-dimensional. +\end{itemize} + +Ejemplo 2.4.2 Dada una muestra \(X_{1}, X_{2}, \ldots, X_{n}\) de una distribución de Poisson, la función de probabilidad de la muestra es + +\[ +P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\frac{e^{-n \lambda} \lambda \sum x_{i}}{x_{1}!\cdots x_{n}!} +\] + +Calculemos la probabilidad de la muestra condicionada por el valor del estadístico \(T=\sum_{i=1}^{n} X_{i}\) : + +\[ +\begin{aligned} +& P_{\theta}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T=t\right]=\frac{P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T=t\right)}{P_{\theta}(T=t)} +\end{aligned} +\] + +\[ +\begin{aligned} +& =\frac{t!}{x_{1}!\cdots x_{n}!}\left(\frac{1}{n}\right)^{t} \mathbf{1}_{\left\{\sum x_{i}=t\right\}}\left(x_{1}, \ldots, x_{n}\right) +\end{aligned} +\] + +La probabilidad condicional no depende de \(\lambda y\), por lo tanto, \(T\) es suficiente para \(\lambda\). Conviene observar que, en este ejemplo, no todas las muestras tienen la misma probabilidad. + +\subsubsection{Teorema de factorización}\label{teorema-de-factorizaciuxf3n} + +La justificación de la suficiencia de un estadístico mediante la definición no siempre es sencilla, ya que la distribución condicional puede ser intratable con las herramientas disponibles. El teorema que se presenta a continuación proporciona un método sencillo para comprobar la suficiencia de un estadístico y, a menudo, sugiere cuál es el estadístico suficiente de menor dimensión posible. + +Teorema 2.3 Neyman-Fisher. Sea \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\) un modelo estadístico y \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X\). Sea \(f_{\theta}(\mathbf{x})\) la función de probabilidad o la función de densidad de la muestra, según si \(X\) es discreta o absolutamente continua. Un estadístico \(T\) es suficiente para \(\theta\) si y solo si existen dos funciones medibles \(g_{\theta}\) y \(h\) tales que + +\[ +f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x}) +\] + +donde \(h\) no depende de \(\theta\) y g depende de \(\theta\) y, además, solo depende de la muestra a través de \(T\). + +Veamos ahora la demostración del teorema de factorización, restringida al caso de variables discretas. + +Demostración: +Comenzaremos suponiendo que \(T\) es suficiente y concluiremos que es posible la factorización. +Si \(T(\mathbf{X})\) es suficiente para la familia de distribuciones \(\left\{F_{\theta} ; \theta \in \Theta\right\}\), la función de probabilidad de la muestra condicionada por \(T\) no depende de \(\theta\). Dado que + +\[ +f_{\theta}(\mathbf{x})=P_{\theta}[T=T(\mathbf{x})] \cdot f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})] +\] + +solo es necesario tomar \(g_{\theta}(t)=P_{\theta}[T=T(\mathbf{x})=t]\) y \(h(\mathbf{x})=f_{\theta}[\mathbf{x} \mid T=T(\mathbf{x})]\) para obtener el resultado. +Ahora supongamos que es posible la factorización y deduzcamos la suficiencia. +Si \(f_{\theta}(\mathbf{x})=g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})\) y llamamos \(A_{t}=\left\{\mathbf{x} \in X(\Omega)^{n} \mid T(\mathbf{x})=t\right\}\), entonces + +\[ +P_{\theta}[T(\mathbf{x})=t]=\sum_{A_{t}} g_{\theta}(T(\mathbf{x})) \cdot h(\mathbf{x})=g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x}) +\] + +Consideremos ahora la distribución de la muestra condicionada a \(T=t\). El Teorema de Bayes para densidad permite escribir: + +\[ +\begin{aligned} +f_{\theta}(\mathbf{x} \mid T=t) & =\frac{f_{\theta}(\mathbf{x}, T=t)}{P_{\theta}(T=t)} \\ +& = \begin{cases}\frac{g_{\theta}(t) \cdot h(\mathbf{x})}{g_{\theta}(t) \cdot \sum_{A_{t}} h(\mathbf{x})}=\frac{h(\mathbf{x})}{\sum_{A_{t}} h(\mathbf{x})} & \text { si } T(\mathbf{x})=t \\ +0 & \text { si } T(\mathbf{x}) \neq t\end{cases} +\end{aligned} +\] + +De modo que la distribución de \(\mathbf{X}\) condicionada por el valor de \(T\) no depende de \(\theta\), y, en consecuencia, \(T\) es suficiente. + +Ejemplo 2.4.3 Si X sigue una distribución de Bernoulli, tenemos: + +\[ +f_{\theta}(\mathbf{x})=\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-\sum_{i=1}^{n} x_{i}}=g_{\theta}\left(\sum_{i=1}^{n} x_{i}\right) . +\] + +Si tomamos \(h(\mathbf{x})=1\), queda probado que \(T=\sum_{i=1}^{n} X_{i}\) es suficiente. +Ejemplo 2.4.4 Si consideramos una muestra de una distribución de Poisson + +\[ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \frac{\lambda^{\sum_{i=1}^{n} x_{i}}}{x_{1}!x_{2}!\cdots x_{n}!} +\] + +\(y\) tomamos \(T(\mathbf{x})=\sum_{i=1}^{n} x_{i}\), podemos escribir + +\[ +f_{\lambda}(\mathbf{x})=e^{-n \lambda} \lambda^{T(\mathbf{x})} \cdot\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}=g_{\lambda}(T(\mathbf{x})) \cdot h(\mathbf{x}) +\] + +donde + +\[ +g_{\lambda}(T(\mathbf{x}))=e^{-n \lambda} \lambda^{T(\mathbf{x})}, \quad h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1} +\] + +De modo que \(g_{\lambda}(t)=e^{-n \lambda} \lambda^{t}\) depende de la muestra solo a través de \(T=\) \(\sum_{i=1}^{n} x_{i}\) y \(h(\mathbf{x})=\left(x_{1}!x_{2}!\cdots x_{n}!\right)^{-1}\) no depende de \(\lambda\). + +Ejemplo 2.4.5 Supongamos que \(\mathbf{X}\) es una muestra aleatoria simple de una población \(X \sim N(\mu, \sigma)\), cuya función de densidad es + +\[ +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} +\] + +Para evidenciar la factorización, utilizamos que + +\[ +\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2} . +\] + +Entonces, + +\[ +\begin{aligned} +f_{\mu, \sigma^{2}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =\frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(n s^{2}+n(\bar{x}-\mu)^{2}\right)\right\} \\ +& =g_{\mu, \sigma^{2}}\left(\bar{x}, s^{2}\right) \cdot 1 +\end{aligned} +\] + +Así, vemos que el estadístico \(\left(\bar{X}, s^{2}\right)\) es suficiente para la estimación de \(\left(\mu, \sigma^{2}\right)\). +Si suponemos conocido uno de los dos parámetros \(\sigma^{2}\) o \(\mu\), podemos obtener una factorización en la que se ve que \(\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\) es suficiente para \(\sigma^{2}\) (conocido \(\mu\) ) o \(\bar{x}\) es suficiente para \(\mu\) (conocido \(\sigma^{2}\) ). + +En el ejemplo anterior se observa que el estadístico suficiente para un problema puede tener una dimensión superior a 1. En general, buscaremos el estadístico suficiente de menor dimensión posible, ya que a menor dimensión se elimina más información superflua. Si no es posible encontrarlo así, siempre podemos basarnos en el estadístico \(T=\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), que es suficiente pero de dimensión máxima y, por lo tanto, no aporta ninguna reducción al problema de información. Estas reflexiones llevan a enunciar el principio de suficiencia, que aconseja condensar al máximo la información relevante en un estadístico suficiente \(T\) de la menor dimensión posible (``mínima'') y seleccionar un estimador \(T^{\prime}\) entre los estadísticos que sean función de la muestra a través de \(T: T^{\prime}(\mathbf{X})=\varphi(T(\mathbf{X}))\). + +\subsubsection{Propiedades de los estadísticos suficientes}\label{propiedades-de-los-estaduxedsticos-suficientes} + +Las siguientes propiedades se prueban de manera sencilla utilizando el teorema de factorización: + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Si \(T\) es un estadístico suficiente para \(\theta\) y \(\varphi\) es una función inyectiva (o monótona diferenciable), entonces \(T_{1}=\varphi(T)\) también es suficiente para \(\theta\). +\end{enumerate} -La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). +Ejemplo 2.4.6 En la familia de la Poisson hemos visto que \(\sum_{i=1}^{n} X_{i}\) es suficiente para \(\lambda\). Entonces \(\bar{X}=\varphi\left(\sum_{i=1}^{n} X_{i}\right)\), donde \(\varphi(z)=(1 / n) z\) es inyectiva, es suficiente para \(\lambda\). +2. Si \(T\) es un estadístico suficiente para \(\theta\) y \(\varphi\) es una función paramétrica monótona diferenciable, entonces \(\varphi(T)\) también es suficiente para \(\varphi(\theta)\). +3. Si \(T_{1}, T_{2}\) son dos estadísticos suficientes para \(\theta\), entonces \(T_{1}\) es función de \(T_{2}\). -Se plantean los problemas que trata la inferencia. Se relaciona con el capítulo anterior a través de la idea del muestreo aleatorio simple y las distribuciones en el muestreo. +\section{MÉTODOS DE OBTENCIÓN DE ESTIMADORES}\label{muxe9todos-de-obtenciuxf3n-de-estimadores} -Se plantea el problema de la estimación como una forma de aproximación a las características de las distribucionesa partir de muestras aleatorias simples. +En el capítulo anterior hemos analizado el problema de la estimación puntual desde el punto de vista de, dado un estimador, ver ?qué tan bueno es? para estimar un parámetro. +Otra cuestión que nos podemos plantear, de hecho la primera cuestión que hay que plantearse en la práctica, es cómo obtener un estimador ?razonablemente bueno? de un parámetro. De hecho, desde el punto de vista práctico parece razonable empezar por ver cómo se obtiene un estimador y, una vez obtenido, analizar ?cuán bueno resulta?. +Existen muchos métodos para obtener estimadores, cada uno de los cuales puede llevarnos a unos resultados de diferente calidad. +Los principales métodos de estimación son: + +\begin{enumerate} +\def\labelenumi{\arabic{enumi}.} +\tightlist +\item + Método de los momentos +\item + Método de la máxima verosimilitud +\item + Método de Bayes +\item + Otros métodos +\end{enumerate} + +\subsection{El método de los momentos}\label{el-muxe9todo-de-los-momentos} + +Este método fue introducido por K. Pearson a finales del siglo XIX y es el principio en que nos basamos cuando hacemos una estimación de la media o de la varianza poblacional a partir de la media o la varianza muestrales. +La idea del método de los momentos es bastante intuitiva. Si lo que queremos estimar (uno o varios parámetros) es una función de los momentos +poblacionales, entonces una estimación razonable puede consistir en tomar como estimador la misma función en la que los momentos poblacionales han sido sustituidos por los momentos muestrales. +Dado que estos últimos son estimadores consistentes de los momentos poblacionales, en condiciones bastante generales se puede garantizar que los estimadores obtenidos serán estimadores consistentes para las funciones de los momentos poblacionales estimadas. +Algunos ejemplos típicos de estimadores basados en el método de los momentos son: + +\[ +\widehat{\mu}=\bar{X}_{n} \quad \widehat{\sigma}=\sqrt{S^{2}} \quad \widehat{\sigma^{2}}=S^{2} +\] + +Sea un modelo estadístico, \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\), y \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X\). Sean \(m_{1}, m_{2}, ?, m_{k}\) los momentos poblacionales de orden \(1,2, ?, k\) de \(X\), que suponemos que existen, + +\[ +m_{k}=E\left(X^{k}\right) +\] + +y \(a_{1}, a_{2}, ?, a_{k}\) los momentos muestrales respectivos + +\[ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} +\] + +Suponemos que estamos interesados en estimar: + +\[ +\theta=h\left(m_{1}, m_{2}, \ldots, m_{p}\right), +\] + +donde \(h\) es una función conocida. +Definició 3.1 El método de los momentos consiste en estimar \(\theta\) por el estadístico + +\[ +T(\mathbf{X})=h\left(a_{1}, a_{2}, \ldots, a_{p}\right) +\] + +\subsubsection{Observaciones}\label{observaciones} + +\begin{itemize} +\tightlist +\item + El método se extiende de forma sencilla a la estimación de momentos conjuntos. Podemos usar \(\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}\) para estimar \(E(X Y)\), etc. +\item + Por la ley débil de los grandes números, +\end{itemize} + +\[ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{P} E\left(X^{k}\right), +\] + +de modo que si lo que queremos es estimar los momentos muestrales, el método garantiza que los estimadores son consistentes y sin sesgo. + +En este caso, además, los estimadores son asintóticamente normales. Si lo que se desea estimar es una función \(h\) continua de los momentos, entonces el método garantiza que el estimador \(T(\mathbf{X})\) es consistente y, bajo ciertas condiciones de regularidad, también es asintóticamente normal. + +Ejemplo 3.1.1 Sea \(X \sim \Gamma(p, \alpha)\). Queremos estimar \(p\) y \(\alpha\). En lugar de conocer la función \(h\left(\theta_{1}, \theta_{2}\right)\) sabemos que: + +\[ +\begin{aligned} +m_{1} & =\frac{p}{\alpha}=E(X) \\ +m_{2} & =\frac{p(p+1)}{\alpha^{2}}=E\left(X^{2}\right) \\ +& =V(X)+[E(X)]^{2}=\frac{p}{\alpha^{2}}+\left(\frac{p}{\alpha}\right)^{2}=\frac{p^{2}+p}{\alpha^{2}}= +\end{aligned} +\] + +De modo que podemos obtener las funciones deseadas ?aislando? p y \(\alpha\) como funciones de \(m_{1}\) y \(m_{2}\) : + +\[ +\begin{aligned} +\alpha^{2} & =\frac{p^{2}}{m_{1}^{2}} \\ +\alpha^{2} & =\frac{p(p+1)}{m_{2}} +\end{aligned} +\] + +Procediendo por igualación: + +\[ +\begin{aligned} +& \frac{p^{2}}{m_{1}^{2}}=\frac{p(p+1)}{m_{2}} \\ +& \frac{p}{m_{1}}=\frac{p+1}{m_{2}} \\ +& p m_{2}=p m_{1}^{2}+m_{1}^{2} \\ +& p\left(m_{2}-m_{1}^{2}\right)=m_{1}^{2} \\ +& p=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& \alpha=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& m_{1} +\end{aligned} \frac{m_{1}}{m_{2}-m_{1}^{2}} . +\] + +Los estimadores por el método de los momentos se obtendrán ahora sustituyendo \(p\) y \(\alpha\) por \(\hat{p}\) y \(\hat{\alpha}\) en la expresión anterior, es decir: + +\[ +\widehat{p}=\frac{a_{1}^{2}}{a_{2}-a_{1}^{2}} +\] + +Hacemos lo mismo para el parámetro \(\alpha\) : + +\[ +\widehat{\alpha}=\frac{a_{1}}{a_{2}-a_{1}^{2}} +\] + +\subsection{El método del máximo de verosimilitud}\label{el-muxe9todo-del-muxe1ximo-de-verosimilitud} + +\paragraph{Introducción}\label{introducciuxf3n-1} + +El método de la máxima verosimilitud, introducido por Fisher, es un método de estimación que se basa en la función de verosimilitud, presentada en el capítulo anterior. Básicamente consiste en tomar como estimadores de los parámetros aquellos valores que hagan más probable observar precisamente lo que se ha observado, es decir, que hagan que la muestra observada resulte más verosímil. + +Ejemplo 3.2.1 Tomemos 5 papeles. En cada uno de ellos ponemos o bien un ?+? o bien un ?-?, sin que se sepa qué hay en cada papel, y los guardamos en una bolsa. Nuestro objetivo es estimar el número de papeles con el signo ?? escrito. Extraemos tres papeles, devolviéndolos a la bolsa después de cada extracción, y observamos que ha salido lo siguiente: ?++-?. Los valores posibles para la probabilidad de ?-?, llamémosla p, son: + +\begin{longtable}[]{@{}cc@{}} +\toprule\noalign{} +En la bolsa hay & \(p\) \\ +\midrule\noalign{} +\endhead +\bottomrule\noalign{} +\endlastfoot +\(4 ?+\) ?, 1 ?-? & 0,2 \\ +\(3 ?+\) ?, 2 ?-? & 0,4 \\ +\(2 ?+\) ?, 3 ?-? & 0,6 \\ +\(1 ?+\) ?, 4 ?-? & 0,8 \\ +\end{longtable} + +Supongamos que la variable \(X\) mide el número de ?-? en tres extracciones consecutivas y que, por tanto, sigue una distribución binomial: + +\[ +X \sim B(3, p(?-?)) +\] + +La probabilidad de sacar un ?-? es: + +\[ +P_{p}[X=1]=\binom{3}{1} \cdot p^{1}(1-p)^{2} +\] + +Para cada uno de los valores de p, las probabilidades quedan asi: + +\begin{longtable}[]{@{}cc@{}} +\toprule\noalign{} +\(p\) & \(P_{p}[X=1]\) \\ +\midrule\noalign{} +\endhead +\bottomrule\noalign{} +\endlastfoot +0.2 & \(3 \cdot 0.2 \cdot 0.8^{2}=0.384\) \\ +0.4 & \(3 \cdot 0.4 \cdot 0.6^{2}=0.432\) \\ +0.6 & \(3 \cdot 0.6 \cdot 0.4^{2}=0.288\) \\ +0.8 & \(3 \cdot 0.8 \cdot 0.2^{2}=0.096\) \\ +\end{longtable} + +El valor de p que da una probabilidad mayor a la muestra, es decir, que la hace más verosímil, es \(p=0.4\). El método del máximo de verosimilitud consiste precisamente en tomar este valor como estimación de \(p\). + +\paragraph{La función de verosimilitud}\label{la-funciuxf3n-de-verosimilitud} + +Una vez introducido el método con un ejemplo, podemos pasar a definirlo con mayor precisión. Para ello, comenzaremos con el concepto de función de verosimilitud. +En el capítulo anterior presentamos la función de verosimilitud como la función que resulta de considerar que, en la función de probabilidad de la muestra, el parámetro es variable y la muestra queda fija. Es decir: + +\[ +\underbrace{f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)}_{\mathbf{x} \text { variable, } \theta \text { fijo }} \longrightarrow \underbrace{L\left(\theta ; x_{1}, x_{2}, \ldots, x_{n}\right)}_{\mathbf{x} \text { fija, } \theta \text { variable }} +\] + +Esta definición es básicamente correcta. En el caso de las variables discretas, donde \(f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)\) representa la probabilidad de la muestra, fijado \(\theta\), resulta intuitivamente claro decir que la verosimilitud representa la ?probabilidad de la muestra para cada valor del parámetro?. +Refiriéndonos al ejemplo introductorio, resulta sencillo ver que se trata de ?dos puntos de vista? sobre la misma función. Fijado un valor del parámetro, por ejemplo, 0.4 , podemos considerar la probabilidad de diversas muestras posibles, como \(x=0, x=1, \ldots\), hasta \(x=3\) : + +\[ +\begin{aligned} +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{0.4}[X=x], x=0,1, \ldots, 3 \\ +& =\binom{3}{x} \cdot 0.4^{x}(0.6)^{3-x} . +\end{aligned} +\] + +Análogamente, fijada una muestra, por ejemplo, \(x=1\), podemos considerar la probabilidad de esta para diversos valores del parámetro, \(p=0,0.2, \ldots, 1\). + +\[ +\begin{aligned} +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{p}[X=1], x=0,0.2,0.4, \ldots, 1 \\ +& =3 \cdot p(1-p)^{2} . +\end{aligned} +\] + +En el caso de las distribuciones absolutamente continuas, el significado de la función de verosimilitud ya no es intuitivamente tan claro como en el caso de las discretas. En este caso, la función de densidad de la muestra ya no representa la probabilidad de esta como en el caso de las discretas. Algunos autores intentan solucionar esto explicando que existe una conocida aproximación en que la función de densidad es la probabilidad de un suceso ?infinitesimal?. +Lo que es importante en la función de verosimilitud, a la hora de hacer inferencias, es la parte que es función del parámetro. Esto hace que a menudo se considere que la expresión de la función de verosimilitud mantenga solo aquella parte de \(f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)\) que depende de \(\theta\), ignorando la parte que dependa solo de la muestra. Es decir, si podemos factorizar \(f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)\) como + +\[ +f(\mathbf{x} ; \theta)=c(\mathbf{x}) \cdot g(\mathbf{x} ; \theta) +\] + +podremos prescindir de la ?constante? \(c(x)\) (constante porque no depende de \(\theta\) ) al considerar la verosimilitud. + +\[ +L(\theta ; \mathbf{x})=g(\mathbf{x} ; \theta) \propto f(\mathbf{x} ; \theta) +\] + +Esto implica que \(L(\theta ; \mathbf{x})\) no tiene por qué integrar a 1 , como en el caso de las probabilidades, y que depende de las unidades de medida. + +Ejemplo 3.2.2 Si \(X\) es discreta, \(X \sim \mathcal{P}(\lambda)\), y suponemos \(n=1\) (muestras de tamaño 1), tenemos que la f.d.p. de la muestra es: + +\[ +P[x ; \lambda]=e^{-\lambda} \frac{\lambda^{x}}{x!} +\] + +con \(x=0,1, \ldots\) Ahora, si hemos observado \(x=5\), la función de verosimilitud vale: + +\[ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5}\left[\frac{1}{5!}\right] +\] + +Como solo nos interesa la parte que es función de \(\lambda\), podemos ignorar \(\frac{1}{5!}\), es decir: + +\[ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5} \propto P[\mathbf{x} ; \lambda] . +\] + +Ejemplo 3.2.3 Si dada una muestra de tamaño 1, por ejemplo, \(x=2\), de una ley de Poisson \(\mathcal{P}(\lambda)\) queremos comparar sus verosimilitudes respecto de los valores del parámetro \(\lambda=1.5\) o \(\lambda=3\), lo que haremos será basarnos en la razón de verosimilitudes: + +\[ +\begin{aligned} +\Lambda(\mathbf{x}) & =\frac{L\left(\lambda_{1} ; x\right)}{L\left(\lambda_{2} ; x\right)}=\frac{L(1.5 ; 2)}{L(3 ; 2)} \\ +& =\frac{e^{-1.5} 1.5^{2}\left[\frac{1}{2!}\right]}{e^{-3} 3^{2}\left[\frac{1}{2!}\right]}=\frac{e^{-1.5} 1.5^{2}}{e^{-3} 3^{2}}=\frac{0.5020}{0.4481}=1.12 . +\end{aligned} +\] + +Como se observa, al basarnos en la razón de verosimilitudes, la parte correspondiente solo a la muestra no se toma en cuenta. La razón de verosimilitudes sugiere que el valor \(\lambda=1.5\) hace la muestra más verosímil. + +\paragraph{El método del máximo de verosimilitud}\label{el-muxe9todo-del-muxe1ximo-de-verosimilitud-1} + +Si partimos de las dos ideas que hemos visto en la introducción: + +\begin{itemize} +\tightlist +\item + Escoger como estimación el valor que maximice la probabilidad de la muestra observada. +\item + La verosimilitud de la muestra es una aproximación a la probabilidad de esta como función del valor del parámetro. +\end{itemize} + +Una forma razonable de definir el EMV es entonces como aquel que maximice la verosimilitud. + +Definició 3.2 Un estimador \(T: \Omega \longrightarrow \Theta\) es un estimador del máximo de verosimilitud para el parámetro \(\theta\) si cumple: + +\[ +L(T(\mathbf{x}) ; \mathbf{x})=\sup _{\theta \in \Theta} L(\theta ; \mathbf{x}) +\] + +Como suele ocurrir en problemas de maximización, este valor ni existe necesariamente ni tiene por qué ser único. Ahora bien, bajo ciertas condiciones (las habituales para los problemas de máximos y mínimos) el problema se podrá reducir a buscar un máximo para la función de verosimilitud. + +Ejemplo 3.2.4 Supongamos que \(x_{1}, \ldots, x_{n}\) es una muestra de una población de Bernouilli, \(X \sim B e(p)\), donde queremos estimar p.~La función de masa de la probabilidad de \(X\) es: + +\[ +P\left[X=x_{i}\right]=P\left(x_{i} ; p\right)=p^{x_{i}}(1-p)^{1-x_{i}} \text { donde } x_{i} \in\{0,1\} ; i=1, \ldots, n +\] + +La función de verosimilitud es: + +\[ +L(p ; \mathbf{x})=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum_{i=1}^{n} x_{i}}(1-p)^{\sum_{i=1}^{n}\left(1-x_{i}\right)} +\] + +Debemos buscar el máximo de \(L(p ; \mathbf{x})\). En este caso, como en otros, es más sencillo buscar el máximo de su logaritmo, que, dado que es una función monótona, es el mismo que el máximo de \(L\) + +\[ +\ln L(p ; x)=\left(\sum_{i=1}^{n} x_{i}\right) \cdot \ln p+\left(n-\sum_{i=1}^{n} x_{i}\right) \cdot \ln (1-p) +\] + +Derivamos respecto a p: + +\[ +\frac{\partial \ln L(p ; x)}{\partial p}=\frac{\sum_{i=1}^{n} x_{i}}{p}-\frac{n-\sum_{i=1}^{n} x_{i}}{1-p} +\] + +e igualamos a cero la derivada, planteando lo que se denomina la ecuación de verosimilitud, cuyas soluciones nos conducirán eventualmente al estimador del máximo de verosimilitud. + +\[ +\frac{\sum_{i=1}^{n} x_{i}-n \hat{p}}{\hat{p}(1-\hat{p})}=0 \Rightarrow \hat{p}=\frac{\sum_{i=1}^{n} x_{i}}{n} +\] + +Si la segunda derivada es negativa en \(\widehat{p}\) entonces será un máximo: + +\[ +\begin{aligned} +\frac{\partial^{2} \ln L(p ; x)}{\partial p^{2}} & =\frac{\partial}{\partial p}\left(\frac{\sum_{i=1}^{n} x_{i}-n p}{p(1-p)}\right)=\frac{-n[p(1-p)]-\left(\sum_{i=1}^{n} x_{i}-n p\right) \cdot(1-2 p)}{p^{2}\left(1-p^{2}\right)}= \\ +& =\frac{-n p+n p^{2}-\sum_{i=1}^{n} x_{i}-n p-2 p \sum_{i=1}^{n} x_{i}-2 n p^{2}}{p^{2}(1-p)^{2}}= \\ +& =\frac{\left[\sum_{i=1}^{n} x_{i}(1+2 p)-n p^{2}\right]}{p^{2} \cdot(1-p)^{2}} +\end{aligned} +\] + +que es negativa cuando \(p=\hat{p}\), de forma que \(\hat{p}\) es efectivamente un máximo. +El método analítico expuesto en el ejemplo anterior, consistente en el cálculo de un extremo de una función, no se puede aplicar en todas las situaciones. En estos casos, una alternativa puede ser estudiar directamente la función de verosimilitud. Veamos un ejemplo: + +Ejemplo 3.2.5 Sea \(X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} X \sim U(0, \theta) \quad \theta>0\) desconocido. Sabemos que: + +\[ +f(x ; \theta)=\left\{\begin{array}{c} +\frac{1}{\theta} \text { si } 0<\min \left\{x_{i}\right\} \leq \max \left\{x_{i}\right\} \leq \theta \\ +0 \quad \text { en caso contrario } +\end{array}\right\} +\] + +La derivada respecto a \(\theta\) es \(-\frac{n}{\theta^{n-1}}\), que se anula cuando \(\theta \underset{n \rightarrow \infty}{\longrightarrow} \infty\) que lleva a una solución sin sentido de la ecuación de verosimilitud. Una inspección de la gráfica de la función de verosimilitud revela que el EMV, en este caso, + +Figura 3.1: Función de verosimilitud para una distribución uniforme +es \(\max \left\{X_{i}, \ldots, X_{n}\right\}\). Efectivamente, consideremos cualquier otro valor \(\theta^{*}\) diferente del máximo: + +\[ +\begin{aligned} +& \text { Si } \theta^{*}>X_{(n)} \Rightarrow \frac{1}{\left(\theta^{*}\right)^{n}}<\frac{1}{\left(X_{n}\right)^{n}}, \\ +& \text { Si } \theta^{*}\left.0 y \frac{\partial^{2} z}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}<0 \Longrightarrow\) Hay un máximo relativo en \(\left(x_{0}, y_{0}\right)\). +Si evaluamos el Hessiano en el punto \(\left(\bar{x}, s^{2}\right)\) tenemos: -\subsection{Métodos de obtención de estimadores. Estimadores máximo verosímiles y estimadores bayesianos.}\label{muxe9todos-de-obtenciuxf3n-de-estimadores.-estimadores-muxe1ximo-verosuxedmiles-y-estimadores-bayesianos.} +\[ +H=\left(\begin{array}{cc} +-\frac{n}{s^{2}} & 0 \\ +0 & -\frac{n}{2 s^{4}} +\end{array}\right) . +\] -\subsection{Propiedades de los estimadores.}\label{propiedades-de-los-estimadores.} +Las condiciones de extremo que hemos dado más arriba se verifican: \(H_{11}<0 y|H|>0\), de manera que podemos concluir que el estimador del máximo de verosimilitud de \(\left(\mu, \sigma^{2}\right)\) es, efectivamente, \(\left(\bar{x}, s^{2}\right)\). -\section{Estimación por intérvalos}\label{estimaciuxf3n-por-intuxe9rvalos} +\section{Estimación puntual}\label{estimaciuxf3n-puntual-1} Este capítulo está pendiente de ser introducido en los apuntes. diff --git a/docs/agradecimiento-y-fuentes-utilizadas.html b/docs/agradecimiento-y-fuentes-utilizadas.html index 59296a4..b8b4c0a 100644 --- a/docs/agradecimiento-y-fuentes-utilizadas.html +++ b/docs/agradecimiento-y-fuentes-utilizadas.html @@ -6,7 +6,7 @@ Agradecimiento y fuentes utilizadas | Fundamentos de Inferencia Estadistica - + @@ -23,7 +23,7 @@ - + @@ -363,44 +363,110 @@

    1. 6 Introducción a la inferencia estadística
    2. +
    3. 7 Estimación puntual +
    4. +
    5. 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES +
    6. -
    7. 7 Estimación por intérvalos +
    8. 9 Estimación puntual
    9. -
    10. 8 Pruebas de hipótesis +
    11. 10 Pruebas de hipótesis
    12. -
    13. 9 Inferencia Aplicada +
    14. 11 Inferencia Aplicada
    15. -
    16. 10 Computación Intensiva y Multiple Testing +
    17. 12 Computación Intensiva y Multiple Testing
    18. Published with bookdown
    19. diff --git "a/docs/computaci\303\263n-intensiva-y-multiple-testing.html" "b/docs/computaci\303\263n-intensiva-y-multiple-testing.html" index 59a8515..c5dff20 100644 --- "a/docs/computaci\303\263n-intensiva-y-multiple-testing.html" +++ "b/docs/computaci\303\263n-intensiva-y-multiple-testing.html" @@ -4,18 +4,18 @@ - Capítulo 10 Computación Intensiva y Multiple Testing | Fundamentos de Inferencia Estadistica - - + Capítulo 12 Computación Intensiva y Multiple Testing | Fundamentos de Inferencia Estadistica + + - + - + @@ -23,7 +23,7 @@ - + @@ -363,44 +363,110 @@
    20. 6 Introducción a la inferencia estadística
    21. +
    22. 7 Estimación puntual +
    23. +
    24. 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES +
    25. -
    26. 7 Estimación por intérvalos +
    27. 9 Estimación puntual
    28. -
    29. 8 Pruebas de hipótesis +
    30. 10 Pruebas de hipótesis
    31. -
    32. 9 Inferencia Aplicada +
    33. 11 Inferencia Aplicada
    34. -
    35. 10 Computación Intensiva y Multiple Testing +
    36. 12 Computación Intensiva y Multiple Testing
    37. Published with bookdown
    38. @@ -422,24 +488,24 @@

      -
      -

      Capítulo 10 Computación Intensiva y Multiple Testing

      +
      +

      Capítulo 12 Computación Intensiva y Multiple Testing

      Este capítulo está pendiente de ser introducida en los apuntes.

      La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1).

      Se introducen distintos métodos cuyo nexo común es la computación intensiva.

      -
      -

      10.1 Tests de permutaciones; ¿Qué?, ¿Cuándo?, ¿Cómo?

      +
      +

      12.1 Tests de permutaciones; ¿Qué?, ¿Cuándo?, ¿Cómo?

      -
      -

      10.2 El bootstrap en contraste de hipótesis

      +
      +

      12.2 El bootstrap en contraste de hipótesis

      -
      -

      10.3 El problema de las comparaciones múltiples

      +
      +

      12.3 El problema de las comparaciones múltiples

      -
      -

      10.4 Métodos de control de error: FWER y FDR

      +
      +

      12.4 Métodos de control de error: FWER y FDR

      @@ -480,7 +546,7 @@

      10.4 Métodos de control de error "size": 2 }, "edit": { -"link": "https://github.com/ASPteaching/FundamentosInferencia/edit/BRANCH/10-computerIntensive.Rmd", +"link": "https://github.com/ASPteaching/FundamentosInferencia/edit/BRANCH/11-computerIntensive.Rmd", "text": "Edit" }, "history": { @@ -488,7 +554,7 @@

      10.4 Métodos de control de error "text": null }, "view": { -"link": "https://github.com/ASPteaching/FundamentosInferencia-Bookdown/blob/main/10-computerIntensive.Rmd", +"link": "https://github.com/ASPteaching/FundamentosInferencia-Bookdown/blob/main/11-computerIntensive.Rmd", "text": null }, "download": "https://github.com/ASPteaching/FundamentosInferencia-Bookdown/blob/main/docs/_main.pdf", diff --git a/docs/distribuciones-de-probabilidad-multidimensionales.html b/docs/distribuciones-de-probabilidad-multidimensionales.html index ad4547d..908f9c7 100644 --- a/docs/distribuciones-de-probabilidad-multidimensionales.html +++ b/docs/distribuciones-de-probabilidad-multidimensionales.html @@ -6,7 +6,7 @@ Capítulo 4 Distribuciones de probabilidad multidimensionales | Fundamentos de Inferencia Estadistica - + @@ -23,7 +23,7 @@ - + @@ -363,44 +363,110 @@
    39. 6 Introducción a la inferencia estadística
    40. 6 Introducción a la inferencia estadística
    41. 6 Introducción a la inferencia estadística
    42. +
    43. 7 Estimación puntual +
    44. +
    45. 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES +
    46. -
    47. 7 Estimación por intérvalos +
    48. 9 Estimación puntual
    49. -
    50. 8 Pruebas de hipótesis +
    51. 10 Pruebas de hipótesis
    52. -
    53. 9 Inferencia Aplicada +
    54. 11 Inferencia Aplicada
    55. -
    56. 10 Computación Intensiva y Multiple Testing +
    57. 12 Computación Intensiva y Multiple Testing
    58. Published with bookdown
    59. diff --git a/docs/index.html b/docs/index.html index 57162f5..4df9a50 100644 --- a/docs/index.html +++ b/docs/index.html @@ -6,7 +6,7 @@ Fundamentos de Inferencia Estadistica - + @@ -23,7 +23,7 @@ - + @@ -363,44 +363,110 @@
    60. 6 Introducción a la inferencia estadística
    61. +
    62. 7 Estimación puntual +
    63. +
    64. 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES +
    65. -
    66. 7 Estimación por intérvalos +
    67. 9 Estimación puntual
    68. -
    69. 8 Pruebas de hipótesis +
    70. 10 Pruebas de hipótesis
    71. -
    72. 9 Inferencia Aplicada +
    73. 11 Inferencia Aplicada
    74. -
    75. 10 Computación Intensiva y Multiple Testing +
    76. 12 Computación Intensiva y Multiple Testing
    77. Published with bookdown
    78. @@ -425,7 +491,7 @@

      Presentación

      diff --git a/docs/inferencia-aplicada.html b/docs/inferencia-aplicada.html index 9d54460..8d0280c 100644 --- a/docs/inferencia-aplicada.html +++ b/docs/inferencia-aplicada.html @@ -4,18 +4,18 @@ - Capítulo 9 Inferencia Aplicada | Fundamentos de Inferencia Estadistica - - + Capítulo 11 Inferencia Aplicada | Fundamentos de Inferencia Estadistica + + - + - + @@ -23,7 +23,7 @@ - + @@ -363,44 +363,110 @@
    79. 6 Introducción a la inferencia estadística
    80. +
    81. 7 Estimación puntual +
    82. +
    83. 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES +
    84. -
    85. 7 Estimación por intérvalos +
    86. 9 Estimación puntual
    87. -
    88. 8 Pruebas de hipótesis +
    89. 10 Pruebas de hipótesis
    90. -
    91. 9 Inferencia Aplicada +
    92. 11 Inferencia Aplicada
    93. -
    94. 10 Computación Intensiva y Multiple Testing +
    95. 12 Computación Intensiva y Multiple Testing
    96. Published with bookdown
    97. @@ -422,27 +488,27 @@

      -
      -

      Capítulo 9 Inferencia Aplicada

      +
      +

      Capítulo 11 Inferencia Aplicada

      Este capítulo está pendiente de ser introducida en los apuntes.

      La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1).

      Se muestra como deducir y aplicar algunos de los tests mas populares.

      -
      -

      9.1 Pruebas de normalidad.Pruebas gráficas. El test de Shapiro-Wilks

      +
      +

      11.1 Pruebas de normalidad.Pruebas gráficas. El test de Shapiro-Wilks

      -
      -

      9.2 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas paramètricas t-test y Anova

      +
      +

      11.2 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas paramètricas t-test y Anova

      -
      -

      9.3 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas de hipótesis no paramétricas de Wilcoxon y Kruskal-Wallis

      +
      +

      11.3 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas de hipótesis no paramétricas de Wilcoxon y Kruskal-Wallis

      -
      -

      9.4 Contrastes para datos categóricos. Pruebas binomiales, ji cuadrado y test de Fisher.

      +
      +

      11.4 Contrastes para datos categóricos. Pruebas binomiales, ji cuadrado y test de Fisher.

      -
      -

      9.5 Riesgo relativo y razón de «odds»

      +
      +

      11.5 Riesgo relativo y razón de «odds»

      @@ -483,7 +549,7 @@

      9.5 Riesgo relativo y razón de "size": 2 }, "edit": { -"link": "https://github.com/ASPteaching/FundamentosInferencia/edit/BRANCH/09-inferenciaAplicada.Rmd", +"link": "https://github.com/ASPteaching/FundamentosInferencia/edit/BRANCH/10-inferenciaAplicada.Rmd", "text": "Edit" }, "history": { @@ -491,7 +557,7 @@

      9.5 Riesgo relativo y razón de "text": null }, "view": { -"link": "https://github.com/ASPteaching/FundamentosInferencia-Bookdown/blob/main/09-inferenciaAplicada.Rmd", +"link": "https://github.com/ASPteaching/FundamentosInferencia-Bookdown/blob/main/10-inferenciaAplicada.Rmd", "text": null }, "download": "https://github.com/ASPteaching/FundamentosInferencia-Bookdown/blob/main/docs/_main.pdf", diff --git "a/docs/introducci\303\263n-a-la-inferencia-estad\303\255stica.html" "b/docs/introducci\303\263n-a-la-inferencia-estad\303\255stica.html" index 40035b8..f2e5983 100644 --- "a/docs/introducci\303\263n-a-la-inferencia-estad\303\255stica.html" +++ "b/docs/introducci\303\263n-a-la-inferencia-estad\303\255stica.html" @@ -6,7 +6,7 @@ Capítulo 6 Introducción a la inferencia estadística | Fundamentos de Inferencia Estadistica - + @@ -23,7 +23,7 @@ - + @@ -31,7 +31,7 @@ - + @@ -363,44 +363,110 @@
    98. 6 Introducción a la inferencia estadística
    99. +
    100. 7 Estimación puntual +
    101. +
    102. 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES +
    103. +
    104. 9 Estimación puntual +
    105. +
    106. 10 Pruebas de hipótesis +
    107. +
    108. 11 Inferencia Aplicada +
    109. +
    110. 12 Computación Intensiva y Multiple Testing +
    111. Published with bookdown
    112. @@ -424,31 +490,576 @@

      Capítulo 6 Introducción a la inferencia estadística

      -
      -

      Este capítulo está pendiente de ser introducido en los apuntes.

      -

      La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1).

      +
      +

      6.1 Inferencia estadística

      +

      Para comenzar, vamos a definir cuál es el ámbito de estudio de la inferencia estadística desde su relación con el cálculo de probabilidades. El cálculo de probabilidades proporciona una teoría matemática que permite analizar (o modelizar) las propiedades de los fenómenos donde interviene el azar. +El cálculo de probabilidades utiliza como modelo básico para cualquier situación aleatoria el concepto de espacio de probabilidades \((\Omega, \mathcal{A}, P)\) y una variable aleatoria \(X: \Omega \rightarrow \mathbb{R}\) definida sobre él. +El conocimiento de la distribución de la variable aleatoria permite:

      +
        +
      1. Análisis deductivo de situaciones. Por ejemplo: si asumimos que el peso de los recién nacidos se distribuye según una distribución \(N(\mu=\) \(3 \mathrm{~kg}, \sigma=0.25 \mathrm{~kg}\) ), nos puede interesar calcular la probabilidad de que un recién nacido pese entre 2.9 y 3.1 kg , o encontrar unos valores centrados en la media entre los cuales esperemos que se encuentren el \(10 \%(25 \%, 50 \%, 95 \%, \ldots)\) de los recién nacidos.
      2. +
      3. Modelización de situaciones aleatorias. Por ejemplo: si asumimos que el tiempo, en años, hasta que se estropea un componente de un ordenador se distribuye según una distribución exponencial \(T \sim \xi(\lambda=\) \(0.3)\), nos puede interesar calcular la probabilidad de que un componente dado dure más de 4 años.
      4. +
      +

      En los casos anteriores nos encontramos en una situación muy común, donde ya disponemos de un modelo sobre el cual efectuamos los cálculos, pero del cual desconocemos la procedencia. Parece razonable, y de hecho es precisamente así, que si queremos adaptar un modelo a una situación debamos basarnos únicamente en las observaciones del fenómeno. +Si queremos saber cómo se distribuyen los pesos de los recién nacidos tomaremos unos cuantos, los pesaremos y después observaremos la distribución de estos. Puede que no sea necesario pesar a todos los recién nacidos (jde hecho, no es posible!), pero tampoco es posible deducir la ley por consideraciones puramente teóricas. +Ahora, en lugar de partir de un espacio de probabilidades, partiremos de unas observaciones \(\left(x_{1}, \ldots, x_{n}\right)\) y el objetivo que perseguiremos será obtener información sobre la distribución de probabilidades de un fenómeno a partir de una observación no exhaustiva del mismo.

      +
      +
      +

      6.2 Problemas de inferencia estadística

      +

      Hemos presentado como objetivo de la inferencia estadística inducir propiedades del modelo probabilístico que representa la población a partir de un conjunto de observaciones. +Según el tipo de conclusión que queramos extraer, diferenciaremos diferentes tipos de problemas:

      +
        +
      1. Si queremos utilizar la información proporcionada por la muestra para obtener un pronóstico numérico único (es decir, una única aproximación numérica) de una o más características de la población, tenemos un problema de estimación puntual.
      2. +
      3. Si queremos obtener información sobre un rango de valores dentro del cual podamos afirmar, con un cierto grado de confianza, que podemos capturar un parámetro desconocido de la distribución, hablamos de estimación por intervalo.
      4. +
      5. Si lo que queremos hacer es decidir si podemos aceptar o debemos rechazar una afirmación sobre la distribución de probabilidad del fenómeno estudiado, hablamos de contraste de hipótesis. Este contraste puede ser:
      6. +
      +
        +
      • Paramétrico: si la afirmación (la hipótesis) se refiere a los parámetros de la distribución.
      • +
      • No paramétrico: si la afirmación es sobre la forma de la distribución.
      • +
      +
      +
      +

      6.3 Distribución de la población

      +

      Todo problema de inferencia está motivado por un cierto grado de desconocimiento de la ley de probabilidades que rige un determinado fenómeno aleatorio. +El caso más sencillo que encontramos es cuando nos interesa una cierta variable \(X\) con una función de distribución \(F\) desconocida en mayor o menor grado. +La distribución que teóricamente sigue la variable de interés \(X\) en la población recibe el nombre de distribución teórica o distribución de la población. La distribución de la población es importante ya que, a menudo, se utiliza para determinar la distribución de alguna característica de los individuos de una población. +En los modelos de la inferencia estadística indicamos el relativo grado de desconocimiento sobre la distribución \(F\) en función de su pertenencia a una familia \(\mathcal{F}\) de distribuciones. Por ello, en lugar de explicar que \(X \sim F=F_{0}\) indicaremos que \(X \sim F \in \mathcal{F}\), donde \(\mathcal{F}\) puede ser un conjunto más o menos amplio de distribuciones de probabilidad, como todas las distribuciones normales o las distribuciones simétricas o las distribuciones discretas sobre \(\mathbb{N}\). +Muchas veces, la distribución poblacional \(F\) está completamente especificada excepto por el valor de algún parámetro o parámetros. En este caso, podemos concretar más la forma de la familia de distribuciones:

      +

      \[ +X \sim F \in \mathcal{F}=\left\{F_{\theta}: \theta \in \Theta \subset \mathbb{R}^{k}\right\} +\]

      +

      donde \(\Theta\) es el espacio de los \(k\) parámetros. +La familia de posibles distribuciones de probabilidad para \(X\) se denomina, genéricamente, modelo estadístico y se indica como: \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\). Veamos algunos ejemplos.

      +

      Ejemplo 1.3.1 Supongamos que \(X\) representa la duración de un componente electrónico que no envejece, solo se estropea. Es decir, si en un instante \(t\) está funcionando, su estado es el mismo que en cualquier momento del pasado y la distribución del tiempo hasta que se estropee es la misma que al principio. Esta propiedad se denomina falta de memoria. +Un modelo razonable para esta situación lo da la distribución de Weibull que, en este caso, podemos definir a través de la siguiente función de densidad:

      +

      \[ +f_{\theta}(x)= \begin{cases}\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}} & \text { si } x \geq 0 \\ 0 & \text { si } x<0\end{cases} +\]

      +

      La familia de distribuciones asociada es

      +

      \[ +\mathcal{F}=\left\{F_{\theta}: \theta=(\alpha, \beta) \in(0, \infty) \times(0, \infty)\right\} +\]

      +

      Ejemplo 1.3.2 Supongamos que queremos determinar la masa de un cierto tipo de partículas elementales a partir de las observaciones en una cámara de burbujas. En cada observación obtenemos un dato de la masa de la partícula \(x_{i}\) y asociado con ella un cierto error de medida \(\varepsilon\). Si la masa común de cada una de ellas es \(\mu\), entonces podemos escribir:

      +

      \[ +x_{i}=\mu+\varepsilon_{i} \quad i=1, \ldots, n +\]

      +

      donde la distribución \(\varepsilon_{i} \sim F\) es desconocida. Nuestro objetivo es obtener información sobre \(F\). +Si admitimos que \(P\left(\varepsilon_{i}<0\right)=P\left(\varepsilon_{i}>0\right)\), según el grado de exigencia que queramos tener, podemos suponer:

      +
        +
      • Con un enfoque de inferencia paramétrica:
      • +
      +

      \[ +X \sim F \in \mathcal{F}=\left\{N(0, \sigma): \sigma \in \mathbb{R}^{+}\right\} +\]

      +
        +
      • Con un enfoque de inferencia no paramétrica:
      • +
      +

      \[ +X \sim F \in \mathcal{F}=\{\text { Distribuciones simétricas }\} +\]

      -

      Se plantean los problemas que trata la inferencia. Se relaciona con el capítulo anterior a través de la idea del muestreo aleatorio simple y las distribuciones en el muestreo.

      -

      Se plantea el problema de la estimación como una forma de aproximación a las características de las distribucionesa partir de muestras aleatorias simples.

      -

      Se abordan las distintas formas de construcción de estimadores.

      -
      -

      6.1 Los problemas de la inferencia estadística.

      +
      +

      6.4 Muestra aleatoria simple

      +
      +

      6.4.1 Definición

      +

      Para estudiar un problema de inferencia estadística analizamos una muestra de tamaño \(n\). Se trata de escoger \(n\) individuos o elementos de la población \(\Omega\)

      +

      \[ +\omega_{1}, \omega_{2}, \ldots, \omega_{n} +\]

      +

      que sean representativos. El valor de \(n\) y la forma de elección de los individuos de la muestra es una materia de Estadística llamada Muestreo estadístico. Por ahora y para simplificar, solo hace falta decir que la elección se hace de forma que todos los individuos tienen la misma probabilidad de estar presentes en la muestra, si es necesario con reemplazo, y que el valor de \(n\) está dado. +En realidad, lo que nos interesa verdaderamente no son los individuos de la muestra sino las mediciones de una característica \(X\) sobre ellos. Es decir, los valores de una variable aleatoria \(X\) sobre estos individuos

      +

      \[ +X\left(\omega_{1}\right)=x_{1}, X\left(\omega_{2}\right)=x_{2}, \ldots, X\left(\omega_{n}\right)=x_{n} +\]

      +

      También podemos pensar que los valores muestrales \(x_{1}, x_{2}, \ldots, x_{n}\) son generados directamente desde la variable aleatoria. En todo caso, los valores muestrales no son únicos y podemos generar varias muestras

      +

      \[ +\begin{array}{ccccc} +x_{1}^{1} & x_{2}^{1} & x_{3}^{1} & \ldots & x_{n}^{1} \\ +x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{n}^{2} \\ +\vdots & \vdots & \vdots & & \vdots \\ +x_{1}^{s} & x_{2}^{s} & x_{3}^{s} & \ldots & x_{n}^{s} +\end{array} +\]

      +

      Si todos los valores son independientes, de la misma forma que \(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\) es una muestra generada por \(X\), podemos considerar todos los \(x_{1}^{i} \quad i=1, \ldots, s\) provenientes de una variable aleatoria \(X_{1}\) con la misma distribución que \(X\) \(X_{1} \stackrel{d}{=} X\) y que genera los primeros valores, los \(x_{i}^{2}\) provenientes de una variable aleatoria \(X_{2} \stackrel{d}{=} X\) que genera los segundos y así sucesivamente. +Todo esto nos lleva a definir el concepto de muestra aleatoria de una forma muy conveniente para trabajar con ella:

      +

      Definició 1.1 Una muestra aleatoria simple de tamaño \(n\) de una variable aleatoria \(X\) con distribución \(F\) es una colección de \(n\) variables aleatorias independientes \(X_{1}, X_{2}, \ldots, X_{n}\) con la misma distribución \(F\) que \(X\). Esto se suele indicar como:

      +

      \[ +\mathbf{X}=X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} X +\]

      +

      Definició 1.2 El conjunto \(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\) de observaciones concretas de \(X_{1}, X_{2}, \ldots, X_{n}\) se denomina realización de la muestra.

      -
      -

      6.2 Muestreo y distribuciones en el muestreo.

      +
      +

      6.4.2 Distribución de la muestra

      +

      Una muestra aleatoria simple, como vector aleatorio \(n\)-dimensional que es, tiene una distribución conjunta o distribución de la muestra que depende de \(F\), pero que obviamente es diferente, ya que en particular \(X\) y \(\mathbf{X}\) tienen dimensiones diferentes. Sin embargo, gracias a la independencia de las variables \(X_{1}, X_{2}, \ldots, X_{n}\), la función de distribución conjunta de \(\mathbf{X}\), que podría ser muy complicada, toma una forma muy sencilla. En resumen:

      +

      Definició 1.3 Se llama distribución de la muestra de una variable aleatoria \(X \sim F\) a la distribución del vector aleatorio \(n\)-dimensional \(\left(X_{1}, X_{2}, \ldots, X_{n}\right)\)

      +

      \[ +G\left(x_{1}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}\right) F\left(x_{2}\right) \cdots F\left(x_{n}\right) +\]

      +

      En los casos particulares en que \(X\) sea discreta o absolutamente continua, la distribución conjunta de la muestra suele expresarse mediante la función de masa de probabilidad o la función de densidad:

      +
        +
      • Para variables discretas:
      • +
      +

      \[ +\begin{aligned} +p_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\ +& =\prod_{i=1}^{n} P\left(X=x_{i}\right)=\prod_{i=1}^{n} p_{F}\left(x_{i}\right), +\end{aligned} +\]

      +
        +
      • Para variables absolutamente continuas:
      • +
      +

      \[ +g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right) +\]

      +

      Ejemplo 1.4.1 Una moneda tiene una probabilidad \(\theta\) de salir cara. Queremos estudiar la variable aleatoria:

      +

      \[ +X= \begin{cases}1 & \text { si sale cara } \\ 0 & \text { si sale cruz }\end{cases} +\]

      +

      con densidad \(P\{X=1\}=\theta, P\{X=0\}=1-\theta\). Es decir

      +

      \[ +X \sim F_{\theta} \in \mathcal{F}=\left\{F_{\theta}=B(1, \theta): \theta \in(0,1)\right\} +\]

      +

      Supongamos que hacemos tres lanzamientos. Las posibles muestras son:

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      \(X_{1}\)\(X_{2}\)\(X_{3}\)Probabilidad
      111\(\theta^{3}\)
      100\(\theta(1-\theta)^{2}\)
      010\(\theta(1-\theta)^{2}\)
      001\(\theta(1-\theta)^{2}\)
      101\(\theta^{2}(1-\theta)\)
      110\(\theta^{2}(1-\theta)\)
      011\(\theta^{2}(1-\theta)\)
      000\((1-\theta)^{3}\)
      +

      El muestreo ha especificado la distribución conjunta de la muestra a través de la distribución desconocida \(F_{\theta}\). Si escribimos la función de probabilidades de la variable aleatoria como \(f_{\theta}(x)=\theta^{x}(1-\theta)^{1-x}\), entonces la función de probabilidades de la muestra la podemos expresar como:

      +

      \[ +g_{\theta}\left(x_{1}, x_{2}, x_{3}\right)=\theta^{x_{1}+x_{2}+x_{3}}(1-\theta)^{3-\left(x_{1}+x_{2}+x_{3}\right)} +\]

      -
      -

      6.3 La verosimilitud y su papel en la inferencia estadística

      -
      -

      6.4 El problema de la estimación. Tipos de estimadores.

      +
      +

      6.5 Estadísticos

      +
      +

      6.5.1 Definición

      +

      Para lograr el objetivo de realizar inferencias sobre la población a partir de la muestra, solemos basarnos en la realización de cálculos sobre la muestra para tratar de obtener la información que deseamos. En este proceso aparecen los conceptos de estadístico y el caso particular, que más nos interesa a nosotros, de estimador. Un estadístico es una función de la muestra que no depende del valor del parámetro.

      +

      Definició 1.4 Dada una muestra aleatoria simple \(X_{1}, X_{2}, \ldots, X_{n}\) y una función medible \(T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}\), entonces \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) es un vector aleatorio (variable aleatoria cuando \(k=1\) ). Si \(T\) no depende de \(\theta\) (donde \(\theta\) es un parámetro a especificar en \(F_{\theta}\) ), entonces \(T\) recibe el nombre de estadístico.

      +

      Solo por su nombre, parece evidente que un estimador de un parámetro \(\theta\) será alguna función de la muestra que sirva para aproximar, en algún sentido, el valor desconocido de \(\theta\). Si añadimos la condición razonable de que un estimador no pueda tomar valores que no puede tomar el parámetro, podemos dar la siguiente definición.

      +

      Definició 1.5 Un estimador de un parámetro \(\theta\) es un estadístico \(T\) cuyo recorrido es el espacio de los parámetros, es decir:

      +

      \[ +\begin{array}{ccc} +T: & \mathbb{R}^{n} & \longrightarrow \\ +\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \longrightarrow \\ +\left(t_{1}, \ldots, t_{k}\right) \quad \in \Theta \subset \mathbb{R}^{k} +\end{array} +\]

      +

      Aquí tienes el texto traducido al castellano manteniendo toda la notación en LaTeX:

      -
      -

      6.5 Métodos de obtención de estimadores. Estimadores máximo verosímiles y estimadores bayesianos.

      -
      -

      6.6 Propiedades de los estimadores.

      +
      +

      6.6 Distribución en el muestreo de un estadístico

      +

      Dado un estadístico \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\) nos interesa conocer su distribución de probabilidad, ya que para hacer inferencia necesitaremos hacer cálculos del tipo

      +

      \[ +P\left[T\left(X_{1}, X_{2}, \ldots, X_{n}\right)>t_{0}\right] +\]

      +

      La distribución de probabilidad del estadístico se denomina distribución muestral o distribución en el muestreo del estadístico. Encontrarla es un problema que puede ser desde bastante sencillo hasta extremadamente complicado. Algunas de las técnicas utilizadas para intentar resolverlo son las siguientes:

      +
        +
      • Uso de la técnica de cambio de variable.
      • +
      • Uso de la función generadora de momentos.
      • +
      • Aplicación del Teorema Central del Límite.
      • +
      +

      Ejemplo 1.5.1 Sea \(X \sim F_{\theta}\) una variable aleatoria absolutamente continua con densidad

      +

      \[ +f_{\theta}(x)=e^{-(x-\theta)} e^{-e^{-(x-\theta)}} \quad \theta \in \mathbb{R} +\]

      +

      y consideremos el estadístico

      +

      \[ +T\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} e^{-X_{i}} +\]

      +

      Si aplicamos el teorema de cambio de variable unidimensional, se obtiene fácilmente que la variable aleatoria \(Y=e^{-X}\) sigue una distribución exponencial de parámetro \(e^{-\theta}\), de donde la suma seguirá una distribución gamma \(T \sim \Gamma\left(e^{-\theta}, n\right)\).

      +

      Ejemplo 1.5.2 Supongamos que \(X\) representa el número de averías en una máquina al cabo de un mes. Este valor varía mes a mes. Sea \(\bar{X}\) la media de averías en \(n\) meses. Si \(X\) sigue una distribución de Poisson \(P(\lambda)\), ¿cuál es la distribución de \(\bar{X}\) ? +Como la suma de Poisson i.i.d. es \(\sum_{i=1}^{n} X_{i} \sim P(n \lambda)\)

      +

      \[ +P[\bar{X}=r]=P\left[\sum_{i=1}^{n} X_{i}=n r\right]=\frac{e^{-n \lambda}(n \lambda)^{n r}}{(n r)!} +\]

      +

      Como ocurre en este ejemplo, uno de los estadísticos para el cual a menudo deseamos calcular la distribución en el muestreo es la media aritmética. Una manera útil de hacerlo es con la función generadora de momentos y la aplicación del siguiente lema.

      +

      Lema 1 Si \(X\) es una v.a. con \(M_{X}(t)\) como función generadora de momentos, entonces la f.g.m. de \(\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}\) es

      +

      \[ +M_{\bar{X}_{n}}(t)=\left[M_{X}(t / n)\right]^{n} +\]

      +
      +

      6.6.1 Demostración:

      +

      La demostración es inmediata a partir de la definición o por las propiedades de la función generadora de momentos.

      +

      Si aplicamos directamente la definición de la f.g.m tenemos:

      +

      \[ +\begin{aligned} +E\left(e^{t \bar{X}_{n}}\right) & =E\left(e^{t \frac{1}{n} \sum_{i=1}^{n} X_{i}}\right)=E\left(\prod_{i=1}^{n} e^{\frac{t}{n} X_{i}}\right)=\prod_{i=1}^{n} E\left(e^{\frac{t}{n} X_{i}}\right) \\ +& =\prod_{i=1}^{n} M_{X_{i}}(t / n)=\left[M_{X}(t / n)\right]^{n} +\end{aligned} +\]

      +

      Si usamos las propiedades de la f.g.m tenemos:

      +
        +
      1. Dado que \(M_{a X}(t)=M_{X}(a t)\) y si \(a=\frac{1}{n}\), entonces \(M_{\bar{X}}(t)=M_{\sum_{i=1}^{n} X_{i}}(t / n)\).
      2. +
      3. \(M_{\sum_{i=1}^{n} X_{i}}(t / n) \stackrel{\text { ind }}{=} \prod_{i=1}^{n} M_{X_{i}}(t / n) \stackrel{\text { id }}{=}\left[M_{X}(t / n)\right]^{n}\).
      4. +
      +

      Ejemplo 1.5.3 Para una variable aleatoria \(X \sim N(\mu, \sigma)\) y por tanto \(M_{X}(t)=\) \(\exp \left(t \mu+\frac{t^{2} \sigma^{2}}{2}\right)\), entonces

      +

      \[ +\begin{aligned} +M_{\bar{X}_{n}}(t) & =\left[\exp \left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right]^{n} \\ +& =\exp \left[n\left(\frac{t \mu}{n}+\frac{t^{2} \sigma^{2}}{n^{2} 2}\right)\right] \\ +& =\exp \left[t \mu+\frac{1}{2} t^{2}\left(\frac{\sigma}{\sqrt{n}}\right)^{2}\right] +\end{aligned} +\]

      +

      que es la función generadora de momentos de una variable \(N(\mu, \sigma / \sqrt{n})\).

      +
      +
      +
      +

      6.7 La distribución empírica

      +
      +

      6.7.1 Definición

      +

      En el apartado anterior hemos visto que a partir de una muestra \(X_{1}, X_{2}, \ldots, X_{n}\) es interesante considerar la distribución muestral como la distribución conjunta del vector aleatorio \(\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), sin que intervenga una realización concreta de la muestra \(x_{1}, x_{2}, \ldots, x_{n}\). Un enfoque diferente consiste en asociar una distribución particular directamente a las observaciones \(x_{1}, x_{2}, \ldots, x_{n}\) con la intención de que, en tanto que la muestra “representa” la v.a. \(X\), esta distribución asociada a la muestra \(F_{n}(x)\) emule la distribución de la población. Esta distribución se denomina distribución empírica o distribución muestral y se define así:

      +

      \[ +F_{n}(x)=\frac{k(x)}{n} +\]

      +

      donde \(k(x)\) es el número de datos muestrales menores o iguales que \(x\). En la práctica se construye por ordenación de la muestra

      +

      \[ +x_{1}, x_{2}, \ldots, x_{n} \longrightarrow x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} +\]

      +

      y con la siguiente definición:

      +

      \[ +F_{n}(x)= \begin{cases}0 & \text { si } x<x_{(1)} \\ \frac{k}{n} & \text { si } x_{(k)} \leq x<x_{(k+1)} \\ 1 & \text { si } x_{(n)} \leq x\end{cases} +\]

      +

      Ejemplo 1.6.1 Extraemos una muestra y obtenemos:

      + + + + + + + + + + + + + + + + + + + + + + + +
      \(x_{1}\)\(x_{2}\)\(x_{3}\)\(x_{4}\)\(x_{5}\)\(x_{6}\)\(x_{7}\)
      5.13.41.217.62.116.44.3
      +

      Una vez ordenada queda:

      + +++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      \(x_{(1)}\)\(x_{(2)}\)\(x_{(3)}\)\(x_{(4)}\)\(x_{(5)}\)\(x_{(6)}\)\(x_{(7)}\)
      \(x_{3}\)\(x_{5}\)\(x_{2}\)\(x_{7}\)\(x_{1}\)\(x_{6}\)\(x_{4}\)
      1.22.13.44.35.116.417.6
      +

      y si hacemos la representación gráfica:

      +

      Figura 1.1: Función de distribución empírica con los datos del ejemplo

      +

      La distribución empírica refleja exclusivamente los valores observados en la muestra y, por lo tanto, no se relaciona directamente ni con la distribución conjunta de la muestra \(G\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) ni con la distribución de la población \(F\).

      +
      +
      +
      +

      6.8 Los momentos muestrales

      +
      +

      6.8.1 Definición

      +

      Sea \(F_{n}\) la v.a. que tiene \(F_{n}(x)\) por distribución. La función de densidad de probabilidad de \(F_{n}\) es una densidad discreta que asigna probabilidades \(1 / n\) a cada una de las observaciones muestrales \(x_{1}, x_{2}, \ldots, x_{n}\). Así pues, tiene sentido calcular sus momentos, que se conocen como momentos muestrales \(a_{k}\), y también sus momentos muestrales centrados respecto a la media \(b_{k}\).

      +

      \[ +\begin{aligned} +a_{k} & =E\left(F_{n}^{k}\right)=\sum_{i=1}^{n} x_{i}^{k} \cdot P\left(F_{n}=x_{i}\right)=\sum_{i=1}^{n} x_{i}^{k} \cdot \frac{1}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{k} \\ +b_{k} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{k} +\end{aligned} +\]

      +

      Observamos que dos medidas conocidas de la estadística descriptiva adquieren un significado diferente:

      +
        +
      • Media muestral \(=\) Media de la distribución muestral
      • +
      +

      \[ +a_{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i} +\]

      +
        +
      • Varianza muestral \(=\) Varianza de la distribución muestral
      • +
      +

      \[ +b_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} +\]

      +
      +
      +
      +

      6.9 Distribución en el muestreo de los momentos muestrales

      +

      Dada una m.a.s. \(X_{1}, X_{2}, \ldots, X_{n}\), los momentos muestrales son estadísticos y, como tales, tienen su distribución en el muestreo. Por ejemplo, \(a_{k}=\) \(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\).

      +

      La distribución en cada caso puede ser compleja y depender de la distribución poblacional subyacente. +Lo que sí es posible calcular son los momentos de los momentos muestrales o, mejor dicho, los momentos de las distribuciones en el muestreo de los momentos muestrales.

      +
        +
      1. Si consideramos \(a_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\) y escribimos \(\alpha_{k}=E\left(X^{k}\right)\) como el momento poblacional de orden \(k\), tenemos:
      2. +
      +

      \[ +\begin{aligned} +E\left(a_{k}\right) & =E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\right)=\frac{1}{n} \cdot n \cdot \alpha_{k}=\alpha_{k} \\ +\operatorname{var}\left(a_{k}\right) & =\operatorname{var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left(X_{i}^{k}\right)=\frac{1}{n} \operatorname{var}\left(X^{k}\right) \\ +& =\frac{1}{n}\left[E\left(X^{2 k}\right)-\left(E\left(X^{k}\right)\right)^{2}\right]=\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n} +\end{aligned} +\]

      +
        +
      1. Si consideramos \(s^{2}=b_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}\), podemos calcular:
      2. +
      +

      \[ +\begin{aligned} +E\left(s^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-E(\bar{X})^{2}=\alpha_{2}-\left(\frac{\sigma^{2}}{n}+\mu^{2}\right) \\ +& =\left(\sigma^{2}+\mu^{2}\right)-\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)=\frac{n-1}{n} \sigma^{2} +\end{aligned} +\]

      +

      El cálculo de la varianza de \(s^{2}\) es laborioso \({ }^{1}\) y no lo haremos aquí. Su valor es

      +

      \[ +\operatorname{var}\left(s^{2}\right)=\frac{\mu_{4}-\mu_{2}^{2}}{n}-\frac{2\left(\mu_{4}-2 \mu_{2}^{2}\right)}{n^{2}}+\frac{\mu_{4}-3 \mu_{2}^{2}}{n^{3}} +\]

      +

      donde \(\mu_{k}\) es el momento poblacional centrado de orden \(k\).

      +
      +
      +

      6.10 Propiedades asintóticas de los momentos muestrales

      +
      +

      6.10.1 Convergencia de los momentos muestrales

      +

      Los momentos muestrales, tanto respecto al origen como respecto a la media, convergen hacia los momentos poblacionales. Es posible establecer la convergencia basándose en la ley fuerte de los grandes números (convergencia casi [^0]segura) o en la ley débil (convergencia en probabilidad). Si nos limitamos a esta última podemos afirmar que +\[ +a_{k} \xrightarrow{P} \alpha_{k} \quad \text { es decir } \quad \lim _{n \rightarrow \infty} P\left[\left|a_{k}-\alpha_{k}\right| \geq \epsilon\right]=0 +\]

      +

      La prueba se basa en la desigualdad de Tchebychev. Si suponemos que \(\alpha_{2 k}<\infty\), tenemos

      +

      \[ +P\left[\left|a_{k}-\alpha_{k}\right| \geq \epsilon\right] \leq \frac{E\left|a_{k}-\alpha_{k}\right|^{2}}{\epsilon^{2}}=\frac{\operatorname{var}\left(a_{k}\right)}{\epsilon^{2}}=\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n \epsilon^{2}} \longrightarrow 0 +\]

      +

      Esta propiedad es importante porque hará posible el concepto de estimador consistente y en ella se basa un método de estimación llamado método de los momentos.

      +
      +
      +

      6.10.2 Distribución asintótica

      +

      Si consideramos el momento muestral \(a_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}\), entonces \(n \cdot a_{k}\) es una suma de variables aleatorias i.i.d. a la que podemos aplicar el Teorema Central del Límite. Como hemos visto:

      +

      \[ +E\left(n a_{k}\right)=n \alpha_{k} \quad \operatorname{var}\left(n a_{k}\right)=n^{2} \operatorname{var}\left(a_{k}\right)=n^{2} \frac{\alpha_{2 k}-\alpha_{k}^{2}}{n} +\]

      +

      y por el Teorema Central del Límite de Lindeberg-Levy la variable

      +

      \[ +\frac{n a_{k}-E\left(n a_{k}\right)}{\sqrt{\operatorname{var}\left(n a_{k}\right)}}=\frac{n a_{k}-n \alpha_{k}}{n \sqrt{\operatorname{var}\left(a_{k}\right)}}=\frac{a_{k}-\alpha_{k}}{\sqrt{\operatorname{var}\left(a_{k}\right)}} +\]

      +

      verifica

      +

      \[ +\frac{a_{k}-\alpha_{k}}{\sqrt{\operatorname{var}\left(a_{k}\right)}} \xrightarrow{\mathcal{L}} N(0,1) +\]

      +

      es decir

      +

      \[ +a_{k} \sim A N\left(\alpha_{k}, \sqrt{\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n}}\right) +\]

      +
      +
      +
      +

      6.11 Muestreo en poblaciones normales

      +

      Como hemos visto, a partir de una m.a.s. \(X_{1}, X_{2}, \ldots, X_{n}\) y si consideramos un estadístico \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\), puede resultar complicado obtener su distribución en el muestreo. Esta distribución depende de:

      +
        +
      • La forma funcional de \(T\left(X_{1}, X_{2}, \ldots, X_{n}\right)\).
      • +
      • La distribución subyacente de \(X\), es decir, la distribución de la población.
      • +
      +

      Hay un caso especial en el que el problema se ha estudiado en profundidad para algunos estadísticos de gran importancia práctica. Si \(X \sim N(\mu, \sigma)\) es posible encontrar la distribución de los estadísticos más utilizados como \(\bar{X}\) y \(S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\). De hecho, obtendremos la distribución de funciones de estos estadísticos como

      +

      \[ +\frac{\bar{X}-\mu}{s / \sqrt{n-1}} ; \quad \frac{n s^{2}}{\sigma^{2}} ; \quad \bar{X}_{1}-\bar{X}_{2} ; \quad \frac{S_{1}^{2} /\left(n_{1}-1\right)}{S_{2}^{2} /\left(n_{2}-1\right)} +\]

      +

      donde \(s^{2}=(1 / n) S^{2}\). +En el estudio de las distribuciones de estos estadísticos aparecen algunas distribuciones de probabilidad que han resultado ser de gran utilidad. Son las llamadas “distribuciones derivadas de la normal” y se conocen por el nombre del investigador que las formuló:

      +
        +
      • la \(\chi^{2}\) chi-cuadrado de Pearson
      • +
      • la \(t\) de Student (Gosset)
      • +
      • la \(F\) de Fisher-Snedecor
      • +
      +
      +

      6.11.1 La distribución chi-cuadrado

      +

      Sean \(X_{1}, X_{2}, \ldots, X_{k}\) un conjunto de v.a. independientes sobre un mismo espacio de probabilidad \((\Omega, \mathcal{A}, P)\) y con distribución común \(N(0,1)\). Consideremos la variable

      +

      \[ +Y=X_{1}^{2}+X_{2}^{2}+\cdots+X_{k}^{2} +\]

      +

      La distribución de la variable \(Y\) se llama chi-cuadrado con \(k\) grados de libertad. +La función de densidad de la variable aleatoria \(Y\) es

      +

      \[ +f(x)=\frac{1}{\Gamma(k / 2) 2^{k / 2}} e^{-x / 2} x^{k / 2-1} \quad \text { si } x>0 +\]

      +

      De modo que resulta que \(Y=\sum_{i=1}^{k} X_{i}^{2}\) tiene una distribución gamma \(G\left(\frac{1}{2}, \frac{k}{2}\right)\) y su f.g.m. es

      +

      \[ +M(t)=(1-2 t)^{-k / 2} \quad \text { si } t<1 / 2 +\]

      +
      +

      6.11.1.1 Propiedades

      +
        +
      1. Si recordamos que para \(X \sim G(p, \alpha)\) entonces \(E(X)=\frac{p}{\alpha} \mathrm{y} \operatorname{var}(X)=\) \(\frac{p}{\alpha^{2}}\), resulta
      2. +
      +

      \[ +E(Y)=\frac{k / 2}{1 / 2}=k \quad \operatorname{var}(Y)=\frac{k / 2}{1 / 4}=2 k +\]

      +
        +
      1. De la aditividad (reproductividad) de las leyes gamma se deduce también la reproductividad de la chi-cuadrado \(\chi^{2}\), es decir
      2. +
      +

      \[ +Y_{1}^{2} \sim \chi_{n_{1}}^{2}, Y_{2}^{2} \sim \chi_{n_{2}}^{2} \quad \text { indep. } \longrightarrow Y_{1}^{2}+Y_{2}^{2} \sim \chi_{n_{1}+n_{2}}^{2} +\]

      +
        +
      1. Como \(Y\) es la suma de v.a. independientes \(X_{i}^{2} \sim \chi_{1}^{2}\) se verifica
      2. +
      +

      \[ +\frac{Y-k}{\sqrt{2 k}} \xrightarrow{\mathcal{L}} N(0,1) +\]

      +

      Pero es mejor la aproximación de Fisher

      +

      \[ +\sqrt{2 \chi_{k}^{2}}-\sqrt{2 k-1} \xrightarrow{\mathcal{L}} N(0,1) +\]

      +

      de donde se obtiene para valores de \(k \geq 30\)

      +

      \[ +\chi_{k}^{2} \stackrel{\text { aprox }}{=} \frac{1}{2}(Z+\sqrt{2 k-1})^{2} +\]

      +

      donde \(Z \sim N(0,1)\).

      +
      +
      +
      +

      6.11.2 Distribución \(t\) de Student

      +

      Sean \(Y, Z\) dos variables aleatorias independientes con distribuciones \(Z \sim\) \(N(0,1)\) y \(Y \sim \chi_{m}^{2}\), entonces se dice que la variable aleatoria

      +

      \[ +t=\frac{Z}{\sqrt{Y / m}} +\]

      +

      tiene una distribución \(t\) de Student con \(m\) grados de libertad. +Su función de densidad es

      +

      \[ +f(t)=\frac{\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \sqrt{m \pi}}\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \quad t \in \mathbb{R} +\]

      +

      Esta expresión se obtiene de la resolución del correspondiente problema de cambio de variable para encontrar la distribución de un cociente.

      +

      Se trata de una distribución unimodal y simétrica respecto al cero. La distribución depende de \(m\), que llamamos los grados de libertad (g.l.). A medida que \(m\) crece, la forma acampanada se va “cerrando”, acercándose a la ley normal:

      +

      \[ +\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \xrightarrow{m \rightarrow \infty} e^{-t^{2} / 2} +\]

      +

      Este hecho es muy relevante en inferencia estadística.

      +
      +

      6.11.2.1 Propiedades

      +
        +
      1. Si \(m=1\), entonces la \(t\) es una Cauchy y, en particular, no tiene esperanza.
      2. +
      3. Para \(m>1, E(t)=0\) y para \(m>2, \operatorname{var}(t)=m /(m-2)\).
      4. +
      5. Cuando \(m \rightarrow \infty\), entonces \(t \xrightarrow{P} N(0,1)\).
      6. +
      +
      +
      +
      +

      6.11.3 La distribución \(F\) de Fisher

      +

      Esta distribución aparece cuando se considera un cociente entre dos distribuciones chi-cuadrado \(U \sim \chi_{m}^{2}, V \sim \chi_{n}^{2}\) con \(m\) y \(n\) g.l. respectivamente. En concreto decimos que la variable aleatoria

      +

      \[ +F=\frac{U / m}{V / n} +\]

      +

      sigue una distribución \(F\) de Fisher con \(m\) y \(n\) grados de libertad. La función de densidad tiene la forma:

      +

      \[ +f(x)=\frac{m^{m / 2} n^{n / 2} \Gamma[(m+n) / 2]}{\Gamma(m / 2) \Gamma(n / 2)} \cdot \frac{x^{m / 2-1}}{(m x+n)^{(m+n) / 2}} \quad \text { para } x>0 +\]

      +
      +

      6.11.3.1 Propiedades

      +
        +
      1. La esperanza y la varianza son
      2. +
      +

      \[ +E(F)=\frac{n}{n-2} \quad \operatorname{var}(F)=\frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)} +\]

      +
        +
      1. Esta distribución tiene una moda en \(x=\frac{m-2}{m} \cdot \frac{n}{n+2}\), siempre que \(m>2\).
      2. +
      3. Si \(F \sim F_{m, n}\), entonces resulta que \(1 / F \sim F_{n, m}\) y por lo tanto:
      4. +
      +

      \[ +P(F \leq x)=P\left(\frac{1}{F} \geq \frac{1}{x}\right)=1-P\left(\frac{1}{F} \leq \frac{1}{x}\right) +\]

      +

      Esta propiedad es de gran utilidad en el uso de las tablas. +4. Cuando \(n \rightarrow \infty, F_{m, \infty} \xrightarrow{\mathcal{L}} \chi_{m}^{2}\). +5. Cuando \(m \rightarrow \infty\) y \(n \rightarrow \infty\), entonces \(F_{m, n} \xrightarrow{\mathcal{L}} 1\).

      +
      +
      @@ -457,7 +1068,7 @@

      6.6 Propiedades de los estimadore

      - +
      diff --git "a/docs/m\303\251todos-de-obtenci\303\263n-de-estimadores.html" "b/docs/m\303\251todos-de-obtenci\303\263n-de-estimadores.html" new file mode 100644 index 0000000..3805ead --- /dev/null +++ "b/docs/m\303\251todos-de-obtenci\303\263n-de-estimadores.html" @@ -0,0 +1,897 @@ + + + + + + + Capítulo 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES | Fundamentos de Inferencia Estadistica + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + +
      + +
      + +
      +
      + + +
      +
      + +
      +
      +

      Capítulo 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES

      +

      En el capítulo anterior hemos analizado el problema de la estimación puntual desde el punto de vista de, dado un estimador, ver ?qué tan bueno es? para estimar un parámetro. +Otra cuestión que nos podemos plantear, de hecho la primera cuestión que hay que plantearse en la práctica, es cómo obtener un estimador ?razonablemente bueno? de un parámetro. De hecho, desde el punto de vista práctico parece razonable empezar por ver cómo se obtiene un estimador y, una vez obtenido, analizar ?cuán bueno resulta?. +Existen muchos métodos para obtener estimadores, cada uno de los cuales puede llevarnos a unos resultados de diferente calidad. +Los principales métodos de estimación son:

      +
        +
      1. Método de los momentos
      2. +
      3. Método de la máxima verosimilitud
      4. +
      5. Método de Bayes
      6. +
      7. Otros métodos
      8. +
      +
      +

      8.1 El método de los momentos

      +

      Este método fue introducido por K. Pearson a finales del siglo XIX y es el principio en que nos basamos cuando hacemos una estimación de la media o de la varianza poblacional a partir de la media o la varianza muestrales. +La idea del método de los momentos es bastante intuitiva. Si lo que queremos estimar (uno o varios parámetros) es una función de los momentos +poblacionales, entonces una estimación razonable puede consistir en tomar como estimador la misma función en la que los momentos poblacionales han sido sustituidos por los momentos muestrales. +Dado que estos últimos son estimadores consistentes de los momentos poblacionales, en condiciones bastante generales se puede garantizar que los estimadores obtenidos serán estimadores consistentes para las funciones de los momentos poblacionales estimadas. +Algunos ejemplos típicos de estimadores basados en el método de los momentos son:

      +

      \[ +\widehat{\mu}=\bar{X}_{n} \quad \widehat{\sigma}=\sqrt{S^{2}} \quad \widehat{\sigma^{2}}=S^{2} +\]

      +

      Sea un modelo estadístico, \(\left\{X \sim F_{\theta}: \theta \in \Theta\right\}\), y \(X_{1}, X_{2}, \ldots, X_{n}\) una muestra aleatoria simple de \(X\). Sean \(m_{1}, m_{2}, ?, m_{k}\) los momentos poblacionales de orden \(1,2, ?, k\) de \(X\), que suponemos que existen,

      +

      \[ +m_{k}=E\left(X^{k}\right) +\]

      +

      y \(a_{1}, a_{2}, ?, a_{k}\) los momentos muestrales respectivos

      +

      \[ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} +\]

      +

      Suponemos que estamos interesados en estimar:

      +

      \[ +\theta=h\left(m_{1}, m_{2}, \ldots, m_{p}\right), +\]

      +

      donde \(h\) es una función conocida. +Definició 3.1 El método de los momentos consiste en estimar \(\theta\) por el estadístico

      +

      \[ +T(\mathbf{X})=h\left(a_{1}, a_{2}, \ldots, a_{p}\right) +\]

      +
      +

      8.1.1 Observaciones

      +
        +
      • El método se extiende de forma sencilla a la estimación de momentos conjuntos. Podemos usar \(\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}\) para estimar \(E(X Y)\), etc.
      • +
      • Por la ley débil de los grandes números,
      • +
      +

      \[ +a_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{P} E\left(X^{k}\right), +\]

      +

      de modo que si lo que queremos es estimar los momentos muestrales, el método garantiza que los estimadores son consistentes y sin sesgo.

      +

      En este caso, además, los estimadores son asintóticamente normales. Si lo que se desea estimar es una función \(h\) continua de los momentos, entonces el método garantiza que el estimador \(T(\mathbf{X})\) es consistente y, bajo ciertas condiciones de regularidad, también es asintóticamente normal.

      +

      Ejemplo 3.1.1 Sea \(X \sim \Gamma(p, \alpha)\). Queremos estimar \(p\) y \(\alpha\). En lugar de conocer la función \(h\left(\theta_{1}, \theta_{2}\right)\) sabemos que:

      +

      \[ +\begin{aligned} +m_{1} & =\frac{p}{\alpha}=E(X) \\ +m_{2} & =\frac{p(p+1)}{\alpha^{2}}=E\left(X^{2}\right) \\ +& =V(X)+[E(X)]^{2}=\frac{p}{\alpha^{2}}+\left(\frac{p}{\alpha}\right)^{2}=\frac{p^{2}+p}{\alpha^{2}}= +\end{aligned} +\]

      +

      De modo que podemos obtener las funciones deseadas ?aislando? p y \(\alpha\) como funciones de \(m_{1}\) y \(m_{2}\) :

      +

      \[ +\begin{aligned} +\alpha^{2} & =\frac{p^{2}}{m_{1}^{2}} \\ +\alpha^{2} & =\frac{p(p+1)}{m_{2}} +\end{aligned} +\]

      +

      Procediendo por igualación:

      +

      \[ +\begin{aligned} +& \frac{p^{2}}{m_{1}^{2}}=\frac{p(p+1)}{m_{2}} \\ +& \frac{p}{m_{1}}=\frac{p+1}{m_{2}} \\ +& p m_{2}=p m_{1}^{2}+m_{1}^{2} \\ +& p\left(m_{2}-m_{1}^{2}\right)=m_{1}^{2} \\ +& p=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& \alpha=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\ +& m_{1} +\end{aligned} \frac{m_{1}}{m_{2}-m_{1}^{2}} . +\]

      +

      Los estimadores por el método de los momentos se obtendrán ahora sustituyendo \(p\) y \(\alpha\) por \(\hat{p}\) y \(\hat{\alpha}\) en la expresión anterior, es decir:

      +

      \[ +\widehat{p}=\frac{a_{1}^{2}}{a_{2}-a_{1}^{2}} +\]

      +

      Hacemos lo mismo para el parámetro \(\alpha\) :

      +

      \[ +\widehat{\alpha}=\frac{a_{1}}{a_{2}-a_{1}^{2}} +\]

      +
      +
      +
      +

      8.2 El método del máximo de verosimilitud

      +
      +

      8.2.0.1 Introducción

      +

      El método de la máxima verosimilitud, introducido por Fisher, es un método de estimación que se basa en la función de verosimilitud, presentada en el capítulo anterior. Básicamente consiste en tomar como estimadores de los parámetros aquellos valores que hagan más probable observar precisamente lo que se ha observado, es decir, que hagan que la muestra observada resulte más verosímil.

      +

      Ejemplo 3.2.1 Tomemos 5 papeles. En cada uno de ellos ponemos o bien un ?+? o bien un ?-?, sin que se sepa qué hay en cada papel, y los guardamos en una bolsa. Nuestro objetivo es estimar el número de papeles con el signo ?? escrito. Extraemos tres papeles, devolviéndolos a la bolsa después de cada extracción, y observamos que ha salido lo siguiente: ?++-?. Los valores posibles para la probabilidad de ?-?, llamémosla p, son:

      + + + + + + + + + + + + + + + + + + + + + + + + + +
      En la bolsa hay\(p\)
      \(4 ?+\) ?, 1 ?-?0,2
      \(3 ?+\) ?, 2 ?-?0,4
      \(2 ?+\) ?, 3 ?-?0,6
      \(1 ?+\) ?, 4 ?-?0,8
      +

      Supongamos que la variable \(X\) mide el número de ?-? en tres extracciones consecutivas y que, por tanto, sigue una distribución binomial:

      +

      \[ +X \sim B(3, p(?-?)) +\]

      +

      La probabilidad de sacar un ?-? es:

      +

      \[ +P_{p}[X=1]=\binom{3}{1} \cdot p^{1}(1-p)^{2} +\]

      +

      Para cada uno de los valores de p, las probabilidades quedan asi:

      + + + + + + + + + + + + + + + + + + + + + + + + + +
      \(p\)\(P_{p}[X=1]\)
      0.2\(3 \cdot 0.2 \cdot 0.8^{2}=0.384\)
      0.4\(3 \cdot 0.4 \cdot 0.6^{2}=0.432\)
      0.6\(3 \cdot 0.6 \cdot 0.4^{2}=0.288\)
      0.8\(3 \cdot 0.8 \cdot 0.2^{2}=0.096\)
      +

      El valor de p que da una probabilidad mayor a la muestra, es decir, que la hace más verosímil, es \(p=0.4\). El método del máximo de verosimilitud consiste precisamente en tomar este valor como estimación de \(p\).

      +
      +
      +

      8.2.0.2 La función de verosimilitud

      +

      Una vez introducido el método con un ejemplo, podemos pasar a definirlo con mayor precisión. Para ello, comenzaremos con el concepto de función de verosimilitud. +En el capítulo anterior presentamos la función de verosimilitud como la función que resulta de considerar que, en la función de probabilidad de la muestra, el parámetro es variable y la muestra queda fija. Es decir:

      +

      \[ +\underbrace{f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)}_{\mathbf{x} \text { variable, } \theta \text { fijo }} \longrightarrow \underbrace{L\left(\theta ; x_{1}, x_{2}, \ldots, x_{n}\right)}_{\mathbf{x} \text { fija, } \theta \text { variable }} +\]

      +

      Esta definición es básicamente correcta. En el caso de las variables discretas, donde \(f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)\) representa la probabilidad de la muestra, fijado \(\theta\), resulta intuitivamente claro decir que la verosimilitud representa la ?probabilidad de la muestra para cada valor del parámetro?. +Refiriéndonos al ejemplo introductorio, resulta sencillo ver que se trata de ?dos puntos de vista? sobre la misma función. Fijado un valor del parámetro, por ejemplo, 0.4 , podemos considerar la probabilidad de diversas muestras posibles, como \(x=0, x=1, \ldots\), hasta \(x=3\) :

      +

      \[ +\begin{aligned} +f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{0.4}[X=x], x=0,1, \ldots, 3 \\ +& =\binom{3}{x} \cdot 0.4^{x}(0.6)^{3-x} . +\end{aligned} +\]

      +

      Análogamente, fijada una muestra, por ejemplo, \(x=1\), podemos considerar la probabilidad de esta para diversos valores del parámetro, \(p=0,0.2, \ldots, 1\).

      +

      \[ +\begin{aligned} +L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right) & =P_{p}[X=1], x=0,0.2,0.4, \ldots, 1 \\ +& =3 \cdot p(1-p)^{2} . +\end{aligned} +\]

      +

      En el caso de las distribuciones absolutamente continuas, el significado de la función de verosimilitud ya no es intuitivamente tan claro como en el caso de las discretas. En este caso, la función de densidad de la muestra ya no representa la probabilidad de esta como en el caso de las discretas. Algunos autores intentan solucionar esto explicando que existe una conocida aproximación en que la función de densidad es la probabilidad de un suceso ?infinitesimal?. +Lo que es importante en la función de verosimilitud, a la hora de hacer inferencias, es la parte que es función del parámetro. Esto hace que a menudo se considere que la expresión de la función de verosimilitud mantenga solo aquella parte de \(f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)\) que depende de \(\theta\), ignorando la parte que dependa solo de la muestra. Es decir, si podemos factorizar \(f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)\) como

      +

      \[ +f(\mathbf{x} ; \theta)=c(\mathbf{x}) \cdot g(\mathbf{x} ; \theta) +\]

      +

      podremos prescindir de la ?constante? \(c(x)\) (constante porque no depende de \(\theta\) ) al considerar la verosimilitud.

      +

      \[ +L(\theta ; \mathbf{x})=g(\mathbf{x} ; \theta) \propto f(\mathbf{x} ; \theta) +\]

      +

      Esto implica que \(L(\theta ; \mathbf{x})\) no tiene por qué integrar a 1 , como en el caso de las probabilidades, y que depende de las unidades de medida.

      +

      Ejemplo 3.2.2 Si \(X\) es discreta, \(X \sim \mathcal{P}(\lambda)\), y suponemos \(n=1\) (muestras de tamaño 1), tenemos que la f.d.p. de la muestra es:

      +

      \[ +P[x ; \lambda]=e^{-\lambda} \frac{\lambda^{x}}{x!} +\]

      +

      con \(x=0,1, \ldots\) Ahora, si hemos observado \(x=5\), la función de verosimilitud vale:

      +

      \[ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5}\left[\frac{1}{5!}\right] +\]

      +

      Como solo nos interesa la parte que es función de \(\lambda\), podemos ignorar \(\frac{1}{5!}\), es decir:

      +

      \[ +L(\lambda ; 5)=e^{-\lambda} \lambda^{5} \propto P[\mathbf{x} ; \lambda] . +\]

      +

      Ejemplo 3.2.3 Si dada una muestra de tamaño 1, por ejemplo, \(x=2\), de una ley de Poisson \(\mathcal{P}(\lambda)\) queremos comparar sus verosimilitudes respecto de los valores del parámetro \(\lambda=1.5\) o \(\lambda=3\), lo que haremos será basarnos en la razón de verosimilitudes:

      +

      \[ +\begin{aligned} +\Lambda(\mathbf{x}) & =\frac{L\left(\lambda_{1} ; x\right)}{L\left(\lambda_{2} ; x\right)}=\frac{L(1.5 ; 2)}{L(3 ; 2)} \\ +& =\frac{e^{-1.5} 1.5^{2}\left[\frac{1}{2!}\right]}{e^{-3} 3^{2}\left[\frac{1}{2!}\right]}=\frac{e^{-1.5} 1.5^{2}}{e^{-3} 3^{2}}=\frac{0.5020}{0.4481}=1.12 . +\end{aligned} +\]

      +

      Como se observa, al basarnos en la razón de verosimilitudes, la parte correspondiente solo a la muestra no se toma en cuenta. La razón de verosimilitudes sugiere que el valor \(\lambda=1.5\) hace la muestra más verosímil.

      +
      +
      +

      8.2.0.3 El método del máximo de verosimilitud

      +

      Si partimos de las dos ideas que hemos visto en la introducción:

      +
        +
      • Escoger como estimación el valor que maximice la probabilidad de la muestra observada.
      • +
      • La verosimilitud de la muestra es una aproximación a la probabilidad de esta como función del valor del parámetro.
      • +
      +

      Una forma razonable de definir el EMV es entonces como aquel que maximice la verosimilitud.

      +

      Definició 3.2 Un estimador \(T: \Omega \longrightarrow \Theta\) es un estimador del máximo de verosimilitud para el parámetro \(\theta\) si cumple:

      +

      \[ +L(T(\mathbf{x}) ; \mathbf{x})=\sup _{\theta \in \Theta} L(\theta ; \mathbf{x}) +\]

      +

      Como suele ocurrir en problemas de maximización, este valor ni existe necesariamente ni tiene por qué ser único. Ahora bien, bajo ciertas condiciones (las habituales para los problemas de máximos y mínimos) el problema se podrá reducir a buscar un máximo para la función de verosimilitud.

      +

      Ejemplo 3.2.4 Supongamos que \(x_{1}, \ldots, x_{n}\) es una muestra de una población de Bernouilli, \(X \sim B e(p)\), donde queremos estimar p. La función de masa de la probabilidad de \(X\) es:

      +

      \[ +P\left[X=x_{i}\right]=P\left(x_{i} ; p\right)=p^{x_{i}}(1-p)^{1-x_{i}} \text { donde } x_{i} \in\{0,1\} ; i=1, \ldots, n +\]

      +

      La función de verosimilitud es:

      +

      \[ +L(p ; \mathbf{x})=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum_{i=1}^{n} x_{i}}(1-p)^{\sum_{i=1}^{n}\left(1-x_{i}\right)} +\]

      +

      Debemos buscar el máximo de \(L(p ; \mathbf{x})\). En este caso, como en otros, es más sencillo buscar el máximo de su logaritmo, que, dado que es una función monótona, es el mismo que el máximo de \(L\)

      +

      \[ +\ln L(p ; x)=\left(\sum_{i=1}^{n} x_{i}\right) \cdot \ln p+\left(n-\sum_{i=1}^{n} x_{i}\right) \cdot \ln (1-p) +\]

      +

      Derivamos respecto a p:

      +

      \[ +\frac{\partial \ln L(p ; x)}{\partial p}=\frac{\sum_{i=1}^{n} x_{i}}{p}-\frac{n-\sum_{i=1}^{n} x_{i}}{1-p} +\]

      +

      e igualamos a cero la derivada, planteando lo que se denomina la ecuación de verosimilitud, cuyas soluciones nos conducirán eventualmente al estimador del máximo de verosimilitud.

      +

      \[ +\frac{\sum_{i=1}^{n} x_{i}-n \hat{p}}{\hat{p}(1-\hat{p})}=0 \Rightarrow \hat{p}=\frac{\sum_{i=1}^{n} x_{i}}{n} +\]

      +

      Si la segunda derivada es negativa en \(\widehat{p}\) entonces será un máximo:

      +

      \[ +\begin{aligned} +\frac{\partial^{2} \ln L(p ; x)}{\partial p^{2}} & =\frac{\partial}{\partial p}\left(\frac{\sum_{i=1}^{n} x_{i}-n p}{p(1-p)}\right)=\frac{-n[p(1-p)]-\left(\sum_{i=1}^{n} x_{i}-n p\right) \cdot(1-2 p)}{p^{2}\left(1-p^{2}\right)}= \\ +& =\frac{-n p+n p^{2}-\sum_{i=1}^{n} x_{i}-n p-2 p \sum_{i=1}^{n} x_{i}-2 n p^{2}}{p^{2}(1-p)^{2}}= \\ +& =\frac{\left[\sum_{i=1}^{n} x_{i}(1+2 p)-n p^{2}\right]}{p^{2} \cdot(1-p)^{2}} +\end{aligned} +\]

      +

      que es negativa cuando \(p=\hat{p}\), de forma que \(\hat{p}\) es efectivamente un máximo. +El método analítico expuesto en el ejemplo anterior, consistente en el cálculo de un extremo de una función, no se puede aplicar en todas las situaciones. En estos casos, una alternativa puede ser estudiar directamente la función de verosimilitud. Veamos un ejemplo:

      +

      Ejemplo 3.2.5 Sea \(X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} X \sim U(0, \theta) \quad \theta>0\) desconocido. Sabemos que:

      +

      \[ +f(x ; \theta)=\left\{\begin{array}{c} +\frac{1}{\theta} \text { si } 0<\min \left\{x_{i}\right\} \leq \max \left\{x_{i}\right\} \leq \theta \\ +0 \quad \text { en caso contrario } +\end{array}\right\} +\]

      +

      La derivada respecto a \(\theta\) es \(-\frac{n}{\theta^{n-1}}\), que se anula cuando \(\theta \underset{n \rightarrow \infty}{\longrightarrow} \infty\) que lleva a una solución sin sentido de la ecuación de verosimilitud. Una inspección de la gráfica de la función de verosimilitud revela que el EMV, en este caso,

      +

      Figura 3.1: Función de verosimilitud para una distribución uniforme +es \(\max \left\{X_{i}, \ldots, X_{n}\right\}\). Efectivamente, consideremos cualquier otro valor \(\theta^{*}\) diferente del máximo:

      +

      \[ +\begin{aligned} +& \text { Si } \theta^{*}>X_{(n)} \Rightarrow \frac{1}{\left(\theta^{*}\right)^{n}}<\frac{1}{\left(X_{n}\right)^{n}}, \\ +& \text { Si } \theta^{*}<X_{(n)} \Rightarrow L\left(\theta^{*} ; \mathbf{x}\right)=0 +\end{aligned} +\]

      +

      ya que si un estimador toma un valor inferior al máximo de la muestra habrá algún valor muestral, \(x_{i}\) para el cual se verificará que \(\theta^{*}<x_{i}\), lo que hace la muestra inverosímil, y por tanto el estimador no es admisible. +A la vista de lo anterior, deducimos que el valor que maximiza \(L(\theta ; \mathbf{x})\) es el máximo de la muestra.

      +

      Ejemplo 3.2.6 El método del máximo de verosimilitud se extiende de forma inmediata a los parámetros \(K\)-dimensionales. Consideremos el caso de la +ley normal \(X \sim N\left(\mu, \sigma^{2}\right)\). Aquí el parámetro \(\theta\) es bidimensional, es decir: \(\theta=\left(\mu, \sigma^{2}\right) \in \Theta=\mathbb{R} \times \mathbb{R}^{+}\)

      +
        +
      1. La función de verosimilitud de una muestra de tamaño \(n\) es:
      2. +
      +

      \[ +L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}=\frac{1}{(2 \pi)^{n / 2}\left(\sigma^{2}(n / 2\right.} e^{-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} +\]

      +
        +
      1. Sacando logaritmos
      2. +
      +

      \[ +\log L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}} +\]

      +
        +
      1. La derivada de \(L()\) es la matriz de derivadas:
      2. +
      +

      \[ +D \log L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)=\binom{\frac{\partial \log L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)}{\partial \mu}}{\frac{\partial \log L\left(\left(\mu, \sigma^{2}\right) ; \mathbf{x}\right)}{\partial \sigma^{2}}}=\left\{\begin{array}{c} +\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)}{\sigma^{2}} \\ +\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{4}}-\frac{n}{2 \sigma^{2}} +\end{array}\right. +\]

      +
        +
      1. Planteando y resolviendo la ecuación de verosimilitud tenemos:
      2. +
      +

      \[ +D \log L\left(\left(\hat{\mu}, \hat{\sigma}^{2}\right) ; \mathbf{x}\right)=\left\{\begin{array}{c} +\frac{\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)}{\hat{\sigma}^{2}}=0 \\ +\frac{\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}}{2 \hat{\sigma}^{4}}=\frac{n}{2 \hat{\sigma}^{2}} +\end{array}\right. +\]

      +

      de donde las raíces de la ecuación de verosimilitud son:

      +

      \[ +\hat{m} u=\bar{x}, \quad \hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}=s^{2} . +\]

      +
        +
      1. Para decidir si las raíces de la ecuación de verosimilitud corresponden a un máximo, analizamos la matriz de derivadas segundas, denominada Hessiana.
      2. +
      +

      \[ +H=\left(\begin{array}{cc} +\frac{\partial^{2} z}{\partial x^{2}} & \frac{\partial^{2} z}{\partial x \partial y} \\ +\frac{\partial^{2} z}{\partial y \partial x} & \frac{\partial^{2} z}{\partial y^{2}} +\end{array}\right) +\]

      +

      Una condición suficiente para que un punto \(\left(x_{0}, y_{0}\right)\) sea un máximo es que el determinante de \(H\) sea positivo y el menor en la posición ?11? negativo, es decir: +\(S i|H|>\left.0 y \frac{\partial^{2} z}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}<0 \Longrightarrow\) Hay un máximo relativo en \(\left(x_{0}, y_{0}\right)\). +Si evaluamos el Hessiano en el punto \(\left(\bar{x}, s^{2}\right)\) tenemos:

      +

      \[ +H=\left(\begin{array}{cc} +-\frac{n}{s^{2}} & 0 \\ +0 & -\frac{n}{2 s^{4}} +\end{array}\right) . +\]

      +

      Las condiciones de extremo que hemos dado más arriba se verifican: \(H_{11}<0 y|H|>0\), de manera que podemos concluir que el estimador del máximo de verosimilitud de \(\left(\mu, \sigma^{2}\right)\) es, efectivamente, \(\left(\bar{x}, s^{2}\right)\).

      + +
      +
      +
      +
      + +
      +
      +
      + + +
      +
      + + + + + + + + + + + + + + + diff --git a/docs/probabilidad-y-experimentos-aleatorios.html b/docs/probabilidad-y-experimentos-aleatorios.html index 670e2fd..bcc2aff 100644 --- a/docs/probabilidad-y-experimentos-aleatorios.html +++ b/docs/probabilidad-y-experimentos-aleatorios.html @@ -6,7 +6,7 @@ Capítulo 1 Probabilidad y Experimentos aleatorios | Fundamentos de Inferencia Estadistica - + @@ -23,7 +23,7 @@ - + @@ -363,44 +363,110 @@
    113. 6 Introducción a la inferencia estadística
    114. 6 Introducción a la inferencia estadística
    115. +
    116. 7 Estimación puntual +
    117. +
    118. 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES +
    119. -
    120. 7 Estimación por intérvalos +
    121. 9 Estimación puntual
    122. -
    123. 8 Pruebas de hipótesis +
    124. 10 Pruebas de hipótesis
    125. -
    126. 9 Inferencia Aplicada +
    127. 11 Inferencia Aplicada
    128. -
    129. 10 Computación Intensiva y Multiple Testing +
    130. 12 Computación Intensiva y Multiple Testing
    131. Published with bookdown
    132. @@ -422,24 +488,24 @@

      -
      -

      Capítulo 8 Pruebas de hipótesis

      +
      +

      Capítulo 10 Pruebas de hipótesis

      Este capítulo está pendiente de ser introducida en los apuntes.

      La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1).

      Se plantea el problema de las pruebas de hipótesis. Se discuten las aproximaciones y los conceptos asociados. Se trata el problema de la crisis de la significación.

      -
      -

      8.1 Conceptos básicos: pruebas de hipótesis y de significación, pruebas unilaterales y bilaterales, tipos de error, valores críticos de test y p-valores

      +
      +

      10.1 Conceptos básicos: pruebas de hipótesis y de significación, pruebas unilaterales y bilaterales, tipos de error, valores críticos de test y p-valores

      -
      -

      8.2 Potencia de un test. Cálculos de potencia y de tamaño de la muestra. Tamaño del efecto.

      +
      +

      10.2 Potencia de un test. Cálculos de potencia y de tamaño de la muestra. Tamaño del efecto.

      -
      -

      8.3 Métodos de construcción de tests.

      +
      +

      10.3 Métodos de construcción de tests.

      -
      -

      8.4 Problemas asociados al uso de tests estadísticos. La crisis de la significación

      +
      +

      10.4 Problemas asociados al uso de tests estadísticos. La crisis de la significación

      @@ -448,7 +514,7 @@

      8.4 Problemas asociados al uso de

      - +
      @@ -480,7 +546,7 @@

      8.4 Problemas asociados al uso de "size": 2 }, "edit": { -"link": "https://github.com/ASPteaching/FundamentosInferencia/edit/BRANCH/08-pruebasHipotesis.Rmd", +"link": "https://github.com/ASPteaching/FundamentosInferencia/edit/BRANCH/09-pruebasHipotesis.Rmd", "text": "Edit" }, "history": { @@ -488,7 +554,7 @@

      8.4 Problemas asociados al uso de "text": null }, "view": { -"link": "https://github.com/ASPteaching/FundamentosInferencia-Bookdown/blob/main/08-pruebasHipotesis.Rmd", +"link": "https://github.com/ASPteaching/FundamentosInferencia-Bookdown/blob/main/09-pruebasHipotesis.Rmd", "text": null }, "download": "https://github.com/ASPteaching/FundamentosInferencia-Bookdown/blob/main/docs/_main.pdf", diff --git a/docs/reference-keys.txt b/docs/reference-keys.txt deleted file mode 100644 index 81ce002..0000000 --- a/docs/reference-keys.txt +++ /dev/null @@ -1,224 +0,0 @@ -probabilidad-y-experimentos-aleatorios -introducción -fenómenos-deterministas-y-fenómenos-aleatorios -sucesos -sucesos-y-conjuntos -función-de-probabilidad -diferentes-funciones-de-probabilidad-para-una-misma-experiencia-aleatoria -cómo-se-calculan-las-probabilidades -sucesos-elementales-y-sucesos-observables -propiedades-inmediatas-de-la-probabilidad -succeso-imposible -suceso-implicado -complementario-de-un-suceso -ocurrencia-de-algun-suceso -probabilidad-de-que-ocurra-algun-suceso -probabilidad-de-que-ocurran-dos-o-más-sucesos-a-la-vez -espacios-de-probabilidad -probabilidad-condicionada -sucesos-dependientes-y-sucesos-independientes -incompatibilidad-e-independencia -dos-teoremas-importantes -teorema-de-las-probabilidades-totales -teorema-de-bayes -introducción-a-los-experimentos-múltiples -combinatoria -permutaciones -variaciones -variaciones-con-repetición -combinaciones -permutaciones-con-repetición -frecuencia-relativa-y-probabilidad -caso-de-estudio-eficacia-de-una-prueba-diagnóstica -aplicación-del-teorema-de-bayes -ejemplo-numérico -variables-aleatorias-y-distribuciones-de-probabilidad -el-espacio-muestral-y-sus-elementos -representación-numérica-de-los-sucesos-elementales.-variables-aleatorias -caracterización-de-una-variable-aleatoria-a-través-de-la-probabilidad.-función-de-distribución -propiedades-de-la-función-de-distribución -clasificación-de-las-variables-aleatorias -variables-aleatorias-discretas -variables-aleatorias-continuas -variable-aleatoria-discretas -ejercicio-propuesto -solución -caracterización-de-las-v.a.-discretas -propiedades-de-la-función-de-densidad-discreta -relaciones-entre-la-función-de-distribución-y-la-función-de-densidad-discreta.-probabilidad-de-intervalos. -variables-aleatorias-continuas-1 -función-de-densidad-continua -relaciones-entre-la-función-de-distribución-y-la-función-de-densidad. -probabilidad-de-intervalos -caracterización-de-una-variable-aleatoria-a-través-de-parámetros -esperanza-de-una-variable-aleatoria-discreta -esperanza-de-una-variable-aleatoria-continua -propiedades-de-la-esperanza-matemática -linealidad-de-la-esperanza-matemática -esperanza-del-producto -varianza-de-una-variable-aleatoria -propiedades-de-la-varianza -momentos-de-orden-k-de-una-variable-aleatoria -definición-formal-de-variable-aleatoria -caso-práctico-lanzamiento-de-dos-dados -espacio-muestral -representación-numérica -algunas-probabilidades -función-de-distribución -clasificación-de-las-variables -función-de-densidad-discreta -probabilidad-de-intervalos-1 -esperanza -esperanza-de-un-juego -esperanza-con-recorrido-infinito -esperanza-infinita -varianza -distribuciones-notables -distribuciones-discretas -la-distribución-de-bernouilli -propiedades-del-modelo-de-bernouilli -la-distribución-binomial -los-parámetros-de-la-distribución-binomial -propiedades-del-modelo-binomial -la-distribución-de-poisson -propiedades-del-modelo-de-poisson -la-distribución-uniforme-discreta -propiedades-del-modelo-uniforme-discreto -esperanza-1 -varianza-1 -la-distribución-hipergeométrica -propiedades-del-modelo-hipergeométrico -la-distribución-geométrica-o-de-pascal -propiedades-del-modelo-geométrico-o-de-pascal -preguntas -la-distribución-binomial-negativa -propiedades-del-modelo-binomial-negativo -tabla-resumen-de-las-distribuciones-discretas-principales -distribuciones-continuas -la-distribución-uniforme -propiedades-del-modelo-uniforme -una-aplicación-del-modelo-uniforme-el-muestreo-de-montecarlo -generación-de-una-muestra-procedente-de-una-distribución-binomial -la-distribución-exponencial -propiedades-del-modelo-exponencial -la-distribución-normal -propiedades-del-modelo-normal -la-distribución-gamma -propiedades-de-la-distribución-gamma -la-distribución-de-cauchy -propiedades-de-la-distribución-de-cauchy -la-distribución-de-weibull -propiedades-de-la-distribución-weibull -tabla-resumen-de-las-principales-distribuciones-continuas -distribuciones-con-r-y-python -la-familia-exponencial-de-distribuciones -ejemplos-de-distribuciones-de-esta-familia -distribución-de-poisson -distribución-normal-uniparamétrica -caso-1-fijando-la-media-mu_0 -caso-2-fijando-la-varianza-sigma_02 -distribución-binomial -importancia-y-utilidad-de-la-familia-exponencial -los-modelos-lineales-generalizados-glms -estimación-en-la-familia-exponencial -distribuciones-de-probabilidad-multidimensionales -distribuciones-conjuntas-de-probabilidades -variable-aleatoria-bivariante -función-de-distribución-bivariante -ejemplo-distribución-conjunta-del-estado-de-infección-y-activación-de-células -función-de-distribución-conjunta -cálculo-de-la-probabilidad-de-eventos-específicos -implementación-en-r -variable-aleatorias-bivariantes-discretas -función-de-masa-de-probabilidad-discreta-fmp -propiedades-de-la-fmp-bivariante -intuición-frente-a-construcción -ejemplo-de-distribución-bivariante-discreta -código-r-para-el-cálculo-de-la-pmf -código-r-para-visualizar-la-distribución-conjunta -la-distribución-multinomial -generación-de-las-observaciones -funcion-de-masa-de-probabilidad-de-la-distribución-multinomial -relación-con-la-distribución-binomial -un-caso-particular-la-distribución-trinomial -distribuciones-marginales -las-marginales-están-en-los-márgenes -densidades-marginales-discretas -trinomial-m5-0.6-0.2-distribuciones-marginales -distribuciones-condicionales -densidad-condicional -trinomial-m5-0.6-0.2-distribución-condicional -vectores-aleatorios-absolutamente-continuos -propiedades-de-la-función-de-densidad-conjunta -densidades-marginales-en-el-caso-continuo -densidad-condicional-en-el-caso-continuo -la-distribución-normal-bivariante -función-de-densidad-conjunta -ejemplo -distribuciones-marginales-1 -ejemplo-1 -distribuciones-condicionales-1 -ejemplo-2 -independencia-de-variables-aleatorias -primera-caracterización-de-la-independencia -variables-discretas-independientes -propiedades-de-las-variables-independientes -momentos-de-vectores-aleatorios -esperanza-de-un-vector-aleatorio-o-vector-de-medias -covarianza-entre-dos-variables-aleatorias -covarianza-y-correlación -matriz-de-varianzas-covarianzas -matriz-de-correlaciones -relación-con-la-matriz-de-covarianzas -segunda-caracterización-de-la-independencia -relación-entre-incorrelación-e-independencia -grandes-muestras -introducción-aproximaciones-asintóticas -convergencia-de-variables-aleatorias -leyes-de-los-grandes-números -el-teorema-central-del-límite -sumas-de-variables-aleatorias -presentación-de-los-ejemplos -definición-de-convergencia-en-ley -representación-gráfica-de-la-convergencia -enunciado-del-teorema-central-del-límite -comentarios-al-teorema -aplicación-del-tcl-a-los-ejemplos -casos-particulares-más-notables -promedio-de-boldsymboln-variables-aleatorias -binomial-de-parámetros-n-y-p -poisson-de-parámetro-n-lambda -interpretación-del-teorema-central-del-límite -aproximaciones-y-errores-numéricos -acerca-de-las-variables-aproximadamente-normales -introducción-a-la-inferencia-estadística -los-problemas-de-la-inferencia-estadística. -muestreo-y-distribuciones-en-el-muestreo. -la-verosimilitud-y-su-papel-en-la-inferencia-estadística -el-problema-de-la-estimación.-tipos-de-estimadores. -métodos-de-obtención-de-estimadores.-estimadores-máximo-verosímiles-y-estimadores-bayesianos. -propiedades-de-los-estimadores. -estimación-por-intérvalos -preliminares-estimación-del-error-estándar-e-introducción-al-bootstrap -estimadores-por-intervalo-intervalos-de-confianza -intervalos-de-confianza-para-características-de-una-población-normal-media-varianza -intervalos-de-confianza-bootstrap. -intervalos-de-confianza-para-proporciones-binomiales -intervalos-de-confianza-para-parámetros-en-muestra-grandes-y-para-casos-generales-tasas-or -aplicaciones-cálculo-del-tamaño-muestral -pruebas-de-hipótesis -conceptos-básicos-pruebas-de-hipótesis-y-de-significación-pruebas-unilaterales-y-bilaterales-tipos-de-error-valores-críticos-de-test-y-p-valores -potencia-de-un-test.-cálculos-de-potencia-y-de-tamaño-de-la-muestra.-tamaño-del-efecto. -métodos-de-construcción-de-tests. -problemas-asociados-al-uso-de-tests-estadísticos.-la-crisis-de-la-significación -inferencia-aplicada -pruebas-de-normalidad.pruebas-gráficas.-el-test-de-shapiro-wilks -pruebas-de-hipótesis-para-constrastar-variables-cuantitativas-pruebas-paramètricas-t-test-y-anova -pruebas-de-hipótesis-para-constrastar-variables-cuantitativas-pruebas-de-hipótesis-no-paramétricas-de-wilcoxon-y-kruskal-wallis -contrastes-para-datos-categóricos.-pruebas-binomiales-ji-cuadrado-y-test-de-fisher. -riesgo-relativo-y-razón-de-odds -computación-intensiva-y-multiple-testing -tests-de-permutaciones-qué-cuándo-cómo -el-bootstrap-en-contraste-de-hipótesis -el-problema-de-las-comparaciones-múltiples -métodos-de-control-de-error-fwer-y-fdr diff --git a/docs/search_index.json b/docs/search_index.json index d184637..a29cfd0 100644 --- a/docs/search_index.json +++ b/docs/search_index.json @@ -1 +1 @@ -[["index.html", "Fundamentos de Inferencia Estadistica Presentación Objetivo Prerequisitos y organización del material Referencias", " Fundamentos de Inferencia Estadistica Alex Sanchez Pla y Santiago Pérez Hoyos 2024-10-21 Presentación Objetivo El objetivo de estas notas es presentar un material de soporte para la asignatura de “Inferencia Estadística” del Máster interuniversitario de Bioiestadística y Bioinformática impartido conjuntamente por la Universitat Oberta de Catalunya (UOC) y la Universidad de Barcelona (UB). Esta asignatura adolece de las características habituales de las asignaturas de posgrado, y especialmente de un posgrado de estadística (y bioinformática), que muestran algunas de las cosas que no debe de ser esta asignatura: No puede ser un primer curso de estadística, porque se supone que los estudiantes del máster ya lo han cursado en sus grados. Por no decir que, a quien viene a especializarse en estadística se le puede suponer una base mínima. Tampoco debe ser como los segundos cursos de estadística de algunos grados, que tratan temas como la regresión, el diseño de experimentos o el análisis multivariante, porque esto ya se trata en diversas asignaturas del máster. ¿Que debemos pues esperar que sea este curso? Puestos a pedir, este curso debería servir para repasar y consolidar los conceptos básicos que la mayoría de estudiantes traerán consigo. Además, y sobretodo, debe proporcionar una visión general, lo más completa posible dentro de las limitaciones de tiempo, del campo de la inferencia estadística Y, naturalmente, esto significa proporcionar aquellos conceptos sobre los que se apoyaran muchas de las restantes asignaturas como “Regresión modelos y métodos”, “Diseño de Experimentos”, “Análisis Multivariante”, “Análisis de la Supervivencia” o “Análisis de datos ómicos”. Prerequisitos y organización del material Uno de los problemas “eternos” en el estudio de la estadística ha sido siempre la falta de acuerdo, entre la comunidad de docentes, de cual debería ser el nivel matemático a que se impartan los cursos. En los cursos de pre-grado ha habido un cierto consenso, y con los años el nivel de formalismo ha disminuido, incluso en estudios de tipo “STEM”, tendiendo a centrarse en la aplicación de los conceptos, por ejemplo usando R, más que en un tratamiento formal (“matemático”) de los mismos. Aunque esto puede ser práctico para aquellos estudios en los que la estadística és una asignatura de un grado, es también obvio que dicha aproximación no permite profundizar en muchos de los puntos que se tratan. Es por ello que en este curso seguiremos la indicación habitual en cursos similares de asumir que el estudiante: Se siente comodo con el lenguaje algebráico, desarrollo de expresiones, sumatorios etc. Está familiarizado con el cálculo diferencial en una o varias variables, aunque esta familiaridad no será imprescindible para seguir la mayoría de los contenidos del curso. Conoce el lenguaje estadístico R, que en muchas ocasiones nos ofrecerá una solución directa a los problemas de cálculo. Referencias Los prerequisitos anteriores corresponden básicamente a las matemáticas del bachilerato. Algunas funetes adiconales pueden ser: Iniciación a las matemáticas para la ingeniería. M. Besalú y Joana Villalonga Colección de (100) videos de soporte a las matemáticas para la ingeniería "],["agradecimiento-y-fuentes-utilizadas.html", "Agradecimiento y fuentes utilizadas El proyecto Statmedia Otros materiales utilizados", " Agradecimiento y fuentes utilizadas Salvo que uno desee escribir un libro sobre algo muy extraño, siempre habran otros libros o manuales similares al que se está planteando. La respuesta a la pregunta, “Y entonces, ¿porque hacer un nuevo matrerial?” suele ser más una excusa que una explicación sólida. Una posible razón puede ser para ajustarlo al máximo al perfil del curso para al que se destinan dichos materiales, condición que otros textos, pensados para cursos y audiencias distintas, pueden no satisfacer. En este caso adoptaremos esta explicación y el tiempo decidirá si el objetivo se alcanza. Dicho esto, debemos agradecer a las distintas fuentes utilizadas, el que hayan puesto a disposición sus materiales para poder reutilizarlos. Entre estos destacamos: El proyecto Statmedia Statmedia es un grupo de innovación docente de la Universidad de Barcelona, cuyo objetivo es desarrollar nuevas herramientas que ayuden en la enseñanza de la estadística aplicada, mejorando así el rendimiento académico de los alumnos y su motivación hacia la estadística. Partiendo de la idea que el aprendizaje debe basarse en casos prácticos para motivar y fomentar la participación de los estudiantes. Se desarrolló primer proyecto, Statmedia I, un texto multimedia de estadística que además de los contenidos, relativamente ampliados, para un curso de introducción a la estadística, incorporaba: Una serie de casos para motivar e ilustrar los conceptos introducidos. Un conjunto de gadgets interactivos con los que interactuar y experimentar y Ejercicios de respuesta múltiple para verificar los conceptos trabajados. Aunque el proyecto Statmedia ha seguido evolucionando en múltiples direcciones, Statmedia I, como tantos otros, no sobrevivió al desarrollo tecnológico, y la evolución (o decadencia) del lenguaje Java lo llevó a dejar de ser funcional. Para estos apuntes hemos recuperado, y en ocasiones adaptado o modificado, algunos de los contenidos de Statmedia I, que habían estado escritos con gran pulcritud. Esto se ha hecho siguiendo las indicaciones de la licencia (CC-Share-alike) que permite adaptar contenidos atribuyendolo a sus autores y citando la fuente. Los gadgets originales ya no son funcionales pero muchos de ellos han sido re-escritos en R como aplicaciones Shiny (disponibles en: https://grbio.upc.edu/en/software/teaching_apps) y se enlazaran desde los puntos necesarios del texto. Dejando aparte (además) de la licencia, vaya nuestro agradecimiento explícito al equipo de profesores del Departamento de Estadística de la Universidad de Barcelona, redactor de la versión inicial del proyecto, que es la que hemos utilizado: Antonio Arcas Pons, Miquel calvo Llorca, Antonio Miñarro Alonso, Sergi Civit Vives y Angel Vilarroya del Campo. Antoni Arcas, Antonio Miñarro and Miguel Calvo (2008) Statmedia projects in Statistical Education Otros materiales utilizados Alex Sanchez y Francesc Carmona (2002). Apunts d’Estadística Matemàtica Licencia CC0 1.0 Universal Molina Peralta, I. and García-Portugués, E. (2024). A First Course on Statistical Inference. Version 2.4.1. ISBN 978-84-09-29680-4. Licencia CC BY-NC-ND 4.0 Peter K. Dunn (2024) The theory of distributions. Licencia CC BY-NC-ND 4.0 "],["probabilidad-y-experimentos-aleatorios.html", "Capítulo 1 Probabilidad y Experimentos aleatorios 1.1 Introducción 1.2 Función de probabilidad 1.3 ¿Cómo se calculan las probabilidades? 1.4 Sucesos elementales y sucesos observables 1.5 Propiedades inmediatas de la probabilidad 1.6 Espacios de probabilidad 1.7 Probabilidad condicionada 1.8 Dos Teoremas importantes 1.9 Introducción a los experimentos múltiples 1.10 Combinatoria 1.11 Frecuencia relativa y probabilidad 1.12 Caso de Estudio: Eficacia de una prueba diagnóstica", " Capítulo 1 Probabilidad y Experimentos aleatorios 1.1 Introducción 1.1.1 Fenómenos deterministas y fenómenos aleatorios Supongamos que disponemos de un dado regular con todas las caras pintadas de blanco y con un número, que irá de 1 a \\(6 \\sin\\) repetir ninguno, en cada una de las seis caras. Definamos los dos experimentos siguientes: Experimento 1: Tirar el dado y anotar el color de la cara resultante. Experimento 2: Tirar el dado y anotar el número de la cara resultante. ¿Qué diferencia fundamental observamos entre ambos experimentos? Muy simple! En el experimento 1, el resultado es obvio: saldrá una cara de color blanco. Es decir, es posible predecir el resultado. Se trata de un experimento o fenómeno determinista. En cambio, en el experimento 2 no podemos predecir cuál será el valor resultante. El resultado puede ser : \\(1,2,3,4,5\\) o 6 . Se trata de un experimento o fenómeno aleatorio. El conjunto de resultados se anotará con el símbolo: \\(\\Omega\\). En este caso, \\(\\Omega=\\{1,2,3,4,5,6\\}\\). En los fenómenos aleatorios, al hacer muchas veces la experiencia, la frecuencia relativa de cualquier elemento del conjunto de resultados debe aproximarse siempre hacia un mismo valor. 1.1.2 Sucesos Supongamos que se ejecuta un experimento aleatorio. Se nos puede ocurrir emitir un enunciado que, una vez realizada la experiencia, pueda decirse si se ha verificado o no se ha verificado. A dichos enunciados los denominamos sucesos. Por otro lado, los sucesos van asociados a subconjuntos del conjunto de resultados. Cada suceso se corresponderá exactamente con uno, y sólo con un, subconjunto del conjunto de resultados. Veamos un ejemplo: Experimento: Tirar un dado regular. Conjunto de resultados : \\(\\Omega=\\{1,2,3,4,5,6\\}\\) Enunciado: Obtener múltiplo de 3. Subconjunto al que se asocia el enunciado: \\(A=\\{3,6\\}\\) Nos referiremos habitualmente al suceso A. 1.1.2.1 Sucesos y conjuntos Al conjunto de resultados \\(\\Omega\\), se le denomina suceso seguro. Al conjunto Ø ( conjunto sin elementos), se le denomina suceso imposible. Al complementario del conjunto \\(\\mathrm{A}\\left(\\mathrm{A}^{\\mathrm{c}}\\right)\\), se le denomina suceso contrario o complementario de \\(A\\). A partir de dos sucesos A y B, podemos formar los sucesos siguientes: A intersección B, que anotaremos como: \\[ A \\cap B \\] A unión B, que anotaremos como: \\[ A \\cup B \\] A intersección B, significa que se verifican a la vez A y B. A unión B, significa que se verifica \\(A\\) o \\(B\\) ( se pueden verificar a la vez). 1.2 Función de probabilidad Lógicamente, una vez tenemos un suceso, nos preocupa saber si hay muchas o pocas posibilidades de que al realizar la experiencia se haya verificado. Por lo tanto, sería interesante el tener alguna función que midiera el grado de confianza a depositar en que se verifique el suceso. A esta función la denominaremos función de probabilidad. La función de probabilidad será, pues, una aplicación entre el conjunto de resultados y el conjunto de números reales, que asignará a cada suceso la probabilidad de que se verifique. La notación: \\(\\mathrm{P}(\\mathrm{A})\\) significará: probabilidad de que se verifique el suceso A . Pero claro, de funciones de probabilidad asociadas a priori a una experiencia aleatoria podrían haber muchas. Lo que se hace para decir qué es y qué no es una función de probabilidad es construir una serie de propiedades (denominadas axiomas) que se exigirán a una función para poder ser catalogada como función de probabilidad. Y, ¿cuáles son estos axiomas? Pues los siguientes: Sea S el conjunto de sucesos. Axioma 1: Para cualquier suceso A, la probabilidad debe ser mayor o igual que 0. Axioma 2: La probabilidad del suceso seguro debe ser 1: \\(\\mathrm{P}(\\Omega)=1\\) Axioma 3: Para sucesos \\(\\mathrm{A}_{\\mathrm{i}}\\), de modo que cada par de sucesos no tengan ningún resultado común, se verifica que: \\[ P\\left(\\bigcup_{i=1}^{\\infty} A_{i}\\right)=\\sum_{i=1}^{\\infty} P\\left(A_{i}\\right) \\] De este modo, pueden haber muchas funciones de probabilidad que se podrían asociar con la experiencia. El problema pasa entonces al investigador para decidir cual o cuales son las funciones de probabilidad más razonables asociadas con la experiencia que está manejando. 1.2.1 ¿Diferentes funciones de probabilidad para una misma experiencia aleatoria? Supongamos la experiencia de tirar un dado regular. A todo el mundo se le ocurriría pensar que la función de probabilidad se obtiene de contar el número de resultados que contiene el suceso dividido por 6 , que es el número total de resultados posibles. Así pues, la probabilidad de obtener un múltiplo de 3 sería igual a \\(2 / 6\\), la probabilidad de obtener el número 2 sería \\(1 / 6\\) i la probabilidad de obtener un número par sería 3/6. Es decir, parece inmediato construir la función de probabilidad que, además, parece única. A nadie se le ocurre decir, por ejemplo, que la probabilidad de obtener un número par es \\(5 / 6\\) ! En este caso, todo ha sido muy fácil. Hemos visto que existe una única función de probabilidad que encaje de forma lógica con la experiencia y, además, ha sido muy sencillo encontrarla. Pero esto, por desgracia, no siempre es así. En muchísimas ocasiones resulta muy complejo el decidir cuál es la función de probabilidad. En el tema de variables aleatorias y de función de distribución se explica el problema de la modelización de muchas situaciones reales. 1.3 ¿Cómo se calculan las probabilidades? No siempre es fácil conocer los valores de la función de probabilidad de todos los sucesos. Sin embargo, muchas veces se pueden conocer las probabilidades de algunos de estos sucesos. Con la ayuda de ciertas propiedades que se deducen de manera inmediata a partir de la axiomática es posible calcular las probabilidades de más sucesos. Por otro lado, en caso de que el número de resultados sea finito y de que todos los resultados tengan las mismas posibilidades de verificarse, la probabilidad de un suceso cualquiera se puede calcular a partir de la regla de Laplace: Si A es un suceso : \\[ \\text { Probabilidad }(A)=\\frac{\\text { Número de casos favorables }}{\\text { Número de casos posibles }} \\] donde: Número de casos favorables \\(=\\) Número de resultados contenidos en \\(\\mathrm{A}(\\) cardinal de A\\()\\) Número de casos posibles \\(=\\) Número total de resultados posibles (cardinal del conjunto total de resultados) En este caso, el contar número de resultados, ya sean favorables o posibles, debe hacerse por medio de la combinatoria. Veamos con unos ejemplos muy sencillos y visuales cómo se obtienen y qué representan los casos posibles y los casos favorables. También es posible obtener de manera aproximada la probabilidad de un suceso si se puede repetir muchas veces la experiencia: la probabilidad del suceso sería el valor al que tendería la frecuencia relativa del suceso. Podéis consultar más detalles acerca de esta aproximación. En este caso, la cuestión estriba en poder hacer muchas veces la experiencia en condiciones independientes. 1.4 Sucesos elementales y sucesos observables En el contexto de la probabilidad, es fundamental diferenciar entre los sucesos elementales y los sucesos observables. Los sucesos elementales son los resultados individuales que pueden ocurrir al realizar un experimento aleatorio, es decir, cada uno de los elementos que conforman el conjunto de resultados \\(\\Omega\\). En nuestro ejemplo del dado, los sucesos elementales son los números \\(1, 2, 3, 4, 5\\) y \\(6\\). Sin embargo, no todos los sucesos elementales son necesariamente observables. Un suceso observable es un subconjunto de estos sucesos elementales que permite formular afirmaciones verificables sobre el resultado del experimento. Ejemplo Podemos imaginar un dado en el que pintamos de blanco las caras pares y de negro las impares. En este caso los sucesos elementales serían los habituales 1, 2, 3,…6. Sin embargo tan solo “Par” (“blanco”) o impar (“negro”) se pueden observar. Si repintamos el dado de forma que las caras 1 y 2 esten blancas, las 3 y 4, azules y las 5 y 6 rojas podremos observar el suceso “Sale 1 o 2 (=Sale blanco)” o “sale blanco o azul”, pero no el suceso “sale par” dado que cada color contiene un número par y uno impar Para formalizar estos conceptos, definimos el espacio de probabilizable como el par de conjuntos formados por: \\((\\Omega, \\mathcal{A})\\) \\(\\Omega\\) es el conjunto de todos los resultados posibles (el conjunto de resultados o sucesos elementales). \\(\\mathcal{A}\\) es el conjunto de todos los sucesos observables, que vienen definidos por el nivel de observación del experimento. 1.5 Propiedades inmediatas de la probabilidad Veremos a continuación una serie de propiedades que se deducen de manera inmediata de la axiomática de la probabilidad. 1.5.1 Succeso imposible El suceso imposible se identifica con el conjunto vacío, puesto que no hay ningún resultado asociado a él. La probabilidad del suceso imposible es: \\[ P(\\varnothing)=0 \\] 1.5.2 Suceso implicado Decimos que un suceso, B, esta implicado por otro suceso A, si siempre que se presenta A, también lo hace B. Por ejemplo, si al tirar un dado se obtiene un dos (suceso A), ello implica que ha salido un número par (suceso B). En terminos de conjuntos, A es un suceso que está contenido en B (todos los resultados de A también pertenecen a B ), por lo que: \\[ \\mathrm{P}(\\mathrm{A}) \\leq \\mathrm{P}(\\mathrm{B}) \\] 1.5.3 Complementario de un suceso Sea \\(A^{\\mathrm{c}}\\) el suceso formado por todos los elementos de \\(\\Omega\\) que no pertenecen a A (Suceso complementario de A). La probabilidad de dicho suceso es igual a: \\[ \\mathrm{P}\\left(\\mathrm{A}^{\\mathrm{c}}\\right)=1-\\mathrm{P}(\\mathrm{A}) \\] 1.5.4 Ocurrencia de algun suceso La probabilidad de la unión de dos sucesos A y B es igual a: \\[ P(A \\cup B)=P(A)+P(B)-P(A \\cap B) \\] 1.5.5 Probabilidad de que ocurra algun suceso Si tenemos una colección de \\(k\\) sucesos, la probabilidad de la unión de dichos sucesos será: \\[ P\\left(\\bigcup_{i=1}^{k} A_{i}\\right)=\\sum_{i=1}^{k} P\\left(A_{i}\\right)-\\sum_{i<j} P\\left(A_{i} \\cap A_{j}\\right)+\\sum P\\left(A_{i} \\cap A_{j} \\cap A_{k}\\right)+\\ldots+(-1)^{k+1} \\cdot P\\left(A_{1} \\cap . . \\cap A_{k}\\right) \\] 1.5.6 Probabilidad de que ocurran dos (o más) sucesos a la vez No existe una expresión cerrada única para la probabilidad de que ocurran dos o más sucesos a la vez, pues esto depende de si los sucesos que consideramos son dependientes o independientes, conceptos éstos, que introduciremos en la próxima sección. Lo que si que existe es una cota para dicha probabilidad, es decir, podemos decir que valor alcanza dicha probabilidad, como mínimo. \\[ P\\left(\\bigcap_{i=1}^{n} A_{i}\\right) \\geq 1-\\sum_{i=1}^{n} P\\left(\\bar{A}_{i}\\right) \\] 1.6 Espacios de probabilidad Para concluir esta introducción introduciremos los espacio de probabilidad que, extienden los espacios probabilizables definidos en la sección anterior La terna \\((\\Omega, \\mathcal{A}, P)\\) donde: \\(Omega\\) es el conjunto de todos los resultados posibles (el conjunto de resultados o sucesos elementales), \\(\\mathcal{A}\\) es el conjunto de todos los sucesos observables, que vienen definidos por el nivel de observación del experimento y \\(P\\) es una función de probabilidad, que asigna a cada suceso observable \\(A \\in \\mathcal{A}\\) un número real \\(P(A)\\) que representa la probabilidad de que ocurra dicho suceso se conoce como espacio de probabilidad. Es importante destacar que la probabilidad se calcula exclusivamente para los sucesos observables, lo que garantiza que la medida sea coherente y verificada a través de experimentos. Los espacios de probabilidad proporcionan una estructura fundamental para analizar y medir las incertidumbres asociadas a los fenómenos aleatorios, facilitando el estudio de sus propiedades, la construcción, sobre ellos de diversos conceptos fundamentales como el de variables aleatorias, y, en general, la aplicación de teorías de la probabilidad a diversas áreas de conocimiento. 1.7 Probabilidad condicionada Imaginemos que en la experiencia de tirar un dado regular supiéramos de antemano que se ha obtenido un número par. Es decir, que se ha verificado el suceso: \\(\\{B = \\mbox{número par}\\}\\)“. Pregunta: ¿Cuál es ahora la probabilidad de que se verifique el suceso mayor o igual a cuatro? Lógicamente, el resultado sería : \\(2 / 3\\). Por lo tanto, la probabilidad del suceso \\(\\mathrm{A}=\\) mayor o igual a cuatro se ha modificado. Evidentemente, ha pasado de ser \\(1 / 2\\) ( cuando no tenemos ninguna información previa) a ser \\(2 / 3\\) (cuando sabemos que se ha verificado el suceso B). ¿Cómo podemos anotar esta última probabilidad \\((2 / 3)\\) ? Muy sencillo. Anotaremos \\(\\mathrm{P}(\\mathrm{A} / \\mathrm{B})\\), que se lee como probabilidad de A condicionada a B . Así, en este ejemplo, \\[ \\begin{gathered} \\mathrm{P}(\\mathrm{A} / \\mathrm{B})=2 / 3 \\\\ \\mathrm{P}(\\mathrm{A})=1 / 2 \\end{gathered} \\] En términos generales, estamos en condiciones de poder definir la probabilidad condicionada, y lo hacemos como: \\[ P(A / B)=\\frac{P(A \\cap B)}{P(B)} \\] Podemos ahora visualizar de una manera práctica y divertida el ejemplo anterior. Siguiendo con la notación utilizada, el suceso A será lo que denominamos suceso de obtención, mientras que el suceso B será lo que denominamos suceso condicionado. La pantalla nos proporcionará los casos posibles para el condicionante elegido y los casos favorables, calculando mediante la regla de Laplace la probabilidad del suceso. Elegid suceso a estudiar. Desplazad, si procede, las barras de puntos. Elegir suceso condicionante. Desplazad, si procede, las barras de puntos. Comprobad los sucesos posibles y los favorables. La probabilidad condicionada se comporta, entonces, como una función de probabilidad. Es decir, verifica los tres axiomas siguientes: Axioma 1: \\[ \\mathrm{P}(\\mathrm{A} / \\mathrm{B}) \\geq 0 \\] Axioma 2: \\[ P(\\Omega / B)=1 \\] Axioma 3: \\[ P\\left(\\bigcup_{i=1}^{\\infty} A_{i} / B\\right)=\\sum_{i=1}^{\\infty} P\\left(A_{i} / B\\right) \\] para sucesos \\(\\mathrm{A}_{\\mathrm{i}}\\) con intersección vacía dos a dos. 1.7.1 Sucesos dependientes y sucesos independientes Sean A y B dos sucesos con probabilidad mayor que 0 . Evidentemente, si \\[ \\mathrm{P}(\\mathrm{A} / \\mathrm{B})=\\mathrm{P}(\\mathrm{A}) \\] B no ha modificado la probabilidad de que suceda A. En este caso diremos que son sucesos independientes. En caso contrario diremos que son sucesos dependientes. En el ejemplo del apartado anterior, se observa que los sucesos son dependientes puesto que las probabilidades anteriores no coinciden. Se verifica que independencia de los sucesos A y B es equivalente a decir que la probabilidad de la intersección es igual a producto de probabilidades de los dos sucesos. Se verifica también que si A y B son independientes: a) El complementario del suceso A y el suceso B son independientes. b) El complementario del suceso A y el complementario del suceso B son independientes. c) El complementario del suceso B y el suceso A son independientes. 1.7.2 Incompatibilidad e independencia Dos sucesos con intersección vacía se denominan sucesos incompatibles. Esto, ¿qué implica? Pues, que si se verifica uno seguro que no se verifica el otro, ya que no tienen resultados en común. Por lo tanto es el caso extremo de dependencia. Obtenemos en este caso que: \\[ \\mathrm{P}(\\mathrm{A} / \\mathrm{B})=0 \\] y, en consecuencia, si \\(\\mathrm{P}(\\mathrm{A})\\) y \\(\\mathrm{P}(\\mathrm{B})\\) son diferentes de cero, la probabilidad condicionada anterior es diferente de \\(\\mathrm{P}(\\mathrm{A})\\), y así se deduce la dependencia. La única posibilidad de que se dé incompatibilidad e independencia a la vez, es que alguno de los dos sucesos tenga probabilidad igual a cero. 1.8 Dos Teoremas importantes 1.8.1 Teorema de las probabilidades totales Sea \\(\\Omega\\) el conjunto total formado por una partición (colección de sucesos con intersección vacía dos a dos): \\[ \\Omega=H_{1} \\cup \\ldots \\ldots \\cup H_{n} \\] La probabilidad de cualquier otro suceso A , se puede obtener a partir de las probabilidades de los sucesos de la partición y de las probabilidades de A condicionado a los sucesos de la partición, de la manera siguiente: \\[ P(A)=\\sum_{i=1}^{n} P\\left(A / H_{i}\\right) \\cdot P\\left(H_{i}\\right) \\] Esto es lo que se conoce como teorema de las probabilidades totales. 1.8.2 Teorema de Bayes Es una consecuencia del teorema de las probabilidades totales. Sea \\(\\Omega\\) el conjunto total formado por una partición (colección de sucesos con intersección vacía dos a dos). \\[ \\Omega=H_{1} \\cup \\ldots \\ldots \\cup H_{n} \\] Ahora el interés se centrará en la obtención de la probabilidad de cualquier suceso de la partición condicionada a un suceso A cualquiera. El resultado será: \\[ P\\left(\\mathrm{H}_{\\mathrm{i}} / \\mathrm{A}\\right)=\\frac{\\mathrm{P}\\left(\\mathrm{A} / \\mathrm{H}_{\\mathrm{i}}\\right) \\cdot \\mathrm{P}\\left(\\mathrm{H}_{\\mathrm{i}}\\right)}{\\sum_{i=1}^{n} \\mathrm{P}\\left(\\mathrm{A} / \\mathrm{H}_{\\mathrm{i}}\\right) \\cdot \\mathrm{P}\\left(\\mathrm{H}_{\\mathrm{i}}\\right)} \\] Esto es conocido como teorema o regla de Bayes. 1.9 Introducción a los experimentos múltiples Supongamos que tiramos a la vez un dado y una moneda. Tenemos una experiencia múltiple, puesto que la experiencia que se realiza es la composición de dos experiencias (experiencia \\(1=\\) tirar un dado regular; experiencia 2 = tirar una moneda regular). ¿Cuál es en este caso el conjunto de resultados? Si \\(\\Omega_{1}\\) es el conjunto de resultados asociado con la experiencia tirar un dado y \\(\\Omega_{2}\\) es el conjunto de resultados asociado con la experiencia tirar una moneda, el conjunto de resultados asociado a la experiencia múltiple será \\(\\Omega_{1} \\times \\Omega_{2}\\). Es decir, \\(\\Omega_{1}=\\{1,2,3,4,5,6\\}\\) \\(\\Omega_{2}=\\{\\) cara, cruz \\(\\}\\) \\(\\Omega_{1} \\times \\Omega_{2}=\\{(1\\), cara \\(),(2\\), cara \\(),(3\\), cara \\(),(4\\), cara \\(),(5\\), cara \\(),(6\\), cara \\(),(1\\), cruz ), ( 2 , cruz ), ( 3, cruz ), (4, cruz \\(),(5\\), cruz \\(),(6\\), cruz \\()\\}\\) Si \\(\\mathrm{P}_{1}\\) y \\(\\mathrm{P}_{2}\\) son, respectivamente, las funciones de probabilidad asociadas a las experiencias 1 y 2 , ¿es posible calcular probabilidades de la experiencia múltiple a partir de \\(\\mathrm{P}_{1}\\) y \\(\\mathrm{P}_{2}\\) ? Efectivamente! Pero hemos de distinguir dos situaciones: Experiencias independientes: cuando el resultado de una no influya en la otra. Experiencias dependientes: cuando el resultado de una influya en la otra. En nuestro caso se trata de experiencias independientes, puesto que el resultado que se obtenga al tirar el dado no influye sobre el resultado que se obtenga al lanzar la moneda y al revés. ¿Como se calculan, pues, las probabilidades de la experiencia múltiple? Sea un suceso de la experiencia múltiple: A x B. Caso de experiencias independientes: \\[ \\mathrm{P}(\\mathrm{A} \\times \\mathrm{B})=\\mathrm{P}_{1}(\\mathrm{~A}) \\times \\mathrm{P}_{2}(\\mathrm{~B}) \\] Caso de experiencias dependientes: \\[ \\mathrm{P}(\\mathrm{A} \\times \\mathrm{B})=\\mathrm{P}_{1}(\\mathrm{~A}) \\times \\mathrm{P}_{2}(\\mathrm{~B} / \\mathrm{A}) \\] Entendemos que existe una \\(\\mathrm{P}_{2}\\) para cada suceso A . Esto que hemos explicado se puede, lógicamente, generalizar a una experiencia múltiple formada por \\(n\\) experiencias. 1.10 Combinatoria Veamos algunas fórmulas simples que se utilizan en combinatoria y que nos pueden ayudar a calcular el número de casos posibles o el número de casos favorables. 1.10.1 Permutaciones Sea un conjunto de \\(n\\) elementos. A las ordenaciones que se pueden hacer con estos \\(n\\) elementos \\(\\sin\\) repetir ningún elemento y utilizándolos todos se las denomina permutaciones. El número de permutaciones que se pueden realizar coincide con el factorial de \\(n\\), y su cálculo es: \\[ n!=n \\cdot(n-1) \\cdot(n-2) \\ldots \\ldots .2 \\cdot 1 \\] Ejemplo: ¿De cuántas maneras distintas podemos alinear a seis personas en una fila? Respuesta De \\(6!=6 \\cdot 5 \\cdot 4 \\cdot 3 \\cdot 2 \\cdot 1=720\\) maneras (permutaciones de 6 elementos). 1.10.2 Variaciones Sea un conjunto de \\(n\\) elementos. Supongamos que deseamos ordenar \\(r\\) elementos de entre los \\(n\\). A cada una de estas ordenaciones la denominamos variación. El número de variaciones que se pueden hacer de los \\(n\\) elementos tomados de \\(r\\) en \\(r\\) es: \\[ V_{n}^{r}=n \\cdot(n-1) \\ldots \\ldots(n-r+1) \\] Ejemplo En una carrera de velocidad compiten diez atletas. ¿De cuántas maneras distintas podría estar formado el podio? (el podio lo forman el primer, el segundo y el tercer clasificado) Respuesta Cada podio posible es una variación de diez elementos tomado de tres en tres. Por tanto, el número posible de podios es: \\[ \\mathrm{V}_{10}^{3}=10.9 .8=720 \\] 1.10.3 Variaciones con repetición Sea un conjunto de \\(n\\) elementos. Supongamos que se trata de ordenar \\(r\\) elementos que pueden estar repetidos. Cada ordenación es una variación con repetición. El número de variaciones con repetición para un conjunto de \\(n\\) tomados de \\(r\\) en \\(r\\) es : \\[ \\mathrm{RV}_{\\mathrm{n}}^{\\mathrm{r}}=\\mathrm{n}^{\\mathrm{r}} \\] Ejemplo En una urna tenemos cinco bolas numeradas del 1 al 5 . Se extraen tres bolas sucesivamente con reposición (devolviendo cada vez la bola a la urna). ¿Cuántos resultados distintos es posible obtener? Respuesta: Se trata de variaciones con repetición de un conjunto de cinco bolas tomadas de tres en tres. En total tendremos: \\[ \\mathrm{RV}_{5}^{3}=5^{3}=125 \\] 1.10.4 Combinaciones Cuando se trata de contar el número de subconjuntos de \\(x\\) elementos en un conjunto de \\(n\\) elementos tenemos lo que se denomina combinaciones de x elementos en un conjunto de n . El cálculo del contaje se hace mediante el número combinatorio, de la manera siguiente: \\[ \\mathrm{C}_{\\mathrm{n}}^{\\mathrm{x}}=\\binom{n}{\\mathrm{x}}=\\frac{\\mathrm{n!}}{\\mathrm{x}!.(\\mathrm{n}-\\mathrm{x})!} \\] Ejemplo ¿De cuántas maneras podemos elegir, en la urna anterior (recordemos que había cinco bolas), tres bolas en una única extracción? Respuesta Serán combinaciones de cinco elementos tomados de tres en tres, por tanto, tendremos: \\[ \\mathrm{C}_{5}^{3}=\\binom{5}{3}=\\frac{5!}{3!(5-3)!}=10 \\] 1.10.5 Permutaciones con repetición Sea un conjunto de \\(n\\) elementos, de entre los cuales tenemos \\(a\\) elementos indistinguibles entre sí, \\(b\\) elementos indistinguibles entre sí, \\(c\\) elementos indistinguibles entre sí, etc. Cada ordenación de estos elementos se denominará permutación con repetición. El número de permutaciones con repetición es: \\[ R P{ }_{n}^{a, b, c, \\ldots}=\\frac{n!}{a!b!c!\\ldots} \\] Ejemplo ¿Cuantas palabras con sentido o sin él pueden formarse con las letras PATATA? Respuesta: Tenemos tres veces la letra A, dos veces la T y una vez la P. Por tanto, serán: \\[ \\mathrm{RP}_{6}^{3,2,1}=\\frac{6!}{3!2!!}=60 \\] 1.11 Frecuencia relativa y probabilidad La definición moderna de probabilidad basada en la axiomática de Kolmogorov (presentada anteriormente) es relativamente reciente. Históricamente hubo otros intentos previos de definir el escurridizo concepto de probabilidad, descartados por diferentes razones. Sin embargo conviene destacar aquí algunas ideas que aparecen en la antigua definición basada en la frecuencia relativa, ya que permiten intuir algunas profundas propiedades de la probabilidad. Recordemos antes que si en un experimento que se ha repetido \\(n\\) veces un determinado suceso A se ha observado en \\(k\\) de estas repeticiones, la frecuencia relativa \\(\\mathrm{f}_{\\mathrm{r}}\\) del suceso A es: \\[ \\mathrm{f}_{\\mathrm{r}}=k / n \\] El interés por la frecuencia relativa y su relación con el concepto de probabilidad aparece a lo largo de los siglos XVIII a XX al observar el comportamiento de numerosas repeticiones de experimentos reales. A título de ejemplo de un experimento de este tipo, supongamos que se dispone de una moneda ideal perfectamente equilibrada. Aplicando directamente la regla de Laplace resulta claro que el suceso \\(\\mathrm{A}=\\) obtener cara tiene probabilidad: \\[ \\mathrm{p}(\\mathrm{A})=1 / 2=0,5 \\] ### Ilustración por simulación En el enlace siguiente se accede a una simulación por ordenador de la ley de los grandes números en la que se basa precisamente la idea de asimilar “a la larga” (es decir a medida que crece el número de repeticiones) frecuencia relativa y probabilidad. Enlace a la simulación En la simulación podéis definir: La verdadera probabilidad” de que al tirar la moneda salga cara, EL número de tiradas. Como podréis comprobar, sea cual sea la probabilidad (una moneda justa es un 0.5) a la larga la frecuencia relativa converge hacia el valor que habéis fijado. Eso sí, observad lo que sucede si fijais probabilidades cercanas a 0.5 o muy alejadas de ell. ¿La idea de lo que sucede a la larga es la misma? ¿En que encontráis diferencias? Aunque no deje de llamar la atención el carácter errático del comportamiento de \\(\\mathrm{f}_{\\mathrm{r}}\\) entre los valores 0 y 1, estaréis seguramente de acuerdo que a mayor número de lanzamientos \\(n\\), más improbable es que \\(f_{r}\\) se aleje mucho de \\(p(A)\\). La teoría moderna de la probabilidad enlaza formalmente estas ideas con el estudio de las leyes de los grandes números, que se discutiran con más detalle en el capítulo dedicado a las “Grandes muestras”. 1.12 Caso de Estudio: Eficacia de una prueba diagnóstica Para decidir la presencia(E) o ausencia (A) de sordera profunda a la edad de seis meses, se está ensayando una batería de tests. Considerando el caso en que la prueba pueda dar positivo \\((+)\\) o negativo \\((-)\\), hay que tener en cuenta que en individuos con dicha sordera la prueba dará a veces positivo y a veces negativo, e igual ocurrirá con individuos que no presentan la sordera. En este contexto todas las probabilidades pueden ser interpretadas en terminos de resultados positivos o neghativos, correctamente o no y cada una ha recibe un nombre que la ha popularizado dentro de la literatura médica: Así tenemos: \\(\\mathrm{P}(+/ \\mathrm{E})\\) Probabilidad de test positivo en individuos que padecen la sordera. Este valor se conoce como sensibilidad del test. \\(\\mathrm{P}(+/ \\mathrm{A})=\\) Probabilidad de test positivo en individuos que no padecen la sordera. Este valor se conoce como probabilidad de falso-positivo. \\(\\mathrm{P}(-/ \\mathrm{E})=\\) Probabilidad de test negativo en individuos que padecen la sordera Este valor se conoce como probabilidad de falso-negativo. \\(P(-/ A)=\\) Probabilidad de test negativo en individuos que no padecen sordera. Este valor se conoce como especificidad del test. Finalmente a la probabilidad, \\(\\mathrm{P}(\\mathrm{E})\\), de presentar la enfermedad se le conoce como prevalencia de la enfermedad. Lógicamente, en un “buen test” nos interesa que la sensibilidad y la especificidad sean elevadas, mientras que los falsos-positivos y falsos-negativos sean valores bajos. Además no debemos olvidar que, el interés de aplicar el test, consiste en que sirva de elemento predictivo para diagnosticar la sordera. Por lo tanto, interesa que las probabilidades: \\(\\mathrm{P}(\\mathrm{E} /+)=\\) Probabilidad de padecer sordera si el test da positivo \\(\\mathrm{P}(\\mathrm{A} /-)=\\) Probabilidad de no padecer sordera si el test da negativo sean realmente altas. A las probabilidades anteriores se las conoce como: valores predictivos del test, en concreto: \\(\\mathrm{P}(\\mathrm{E} /+)=\\) es el valor predictivo positivo y \\(\\mathrm{P}(\\mathrm{A} /-)=\\) es el valor predictivo negativo 1.12.1 Aplicación del Teorema de Bayes Estamos en una situación en que, a partir de conocimiento de unas probabilidades, nos interesa calcular otras, para lo que utilizaremos el teorema de Bayes. Habitualmente, a partir de estudios epidemiológicos y muestras experimentales, se estiman: La prevalencia La sensibilidad del test La especificidad del test La probabilidad de falso positivo La probabilidad de falso negativo ¿Cómo se obtiene entonces el valor predictivo del test? Veamos como aplicar el teorema de Bayes a este problema: Si dividimos a la población global (en este caso, el conjunto de todos los bebés de seis meses) entre los que padecen sordera y los que no la padecen, aplicando el teorema de Bayes resulta que: \\[ \\mathrm{P}(\\mathrm{E} /+)=(\\mathrm{P}(+/ \\mathrm{E}) \\times \\mathrm{P}(\\mathrm{E})) /(\\mathrm{P}(+/ \\mathrm{E}) \\times \\mathrm{P}(\\mathrm{E})+\\mathrm{P}(+/ \\mathrm{A}) \\times \\mathrm{P}(\\mathrm{~A})) \\] y \\[ \\mathrm{P}(\\mathrm{~A} /-)=(\\mathrm{P}(-/ \\mathrm{A}) \\times \\mathrm{P}(\\mathrm{~A})) /(\\mathrm{P}(-/ \\mathrm{A}) \\times \\mathrm{P}(\\mathrm{~A})+\\mathrm{P}(-/ \\mathrm{E}) \\times \\mathrm{P}(\\mathrm{E})) \\] 1.12.2 Ejemplo numérico Supongamos que en el ejemplo de la sordera, se sabe que: Prevalencia \\(=0,003\\), Es decir, que un tres por mil padece sordera profunda a esta edad. Sensibilidad \\(=0,98\\) Especificidad \\(=0,95\\) Probabilidad de falso positivo \\(=0,05\\) Probabilidad de falso negativo \\(=0,02\\) ¿Cuál es el valor predictivo del test? \\[ \\begin{aligned} & \\mathrm{P}(\\mathrm{E} /+)=(0,98 \\times 0,003) /(0,98 \\times 0,003+0,05 \\times 0,997)=0,00294 / 0,05279=0,055692 \\\\ & \\mathrm{P}(\\mathrm{~A} /-)=(0,95 \\times 0,997) /(0,95 \\times 0,997+0,02 \\times 0,003)=0,94715 / 0,94721=0,999936 \\end{aligned} \\] En conclusión, Podemos afirmar que se trata de un test muy válido para decidir que no hay sordera en caso de que el resultado del test sea negativo. Sin embargo, el valor tan bajo de \\(\\mathrm{P}(\\mathrm{E} /+)\\) no permite poder considerar al test como un predictor válido para diagnosticar la sordera. Obsérvese que: Probabilidad de falso positivo \\(=1-\\) especificidad Probabilidad de falso negativo \\(=1-\\) sensibilidad "],["variables-aleatorias-y-distribuciones-de-probabilidad.html", "Capítulo 2 Variables aleatorias y Distribuciones de probabilidad 2.1 El espacio muestral y sus elementos 2.2 Representación numérica de los sucesos elementales. Variables aleatorias 2.3 Caracterización de una variable aleatoria a través de la probabilidad. Función de distribución 2.4 Propiedades de la función de distribución 2.5 Clasificación de las variables aleatorias 2.6 Variable aleatoria discretas 2.7 Variables aleatorias continuas 2.8 Caracterización de una variable aleatoria a través de parámetros 2.9 Esperanza de una variable aleatoria discreta 2.10 Esperanza de una variable aleatoria continua 2.11 Propiedades de la esperanza matemática 2.12 Varianza de una variable aleatoria 2.13 Momentos (de orden \\(k\\)) de una variable aleatoria 2.14 Definición formal de variable aleatoria 2.15 Caso práctico: Lanzamiento de dos dados", " Capítulo 2 Variables aleatorias y Distribuciones de probabilidad En el capítulo anterior hemos introducido el concepto de probabilidad y como calcular probabilidades asociadas a sucesos observables, formados por uno o mas sucesos elementales, resultado de un experimento aleatorio. En muchas ocasiones nos interesa representar los resultados de un experimento aleatorio mediante un valor numérico que lo caracterice. Por ejemplo si tiramos tres monedas y contamos el número de caras, nos será indiferente cuando salgan dos caras, en que monedas ha salido una cara y en cual ha salido una cruz. En la práctica, esto significa que en dichas ocasiones, aunque haya un experimento aleatorio detras de los valores que observamos, tan sólo nos interesan los resultados que expresamos a traves de valores numéricos. Las variables aleatorias son la forma que hemos desarrollado para trasladar la estructura proporcionada por los espacios de probabilidad el espacio muestral, el conjunto de sucesos elementales, al conjunto de los números, en concreto a la recta real, haciéndolo de tal forma que podamos seguir calculando probabilidades de sucesos observables. En este capítulo veremos que las variables aleatorias permiten pues transportar la probabilidad del espacio de probabilidad original a la recta real. Para ello, introduciremos una función que es la que se ocupa de ello, la función de distribución de probabilidad. 2.1 El espacio muestral y sus elementos Cuando llevamos a cabo un experimento aleatorio, el conjunto \\(\\Omega\\) de resultados posibles forman el denominado espacio muestral. Sus elementos \\(\\omega\\) (resultados o sucesos elementales) deben ser conocidos por el investigador que realiza la experiencia, aun cuando no podamos determinar a priori el resultado particular de una realización concreta. Supondremos que también conocemos la manera de asignar una probabilidad sobre el conjunto de enunciados o sucesos observables que se pueden construir a partir de \\(\\Omega\\). Es decir, supondremos la existencia de un espacio de probabilidad construido a partir de los resultados de \\(\\Omega\\). Generalmente, la estructura del espacio muestral no permite, o por lo menos no facilita, su tratamiento matemático. Pensemos en la inmensa variedad en la naturaleza de resultados posibles de diferentes experimentos. Además es bastante frecuente que no nos interesen los resultados en sí, sino una característica que, de alguna manera, resuma el resultado del experimento. 2.2 Representación numérica de los sucesos elementales. Variables aleatorias La forma de resumen que adoptaremos es la asignación a cada suceso elemental de un valor numérico, en particular, de un número real. En la práctica la asignación de un valor numérico a cada elemento del espacio muestral se hace siguiendo una regla o enunciado, según el interés concreto del experimentador. Evidentemente, podemos construir diversas maneras de asignar valores numéricos a los mismos resultados de un experimento. Hablando en términos coloquiales, podemos decir que cada regla de asignación corresponde a una determinada variable que se puede medir sobre los sucesos elementales. Nótese que es posible construir múltiples variables sobre un mismo espacio de probabilidad. En términos algo más formales, las reglas de asignación se pueden interpretar como una aplicación de \\(\\Omega\\) en el conjunto de números reales. \\[ \\begin{aligned} X: \\Omega & \\rightarrow \\mathbb{R} \\\\ \\omega & \\rightarrow X(\\omega) \\end{aligned} \\] \\(X\\) representa la variable o regla de asignación concreta. El conjunto de valores numéricos que puede tomar una variable, y que depende de la naturaleza de la misma variable, recibe el nombre de recorrido de la variable. A partir de este momento, los sucesos elementales quedan substituidos por sus valores numéricos de acuerdo a una determinada variable y permiten un mayor tratamiento matemático en el marco de la teoría de la probabilidad. El apelativo aleatoria que reciben las variables hace referencia al hecho de que los posibles valores que toman dependen de los resultados de un fenómeno aleatorio que se presentan con una determinada probabilidad. Como un complemento al tema, al final del capítulo, presentamos la definición formal de variable aleatoria, donde se introducen las restricciones a las reglas de asignación numérica que posibilitan el tratamiento matemático de las variables. 2.3 Caracterización de una variable aleatoria a través de la probabilidad. Función de distribución Una vez que tenemos definida una variable aleatoria, ésta queda totalmente caracterizada en el momento en que somos capaces de determinar la probabilidad de que la variable tome valores en cualquier intervalo de la recta real. Dado que los posibles valores que puede tomar la variable, es decir, su recorrido, pueden ser muy grandes (infinitos de hecho), el problema de caracterizar una variable aleatoria se resuelve introduciendo una función especial, la función de distribución. Definición La función de distribución de una variable aleatoria \\(X\\) es la aplicación que, a cada punto de la recta real, le asigna la probabilidad del suceso formado por los resultados del experimento que tienen asignado un valor de la variable aleatoria menor o igual a dicho punto. \\[ \\begin{array}{rll} F: & \\mathbb{R} & \\rightarrow[0,1] \\\\ & x & \\rightarrow F(x)=P(X \\leq x)=P\\{\\omega \\in \\Omega \\mid X(\\omega) \\leq x\\} \\end{array} \\] También podemos decir que es la probabilidad inducida en el intervalo de la recta \\((-\\infty, x]\\) Hay que hacer notar que siempre será posible determinar dicha probabilidad gracias a los requerimientos exigidos en la definición formal de variable aleatoria. Por tanto, toda variable aleatoria tiene asociada una función de distribución. Nos referimos a esta función cuando decimos que conocemos la distribución de la variable aleatoria. 2.4 Propiedades de la función de distribución La forma en que hemos definido las funciones de distribución determina que dichas funciones deban de tener las siguientes propiedades: \\(0 \\leq F(x) \\leq 1. \\quad\\) Efectivamente, se trata de una probabilidad, por lo que toma valores entre 0 y 1 \\(\\lim _{x \\rightarrow+\\infty} F(x)=1. \\quad\\) A medida que un valor se hace más y más grande, la probabilidad de encontrar valores anteriores a él crece y, en el límite, valdrá uno (el valor máximo para una probabilidad). \\(\\lim _{x \\rightarrow-\\infty} F(x)=0. \\quad\\) A medida que un valor se hace más y más negativo, la probabilidad de encontrar valores anteriores a él disminuye, y en el límite es cero (el valor mínimo para una probabilidad). \\(x_{1}<x_{2} \\Rightarrow F\\left(x_{1}\\right) \\leq F\\left(x_{2}\\right). \\quad\\) Por construcción, es una función monótona, es decir, si un valor es inferior a otro, la probabilidad de encontrar valores inferiores al menor de los dos será menor o igual que la de encontrarlos inferiores al mayor de los dos. \\(\\lim _{x \\rightarrow a^{+}} F(x)=F(a) \\quad \\forall a \\in \\mathbb{R}. \\quad\\) Por la forma en que se ha definido, la función de distribución es contínua por la derecha. Toda función que verifique las propiedades anteriores es una función de distribución y toda función de distribución caracteriza una determinada variable aleatoria sobre algún espacio de probabilidad. Las propiedades anteriores determinan la forma de la función de distribución. En concreto, según la variable sea contínua o discreta, conceptos definidos a continuación en el capítulo, la forma de la función será: : Primer tipo (Variables contínuas) Segundo tipo (variables discretas) 2.5 Clasificación de las variables aleatorias Para su estudio, las variables aleatorias se clasifican en variables discretas o variables contínuas. 2.5.1 Variables aleatorias discretas Definición: Variable aleatoria discreta Diremos que una variable aleatoria es discreta si su recorrido, es decir, el conjunto de valores que puede tomar, es finito o infinito numerable. Generalmente, este tipo de variables van asociadas a experimentos en los cuales se cuenta el número de veces que se ha presentado un suceso o donde el resultado es una puntuación concreta. Los puntos del recorrido se corresponden con saltos en la gráfica de la función de distribución, que correspondería al segundo tipo de gráfica visto anteriormente. 2.5.2 Variables aleatorias continuas Definición: Variable aleatoria contínua Diremos que una variable aleatoria es continua si su función de distribución es una función continua. También puede definirse, de forma análoga a las variables discretas como aquellas cuyo recorrido, es decir, el conjunto de valores que puede tomar, es un intervalo o subconjunto no numerable de los números reales. En otras palabras, aquellas que pueden tomar cualquier valor dentro de un rango continuo, sin saltos entre los valores posibles. Se corresponde con el primer tipo de gráfica visto. Generalmente, se corresponden con variables asociadas a experimentos en los cuales la variable medida puede tomar cualquier valor en un intervalo; mediciones biométricas, por ejemplo. Un caso particular dentro de las variables aleatorias continuas y al cual pertenecen todos los ejemplos usualmente utilizados, son las denominadas variables aleatorias absolutamente continuas. Definición: Distribución absolutamente contínua Diremos que una variable aleatoria \\(X\\) continua tiene una distribución absolutamente continua si existe una función real \\(f\\), positiva e integrable en el conjunto de números reales, tal que la función de distribución \\(F\\) de \\(X\\) se puede expresar como \\[ F(x)=\\int_{-\\infty}^{x} f(t) d t \\] Una variable aleatoria con distribución absolutamente continua, por extensión, se la clasifica como variable aleatoria absolutamente continua. Definición: función de densidad de probabilidad A la función \\(f\\) se la denomina función de densidad de probabilidad de la variable \\(X\\). Hay que hacer notar que no toda variable continua es absolutamente continua, pero los ejemplos son complicados, algunos utilizan para su construcción el conjunto de Cantor, y quedan fuera del nivel y del objetivo de este curso. Igualmente indicaremos que los tipos de variables comentados anteriormente forman únicamente una parte de todos los posibles tipos de variables, sin embargo contienen prácticamente todas las variables aleatorias que encontramos usualmente. Tal como se estudiará más adelante, existen algunas familias de funciones de distribución, tanto dentro del grupo de las discretas como de las continuas, que por su importancia reciben un nombre propio y se estudiarán en los capítulos siguientes. En ocasiones encontramos variables de tipo mixto, es decir que se comportan como discretas o contínuas para distintos grupos de valores. 2.6 Variable aleatoria discretas Tal como se ha definido, una variable aleatoria \\(X\\) discreta toma valores en un conjunrto finito o numerables. Indicaremos el recorrido de la variable \\(X\\) como: \\(\\left\\{x_{1}, x_{2}, \\ldots, x_{\\mathrm{k}}, \\ldots\\right\\}\\). El ejemplo más sencillo de variable aleatoria discreta lo constituyen las variables indicadoras. Sea \\(A\\) un suceso observable, se llama indicador de \\(A\\) a la variable aleatoria definida por \\[ \\begin{aligned} I_{A}: \\Omega & \\rightarrow \\mathbb{R} \\\\ \\omega & \\rightarrow I_{A}(\\omega)=\\left\\{\\begin{array}{lll} 1 & \\text { si } \\omega \\in A \\\\ 0 & \\text { si } & A \\end{array}\\right. \\end{aligned} \\] 2.6.0.1 Ejercicio propuesto Construir, a partir de las variables indicadoras de \\(A\\) y \\(B\\), las siguientes variables indicadoras \\[ I_{A \\cap B} ; I_{A \\cup B} ; I_{A} c ; I_{\\Omega} \\] 2.6.0.1.1 Solución \\[ \\begin{gathered} I_{A \\cap B}=I_{A} \\cdot I_{B} \\\\ I_{A \\cup B}=I_{A}+I_{B}-I_{A \\cap B} \\\\ I_{A} c=1-I_{A} \\\\ \\Omega=1 \\end{gathered} \\] 2.6.1 Caracterización de las v.a. discretas Una variable aleatoria discreta puede caracterizarse a través de la función que asocia cada elemento del recorrido su probabilidad. Dicha función recibe varios nombres según los autores: - función de probabilidad - ley de probabilidad, - función de densidad de la variable aleatoria discreta. - función de masa de probabilidad. Aunque es habitual encontrar, en muchos libros el término función de densidad para variables (absolutamente) contínuas y el término función de masa de probabilidad para variables discretas, también lo es referirse a ambas como “función de densidad”. La función de probabilidad de una variable discreta se puede representar de la manera siguiente: \\[ \\begin{array}{rll} f: & \\mathbb{R} & \\rightarrow[0,1] \\\\ & x & \\rightarrow f(x)=P(X=x)=P\\{\\omega \\in \\Omega \\mid X(\\omega)=x\\} \\end{array} \\] Obsérvese que, a diferencia de la función de distribución que toma valores para cualquier valor real, la función definida anteriormente es nula en todo punto que no pertenezca al recorrido. En cambio, siguiendo con la análogía, y dado que se trata de una probabilidad, la función de densidad discreta está acotada \\(0 \\leq f(x) \\leq 1\\). Toda función de densidad discreta puede expresarse de manera explícita a través de una tabla que asocie directamente puntos del recorrido con sus probabilidades. Ejemplo: Función de densidad de una variable indicadora Consideremos la variable indicadora del suceso \\(A\\) : \\[ \\begin{aligned} I_{A}: \\Omega & \\rightarrow \\mathbb{R} \\\\ \\omega & \\rightarrow I_{A}(\\omega)=\\left\\{\\begin{array}{lll} 1 & \\text { si } & \\omega \\in A \\\\ 0 & \\text { si } & A \\end{array}\\right. \\end{aligned} \\] La función de densidad de esta variable sería la siguiente: \\(x\\) 0 1 \\(f(x)=P(X=x)\\) \\(1-P(A)=P\\left(A^{\\mathrm{c}}\\right)\\) \\(P(A)\\) El recorrido está formado por dos valores: 1 y 0 , con las mismas probabilidades que las del suceso \\(A\\) y su complementario, respectivamente. En muchos casos será posible expresar la función de probabilidadmediante una fórmula matemática que define una regla de asignación de probabilidades para los valores del recorrido. Ejemplo: Un modelo matemático para la función de probabilidad \\[ P(X=x)=0,2 \\cdot 0,8^{x-1}, \\quad x=1,2, \\ldots \\] es la función de densidad de una variable aleatoria discreta con recorrido numerable. 2.6.2 Propiedades de la función de densidad discreta \\[ 0 \\leq f(x) \\leq 1 \\] \\(\\sum_{i=1}^{n} f\\left(x_{i}\\right)=1\\), si el recorrido es finito. \\(\\sum_{i=1}^{\\infty} f\\left(x_{i}\\right)=1\\), si el recorrido es numerable. 2.6.3 Relaciones entre la función de distribución y la función de densidad discreta. Probabilidad de intervalos. Existe una relación muy importante entre las funciones de distribución \\(F(x)\\) y de densidad \\(f(x)\\) de una variable aleatoria discreta. La función de distribución en un punto se obtiene acumulando el valor de la función de densidad para todos los valores del recorrido menores o iguales al punto en cuestión. \\[ F(x)=\\sum_{x_{i} \\leq x} f\\left(x_{i}\\right) \\quad \\text { para todo } \\mathrm{x}_{\\mathrm{i}} \\text { perteneciente al recorrido de la variable. } \\] En efecto, supongamos que el recorrido de una variable discreta \\(X\\) es \\(\\left\\{x_{1}, x_{2}, \\ldots, x_{k}, \\ldots\\right\\}\\) y que deseamos conocer el valor de la función de distribución en un punto \\(x\\) tal que \\(x_{i} \\leq x<x_{i+1}\\), entonces es inmediato que \\[ F(x)=P(X \\leq x)=P\\left(X=x_{1}\\right)+P\\left(X=x_{2}\\right)+\\ldots+P\\left(X=x_{i}\\right)=f\\left(x_{1}\\right)+f\\left(x_{2}\\right)+f\\left(x_{3}\\right)+\\ldots+f\\left(x_{i}\\right) \\] Por ejemplo, para una variable indicadora de un suceso \\(A\\), tenemos la relación siguiente: Valor de \\(\\boldsymbol{x}\\) \\(\\boldsymbol{f}(\\boldsymbol{x})\\) \\(\\boldsymbol{F}(\\boldsymbol{x})\\) \\((-\\infty, 0)\\) 0 0 \\(P\\left(A^{c}\\right)\\) \\(P\\left(A^{\\mathrm{c}}\\right)\\) \\((0,1)\\) \\(P\\left(A^{\\mathrm{c}}\\right)\\) 1 \\(P(A)\\) \\(P\\left(A^{\\mathrm{c}}\\right)+P(A)=1\\) \\((1,+\\infty)\\) 1 A partir de las funciones de densidad y de distribución es posible expresar las probabilidades para cualquier posible intervalo de valores de la variable. Por ejemplo: Intervalo \\(P(X \\leq a)=F(a)\\) \\(P(X<a)=F(a)-f(a)\\) \\(P(X>a)=1-F(a)=1-P(X \\leq a)\\) \\(P(X \\geq a)=1-F(a)+f(a)=1-P(X>a)\\) \\(P(a<X \\leq b)=F(b)-F(a)\\) \\(P(a<X<b)=F(b)-f(b)-F(a)\\) \\(P(a \\leq X \\leq b)=F(b)-F(a)+f(a)\\) \\(P(a \\leq X<b)=F(b)-f(b)-F(a)+f(a)\\) 2.7 Variables aleatorias continuas Una variable aleatoria \\(X\\) diremos que es continua si su función de distribución es una función continua. En la práctica, se corresponden con variables asociadas con experimentos en los cuales la variable medida puede tomar cualquier valor en un intervalo: mediciones biométricas, intervalos de tiempo, áreas, etc. Ejemplo: Variables aleatorias continuas Resultado de un generador de números aleatorios entre 0 y 1. Es el ejemplo más sencillo que podemos considerar, es un caso particular de una familia de variables aleatorias que tienen una distribución uniforme en un intervalo \\([a, b]\\). Se corresponde con la elección al azar de cualquier valor entre \\(a\\) y \\(b\\). Estatura de una persona elegida al azar en una población. El valor que se obtenga será una medición en cualquier unidad de longitud ( m , cm , etc.) dentro de unos límites condicionados por la naturaleza de la variable. El resultado es impredecible con antelación, pero existen intervalos de valores más probables que otros debido a la distribución de alturas en la población. Más adelante veremos que, generalmente, variables biométricas como la altura se adaptan un modelo de distribución denominado distribución Normal y representado por una campana de Gauss. Dentro de las variables aleatorias continuas tenemos las variables aleatorias absolutamente continuas. Diremos que una variable aleatoria \\(X\\) continua tiene una distribución absolutamente continua si existe una función real \\(f\\), positiva e integrable en el conjunto de números reales, tal que la función de distribución \\(F\\) de \\(X\\) se puede expresar como \\[ F(x)=\\int_{-\\infty}^{x} f(t) d t \\] Una variable aleatoria con distribución absolutamente continua, por extensión, se clasifica como variable aleatoria absolutamente continua. En cuanto a nuestro manual, todas las variables aleatorias continuas con las que trabajemos pertenecen al grupo de las variables absolutamente continuas, en particular, los ejemplos y casos expuestos. 2.7.1 Función de densidad continua La función que caracteriza las variables continuas es aquella función \\(f\\) positiva e integrable en los reales, tal que acumulada desde \\(-\\infty\\) hasta un punto \\(x\\), nos proporciona el valor de la función de distribución en \\(x, F(\\mathrm{x})\\). Recibe el nombre de función de densidad de la variable aleatoria continua. \\[ F(x)=\\int_{-\\infty}^{x} f(t) d t \\] Las funciones de densidad discreta y continua tienen, por tanto, un significado análogo, ambas son las funciones que acumuladas (en forma de sumatorio en el caso discreto o en forma de integral en el caso continuo) dan como resultado la función de distribución. La diferencia entre ambas, sin embargo, es notable. La función de densidad discreta toma valores positivos únicamente en los puntos del recorrido y se interpreta como la probabilidad de la que la variable tome ese valor \\(f(x)=P(X=x)\\). La función de densidad continua toma valores en el conjunto de números reales y no se interpreta como una probabilidad. No está acotada por 1, puede tomar cualquier valor positivo. Es más, en una variable continua se cumple que probabilidades definidas sobre puntos concretos siempre son nulas. \\[ P(X=x)=0 \\text { para todo } x \\text { real. } \\] ¿Cómo se interpreta, entonces, la función de densidad continua? Las probabilidades son las áreas bajo la función de densidad. El área bajo la función de densidad entre dos puntos a y b se interpreta como la probabilidad de que la variable aleatoria tome valores comprendidos entre \\(a\\) y \\(b\\). Por tanto, siempre se cumple lo siguiente: \\[ \\int_{-\\infty}^{+\\infty} f(x) d x=1 \\] La función de densidad se expresa a través de una función matemática. La forma específica de la función matemática generalmente pasa por considerar a la variable aleatoria como miembro de una determinada familia de distribuciones, un determinado modelo de probabilidad. Estas familias generalmente dependen de uno o más parámetros y serán objeto de un estudio específico en un capítulo posterior. La atribución a una determinada familia depende de la naturaleza de la variable en cuestión. Podemos ver, únicamente con ánimo ilustrativo, la expresión analítica y la gráfica para los ejemplos comentados con anterioridad: Resultado de un generador de números aleatorios entre \\(\\boldsymbol{a}\\) y \\(\\boldsymbol{b}\\). Modelo Uniforme. \\(f(x)=\\left\\{\\begin{array}{cc}\\frac{1}{b-a} & x \\in[a, b] \\\\ 0 & x \\notin[a, b]\\end{array}\\right\\}\\) Estatura de una persona elegida al azar en una población. Modelo Normal. \\[ f(x)=\\frac{1}{\\sqrt{2 \\pi}} e^{\\frac{-(x-170)^{2}}{2}}-\\infty<x<\\infty \\] 2.7.2 Relaciones entre la función de distribución y la función de densidad. Para una variable continua, la relación entre las funciones de distribución y de densidad viene dada directamente a través de la definición. La función de distribución en un punto se obtiene integrando el valor de la función de densidad desde menos infinito hasta el punto en cuestión. Por ejemplo: \\[ F(x)=\\int_{-\\infty}^{x} f(t) d t \\] 2.7.2.1 Probabilidad de intervalos A partir de las funciones de densidad y de distribución, y teniendo en cuenta que \\(P(X=x)=0\\) para todo \\(x\\) real, es posible expresar las probabilidades para cualquier posible intervalo de valores de la variable. Por ejemplo: Intervalo \\(P(X \\leq a)=P(X<a)=F(a)=\\int_{-\\infty}^{a} f(x) d x\\) \\(P(X \\geq a)=P(X>a)=1-F(a)=\\int_{a}^{+\\infty} f(x) d x\\) \\(P(a<X \\leq b)=P(a<X<b)=P(a \\leq X \\leq b)=P(a \\leq X<b)\\) \\(=F(b)-F(a)=\\int^{b} f(x) d x\\) Fijémonos que la probabilidad de los intervalos se corresponde con el área bajo la función de densidad dentro del intervalo considerado. 2.8 Caracterización de una variable aleatoria a través de parámetros Hasta el momento hemos visto que toda variable aleatoria viene caracterizada a través de unas determinadas funciones matemáticas, las funciones de distribución y de densidad. Una vez caracterizada, y por tanto conocida, la distribución de una variable aleatoria, podemos obtener cualquier probabilidad asociada. En ocasiones podemos acotar más el problema y reducir el estudio de una variable aleatoria a determinar una serie de características numéricas asociadas con la distribución de la variable. Dichas características tienen como propiedad fundamental el hecho de resumir gran parte de las propiedades de la variable aleatoria y juegan un papel muy destacado en las técnicas estadísticas que desarrollaremos a lo largo del curso. Por ejemplo, supuesta la pertenencia de una variable aleatoria a una determinada familia de distribuciones de probabilidad, bien sea discreta o continua, los diferentes miembros de la familia diferirán en el valor de esas características numéricas. En este caso, denominaremos a tales características los parámetros de la distribución. Existe un buen número de tales características, pero nos centraremos en las dos más importantes: la esperanza y la varianza. La primera nos informa sobre la localización de los valores de la variable y la segunda, sobre el grado de dispersión de estos valores. 2.9 Esperanza de una variable aleatoria discreta La esperanza matemática de una variable aleatoria es una característica numérica que proporciona una idea de la localización de la variable aleatoria sobre la recta real. Decimos que es un parámetro de centralización o de localización. Su interpretación intuitiva o significado se corresponde con el valor medio teórico de los posibles valores que pueda tomar la variable aleatoria, o también con el centro de gravedad de los valores de la variable supuesto que cada valor tuviera una masa proporcional a la función de densidad en ellos. La definición matemática de la esperanza en el caso de las variables aleatorias discretas se corresponde directamente con las interpretaciones proporcionadas en el párrafo anterior. Efectivamente, supuesta una variable aleatoria discreta \\(X\\) con recorrido \\(\\left\\{x_{1}, x_{2}, \\ldots, x_{k}, \\ldots\\right\\}\\) y con función de densidad \\(f(x)\\), se define la esperanza matemática de \\(X\\) como el valor \\[ E(X)=\\sum_{x_{i} \\in X(\\Omega)} x_{i} f\\left(x_{i}\\right) \\] donde el sumatorio se efectúa para todo valor que pertenece al recorrido de \\(X\\). En caso de que el recorrido sea infinito la esperanza existe si la serie resultante es absolutamente convergente, condición que no siempre se cumple. La definición se corresponde con un promedio ponderado según su probabilidad de los valores del recorrido y, por tanto, se corresponde con la idea de un valor medio teórico. 2.10 Esperanza de una variable aleatoria continua La idea intuitiva que más nos puede ayudar en la definición de la esperanza matemática de una variable aleatoria continua es la idea del centro de gravedad de los valores de la variable, donde cada valor tiene una masa proporcional a la función de densidad en ellos. Dada una variable aleatoria absolutamente continua \\(X\\) con función de densidad \\(f(x)\\), se define la esperanza matemática de \\(X\\) como el valor \\[ E(X)=\\int_{-\\infty}^{+\\infty} x f(x) d x \\] suponiendo que la integral exista. 2.11 Propiedades de la esperanza matemática Esperanza de una función de una variable aleatoria Variable discreta \\[ E(h(X))=\\sum_{x_{i} \\in X(\\Omega)} h\\left(x_{i}\\right) f\\left(x_{i}\\right) \\] Variable continua \\[ E(h(X))=\\int_{-\\infty}^{+\\infty} h(x) f(x) d x \\] 2.11.1 Linealidad de la esperanza matemática \\(E(X+Y)=E(X)+E(Y)\\) \\(E(k \\cdot X)=k \\cdot E(X)\\) para todo número real \\(k\\). \\(E(k)=k\\) para todo número real \\(k\\). \\(E(a \\cdot X+b)=a \\cdot E(X)+b\\) para todo par de números reales \\(a\\) y \\(b\\). 2.11.2 Esperanza del producto \\(E(X \\cdot Y)=E(X) \\cdot E(Y)\\) únicamente en el caso de que \\(X\\) e \\(Y\\) sean variables aleatorias independientes. 2.12 Varianza de una variable aleatoria La varianza de una variable aleatoria es una característica numérica que proporciona una idea de la dispersión de la variable aleatoria respecto de su esperanza. Decimos que es un parámetro de dispersión. La definición es la siguiente: \\[ \\operatorname{Var}(X)=E\\left((X-E(X))^{2}\\right) \\] Es, por tanto, el promedio teórico de las desviaciones cuadráticas de los diferentes valores que puede tomar la variable respecto de su valor medio teórico o esperanza. En el caso de las variables discretas, la expresión se convierte en: \\[ \\operatorname{Var}(X)=\\sum_{x_{i} \\in X(\\Omega)}\\left(x_{i}-E(X)\\right)^{2} f\\left(x_{i}\\right) \\] mientras que para las variables continuas tenemos: \\[ \\operatorname{Var}(X)=\\int_{-\\infty}^{+\\infty}(x-E(X))^{2} f(x) d x \\] En ambos casos existe una expresión equivalente alternativa y generalmente de cálculo más fácil: \\[ \\operatorname{Var}(X)=E\\left(X^{2}\\right)-(E(X))^{2} \\] Una de las características de la varianza es que viene expresada en unidades cuadráticas respecto de las unidades originales de la variable. Un parámetro de dispersión derivado de la varianza y que tiene las mismas unidades de la variable aleatoria es la desviación típica, que se define como la raíz cuadrada de la varianza. \\[ \\sigma_{X}=\\sqrt{\\operatorname{Var}(X)}=\\sqrt{E\\left((X-E(X))^{2}\\right)} \\] 2.12.1 Propiedades de la varianza \\(\\operatorname{Var}(X) \\geq 0\\) \\(\\operatorname{Var}(k \\cdot X)=k^{2} \\cdot \\operatorname{Var}(X)\\) para todo numero real \\(k\\). \\(\\operatorname{Var}(k)=0\\) para todo numero real \\(k\\). \\(\\operatorname{Var}(a \\cdot X+b)=a^{2} \\cdot \\operatorname{Var}(X)\\) para todo par de números reales \\(a\\) i \\(b\\). \\(\\operatorname{Var}(X+Y)=\\operatorname{Var}(X)+\\operatorname{Var}(Y)\\) únicamente en el caso que \\(X\\) y \\(Y\\) sean independientes. 2.13 Momentos (de orden \\(k\\)) de una variable aleatoria Dada una variable aleatoria \\(X\\), definimos el momento de orden \\(k\\) como: \\[ m_{k}=E\\left(X^{k}\\right) \\] suponiendo que tal esperanza exista. Podemos ver que la esperanza es el momento de orden \\(1, E(X)=m_{1}\\). Definimos el momento central de orden \\(k\\) como: \\[ \\mu_{k}=E\\left((X-E(X))^{k}\\right) \\] Con la denominación anterior, la varianza es el momento central de orden \\(2, \\operatorname{Var}(X)=\\mu_{2}\\). Es posible también definir momentos mixtos de dos variables aleatorias. Dadas dos variables aleatorias \\(X\\) e \\(Y\\) definimos el momento mixto de orden \\((r, k)\\) como \\[ m_{r k}=E\\left(X^{r} \\cdot Y^{k}\\right) \\] y el momento mixto central de orden \\((r, k)\\) como \\[ \\left.\\mu_{r k}=E(X-E(X))^{r} \\cdot(Y-E(Y))^{k}\\right) \\] El momento mixto central más importante es el \\(\\mu_{11}\\), denominado la covarianza de \\(X\\) e \\(Y\\), y con una interpretación en el sentido de cuantificar el grado de dependencia entre dos variables aleatorias, puesto que si \\(X\\) e \\(Y\\) son independientes se verifica que \\(\\mu_{11}=0\\), mientras que si \\(\\mu_{11} \\neq 0\\) entonces las variables son dependientes. 2.14 Definición formal de variable aleatoria Tal como hemos comentado, la definición formal de variable aleatoria impone una restricción matemática en la formulación vista hasta el momento. Definiremos una variable aleatoria como una aplicación de \\(\\Omega\\) en el conjunto de números reales \\[ \\begin{aligned} X: \\Omega & \\rightarrow \\mathbb{R} \\\\ \\omega & \\rightarrow X(\\omega) \\end{aligned} \\] que verifique la propiedad siguiente \\[ \\forall x \\in \\mathbb{R} \\quad \\text { el conjunto } \\mathrm{A}=\\{a \\mid \\mathrm{X}(a) \\leq \\mathrm{x}\\} \\text { es un suceso observable } \\] es decir, para todo número real \\(x\\), el conjunto de resultados elementales tales que la variable aleatoria toma sobre ellos valores inferiores o iguales a \\(x\\) ha de ser un suceso sobre el cual podamos definir una probabilidad. Dicha propiedad recibe el nombre de medibilidad y por tanto podríamos decir que una variable aleatoria es una función medible de \\(\\Omega\\) en los reales. Esta condición nos asegura que podremos calcular sin problemas, probabilidades sobre intervalos de la recta real a partir de las probabilidades de los sucesos correspondientes. \\[ P(X \\leq x)=P\\{\\omega \\mid X(\\omega) \\leq x\\} \\] La expresión anterior se leería de la manera siguiente: La probabilidad de que la variable aleatoria tome valores inferiores o iguales a \\(x\\) es igual a la probabilidad del suceso formado por el conjunto de resultados elementales sobre los que el valor de la variable es menor o igual que \\(x\\). La probabilidad obtenida de esta manera se denomina probabilidad inducida. Se puede comprobar que, a partir de la condición requerida, se pueden obtener probabilidades sobre cualquier tipo de intervalo de la recta real. Por ejemplo: \\[ P(a<X \\leq b)=P(X \\leq b)-P(X \\leq a) \\] La condición exigida para ser variable aleatoria discreta ahora puede ser expresada como: \\[ \\forall k=1,2, \\ldots \\text { el conjunto } \\mathrm{A}=\\left\\{\\omega \\mid \\mathrm{X}(\\omega)=\\mathrm{x}_{\\mathrm{k}}\\right\\}=\\mathrm{X}^{-1}\\left(\\left\\{\\mathrm{x}_{\\mathrm{k}}\\right\\}\\right) \\text { es un suceso observable } \\] Toda variable aleatoria definida sobre un espacio de probabilidad finito es necesariamente discreta. La suma y el producto de variables aleatorias discretas, definido por: \\[ (X+Y)(w)=X(w)+Y(w) \\text { y }(X \\cdot Y)(w)=X(w) \\cdot Y(w) \\] es también una variable aleatoria discreta. 2.15 Caso práctico: Lanzamiento de dos dados 2.15.1 Espacio muestral Supongamos que estamos realizando un experimento consistente en el lanzamiento simultáneo de dos dados y en la observación del resultado obtenido. El conjunto de resultados posibles forma el espacio muestral \\(\\Omega\\) asociado a dicho experimento. Sus elementos serán como los que se muestran a continuación: En total, el espacio muestral estaría formado por 36 resultados posibles que, en principio y suponiendo los dados regulares, son todos ellos equiprobables con probabilidad \\(1 / 36\\). Nótese que consideramos diferentes resultados del tipo: un uno en el primer dado y un dos en el segundo o un dos en el primer dado y un uno en el segundo. Una vez fijados los enunciados anteriores, es fácil asignar probabilidades a diferentes sucesos observables, por ejemplo: Suceso Probabilidad Que aparezcan dos cifras iguales \\(6 \\cdot 1 / 36=1 / 6\\) Que la suma sea 10 \\(3 \\cdot 1 / 36=1 / 12\\) No entramos en detalles de la obtención de las probabilidades dado que se ha estudiado suficientemente en el tema anterior. 2.15.2 Representación numérica Continuando con el experimento anterior, podemos representar los resultados obtenidos al lanzar dos dados por valores numéricos. ¿Cómo hacerlo? Definiendo una regla de asignación numérica para cada resultado. Una posible regla sería, por ejemplo, asignar a cada resultado la suma de puntos de las caras. Este enunciado nos define una variable que representa cada suceso elemental por un valor numérico. Los 36 posibles resultados del experimento se transforman en 11 posibles valores numéricos para la variable: \\(2,3,4,5,6,7,8,9,10,11\\) y 12 . Este conjunto de valores forman el recorrido de la variable suma de puntos de las caras. A partir de las probabilidades definidas sobre los sucesos observables es fácil extender las probabilidades a los diferentes resultados de la variable. Por ejemplo, la probabilidad de que la variable tome el valor 10 es equivalente a la probabilidad del suceso observable que la suma sea 10 , calculada anteriormente e igual a \\(1 / 12\\). La variable considerada hasta el momento es sólo una de las múltiples variables que podríamos definir sobre el mismo experimento. Por ejemplo, podemos estar interesados no en la suma de puntos sino en el punto más bajo de cada tirada, de forma que podríamos construir una nueva variable a partir del enunciado o regla de asignación asignar a cada resultado el menor de los puntos de las dos caras. Tenemos una nueva variable sobre el mismo espacio anterior. El recorrido, en este caso, está formado por los valores: \\(1,2,3,4,5\\) y 6 . Las dos variables estudiadas y otras muchas que se podrían definir sobre este experimento son ejemplos absolutamente equivalentes desde el punto de vista formal. 2.15.3 Algunas probabilidades En el ejemplo de los dados vamos a centrarnos en la variable aleatoria \\[ X=\\text { Suma de puntos de las caras } \\] El recorrido de la variable está formado por los números \\(\\{2,3,4,5,6,7,8,9,10,11\\) i 12\\(\\}\\). Vamos a calcular algunas probabilidades: \\(P(X \\leq 1)=P\\{\\varnothing\\}=0\\) (Ningún resultado tiene asignado un valor menor o igual a 1) \\(P(X \\leq 2)=P\\{(1,1)\\}=1/36\\) (Sólo hay un caso al que se le asigne un valor inferior o igual a 2). \\(P(X \\leq 3.5)=P\\{(1,1), (1,2), (2,1)\\}=3/36\\) (Tres resultados elementales tienen asignado un valor menor o igual a 3.5) Ahora podéis intentar calcular por vosotros mismos algunas probabilidades: (a) \\(P(X \\leq 6)\\) (b) \\(P(X \\leq 8,2)\\); (c) \\(P(X \\leq 12)\\); (d) \\(P(X \\leq 20)\\) i (e) \\(P(2,2<X \\leq 7)\\) 2.15.4 Función de distribución Para calcular la función de distribución de la variable X \\(=\\) Suma de puntos de las caras : necesitamos conocer el recorrido de la variable, que es: \\(\\{2,3,4,5,6,7,8,9,10,11, 12\\}\\) y, utilizando este recorrido como pauta, determinar para todo punto \\(x\\) de la recta real la probabilidad \\(P(X \\leq x)\\). En nuestro ejemplo: \\[ F(x)=P(X \\leq x)= \\begin{cases}0 & x<2 \\\\ 1 / 36 & 2 \\leq x<3 \\\\ 3 / 36 & 3 \\leq x<4 \\\\ 6 / 36 & 4 \\leq x<5 \\\\ 10 / 36 & 5 \\leq x<6 \\\\ 15 / 36 & 6 \\leq x<7 \\\\ 21 / 36 & 7 \\leq x<8 \\\\ 26 / 36 & 8 \\leq x<9 \\\\ 30 / 36 & 9 \\leq x<10 \\\\ 33 / 36 & 10 \\leq x<11 \\\\ 35 / 36 & 11 \\leq x<12 \\\\ 36 / 36=1 & x \\geq 12\\end{cases} \\] Acabamos de construir la función de distribución de la variable suma de la puntuación al lanzar dos dados. Vamos a ver su representación gráfica: Ejercicio : Haced lo mismo para la variable aleatoria el menor de los puntos de las dos caras al lanzar dos dados. 2.15.5 Clasificación de las variables En el experimento que estamos considerando, lanzar simultáneamente dos dados, cualquiera de las dos variables aleatorias que hemos considerado hasta el momento: \\[ X=\\text {Suma los puntos de las dos caras } \\] \\[ Y=\\text { El menor de los puntos de las dos caras } \\] se clasifican dentro del tipo de variables aleatorias discretas, puesto que en ambos casos el recorrido es finito: \\(\\{2,3,4,5,6,7,8,9,10,11, 12\\}\\) para la variable \\(X\\) y \\(\\{1,2,3,4,5, 6\\}\\) para la variable \\(Y\\). También son discretas aquellas variables aleatorias con recorrido infinito numerable. Ejercicio: ¿Sabríais construir una variable aleatoria discreta con recorrido infinito numerable basada en el experimento que consiste en el lanzamiento de dos dados? 2.15.6 Función de densidad discreta Para calcular la función de densidad de la variable \\[ X=\\text { suma de puntos de las caras } \\] necesitamos conocer el recorrido de la variable, es decir: \\(\\{2,3,4,5,6,7,8,9,10,11, 12\\}\\) y, a partir del recorrido, determinar para todo punto del recorrido la probabilidad \\(P(X=x)\\). En nuestro ejemplo \\[ f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases} \\] Acabamos de construir la función de densidad de la variable suma de la puntuación al lanzar dos dados. Vamos a ver su representación gráfica: Hemos optado por la representación con barras en lugar de puntos para permitir una visualización de la función óptima. Ejercicio: Haced lo mismo para la variable aleatoria el menor de los puntos de las dos caras al lanzar dos dados. 2.15.7 Probabilidad de intervalos Vamos a centrarnos en la variable \\[ X=\\text { Suma de puntos de las caras } \\] Las funciones de distribución y de densidad son, respectivamente, \\[ F(x)=P(X \\leq x)=\\left\\{\\begin{array}{ll} 0 & x<2 \\\\ 1 / 36 & 2 \\leq x<3 \\\\ 3 / 36 & 3 \\leq x<4 \\\\ 6 / 36 & 4 \\leq x<5 \\\\ 10 / 36 & 5 \\leq x<6 \\\\ 15 / 36 & 6 \\leq x<7 \\\\ 21 / 36 & 7 \\leq x<8 \\\\ 26 / 36 & 8 \\leq x<9 \\\\ 30 / 36 & 9 \\leq x<10 \\\\ 33 / 36 & 10 \\leq x<11 \\\\ 35 / 36 & 11 \\leq x<12 \\\\ 36 / 36=1 & x \\geq 12 \\end{array} \\quad f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases}\\right. \\] Puede observarse cómo los valores de la función de distribución se obtienen acumulando los valores de la función de densidad correspondientes. Vamos a calcular algunas probabilidades utilizando las funciones anteriores. Compárese con los resultados obtenidos con anterioridad basados directamente en los resultados elementales. \\(P(X \\leq 1)=F(1)=0\\) \\(P(X \\leq 3,5)=F(3,5)=3 / 36=f(2)+f(3)\\) \\(P(X<6)=F(6)-f(6)=15 / 36-5 / 36=10 / 36=f(2)+f(3)+f(4)+f(5)\\) \\(P(2,2<X \\leq 7)=F(7)-F(2,2)=21 / 36-1 / 36=20 / 36=f(3)+f(4)+f(5)+f(6)+f(7)\\) \\(P(2<X<7)=F(7)-f(7)-F(2)=21 / 36-6 / 36-1 / 36=14 / 36=f(3)+f(4)+f(5)+f(6)\\) 2.15.8 Esperanza Supongamos que estamos interesados en determinar cual sería el valor medio teórico de la variable \\[ X=\\text { Suma de puntos de las caras } \\] La función de densidad es: \\[ f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases} \\] La misma función de densidad nos da información sobre el recorrido de la variable. Calcular el valor medio teórico de la variable quiere decir calcular la esperanza. A partir de la fórmula de la esperanza para variables discretas, tenemos \\[ \\begin{aligned} E(X) &=2 \\cdot 1 / 36+3 \\cdot 2 / 36+4 \\cdot 3 / 36+5 \\cdot 4 / 36+6 \\cdot 5 / 36+\\\\ & + 7 \\cdot 6 / 36+8 \\cdot 5 / 36+9 \\cdot 4 / 36+\\\\ &+ 10 \\cdot 3 / 36+ 11 \\cdot 2 / 36+12 \\cdot 1 / 36=\\\\ & =7 \\end{aligned} \\] Por tanto, 7 es la esperanza de la variable \\(X=\\) Suma de puntos de las caras. Fijaos que la esperanza para la variable Puntuación de un dado sería \\[ 1 \\cdot 1 / 6+2 \\cdot 1 / 6+3 \\cdot 1 / 6+4 \\cdot 1 / 6+5 \\cdot 1 / 6+6 \\cdot 1 / 6=3,5 \\] y que se puede considerar la variable Suma de puntos de las dos caras como la suma de dos variables que representen la puntuación de cada dado. La esperanza de la suma es, efectivamente, la suma de las esperanzas de cada variable sumada. En la aplicación siguiente, podéis calcular la esperanza de la variable Puntuación de un dado y modificar las probabilidades de las diferentes caras, de este modo se modifica la esperanza. Ejercicio: ¿Podríais hacer lo mismo para la variable \\(X=\\) El menor de los puntos de las dos caras al lanzar dos dados? 2.15.9 Esperanza de un juego Imaginemos que alguien os propone el juego siguiente: lanzad dos dados, si la suma obtenida es menor o igual a 6 ganáis 100 euros, sin embargo, si la suma obtenida es mayor que 6 tenéis que pagar 100 euros. ¿Nos conviene jugar a este juego? Veamos, podemos considerar el resultado del juego como una variable aleatoria discreta que toma dos valores: +100 si ganamos y -100 si perdemos. Nos interesa conocer las probabilidades de los diferentes resultados. Consideremos la variable \\(X=\\) Suma de puntos de las caras, cuya función de densidad conocemos: \\[ f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases} \\] A partir de aquí es fácil ver que la función de densidad de la variable \\(Y=\\) Resultado del juego será la siguiente: \\[ f(100)=15 / 36 ; f(-100)=21 / 36 \\] Por tanto, la esperanza del juego, que puede ser interpretada como la ganancia media por jugada, será \\[ E(Y)=100 \\cdot 15 / 36-100 \\cdot 21 / 36=-100 / 6 \\approx-16,667 \\] Es decir, la ganancia media por jugada es negativa, por tanto no es favorable dicho juego para el jugador, es un juego no equitativo. 2.15.10 Esperanza con recorrido infinito Vamos a tratar de calcular la esperanza de la siguiente variable aleatoria: \\(X=\\) Número de lanzamientos que hemos de hacer para conseguir que aparezca un doble seis La variable que acabamos de definir es una variable discreta con recorrido infinito numerable. El recorrido sería el siguiente: \\[ \\{1,2,3,4, \\ldots\\} \\] Vamos a ver como calculamos la función de densidad: \\(P(X=1)=\\) Probabilidad de que aparezca un doble seis en el primer lanzamiento \\(=1 / 36\\) \\(P(X=2)=\\) Probabilidad de que el doble seis no aparezca en el primer lanzamiento y sí en el segundo = \\(35 / 36 \\cdot 1 / 36=35 / 36^{2}\\) \\(P(X=3)=\\) Probabilidad de que el doble seis no aparezca ni en el primer ni en el segundo lanzamientos y sí en el tercero \\(=35 / 36 \\cdot 35 / 361 / 36=35^{2} / 36^{3}\\) En general, \\(P(X=k)=35^{k-1} / 36^{k}\\) Para simplificar, vamos a llamar \\(p=1 / 36\\) y \\(q=1-p=35 / 36\\), con esta nomenclatura \\(P(X=\\mathrm{k})=q^{k-1} p\\). Por tanto, la esperanza será: \\[ \\begin{aligned} E(X)& =\\sum_{i=1}^{\\infty} i q^{i-1} p=p \\sum_{i=1}^{\\infty} i q^{i-1}=p \\frac{d}{d q} \\sum_{i=1}^{\\infty} q^{i}= \\\\ &= p \\frac{d}{d q}\\left(\\frac{q}{1-q}\\right)=p \\frac{1}{(1-q)^{2}}=\\\\ & = \\frac{1}{p} \\end{aligned} \\] En nuestro ejemplo el número medio de tiradas antes de salir un doble seis será 36 . 2.15.11 Esperanza infinita Ahora calcularemos la esperanza del juego siguiente: lanzamos un dado hasta que aparece un número par, el jugador gana \\(2^{n}\\) unidades monetarias si aparece un número par por primera vez en la tirada nésima. El recorrido de la variable aleatoria \\(X=\\) Ganancia del juego, está formado por todos los números de la forma \\(2^{n}\\) con \\(n=1,2,3, \\ldots\\) La probabilidad de cada valor del recorrido es la probabilidad de que aparezca un número par por primera vez en la tirada nésima, es decir \\((1 / 2)^{n-1} \\cdot(1 / 2)=(1 / 2)^{n}\\). Por tanto, la esperanza del juego es la siguiente: \\[ E(X)=\\sum_{n=1}^{\\infty} 2^{n}(1 / 2)^{n}=\\sum_{n=1}^{\\infty} 1=\\infty \\] Como vemos, la variable aleatoria \\(X\\) no tiene esperanza finita. El enunciado presentado es una versión del problema presentado alrededor de 1730 por el matemático Daniel Bernouilli a la Academia de San Petersburgo y conocido como la paradoja de San Petersburgo, dado que la esperanza del juego es aparentemente infinita. 2.15.12 Varianza Si ahora queremos calcular la varianza de la variable \\[ X=\\text { Suma de puntos de las caras } \\] con función de densidad: \\[ f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases} \\] Podemos aplicar la fórmula \\[ \\operatorname{Var}(X)=E\\left(X^{2}\\right)-(E(X))^{2} \\] La esperanza ya la tenemos calculada con anterioridad \\[ \\begin{aligned} E(X) & =2 \\cdot 1 / 36+3 \\cdot 2 / 36+4 \\cdot 3 / 36+5 \\cdot 4 / 36+\\\\ & +6 \\cdot 5 / 36+7 \\cdot 6 / 36+8 \\cdot 5 / 36+9 \\cdot 4 / 36+\\\\ & +10 \\cdot 3 / 36+ 11 \\cdot 2 / 36+12 \\cdot 1 / 36=\\\\ & =7 \\end{aligned} \\] Necesitamos calcular la esperanza de la variable al cuadrado, que en este caso resulta: \\[ \\begin{aligned} E\\left(X^{2}\\right)& =2^{2} \\cdot 1 / 36+3^{2} \\cdot 2 / 36+4^{2} \\cdot 3 / 36+5^{2} \\cdot 4 / 36+6^{2} \\cdot 5 / 36+\\\\ & + 7^{2} \\cdot 6 / 36+8^{2} \\cdot 5 / 36+9^{2} \\cdot 4 / 36+ 10^{2} \\cdot 3 / 36+\\\\ & + 11^{2} \\cdot 2 / 36+12^{2} \\cdot 1 / 36=329 / 6 \\\\ &\\approx 54,833 \\end{aligned} \\] Con lo que la varianza resulta ser \\[ \\operatorname{Var}(X)=329 / 6-7^{2}=35 / 6 \\approx 5,833 \\] Nuevamente, para la variable Puntuación de un dado, la varianza se obtendría de la manera siguiente: \\[ \\begin{aligned} E(X)& =1 \\cdot 1 / 6+2 \\cdot 1 / 6+3 \\cdot 1 / 6+4 \\cdot 1 / 6+5 \\cdot 1 / 6+6 \\cdot 1 / 6= \\\\& =3,5\\\\ E \\left(X^{2}\\right)&=1^{2} \\cdot 1 / 6+2^{2} \\cdot 1 / 6+3^{2} \\cdot 1 / 6+4^{2} \\cdot 1 / 6+\\\\ & + 5^{2} \\cdot 1 / 6+6^{2} \\cdot 1 / 6=91 / 6\\\\ & \\approx 15,167 \\\\ \\operatorname{Var}(X)&=91 / 6-3,5^{2}=35 / 12 \\approx 2,9167 \\end{aligned} \\] y se cumple que la varianza de la variable Suma de puntos de las dos caras es la suma de las varianzas de las puntuaciones de cada dado por separado. Recordemos que esto sólo sucede si las variables sumadas son independientes, como así ocurre con las puntuaciones de cada dado por separado. "],["distribuciones-notables.html", "Capítulo 3 Distribuciones Notables 3.1 Distribuciones discretas 3.2 Distribuciones Continuas 3.3 Distribuciones con R (y Python) 3.4 La familia exponencial de distribuciones", " Capítulo 3 Distribuciones Notables 3.1 Distribuciones discretas 3.1.1 La distribución de Bernouilli Es el modelo discreto más sencillo en que podamos pensar. Hace referencia a situaciones en las que el resultado de un experimento sólo puede ser: se ha dado el suceso \\(A\\) ó no se ha dado el suceso \\(A\\). Por ejemplo, en el lanzamiento de una moneda sólo puede darse el suceso sale cara o su complementario no sale cara (sale cruz). Por lo tanto, definimos la variable aleatoria \\(X\\) de la siguiente manera: \\(X=1\\) si se ha dado \\(A\\). \\(X=0\\) si no se ha dado \\(A\\), es decir, se ha dado el complementario \\(A^{c}\\). Si además, conocemos la probabilidad de que suceda \\(A\\) : \\[ P[A]=p \\] y, por tanto, \\[ P\\left[A^{c}\\right]=1-p \\] ya podemos definir la distribución de la variable aleatoria \\(X\\). En estas condiciones diremos que \\(X\\) sigue una distribución de Bernouilli de parámetro \\(p\\), que abreviaremos así \\(X \\sim \\operatorname{Bernouilli}(p)\\), y su función de densidad se define así: \\[ f(k)=P[X=k]=\\left\\{\\begin{array}{cc} p & \\text { si } k=1(\\text { se ha dado } A) \\\\ 1-p & \\text { si } k=0\\left(\\text { se ha dado } A^{c}\\right) \\end{array}\\right\\} \\] Gráficamente: Mientras que la función de distribución será: \\[ F(k)=P[X \\leq k]=\\left\\{\\begin{array}{lc} 0 & \\text { si } \\mathbf{k}<0 \\\\ \\mathbf{p} & \\text { si } 0 \\leq \\mathbf{k}<1 \\\\ 1 & \\text { si } \\mathbf{p} \\geq 1 \\end{array}\\right\\} \\] Gráficamente: 3.1.1.1 Propiedades del modelo de Bernouilli La esperanza vale \\(E(X)=p\\). La varianza vale \\(V(X)=p(1-p)\\). 3.1.2 La distribución Binomial Al igual que el modelo de Bernouilli, hace referencia a experiencias con resultados dicotómicos (el resultado sólo puede ser \\(A\\) o \\(A^{\\mathcal{C}}\\) ). Sin embargo en este modelo estamos interesados en la repetición de \\(n\\) veces una experiencia de este tipo en condiciones independientes. Tomemos el ejemplo del contaje del número de caras en el lanzamiento \\(n\\) veces de una moneda regular. Para concretar, vamos a suponer que disponemos de una moneda regular \\((P[\\) cara \\(]=P[c r u z]=1 / 2)\\) que lanzamos cuatro veces. Es evidente que, en estas condiciones, la variable X: número de caras en cuatro lanzamientos independientes de una moneda regular es una variable aleatoria discreta que sólo puede tomar cinco posibles valores: \\[ x=0,1,2,3,4 \\] Pasemos ahora a calcular la probabilidad de cada valor (en terminología estadística, vamos a calcular la función de densidad de la variable \\(X\\) ). Es evidente que la \\(P[X=0]\\) es igual a la probabilidad de salgan cuatro cruces seguidas: \\[ P[X=0]=P[c r u z, c r u z, c r u z, c r u z]=\\mathrm{P}[c r u z]^{4}=(1 / 2)^{4}=0,0625 \\] ya que la moneda es regular y, por tanto, \\(P[\\) cara \\(]=P[\\) cruz \\(]=1 / 2\\). La \\(P[X=3]\\) corresponde al suceso de que salgan tres caras ( \\(c\\) en adelante) y una cruz ( + en adelante). Sin embargo, en este caso tenemos hasta cuatro posibles maneras de obtener dicho resultado, según el orden en que aparezcan las tres caras y la cruz: +ccc \\(\\mathrm{c}+\\mathrm{cc}\\) \\(\\mathrm{cc}+\\mathrm{c}\\) \\(\\mathrm{ccc}+\\) También debería resultar evidente que la probabilidad de cada uno de estos sucesos es la misma: \\[ P[+\\mathrm{ccc}]=P[\\mathrm{c}+\\mathrm{cc}]=P[\\mathrm{cc}+\\mathrm{c}]=P[\\mathrm{ccc}+]=(1 / 2)^{4}=(1 / 2)^{4}=0,0625 \\] de manera que, finalmente, la probabilidad de que salgan tres caras y una cruz es la suma de las probabilidades de los 4 casos anteriores: \\[ P[X=3]=4(1 / 2)^{4}=0,25 \\] Y así podríamos ir calculando el resto de casos. Podemos ver que, en este ejemplo, todos los casos tienen la misma probabilidad \\((0,0625)\\) y que el número total de casos posibles es 16 . En términos de combinatoria dicho número se obtendría como variaciones con repetición de dos valores (cara o cruz) tomados de cuatro en cuatro (el número de lanzamientos de la moneda): \\[ V R_{2}{ }^{4}=2^{4}=16 \\] En la siguiente tabla se muestran los dieciséis posibles resultados: \\(k=\\) número de caras Casos 0 +++++ 1 +++c \\(++\\mathrm{c}+\\) \\(+\\mathrm{c}++\\) \\(\\mathrm{c}+++\\) ++cc \\(+\\mathrm{c}+\\mathrm{c}\\) \\(\\mathrm{c}++\\mathrm{c}+\\) \\(\\mathrm{c}+\\mathrm{c}+\\) cc++ \\(\\mathrm{ccc}+\\) \\(\\mathrm{c}+\\mathrm{cc}\\) Si hacemos uso de nuestros conocimientos de combinatoria, comprobamos que el número de casos para cada posible valor \\(k(k=0,1,2,3,4)\\) puede calcularse como permutaciones con repetición de cuatro elementos tomado de \\(k\\) y \\(4-k\\) : \\[ R P_{4}^{k, 4-k}=\\frac{4!}{k!(4-k)!}=\\binom{4}{k} \\] y obtenemos finalmente el número combinatorio 4 sobre \\(k\\). En efecto, para el caso \\(k=3\\), tendríamos: \\[ \\binom{4}{3}=\\frac{4!}{3!1!}=4 \\] que son los cuatro posibles casos que nos dan tres caras y una cruz. Finalmente, recordando que todos los casos tienen la misma probabilidad, se construye la siguiente tabla: \\(k=\\) número de caras Número de casos \\(P[X=k]\\) 0 1 0,0625 1 4 0,2500 2 6 0,3750 3 4 0,2500 4 1 0,0625 Total 16 1 3.1.2.1 Los parámetros de la distribución Binomial La última tabla de la página anterior es, justamente, la función de densidad de nuestra variable \\(X\\). Función de densidad de \\(X\\) \\(k\\) \\(P[X=k]\\) 0 0,0625 1 0,2500 2 0,3750 3 0,2500 4 0,0625 En otro caso 0 Como hemos visto, para obtener los resultados anteriores, hemos tenido que definir dos valores: \\(n\\) : el número de lanzamientos (repeticiones de la experiencia aleatoria en condiciones independientes), en nuestro caso \\(n=4\\). \\(p\\) : la probabilidad de que salga cara \\((P[c])\\), en nuestro caso \\(p=1 / 2\\). Se dice, por tanto, que la distribución Binomial depende de dos parámetros: \\(n\\) y \\(p\\). En nuestro ejemplo, diremos que \\(X\\) sigue una distribución Binomial de parámetros \\(n=4\\) i \\(p=1 / 2\\). De forma abreviada: \\[ X \\sim B(n=4 ; p=1 / 2) \\] En el ejemplo que hemos visto, suponíamos que la moneda era regular y, por tanto, \\[ P[c]=P[+]=1 / 2 \\] Si tenemos una moneda trucada con las siguientes probabilidades: \\[ P[c]=2 / 3 \\quad \\text { i } \\quad P[+]=1 / 3 \\] diremos que en este caso la variable \\(X\\) : número de caras en cuatro lanzamientos independientes de nuestra moneda trucada sigue una distribución Binomial de parámetros: \\[ X \\sim B(n=4 ; p=2 / 3) \\] El problema se nos complica levemente ya que ahora no todos los posibles resultados tienen la misma probabilidad. Veamos dos ejemplos: La probabilidad de obtener cuatro caras es: \\[ P[c c c c]=(2 / 3)^{4}=0,1975 \\] La probabilidad de que el primer lanzamiento sea cara y el resto sean cruces valdrá: \\[ P\\left[c^{+++}\\right]=(2 / 3)^{\\prime}(1 / 3)^{3}=0,0247 \\] Sin embargo sí se cumplirá que la probabilidad de que todos los caso que resulten en el mismo número de caras y cruces tendrán la misma probabilidad. Por ejemplo, para los cuatro casos en los que el número total de caras es 1 y el de cruces 3 : \\[ P[c+++]=P[+c++]=P[++c+]=P[+++c]=(2 / 3)^{\\prime}(1 / 3)^{3}=0,0247 \\] Y, por tanto, la probabilidad de obtener una sola cara en el lanzamiento de nuestra moneda trucada será: \\[ P[X=1]=4^{\\prime} 0,0247=0,0988 \\] O, generalizando, si \\(P[A]=p\\) y \\(P\\left[A^{c}\\right]=1-p\\) tenemos que \\[ P[X=k]=c(n, k) p^{k}(1-\\mathrm{p})^{n-k} \\quad \\text { si } k=0,1, \\ldots, n \\] donde \\(c(n, k)\\) representa el número de posibles resultados en los que obtenemos \\(k\\) caras y \\(n-k\\) cruces en \\(n\\) lanzamientos. Tal como hemos visto, dicho número se puede calcular como permutaciones con repetición de \\(n\\) unidades tomadas de \\(k\\) y \\(n-k\\). Todo lo anterior nos lleva a formular el model binoial a traves de la siguiente función de densidad: \\[ f(k)=P[X=k]=\\left\\{\\begin{array}{ll} \\binom{\\mathbf{n}}{\\mathbf{k}} p^{k}(1-p)^{n-k} & \\text { si } \\quad k=0, \\ldots, n \\\\ 0 & \\text { en caso contrario } \\end{array}\\right\\} \\] con lo que la función de distribución se calcularía: \\[ F(k)=P[X \\leq k]=\\left\\{\\begin{array}{cc} 0 & \\text { si } k<0 \\\\ \\sum_{i=0}^{k}\\binom{\\mathbf{i}}{\\mathbf{n}} p^{i}(\\mathbf{1}-p)^{n-i} \\\\ \\mathbf{1} & \\text { si } k \\geq n \\end{array}\\right\\} \\] 3.1.2.2 Propiedades del modelo Binomial La esperanza vale \\(E(X)=n p\\). La varianza es \\(V(X)=n p(1-p)\\). Es una generalización del modelo de Bernouilli. En efecto, la Binomial con \\(n=1\\) (una sola realización) coincide con la distribución de Bernouilli. La suma de dos variables aleatorias binomiales independientes con igual parámetro \\(p\\) también sigue una distribución Binomial: \\[ X_{1} \\sim B\\left(n=n_{1} ; p=p_{0}\\right) \\quad \\text { i } \\quad X_{2} \\sim B\\left(n=n_{2} ; p=p_{0}\\right) \\] Si definimos \\(Z=X_{1}+X_{2}\\) entonces, \\[ Z \\sim B\\left(n=n_{1}+n_{2} ; p=p_{0}\\right) \\] 3.1.3 La distribución de Poisson Se trata de un modelo discreto, pero en el que el conjunto de valores con probabilidad no nula no es finito, sino numerable. Se dice que una variable aleatoria \\(X\\) sigue la distribución de Poisson si su función de densidad viene dada por: \\[ f(k)=P[X=k]=\\left\\{\\begin{array}{ll} e^{-\\lambda \\frac{\\lambda^{k}}{k!}} & \\text { si } k=0,12, \\ldots \\\\ 0 & \\text { en caso contrario } \\end{array}\\right\\} \\] Como vemos, este modelo se caracteriza por un sólo parámetro \\(\\lambda\\), que debe ser positivo. Esta distribución suele utilizarse para contajes del tipo número de individuos por unidad de tiempo, de espacio, etc. 3.1.3.1 Propiedades del modelo de Poisson Esperanza: \\(E(X)=\\lambda\\). Varianza: \\(V(X)=\\lambda\\). En esta distribución la esperanza y la varianza coinciden. La suma de dos variables aleatorias independientes con distribución de Poisson resulta en una nueva variable aleatoria, también con distribución de Poisson, de parámetro igual a la suma de parámetros: \\[ X_{1} \\sim P\\left(\\lambda=\\lambda_{1}\\right) \\quad \\text { y } \\quad X_{2} \\sim P\\left(\\lambda=\\lambda_{2}\\right) \\] y definimos \\(Z=X_{1}+X_{2}\\), entonces, \\[ Z \\sim P\\left(\\lambda=\\lambda_{1}+\\lambda_{2}\\right) \\] Este resultado se extiende inmediatamente al caso de \\(n\\) variables aleatorias independientes con distribución de Poisson. En este caso, la variable suma de todas ellas sigue una distribución de Poisson de parámetro igual a la suma de los parámetros. 3.1.4 La distribución Uniforme discreta Tenemos esta distribución cuando el resultado de una experiencia aleatoria puede ser un conjunto finito de \\(n\\) posibles resultados, todos ellos igualmente probables. Un ejemplo puede ser la variable \\(X\\), puntuación en el lanzamiento de un dado regular. Esta variable toma seis valores posibles, todos con la misma probabilidad \\(p=1 / 6\\). La función de densidad de esta variable será: \\[ f(k)=P[X=k]=1 / 6 \\quad k=1,2,3,4,5,6 \\] En general, si la variable \\(X\\) puede tomar \\(n(k=1,2, \\ldots, n)\\) valores, todos con igual probabilidad, su función de densidad será: \\[ f(k)=P[X=k]=1 / n \\quad k=1,2, \\ldots, n \\] 3.1.4.1 Propiedades del modelo Uniforme discreto Sea \\(n\\) el número de valores equiprobables posibles: 3.1.4.2 Esperanza: \\[ E(X)=\\frac{n+1}{2} \\] 3.1.4.3 Varianza: \\[ V(X)=\\frac{(n+1)[2(2 n+1)-3(n+1)]}{12} \\] 3.1.5 La distribución Hipergeométrica Este modelo presenta similitudes con el Binomial, pero sin la suposición de independencia de éste último. Veámoslo: Partimos de un conjunto formado por \\(N\\) individuos divididos en dos categorías mutuamente excluyentes: \\(A\\) y \\(A^{c}\\); de manera que \\(N_{1}\\) individuos pertenecen a la categoría \\(A\\) y \\(N_{2}\\) individuos, a la categoría \\(A^{c}\\). Por tanto, se cumple que \\[ N=N_{1}+N_{2} \\] Si del conjunto anterior extraemos \\(n\\) individuos sin reemplazamiento \\((n \\leq N)\\), la variable \\(X\\) que representa el número k de individuos que pertenecen a la categoría A (de los n extraídos) tiene por función de densidad: \\[ f(k)=P[X=k]=\\frac{\\binom{\\mathbf{N}_{1}}{\\mathbf{k}}\\binom{\\mathrm{N}_{2}}{\\mathbf{n}-\\mathbf{k}}}{\\binom{\\mathbf{N}}{\\mathbf{n}}} \\] si \\(\\operatorname{max}\\left\\{0, \\mathrm{n}-N_{2}\\right\\} \\leq \\mathrm{k} \\leq \\min \\left\\{N_{1}, n\\right\\}\\) La dependencia se debe al hecho de que \\(N\\) es finito y las extracciones se efectúan sin reemplazamiento. El caso de extracciones con reemplazamiento sería equivalente al de \\(N\\) infinito y se resolvería mediante el modelo Binomial. 3.1.5.1 Propiedades del modelo hipergeométrico Esperanza: \\(\\mathrm{E}(\\mathrm{X})=\\mathrm{n} \\mathrm{N}_{1} / \\mathrm{N}_{2}\\). Varianza: \\(V(X)=\\left(n N_{1} N_{2}(N-n)\\right) /\\left(N_{2}(N-1)\\right)\\) 3.1.6 La distribución Geométrica o de Pascal Definamos una experiencia aleatoria cuyo resultado sólo puede ser el suceso \\(A\\) o su complementario \\(A^{c}\\), y que se repite secuencialmente hasta que aparece el suceso \\(A\\) por primera vez. Definamos la variable aleatoria \\(X\\) como el número de veces que repetimos la experiencia en condiciones independientes hasta que se dé A por primera vez. Bajo estas condiciones, decimos que la variable \\(X\\) sigue una distribución geométrica o de Pascal de parámetro \\(p=P(A)\\). La función de densidad puede deducirse fácilmente de la definición: \\[ f(k)=P[X=k]=(1-p)^{k} p \\quad k=0,1,2, \\ldots \\] En el programa siguiente podéis ver su forma y obtener los valores de la función de densidad y de la de distribución: Algunas puntualizaciones de la definición de \\(X\\) : Notése que, en esta definición, condiciones independientes significa que \\(p\\), la probabilidad de \\(A\\), y \\(1-p\\), la de su complementario \\(A^{c}\\), no varían a lo largo de las sucesivas repeticiones de la experiencia. Tal y como la hemos definido, \\(X\\) se refiere al número de lanzamientos hasta que se produce \\(A\\), pero sin contabilizar el último caso en que se da \\(A\\). Por dicha razón \\(X\\) puede tomar los valores \\(k=\\) \\(0,1,2, \\ldots\\) con probabilidad no nula. Un ejemplo de este modelo podría ser la experiencia consistente en lanzar sucesivamente un dado regular hasta que aparezca el número 6 . Si definimos la variable aleatoria \\(X\\) como el número de lanzamientos de un dado regular hasta que aparezca un 6 , queda claro que \\(X\\) sigue una distribución geométrica de parámetro \\(p=1 / 6\\). 3.1.6.1 Propiedades del modelo Geométrico o de Pascal Esperanza: \\(E(X)=(1-p) / p\\) Varianza: \\(V(X)=(1-p) / p^{2}\\) 3.1.6.2 Preguntas: ¿A que suceso nos referimos cuando decimos \\(X=0\\) ? Respuesta. Cuando decimos que \\(X=0\\) nos referimos al caso en que el 6 aparece en el primer lanzamiento. La probabilidad de que esto suceda, suponiendo un dado regular, es de \\(1 / 6\\) : \\[ P[X=0]=1 / 6 \\] ¿Cuál es la probabilidad de que el primer 6 aparezca en el cuarto lanzamiento? Respuesta. La probabilidad de que el primer 6 aparezca en el cuarto lanzamiento corresponde a: \\[ P[X=3]=(5 / 6)^{3 \\cdot} 1 / 6=0,0965 \\] Fijémonos en que, si definimos \\(A\\) como el suceso sale un 6, la probabilidad anterior corresponde a la del suceso: \\(\\left\\{A^{c} A^{c} A^{c} A\\right\\}\\) (en este orden). 3.1.7 La distribución Binomial negativa Puede definirse como una generalización del modelo Geométrico o de Pascal. Así, dado un suceso \\(A\\) y su complementario \\(A^{c}\\), cuando \\(X\\) representa el número de veces que se da \\(\\mathrm{A}^{\\mathrm{c}}\\) (ausencias, fallos, etc.) hasta que se produce r veces el suceso A , en una serie de repeticiones de la experiencia aleatoria en condiciones independientes, decimos que \\(X\\) sigue la distribución Binomial negativa. Nótese que, cuando \\(r=1\\), tenemos exactamente el modelo geométrico. Este modelo queda definido por dos parámetros \\(p\\) (la probabilidad de \\(A: p=P(A)\\) ) y \\(r\\) (el número de veces que debe producirse \\(A\\) para que detengamos la experiencia). La función de densidad viene dada por: \\[ f(k)=P[X=k]=\\binom{\\mathbf{k}+\\mathbf{r}-\\mathbf{1}}{\\mathbf{r}-\\mathbf{1}} \\mathbf{p}^{\\mathbf{r}} \\mathbf{q}^{\\mathbf{k}} \\quad \\mathbf{k}=\\mathbf{0}, \\mathbf{1}, \\mathbf{2}, \\ldots \\] donde \\(q\\) representa el complementario de \\(p: q=1-p\\). 3.1.7.1 Propiedades del modelo Binomial negativo Esperanza: \\(E(X)=r^{\\prime} q / p\\) Varianza: \\(V(X)=r^{\\prime} q / p^{2}\\) Se cumplen las siguientes propiedades respecto la función de densidad: \\[ f(0)=p^{r} \\quad \\text { y } \\quad f(k+1)=\\frac{(1-p)(k+r)}{k+1} f(k) \\] Este modelo se ajusta bien a contajes (números de individuos por unidad de superficie) cuando se produce una distribución contagiosa (los individuos tienden a agruparse). La distribución Binomial negativa puede definirse con mayor generalidad si tomamos \\(r\\) como un número real positivo cualquiera (no necesariamente entero). Pero, en dicho caso, se pierde el carácter intuitivo del modelo y se complican ligeramente los cálculos. Por dichas razones, se ha excluido dicha posibilidad en esta presentación. 3.1.8 Tabla resumen de las distribuciones discretas principales Distribución Parámetros Función de densidad Esperanza Varianza Bernouilli \\(0 \\leq p \\leq 1\\) \\(p^{k}(1-p)^{1-k}\\) \\(k=0,1\\) \\(p\\) \\(p(1-p)\\) Binomial \\(0 \\leq p \\leq 1\\) \\(n=1,2, \\ldots\\) \\(\\binom{\\mathbf{n}}{\\mathbf{k}} p^{k}(1-p)^{n-k}\\) \\(k=0,1, \\ldots, n\\) \\(n p\\) \\(n p(1-p)\\) Poisson \\(\\lambda>0\\) \\(e^{-\\lambda} \\frac{\\lambda^{k}}{k!}\\) \\(k=012, \\ldots\\) \\(\\lambda\\) \\(\\lambda\\) Multinomial \\(0 \\leq p_{1}, \\ldots\\) \\(p_{r} \\leq 1\\) \\(\\left(p_{1}+\\ldots+\\right.\\) \\(\\left.p_{\\mathrm{r}}=1\\right)\\) \\(n=1,2\\) \\(\\frac{n!}{k_{1}!k_{2}!\\cdots k_{r}!} p_{1}^{k_{1}} p_{2}^{k_{2}} \\cdots p_{r}^{k_{r}}\\) \\(\\sum_{i=1}^{r} k_{i}=n\\) \\(\\left(\\begin{array}{c}n p_{1} \\\\ n p_{2} \\\\ \\vdots \\\\ n p_{r}\\end{array}\\right)\\) \\(\\boldsymbol{\\sigma}_{i i}=n p_{i}\\left(1-p_{i}\\right)\\) \\(\\boldsymbol{\\sigma}_{i j}=n p_{i} p_{j} \\quad i \\neq j\\) Uniforme discreta \\(n=1,2, \\ldots\\) \\(\\frac{1}{n}\\) \\(k=1,2, \\ldots . n\\) \\(\\frac{n+1}{2}\\) \\(\\frac{(n+1)[2(2 n+1)-3(n+1)}{12}\\) Hipergeométrica \\(\\left\\{\\begin{array}{c}N=N_{1}+ \\\\ N_{2} \\\\ p=N_{1} / N\\end{array}\\right.\\) \\(\\frac{\\binom{\\mathrm{N}_{1}}{\\mathrm{k}}\\binom{\\mathrm{N}_{2}}{\\mathrm{n}-\\mathrm{k}}}{\\binom{\\mathrm{N}}{\\mathrm{n}}}\\) \\(\\operatorname{max}\\left\\{0, \\mathrm{n}-N_{2}\\right\\} \\leq \\mathrm{k} \\leq \\min \\left\\{N_{1}, n\\right\\}\\) \\(n p\\) \\(n p(1-p) \\frac{N-n}{N-1}\\) Pascal \\(0 \\leq p \\leq 1\\) \\(p(1-p)^{k}\\) \\(k=0,1,2, \\ldots\\) \\(\\frac{1-p}{p}\\) \\(\\frac{1-p}{p^{2}}\\) Binomial negativa \\(0 \\leq p \\leq 1\\) \\(r>0\\) \\(\\frac{r(1-p)}{p}\\) \\(\\frac{r(1-p)}{p^{2}}\\) 3.2 Distribuciones Continuas 3.2.1 La distribución Uniforme La distribución Uniforme es el modelo (absolutamente) continuo más simple. Corresponde al caso de una variable aleatoria que sólo puede tomar valores comprendidos entre dos extremos \\(a\\) y \\(b\\), de manera que todos los intervalos de una misma longitud (dentro de \\((a, b)\\) ) tienen la misma probabilidad. También puede expresarse como el modelo probabilístico correspondiente a tomar un número al azar dentro de un intervalo \\((a, b)\\). De la anterior definición se desprende que la función de densidad debe tomar el mismo valor para todos los puntos dentro del intervalo \\((a, b)\\) (y cero fuera del intervalo). Es decir, \\[ f_{X}(x)=\\left\\{\\begin{array}{ll} \\frac{1}{b-a} & \\text { si } x \\in(a, b) \\\\ 0 & \\text { si } x \\notin(a, b) \\end{array}\\right\\} \\] Gráficamente: La función de distribución se obtiene integrando la función de densidad y viene dada por: \\[ F_{X}(x)=P(X \\leq x)=\\left\\{\\begin{array}{ll} 0 & \\text { si } x \\leq a \\\\ \\frac{x-a}{b-a} & \\text { si } x \\in(a, b) \\\\ 1 & \\text { si } x \\geq b \\end{array}\\right\\} \\] Gráficamente: Función de distribución del modelo uniforme 3.2.1.1 Propiedades del modelo Uniforme Su esperanza vale \\((b+a) / 2\\) Su varianza es \\((b-a)^{2} / 12\\) 3.2.1.2 Una aplicación del modelo Uniforme: el muestreo de Montecarlo En ciertos casos es útil simular el muestreo de una variable aleatoria con una distribución dada. El muestreo de Montecarlo es un procedimiento general para obtener muestras aleatorias de cualquier tipo de variable (discreta o continua) si su función de distribución es conocida o se puede calcular. Supongamos que queremos generar una muestra procedente de una variable aleatoria \\(X\\) con función de distribución \\(F(x)\\). El proceso comprende los siguientes pasos: Obtener un valor aleatorio \\(y\\) entre cero y uno. Es decir, obtener una muestra de una distribución Uniforme entre cero y uno. La mayoría de lenguajes de programación incorporan un generador de este tipo. Considerar el valor obtenido como el valor de la función de distribución a generar: \\(y=F(x)\\). El valor \\(x=F^{-1}(y)\\) (la inversa de la función de distribución en el punto \\(y\\) ) es un valor procedente de la distribución de la que deseábamos generar la muestra. Si queremos obtener una muestra con \\(n\\) individuos debemos repetir los pasos anteriores \\(n\\) veces. 3.2.1.3 Generación de una muestra procedente de una distribución Binomial Supongamos que queremos simular el experimento de contar el número de caras obtenidas en 5 lanzamientos de una moneda trucada con probabilidad de cara igual a 0,75 . Es decir, queremos obtener una muestra de una distribución Binomial con \\(n=5\\) y \\(p=0,75\\). Siguiendo los pasos anteriores deberemos obtener un número al azar entre 0 y 1 (un valor procedente de una distribución Uniforme entre 0 y 1) y si este valor es menor o igual a 0,75 diremos que ha salido cara y, si es superior a 0,75 , cruz. Utiliza el siguiente programa para simular cinco lanzamientos con nuestra moneda trucada: 3.2.2 La distribución Exponencial Este modelo suele utilizarse para variables que describen el tiempo hasta que se produce un determinado suceso. Su función de densidad es de la forma: \\[ f(x)=\\left\\{\\begin{array}{lll} \\frac{1}{\\alpha} \\exp \\left(-\\frac{x}{\\alpha}\\right) & \\text { si } & x>0 \\\\ 0 & \\text { si } & x \\leq 0 \\end{array}\\right\\} \\] Como vemos este modelo depende de un único parámetro \\(\\alpha\\) que debe ser positivo: \\(\\alpha>0\\). A continuación se muestra un programa que nos permite ver cómo cambia la forma de la función de densidad según el parámetro \\(\\alpha\\). La función de distribución se obtiene integrando la de densidad y es de la forma: \\[ F(x)=\\left\\{\\begin{array}{lll} 1-\\exp \\left(-\\frac{x}{\\alpha}\\right) & \\text { si } & x>0 \\\\ 0 & \\text { si } & x \\leq 0 \\end{array}\\right\\} \\] Podemos utilizar el programa siguiente para calcular dicha función de distribución: 3.2.2.1 Propiedades del modelo Exponencial Su esperanza es \\(\\alpha\\). Su varianza es \\(\\alpha^{2}\\). Una propiedad importante es la denominada carencia de memoria, que podemos definir así: si la variable \\(X\\) mide el tiempo de vida y sigue una distribución Exponencial, significará que la probabilidad de que siga con vida dentro de 20 años es la misma para un individuo que a fecha de hoy tiene 25 años que para otro que tenga 60 años. Cuando el número de sucesos por unidad de tiempo sigue una distribución de Poisson de parámetro \\(\\lambda\\) (proceso de Poisson), el tiempo entre dos sucesos consecutivos sigue una distribución Exponencial de parámetro \\(\\alpha=1 / \\lambda\\). 3.2.3 La distribución Normal Se trata, sin duda, del modelo continuo más importante en estadística, tanto por su aplicación directa, veremos que muchas variables de interés general pueden describirse por dicho modelo, como por sus propiedades, que han permitido el desarrollo de numerosas técnicas de inferencia estadística. En realidad, el nombre de Normal proviene del hecho de que durante un tiempo se creyó, por parte de médicos y biólogos, que todas las variables naturales de interés seguían este modelo. Su función de densidad viene dada por la fórmula: \\[ f(x)=\\frac{1}{\\sqrt{2 \\pi} \\sigma} \\exp \\left\\{-\\frac{(x-\\mu)^{2}}{2 \\sigma^{2}}\\right\\} \\quad \\text { donde }-\\infty<x<+\\infty \\] que, como vemos, depende de dos parámetros \\(\\mu\\) (que puede ser cualquier valor real) y \\(\\sigma\\) (que ha de ser positiva). Por esta razón, a partir de ahora indicaremos de forma abreviada que una variable \\(X\\) sigue el modelo Normal así: \\(X \\sim N(\\mu, \\sigma)\\). Por ejemplo, si nos referimos a una distribución Normal con \\(\\mu=0\\) y \\(\\sigma\\) \\(=1\\) lo abreviaremos \\(N(0,1)\\). A continuación vemos gráfica de esta función de densidad (podeis probar a cambiar los parámetros): Como puedes ver, la función de densidad del modelo Normal tiene forma de campana, la que habitualmente se denomina campana de Gauss. De hecho, a este modelo, también se le conoce con el nombre de distribución gaussiana. 3.2.3.1 Propiedades del modelo Normal Su esperanza es \\(\\mu\\). Su varianza es \\(\\sigma^{2} \\mathrm{y}\\), por tanto, su desviación típica es \\(\\sigma\\). Es simétrica respecto a su media \\(\\mu\\), como puede apreciarse en la representación anterior. Media, moda y mediana coinciden \\((\\mu)\\). Cualquier transformación lineal de una variable con distribución Normal seguirá también el modelo Normal. Si \\(X \\sim N(\\mu, \\sigma)\\) y definimos \\(Y=a X+b(\\operatorname{con} a \\neq 0)\\), entonces \\(Y \\sim N(a \\mu+b,|a| \\sigma)\\). Es decir, la esperanza de \\(Y\\) será \\(a \\mu+b\\) y su desviación típica, \\(|a| \\sigma\\). Cualquier combinación lineal de variables normales independientes sigue también una distribución Normal. Es decir, dadas \\(n\\) variables aleatorias independientes con distribución \\(X_{i} \\sim\\) \\(N\\left(\\mu_{i}, \\sigma_{i}\\right)\\) para \\(i=1,2, \\ldots, n\\) la combinación lineal: \\(Y=a_{n} X_{n}+a_{n-1} X_{n-1}+\\ldots+a_{1} X_{1}+\\mathrm{a}_{0}\\) sigue también el modelo Normal: \\[ Y \\approx N\\left(a_{0}+\\sum_{i=1}^{n} a_{i} \\boldsymbol{\\mu}_{i}, \\sqrt{\\sum_{i=1}^{n} a_{i}^{2} \\boldsymbol{\\sigma}^{2}}\\right) \\] ###La función de distribución del modelo Normal La función de distribución del modelo Normal se debería calcular, como en el resto de distribuciones continuas, integrando la función de densidad: \\[ F(x)=P[X \\leq x]=\\int_{-\\infty}^{x} \\frac{1}{\\sqrt{2 \\pi} \\sigma} \\exp \\left\\{-\\frac{(t-\\mu)^{2}}{2 \\sigma^{2}}\\right\\} \\mathrm{dt} \\] Pero nos encontramos con el problema de que no existe ninguna primitiva conocida para esta función, es decir, no sabemos resolver la anterior integral. Sin embargo, si somos incapaces de calcular la función distribución no podremos efectuar ningún cálculo con este modelo. ¿Cómo solucionamos el problema? Una primera solución podría consistir en aproximar la integral a través de técnicas de cálculo numérico. Sin embargo, dado que el conjunto de valores que pueden tomar los parámetros \\(\\mu\\) y \\(\\sigma\\) son infinitos, deberíamos repetir el proceso para cada valor diferente de algún parámetro. Afortunadamente, podemos ahorrarnos el esfuerzo aprovechando la propiedad de que cualquier transformación lineal de una variable Normal sigue también el modelo Normal. Por tanto, replantearemos cualquier problema en términos de una Normal concreta, que suele ser la \\(\\mathrm{N}(0,1)\\), de la siguiente manera: Si \\(X \\sim N(\\mu, \\sigma)\\) y entonces definimos \\(Z=(\\mathrm{X}-\\mu) / \\sigma\\) se cumplirá que \\(Z \\sim N(0,1)\\) \\[ \\begin{gathered} \\text { y, por tanto: } \\\\ F_{X}(x)=P[X \\leq x]=P\\left[\\frac{X-\\boldsymbol{\\mu}}{\\boldsymbol{\\sigma}} \\leq \\frac{x-\\boldsymbol{\\mu}}{\\boldsymbol{\\sigma}}\\right]=P\\left[Z \\leq \\frac{x-\\boldsymbol{\\mu}}{\\boldsymbol{\\sigma}}\\right]=F_{Z}\\left(\\frac{x-\\boldsymbol{\\mu}}{\\boldsymbol{\\sigma}}\\right) \\end{gathered} \\] A la distribución \\(N(0,1)\\), es decir, la que tiene por media cero y por desviación típica uno, se le denomina Normal reducida o tipificada. En cambio, al proceso de transformación del cálculo de la función de distribución de una Normal cualquiera a través de la Normal tipificada, se le denomina tipificación. Debemos remarcar que el proceso de tipificación no resuelve el problema de la inexistencia de la función primitiva correspondiente. Sin embargo, sí es posible, mediante técnicas de cálculo numérico, obtener la integral numérica correspondiente y elaborar unas tablas que podemos consultar. Naturalmente, la tipificación permite que con una sola tabla, la de la \\(N(0,1)\\), tengamos suficiente. Hoy en día, cada vez se utilizan menos tablas como la mencionada anteriormente, ya que los ordenadores, junto con los abundantes programas estadísticos existentes nos resuelven este problema. Sin embargo, la imposibilidad de integrar analíticamente la función de densidad persiste y, aunque nosotros no seamos conscientes, los programas informáticos realizan el proceso de tipificación para simplificar el problema. 3.2.4 La distribución Gamma Este modelo es una generalización del modelo Exponencial ya que, en ocasiones, se utiliza para modelar variables que describen el tiempo hasta que se produce p veces un determinado suceso. Su función de densidad es de la forma: \\[ f(x)=\\left\\{\\begin{array}{lll} \\frac{1}{\\alpha^{p} \\Gamma(p)} e^{-\\frac{x}{\\alpha}} x^{p-1} & \\text { si } & x>0 \\\\ 0 & \\text { si } & x \\leq 0 \\end{array}\\right\\} \\] Como vemos, este modelo depende de dos parámetros positivos: \\(\\alpha\\) y p. La función \\(\\Gamma(p)\\) es la denominada función Gamma de Euler que representa la siguiente integral: \\[ \\Gamma(p)=\\int_{0}^{\\infty} x^{p-1} e^{-x} d x \\] que verifica \\(\\Gamma(p+1)=p \\Gamma(p)\\), con lo que, si \\(p\\) es un número entero positivo, \\(\\Gamma(p+1)=p\\). 3.2.4.1 Propiedades de la distribución Gamma Su esperanza es \\(p \\alpha\\). Su varianza es \\(p \\alpha^{2}\\) La distribución Gamma \\((\\alpha, p=1)\\) es una distribución Exponencial de parámetro \\(\\alpha\\). Es decir, el modelo Exponencial es un caso particular de la Gamma \\(\\operatorname{con} p=1\\). Dadas dos variables aleatorias con distribución Gamma y parámetro \\(\\alpha\\) común \\[ X \\sim G\\left(\\alpha, p_{1}\\right) \\text { y } Y \\sim G\\left(\\alpha, p_{2}\\right) \\] se cumplirá que la suma también sigue una distribución Gamma \\[ X+Y \\sim G\\left(\\alpha, p_{1}+p_{2}\\right) \\] Una consecuencia inmediata de esta propiedad es que, si tenemos \\(k\\) variables aleatorias con distribución Exponencial de parámetro \\(\\alpha\\) (común) e independientes, la suma de todas ellas seguirá una distribución \\(G(\\alpha, k)\\). 3.2.5 La distribución de Cauchy Se trata de un modelo continuo cuya función de densidad es: \\[ f(x)=\\frac{1}{\\pi\\left(1+x^{2}\\right)} \\quad \\text { para } \\quad-\\infty<x<\\infty \\] Cuya integral nos proporciona la función de distribución: \\[ F(x)=\\int_{-\\infty}^{x} \\frac{1}{\\pi\\left(1+t^{2}\\right)} d t=\\frac{1}{\\pi}[\\arctan (t)]_{t=-\\infty}^{t=x}=\\frac{1}{2}+\\frac{\\arctan (x)}{\\pi} \\] El siguiente programa permite visualizar la forma de la función de densidad de este modelo y el valor de la función de distribución: 3.2.5.1 Propiedades de la distribución de Cauchy Se trata de un ejemplo de variable aleatoria que carece de esperanza (y, por tanto, también de varianza o cualquier otro momento), ya que la integral impropia correspondiente no es convergente: \\[ E(X)=\\int_{-\\infty}^{\\infty} \\frac{x}{\\pi\\left(1+x^{2}\\right)} d x=\\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} \\frac{2 x}{1+x^{2}} d x=\\frac{1}{2 \\pi}\\left[\\lim _{x \\rightarrow \\infty} \\ln \\left(x^{2}\\right)-\\lim _{x \\rightarrow-\\infty} \\ln \\left(x^{2}\\right)\\right]=\\frac{1}{2 \\pi}[\\infty-\\infty] \\] y nos queda una indeterminación. Por tanto, la esperanza de una distribución de Cauchy no existe. Cabe señalar que la función de densidad es simétrica respecto al valor cero (que sería la mediana y la moda), pero al no existir la integral anterior, la esperanza no existe. 3.2.6 La distribución de Weibull Se trata de un modelo continuo asociado a variables del tipo tiempo de vida, tiempo hasta que un mecanismo falla, etc. La función de densidad de este modelo viene dada por: \\[ f(x)=\\left\\{\\begin{array}{ll} \\frac{\\beta}{\\alpha}\\left(\\frac{x}{\\alpha}\\right)^{\\beta-1} e^{-\\left(\\frac{x}{\\alpha}\\right)^{\\beta}} & \\text { si } x \\geq 0 \\\\ 0 & \\text { si } x<0 \\end{array}\\right\\} \\] que, como vemos, depende de dos parámetros: \\(\\alpha>0\\) y \\(\\beta>0\\), donde \\(\\alpha\\) es un parámetro de escala y \\(\\beta\\) es un parámetro de forma (lo que proporciona una gran flexibilidad a este modelo). La función de distribución se obtiene por la integración de la función de densidad y vale: \\[ F(x)=1-e^{-\\left(\\frac{x}{\\alpha}\\right)^{\\beta}} \\] El siguiente programa permite visualizar la forma de la función de densidad de este modelo y el valor de la función de distribución: 3.2.6.1 Propiedades de la distribución Weibull Si tomamos \\(\\beta=1\\) tenemos una distribución Exponencial. Su esperanza vale: \\[ E(X)=\\alpha \\Gamma\\left(\\frac{1}{\\boldsymbol{\\beta}}+\\mathbf{1}\\right) \\] Su varianza vale: \\[ V(X)=\\alpha^{2}\\left\\{\\Gamma\\left(\\frac{2}{\\beta}+1\\right)-\\left[\\Gamma\\left(\\frac{1}{\\beta}+1\\right)\\right]^{2}\\right\\} \\] donde \\(\\Gamma(x)\\) representa la función Gamma de Euler definida anteriormente. 3.2.7 Tabla resumen de las principales distribuciones continuas Distribución Parámetros Función de densidad Esperanza Varianza Uniforme \\(a, b\\) \\(\\frac{1}{b-a}\\) \\(a<x<b\\) \\(\\frac{a+b}{2}\\) \\(\\frac{(b-a)^{2}}{12}\\) Exponencial \\(\\alpha>0\\) \\(\\frac{1}{\\alpha} \\exp \\left(-\\frac{x}{\\alpha}\\right)\\) \\(x>0\\) \\(\\alpha\\) \\(\\alpha^{2}\\) Normal \\(-\\infty<\\mu<\\infty\\) \\(\\sigma>0\\) \\(\\frac{1}{\\sqrt{2 \\pi} \\sigma} \\exp \\left\\{-\\frac{(x-\\mu)^{2}}{2 \\sigma^{2}}\\right\\}\\) \\(-\\infty<x<+\\infty\\) \\(\\mu\\) \\(\\sigma^{2}\\) Cauchy | - | \\(\\frac{1}{\\pi\\left(1+x^{2}\\right)}\\) \\(-\\infty<\\mathbf{x}<\\infty\\) | – | – | Weibull | \\(\\alpha>0\\) \\(\\beta>0\\) | \\(\\frac{\\boldsymbol{\\beta}}{\\boldsymbol{\\alpha}}\\left(\\frac{x}{\\boldsymbol{\\alpha}}\\right)^{\\beta-1} e^{-\\left(\\frac{x}{\\alpha}\\right)^{\\beta}}\\) \\(x \\geq 0\\) | \\(\\alpha \\Gamma\\left(\\frac{1}{\\beta}+1\\right)\\) | \\(\\alpha^{2}\\left\\{\\Gamma\\left(\\frac{2}{\\beta}+1\\right)-\\left[\\Gamma\\left(\\frac{1}{\\beta}+1\\right)\\right]^{2}\\right\\}\\) | 3.3 Distribuciones con R (y Python) El lenguaje estadístico R es muy potente en cuanto al cálculo con distribuciones de probabilidad. Dado que el trabajo con distribucines de probabilidad usando R está muy estandarizado y explicado en múltiples fuentes no repetiremos aquí estas explicaciones. Tan solo os referimos a dos buenas fuentes de información que podéis utilizar para aprender como hacer los cálculos con R y también una aplicación que os permite visualizar casi cualquier distribución conocida. R Tutorials Explicación detallada y de nivel básico del manejo de las principales distribuciones con R https://www.r-tutor.com/elementary-statistics/probability-distributions The distribution Zoo Permite visualizar de forma interactiva distintas distribuciones y proporciona información diversa sobre sus propiedades e incluso su aplicación. https://ben18785.shinyapps.io/distribution-zoo/ Distribution explorer Más completo que los anteriores. No se basa en R sino en python. https://distribution-explorer.github.io/index.html 3.4 La familia exponencial de distribuciones En el estudio de las propiedades de los estimadores, vemos que algunas distribuciones se comportan mejor que otras. Muchas veces, este buen comportamiento refleja una estructura común que proviene de pertenecer a una misma familia de distribuciones llamada familia exponencial. Definición: Sea \\(f_{\\theta}\\) una familia de probabilidades que depende de un parámetro unidimensional \\(\\left\\{f_{\\theta}(x), \\theta \\in \\Theta \\subseteq \\mathbb{R}\\right\\}\\) tal que el soporte \\(S(\\theta)=\\left\\{x \\mid f_{\\theta}(x)>0\\right\\}\\) no depende de \\(\\theta\\). Si existen funciones de los parámetros \\(Q(\\theta)\\) y \\(C(\\theta)\\) y funciones de las muestras, \\(T(x)\\) y \\(h(x)\\), tales que la función de densidad puede escribirse como: \\[f_{\\theta}(x)=C(\\theta) h(x) \\exp\\{Q(\\theta) \\cdot T(x)\\}\\] diremos que \\(f_{\\theta}(x)\\) pertenece a la familia exponencial de distribuciones. La familia exponencial no representa un nuevo tipo de distribuciones, sino la constatación de que muchas distribuciones comunes, que pueden reformularse para ajustarse a la expresión anterior, pertenecen a esta familia. Veamos algunos ejemplos de que esto es efectivamente así. 3.4.1 Ejemplos de distribuciones de esta familia 3.4.1.1 Distribución de Poisson La ley de Poisson pertenece a la familia exponencial uniparamétrica. Efectivamente, \\[f_{\\lambda}(x)=e^{-\\lambda} \\frac{\\lambda^{x}}{x!}=\\exp\\{-\\lambda+x \\log \\lambda-\\log(x!)\\}\\] y si hacemos \\[Q(\\lambda)=\\log(\\lambda) \\quad T(x)=x \\quad D(\\lambda)=-\\lambda \\quad S(x)=-\\log(x!)\\] se hace evidente que \\(f_{\\lambda}\\) pertenece a la familia exponencial. 3.4.1.2 Distribución normal uniparamétrica La ley normal depende de dos parámetros \\(\\mu\\) y \\(\\sigma\\). Fijado uno de ellos, nos queda una distribución que depende de un solo parámetro, y de aquí la denominación “normal uniparamétrica”. Si, con el subíndice “0”, indicamos el parámetro fijado, tenemos: \\[ \\begin{aligned} &f_{\\sigma}=\\left\\{N\\left(\\mu_0, \\sigma\\right), \\sigma>0\\right\\} \\text{ Normal uniparamétrica, de parámetro } \\sigma^2, \\\\ &f_{\\mu}=\\left\\{N\\left(\\mu, \\sigma_0\\right), \\mu \\in \\mathbb{R}\\right\\} \\text{ normal uniparamétrica, de parámetro } \\mu. \\end{aligned} \\] Si queremos considerar ambos parámetros a la vez, debemos extender la definición al caso de parámetros \\(k\\)-dimensionales. En estos materiales no trataremos esta extensión. 3.4.1.2.1 Caso 1: Fijando la media \\(\\mu_0\\) Consideramos la distribución normal \\(N(\\mu_0, \\sigma^2)\\), donde fijamos \\(\\mu = \\mu_0\\) y \\(\\sigma^2\\) es el parámetro libre. La función de densidad de probabilidad es \\[f_{\\sigma}(x) = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} \\exp\\left\\{-\\frac{(x - \\mu_0)^2}{2\\sigma^2}\\right\\}\\] Vamos a reescribir esta función en forma de la familia exponencial. Primero, reorganizamos los términos de la densidad: \\[f_{\\sigma}(x) = \\frac{1}{\\sqrt{2\\pi}} \\cdot \\sigma^{-1} \\exp\\left\\{-\\frac{1}{2\\sigma^2}(x - \\mu_0)^2\\right\\}\\] Ahora identificamos las funciones que se corresponden con la forma de la familia exponencial \\(f_{\\theta}(x) = C(\\theta) h(x) \\exp\\{Q(\\theta) T(x)\\}\\): \\(Q(\\sigma) = -\\frac{1}{2\\sigma^2}\\) \\(T(x) = (x - \\mu_0)^2\\) \\(C(\\sigma) = \\frac{1}{\\sqrt{2\\pi}\\sigma}\\) \\(h(x) = 1\\) Esto confirma que la distribución normal, con \\(\\mu_0\\) fijo, pertenece a la familia exponencial. 3.4.1.2.2 Caso 2: Fijando la varianza \\(\\sigma_0^2\\) Ahora consideramos la distribución \\(N(\\mu, \\sigma_0^2)\\), donde la varianza está fijada y el parámetro libre es \\(\\mu\\). La función de densidad es \\[f_{\\mu}(x) = \\frac{1}{\\sqrt{2\\pi\\sigma_0^2}} \\exp\\left\\{-\\frac{(x - \\mu)^2}{2\\sigma_0^2}\\right\\}\\] Vamos a reescribir esta función de la misma manera: \\[f_{\\mu}(x) = \\frac{1}{\\sqrt{2\\pi\\sigma_0^2}} \\exp\\left\\{-\\frac{1}{2\\sigma_0^2}(x^2 - 2\\mu x + \\mu^2)\\right\\}\\] Identificamos las funciones correspondientes: \\(Q(\\mu) = \\frac{\\mu}{\\sigma_0^2}\\) \\(T(x) = x\\) \\(D(\\mu) = -\\frac{\\mu^2}{2\\sigma_0^2}\\) \\(S(x) = -\\frac{x^2}{2\\sigma_0^2}\\) Esto prueba que la distribución normal con \\(\\sigma_0\\) fijo pertenece a la familia exponencial. 3.4.2 Distribución Binomial La distribución binomial es un ejemplo interesante, puesto que, a priori, no parece tener la estructura propia de la distribución exponencial, cosa que si pasa con la distribución de Poisson o con la Normales uniparamétricas que acabamos de ver. Sin embargo, tras aplicar algunas transformaciones se puede ver como, también esta distribución pertenece a la familia exponencial La función de masa de probabilidad para la distribución binomial es \\[f(x; n, p) = \\binom{n}{x} p^x (1 - p)^{n - x}, \\quad x = 0, 1, \\dots, n\\] Reescribimos esta función en términos exponenciales: \\[f(x; n, p) = \\binom{n}{x} \\exp\\{x \\log(p) + (n - x) \\log(1 - p)\\}\\] Agrupamos los términos dependientes de \\(x\\): \\[f(x; n, p) = \\binom{n}{x} \\exp\\left\\{x \\log\\left(\\frac{p}{1 - p}\\right) + n \\log(1 - p)\\right\\}\\] Identificamos las funciones correspondientes a la familia exponencial: \\(Q(p) = \\log\\left(\\frac{p}{1 - p}\\right)\\) \\(T(x) = x\\) \\(D(p) = n \\log(1 - p)\\) \\(S(x) = \\log \\binom{n}{x}\\) Por lo tanto, la distribución binomial pertenece a la familia exponencial. 3.4.3 Importancia y utilidad de la familia exponencial Muchas de las distribuciones usadas para modelar gran cantidad de situaciones prácticas pertenecen a esta familia. Esto significa que es posible estudiar sus propiedades en conjunto. Es decir, si establecemos que una propiedad se verifica en una distribución que pertenece a la familia exponencial, automáticamente sabemos que todos los miembros de la familia verifican esa propiedad. A continuación, se describen tres ventajas importantes de trabajar con esta familia: 3.4.4 Los modelos lineales generalizados (GLMs) Una de las aplicaciones más importantes de la familia exponencial es su uso en los Modelos Lineales Generalizados (GLMs). Estos modelos nos permiten extender la regresión lineal clásica a diferentes tipos de datos, como los resultados binarios (por ejemplo, éxito o fracaso), mediante la regresión logística, recuentos de eventos (como el número de llamadas recibidas en una hora) mediante la regresión de Poisson, y muchos otros. Gracias a la estructura de la familia exponencial, podemos conectar la media de la variable que estamos modelando con las variables explicativas de forma flexible, lo que hace posible aplicar GLMs en una amplia variedad de situaciones. 3.4.5 Estimación en la familia exponencial Otra ventaja importante es que, al trabajar con distribuciones de la familia exponencial, los métodos que usamos para hacer inferencias estadísticas suelen tener buenas propiedades. Esto, que se explicará con más detalle en capítulos siguientes, implica que los estimadores que obtenemos con estos modelos suelen ser precisos y reflejar correctamente la información que contienen los datos. Naturalmente esto se puede ver al revés: Si podemos trabajar con distribuciones de la familia exponencial, solemos tener, de entrada, una serie de ventajas, como el buen comportamiento de los etimadores, por lo que siempre es una buena opción intentar utilizarlas en nuestros modelos. "],["distribuciones-de-probabilidad-multidimensionales.html", "Capítulo 4 Distribuciones de probabilidad multidimensionales 4.1 Distribuciones conjuntas de probabilidades 4.2 Variable aleatorias bivariantes discretas 4.3 La distribución multinomial 4.4 Distribuciones marginales 4.5 Distribuciones condicionales 4.6 Vectores aleatorios absolutamente continuos 4.7 Independencia de variables aleatorias 4.8 Momentos de vectores aleatorios", " Capítulo 4 Distribuciones de probabilidad multidimensionales En este capítulo se extiende el concepto de variable aleatoria a un conjunto de variables que pueden interpretarse asociadas a un conjunto de medidas distintas y que pueden estar, o no relacionadas. Tras introducir los conceptos de distribuciones multidimensionales, condicionales y marginales, se pasa a considerar el caso más habitual en inferencia estadística en el que las componentes de los vectrores son independientes entre ellas. Este es, de hecho, el punto de partida de muchos modelos y métodos en estadística. 4.1 Distribuciones conjuntas de probabilidades A menudo nos interesa estudiar múltiples características de un fenómeno aleatorio: La altura, el peso y el sexo de un individuo. La expresión coordinada de los genes que participan en una determinada via metabólica. El número de nucleótidos A, C, G, T en una región del genoma de tamaño \\(n\\). Estas características numéricas que, de forma análoga al caso univariante, podemos suponer asociadas a los resultados de experimentos aleatorios se denominan variables aleatorias multidimensionales o, atendiendo a sus componentes, vectores aleatorios. Las distribuciones de probabilidad que, siguiendo con la analogía, asociaremos a los vectores aleatorios se denominan distribuciones de probabilidades conjuntas o multivariantes. Antes de desarrollar el tema es importante remarcar que consideraremos dos escenarios: El primero, el “natural” es considerar que si trabajamos con distintas variables asociadas a un mismo fenómeno, es razonable suponer que varien de alguna forma coordinada. De ahí la expresión distribución conjnta. En ocasiones, sin embargo, dispondremos de vectores aleatorios que varian independientemente los unos de los otros. En este caso su distribución conjunta será de un tipo especial que se conoce independencia. 4.1.1 Variable aleatoria bivariante Empezaremos por el caso más sencillo que, sin embargo permite estudiar la mayoría de los conceptos quenos interesas: Las distribuciones conjuntas de dos variables aleatorias. Una variable aleatoria bivariante es una aplicación que, a cada resultado de un experimento, le asocia dos números: \\[ (X, Y): \\Omega \\to \\mathbb{R}^2 \\] \\[ w \\mapsto (X(w), Y(w)) \\] De modo que, para todo par de valores numéricos, \\((x, y) \\in \\mathbb{R}^2\\), se tiene \\[ \\{w \\in \\Omega \\mid X(w) \\leq x,\\quad Y(w) \\leq y\\} \\in \\mathcal{A} \\] donde \\(\\mathcal{A}\\) representa el conjunto de sucesos observables definido en el capítulo 1. Lo que viene a significar esta definición es que una variable aleatoria bidimensional es un conjunto de medidas (números reales) a los que, por el ehecho de poderse asociar con sucesos observables a traves de los intérvalos \\(X(w) \\leq x,\\quad Y(w) \\leq y\\) se les puede asociar (calcular) una probabilidad. Fijémonos también que, como en el caso univariante, la función que transporta la probabilidad, del espació de probabilidad al conjunto de los reales, será la función de distribución, que se define a continuación. 4.1.2 Función de distribución bivariante La función de distribución conjunta de \\(X\\) y \\(Y\\), \\(F\\), es una generalización inmediata del caso univariado y se define como: \\[ F(x, y) = P\\{w \\in \\Omega \\mid X(w) \\leq x, Y(w) \\leq y\\} = P[X \\leq x, Y \\leq y] \\] Como en el caso univariante, esta es la función que define la forma en que podemos calcular probabilidades sobre los valores de las variables, en este caso de dimensión 2. 4.1.3 Ejemplo: Distribución conjunta del estado de infección y activación de células Supongamos que estamos observando dos características de células en un experimento de inmunología. Las variables que describen las células son: \\(X\\): La célula está infectada (\\(X = 1\\)) o no infectada (\\(X = 0\\)). \\(Y\\): La célula está activada (\\(Y = 1\\)) o no activada (\\(Y = 0\\)). La siguiente tabla muestra la probabilidad conjunta de observar cada combinación de infección y activación en una célula: \\(X \\backslash Y\\) \\(Y = 0\\) (No activada) \\(Y = 1\\) (Activada) \\(X = 0\\) (No infectada) 0.4 0.2 \\(X = 1\\) (Infectada) 0.1 0.3 4.1.3.1 1. Función de distribución conjunta La función de distribución conjunta \\(F(x, y)\\) para esta situación se calcula como: \\[ F(x, y) = P(X \\leq x, Y \\leq y) \\] Los valores para los pares posibles de \\(x\\) y \\(y\\) son: \\(F(0, 0) = P(X = 0, Y = 0) = 0.4\\) \\(F(0, 1) = P(X = 0, Y \\leq 1) = P(X = 0, Y = 0) + P(X = 0, Y = 1) = 0.4 + 0.2 = 0.6\\) \\(F(1, 0) = P(X \\leq 1, Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) = 0.4 + 0.1 = 0.5\\) \\(F(1, 1) = P(X \\leq 1, Y \\leq 1) = 1\\) 4.1.3.2 2. Cálculo de la probabilidad de eventos específicos Por ejemplo, la probabilidad de que una célula esté infectada pero no activada es: \\[ P(X = 1, Y = 0) = 0.1 \\] 4.1.4 Implementación en R Podemos visualizar esta distribución conjunta con un gráfico en R. library(ggplot2) # Crear los datos de la distribución conjunta data <- expand.grid(X = c(0, 1), Y = c(0, 1)) data$Prob <- c(0.4, 0.2, 0.1, 0.3) # Crear el gráfico p <- ggplot(data, aes(x = factor(X, labels = c("No infectada", "Infectada")), y = factor(Y, labels = c("No activada", "Activada")))) + geom_tile(aes(fill = Prob), color = "white") + scale_fill_gradient(low = "white", high = "blue") + geom_text(aes(label = round(Prob, 2)), size = 5) + labs(x = "Estado de infección (X)", y = "Estado de activación (Y)", title = "Distribución Conjunta de Infección y Activación Celular") + theme_minimal() # Guardar el gráfico en el subdirectorio imagenes ggsave("images/distribucion_conjunta.png", plot = p, width = 6, height = 4, dpi = 300) knitr::include_graphics("images/distribucion_conjunta.png") 4.2 Variable aleatorias bivariantes discretas Una vez introducidos los conceptos de forma general pasamos a estudiar el problema en el caso discreto, que es muy intuitivo y, a la vez permite introducir todos los conceptos relevantes. Un vector aleatorio discreto, \\((X, Y)\\) es aquel cuyo recorrido o conjunto de valores posibles es finito o numerable. En este caso, toda probabilidad \\[ P\\{(X, Y) \\in B\\}, \\quad \\text{donde } B \\text{ es un conjunto de posibles valores de } X, Y, \\] se puede calcular a partir de la función de masa de probabilidad discreta bivariante. 4.2.1 Función de masa de probabilidad discreta (fmp) La funcion de masa de probabilidad de los vectores aleatorios generaliza la función del mismo nombre en el caso univariante, es decir, es una función: \\[ f: \\mathbb{R}^2 \\to [0, 1] \\] Que asigna la probabilidad a cada punto del plano: para todo \\((x, y) \\in \\mathbb{R}^{2}\\): \\[ f(x, y) = P\\{w \\in \\Omega \\mid X(w) = x, Y(w) = y\\} = P[X = x, Y = y] \\] 4.2.2 Propiedades de la fmp bivariante La masa total de probabilidad sobre el plano es 1: \\[ \\sum_{(x_i, y_j) \\in \\mathbb{R}^{2}} f(x_i, y_j) = 1 \\] Para todo subconjunto \\(B \\subseteq \\mathbb{R}^2\\), se verifica: \\[ F(x, y) = P[X \\leq x, Y \\leq y] = \\sum_{x_i \\leq x, y_j \\leq y} f(x_i, y_j) \\] Es decir, como en el caso univariante la función de distribución se puede calcular a partir de la función de masa de probabilidad. 4.2.2.1 Intuición frente a construcción La presentación de los conceptos anteriores suele generar cierto desasosiego entre los estudiantes que afrontan estos conceptos por primera (o siguientes) vez. El motivo de este desasosiego es que el papel de la función de distribución no suele ser tan intuitivo como el de la función de masa de probabilidad. Es decir, es más intuitivo pensar en como calcular lña probabilidad que la variable tome un valor concreto (\\(P[X=x]\\)) , que la probabilidad de que no alcance cierto valor (\\(P[X\\leq x]\\)). Sin embargo, la función que realmente permite transportar la probabilidad no es la función de masa de probabilidad (fmp) sino la función de distribución (fdd). De ahí el contraste entre intuición (fmp) y construcción (fdd) 4.2.3 Ejemplo de distribución bivariante discreta Supongamos que un estudio mide el número de células infectadas y el número de linfocitos activados en un campo microscópico. Dado el tamaño del campo y el grado de infección los valores observados de cada variables son: \\(X\\): Número de células infectadas (\\(X \\in \\{0, 1, 2, 3, 4, 5\\}\\))). \\(Y\\): Número de linfocitos activados (\\(Y \\in \\{0, 1, 2, 3\\}\\))). La distribución conjunta se refleja en la siguiente tabla de probabilidades conjuntas: \\(P[X=x]\\) \\(P[Y = 0]\\) \\(P[Y = 1]\\) \\(P[Y = 2]\\) \\(P[Y = 3]\\) 0 0.12 0.06 0.02 0.00 1 0.10 0.10 0.04 0.01 2 0.06 0.12 0.08 0.02 3 0.03 0.12 0.10 0.05 4 0.01 0.08 0.12 0.06 5 0.00 0.03 0.10 0.07 Puede comprobarse como la suma de todos los valores de la tabla es 1, y calcular probabilidades de sucesos como Probabilidad de que hayan dos células infectadas y un linfocito: Para calcular la probabilidad de que haya exactamente 2 células infectadas y 1 linfocito activado, se puede usar el valor directamente de la tabla. \\[ P(X = 2, Y = 1) = 0.12 \\] Probabilidad de que hayan menos de tres celulas infectadas y menos de dos linfocitos: Esta probabilidad es la suma de todas las combinaciones de \\(X\\) y \\(Y\\)) que cumplen con la condición de \\(X < 3\\)) y \\(Y < 2\\)). Es decir, sumamos las probabilidades de los casos \\((X = 0, Y = 0)\\)), \\((X = 0, Y = 1)\\)), \\((X = 1, Y = 0)\\)), \\((X = 1, Y = 1)\\)), \\((X = 2, Y = 0)\\)), y \\((X = 2, Y = 1)\\)). \\[ P(X < 3, Y < 2) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 1, Y = 0) + P(X = 1, Y = 1) + P(X = 2, Y = 0) + P(X = 2, Y = 1) \\] \\[ P(X < 3, Y < 2) = 0.12 + 0.06 + 0.10 + 0.10 + 0.06 + 0.12 = 0.56 \\] Recordemos que, al tratarse de variables discretas, no es lo mismo \\(P[X < x]\\) que \\(P[X \\leq x]\\), por lo que si la pregunta fuera “Probabilidad de que hayan al menos tres celulas infectadas y al menos dos linfocitos” deberíamos calcular: \\[ P(X \\leq 3, Y \\leq 2) \\] Esta última expresión se corresponde con la función de distribución evaluada en \\((3,2)\\). 4.2.3.1 Código R para el cálculo de la pmf Podemos hacer los cálculos usando R: prob_table <- matrix(c(0.12, 0.06, 0.02, 0.00, 0.10, 0.10, 0.04, 0.01, 0.06, 0.12, 0.08, 0.02, 0.03, 0.12, 0.10, 0.05, 0.01, 0.08, 0.12, 0.06, 0.00, 0.03, 0.10, 0.07), nrow = 6, byrow = TRUE) # Asignar nombres a las filas y columnas rownames(prob_table) <- 0:5 colnames(prob_table) <- 0:3 # Mostrar la tabla prob_table ## 0 1 2 3 ## 0 0.12 0.06 0.02 0.00 ## 1 0.10 0.10 0.04 0.01 ## 2 0.06 0.12 0.08 0.02 ## 3 0.03 0.12 0.10 0.05 ## 4 0.01 0.08 0.12 0.06 ## 5 0.00 0.03 0.10 0.07 # Calcular la probabilidad de (X = 2, Y = 1) prob_X2_Y1 <- prob_table["2", "1"] cat("P(X = 2, Y = 1) =", prob_X2_Y1, "\\n") ## P(X = 2, Y = 1) = 0.12 # Calcular la probabilidad de (X < 3, Y < 2) prob_X_lt_3_Y_lt_2 <- sum(prob_table[1:3, 1:2]) cat("P(X < 3, Y < 2) =", prob_X_lt_3_Y_lt_2, "\\n") ## P(X < 3, Y < 2) = 0.56 4.2.3.2 Código R para visualizar la distribución conjunta Para visualizar la distribución conjunta, podemos usar el código siguiente; # Es preciso instalar y cargar el paquete scatterplot3d si no lo tienes instalado # install.packages("scatterplot3d") library(scatterplot3d) # Crear una matriz con los datos de la tabla de probabilidades X_vals <- as.numeric(rownames(prob_table)) Y_vals <- as.numeric(colnames(prob_table)) # Crear un grid de valores X e Y X_grid <- rep(X_vals, each = length(Y_vals)) Y_grid <- rep(Y_vals, times = length(X_vals)) # Extraer las probabilidades como un vector Z_vals <- as.vector(prob_table) # Enviar el gráfico 3D de barras simuladas a pdf png("images/pmfTrinomial.png") scatterplot3d(X_grid, Y_grid, Z_vals, type = "h", color = "lightblue", pch = 16, lwd = 5, cex.symbols = 1, angle=60, xlab = "Celulas Infectadas (X)", ylab = "Linfocitos Activados (Y)", zlab = "Probabilidad", main = "Distribución Conjunta de \\n Celulas Infectadas y Linfocitos Activados") dev.off() ## png ## 2 # Añadir texto con los valores de las probabilidades en la parte superior de las barras # s3d$text(X_grid, Y_grid, Z_vals, labels = round(Z_vals, 2), pos = 3, col = "black") knitr::include_graphics("images/pmfTrinomial.png", rel_path = TRUE ) 4.3 La distribución multinomial Antes de seguir con el estudio de las distribuciones discretas presentamos un caso importante de distribucion multivariante discreta, la distribución multinomial. 4.3.1 Generación de las observaciones Supongamos un experimentoaleatorio que puede producir \\(k\\) resultados posibles \\(A_1, A_2, \\dots, A_k\\) con probabilidades \\(p_1, p_2, \\dots, p_k\\), tales que \\(p_1 + p_2 + \\dots + p_k = 1\\). Repetimos el experimento \\(n\\) veces y llamamos \\(X_1, X_2, \\dots, X_k\\) al número de veces que se presenta \\(A_1, A_2, \\dots, A_k\\). La distribución conjunta de \\(X_1, X_2, \\dots, X_k\\) recibe el nombre de multinomial. 4.3.2 Funcion de masa de probabilidad de la distribución multinomial El vector \\(\\mathbf{X} = (X_1, \\dots, X_k)\\) tiene distribución multinomial de parámetros \\(n\\) y \\(\\mathbf{p} = (p_1, \\dots, p_k),\\) denotado por \\(\\mathbf{X} \\sim \\mathrm{M}(n, \\mathbf{p})\\), con \\(n\\) entero positivo, \\(p_i \\geq 0\\) y \\(\\sum_{i=1}^{k} p_i = 1\\). Su función de densidad conjunta es: \\[ f(\\mathbf{x}) = P[\\mathbf{X} = \\mathbf{x}] = \\frac{n!}{x_1!x_2!\\cdots x_k!} p_1^{x_1} p_2^{x_2} \\dots p_k^{x_k} \\] donde \\(x_i\\) son enteros no negativos tales que \\(\\sum_{i=1}^{k} x_i = n\\). 4.3.3 Relación con la distribución binomial Esta distribución puede verse como una generalización de la distribución binomial en el que, en lugar de tener dos posibles resultados, tenemos \\(r\\) resultados posibles. 4.3.4 Un caso particular: La distribución trinomial Veamos un ejemplo propio del análisis de secuencias en el que se aplica esta distribución: Si consideramos el alineamiento de dos secuencias \\(x, y\\) de tamaño \\(n\\), podemos observar: $A_1 $: \\(x_i\\) alineado con $y_i $, con $P(A_1) = p_1 $ $A_2 $: \\(x_i\\) alineado con “-”, con $P(A_2) = p_2 $ $A_3 $: “-” alineado con $y_i $, con $P(A_3) = 1 - p_1 - p_2 $ La variable $(X_1, X_2) $, que cuenta el número de veces que se observa \\(A_1, A_2\\) (con $X_3 = n - X_1 - X_2 $), sigue una distribución trinomial de parámetros \\(n\\), $p_1 $, $p_2 $. Obsérvese que, dado que el total de observaciones \\(n\\) está prefijado, aunque haya tres categorías, \\(A_1\\), \\(A_2\\), \\(A_3\\) el número de observaciones de \\(A_3\\) es el total menos la suma de las observaciones de \\(A_1+A_2\\). O dicho de otra forma el número de probabilidades que són parámetros de la distribución es \\(n-1=2\\), lo que junto con \\(n\\) que es otyro parámetro determina que “trinomial” se refiera tanto al total de categorías como al número de parámetros, aunque, en realidad tan sólo hay dos componentes \\(X_1\\) y \\(X_2\\) independientes (concepto este que se definirá con precisión más adelante). Estudiamos los posibles alineamientos de dos secuencias de 5 nucleótidos, en un contexto en el que las probabilidades de \\(A_1\\) y \\(A_2\\) son, respectivamente 0.6 y 0.2, es decir una Trinomial M(5; 0.6, 0.2) que dan lugar a la tabla siguiente. \\(X_{1} \\backslash X_{2}\\) 0 1 2 3 4 5 0 (0,0,5) (0,1,4) (0,2,3) (0,3,2) (0,4,1) (0,5,0) 1 (1,0,4) (1,1,3) (1,2,2) (1,3,1) (1,4,0) 2 (2,0,3) (2,1,2) (2,2,1) (2,3,0) 3 (3,0,2) (3,1,1) (3,2,0) 4 (4,0,1) (4,1,0) 5 (5,0,0) A partir de la tabla anterior podemos determinar las probabilidades conjuntas: \\(X_{1} \\backslash X_{2}\\) 0 1 2 3 4 5 0 0.0003 0.0016 0.0032 0.0032 0.0016 0.0003 1 0.0048 0.0192 0.0288 0.0192 0.0048 2 0.0288 0.0864 0.0864 0.0288 3 0.0864 0.1728 0.0864 4 0.1296 0.1296 5 0.0778 4.4 Distribuciones marginales Dado un vector aleatorio, puede interesar el comportamiento individual de una o cada una de sus componentes \\(X_i\\). La distribución de la componente \\(i\\)-ésima se denomina distribución marginal de \\(X_i\\). Representa el comportamiento de \\(X_i\\) sin tener en cuenta las otras componentes, es decir, como si fuera una variable aleatoria unidimensional. 4.4.1 Las marginales están en los márgenes El nombre de distribución marginal proviene del hecho de que en una distribución bivariada discreta como la trinomial, los valores de una fila coinciden con los valores de \\(X_2\\), y todos los de una columna con los de \\(X_1\\). Los valores en la fila 0 o columna 0 (los márgenes) representan precisamente las distribuciones marginales. 4.4.2 Densidades marginales discretas La densidad marginal de \\(X\\) es: \\[ f_X(x) = f_1(x) = \\sum_j f(x, y_j) \\] y la de \\(Y\\) es: \\[ f_Y(y) = f_2(y) = \\sum_i f(x_i, y) \\] 4.4.3 Trinomial M(5; 0.6, 0.2): Distribuciones marginales \\(X_1 \\backslash X_2\\) 0 1 2 3 4 5 \\(X_2\\) \\(P[X_2 = x]\\) 0 (0,0,5) (0,1,4) (0,2,3) (0,3,2) (0,4,1) (0,5,0) 0 0.0102 1 (1,0,4) (1,1,3) (1,2,2) (1,3,1) (1,4,0) 1 0.0768 2 (2,0,3) (2,1,2) (2,2,1) (2,3,0) 2 0.2304 3 (3,0,2) (3,1,1) (3,2,0) 3 0.3456 4 (4,0,1) (4,1,0) 4 0.2592 5 (5,0,0) 5 0.0778 X_2 0 1 2 3 4 5 1.0000 \\(P[X_2 = x]\\) 0.3277 0.4096 0.2048 0.0512 0.0064 0.0003 1.0000 4.5 Distribuciones condicionales A veces nos interesa la distribución de una componente si conocemos que la otra ha tomado un valor determinado. En el ejemplo de los alineamientos, podríamos querer conocer los posibles valores y probabilidades de un alineamiento, si sabemos que hay exactamente un “gap” en la secuencia de prueba. 4.5.1 Densidad condicional ¿Qué podemos decir de la distribución de \\(Y\\) si conocemos el valor de \\(X\\)? \\[ f(y \\mid X = x) = P[Y = y \\mid X = x] = \\frac{P[X = x, Y = y]}{P[X = x]} = \\frac{f(x, y)}{f_X(x)} \\] siempre que \\(f_X(x) > 0\\). 4.5.2 Trinomial M(5; 0.6, 0.2): Distribución condicional Distribución de \\(X_1\\) condicionada a que \\(X_2 = 1\\). \\((X_1, 1)\\) \\(P(X_1, 1)\\) \\(P_{X_2}(1)\\) \\(P(X_1 \\mid X_2 = 1)\\) (0,1,4) 0.002 0.41 0.004 (1,1,3) 0.019 0.41 0.047 (2,1,2) 0.086 0.41 0.211 (3,1,1) 0.173 0.41 0.422 (4,1,0) 0.13 0.41 0.316 Total 1 4.6 Vectores aleatorios absolutamente continuos Diremos que \\((X, Y)\\) es absolutamente continua si existe una función \\(f(x, y)\\), llamada función de densidad conjunta absolutamente continua o bivariada, tal que, para todo \\((x, y) \\in \\mathbb{R}^2\\), \\[ F(x, y) = \\int_{-\\infty}^{x} \\int_{-\\infty}^{y} f(u, v)\\, du \\, dv \\] Si existe, la función de densidad absolutamente continua es única. 4.6.1 Propiedades de la función de densidad conjunta \\(f(x, y) \\geq 0\\) La masa total de probabilidad es 1: \\[ \\int_{-\\infty}^{\\infty} \\int_{-\\infty}^{\\infty} f(x, y)\\, dx\\,dy = 1 \\] Para cualquier conjunto \\(S\\): \\[ P\\{(X, Y) \\in S\\} = \\int_S f(x, y) \\, dx \\, dy \\] En particular, la probabilidad de que \\((X, Y)\\) esté en un rectángulo: \\[ P(a_1 < X \\leq a_2, b_1 < Y \\leq b_2) = \\int_{a_1}^{a_2} \\int_{b_1}^{b_2} f(x, y) \\, dx \\, dy \\] 4.6.2 Densidades marginales en el caso continuo Las densidades marginales son: \\[ f_X(x) = \\int_{-\\infty}^{\\infty} f(x, y) \\, dy \\] \\[ f_Y(y) = \\int_{-\\infty}^{\\infty} f(x, y) \\, dx \\] 4.6.3 Densidad condicional en el caso continuo La densidad de \\(Y\\) condicionada a un valor de \\(X\\) es: \\[ f(y \\mid X = x) = \\frac{f(x, y)}{f_X(x)} \\] siempre que \\(f_X(x) > 0\\). 4.6.4 La Distribución Normal Bivariante El ejemplo más importante de una distribución de probabilidad absolutamente continua para vectores aleatorios es la distribución normal bivariante. Esta distribución describe dos variables aleatorias continuas, \\(X\\) y \\(Y\\), cuya relación está modelada por una correlación lineal y tiene forma de campana (gaussiana) en dos dimensiones. 4.6.4.1 Función de Densidad Conjunta La función de densidad conjunta de la distribución normal bivariante con medias \\(\\mu_X\\), \\(\\mu_Y\\), desviaciones estándar \\(\\sigma_X\\), \\(\\sigma_Y\\) y coeficiente de correlación \\(\\rho\\) es: \\[ f(x, y) = \\frac{1}{2 \\pi \\sigma_X \\sigma_Y \\sqrt{1 - \\rho^2}} \\exp \\left( -\\frac{1}{2(1 - \\rho^2)} \\left[ \\frac{(x - \\mu_X)^2}{\\sigma_X^2} + \\frac{(y - \\mu_Y)^2}{\\sigma_Y^2} - \\frac{2\\rho(x - \\mu_X)(y - \\mu_Y)}{\\sigma_X \\sigma_Y} \\right] \\right) \\] Esta expresión se generaliza fácilmente de la distribución normal univariante, pero en este caso incluye términos adicionales que representan la interacción entre \\(X\\) y \\(Y\\). 4.6.4.2 Ejemplo En vez de proporcionar un código para visualizar la distribución normal bivariante podéis seguir este enlace: https://datasciencegenie.com/3d-contour-plots-of-bivariate-normal-distribution/ en donde se extiende lo que acabamos de discutir y se proporciona algunos ejemplos con R. 4.6.4.3 Distribuciones Marginales Para obtener las distribuciones marginales a partir de una normal bivariante, debemos integrar la densidad conjunta sobre una de las variables. Dado que estamos trabajando con una distribución normal bivariante, su densidad conjunta está dada por: \\[ f_{X,Y}(x, y) = \\frac{1}{2 \\pi \\sigma_X \\sigma_Y \\sqrt{1 - \\rho^2}} \\exp\\left( -\\frac{1}{2(1 - \\rho^2)} \\left[ \\frac{(x - \\mu_X)^2}{\\sigma_X^2} + \\frac{(y - \\mu_Y)^2}{\\sigma_Y^2} - \\frac{2\\rho(x - \\mu_X)(y - \\mu_Y)}{\\sigma_X \\sigma_Y} \\right] \\right) \\] Para obtener la marginal de \\(X\\), debemos integrar sobre \\(Y\\): \\[ f_X(x) = \\int_{-\\infty}^{\\infty} f_{X,Y}(x, y) \\, dy \\] Al realizar esta integral, se obtiene que la distribución marginal de \\(X\\) es: \\[ f_X(x) = \\frac{1}{\\sqrt{2 \\pi \\sigma_X^2}} \\exp\\left( -\\frac{(x - \\mu_X)^2}{2 \\sigma_X^2} \\right) \\] Esto muestra que \\(X\\) sigue una distribución normal con media \\(\\mu_X\\) y varianza \\(\\sigma_X^2\\), es decir, \\(X \\sim N(\\mu_X, \\sigma_X^2)\\). Del mismo modo, para la marginal de \\(Y\\), integramos sobre \\(X\\): \\[ f_Y(y) = \\int_{-\\infty}^{\\infty} f_{X,Y}(x, y) \\, dx \\] La solución de esta integral da: \\[ f_Y(y) = \\frac{1}{\\sqrt{2 \\pi \\sigma_Y^2}} \\exp\\left( -\\frac{(y - \\mu_Y)^2}{2 \\sigma_Y^2} \\right) \\] Lo que significa que \\(Y\\) sigue una distribución normal con media \\(\\mu_Y\\) y varianza \\(\\sigma_Y^2\\), es decir, \\(Y \\sim N(\\mu_Y, \\sigma_Y^2)\\). 4.6.4.4 Ejemplo Supongamos que tenemos una distribución normal bivariante con los siguientes parámetros: \\(\\mu_X = 100\\), \\(\\sigma_X = 15\\) \\(\\mu_Y = 50\\), \\(\\sigma_Y = 10\\) \\(\\rho = 0.5\\) La densidad conjunta es: \\[ f_{X,Y}(x, y) = \\frac{1}{2 \\pi (15)(10) \\sqrt{1 - 0.5^2}} \\exp\\left( -\\frac{1}{2(1 - 0.5^2)} \\left[ \\frac{(x - 100)^2}{15^2} + \\frac{(y - 50)^2}{10^2} - \\frac{2(0.5)(x - 100)(y - 50)}{(15)(10)} \\right] \\right) \\] Integrando sobre \\(Y\\), obtenemos la distribución marginal de \\(X\\): \\[ f_X(x) = \\frac{1}{\\sqrt{2 \\pi (15^2)}} \\exp\\left( -\\frac{(x - 100)^2}{2 \\cdot 15^2} \\right) \\] De manera análoga, la marginal de \\(Y\\) es: \\[ f_Y(y) = \\frac{1}{\\sqrt{2 \\pi (10^2)}} \\exp\\left( -\\frac{(y - 50)^2}{2 \\cdot 10^2} \\right) \\] 4.6.5 Distribuciones Condicionales La distribución condicional de una variable dado un valor específico de la otra también es normal univariante. Por ejemplo, la distribución condicional de \\(X\\) dado \\(Y = y\\) es: \\[ X \\mid Y = y \\sim N \\left( \\mu_X + \\rho \\frac{\\sigma_X}{\\sigma_Y} (y - \\mu_Y), (1 - \\rho^2)\\sigma_X^2 \\right) \\] De forma análoga, la distribución condicional de \\(Y\\) dado \\(X = x\\) es: \\[ Y \\mid X = x \\sim N \\left( \\mu_Y + \\rho \\frac{\\sigma_Y}{\\sigma_X} (x - \\mu_X), (1 - \\rho^2)\\sigma_Y^2 \\right) \\] 4.6.5.1 Ejemplo Podemos calcular la distribución condicional de \\(X\\) dado que \\(Y = 180\\) cm, y mostrar cómo cambia la distribución de \\(X\\) bajo esta condición: # Valores originales mu <- c(100, 50) sigma <- c(15, 10) rho <- 0.5 # Condicionar X dado Y = 180 y_cond <- 180 mu_cond <- mu[1] + 0.6 * (10/7) * (y_cond - mu[2]) sigma_cond <- sqrt(1 - 0.6^2) * 10 # Mostrar la media y desviación estándar condicionales mu_cond ## [1] 211.4286 sigma_cond ## [1] 8 Esto nos dice que el peso medio de una persona con altura de 180 cm es mayor que el peso medio de la población total, y su desviación estándar es menor debido a la correlación positiva entre peso y altura. 4.7 Independencia de variables aleatorias Una vez introducido el concepto de distribución conjunta pasamos a estudiar un caso particularmente importante de distribución conjunta, la independencia. De forma aparentemente contradictoria, en este caso, las variables se caracterizan por el hecho de que no varían conjuntamente sino que lo hacen independientemente las unas de las otras. De manera intuitiva podemos decir que dos variables aleatorias son independientes si los valores que toma una de ellas no afectan a los de la otra ni a sus probabilidades. En muchas ocasiones la independencia será evidente a partir del experimento, por ejemplo, es independiente el resultado del lanzamiento de un dado y el de una moneda tres veces. Por tanto las variables: \\(X_1\\): “Puntuación obtenida con el dado” y \\(X_2\\): “Número de caras obtenidas al lanzar tres veces una moneda” serán variables independientes. En otras ocasiones tenemos una dependencia clara, por ejemplo, al lanzar un dado consideremos las variables \\(Y_1=\\): puntuación del dado, \\(Y_2=\\): variable indicadora de puntuación par. Es evidente que existe una clara dependencia, si sabemos que \\(Y=1\\), la variable \\(X\\) sólo puede tomar los valores 2 , 4 o 6 ; si sabemos que \\(X=3\\), entonces, \\(Y=0\\) forzosamente. Algunas veces podemos suponer la existencia de una cierta relación entre variables, aunque sea en forma algo abstracta y sin concretar. Por ejemplo si realizamos unas mediciones sobre unos individuos, las variables altura en cm y peso en Kg probablemente estarán relacionadas, los valores de una influirán en los valores de la otra. Intentar determinar la naturaleza exacta de la relación entre ambas es lo que en estadística conocemos como un problema de correlación (si nos interesa unicamente la asociación) o de regresión (si uqeremos modelizar una variable en función d ela otra). Si queremos una definición algo más formal, basta con que recordemos que dos sucesos son independientes si la probabilidad de la intersección es igual al producto de probabilidades, aplicando esta definición a sucesos del tipo \\(X \\leq a\\) tenemos la definición siguiente: 4.7.1 Primera caracterización de la independencia Diremos que dos variables aleatorias \\(X\\) e \\(Y\\) son independientes si y sólo si su función de distribución conjunta puede expresarse como el producto de las funciones de distribución marginales, es decir si \\[ F_{X,Y}(x,y)= P\\left( (X \\leq x) \\cap (Y \\leq b)\\right)=P(X \\leq x) \\times P(Y \\leq y)=F_{X}(x) \\times F_{Y}(y) \\] Fijémonos que, como en otros casos, la función que nos permite caracterizar una condición de forma general es la función de distribución. 4.7.1.1 Variables discretas independientes En el caso de las variables discretas la caracterización de la independencia puede hacerse, además, por las funciones de masa de probabilidad: Diremos que dos variables aleatorias discretas \\(X\\) e \\(Y\\) son independientes si y sólo si su función de masa de probabilidad conjunta puede expresarse como el producto de las funciones de masa de probabilidad marginales, es decir si \\[ f_{X,Y}(x,y)= P\\left( (X = x) \\cap (Y = y)\\right)=P(X = x) \\times P(Y = y)=f_{X}(x) \\times f_{Y}(y) \\] 4.7.2 Propiedades de las variables independientes Como consecuencia inmediata de la independencia de \\(X\\) e \\(Y\\), se cumple lo siguiente: \\[ P(a<X \\leq c \\cap b<Y \\leq d)=P(a<X \\leq c) \\cdot P(b<Y \\leq d) \\] Que podría re-enunciarse diciendo que la probabilidad conjunta en un rectangulo definido por los valores “a, c, b, d” es el producto de las probabilidades marginales en los segmentos “ac”, para \\(X\\) y “bd” para \\(Y\\). 4.8 Momentos de vectores aleatorios Una vez hemos introducido los vectores aleatorios, que como hemos señalado, son variables aleatorias bi, tri o \\(n\\)-dimensionales tiene sentido preguntarse como se extienden a dichos vectores los conceptos y propiedades que introdujimos para variables aleatorias unidimensionales. Ya hemos visto como, para las funciones de probabilidad, la función de densidad o la función de distribución, existen extensiones imediatas, la función de densidad conjunta o la función de distribución conjunmta. Hemos visto también que, además de dichas extensiones, aparecen nuevos conceptos, que sólo tienen sentido en dos o más dimensiones, como las funciones de densidad condicionales o funciones de densidad marginales. Al considerar conceptos como la media o la varianza veremos que sucede algo similar: Por un lado conceptos como el de esperanza se extiende imediatamente al vector de medias. Por otro, conceptos como la varianza, han de tener en cuenta ahora, la posibilidad de variación conjunta entre dos o más variables lo que lleva a introducir magnitudes como la covarianza y la correlación. La extensión del concepto de varianza pasa ahora a combinar extensiones y conceptos nuevos en lo que se conoce como matriz de varianzas-covarianzas. 4.8.1 Esperanza de un vector aleatorio o vector de medias La esperanza matemática de un vector aleatorio es un vector que contiene las esperanzas matemáticas de cada una de las componentes de dicho vector. Si tenemos un vector aleatorio bivariante \\(\\mathbf{X}=(X_1,X_2)\\), su esperanza \\(\\mathbb{E}(\\mathbf{X})\\) está dada por: \\[ \\mathbb{E}(\\mathbf{X})= \\begin{pmatrix} \\mathbb{E}(X_1)\\\\ \\mathbb{E}(X_2) \\end{pmatrix} \\] Consideremos un experimento en el que estamos midiendo el nivel de expresión génica de dos genes \\(X_1\\) y \\(X_2\\) en una muestra de células. Si los niveles promedio de expresión son \\(\\mu_1=5\\) y \\(\\mu_2=8\\), entonces la esperanza del vector aleatorio sería: \\[ \\mathbb{E}(\\mathbf{X})= \\begin{pmatrix} 5\\\\ 8 \\end{pmatrix} \\] 4.8.2 Covarianza entre dos variables aleatorias La covarianza entre dos variables aleatorias \\(X_1\\) y \\(X_2\\) es una medida del grado de dependencia lineal entre ellas. La covarianza se define como \\[ \\text{Cov}(X_1,X_2)=\\mathbb{E}[(X_1-\\mathbb{E}(X_1))(X_2-\\mathbb{E}(X_2))] \\] Supongamos que estamos midiendo la cantidad de dos metabolitos \\(X_1\\) y \\(X_2\\) en una muestra, y queremos saber si sus concentraciones tienden a aumentar o disminuir juntas. Si obtenemos una covarianza de 0.5, y conocemos la escala en que varían los datos, podemos concluir que existe ligera tendencia a que los aumentos en \\(X_1\\) estén asociados con aumentos en \\(X_2\\). 4.8.3 Covarianza y correlación El ejemplo anterior es claramente insatisfactorio, puesto que valores de 0.5 pueden sugerir una gran dependencia o cas ninguna, segun cual sea la escala o el rango de variación de los valores que se consideran. Para evitar esta arbitrariedad se introduce la correlación lineal. La correlación entre dos variables aleatorias es una medida estandarizada del grado de dependencia lineal entre dos variables (es decir de lacovarianza), que toma valores entre -1 y 1 y que se define como: \\[ \\text{Corr}(X_1,X_2)=\\frac{\\text{Cov}(X_1,X_2)}{\\sqrt{\\text{Var}(X_1)\\text{Var}(X_2)}} \\] En el caso de los metabolitos mencionados anteriormente, si \\(\\text{Cov}(X_1,X_2)=0.5\\), \\(\\text{Var}(X_1)=2\\) y \\(\\text{Var}(X_2)=3\\), podemos calcular la correlación, que valdría: \\[ \\text{Corr}(X_1,X_2)=\\frac{0.5}{\\sqrt{2\\times 3}}=\\frac{0.5}{\\sqrt{6}}\\approx 0.204 \\] Esto indica una correlación positiva débil entre las concentraciones de los dos metabolitos. Obsérvese, sin embargo que si en vez de los valores anteriores para las varianzas de \\(X\\) e \\(Y\\) hubiéramos tenido \\(\\text{Var}(X_1)=1\\) y \\(\\text{Var}(X_2)=.5\\) el valor de la correlación habría sido: \\[ \\text{Corr}(X_1,X_2)=\\frac{0.5}{\\sqrt{1\\times 0.5}}=\\frac{0.5}{\\sqrt{0.5}}\\approx 0.7071 \\] Este ejemplo muestra como la correlación aporta más información sobre la dependencia lineal, puesto que, además de tener en cuenta la variación conjunta, tiene en cuenta la variabilidad individual de cada componente. 4.8.4 Matriz de varianzas-covarianzas La matriz de varianzas-covarianzas de un vector aleatorio \\(\\mathbf{X}=(X_1,X_2)\\) es una matriz que contiene las varianzas de las componentes en la diagonal y las covarianzas fuera de la diagonal. Está definida como: \\[ \\text{Cov}(\\mathbf{X})= \\begin{pmatrix} \\text{Var}(X_1)&\\text{Cov}(X_1,X_2)\\\\ \\text{Cov}(X_2,X_1)&\\text{Var}(X_2) \\end{pmatrix} \\] Siguiendo con el ejemplo de los metabolitos, si \\(\\text{Var}(X_1)=2\\), \\(\\text{Var}(X_2)=3\\), y la covarianza es \\(0.5\\), la matriz de covarianzas sería: \\[ \\text{Cov}(\\mathbf{X})= \\begin{pmatrix} 2&0.5\\\\ 0.5&3 \\end{pmatrix} \\] Esto nos indica la dispersión de cada variable y la relación entre ambas. La distribución normal bivariante Una de las distribuciones más importantes que describe el comportamiento conjunto de dos variables aleatorias es la distribución normal bivariante. Un vector aleatorio \\(\\mathbf{X}=(X_1,X_2)\\) tiene una distribución normal bivariante si su función de densidad conjunta está dada por: \\[ f(x_1,x_2)=\\frac{1}{2\\pi\\sigma_1\\sigma_2\\sqrt{1-\\rho^2}}\\exp\\left(-\\frac{1}{2(1-\\rho^2)}\\left[\\frac{(x_1-\\mu_1)^2}{\\sigma_1^2}-2\\rho\\frac{(x_1-\\mu_1)(x_2-\\mu_2)}{\\sigma_1\\sigma_2}+\\frac{(x_2-\\mu_2)^2}{\\sigma_2^2}\\right]\\right) \\] Aquí, \\(\\mu_1\\) y \\(\\mu_2\\) son las medias de \\(X_1\\) y \\(X_2\\), \\(\\sigma_1^2\\) y \\(\\sigma_2^2\\) son las varianzas, y \\(\\rho\\) es el coeficiente de correlación. 4.8.5 Matriz de correlaciones La matriz de correlaciones de un vector aleatorio bivariante \\(\\mathbf{X}=(X_1,X_2)\\) es una matriz simétrica \\(2\\times 2\\) que contiene los coeficientes de correlación entre las componentes \\(X_1\\) y \\(X_2\\). La correlación mide la relación lineal entre las variables y se define como: \\[ \\text{Corr}(X_1,X_2)=\\frac{\\text{Cov}(X_1,X_2)}{\\sqrt{\\text{Var}(X_1)\\text{Var}(X_2)}} \\] La matriz de correlaciones \\(\\text{Corr}(\\mathbf{X})\\) está dada por: \\[ \\text{Corr}(\\mathbf{X})= \\begin{pmatrix} 1 & \\text{Corr}(X_1,X_2)\\\\ \\text{Corr}(X_2,X_1) & 1 \\end{pmatrix} \\] Dado que \\(\\text{Corr}(X_1,X_2)=\\text{Corr}(X_2,X_1)\\), la matriz es simétrica, y los elementos diagonales son siempre \\(1\\) porque la correlación de una variable consigo misma es \\(1\\). 4.8.5.1 Relación con la matriz de covarianzas La matriz de correlaciones está relacionada con la matriz de covarianzas de la forma siguiente: Si \\(\\Sigma\\) es la matriz de covarianzas de \\(\\mathbf{X}=(X_1,X_2)\\), con \\(\\Sigma=\\begin{pmatrix} \\text{Var}(X_1) & \\text{Cov}(X_1,X_2)\\\\ \\text{Cov}(X_2,X_1) & \\text{Var}(X_2) \\end{pmatrix}\\), la matriz de correlaciones se obtiene “normalizando” cada covarianza dividiendo por el producto de las desviaciones estándar de las respectivas variables: \\[ \\text{Corr}(\\mathbf{X})= \\begin{pmatrix} 1 & \\frac{\\text{Cov}(X_1,X_2)}{\\sigma_1\\sigma_2}\\\\ \\frac{\\text{Cov}(X_2,X_1)}{\\sigma_1\\sigma_2} & 1 \\end{pmatrix} \\] donde \\(\\sigma_1=\\sqrt{\\text{Var}(X_1)}\\) y \\(\\sigma_2=\\sqrt{\\text{Var}(X_2)}\\). Supongamos que medimos dos variables, como la altura \\(X_1\\) y el peso \\(X_2\\) de un grupo de personas. Sabemos que: \\(\\text{Var}(X_1)=25\\) (varianza de la altura), \\(\\text{Var}(X_2)=100\\) (varianza del peso), \\(\\text{Cov}(X_1,X_2)=40\\) (covarianza entre altura y peso). La matriz de covarianzas sería: \\[ \\Sigma= \\begin{pmatrix} 25 & 40\\\\ 40 & 100 \\end{pmatrix} \\] La correlación entre \\(X_1\\) y \\(X_2\\) se calcula como: \\[ \\text{Corr}(X_1,X_2)=\\frac{40}{\\sqrt{25 \\times 100}}=\\frac{40}{50}=0.8 \\] Por lo tanto, la matriz de correlaciones será: \\[ \\text{Corr}(\\mathbf{X})= \\begin{pmatrix} 1 & 0.8\\\\ 0.8 & 1 \\end{pmatrix} \\] Esto indica una fuerte correlación positiva entre la altura y el peso de las personas en este grupo. La matriz de correlaciones nos proporciona una forma normalizada de comparar la dependencia entre las variables, sin depender de las unidades de medida. 4.8.6 Segunda caracterización de la independencia La independencia entre dos variables aleatorias \\(X_1\\) y \\(X_2\\) puede caracterizarse también a través de sus esperanzas de la siguiente manera: Dos variables son independientes si la esperanza del producto de ambas es igual al producto de las esperanzas de cada una por separado. Es decir si se verifica que: \\[ \\mathbb{E}[X_1 X_2] = \\mathbb{E}[X_1] \\mathbb{E}[X_2] \\] Esta propiedad refleja que, cuando las variables son independientes, el valor esperado del producto no se ve afectado por la interacción entre ellas, lo que implica que no hay dependencia entre las dos. Una consecuencia importante de esta propiedad es cómo afecta a la covarianza entre \\(X_1\\) y \\(X_2\\). Si \\(X_1\\) y \\(X_2\\) son independientes, entonces, por la propiedad anterior, \\(\\mathbb{E}[X_1 X_2] = \\mathbb{E}[X_1] \\mathbb{E}[X_2]\\) lo que, a su vez, significa que la covarianza es cero: \\[ \\text{Cov}(X_1, X_2) = \\mathbb{E}[X_1]\\mathbb{E}[X_2] - \\mathbb{E}[X_1]\\mathbb{E}[X_2] = 0 \\] Por lo tanto, si dos variables son independientes, necesariamente su covarianza es cero. Sin embargo, la inversa no es cierta: el hecho de que la covarianza sea cero no implica que las variables sean independientes. 4.8.7 Relación entre incorrelación e independencia Cuando la covarianza entre dos variables es cero, se dice que las variables son incorreladas. Aunque la independencia implica que las variables son incorreladas, lo contrario no siempre es verdad: dos variables pueden ser incorreladas (tener covarianza cero) pero no independientes. Un ejemplo clásico es el siguiente: si consideramos una variable aleatoria \\(X\\) y definimos \\(Y = X^2\\), entonces, aunque la covarianza entre \\(X\\) y \\(Y\\) puede ser cero (especialmente si \\(X\\) tiene una distribución simétrica alrededor de 0, como la normal estándar), \\(X\\) y \\(Y\\) no son independientes, porque el valor de \\(Y\\) está completamente determinado por \\(X\\). Consideremos dos variables aleatorias \\(X_1\\) y \\(X_2\\) que siguen una distribución normal conjunta bivariante con media cero: \\[ (X_1, X_2) \\sim \\mathcal{N}\\left(\\mathbf{0}, \\Sigma \\right) \\] Si la matriz de covarianzas \\(\\Sigma\\) es diagonal, es decir, \\(\\text{Cov}(X_1, X_2) = 0\\), entonces \\(X_1\\) y \\(X_2\\) son incorreladas. En este caso particular, cuando las variables son normales, la incorrelación sí implica independencia, porque en distribuciones normales la ausencia de correlación (covarianza cero) también implica que no hay ninguna dependencia entre las variables. Sin embargo, en otras distribuciones que no son normales, la incorrelación no garantiza la independencia, lo que subraya la importancia de distinguir entre los dos conceptos. "],["grandes-muestras.html", "Capítulo 5 Grandes muestras 5.1 Introducción: Aproximaciones asintóticas 5.2 Leyes de los grandes números 5.3 El teorema central del límite", " Capítulo 5 Grandes muestras Este capítulo está pendiente de revisión, para corregir posibles problemas derivados de la importación, desde la antigua version en HTML, a la versión actual. Estos problemas siempre serán estéticos y no conceptuales, por lo que la lectura del texto en su estado actual no inducirá a errores conceptuales en ningún caso. La primera sección, además, está pendiente de ser introducida en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). 5.1 Introducción: Aproximaciones asintóticas 5.1.1 Convergencia de variables aleatorias 5.2 Leyes de los grandes números 5.3 El teorema central del límite El teorema central del límite (a partir de ahora, TCL) presenta un doble interés. Por un lado, proporciona a la estadística un resultado crucial para abordar el estudio de la distribución asintótica de muchos tipos de variables aleatorias. Como se verá en próximos capítulos, va a resultar básico en la construcción de contrastes de hipótesis y de intervalos de confianza, dos herramientas esenciales en estadística aplicada. Además, el TCL proporciona una explicación teórica fundamentada a un fenómeno habitual en experimentos reales: las variables estudiadas presentan muchas veces una distribución empírica aproximadamente normal. El TCL forma parte de un conjunto de propiedades relativas a las convergencias de variables aleatorias. En este tema se estudia sólo un tipo de convergencia, la convergencia en ley, ya que es necesaria para entender el enunciado del TCL. Se descarta, pues, en este documento el estudio de los otros tipos de convergencias (en probabilidad, casi segura, etc.) y el estudio de las leyes de los grandes números. Posiblemente el lector con poca formación en análisis matemático hallará alguna dificultad en la primera lectura de la definición de convergencia en ley y en el enunciado del TCL. Si es este el caso, los ejemplos incluidos han de ayudar en su comprensión. Consideramos al TCL un resultado básico con el que hay que familiarizarse, ya que se aplicará repetidamente en los próximos temas. 5.3.1 Sumas de variables aleatorias El TCL estudia el comportamiento de las sumas de variables aleatorias. En temas anteriores se han visto ya ejemplos de sumas de variables aleatorias. Formalmente, la suma de dos variables aleatorias corresponde a la siguiente aplicación: si \\(X_{1}\\) y \\(X_{2}\\) son dos variables aleatorias definidas sobre \\(\\Omega\\), la suma es: \\[ \\begin{aligned} X_{1}+X_{2}: & \\Omega \\rightarrow \\mathbb{R} \\\\ & \\omega \\mapsto X_{1}(\\omega)+X_{2}(\\omega) \\end{aligned} \\] La suma de dos variables puede extenderse sin dificultad a sumas de tres, cuatro,… y, en general, \\(n\\) variables aleatorias. El TCL se ocupa de las sucesiones de variables aleatorias. En el contexto del TCL una sucesión corresponde a un conjunto donde el primer elemento es una variable aleatoria, el segundo elemento es la suma de dos variables aleatorias, el tercero es la suma de tres variables aleatorias, y así sucesivamente. Una sucesión es un conjunto de elementos infinitos, que se designan simbólicamente mediante \\(\\left\\{X_{n}\\right\\}\\). Cada uno de los elementos de la sucesión (que es una variable aleatoria) lleva asociada una determinada función de distribución: \\[ X_{n} \\rightarrow F_{n} \\] Así pues, la sucesión de variables aleatorias lleva asociada una secuencia paralela de funciones de distribución. En los ejemplos se presentan sumas de variables aleatorias de diferentes tipos. 5.3.1.1 Presentación de los ejemplos Ejemplo 1: sumas de variables binomiales. Ejemplo 2: sumas de variables Poisson. Ejemplo 3: sumas de \\(n\\) puntuaciones de dados. Ejemplo 4: sumas de variables uniformes. Ejemplo 5: sumas de variables exponenciales. 5.3.2 Definición de convergencia en ley La siguiente definición se ocupa del comportamiento de las sucesiones. Sea \\(\\left\\{X_{n}\\right\\}\\) una sucesión de variables aleatorias, y sea \\(\\left\\{F_{n}\\right\\}\\) la correspondiente sucesión de funciones de distribución. Se dice que \\(\\left\\{X_{n}\\right\\}\\) converge en ley a una variable aleatoria \\(X\\) de función de distribución \\(F\\) si: \\[ \\lim _{n \\rightarrow \\infty} F_{n}(x)=F(x) \\quad \\text { para todo } \\mathrm{x} \\text { donde } F \\text { es contínua. } \\] Se indica que la sucesión converge en ley mediante el símbolo: \\[ X_{n} \\stackrel{\\mathrm{L}}{\\rightarrow} X \\] El significado de la definición es que, al aumentar arbitrariamente \\(n\\), las sucesivas funciones de distribución de la secuencia se aproximan a la distribución \\(F\\) de la variable \\(X\\). En los ejemplos se presentan gráficamente algunas situaciones donde diferentes sucesiones de variables aleatorias convergen en ley a una variable aleatoria normal. 5.3.2.1 Representación gráfica de la convergencia Ejemplo 1: primeros elementos de una sucesión de sumas de variables binomiales. Ejemplo 2: primeros elementos de una sucesión de sumas de variables Poisson. Ejemplo 3: primeros elementos de una sucesión de sumas de variables discretas. Ejemplo 4: primeros elementos de una sucesión de sumas de variables uniformes. Ejemplo 5: primeros elementos de una sucesión de sumas de variables exponenciales. 5.3.3 Enunciado del teorema central del límite A continuación se presenta el enunciado del TCL en la versión de Lindeberg y Lévy. Teorema: Sea \\(X_{1}, X_{2}, \\ldots, X_{n}\\), un conjunto de variables aleatorias independientes idénticamente distribuidas, cada una de ellas con función de distribución \\(F\\), y supongamos que \\(E\\left(X_{k}\\right)\\) \\(=\\mu \\mathrm{y} \\operatorname{var}\\left(X_{k}\\right)=\\sigma^{2}\\) para cualquier elemento del conjunto. Si designamos a la suma normalizada de \\(n\\) términos con el símbolo: \\[ S_{n}^{*}=\\frac{X_{1}+X_{2}+\\cdots+X_{n}-n \\mu}{\\sigma \\sqrt{n}} \\] entonces la sucesión de sumas normalizadas converge en ley a la variable aleatoria normal tipificada \\(\\mathrm{Z} \\sim N(0,1)\\), es decir: \\[ S_{n}^{*} \\xrightarrow{\\mathrm{L}} \\] El teorema anterior tiene dos importantes corolarios: Si consideramos la suma ordinaria de las \\(n\\) variables aleatorias, es decir, \\(S_{n}=X_{1}+X_{2}+\\ldots+X_{n}\\), entonces la sucesión de sumas ordinarias converge en ley a una normal de media \\(n \\mu\\) y varianza \\(n \\sigma^{2}\\). Si consideramos el promedio de las \\(n\\) variables aleatorias, es decir, \\(n^{-1} S_{n}\\), entonces la sucesión de promedios converge en ley a una normal de media \\(\\mu\\) y varianza \\(n^{-1} \\sigma^{2}\\). 5.3.3.1 Comentarios al teorema: La convergencia a la normal tipificada se produce con cualquier tipo de variable que cumpla las condiciones del teorema, sea discreta o absolutamente continua. Un sinónimo para indicar que una sucesión converge en ley a una normal es señalar que es asintóticamente normal. El TCL presenta el comportamiento de sumas infinitas de variables aleatorias. Veremos posteriormente como interpretar el resultado para valores finitos. Existen otras versiones del TCL dónde se relajan las condiciones de la versión de Lindeberg y Lévy, que, como se ha visto, obliga a las variables aleatorias a tener idénticas medias y varianzas. Dichas versiones del TCL necesitan el conocimiento de conceptos matemáticos que exceden el nivel al que se orienta Statmedia, y por esta razón se omite su enunciado. 5.3.4 Aplicación del TCL a los ejemplos Ejemplo 1: normalidad asintótica de la Binomial. Ejemplo 2: normalidad asintótica de la Poisson. Ejemplo 3: normalidad asintótica de la suma de puntuaciones de un dado. Ejemplo 4: normalidad asintótica de la suma de uniformes. Ejemplo 5: normalidad asintótica de la suma de exponenciales. 5.3.5 Casos particulares más notables Aunque el TCL tiene multitud de casos particulares interesantes, son especialmente relevantes para el desarrollo de los próximos temas los siguientes casos: 5.3.5.1 Promedio de \\(\\boldsymbol{n}\\) variables aleatorias Al considerar \\(n\\) variables independientes, todas con la misma distribución, cada una de ellas con esperanza igual a \\(\\mu\\) y varianza igual a \\(\\sigma^{2}\\), el promedio es asintóticamente normal con media \\(\\mu\\) y varianza \\(n^{-1} \\sigma^{2}\\). Este resultado proporciona una distribución asintótica a la media de \\(n\\) observaciones en el muestreo aleatorio simple que se estudiará en el próximo tema. 5.3.5.2 Binomial de parámetros \\(n\\) y \\(p\\) Es asintóticamente normal con media \\(n p\\) y varianza \\(n p\\) (1-p). Históricamente (de Moivre, 1733), es el primer resultado demostrado de convergencia a una normal. 5.3.5.3 Poisson de parámetro \\(n \\lambda\\) Es asintóticamente normal con media \\(n \\lambda\\) y varianza \\(n \\lambda\\). 5.3.6 Interpretación del teorema central del límite El TCL hace referencia a sucesiones infinitas, por tanto, la igualdad de las distribuciones se alcanza sólo en el límite, y hace mención a una distribución final teórica o de referencia. Sin embargo, puede utilizarse esta distribución final de referencia para aproximar distribuciones correspondientes a sumas finitas. Algunos casos particulares importantes (binomial, Poisson, etc.) alcanzan grados de aproximación suficientes para sumas con no demasiados términos. Los resultados que se indican a continuación son, por tanto, aproximaciones que se consideran usualmente suficientes, pero conllevan errores numéricos de aproximación. Binomial: aproximar si \\(n \\geq 30\\) y \\(0.1 \\leq p \\leq 0.9\\) a una normal de media \\(n p\\), varianza \\(n p(1-p)\\). Ver aquí más detalles. Poisson: aproximar si \\(\\lambda \\geq 10\\) a una normal de media \\(\\lambda\\) y varianza \\(\\lambda\\). Ver aquí más detalles. Para evaluar aproximadamente el error cometido en las aproximaciones, puede consultarse los cuadros gráficos de los ejemplos de este tema. El TCL permite aproximar funciones de distribución, independientemente del carácter (continuo o discreto) de las variables sumadas. No sirve, por tanto, para aproximar la funciones de densidad discretas por una normal. En el caso continuo sí puede establecerse también una convergencia de las densidades asociadas. Finalmente, es conveniente mencionar que existen resultados teóricos que permiten estudiar la velocidad de convergencia de una suma de variables aleatorias a la normal, sin embargo la dificultad técnica que conllevan trasciende el nivel marcado para el conjunto de documentos marcado para Statmedia. 5.3.7 Aproximaciones y errores numéricos Ejemplo 1: error en la aproximación de la binomial. Ejemplo 2: error en la aproximación de la Poisson. Ejemplo 3: error en la aproximación de la suma de puntuaciones de un dado. Ejemplo 4: error en la aproximación de la suma de uniformes. Ejemplo 5: error en la aproximación de la suma de exponenciales. 5.3.8 Acerca de las variables aproximadamente normales En general, cuando se estudia en experimentos reales una determinada variable no se conoce su distribución teórica. Sin embargo, puede establecerse su distribución empirica a partir de una muestra más o menos amplia. Una forma habitual de presentar la distribución empírica es construir el histograma de clases de dicha variable. Es un hecho conocido desde el siglo XIX que esta distribución empírica presenta muchas veces una forma que es aproximadamente normal. Por ejemplo, al realizar un estudio sobre el peso de adultos varones de dieciocho años en Catalunya, se observó la distribución siguiente en la muestra: El TCL permite dar una explicación a este fenómeno. La variable peso de un adulto viene determinada en cada individuo por la conjunción de multitud de diferentes factores. Algunos de estos factores son ambientales (dietas, ejercicio, enfermedades, etc.) y otros son congénitos. Con el nivel actual de conocimiento no se pueden desglosar completamente todos los factores que intervienen, pero puede aceptarse en cambio que la variable peso es el resultante de la suma de diferentes variables primarias, congénitas o ambientales, y que posiblemente no todas tienen el mismo grado de influencia. Seguramente, estas variables primarias tampoco tienen la misma media, varianza o, incluso, la misma distribución. La versión del TCL que se ha presentado aquí exige estas condiciones para la convergencia a la normal, pero, como ya se ha comentado antes otras versiones más elaboradas del TCL permiten modelar la suma de variables de forma menos restringida. En este contexto, al considerar la variable peso como una suma más o menos extensa (pero finita) de diferentes variables primarias, es esperable que ocurra que la variable resultante, el peso, siga una distribución aproximadamente normal. De forma similar es explicable la normalidad aproximada que se observa en muchas variables biométricas (pesos, alturas, longitudes, concentraciones de metabolitos, distribuciones de edad, etc.) así cómo en muchos otros contextos (distribución de rentas, errores de medición, etc.). A pesar de esta ubicuidad de la distribución normal, el lector no debe inferir que es forzosamente, ni mucho menos, la distribución de referencia en todo estudio aplicado. "],["introducción-a-la-inferencia-estadística.html", "Capítulo 6 Introducción a la inferencia estadística 6.1 Los problemas de la inferencia estadística. 6.2 Muestreo y distribuciones en el muestreo. 6.3 La verosimilitud y su papel en la inferencia estadística 6.4 El problema de la estimación. Tipos de estimadores. 6.5 Métodos de obtención de estimadores. Estimadores máximo verosímiles y estimadores bayesianos. 6.6 Propiedades de los estimadores.", " Capítulo 6 Introducción a la inferencia estadística Este capítulo está pendiente de ser introducido en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). Se plantean los problemas que trata la inferencia. Se relaciona con el capítulo anterior a través de la idea del muestreo aleatorio simple y las distribuciones en el muestreo. Se plantea el problema de la estimación como una forma de aproximación a las características de las distribucionesa partir de muestras aleatorias simples. Se abordan las distintas formas de construcción de estimadores. 6.1 Los problemas de la inferencia estadística. 6.2 Muestreo y distribuciones en el muestreo. 6.3 La verosimilitud y su papel en la inferencia estadística 6.4 El problema de la estimación. Tipos de estimadores. 6.5 Métodos de obtención de estimadores. Estimadores máximo verosímiles y estimadores bayesianos. 6.6 Propiedades de los estimadores. "],["estimación-por-intérvalos.html", "Capítulo 7 Estimación por intérvalos 7.1 Preliminares: estimación del error estándar e Introducción al bootstrap 7.2 Estimadores por intervalo: intervalos de confianza 7.3 Intervalos de confianza para características de una población normal (media, varianza), 7.4 Intervalos de confianza bootstrap. 7.5 Intervalos de confianza para proporciones binomiales 7.6 Intervalos de confianza para parámetros en muestra grandes y para casos generales (tasas, OR, …) 7.7 Aplicaciones: cálculo del tamaño muestral", " Capítulo 7 Estimación por intérvalos Este capítulo está pendiente de ser introducido en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). Se plantea el problema de la estimación como una forma de aproximación a las características de las distribucionesa partir de muestras aleatorias simples. Se abordan las distintas filosofías para la construcción de estimadores. 7.1 Preliminares: estimación del error estándar e Introducción al bootstrap 7.2 Estimadores por intervalo: intervalos de confianza 7.3 Intervalos de confianza para características de una población normal (media, varianza), 7.4 Intervalos de confianza bootstrap. 7.5 Intervalos de confianza para proporciones binomiales 7.6 Intervalos de confianza para parámetros en muestra grandes y para casos generales (tasas, OR, …) 7.7 Aplicaciones: cálculo del tamaño muestral "],["pruebas-de-hipótesis.html", "Capítulo 8 Pruebas de hipótesis 8.1 Conceptos básicos: pruebas de hipótesis y de significación, pruebas unilaterales y bilaterales, tipos de error, valores críticos de test y p-valores 8.2 Potencia de un test. Cálculos de potencia y de tamaño de la muestra. Tamaño del efecto. 8.3 Métodos de construcción de tests. 8.4 Problemas asociados al uso de tests estadísticos. La crisis de la significación", " Capítulo 8 Pruebas de hipótesis Este capítulo está pendiente de ser introducida en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). Se plantea el problema de las pruebas de hipótesis. Se discuten las aproximaciones y los conceptos asociados. Se trata el problema de la crisis de la significación. 8.1 Conceptos básicos: pruebas de hipótesis y de significación, pruebas unilaterales y bilaterales, tipos de error, valores críticos de test y p-valores 8.2 Potencia de un test. Cálculos de potencia y de tamaño de la muestra. Tamaño del efecto. 8.3 Métodos de construcción de tests. 8.4 Problemas asociados al uso de tests estadísticos. La crisis de la significación "],["inferencia-aplicada.html", "Capítulo 9 Inferencia Aplicada 9.1 Pruebas de normalidad.Pruebas gráficas. El test de Shapiro-Wilks 9.2 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas paramètricas t-test y Anova 9.3 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas de hipótesis no paramétricas de Wilcoxon y Kruskal-Wallis 9.4 Contrastes para datos categóricos. Pruebas binomiales, ji cuadrado y test de Fisher. 9.5 Riesgo relativo y razón de «odds»", " Capítulo 9 Inferencia Aplicada Este capítulo está pendiente de ser introducida en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). Se muestra como deducir y aplicar algunos de los tests mas populares. 9.1 Pruebas de normalidad.Pruebas gráficas. El test de Shapiro-Wilks 9.2 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas paramètricas t-test y Anova 9.3 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas de hipótesis no paramétricas de Wilcoxon y Kruskal-Wallis 9.4 Contrastes para datos categóricos. Pruebas binomiales, ji cuadrado y test de Fisher. 9.5 Riesgo relativo y razón de «odds» "],["computación-intensiva-y-multiple-testing.html", "Capítulo 10 Computación Intensiva y Multiple Testing 10.1 Tests de permutaciones; ¿Qué?, ¿Cuándo?, ¿Cómo? 10.2 El bootstrap en contraste de hipótesis 10.3 El problema de las comparaciones múltiples 10.4 Métodos de control de error: FWER y FDR", " Capítulo 10 Computación Intensiva y Multiple Testing Este capítulo está pendiente de ser introducida en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). Se introducen distintos métodos cuyo nexo común es la computación intensiva. 10.1 Tests de permutaciones; ¿Qué?, ¿Cuándo?, ¿Cómo? 10.2 El bootstrap en contraste de hipótesis 10.3 El problema de las comparaciones múltiples 10.4 Métodos de control de error: FWER y FDR "],["404.html", "Page not found", " Page not found The page you requested cannot be found (perhaps it was moved or renamed). You may want to try searching to find the page's new location, or use the table of contents to find the page you are looking for. "]] +[["index.html", "Fundamentos de Inferencia Estadistica Presentación Objetivo Prerequisitos y organización del material Referencias", " Fundamentos de Inferencia Estadistica Alex Sanchez Pla y Santiago Pérez Hoyos 2024-11-11 Presentación Objetivo El objetivo de estas notas es presentar un material de soporte para la asignatura de “Inferencia Estadística” del Máster interuniversitario de Bioiestadística y Bioinformática impartido conjuntamente por la Universitat Oberta de Catalunya (UOC) y la Universidad de Barcelona (UB). Esta asignatura adolece de las características habituales de las asignaturas de posgrado, y especialmente de un posgrado de estadística (y bioinformática), que muestran algunas de las cosas que no debe de ser esta asignatura: No puede ser un primer curso de estadística, porque se supone que los estudiantes del máster ya lo han cursado en sus grados. Por no decir que, a quien viene a especializarse en estadística se le puede suponer una base mínima. Tampoco debe ser como los segundos cursos de estadística de algunos grados, que tratan temas como la regresión, el diseño de experimentos o el análisis multivariante, porque esto ya se trata en diversas asignaturas del máster. ¿Que debemos pues esperar que sea este curso? Puestos a pedir, este curso debería servir para repasar y consolidar los conceptos básicos que la mayoría de estudiantes traerán consigo. Además, y sobretodo, debe proporcionar una visión general, lo más completa posible dentro de las limitaciones de tiempo, del campo de la inferencia estadística Y, naturalmente, esto significa proporcionar aquellos conceptos sobre los que se apoyaran muchas de las restantes asignaturas como “Regresión modelos y métodos”, “Diseño de Experimentos”, “Análisis Multivariante”, “Análisis de la Supervivencia” o “Análisis de datos ómicos”. Prerequisitos y organización del material Uno de los problemas “eternos” en el estudio de la estadística ha sido siempre la falta de acuerdo, entre la comunidad de docentes, de cual debería ser el nivel matemático a que se impartan los cursos. En los cursos de pre-grado ha habido un cierto consenso, y con los años el nivel de formalismo ha disminuido, incluso en estudios de tipo “STEM”, tendiendo a centrarse en la aplicación de los conceptos, por ejemplo usando R, más que en un tratamiento formal (“matemático”) de los mismos. Aunque esto puede ser práctico para aquellos estudios en los que la estadística és una asignatura de un grado, es también obvio que dicha aproximación no permite profundizar en muchos de los puntos que se tratan. Es por ello que en este curso seguiremos la indicación habitual en cursos similares de asumir que el estudiante: Se siente comodo con el lenguaje algebráico, desarrollo de expresiones, sumatorios etc. Está familiarizado con el cálculo diferencial en una o varias variables, aunque esta familiaridad no será imprescindible para seguir la mayoría de los contenidos del curso. Conoce el lenguaje estadístico R, que en muchas ocasiones nos ofrecerá una solución directa a los problemas de cálculo. Referencias Los prerequisitos anteriores corresponden básicamente a las matemáticas del bachilerato. Algunas funetes adiconales pueden ser: Iniciación a las matemáticas para la ingeniería. M. Besalú y Joana Villalonga Colección de (100) videos de soporte a las matemáticas para la ingeniería "],["agradecimiento-y-fuentes-utilizadas.html", "Agradecimiento y fuentes utilizadas El proyecto Statmedia Otros materiales utilizados", " Agradecimiento y fuentes utilizadas Salvo que uno desee escribir un libro sobre algo muy extraño, siempre habran otros libros o manuales similares al que se está planteando. La respuesta a la pregunta, “Y entonces, ¿porque hacer un nuevo matrerial?” suele ser más una excusa que una explicación sólida. Una posible razón puede ser para ajustarlo al máximo al perfil del curso para al que se destinan dichos materiales, condición que otros textos, pensados para cursos y audiencias distintas, pueden no satisfacer. En este caso adoptaremos esta explicación y el tiempo decidirá si el objetivo se alcanza. Dicho esto, debemos agradecer a las distintas fuentes utilizadas, el que hayan puesto a disposición sus materiales para poder reutilizarlos. Entre estos destacamos: El proyecto Statmedia Statmedia es un grupo de innovación docente de la Universidad de Barcelona, cuyo objetivo es desarrollar nuevas herramientas que ayuden en la enseñanza de la estadística aplicada, mejorando así el rendimiento académico de los alumnos y su motivación hacia la estadística. Partiendo de la idea que el aprendizaje debe basarse en casos prácticos para motivar y fomentar la participación de los estudiantes. Se desarrolló primer proyecto, Statmedia I, un texto multimedia de estadística que además de los contenidos, relativamente ampliados, para un curso de introducción a la estadística, incorporaba: Una serie de casos para motivar e ilustrar los conceptos introducidos. Un conjunto de gadgets interactivos con los que interactuar y experimentar y Ejercicios de respuesta múltiple para verificar los conceptos trabajados. Aunque el proyecto Statmedia ha seguido evolucionando en múltiples direcciones, Statmedia I, como tantos otros, no sobrevivió al desarrollo tecnológico, y la evolución (o decadencia) del lenguaje Java lo llevó a dejar de ser funcional. Para estos apuntes hemos recuperado, y en ocasiones adaptado o modificado, algunos de los contenidos de Statmedia I, que habían estado escritos con gran pulcritud. Esto se ha hecho siguiendo las indicaciones de la licencia (CC-Share-alike) que permite adaptar contenidos atribuyendolo a sus autores y citando la fuente. Los gadgets originales ya no son funcionales pero muchos de ellos han sido re-escritos en R como aplicaciones Shiny (disponibles en: https://grbio.upc.edu/en/software/teaching_apps) y se enlazaran desde los puntos necesarios del texto. Dejando aparte (además) de la licencia, vaya nuestro agradecimiento explícito al equipo de profesores del Departamento de Estadística de la Universidad de Barcelona, redactor de la versión inicial del proyecto, que es la que hemos utilizado: Antonio Arcas Pons, Miquel calvo Llorca, Antonio Miñarro Alonso, Sergi Civit Vives y Angel Vilarroya del Campo. Antoni Arcas, Antonio Miñarro and Miguel Calvo (2008) Statmedia projects in Statistical Education Otros materiales utilizados Alex Sanchez y Francesc Carmona (2002). Apunts d’Estadística Matemàtica Licencia CC0 1.0 Universal Molina Peralta, I. and García-Portugués, E. (2024). A First Course on Statistical Inference. Version 2.4.1. ISBN 978-84-09-29680-4. Licencia CC BY-NC-ND 4.0 Peter K. Dunn (2024) The theory of distributions. Licencia CC BY-NC-ND 4.0 "],["probabilidad-y-experimentos-aleatorios.html", "Capítulo 1 Probabilidad y Experimentos aleatorios 1.1 Introducción 1.2 Función de probabilidad 1.3 ¿Cómo se calculan las probabilidades? 1.4 Sucesos elementales y sucesos observables 1.5 Propiedades inmediatas de la probabilidad 1.6 Espacios de probabilidad 1.7 Probabilidad condicionada 1.8 Dos Teoremas importantes 1.9 Introducción a los experimentos múltiples 1.10 Combinatoria 1.11 Frecuencia relativa y probabilidad 1.12 Caso de Estudio: Eficacia de una prueba diagnóstica", " Capítulo 1 Probabilidad y Experimentos aleatorios 1.1 Introducción 1.1.1 Fenómenos deterministas y fenómenos aleatorios Supongamos que disponemos de un dado regular con todas las caras pintadas de blanco y con un número, que irá de 1 a \\(6 \\sin\\) repetir ninguno, en cada una de las seis caras. Definamos los dos experimentos siguientes: Experimento 1: Tirar el dado y anotar el color de la cara resultante. Experimento 2: Tirar el dado y anotar el número de la cara resultante. ¿Qué diferencia fundamental observamos entre ambos experimentos? Muy simple! En el experimento 1, el resultado es obvio: saldrá una cara de color blanco. Es decir, es posible predecir el resultado. Se trata de un experimento o fenómeno determinista. En cambio, en el experimento 2 no podemos predecir cuál será el valor resultante. El resultado puede ser : \\(1,2,3,4,5\\) o 6 . Se trata de un experimento o fenómeno aleatorio. El conjunto de resultados se anotará con el símbolo: \\(\\Omega\\). En este caso, \\(\\Omega=\\{1,2,3,4,5,6\\}\\). En los fenómenos aleatorios, al hacer muchas veces la experiencia, la frecuencia relativa de cualquier elemento del conjunto de resultados debe aproximarse siempre hacia un mismo valor. 1.1.2 Sucesos Supongamos que se ejecuta un experimento aleatorio. Se nos puede ocurrir emitir un enunciado que, una vez realizada la experiencia, pueda decirse si se ha verificado o no se ha verificado. A dichos enunciados los denominamos sucesos. Por otro lado, los sucesos van asociados a subconjuntos del conjunto de resultados. Cada suceso se corresponderá exactamente con uno, y sólo con un, subconjunto del conjunto de resultados. Veamos un ejemplo: Experimento: Tirar un dado regular. Conjunto de resultados : \\(\\Omega=\\{1,2,3,4,5,6\\}\\) Enunciado: Obtener múltiplo de 3. Subconjunto al que se asocia el enunciado: \\(A=\\{3,6\\}\\) Nos referiremos habitualmente al suceso A. 1.1.2.1 Sucesos y conjuntos Al conjunto de resultados \\(\\Omega\\), se le denomina suceso seguro. Al conjunto Ø ( conjunto sin elementos), se le denomina suceso imposible. Al complementario del conjunto \\(\\mathrm{A}\\left(\\mathrm{A}^{\\mathrm{c}}\\right)\\), se le denomina suceso contrario o complementario de \\(A\\). A partir de dos sucesos A y B, podemos formar los sucesos siguientes: A intersección B, que anotaremos como: \\[ A \\cap B \\] A unión B, que anotaremos como: \\[ A \\cup B \\] A intersección B, significa que se verifican a la vez A y B. A unión B, significa que se verifica \\(A\\) o \\(B\\) ( se pueden verificar a la vez). 1.2 Función de probabilidad Lógicamente, una vez tenemos un suceso, nos preocupa saber si hay muchas o pocas posibilidades de que al realizar la experiencia se haya verificado. Por lo tanto, sería interesante el tener alguna función que midiera el grado de confianza a depositar en que se verifique el suceso. A esta función la denominaremos función de probabilidad. La función de probabilidad será, pues, una aplicación entre el conjunto de resultados y el conjunto de números reales, que asignará a cada suceso la probabilidad de que se verifique. La notación: \\(\\mathrm{P}(\\mathrm{A})\\) significará: probabilidad de que se verifique el suceso A . Pero claro, de funciones de probabilidad asociadas a priori a una experiencia aleatoria podrían haber muchas. Lo que se hace para decir qué es y qué no es una función de probabilidad es construir una serie de propiedades (denominadas axiomas) que se exigirán a una función para poder ser catalogada como función de probabilidad. Y, ¿cuáles son estos axiomas? Pues los siguientes: Sea S el conjunto de sucesos. Axioma 1: Para cualquier suceso A, la probabilidad debe ser mayor o igual que 0. Axioma 2: La probabilidad del suceso seguro debe ser 1: \\(\\mathrm{P}(\\Omega)=1\\) Axioma 3: Para sucesos \\(\\mathrm{A}_{\\mathrm{i}}\\), de modo que cada par de sucesos no tengan ningún resultado común, se verifica que: \\[ P\\left(\\bigcup_{i=1}^{\\infty} A_{i}\\right)=\\sum_{i=1}^{\\infty} P\\left(A_{i}\\right) \\] De este modo, pueden haber muchas funciones de probabilidad que se podrían asociar con la experiencia. El problema pasa entonces al investigador para decidir cual o cuales son las funciones de probabilidad más razonables asociadas con la experiencia que está manejando. 1.2.1 ¿Diferentes funciones de probabilidad para una misma experiencia aleatoria? Supongamos la experiencia de tirar un dado regular. A todo el mundo se le ocurriría pensar que la función de probabilidad se obtiene de contar el número de resultados que contiene el suceso dividido por 6 , que es el número total de resultados posibles. Así pues, la probabilidad de obtener un múltiplo de 3 sería igual a \\(2 / 6\\), la probabilidad de obtener el número 2 sería \\(1 / 6\\) i la probabilidad de obtener un número par sería 3/6. Es decir, parece inmediato construir la función de probabilidad que, además, parece única. A nadie se le ocurre decir, por ejemplo, que la probabilidad de obtener un número par es \\(5 / 6\\) ! En este caso, todo ha sido muy fácil. Hemos visto que existe una única función de probabilidad que encaje de forma lógica con la experiencia y, además, ha sido muy sencillo encontrarla. Pero esto, por desgracia, no siempre es así. En muchísimas ocasiones resulta muy complejo el decidir cuál es la función de probabilidad. En el tema de variables aleatorias y de función de distribución se explica el problema de la modelización de muchas situaciones reales. 1.3 ¿Cómo se calculan las probabilidades? No siempre es fácil conocer los valores de la función de probabilidad de todos los sucesos. Sin embargo, muchas veces se pueden conocer las probabilidades de algunos de estos sucesos. Con la ayuda de ciertas propiedades que se deducen de manera inmediata a partir de la axiomática es posible calcular las probabilidades de más sucesos. Por otro lado, en caso de que el número de resultados sea finito y de que todos los resultados tengan las mismas posibilidades de verificarse, la probabilidad de un suceso cualquiera se puede calcular a partir de la regla de Laplace: Si A es un suceso : \\[ \\text { Probabilidad }(A)=\\frac{\\text { Número de casos favorables }}{\\text { Número de casos posibles }} \\] donde: Número de casos favorables \\(=\\) Número de resultados contenidos en \\(\\mathrm{A}(\\) cardinal de A\\()\\) Número de casos posibles \\(=\\) Número total de resultados posibles (cardinal del conjunto total de resultados) En este caso, el contar número de resultados, ya sean favorables o posibles, debe hacerse por medio de la combinatoria. Veamos con unos ejemplos muy sencillos y visuales cómo se obtienen y qué representan los casos posibles y los casos favorables. También es posible obtener de manera aproximada la probabilidad de un suceso si se puede repetir muchas veces la experiencia: la probabilidad del suceso sería el valor al que tendería la frecuencia relativa del suceso. Podéis consultar más detalles acerca de esta aproximación. En este caso, la cuestión estriba en poder hacer muchas veces la experiencia en condiciones independientes. 1.4 Sucesos elementales y sucesos observables En el contexto de la probabilidad, es fundamental diferenciar entre los sucesos elementales y los sucesos observables. Los sucesos elementales son los resultados individuales que pueden ocurrir al realizar un experimento aleatorio, es decir, cada uno de los elementos que conforman el conjunto de resultados \\(\\Omega\\). En nuestro ejemplo del dado, los sucesos elementales son los números \\(1, 2, 3, 4, 5\\) y \\(6\\). Sin embargo, no todos los sucesos elementales son necesariamente observables. Un suceso observable es un subconjunto de estos sucesos elementales que permite formular afirmaciones verificables sobre el resultado del experimento. Ejemplo Podemos imaginar un dado en el que pintamos de blanco las caras pares y de negro las impares. En este caso los sucesos elementales serían los habituales 1, 2, 3,…6. Sin embargo tan solo “Par” (“blanco”) o impar (“negro”) se pueden observar. Si repintamos el dado de forma que las caras 1 y 2 esten blancas, las 3 y 4, azules y las 5 y 6 rojas podremos observar el suceso “Sale 1 o 2 (=Sale blanco)” o “sale blanco o azul”, pero no el suceso “sale par” dado que cada color contiene un número par y uno impar Para formalizar estos conceptos, definimos el espacio de probabilizable como el par de conjuntos formados por: \\((\\Omega, \\mathcal{A})\\) \\(\\Omega\\) es el conjunto de todos los resultados posibles (el conjunto de resultados o sucesos elementales). \\(\\mathcal{A}\\) es el conjunto de todos los sucesos observables, que vienen definidos por el nivel de observación del experimento. 1.5 Propiedades inmediatas de la probabilidad Veremos a continuación una serie de propiedades que se deducen de manera inmediata de la axiomática de la probabilidad. 1.5.1 Succeso imposible El suceso imposible se identifica con el conjunto vacío, puesto que no hay ningún resultado asociado a él. La probabilidad del suceso imposible es: \\[ P(\\varnothing)=0 \\] 1.5.2 Suceso implicado Decimos que un suceso, B, esta implicado por otro suceso A, si siempre que se presenta A, también lo hace B. Por ejemplo, si al tirar un dado se obtiene un dos (suceso A), ello implica que ha salido un número par (suceso B). En terminos de conjuntos, A es un suceso que está contenido en B (todos los resultados de A también pertenecen a B ), por lo que: \\[ \\mathrm{P}(\\mathrm{A}) \\leq \\mathrm{P}(\\mathrm{B}) \\] 1.5.3 Complementario de un suceso Sea \\(A^{\\mathrm{c}}\\) el suceso formado por todos los elementos de \\(\\Omega\\) que no pertenecen a A (Suceso complementario de A). La probabilidad de dicho suceso es igual a: \\[ \\mathrm{P}\\left(\\mathrm{A}^{\\mathrm{c}}\\right)=1-\\mathrm{P}(\\mathrm{A}) \\] 1.5.4 Ocurrencia de algun suceso La probabilidad de la unión de dos sucesos A y B es igual a: \\[ P(A \\cup B)=P(A)+P(B)-P(A \\cap B) \\] 1.5.5 Probabilidad de que ocurra algun suceso Si tenemos una colección de \\(k\\) sucesos, la probabilidad de la unión de dichos sucesos será: \\[ P\\left(\\bigcup_{i=1}^{k} A_{i}\\right)=\\sum_{i=1}^{k} P\\left(A_{i}\\right)-\\sum_{i<j} P\\left(A_{i} \\cap A_{j}\\right)+\\sum P\\left(A_{i} \\cap A_{j} \\cap A_{k}\\right)+\\ldots+(-1)^{k+1} \\cdot P\\left(A_{1} \\cap . . \\cap A_{k}\\right) \\] 1.5.6 Probabilidad de que ocurran dos (o más) sucesos a la vez No existe una expresión cerrada única para la probabilidad de que ocurran dos o más sucesos a la vez, pues esto depende de si los sucesos que consideramos son dependientes o independientes, conceptos éstos, que introduciremos en la próxima sección. Lo que si que existe es una cota para dicha probabilidad, es decir, podemos decir que valor alcanza dicha probabilidad, como mínimo. \\[ P\\left(\\bigcap_{i=1}^{n} A_{i}\\right) \\geq 1-\\sum_{i=1}^{n} P\\left(\\bar{A}_{i}\\right) \\] 1.6 Espacios de probabilidad Para concluir esta introducción introduciremos los espacio de probabilidad que, extienden los espacios probabilizables definidos en la sección anterior La terna \\((\\Omega, \\mathcal{A}, P)\\) donde: \\(Omega\\) es el conjunto de todos los resultados posibles (el conjunto de resultados o sucesos elementales), \\(\\mathcal{A}\\) es el conjunto de todos los sucesos observables, que vienen definidos por el nivel de observación del experimento y \\(P\\) es una función de probabilidad, que asigna a cada suceso observable \\(A \\in \\mathcal{A}\\) un número real \\(P(A)\\) que representa la probabilidad de que ocurra dicho suceso se conoce como espacio de probabilidad. Es importante destacar que la probabilidad se calcula exclusivamente para los sucesos observables, lo que garantiza que la medida sea coherente y verificada a través de experimentos. Los espacios de probabilidad proporcionan una estructura fundamental para analizar y medir las incertidumbres asociadas a los fenómenos aleatorios, facilitando el estudio de sus propiedades, la construcción, sobre ellos de diversos conceptos fundamentales como el de variables aleatorias, y, en general, la aplicación de teorías de la probabilidad a diversas áreas de conocimiento. 1.7 Probabilidad condicionada Imaginemos que en la experiencia de tirar un dado regular supiéramos de antemano que se ha obtenido un número par. Es decir, que se ha verificado el suceso: \\(\\{B = \\mbox{número par}\\}\\)“. Pregunta: ¿Cuál es ahora la probabilidad de que se verifique el suceso mayor o igual a cuatro? Lógicamente, el resultado sería : \\(2 / 3\\). Por lo tanto, la probabilidad del suceso \\(\\mathrm{A}=\\) mayor o igual a cuatro se ha modificado. Evidentemente, ha pasado de ser \\(1 / 2\\) ( cuando no tenemos ninguna información previa) a ser \\(2 / 3\\) (cuando sabemos que se ha verificado el suceso B). ¿Cómo podemos anotar esta última probabilidad \\((2 / 3)\\) ? Muy sencillo. Anotaremos \\(\\mathrm{P}(\\mathrm{A} / \\mathrm{B})\\), que se lee como probabilidad de A condicionada a B . Así, en este ejemplo, \\[ \\begin{gathered} \\mathrm{P}(\\mathrm{A} / \\mathrm{B})=2 / 3 \\\\ \\mathrm{P}(\\mathrm{A})=1 / 2 \\end{gathered} \\] En términos generales, estamos en condiciones de poder definir la probabilidad condicionada, y lo hacemos como: \\[ P(A / B)=\\frac{P(A \\cap B)}{P(B)} \\] Podemos ahora visualizar de una manera práctica y divertida el ejemplo anterior. Siguiendo con la notación utilizada, el suceso A será lo que denominamos suceso de obtención, mientras que el suceso B será lo que denominamos suceso condicionado. La pantalla nos proporcionará los casos posibles para el condicionante elegido y los casos favorables, calculando mediante la regla de Laplace la probabilidad del suceso. Elegid suceso a estudiar. Desplazad, si procede, las barras de puntos. Elegir suceso condicionante. Desplazad, si procede, las barras de puntos. Comprobad los sucesos posibles y los favorables. La probabilidad condicionada se comporta, entonces, como una función de probabilidad. Es decir, verifica los tres axiomas siguientes: Axioma 1: \\[ \\mathrm{P}(\\mathrm{A} / \\mathrm{B}) \\geq 0 \\] Axioma 2: \\[ P(\\Omega / B)=1 \\] Axioma 3: \\[ P\\left(\\bigcup_{i=1}^{\\infty} A_{i} / B\\right)=\\sum_{i=1}^{\\infty} P\\left(A_{i} / B\\right) \\] para sucesos \\(\\mathrm{A}_{\\mathrm{i}}\\) con intersección vacía dos a dos. 1.7.1 Sucesos dependientes y sucesos independientes Sean A y B dos sucesos con probabilidad mayor que 0 . Evidentemente, si \\[ \\mathrm{P}(\\mathrm{A} / \\mathrm{B})=\\mathrm{P}(\\mathrm{A}) \\] B no ha modificado la probabilidad de que suceda A. En este caso diremos que son sucesos independientes. En caso contrario diremos que son sucesos dependientes. En el ejemplo del apartado anterior, se observa que los sucesos son dependientes puesto que las probabilidades anteriores no coinciden. Se verifica que independencia de los sucesos A y B es equivalente a decir que la probabilidad de la intersección es igual a producto de probabilidades de los dos sucesos. Se verifica también que si A y B son independientes: a) El complementario del suceso A y el suceso B son independientes. b) El complementario del suceso A y el complementario del suceso B son independientes. c) El complementario del suceso B y el suceso A son independientes. 1.7.2 Incompatibilidad e independencia Dos sucesos con intersección vacía se denominan sucesos incompatibles. Esto, ¿qué implica? Pues, que si se verifica uno seguro que no se verifica el otro, ya que no tienen resultados en común. Por lo tanto es el caso extremo de dependencia. Obtenemos en este caso que: \\[ \\mathrm{P}(\\mathrm{A} / \\mathrm{B})=0 \\] y, en consecuencia, si \\(\\mathrm{P}(\\mathrm{A})\\) y \\(\\mathrm{P}(\\mathrm{B})\\) son diferentes de cero, la probabilidad condicionada anterior es diferente de \\(\\mathrm{P}(\\mathrm{A})\\), y así se deduce la dependencia. La única posibilidad de que se dé incompatibilidad e independencia a la vez, es que alguno de los dos sucesos tenga probabilidad igual a cero. 1.8 Dos Teoremas importantes 1.8.1 Teorema de las probabilidades totales Sea \\(\\Omega\\) el conjunto total formado por una partición (colección de sucesos con intersección vacía dos a dos): \\[ \\Omega=H_{1} \\cup \\ldots \\ldots \\cup H_{n} \\] La probabilidad de cualquier otro suceso A , se puede obtener a partir de las probabilidades de los sucesos de la partición y de las probabilidades de A condicionado a los sucesos de la partición, de la manera siguiente: \\[ P(A)=\\sum_{i=1}^{n} P\\left(A / H_{i}\\right) \\cdot P\\left(H_{i}\\right) \\] Esto es lo que se conoce como teorema de las probabilidades totales. 1.8.2 Teorema de Bayes Es una consecuencia del teorema de las probabilidades totales. Sea \\(\\Omega\\) el conjunto total formado por una partición (colección de sucesos con intersección vacía dos a dos). \\[ \\Omega=H_{1} \\cup \\ldots \\ldots \\cup H_{n} \\] Ahora el interés se centrará en la obtención de la probabilidad de cualquier suceso de la partición condicionada a un suceso A cualquiera. El resultado será: \\[ P\\left(\\mathrm{H}_{\\mathrm{i}} / \\mathrm{A}\\right)=\\frac{\\mathrm{P}\\left(\\mathrm{A} / \\mathrm{H}_{\\mathrm{i}}\\right) \\cdot \\mathrm{P}\\left(\\mathrm{H}_{\\mathrm{i}}\\right)}{\\sum_{i=1}^{n} \\mathrm{P}\\left(\\mathrm{A} / \\mathrm{H}_{\\mathrm{i}}\\right) \\cdot \\mathrm{P}\\left(\\mathrm{H}_{\\mathrm{i}}\\right)} \\] Esto es conocido como teorema o regla de Bayes. 1.9 Introducción a los experimentos múltiples Supongamos que tiramos a la vez un dado y una moneda. Tenemos una experiencia múltiple, puesto que la experiencia que se realiza es la composición de dos experiencias (experiencia \\(1=\\) tirar un dado regular; experiencia 2 = tirar una moneda regular). ¿Cuál es en este caso el conjunto de resultados? Si \\(\\Omega_{1}\\) es el conjunto de resultados asociado con la experiencia tirar un dado y \\(\\Omega_{2}\\) es el conjunto de resultados asociado con la experiencia tirar una moneda, el conjunto de resultados asociado a la experiencia múltiple será \\(\\Omega_{1} \\times \\Omega_{2}\\). Es decir, \\(\\Omega_{1}=\\{1,2,3,4,5,6\\}\\) \\(\\Omega_{2}=\\{\\) cara, cruz \\(\\}\\) \\(\\Omega_{1} \\times \\Omega_{2}=\\{(1\\), cara \\(),(2\\), cara \\(),(3\\), cara \\(),(4\\), cara \\(),(5\\), cara \\(),(6\\), cara \\(),(1\\), cruz ), ( 2 , cruz ), ( 3, cruz ), (4, cruz \\(),(5\\), cruz \\(),(6\\), cruz \\()\\}\\) Si \\(\\mathrm{P}_{1}\\) y \\(\\mathrm{P}_{2}\\) son, respectivamente, las funciones de probabilidad asociadas a las experiencias 1 y 2 , ¿es posible calcular probabilidades de la experiencia múltiple a partir de \\(\\mathrm{P}_{1}\\) y \\(\\mathrm{P}_{2}\\) ? Efectivamente! Pero hemos de distinguir dos situaciones: Experiencias independientes: cuando el resultado de una no influya en la otra. Experiencias dependientes: cuando el resultado de una influya en la otra. En nuestro caso se trata de experiencias independientes, puesto que el resultado que se obtenga al tirar el dado no influye sobre el resultado que se obtenga al lanzar la moneda y al revés. ¿Como se calculan, pues, las probabilidades de la experiencia múltiple? Sea un suceso de la experiencia múltiple: A x B. Caso de experiencias independientes: \\[ \\mathrm{P}(\\mathrm{A} \\times \\mathrm{B})=\\mathrm{P}_{1}(\\mathrm{~A}) \\times \\mathrm{P}_{2}(\\mathrm{~B}) \\] Caso de experiencias dependientes: \\[ \\mathrm{P}(\\mathrm{A} \\times \\mathrm{B})=\\mathrm{P}_{1}(\\mathrm{~A}) \\times \\mathrm{P}_{2}(\\mathrm{~B} / \\mathrm{A}) \\] Entendemos que existe una \\(\\mathrm{P}_{2}\\) para cada suceso A . Esto que hemos explicado se puede, lógicamente, generalizar a una experiencia múltiple formada por \\(n\\) experiencias. 1.10 Combinatoria Veamos algunas fórmulas simples que se utilizan en combinatoria y que nos pueden ayudar a calcular el número de casos posibles o el número de casos favorables. 1.10.1 Permutaciones Sea un conjunto de \\(n\\) elementos. A las ordenaciones que se pueden hacer con estos \\(n\\) elementos \\(\\sin\\) repetir ningún elemento y utilizándolos todos se las denomina permutaciones. El número de permutaciones que se pueden realizar coincide con el factorial de \\(n\\), y su cálculo es: \\[ n!=n \\cdot(n-1) \\cdot(n-2) \\ldots \\ldots .2 \\cdot 1 \\] Ejemplo: ¿De cuántas maneras distintas podemos alinear a seis personas en una fila? Respuesta De \\(6!=6 \\cdot 5 \\cdot 4 \\cdot 3 \\cdot 2 \\cdot 1=720\\) maneras (permutaciones de 6 elementos). 1.10.2 Variaciones Sea un conjunto de \\(n\\) elementos. Supongamos que deseamos ordenar \\(r\\) elementos de entre los \\(n\\). A cada una de estas ordenaciones la denominamos variación. El número de variaciones que se pueden hacer de los \\(n\\) elementos tomados de \\(r\\) en \\(r\\) es: \\[ V_{n}^{r}=n \\cdot(n-1) \\ldots \\ldots(n-r+1) \\] Ejemplo En una carrera de velocidad compiten diez atletas. ¿De cuántas maneras distintas podría estar formado el podio? (el podio lo forman el primer, el segundo y el tercer clasificado) Respuesta Cada podio posible es una variación de diez elementos tomado de tres en tres. Por tanto, el número posible de podios es: \\[ \\mathrm{V}_{10}^{3}=10.9 .8=720 \\] 1.10.3 Variaciones con repetición Sea un conjunto de \\(n\\) elementos. Supongamos que se trata de ordenar \\(r\\) elementos que pueden estar repetidos. Cada ordenación es una variación con repetición. El número de variaciones con repetición para un conjunto de \\(n\\) tomados de \\(r\\) en \\(r\\) es : \\[ \\mathrm{RV}_{\\mathrm{n}}^{\\mathrm{r}}=\\mathrm{n}^{\\mathrm{r}} \\] Ejemplo En una urna tenemos cinco bolas numeradas del 1 al 5 . Se extraen tres bolas sucesivamente con reposición (devolviendo cada vez la bola a la urna). ¿Cuántos resultados distintos es posible obtener? Respuesta: Se trata de variaciones con repetición de un conjunto de cinco bolas tomadas de tres en tres. En total tendremos: \\[ \\mathrm{RV}_{5}^{3}=5^{3}=125 \\] 1.10.4 Combinaciones Cuando se trata de contar el número de subconjuntos de \\(x\\) elementos en un conjunto de \\(n\\) elementos tenemos lo que se denomina combinaciones de x elementos en un conjunto de n . El cálculo del contaje se hace mediante el número combinatorio, de la manera siguiente: \\[ \\mathrm{C}_{\\mathrm{n}}^{\\mathrm{x}}=\\binom{n}{\\mathrm{x}}=\\frac{\\mathrm{n!}}{\\mathrm{x}!.(\\mathrm{n}-\\mathrm{x})!} \\] Ejemplo ¿De cuántas maneras podemos elegir, en la urna anterior (recordemos que había cinco bolas), tres bolas en una única extracción? Respuesta Serán combinaciones de cinco elementos tomados de tres en tres, por tanto, tendremos: \\[ \\mathrm{C}_{5}^{3}=\\binom{5}{3}=\\frac{5!}{3!(5-3)!}=10 \\] 1.10.5 Permutaciones con repetición Sea un conjunto de \\(n\\) elementos, de entre los cuales tenemos \\(a\\) elementos indistinguibles entre sí, \\(b\\) elementos indistinguibles entre sí, \\(c\\) elementos indistinguibles entre sí, etc. Cada ordenación de estos elementos se denominará permutación con repetición. El número de permutaciones con repetición es: \\[ R P{ }_{n}^{a, b, c, \\ldots}=\\frac{n!}{a!b!c!\\ldots} \\] Ejemplo ¿Cuantas palabras con sentido o sin él pueden formarse con las letras PATATA? Respuesta: Tenemos tres veces la letra A, dos veces la T y una vez la P. Por tanto, serán: \\[ \\mathrm{RP}_{6}^{3,2,1}=\\frac{6!}{3!2!!}=60 \\] 1.11 Frecuencia relativa y probabilidad La definición moderna de probabilidad basada en la axiomática de Kolmogorov (presentada anteriormente) es relativamente reciente. Históricamente hubo otros intentos previos de definir el escurridizo concepto de probabilidad, descartados por diferentes razones. Sin embargo conviene destacar aquí algunas ideas que aparecen en la antigua definición basada en la frecuencia relativa, ya que permiten intuir algunas profundas propiedades de la probabilidad. Recordemos antes que si en un experimento que se ha repetido \\(n\\) veces un determinado suceso A se ha observado en \\(k\\) de estas repeticiones, la frecuencia relativa \\(\\mathrm{f}_{\\mathrm{r}}\\) del suceso A es: \\[ \\mathrm{f}_{\\mathrm{r}}=k / n \\] El interés por la frecuencia relativa y su relación con el concepto de probabilidad aparece a lo largo de los siglos XVIII a XX al observar el comportamiento de numerosas repeticiones de experimentos reales. A título de ejemplo de un experimento de este tipo, supongamos que se dispone de una moneda ideal perfectamente equilibrada. Aplicando directamente la regla de Laplace resulta claro que el suceso \\(\\mathrm{A}=\\) obtener cara tiene probabilidad: \\[ \\mathrm{p}(\\mathrm{A})=1 / 2=0,5 \\] ### Ilustración por simulación En el enlace siguiente se accede a una simulación por ordenador de la ley de los grandes números en la que se basa precisamente la idea de asimilar “a la larga” (es decir a medida que crece el número de repeticiones) frecuencia relativa y probabilidad. Enlace a la simulación En la simulación podéis definir: La verdadera probabilidad” de que al tirar la moneda salga cara, EL número de tiradas. Como podréis comprobar, sea cual sea la probabilidad (una moneda justa es un 0.5) a la larga la frecuencia relativa converge hacia el valor que habéis fijado. Eso sí, observad lo que sucede si fijais probabilidades cercanas a 0.5 o muy alejadas de ell. ¿La idea de lo que sucede a la larga es la misma? ¿En que encontráis diferencias? Aunque no deje de llamar la atención el carácter errático del comportamiento de \\(\\mathrm{f}_{\\mathrm{r}}\\) entre los valores 0 y 1, estaréis seguramente de acuerdo que a mayor número de lanzamientos \\(n\\), más improbable es que \\(f_{r}\\) se aleje mucho de \\(p(A)\\). La teoría moderna de la probabilidad enlaza formalmente estas ideas con el estudio de las leyes de los grandes números, que se discutiran con más detalle en el capítulo dedicado a las “Grandes muestras”. 1.12 Caso de Estudio: Eficacia de una prueba diagnóstica Para decidir la presencia(E) o ausencia (A) de sordera profunda a la edad de seis meses, se está ensayando una batería de tests. Considerando el caso en que la prueba pueda dar positivo \\((+)\\) o negativo \\((-)\\), hay que tener en cuenta que en individuos con dicha sordera la prueba dará a veces positivo y a veces negativo, e igual ocurrirá con individuos que no presentan la sordera. En este contexto todas las probabilidades pueden ser interpretadas en terminos de resultados positivos o neghativos, correctamente o no y cada una ha recibe un nombre que la ha popularizado dentro de la literatura médica: Así tenemos: \\(\\mathrm{P}(+/ \\mathrm{E})\\) Probabilidad de test positivo en individuos que padecen la sordera. Este valor se conoce como sensibilidad del test. \\(\\mathrm{P}(+/ \\mathrm{A})=\\) Probabilidad de test positivo en individuos que no padecen la sordera. Este valor se conoce como probabilidad de falso-positivo. \\(\\mathrm{P}(-/ \\mathrm{E})=\\) Probabilidad de test negativo en individuos que padecen la sordera Este valor se conoce como probabilidad de falso-negativo. \\(P(-/ A)=\\) Probabilidad de test negativo en individuos que no padecen sordera. Este valor se conoce como especificidad del test. Finalmente a la probabilidad, \\(\\mathrm{P}(\\mathrm{E})\\), de presentar la enfermedad se le conoce como prevalencia de la enfermedad. Lógicamente, en un “buen test” nos interesa que la sensibilidad y la especificidad sean elevadas, mientras que los falsos-positivos y falsos-negativos sean valores bajos. Además no debemos olvidar que, el interés de aplicar el test, consiste en que sirva de elemento predictivo para diagnosticar la sordera. Por lo tanto, interesa que las probabilidades: \\(\\mathrm{P}(\\mathrm{E} /+)=\\) Probabilidad de padecer sordera si el test da positivo \\(\\mathrm{P}(\\mathrm{A} /-)=\\) Probabilidad de no padecer sordera si el test da negativo sean realmente altas. A las probabilidades anteriores se las conoce como: valores predictivos del test, en concreto: \\(\\mathrm{P}(\\mathrm{E} /+)=\\) es el valor predictivo positivo y \\(\\mathrm{P}(\\mathrm{A} /-)=\\) es el valor predictivo negativo 1.12.1 Aplicación del Teorema de Bayes Estamos en una situación en que, a partir de conocimiento de unas probabilidades, nos interesa calcular otras, para lo que utilizaremos el teorema de Bayes. Habitualmente, a partir de estudios epidemiológicos y muestras experimentales, se estiman: La prevalencia La sensibilidad del test La especificidad del test La probabilidad de falso positivo La probabilidad de falso negativo ¿Cómo se obtiene entonces el valor predictivo del test? Veamos como aplicar el teorema de Bayes a este problema: Si dividimos a la población global (en este caso, el conjunto de todos los bebés de seis meses) entre los que padecen sordera y los que no la padecen, aplicando el teorema de Bayes resulta que: \\[ \\mathrm{P}(\\mathrm{E} /+)=(\\mathrm{P}(+/ \\mathrm{E}) \\times \\mathrm{P}(\\mathrm{E})) /(\\mathrm{P}(+/ \\mathrm{E}) \\times \\mathrm{P}(\\mathrm{E})+\\mathrm{P}(+/ \\mathrm{A}) \\times \\mathrm{P}(\\mathrm{~A})) \\] y \\[ \\mathrm{P}(\\mathrm{~A} /-)=(\\mathrm{P}(-/ \\mathrm{A}) \\times \\mathrm{P}(\\mathrm{~A})) /(\\mathrm{P}(-/ \\mathrm{A}) \\times \\mathrm{P}(\\mathrm{~A})+\\mathrm{P}(-/ \\mathrm{E}) \\times \\mathrm{P}(\\mathrm{E})) \\] 1.12.2 Ejemplo numérico Supongamos que en el ejemplo de la sordera, se sabe que: Prevalencia \\(=0,003\\), Es decir, que un tres por mil padece sordera profunda a esta edad. Sensibilidad \\(=0,98\\) Especificidad \\(=0,95\\) Probabilidad de falso positivo \\(=0,05\\) Probabilidad de falso negativo \\(=0,02\\) ¿Cuál es el valor predictivo del test? \\[ \\begin{aligned} & \\mathrm{P}(\\mathrm{E} /+)=(0,98 \\times 0,003) /(0,98 \\times 0,003+0,05 \\times 0,997)=0,00294 / 0,05279=0,055692 \\\\ & \\mathrm{P}(\\mathrm{~A} /-)=(0,95 \\times 0,997) /(0,95 \\times 0,997+0,02 \\times 0,003)=0,94715 / 0,94721=0,999936 \\end{aligned} \\] En conclusión, Podemos afirmar que se trata de un test muy válido para decidir que no hay sordera en caso de que el resultado del test sea negativo. Sin embargo, el valor tan bajo de \\(\\mathrm{P}(\\mathrm{E} /+)\\) no permite poder considerar al test como un predictor válido para diagnosticar la sordera. Obsérvese que: Probabilidad de falso positivo \\(=1-\\) especificidad Probabilidad de falso negativo \\(=1-\\) sensibilidad "],["variables-aleatorias-y-distribuciones-de-probabilidad.html", "Capítulo 2 Variables aleatorias y Distribuciones de probabilidad 2.1 El espacio muestral y sus elementos 2.2 Representación numérica de los sucesos elementales. Variables aleatorias 2.3 Caracterización de una variable aleatoria a través de la probabilidad. Función de distribución 2.4 Propiedades de la función de distribución 2.5 Clasificación de las variables aleatorias 2.6 Variable aleatoria discretas 2.7 Variables aleatorias continuas 2.8 Caracterización de una variable aleatoria a través de parámetros 2.9 Esperanza de una variable aleatoria discreta 2.10 Esperanza de una variable aleatoria continua 2.11 Propiedades de la esperanza matemática 2.12 Varianza de una variable aleatoria 2.13 Momentos (de orden \\(k\\)) de una variable aleatoria 2.14 Definición formal de variable aleatoria 2.15 Caso práctico: Lanzamiento de dos dados", " Capítulo 2 Variables aleatorias y Distribuciones de probabilidad En el capítulo anterior hemos introducido el concepto de probabilidad y como calcular probabilidades asociadas a sucesos observables, formados por uno o mas sucesos elementales, resultado de un experimento aleatorio. En muchas ocasiones nos interesa representar los resultados de un experimento aleatorio mediante un valor numérico que lo caracterice. Por ejemplo si tiramos tres monedas y contamos el número de caras, nos será indiferente cuando salgan dos caras, en que monedas ha salido una cara y en cual ha salido una cruz. En la práctica, esto significa que en dichas ocasiones, aunque haya un experimento aleatorio detras de los valores que observamos, tan sólo nos interesan los resultados que expresamos a traves de valores numéricos. Las variables aleatorias son la forma que hemos desarrollado para trasladar la estructura proporcionada por los espacios de probabilidad el espacio muestral, el conjunto de sucesos elementales, al conjunto de los números, en concreto a la recta real, haciéndolo de tal forma que podamos seguir calculando probabilidades de sucesos observables. En este capítulo veremos que las variables aleatorias permiten pues transportar la probabilidad del espacio de probabilidad original a la recta real. Para ello, introduciremos una función que es la que se ocupa de ello, la función de distribución de probabilidad. 2.1 El espacio muestral y sus elementos Cuando llevamos a cabo un experimento aleatorio, el conjunto \\(\\Omega\\) de resultados posibles forman el denominado espacio muestral. Sus elementos \\(\\omega\\) (resultados o sucesos elementales) deben ser conocidos por el investigador que realiza la experiencia, aun cuando no podamos determinar a priori el resultado particular de una realización concreta. Supondremos que también conocemos la manera de asignar una probabilidad sobre el conjunto de enunciados o sucesos observables que se pueden construir a partir de \\(\\Omega\\). Es decir, supondremos la existencia de un espacio de probabilidad construido a partir de los resultados de \\(\\Omega\\). Generalmente, la estructura del espacio muestral no permite, o por lo menos no facilita, su tratamiento matemático. Pensemos en la inmensa variedad en la naturaleza de resultados posibles de diferentes experimentos. Además es bastante frecuente que no nos interesen los resultados en sí, sino una característica que, de alguna manera, resuma el resultado del experimento. 2.2 Representación numérica de los sucesos elementales. Variables aleatorias La forma de resumen que adoptaremos es la asignación a cada suceso elemental de un valor numérico, en particular, de un número real. En la práctica la asignación de un valor numérico a cada elemento del espacio muestral se hace siguiendo una regla o enunciado, según el interés concreto del experimentador. Evidentemente, podemos construir diversas maneras de asignar valores numéricos a los mismos resultados de un experimento. Hablando en términos coloquiales, podemos decir que cada regla de asignación corresponde a una determinada variable que se puede medir sobre los sucesos elementales. Nótese que es posible construir múltiples variables sobre un mismo espacio de probabilidad. En términos algo más formales, las reglas de asignación se pueden interpretar como una aplicación de \\(\\Omega\\) en el conjunto de números reales. \\[ \\begin{aligned} X: \\Omega & \\rightarrow \\mathbb{R} \\\\ \\omega & \\rightarrow X(\\omega) \\end{aligned} \\] \\(X\\) representa la variable o regla de asignación concreta. El conjunto de valores numéricos que puede tomar una variable, y que depende de la naturaleza de la misma variable, recibe el nombre de recorrido de la variable. A partir de este momento, los sucesos elementales quedan substituidos por sus valores numéricos de acuerdo a una determinada variable y permiten un mayor tratamiento matemático en el marco de la teoría de la probabilidad. El apelativo aleatoria que reciben las variables hace referencia al hecho de que los posibles valores que toman dependen de los resultados de un fenómeno aleatorio que se presentan con una determinada probabilidad. Como un complemento al tema, al final del capítulo, presentamos la definición formal de variable aleatoria, donde se introducen las restricciones a las reglas de asignación numérica que posibilitan el tratamiento matemático de las variables. 2.3 Caracterización de una variable aleatoria a través de la probabilidad. Función de distribución Una vez que tenemos definida una variable aleatoria, ésta queda totalmente caracterizada en el momento en que somos capaces de determinar la probabilidad de que la variable tome valores en cualquier intervalo de la recta real. Dado que los posibles valores que puede tomar la variable, es decir, su recorrido, pueden ser muy grandes (infinitos de hecho), el problema de caracterizar una variable aleatoria se resuelve introduciendo una función especial, la función de distribución. Definición La función de distribución de una variable aleatoria \\(X\\) es la aplicación que, a cada punto de la recta real, le asigna la probabilidad del suceso formado por los resultados del experimento que tienen asignado un valor de la variable aleatoria menor o igual a dicho punto. \\[ \\begin{array}{rll} F: & \\mathbb{R} & \\rightarrow[0,1] \\\\ & x & \\rightarrow F(x)=P(X \\leq x)=P\\{\\omega \\in \\Omega \\mid X(\\omega) \\leq x\\} \\end{array} \\] También podemos decir que es la probabilidad inducida en el intervalo de la recta \\((-\\infty, x]\\) Hay que hacer notar que siempre será posible determinar dicha probabilidad gracias a los requerimientos exigidos en la definición formal de variable aleatoria. Por tanto, toda variable aleatoria tiene asociada una función de distribución. Nos referimos a esta función cuando decimos que conocemos la distribución de la variable aleatoria. 2.4 Propiedades de la función de distribución La forma en que hemos definido las funciones de distribución determina que dichas funciones deban de tener las siguientes propiedades: \\(0 \\leq F(x) \\leq 1. \\quad\\) Efectivamente, se trata de una probabilidad, por lo que toma valores entre 0 y 1 \\(\\lim _{x \\rightarrow+\\infty} F(x)=1. \\quad\\) A medida que un valor se hace más y más grande, la probabilidad de encontrar valores anteriores a él crece y, en el límite, valdrá uno (el valor máximo para una probabilidad). \\(\\lim _{x \\rightarrow-\\infty} F(x)=0. \\quad\\) A medida que un valor se hace más y más negativo, la probabilidad de encontrar valores anteriores a él disminuye, y en el límite es cero (el valor mínimo para una probabilidad). \\(x_{1}<x_{2} \\Rightarrow F\\left(x_{1}\\right) \\leq F\\left(x_{2}\\right). \\quad\\) Por construcción, es una función monótona, es decir, si un valor es inferior a otro, la probabilidad de encontrar valores inferiores al menor de los dos será menor o igual que la de encontrarlos inferiores al mayor de los dos. \\(\\lim _{x \\rightarrow a^{+}} F(x)=F(a) \\quad \\forall a \\in \\mathbb{R}. \\quad\\) Por la forma en que se ha definido, la función de distribución es contínua por la derecha. Toda función que verifique las propiedades anteriores es una función de distribución y toda función de distribución caracteriza una determinada variable aleatoria sobre algún espacio de probabilidad. Las propiedades anteriores determinan la forma de la función de distribución. En concreto, según la variable sea contínua o discreta, conceptos definidos a continuación en el capítulo, la forma de la función será: : Primer tipo (Variables contínuas) Segundo tipo (variables discretas) 2.5 Clasificación de las variables aleatorias Para su estudio, las variables aleatorias se clasifican en variables discretas o variables contínuas. 2.5.1 Variables aleatorias discretas Definición: Variable aleatoria discreta Diremos que una variable aleatoria es discreta si su recorrido, es decir, el conjunto de valores que puede tomar, es finito o infinito numerable. Generalmente, este tipo de variables van asociadas a experimentos en los cuales se cuenta el número de veces que se ha presentado un suceso o donde el resultado es una puntuación concreta. Los puntos del recorrido se corresponden con saltos en la gráfica de la función de distribución, que correspondería al segundo tipo de gráfica visto anteriormente. 2.5.2 Variables aleatorias continuas Definición: Variable aleatoria contínua Diremos que una variable aleatoria es continua si su función de distribución es una función continua. También puede definirse, de forma análoga a las variables discretas como aquellas cuyo recorrido, es decir, el conjunto de valores que puede tomar, es un intervalo o subconjunto no numerable de los números reales. En otras palabras, aquellas que pueden tomar cualquier valor dentro de un rango continuo, sin saltos entre los valores posibles. Se corresponde con el primer tipo de gráfica visto. Generalmente, se corresponden con variables asociadas a experimentos en los cuales la variable medida puede tomar cualquier valor en un intervalo; mediciones biométricas, por ejemplo. Un caso particular dentro de las variables aleatorias continuas y al cual pertenecen todos los ejemplos usualmente utilizados, son las denominadas variables aleatorias absolutamente continuas. Definición: Distribución absolutamente contínua Diremos que una variable aleatoria \\(X\\) continua tiene una distribución absolutamente continua si existe una función real \\(f\\), positiva e integrable en el conjunto de números reales, tal que la función de distribución \\(F\\) de \\(X\\) se puede expresar como \\[ F(x)=\\int_{-\\infty}^{x} f(t) d t \\] Una variable aleatoria con distribución absolutamente continua, por extensión, se la clasifica como variable aleatoria absolutamente continua. Definición: función de densidad de probabilidad A la función \\(f\\) se la denomina función de densidad de probabilidad de la variable \\(X\\). Hay que hacer notar que no toda variable continua es absolutamente continua, pero los ejemplos son complicados, algunos utilizan para su construcción el conjunto de Cantor, y quedan fuera del nivel y del objetivo de este curso. Igualmente indicaremos que los tipos de variables comentados anteriormente forman únicamente una parte de todos los posibles tipos de variables, sin embargo contienen prácticamente todas las variables aleatorias que encontramos usualmente. Tal como se estudiará más adelante, existen algunas familias de funciones de distribución, tanto dentro del grupo de las discretas como de las continuas, que por su importancia reciben un nombre propio y se estudiarán en los capítulos siguientes. En ocasiones encontramos variables de tipo mixto, es decir que se comportan como discretas o contínuas para distintos grupos de valores. 2.6 Variable aleatoria discretas Tal como se ha definido, una variable aleatoria \\(X\\) discreta toma valores en un conjunrto finito o numerables. Indicaremos el recorrido de la variable \\(X\\) como: \\(\\left\\{x_{1}, x_{2}, \\ldots, x_{\\mathrm{k}}, \\ldots\\right\\}\\). El ejemplo más sencillo de variable aleatoria discreta lo constituyen las variables indicadoras. Sea \\(A\\) un suceso observable, se llama indicador de \\(A\\) a la variable aleatoria definida por \\[ \\begin{aligned} I_{A}: \\Omega & \\rightarrow \\mathbb{R} \\\\ \\omega & \\rightarrow I_{A}(\\omega)=\\left\\{\\begin{array}{lll} 1 & \\text { si } \\omega \\in A \\\\ 0 & \\text { si } & A \\end{array}\\right. \\end{aligned} \\] 2.6.0.1 Ejercicio propuesto Construir, a partir de las variables indicadoras de \\(A\\) y \\(B\\), las siguientes variables indicadoras \\[ I_{A \\cap B} ; I_{A \\cup B} ; I_{A} c ; I_{\\Omega} \\] 2.6.0.1.1 Solución \\[ \\begin{gathered} I_{A \\cap B}=I_{A} \\cdot I_{B} \\\\ I_{A \\cup B}=I_{A}+I_{B}-I_{A \\cap B} \\\\ I_{A} c=1-I_{A} \\\\ \\Omega=1 \\end{gathered} \\] 2.6.1 Caracterización de las v.a. discretas Una variable aleatoria discreta puede caracterizarse a través de la función que asocia cada elemento del recorrido su probabilidad. Dicha función recibe varios nombres según los autores: - función de probabilidad - ley de probabilidad, - función de densidad de la variable aleatoria discreta. - función de masa de probabilidad. Aunque es habitual encontrar, en muchos libros el término función de densidad para variables (absolutamente) contínuas y el término función de masa de probabilidad para variables discretas, también lo es referirse a ambas como “función de densidad”. La función de probabilidad de una variable discreta se puede representar de la manera siguiente: \\[ \\begin{array}{rll} f: & \\mathbb{R} & \\rightarrow[0,1] \\\\ & x & \\rightarrow f(x)=P(X=x)=P\\{\\omega \\in \\Omega \\mid X(\\omega)=x\\} \\end{array} \\] Obsérvese que, a diferencia de la función de distribución que toma valores para cualquier valor real, la función definida anteriormente es nula en todo punto que no pertenezca al recorrido. En cambio, siguiendo con la análogía, y dado que se trata de una probabilidad, la función de densidad discreta está acotada \\(0 \\leq f(x) \\leq 1\\). Toda función de densidad discreta puede expresarse de manera explícita a través de una tabla que asocie directamente puntos del recorrido con sus probabilidades. Ejemplo: Función de densidad de una variable indicadora Consideremos la variable indicadora del suceso \\(A\\) : \\[ \\begin{aligned} I_{A}: \\Omega & \\rightarrow \\mathbb{R} \\\\ \\omega & \\rightarrow I_{A}(\\omega)=\\left\\{\\begin{array}{lll} 1 & \\text { si } & \\omega \\in A \\\\ 0 & \\text { si } & A \\end{array}\\right. \\end{aligned} \\] La función de densidad de esta variable sería la siguiente: \\(x\\) 0 1 \\(f(x)=P(X=x)\\) \\(1-P(A)=P\\left(A^{\\mathrm{c}}\\right)\\) \\(P(A)\\) El recorrido está formado por dos valores: 1 y 0 , con las mismas probabilidades que las del suceso \\(A\\) y su complementario, respectivamente. En muchos casos será posible expresar la función de probabilidadmediante una fórmula matemática que define una regla de asignación de probabilidades para los valores del recorrido. Ejemplo: Un modelo matemático para la función de probabilidad \\[ P(X=x)=0,2 \\cdot 0,8^{x-1}, \\quad x=1,2, \\ldots \\] es la función de densidad de una variable aleatoria discreta con recorrido numerable. 2.6.2 Propiedades de la función de densidad discreta \\[ 0 \\leq f(x) \\leq 1 \\] \\(\\sum_{i=1}^{n} f\\left(x_{i}\\right)=1\\), si el recorrido es finito. \\(\\sum_{i=1}^{\\infty} f\\left(x_{i}\\right)=1\\), si el recorrido es numerable. 2.6.3 Relaciones entre la función de distribución y la función de densidad discreta. Probabilidad de intervalos. Existe una relación muy importante entre las funciones de distribución \\(F(x)\\) y de densidad \\(f(x)\\) de una variable aleatoria discreta. La función de distribución en un punto se obtiene acumulando el valor de la función de densidad para todos los valores del recorrido menores o iguales al punto en cuestión. \\[ F(x)=\\sum_{x_{i} \\leq x} f\\left(x_{i}\\right) \\quad \\text { para todo } \\mathrm{x}_{\\mathrm{i}} \\text { perteneciente al recorrido de la variable. } \\] En efecto, supongamos que el recorrido de una variable discreta \\(X\\) es \\(\\left\\{x_{1}, x_{2}, \\ldots, x_{k}, \\ldots\\right\\}\\) y que deseamos conocer el valor de la función de distribución en un punto \\(x\\) tal que \\(x_{i} \\leq x<x_{i+1}\\), entonces es inmediato que \\[ F(x)=P(X \\leq x)=P\\left(X=x_{1}\\right)+P\\left(X=x_{2}\\right)+\\ldots+P\\left(X=x_{i}\\right)=f\\left(x_{1}\\right)+f\\left(x_{2}\\right)+f\\left(x_{3}\\right)+\\ldots+f\\left(x_{i}\\right) \\] Por ejemplo, para una variable indicadora de un suceso \\(A\\), tenemos la relación siguiente: Valor de \\(\\boldsymbol{x}\\) \\(\\boldsymbol{f}(\\boldsymbol{x})\\) \\(\\boldsymbol{F}(\\boldsymbol{x})\\) \\((-\\infty, 0)\\) 0 0 \\(P\\left(A^{c}\\right)\\) \\(P\\left(A^{\\mathrm{c}}\\right)\\) \\((0,1)\\) \\(P\\left(A^{\\mathrm{c}}\\right)\\) 1 \\(P(A)\\) \\(P\\left(A^{\\mathrm{c}}\\right)+P(A)=1\\) \\((1,+\\infty)\\) 1 A partir de las funciones de densidad y de distribución es posible expresar las probabilidades para cualquier posible intervalo de valores de la variable. Por ejemplo: Intervalo \\(P(X \\leq a)=F(a)\\) \\(P(X<a)=F(a)-f(a)\\) \\(P(X>a)=1-F(a)=1-P(X \\leq a)\\) \\(P(X \\geq a)=1-F(a)+f(a)=1-P(X>a)\\) \\(P(a<X \\leq b)=F(b)-F(a)\\) \\(P(a<X<b)=F(b)-f(b)-F(a)\\) \\(P(a \\leq X \\leq b)=F(b)-F(a)+f(a)\\) \\(P(a \\leq X<b)=F(b)-f(b)-F(a)+f(a)\\) 2.7 Variables aleatorias continuas Una variable aleatoria \\(X\\) diremos que es continua si su función de distribución es una función continua. En la práctica, se corresponden con variables asociadas con experimentos en los cuales la variable medida puede tomar cualquier valor en un intervalo: mediciones biométricas, intervalos de tiempo, áreas, etc. Ejemplo: Variables aleatorias continuas Resultado de un generador de números aleatorios entre 0 y 1. Es el ejemplo más sencillo que podemos considerar, es un caso particular de una familia de variables aleatorias que tienen una distribución uniforme en un intervalo \\([a, b]\\). Se corresponde con la elección al azar de cualquier valor entre \\(a\\) y \\(b\\). Estatura de una persona elegida al azar en una población. El valor que se obtenga será una medición en cualquier unidad de longitud ( m , cm , etc.) dentro de unos límites condicionados por la naturaleza de la variable. El resultado es impredecible con antelación, pero existen intervalos de valores más probables que otros debido a la distribución de alturas en la población. Más adelante veremos que, generalmente, variables biométricas como la altura se adaptan un modelo de distribución denominado distribución Normal y representado por una campana de Gauss. Dentro de las variables aleatorias continuas tenemos las variables aleatorias absolutamente continuas. Diremos que una variable aleatoria \\(X\\) continua tiene una distribución absolutamente continua si existe una función real \\(f\\), positiva e integrable en el conjunto de números reales, tal que la función de distribución \\(F\\) de \\(X\\) se puede expresar como \\[ F(x)=\\int_{-\\infty}^{x} f(t) d t \\] Una variable aleatoria con distribución absolutamente continua, por extensión, se clasifica como variable aleatoria absolutamente continua. En cuanto a nuestro manual, todas las variables aleatorias continuas con las que trabajemos pertenecen al grupo de las variables absolutamente continuas, en particular, los ejemplos y casos expuestos. 2.7.1 Función de densidad continua La función que caracteriza las variables continuas es aquella función \\(f\\) positiva e integrable en los reales, tal que acumulada desde \\(-\\infty\\) hasta un punto \\(x\\), nos proporciona el valor de la función de distribución en \\(x, F(\\mathrm{x})\\). Recibe el nombre de función de densidad de la variable aleatoria continua. \\[ F(x)=\\int_{-\\infty}^{x} f(t) d t \\] Las funciones de densidad discreta y continua tienen, por tanto, un significado análogo, ambas son las funciones que acumuladas (en forma de sumatorio en el caso discreto o en forma de integral en el caso continuo) dan como resultado la función de distribución. La diferencia entre ambas, sin embargo, es notable. La función de densidad discreta toma valores positivos únicamente en los puntos del recorrido y se interpreta como la probabilidad de la que la variable tome ese valor \\(f(x)=P(X=x)\\). La función de densidad continua toma valores en el conjunto de números reales y no se interpreta como una probabilidad. No está acotada por 1, puede tomar cualquier valor positivo. Es más, en una variable continua se cumple que probabilidades definidas sobre puntos concretos siempre son nulas. \\[ P(X=x)=0 \\text { para todo } x \\text { real. } \\] ¿Cómo se interpreta, entonces, la función de densidad continua? Las probabilidades son las áreas bajo la función de densidad. El área bajo la función de densidad entre dos puntos a y b se interpreta como la probabilidad de que la variable aleatoria tome valores comprendidos entre \\(a\\) y \\(b\\). Por tanto, siempre se cumple lo siguiente: \\[ \\int_{-\\infty}^{+\\infty} f(x) d x=1 \\] La función de densidad se expresa a través de una función matemática. La forma específica de la función matemática generalmente pasa por considerar a la variable aleatoria como miembro de una determinada familia de distribuciones, un determinado modelo de probabilidad. Estas familias generalmente dependen de uno o más parámetros y serán objeto de un estudio específico en un capítulo posterior. La atribución a una determinada familia depende de la naturaleza de la variable en cuestión. Podemos ver, únicamente con ánimo ilustrativo, la expresión analítica y la gráfica para los ejemplos comentados con anterioridad: Resultado de un generador de números aleatorios entre \\(\\boldsymbol{a}\\) y \\(\\boldsymbol{b}\\). Modelo Uniforme. \\(f(x)=\\left\\{\\begin{array}{cc}\\frac{1}{b-a} & x \\in[a, b] \\\\ 0 & x \\notin[a, b]\\end{array}\\right\\}\\) Estatura de una persona elegida al azar en una población. Modelo Normal. \\[ f(x)=\\frac{1}{\\sqrt{2 \\pi}} e^{\\frac{-(x-170)^{2}}{2}}-\\infty<x<\\infty \\] 2.7.2 Relaciones entre la función de distribución y la función de densidad. Para una variable continua, la relación entre las funciones de distribución y de densidad viene dada directamente a través de la definición. La función de distribución en un punto se obtiene integrando el valor de la función de densidad desde menos infinito hasta el punto en cuestión. Por ejemplo: \\[ F(x)=\\int_{-\\infty}^{x} f(t) d t \\] 2.7.2.1 Probabilidad de intervalos A partir de las funciones de densidad y de distribución, y teniendo en cuenta que \\(P(X=x)=0\\) para todo \\(x\\) real, es posible expresar las probabilidades para cualquier posible intervalo de valores de la variable. Por ejemplo: Intervalo \\(P(X \\leq a)=P(X<a)=F(a)=\\int_{-\\infty}^{a} f(x) d x\\) \\(P(X \\geq a)=P(X>a)=1-F(a)=\\int_{a}^{+\\infty} f(x) d x\\) \\(P(a<X \\leq b)=P(a<X<b)=P(a \\leq X \\leq b)=P(a \\leq X<b)\\) \\(=F(b)-F(a)=\\int^{b} f(x) d x\\) Fijémonos que la probabilidad de los intervalos se corresponde con el área bajo la función de densidad dentro del intervalo considerado. 2.8 Caracterización de una variable aleatoria a través de parámetros Hasta el momento hemos visto que toda variable aleatoria viene caracterizada a través de unas determinadas funciones matemáticas, las funciones de distribución y de densidad. Una vez caracterizada, y por tanto conocida, la distribución de una variable aleatoria, podemos obtener cualquier probabilidad asociada. En ocasiones podemos acotar más el problema y reducir el estudio de una variable aleatoria a determinar una serie de características numéricas asociadas con la distribución de la variable. Dichas características tienen como propiedad fundamental el hecho de resumir gran parte de las propiedades de la variable aleatoria y juegan un papel muy destacado en las técnicas estadísticas que desarrollaremos a lo largo del curso. Por ejemplo, supuesta la pertenencia de una variable aleatoria a una determinada familia de distribuciones de probabilidad, bien sea discreta o continua, los diferentes miembros de la familia diferirán en el valor de esas características numéricas. En este caso, denominaremos a tales características los parámetros de la distribución. Existe un buen número de tales características, pero nos centraremos en las dos más importantes: la esperanza y la varianza. La primera nos informa sobre la localización de los valores de la variable y la segunda, sobre el grado de dispersión de estos valores. 2.9 Esperanza de una variable aleatoria discreta La esperanza matemática de una variable aleatoria es una característica numérica que proporciona una idea de la localización de la variable aleatoria sobre la recta real. Decimos que es un parámetro de centralización o de localización. Su interpretación intuitiva o significado se corresponde con el valor medio teórico de los posibles valores que pueda tomar la variable aleatoria, o también con el centro de gravedad de los valores de la variable supuesto que cada valor tuviera una masa proporcional a la función de densidad en ellos. La definición matemática de la esperanza en el caso de las variables aleatorias discretas se corresponde directamente con las interpretaciones proporcionadas en el párrafo anterior. Efectivamente, supuesta una variable aleatoria discreta \\(X\\) con recorrido \\(\\left\\{x_{1}, x_{2}, \\ldots, x_{k}, \\ldots\\right\\}\\) y con función de densidad \\(f(x)\\), se define la esperanza matemática de \\(X\\) como el valor \\[ E(X)=\\sum_{x_{i} \\in X(\\Omega)} x_{i} f\\left(x_{i}\\right) \\] donde el sumatorio se efectúa para todo valor que pertenece al recorrido de \\(X\\). En caso de que el recorrido sea infinito la esperanza existe si la serie resultante es absolutamente convergente, condición que no siempre se cumple. La definición se corresponde con un promedio ponderado según su probabilidad de los valores del recorrido y, por tanto, se corresponde con la idea de un valor medio teórico. 2.10 Esperanza de una variable aleatoria continua La idea intuitiva que más nos puede ayudar en la definición de la esperanza matemática de una variable aleatoria continua es la idea del centro de gravedad de los valores de la variable, donde cada valor tiene una masa proporcional a la función de densidad en ellos. Dada una variable aleatoria absolutamente continua \\(X\\) con función de densidad \\(f(x)\\), se define la esperanza matemática de \\(X\\) como el valor \\[ E(X)=\\int_{-\\infty}^{+\\infty} x f(x) d x \\] suponiendo que la integral exista. 2.11 Propiedades de la esperanza matemática Esperanza de una función de una variable aleatoria Variable discreta \\[ E(h(X))=\\sum_{x_{i} \\in X(\\Omega)} h\\left(x_{i}\\right) f\\left(x_{i}\\right) \\] Variable continua \\[ E(h(X))=\\int_{-\\infty}^{+\\infty} h(x) f(x) d x \\] 2.11.1 Linealidad de la esperanza matemática \\(E(X+Y)=E(X)+E(Y)\\) \\(E(k \\cdot X)=k \\cdot E(X)\\) para todo número real \\(k\\). \\(E(k)=k\\) para todo número real \\(k\\). \\(E(a \\cdot X+b)=a \\cdot E(X)+b\\) para todo par de números reales \\(a\\) y \\(b\\). 2.11.2 Esperanza del producto \\(E(X \\cdot Y)=E(X) \\cdot E(Y)\\) únicamente en el caso de que \\(X\\) e \\(Y\\) sean variables aleatorias independientes. 2.12 Varianza de una variable aleatoria La varianza de una variable aleatoria es una característica numérica que proporciona una idea de la dispersión de la variable aleatoria respecto de su esperanza. Decimos que es un parámetro de dispersión. La definición es la siguiente: \\[ \\operatorname{Var}(X)=E\\left((X-E(X))^{2}\\right) \\] Es, por tanto, el promedio teórico de las desviaciones cuadráticas de los diferentes valores que puede tomar la variable respecto de su valor medio teórico o esperanza. En el caso de las variables discretas, la expresión se convierte en: \\[ \\operatorname{Var}(X)=\\sum_{x_{i} \\in X(\\Omega)}\\left(x_{i}-E(X)\\right)^{2} f\\left(x_{i}\\right) \\] mientras que para las variables continuas tenemos: \\[ \\operatorname{Var}(X)=\\int_{-\\infty}^{+\\infty}(x-E(X))^{2} f(x) d x \\] En ambos casos existe una expresión equivalente alternativa y generalmente de cálculo más fácil: \\[ \\operatorname{Var}(X)=E\\left(X^{2}\\right)-(E(X))^{2} \\] Una de las características de la varianza es que viene expresada en unidades cuadráticas respecto de las unidades originales de la variable. Un parámetro de dispersión derivado de la varianza y que tiene las mismas unidades de la variable aleatoria es la desviación típica, que se define como la raíz cuadrada de la varianza. \\[ \\sigma_{X}=\\sqrt{\\operatorname{Var}(X)}=\\sqrt{E\\left((X-E(X))^{2}\\right)} \\] 2.12.1 Propiedades de la varianza \\(\\operatorname{Var}(X) \\geq 0\\) \\(\\operatorname{Var}(k \\cdot X)=k^{2} \\cdot \\operatorname{Var}(X)\\) para todo numero real \\(k\\). \\(\\operatorname{Var}(k)=0\\) para todo numero real \\(k\\). \\(\\operatorname{Var}(a \\cdot X+b)=a^{2} \\cdot \\operatorname{Var}(X)\\) para todo par de números reales \\(a\\) i \\(b\\). \\(\\operatorname{Var}(X+Y)=\\operatorname{Var}(X)+\\operatorname{Var}(Y)\\) únicamente en el caso que \\(X\\) y \\(Y\\) sean independientes. 2.13 Momentos (de orden \\(k\\)) de una variable aleatoria Dada una variable aleatoria \\(X\\), definimos el momento de orden \\(k\\) como: \\[ m_{k}=E\\left(X^{k}\\right) \\] suponiendo que tal esperanza exista. Podemos ver que la esperanza es el momento de orden \\(1, E(X)=m_{1}\\). Definimos el momento central de orden \\(k\\) como: \\[ \\mu_{k}=E\\left((X-E(X))^{k}\\right) \\] Con la denominación anterior, la varianza es el momento central de orden \\(2, \\operatorname{Var}(X)=\\mu_{2}\\). Es posible también definir momentos mixtos de dos variables aleatorias. Dadas dos variables aleatorias \\(X\\) e \\(Y\\) definimos el momento mixto de orden \\((r, k)\\) como \\[ m_{r k}=E\\left(X^{r} \\cdot Y^{k}\\right) \\] y el momento mixto central de orden \\((r, k)\\) como \\[ \\left.\\mu_{r k}=E(X-E(X))^{r} \\cdot(Y-E(Y))^{k}\\right) \\] El momento mixto central más importante es el \\(\\mu_{11}\\), denominado la covarianza de \\(X\\) e \\(Y\\), y con una interpretación en el sentido de cuantificar el grado de dependencia entre dos variables aleatorias, puesto que si \\(X\\) e \\(Y\\) son independientes se verifica que \\(\\mu_{11}=0\\), mientras que si \\(\\mu_{11} \\neq 0\\) entonces las variables son dependientes. 2.14 Definición formal de variable aleatoria Tal como hemos comentado, la definición formal de variable aleatoria impone una restricción matemática en la formulación vista hasta el momento. Definiremos una variable aleatoria como una aplicación de \\(\\Omega\\) en el conjunto de números reales \\[ \\begin{aligned} X: \\Omega & \\rightarrow \\mathbb{R} \\\\ \\omega & \\rightarrow X(\\omega) \\end{aligned} \\] que verifique la propiedad siguiente \\[ \\forall x \\in \\mathbb{R} \\quad \\text { el conjunto } \\mathrm{A}=\\{a \\mid \\mathrm{X}(a) \\leq \\mathrm{x}\\} \\text { es un suceso observable } \\] es decir, para todo número real \\(x\\), el conjunto de resultados elementales tales que la variable aleatoria toma sobre ellos valores inferiores o iguales a \\(x\\) ha de ser un suceso sobre el cual podamos definir una probabilidad. Dicha propiedad recibe el nombre de medibilidad y por tanto podríamos decir que una variable aleatoria es una función medible de \\(\\Omega\\) en los reales. Esta condición nos asegura que podremos calcular sin problemas, probabilidades sobre intervalos de la recta real a partir de las probabilidades de los sucesos correspondientes. \\[ P(X \\leq x)=P\\{\\omega \\mid X(\\omega) \\leq x\\} \\] La expresión anterior se leería de la manera siguiente: La probabilidad de que la variable aleatoria tome valores inferiores o iguales a \\(x\\) es igual a la probabilidad del suceso formado por el conjunto de resultados elementales sobre los que el valor de la variable es menor o igual que \\(x\\). La probabilidad obtenida de esta manera se denomina probabilidad inducida. Se puede comprobar que, a partir de la condición requerida, se pueden obtener probabilidades sobre cualquier tipo de intervalo de la recta real. Por ejemplo: \\[ P(a<X \\leq b)=P(X \\leq b)-P(X \\leq a) \\] La condición exigida para ser variable aleatoria discreta ahora puede ser expresada como: \\[ \\forall k=1,2, \\ldots \\text { el conjunto } \\mathrm{A}=\\left\\{\\omega \\mid \\mathrm{X}(\\omega)=\\mathrm{x}_{\\mathrm{k}}\\right\\}=\\mathrm{X}^{-1}\\left(\\left\\{\\mathrm{x}_{\\mathrm{k}}\\right\\}\\right) \\text { es un suceso observable } \\] Toda variable aleatoria definida sobre un espacio de probabilidad finito es necesariamente discreta. La suma y el producto de variables aleatorias discretas, definido por: \\[ (X+Y)(w)=X(w)+Y(w) \\text { y }(X \\cdot Y)(w)=X(w) \\cdot Y(w) \\] es también una variable aleatoria discreta. 2.15 Caso práctico: Lanzamiento de dos dados 2.15.1 Espacio muestral Supongamos que estamos realizando un experimento consistente en el lanzamiento simultáneo de dos dados y en la observación del resultado obtenido. El conjunto de resultados posibles forma el espacio muestral \\(\\Omega\\) asociado a dicho experimento. Sus elementos serán como los que se muestran a continuación: En total, el espacio muestral estaría formado por 36 resultados posibles que, en principio y suponiendo los dados regulares, son todos ellos equiprobables con probabilidad \\(1 / 36\\). Nótese que consideramos diferentes resultados del tipo: un uno en el primer dado y un dos en el segundo o un dos en el primer dado y un uno en el segundo. Una vez fijados los enunciados anteriores, es fácil asignar probabilidades a diferentes sucesos observables, por ejemplo: Suceso Probabilidad Que aparezcan dos cifras iguales \\(6 \\cdot 1 / 36=1 / 6\\) Que la suma sea 10 \\(3 \\cdot 1 / 36=1 / 12\\) No entramos en detalles de la obtención de las probabilidades dado que se ha estudiado suficientemente en el tema anterior. 2.15.2 Representación numérica Continuando con el experimento anterior, podemos representar los resultados obtenidos al lanzar dos dados por valores numéricos. ¿Cómo hacerlo? Definiendo una regla de asignación numérica para cada resultado. Una posible regla sería, por ejemplo, asignar a cada resultado la suma de puntos de las caras. Este enunciado nos define una variable que representa cada suceso elemental por un valor numérico. Los 36 posibles resultados del experimento se transforman en 11 posibles valores numéricos para la variable: \\(2,3,4,5,6,7,8,9,10,11\\) y 12 . Este conjunto de valores forman el recorrido de la variable suma de puntos de las caras. A partir de las probabilidades definidas sobre los sucesos observables es fácil extender las probabilidades a los diferentes resultados de la variable. Por ejemplo, la probabilidad de que la variable tome el valor 10 es equivalente a la probabilidad del suceso observable que la suma sea 10 , calculada anteriormente e igual a \\(1 / 12\\). La variable considerada hasta el momento es sólo una de las múltiples variables que podríamos definir sobre el mismo experimento. Por ejemplo, podemos estar interesados no en la suma de puntos sino en el punto más bajo de cada tirada, de forma que podríamos construir una nueva variable a partir del enunciado o regla de asignación asignar a cada resultado el menor de los puntos de las dos caras. Tenemos una nueva variable sobre el mismo espacio anterior. El recorrido, en este caso, está formado por los valores: \\(1,2,3,4,5\\) y 6 . Las dos variables estudiadas y otras muchas que se podrían definir sobre este experimento son ejemplos absolutamente equivalentes desde el punto de vista formal. 2.15.3 Algunas probabilidades En el ejemplo de los dados vamos a centrarnos en la variable aleatoria \\[ X=\\text { Suma de puntos de las caras } \\] El recorrido de la variable está formado por los números \\(\\{2,3,4,5,6,7,8,9,10,11\\) i 12\\(\\}\\). Vamos a calcular algunas probabilidades: \\(P(X \\leq 1)=P\\{\\varnothing\\}=0\\) (Ningún resultado tiene asignado un valor menor o igual a 1) \\(P(X \\leq 2)=P\\{(1,1)\\}=1/36\\) (Sólo hay un caso al que se le asigne un valor inferior o igual a 2). \\(P(X \\leq 3.5)=P\\{(1,1), (1,2), (2,1)\\}=3/36\\) (Tres resultados elementales tienen asignado un valor menor o igual a 3.5) Ahora podéis intentar calcular por vosotros mismos algunas probabilidades: (a) \\(P(X \\leq 6)\\) (b) \\(P(X \\leq 8,2)\\); (c) \\(P(X \\leq 12)\\); (d) \\(P(X \\leq 20)\\) i (e) \\(P(2,2<X \\leq 7)\\) 2.15.4 Función de distribución Para calcular la función de distribución de la variable X \\(=\\) Suma de puntos de las caras : necesitamos conocer el recorrido de la variable, que es: \\(\\{2,3,4,5,6,7,8,9,10,11, 12\\}\\) y, utilizando este recorrido como pauta, determinar para todo punto \\(x\\) de la recta real la probabilidad \\(P(X \\leq x)\\). En nuestro ejemplo: \\[ F(x)=P(X \\leq x)= \\begin{cases}0 & x<2 \\\\ 1 / 36 & 2 \\leq x<3 \\\\ 3 / 36 & 3 \\leq x<4 \\\\ 6 / 36 & 4 \\leq x<5 \\\\ 10 / 36 & 5 \\leq x<6 \\\\ 15 / 36 & 6 \\leq x<7 \\\\ 21 / 36 & 7 \\leq x<8 \\\\ 26 / 36 & 8 \\leq x<9 \\\\ 30 / 36 & 9 \\leq x<10 \\\\ 33 / 36 & 10 \\leq x<11 \\\\ 35 / 36 & 11 \\leq x<12 \\\\ 36 / 36=1 & x \\geq 12\\end{cases} \\] Acabamos de construir la función de distribución de la variable suma de la puntuación al lanzar dos dados. Vamos a ver su representación gráfica: Ejercicio : Haced lo mismo para la variable aleatoria el menor de los puntos de las dos caras al lanzar dos dados. 2.15.5 Clasificación de las variables En el experimento que estamos considerando, lanzar simultáneamente dos dados, cualquiera de las dos variables aleatorias que hemos considerado hasta el momento: \\[ X=\\text {Suma los puntos de las dos caras } \\] \\[ Y=\\text { El menor de los puntos de las dos caras } \\] se clasifican dentro del tipo de variables aleatorias discretas, puesto que en ambos casos el recorrido es finito: \\(\\{2,3,4,5,6,7,8,9,10,11, 12\\}\\) para la variable \\(X\\) y \\(\\{1,2,3,4,5, 6\\}\\) para la variable \\(Y\\). También son discretas aquellas variables aleatorias con recorrido infinito numerable. Ejercicio: ¿Sabríais construir una variable aleatoria discreta con recorrido infinito numerable basada en el experimento que consiste en el lanzamiento de dos dados? 2.15.6 Función de densidad discreta Para calcular la función de densidad de la variable \\[ X=\\text { suma de puntos de las caras } \\] necesitamos conocer el recorrido de la variable, es decir: \\(\\{2,3,4,5,6,7,8,9,10,11, 12\\}\\) y, a partir del recorrido, determinar para todo punto del recorrido la probabilidad \\(P(X=x)\\). En nuestro ejemplo \\[ f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases} \\] Acabamos de construir la función de densidad de la variable suma de la puntuación al lanzar dos dados. Vamos a ver su representación gráfica: Hemos optado por la representación con barras en lugar de puntos para permitir una visualización de la función óptima. Ejercicio: Haced lo mismo para la variable aleatoria el menor de los puntos de las dos caras al lanzar dos dados. 2.15.7 Probabilidad de intervalos Vamos a centrarnos en la variable \\[ X=\\text { Suma de puntos de las caras } \\] Las funciones de distribución y de densidad son, respectivamente, \\[ F(x)=P(X \\leq x)=\\left\\{\\begin{array}{ll} 0 & x<2 \\\\ 1 / 36 & 2 \\leq x<3 \\\\ 3 / 36 & 3 \\leq x<4 \\\\ 6 / 36 & 4 \\leq x<5 \\\\ 10 / 36 & 5 \\leq x<6 \\\\ 15 / 36 & 6 \\leq x<7 \\\\ 21 / 36 & 7 \\leq x<8 \\\\ 26 / 36 & 8 \\leq x<9 \\\\ 30 / 36 & 9 \\leq x<10 \\\\ 33 / 36 & 10 \\leq x<11 \\\\ 35 / 36 & 11 \\leq x<12 \\\\ 36 / 36=1 & x \\geq 12 \\end{array} \\quad f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases}\\right. \\] Puede observarse cómo los valores de la función de distribución se obtienen acumulando los valores de la función de densidad correspondientes. Vamos a calcular algunas probabilidades utilizando las funciones anteriores. Compárese con los resultados obtenidos con anterioridad basados directamente en los resultados elementales. \\(P(X \\leq 1)=F(1)=0\\) \\(P(X \\leq 3,5)=F(3,5)=3 / 36=f(2)+f(3)\\) \\(P(X<6)=F(6)-f(6)=15 / 36-5 / 36=10 / 36=f(2)+f(3)+f(4)+f(5)\\) \\(P(2,2<X \\leq 7)=F(7)-F(2,2)=21 / 36-1 / 36=20 / 36=f(3)+f(4)+f(5)+f(6)+f(7)\\) \\(P(2<X<7)=F(7)-f(7)-F(2)=21 / 36-6 / 36-1 / 36=14 / 36=f(3)+f(4)+f(5)+f(6)\\) 2.15.8 Esperanza Supongamos que estamos interesados en determinar cual sería el valor medio teórico de la variable \\[ X=\\text { Suma de puntos de las caras } \\] La función de densidad es: \\[ f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases} \\] La misma función de densidad nos da información sobre el recorrido de la variable. Calcular el valor medio teórico de la variable quiere decir calcular la esperanza. A partir de la fórmula de la esperanza para variables discretas, tenemos \\[ \\begin{aligned} E(X) &=2 \\cdot 1 / 36+3 \\cdot 2 / 36+4 \\cdot 3 / 36+5 \\cdot 4 / 36+6 \\cdot 5 / 36+\\\\ & + 7 \\cdot 6 / 36+8 \\cdot 5 / 36+9 \\cdot 4 / 36+\\\\ &+ 10 \\cdot 3 / 36+ 11 \\cdot 2 / 36+12 \\cdot 1 / 36=\\\\ & =7 \\end{aligned} \\] Por tanto, 7 es la esperanza de la variable \\(X=\\) Suma de puntos de las caras. Fijaos que la esperanza para la variable Puntuación de un dado sería \\[ 1 \\cdot 1 / 6+2 \\cdot 1 / 6+3 \\cdot 1 / 6+4 \\cdot 1 / 6+5 \\cdot 1 / 6+6 \\cdot 1 / 6=3,5 \\] y que se puede considerar la variable Suma de puntos de las dos caras como la suma de dos variables que representen la puntuación de cada dado. La esperanza de la suma es, efectivamente, la suma de las esperanzas de cada variable sumada. En la aplicación siguiente, podéis calcular la esperanza de la variable Puntuación de un dado y modificar las probabilidades de las diferentes caras, de este modo se modifica la esperanza. Ejercicio: ¿Podríais hacer lo mismo para la variable \\(X=\\) El menor de los puntos de las dos caras al lanzar dos dados? 2.15.9 Esperanza de un juego Imaginemos que alguien os propone el juego siguiente: lanzad dos dados, si la suma obtenida es menor o igual a 6 ganáis 100 euros, sin embargo, si la suma obtenida es mayor que 6 tenéis que pagar 100 euros. ¿Nos conviene jugar a este juego? Veamos, podemos considerar el resultado del juego como una variable aleatoria discreta que toma dos valores: +100 si ganamos y -100 si perdemos. Nos interesa conocer las probabilidades de los diferentes resultados. Consideremos la variable \\(X=\\) Suma de puntos de las caras, cuya función de densidad conocemos: \\[ f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases} \\] A partir de aquí es fácil ver que la función de densidad de la variable \\(Y=\\) Resultado del juego será la siguiente: \\[ f(100)=15 / 36 ; f(-100)=21 / 36 \\] Por tanto, la esperanza del juego, que puede ser interpretada como la ganancia media por jugada, será \\[ E(Y)=100 \\cdot 15 / 36-100 \\cdot 21 / 36=-100 / 6 \\approx-16,667 \\] Es decir, la ganancia media por jugada es negativa, por tanto no es favorable dicho juego para el jugador, es un juego no equitativo. 2.15.10 Esperanza con recorrido infinito Vamos a tratar de calcular la esperanza de la siguiente variable aleatoria: \\(X=\\) Número de lanzamientos que hemos de hacer para conseguir que aparezca un doble seis La variable que acabamos de definir es una variable discreta con recorrido infinito numerable. El recorrido sería el siguiente: \\[ \\{1,2,3,4, \\ldots\\} \\] Vamos a ver como calculamos la función de densidad: \\(P(X=1)=\\) Probabilidad de que aparezca un doble seis en el primer lanzamiento \\(=1 / 36\\) \\(P(X=2)=\\) Probabilidad de que el doble seis no aparezca en el primer lanzamiento y sí en el segundo = \\(35 / 36 \\cdot 1 / 36=35 / 36^{2}\\) \\(P(X=3)=\\) Probabilidad de que el doble seis no aparezca ni en el primer ni en el segundo lanzamientos y sí en el tercero \\(=35 / 36 \\cdot 35 / 361 / 36=35^{2} / 36^{3}\\) En general, \\(P(X=k)=35^{k-1} / 36^{k}\\) Para simplificar, vamos a llamar \\(p=1 / 36\\) y \\(q=1-p=35 / 36\\), con esta nomenclatura \\(P(X=\\mathrm{k})=q^{k-1} p\\). Por tanto, la esperanza será: \\[ \\begin{aligned} E(X)& =\\sum_{i=1}^{\\infty} i q^{i-1} p=p \\sum_{i=1}^{\\infty} i q^{i-1}=p \\frac{d}{d q} \\sum_{i=1}^{\\infty} q^{i}= \\\\ &= p \\frac{d}{d q}\\left(\\frac{q}{1-q}\\right)=p \\frac{1}{(1-q)^{2}}=\\\\ & = \\frac{1}{p} \\end{aligned} \\] En nuestro ejemplo el número medio de tiradas antes de salir un doble seis será 36 . 2.15.11 Esperanza infinita Ahora calcularemos la esperanza del juego siguiente: lanzamos un dado hasta que aparece un número par, el jugador gana \\(2^{n}\\) unidades monetarias si aparece un número par por primera vez en la tirada nésima. El recorrido de la variable aleatoria \\(X=\\) Ganancia del juego, está formado por todos los números de la forma \\(2^{n}\\) con \\(n=1,2,3, \\ldots\\) La probabilidad de cada valor del recorrido es la probabilidad de que aparezca un número par por primera vez en la tirada nésima, es decir \\((1 / 2)^{n-1} \\cdot(1 / 2)=(1 / 2)^{n}\\). Por tanto, la esperanza del juego es la siguiente: \\[ E(X)=\\sum_{n=1}^{\\infty} 2^{n}(1 / 2)^{n}=\\sum_{n=1}^{\\infty} 1=\\infty \\] Como vemos, la variable aleatoria \\(X\\) no tiene esperanza finita. El enunciado presentado es una versión del problema presentado alrededor de 1730 por el matemático Daniel Bernouilli a la Academia de San Petersburgo y conocido como la paradoja de San Petersburgo, dado que la esperanza del juego es aparentemente infinita. 2.15.12 Varianza Si ahora queremos calcular la varianza de la variable \\[ X=\\text { Suma de puntos de las caras } \\] con función de densidad: \\[ f(x)=P(X=x)= \\begin{cases}1 / 36 & x=2 \\\\ 2 / 36 & x=3 \\\\ 3 / 36 & x=4 \\\\ 4 / 36 & x=5 \\\\ 5 / 36 & x=6 \\\\ 6 / 36 & x=7 \\\\ 5 / 36 & x=8 \\\\ 4 / 36 & x=9 \\\\ 3 / 36 & x=10 \\\\ 2 / 36 & x=11 \\\\ 1 / 36 & x=12\\end{cases} \\] Podemos aplicar la fórmula \\[ \\operatorname{Var}(X)=E\\left(X^{2}\\right)-(E(X))^{2} \\] La esperanza ya la tenemos calculada con anterioridad \\[ \\begin{aligned} E(X) & =2 \\cdot 1 / 36+3 \\cdot 2 / 36+4 \\cdot 3 / 36+5 \\cdot 4 / 36+\\\\ & +6 \\cdot 5 / 36+7 \\cdot 6 / 36+8 \\cdot 5 / 36+9 \\cdot 4 / 36+\\\\ & +10 \\cdot 3 / 36+ 11 \\cdot 2 / 36+12 \\cdot 1 / 36=\\\\ & =7 \\end{aligned} \\] Necesitamos calcular la esperanza de la variable al cuadrado, que en este caso resulta: \\[ \\begin{aligned} E\\left(X^{2}\\right)& =2^{2} \\cdot 1 / 36+3^{2} \\cdot 2 / 36+4^{2} \\cdot 3 / 36+5^{2} \\cdot 4 / 36+6^{2} \\cdot 5 / 36+\\\\ & + 7^{2} \\cdot 6 / 36+8^{2} \\cdot 5 / 36+9^{2} \\cdot 4 / 36+ 10^{2} \\cdot 3 / 36+\\\\ & + 11^{2} \\cdot 2 / 36+12^{2} \\cdot 1 / 36=329 / 6 \\\\ &\\approx 54,833 \\end{aligned} \\] Con lo que la varianza resulta ser \\[ \\operatorname{Var}(X)=329 / 6-7^{2}=35 / 6 \\approx 5,833 \\] Nuevamente, para la variable Puntuación de un dado, la varianza se obtendría de la manera siguiente: \\[ \\begin{aligned} E(X)& =1 \\cdot 1 / 6+2 \\cdot 1 / 6+3 \\cdot 1 / 6+4 \\cdot 1 / 6+5 \\cdot 1 / 6+6 \\cdot 1 / 6= \\\\& =3,5\\\\ E \\left(X^{2}\\right)&=1^{2} \\cdot 1 / 6+2^{2} \\cdot 1 / 6+3^{2} \\cdot 1 / 6+4^{2} \\cdot 1 / 6+\\\\ & + 5^{2} \\cdot 1 / 6+6^{2} \\cdot 1 / 6=91 / 6\\\\ & \\approx 15,167 \\\\ \\operatorname{Var}(X)&=91 / 6-3,5^{2}=35 / 12 \\approx 2,9167 \\end{aligned} \\] y se cumple que la varianza de la variable Suma de puntos de las dos caras es la suma de las varianzas de las puntuaciones de cada dado por separado. Recordemos que esto sólo sucede si las variables sumadas son independientes, como así ocurre con las puntuaciones de cada dado por separado. "],["distribuciones-notables.html", "Capítulo 3 Distribuciones Notables 3.1 Distribuciones discretas 3.2 Distribuciones Continuas 3.3 Distribuciones con R (y Python) 3.4 La familia exponencial de distribuciones", " Capítulo 3 Distribuciones Notables 3.1 Distribuciones discretas 3.1.1 La distribución de Bernouilli Es el modelo discreto más sencillo en que podamos pensar. Hace referencia a situaciones en las que el resultado de un experimento sólo puede ser: se ha dado el suceso \\(A\\) ó no se ha dado el suceso \\(A\\). Por ejemplo, en el lanzamiento de una moneda sólo puede darse el suceso sale cara o su complementario no sale cara (sale cruz). Por lo tanto, definimos la variable aleatoria \\(X\\) de la siguiente manera: \\(X=1\\) si se ha dado \\(A\\). \\(X=0\\) si no se ha dado \\(A\\), es decir, se ha dado el complementario \\(A^{c}\\). Si además, conocemos la probabilidad de que suceda \\(A\\) : \\[ P[A]=p \\] y, por tanto, \\[ P\\left[A^{c}\\right]=1-p \\] ya podemos definir la distribución de la variable aleatoria \\(X\\). En estas condiciones diremos que \\(X\\) sigue una distribución de Bernouilli de parámetro \\(p\\), que abreviaremos así \\(X \\sim \\operatorname{Bernouilli}(p)\\), y su función de densidad se define así: \\[ f(k)=P[X=k]=\\left\\{\\begin{array}{cc} p & \\text { si } k=1(\\text { se ha dado } A) \\\\ 1-p & \\text { si } k=0\\left(\\text { se ha dado } A^{c}\\right) \\end{array}\\right\\} \\] Gráficamente: Mientras que la función de distribución será: \\[ F(k)=P[X \\leq k]=\\left\\{\\begin{array}{lc} 0 & \\text { si } \\mathbf{k}<0 \\\\ \\mathbf{p} & \\text { si } 0 \\leq \\mathbf{k}<1 \\\\ 1 & \\text { si } \\mathbf{p} \\geq 1 \\end{array}\\right\\} \\] Gráficamente: 3.1.1.1 Propiedades del modelo de Bernouilli La esperanza vale \\(E(X)=p\\). La varianza vale \\(V(X)=p(1-p)\\). 3.1.2 La distribución Binomial Al igual que el modelo de Bernouilli, hace referencia a experiencias con resultados dicotómicos (el resultado sólo puede ser \\(A\\) o \\(A^{\\mathcal{C}}\\) ). Sin embargo en este modelo estamos interesados en la repetición de \\(n\\) veces una experiencia de este tipo en condiciones independientes. Tomemos el ejemplo del contaje del número de caras en el lanzamiento \\(n\\) veces de una moneda regular. Para concretar, vamos a suponer que disponemos de una moneda regular \\((P[\\) cara \\(]=P[c r u z]=1 / 2)\\) que lanzamos cuatro veces. Es evidente que, en estas condiciones, la variable X: número de caras en cuatro lanzamientos independientes de una moneda regular es una variable aleatoria discreta que sólo puede tomar cinco posibles valores: \\[ x=0,1,2,3,4 \\] Pasemos ahora a calcular la probabilidad de cada valor (en terminología estadística, vamos a calcular la función de densidad de la variable \\(X\\) ). Es evidente que la \\(P[X=0]\\) es igual a la probabilidad de salgan cuatro cruces seguidas: \\[ P[X=0]=P[c r u z, c r u z, c r u z, c r u z]=\\mathrm{P}[c r u z]^{4}=(1 / 2)^{4}=0,0625 \\] ya que la moneda es regular y, por tanto, \\(P[\\) cara \\(]=P[\\) cruz \\(]=1 / 2\\). La \\(P[X=3]\\) corresponde al suceso de que salgan tres caras ( \\(c\\) en adelante) y una cruz ( + en adelante). Sin embargo, en este caso tenemos hasta cuatro posibles maneras de obtener dicho resultado, según el orden en que aparezcan las tres caras y la cruz: +ccc \\(\\mathrm{c}+\\mathrm{cc}\\) \\(\\mathrm{cc}+\\mathrm{c}\\) \\(\\mathrm{ccc}+\\) También debería resultar evidente que la probabilidad de cada uno de estos sucesos es la misma: \\[ P[+\\mathrm{ccc}]=P[\\mathrm{c}+\\mathrm{cc}]=P[\\mathrm{cc}+\\mathrm{c}]=P[\\mathrm{ccc}+]=(1 / 2)^{4}=(1 / 2)^{4}=0,0625 \\] de manera que, finalmente, la probabilidad de que salgan tres caras y una cruz es la suma de las probabilidades de los 4 casos anteriores: \\[ P[X=3]=4(1 / 2)^{4}=0,25 \\] Y así podríamos ir calculando el resto de casos. Podemos ver que, en este ejemplo, todos los casos tienen la misma probabilidad \\((0,0625)\\) y que el número total de casos posibles es 16 . En términos de combinatoria dicho número se obtendría como variaciones con repetición de dos valores (cara o cruz) tomados de cuatro en cuatro (el número de lanzamientos de la moneda): \\[ V R_{2}{ }^{4}=2^{4}=16 \\] En la siguiente tabla se muestran los dieciséis posibles resultados: \\(k=\\) número de caras Casos 0 +++++ 1 +++c \\(++\\mathrm{c}+\\) \\(+\\mathrm{c}++\\) \\(\\mathrm{c}+++\\) ++cc \\(+\\mathrm{c}+\\mathrm{c}\\) \\(\\mathrm{c}++\\mathrm{c}+\\) \\(\\mathrm{c}+\\mathrm{c}+\\) cc++ \\(\\mathrm{ccc}+\\) \\(\\mathrm{c}+\\mathrm{cc}\\) Si hacemos uso de nuestros conocimientos de combinatoria, comprobamos que el número de casos para cada posible valor \\(k(k=0,1,2,3,4)\\) puede calcularse como permutaciones con repetición de cuatro elementos tomado de \\(k\\) y \\(4-k\\) : \\[ R P_{4}^{k, 4-k}=\\frac{4!}{k!(4-k)!}=\\binom{4}{k} \\] y obtenemos finalmente el número combinatorio 4 sobre \\(k\\). En efecto, para el caso \\(k=3\\), tendríamos: \\[ \\binom{4}{3}=\\frac{4!}{3!1!}=4 \\] que son los cuatro posibles casos que nos dan tres caras y una cruz. Finalmente, recordando que todos los casos tienen la misma probabilidad, se construye la siguiente tabla: \\(k=\\) número de caras Número de casos \\(P[X=k]\\) 0 1 0,0625 1 4 0,2500 2 6 0,3750 3 4 0,2500 4 1 0,0625 Total 16 1 3.1.2.1 Los parámetros de la distribución Binomial La última tabla de la página anterior es, justamente, la función de densidad de nuestra variable \\(X\\). Función de densidad de \\(X\\) \\(k\\) \\(P[X=k]\\) 0 0,0625 1 0,2500 2 0,3750 3 0,2500 4 0,0625 En otro caso 0 Como hemos visto, para obtener los resultados anteriores, hemos tenido que definir dos valores: \\(n\\) : el número de lanzamientos (repeticiones de la experiencia aleatoria en condiciones independientes), en nuestro caso \\(n=4\\). \\(p\\) : la probabilidad de que salga cara \\((P[c])\\), en nuestro caso \\(p=1 / 2\\). Se dice, por tanto, que la distribución Binomial depende de dos parámetros: \\(n\\) y \\(p\\). En nuestro ejemplo, diremos que \\(X\\) sigue una distribución Binomial de parámetros \\(n=4\\) i \\(p=1 / 2\\). De forma abreviada: \\[ X \\sim B(n=4 ; p=1 / 2) \\] En el ejemplo que hemos visto, suponíamos que la moneda era regular y, por tanto, \\[ P[c]=P[+]=1 / 2 \\] Si tenemos una moneda trucada con las siguientes probabilidades: \\[ P[c]=2 / 3 \\quad \\text { i } \\quad P[+]=1 / 3 \\] diremos que en este caso la variable \\(X\\) : número de caras en cuatro lanzamientos independientes de nuestra moneda trucada sigue una distribución Binomial de parámetros: \\[ X \\sim B(n=4 ; p=2 / 3) \\] El problema se nos complica levemente ya que ahora no todos los posibles resultados tienen la misma probabilidad. Veamos dos ejemplos: La probabilidad de obtener cuatro caras es: \\[ P[c c c c]=(2 / 3)^{4}=0,1975 \\] La probabilidad de que el primer lanzamiento sea cara y el resto sean cruces valdrá: \\[ P\\left[c^{+++}\\right]=(2 / 3)^{\\prime}(1 / 3)^{3}=0,0247 \\] Sin embargo sí se cumplirá que la probabilidad de que todos los caso que resulten en el mismo número de caras y cruces tendrán la misma probabilidad. Por ejemplo, para los cuatro casos en los que el número total de caras es 1 y el de cruces 3 : \\[ P[c+++]=P[+c++]=P[++c+]=P[+++c]=(2 / 3)^{\\prime}(1 / 3)^{3}=0,0247 \\] Y, por tanto, la probabilidad de obtener una sola cara en el lanzamiento de nuestra moneda trucada será: \\[ P[X=1]=4^{\\prime} 0,0247=0,0988 \\] O, generalizando, si \\(P[A]=p\\) y \\(P\\left[A^{c}\\right]=1-p\\) tenemos que \\[ P[X=k]=c(n, k) p^{k}(1-\\mathrm{p})^{n-k} \\quad \\text { si } k=0,1, \\ldots, n \\] donde \\(c(n, k)\\) representa el número de posibles resultados en los que obtenemos \\(k\\) caras y \\(n-k\\) cruces en \\(n\\) lanzamientos. Tal como hemos visto, dicho número se puede calcular como permutaciones con repetición de \\(n\\) unidades tomadas de \\(k\\) y \\(n-k\\). Todo lo anterior nos lleva a formular el model binoial a traves de la siguiente función de densidad: \\[ f(k)=P[X=k]=\\left\\{\\begin{array}{ll} \\binom{\\mathbf{n}}{\\mathbf{k}} p^{k}(1-p)^{n-k} & \\text { si } \\quad k=0, \\ldots, n \\\\ 0 & \\text { en caso contrario } \\end{array}\\right\\} \\] con lo que la función de distribución se calcularía: \\[ F(k)=P[X \\leq k]=\\left\\{\\begin{array}{cc} 0 & \\text { si } k<0 \\\\ \\sum_{i=0}^{k}\\binom{\\mathbf{i}}{\\mathbf{n}} p^{i}(\\mathbf{1}-p)^{n-i} \\\\ \\mathbf{1} & \\text { si } k \\geq n \\end{array}\\right\\} \\] 3.1.2.2 Propiedades del modelo Binomial La esperanza vale \\(E(X)=n p\\). La varianza es \\(V(X)=n p(1-p)\\). Es una generalización del modelo de Bernouilli. En efecto, la Binomial con \\(n=1\\) (una sola realización) coincide con la distribución de Bernouilli. La suma de dos variables aleatorias binomiales independientes con igual parámetro \\(p\\) también sigue una distribución Binomial: \\[ X_{1} \\sim B\\left(n=n_{1} ; p=p_{0}\\right) \\quad \\text { i } \\quad X_{2} \\sim B\\left(n=n_{2} ; p=p_{0}\\right) \\] Si definimos \\(Z=X_{1}+X_{2}\\) entonces, \\[ Z \\sim B\\left(n=n_{1}+n_{2} ; p=p_{0}\\right) \\] 3.1.3 La distribución de Poisson Se trata de un modelo discreto, pero en el que el conjunto de valores con probabilidad no nula no es finito, sino numerable. Se dice que una variable aleatoria \\(X\\) sigue la distribución de Poisson si su función de densidad viene dada por: \\[ f(k)=P[X=k]=\\left\\{\\begin{array}{ll} e^{-\\lambda \\frac{\\lambda^{k}}{k!}} & \\text { si } k=0,12, \\ldots \\\\ 0 & \\text { en caso contrario } \\end{array}\\right\\} \\] Como vemos, este modelo se caracteriza por un sólo parámetro \\(\\lambda\\), que debe ser positivo. Esta distribución suele utilizarse para contajes del tipo número de individuos por unidad de tiempo, de espacio, etc. 3.1.3.1 Propiedades del modelo de Poisson Esperanza: \\(E(X)=\\lambda\\). Varianza: \\(V(X)=\\lambda\\). En esta distribución la esperanza y la varianza coinciden. La suma de dos variables aleatorias independientes con distribución de Poisson resulta en una nueva variable aleatoria, también con distribución de Poisson, de parámetro igual a la suma de parámetros: \\[ X_{1} \\sim P\\left(\\lambda=\\lambda_{1}\\right) \\quad \\text { y } \\quad X_{2} \\sim P\\left(\\lambda=\\lambda_{2}\\right) \\] y definimos \\(Z=X_{1}+X_{2}\\), entonces, \\[ Z \\sim P\\left(\\lambda=\\lambda_{1}+\\lambda_{2}\\right) \\] Este resultado se extiende inmediatamente al caso de \\(n\\) variables aleatorias independientes con distribución de Poisson. En este caso, la variable suma de todas ellas sigue una distribución de Poisson de parámetro igual a la suma de los parámetros. 3.1.4 La distribución Uniforme discreta Tenemos esta distribución cuando el resultado de una experiencia aleatoria puede ser un conjunto finito de \\(n\\) posibles resultados, todos ellos igualmente probables. Un ejemplo puede ser la variable \\(X\\), puntuación en el lanzamiento de un dado regular. Esta variable toma seis valores posibles, todos con la misma probabilidad \\(p=1 / 6\\). La función de densidad de esta variable será: \\[ f(k)=P[X=k]=1 / 6 \\quad k=1,2,3,4,5,6 \\] En general, si la variable \\(X\\) puede tomar \\(n(k=1,2, \\ldots, n)\\) valores, todos con igual probabilidad, su función de densidad será: \\[ f(k)=P[X=k]=1 / n \\quad k=1,2, \\ldots, n \\] 3.1.4.1 Propiedades del modelo Uniforme discreto Sea \\(n\\) el número de valores equiprobables posibles: 3.1.4.2 Esperanza: \\[ E(X)=\\frac{n+1}{2} \\] 3.1.4.3 Varianza: \\[ V(X)=\\frac{(n+1)[2(2 n+1)-3(n+1)]}{12} \\] 3.1.5 La distribución Hipergeométrica Este modelo presenta similitudes con el Binomial, pero sin la suposición de independencia de éste último. Veámoslo: Partimos de un conjunto formado por \\(N\\) individuos divididos en dos categorías mutuamente excluyentes: \\(A\\) y \\(A^{c}\\); de manera que \\(N_{1}\\) individuos pertenecen a la categoría \\(A\\) y \\(N_{2}\\) individuos, a la categoría \\(A^{c}\\). Por tanto, se cumple que \\[ N=N_{1}+N_{2} \\] Si del conjunto anterior extraemos \\(n\\) individuos sin reemplazamiento \\((n \\leq N)\\), la variable \\(X\\) que representa el número k de individuos que pertenecen a la categoría A (de los n extraídos) tiene por función de densidad: \\[ f(k)=P[X=k]=\\frac{\\binom{\\mathbf{N}_{1}}{\\mathbf{k}}\\binom{\\mathrm{N}_{2}}{\\mathbf{n}-\\mathbf{k}}}{\\binom{\\mathbf{N}}{\\mathbf{n}}} \\] si \\(\\operatorname{max}\\left\\{0, \\mathrm{n}-N_{2}\\right\\} \\leq \\mathrm{k} \\leq \\min \\left\\{N_{1}, n\\right\\}\\) La dependencia se debe al hecho de que \\(N\\) es finito y las extracciones se efectúan sin reemplazamiento. El caso de extracciones con reemplazamiento sería equivalente al de \\(N\\) infinito y se resolvería mediante el modelo Binomial. 3.1.5.1 Propiedades del modelo hipergeométrico Esperanza: \\(\\mathrm{E}(\\mathrm{X})=\\mathrm{n} \\mathrm{N}_{1} / \\mathrm{N}_{2}\\). Varianza: \\(V(X)=\\left(n N_{1} N_{2}(N-n)\\right) /\\left(N_{2}(N-1)\\right)\\) 3.1.6 La distribución Geométrica o de Pascal Definamos una experiencia aleatoria cuyo resultado sólo puede ser el suceso \\(A\\) o su complementario \\(A^{c}\\), y que se repite secuencialmente hasta que aparece el suceso \\(A\\) por primera vez. Definamos la variable aleatoria \\(X\\) como el número de veces que repetimos la experiencia en condiciones independientes hasta que se dé A por primera vez. Bajo estas condiciones, decimos que la variable \\(X\\) sigue una distribución geométrica o de Pascal de parámetro \\(p=P(A)\\). La función de densidad puede deducirse fácilmente de la definición: \\[ f(k)=P[X=k]=(1-p)^{k} p \\quad k=0,1,2, \\ldots \\] En el programa siguiente podéis ver su forma y obtener los valores de la función de densidad y de la de distribución: Algunas puntualizaciones de la definición de \\(X\\) : Notése que, en esta definición, condiciones independientes significa que \\(p\\), la probabilidad de \\(A\\), y \\(1-p\\), la de su complementario \\(A^{c}\\), no varían a lo largo de las sucesivas repeticiones de la experiencia. Tal y como la hemos definido, \\(X\\) se refiere al número de lanzamientos hasta que se produce \\(A\\), pero sin contabilizar el último caso en que se da \\(A\\). Por dicha razón \\(X\\) puede tomar los valores \\(k=\\) \\(0,1,2, \\ldots\\) con probabilidad no nula. Un ejemplo de este modelo podría ser la experiencia consistente en lanzar sucesivamente un dado regular hasta que aparezca el número 6 . Si definimos la variable aleatoria \\(X\\) como el número de lanzamientos de un dado regular hasta que aparezca un 6 , queda claro que \\(X\\) sigue una distribución geométrica de parámetro \\(p=1 / 6\\). 3.1.6.1 Propiedades del modelo Geométrico o de Pascal Esperanza: \\(E(X)=(1-p) / p\\) Varianza: \\(V(X)=(1-p) / p^{2}\\) 3.1.6.2 Preguntas: ¿A que suceso nos referimos cuando decimos \\(X=0\\) ? Respuesta. Cuando decimos que \\(X=0\\) nos referimos al caso en que el 6 aparece en el primer lanzamiento. La probabilidad de que esto suceda, suponiendo un dado regular, es de \\(1 / 6\\) : \\[ P[X=0]=1 / 6 \\] ¿Cuál es la probabilidad de que el primer 6 aparezca en el cuarto lanzamiento? Respuesta. La probabilidad de que el primer 6 aparezca en el cuarto lanzamiento corresponde a: \\[ P[X=3]=(5 / 6)^{3 \\cdot} 1 / 6=0,0965 \\] Fijémonos en que, si definimos \\(A\\) como el suceso sale un 6, la probabilidad anterior corresponde a la del suceso: \\(\\left\\{A^{c} A^{c} A^{c} A\\right\\}\\) (en este orden). 3.1.7 La distribución Binomial negativa Puede definirse como una generalización del modelo Geométrico o de Pascal. Así, dado un suceso \\(A\\) y su complementario \\(A^{c}\\), cuando \\(X\\) representa el número de veces que se da \\(\\mathrm{A}^{\\mathrm{c}}\\) (ausencias, fallos, etc.) hasta que se produce r veces el suceso A , en una serie de repeticiones de la experiencia aleatoria en condiciones independientes, decimos que \\(X\\) sigue la distribución Binomial negativa. Nótese que, cuando \\(r=1\\), tenemos exactamente el modelo geométrico. Este modelo queda definido por dos parámetros \\(p\\) (la probabilidad de \\(A: p=P(A)\\) ) y \\(r\\) (el número de veces que debe producirse \\(A\\) para que detengamos la experiencia). La función de densidad viene dada por: \\[ f(k)=P[X=k]=\\binom{\\mathbf{k}+\\mathbf{r}-\\mathbf{1}}{\\mathbf{r}-\\mathbf{1}} \\mathbf{p}^{\\mathbf{r}} \\mathbf{q}^{\\mathbf{k}} \\quad \\mathbf{k}=\\mathbf{0}, \\mathbf{1}, \\mathbf{2}, \\ldots \\] donde \\(q\\) representa el complementario de \\(p: q=1-p\\). 3.1.7.1 Propiedades del modelo Binomial negativo Esperanza: \\(E(X)=r^{\\prime} q / p\\) Varianza: \\(V(X)=r^{\\prime} q / p^{2}\\) Se cumplen las siguientes propiedades respecto la función de densidad: \\[ f(0)=p^{r} \\quad \\text { y } \\quad f(k+1)=\\frac{(1-p)(k+r)}{k+1} f(k) \\] Este modelo se ajusta bien a contajes (números de individuos por unidad de superficie) cuando se produce una distribución contagiosa (los individuos tienden a agruparse). La distribución Binomial negativa puede definirse con mayor generalidad si tomamos \\(r\\) como un número real positivo cualquiera (no necesariamente entero). Pero, en dicho caso, se pierde el carácter intuitivo del modelo y se complican ligeramente los cálculos. Por dichas razones, se ha excluido dicha posibilidad en esta presentación. 3.1.8 Tabla resumen de las distribuciones discretas principales Distribución Parámetros Función de densidad Esperanza Varianza Bernouilli \\(0 \\leq p \\leq 1\\) \\(p^{k}(1-p)^{1-k}\\) \\(k=0,1\\) \\(p\\) \\(p(1-p)\\) Binomial \\(0 \\leq p \\leq 1\\) \\(n=1,2, \\ldots\\) \\(\\binom{\\mathbf{n}}{\\mathbf{k}} p^{k}(1-p)^{n-k}\\) \\(k=0,1, \\ldots, n\\) \\(n p\\) \\(n p(1-p)\\) Poisson \\(\\lambda>0\\) \\(e^{-\\lambda} \\frac{\\lambda^{k}}{k!}\\) \\(k=012, \\ldots\\) \\(\\lambda\\) \\(\\lambda\\) Multinomial \\(0 \\leq p_{1}, \\ldots\\) \\(p_{r} \\leq 1\\) \\(\\left(p_{1}+\\ldots+\\right.\\) \\(\\left.p_{\\mathrm{r}}=1\\right)\\) \\(n=1,2\\) \\(\\frac{n!}{k_{1}!k_{2}!\\cdots k_{r}!} p_{1}^{k_{1}} p_{2}^{k_{2}} \\cdots p_{r}^{k_{r}}\\) \\(\\sum_{i=1}^{r} k_{i}=n\\) \\(\\left(\\begin{array}{c}n p_{1} \\\\ n p_{2} \\\\ \\vdots \\\\ n p_{r}\\end{array}\\right)\\) \\(\\boldsymbol{\\sigma}_{i i}=n p_{i}\\left(1-p_{i}\\right)\\) \\(\\boldsymbol{\\sigma}_{i j}=n p_{i} p_{j} \\quad i \\neq j\\) Uniforme discreta \\(n=1,2, \\ldots\\) \\(\\frac{1}{n}\\) \\(k=1,2, \\ldots . n\\) \\(\\frac{n+1}{2}\\) \\(\\frac{(n+1)[2(2 n+1)-3(n+1)}{12}\\) Hipergeométrica \\(\\left\\{\\begin{array}{c}N=N_{1}+ \\\\ N_{2} \\\\ p=N_{1} / N\\end{array}\\right.\\) \\(\\frac{\\binom{\\mathrm{N}_{1}}{\\mathrm{k}}\\binom{\\mathrm{N}_{2}}{\\mathrm{n}-\\mathrm{k}}}{\\binom{\\mathrm{N}}{\\mathrm{n}}}\\) \\(\\operatorname{max}\\left\\{0, \\mathrm{n}-N_{2}\\right\\} \\leq \\mathrm{k} \\leq \\min \\left\\{N_{1}, n\\right\\}\\) \\(n p\\) \\(n p(1-p) \\frac{N-n}{N-1}\\) Pascal \\(0 \\leq p \\leq 1\\) \\(p(1-p)^{k}\\) \\(k=0,1,2, \\ldots\\) \\(\\frac{1-p}{p}\\) \\(\\frac{1-p}{p^{2}}\\) Binomial negativa \\(0 \\leq p \\leq 1\\) \\(r>0\\) \\(\\frac{r(1-p)}{p}\\) \\(\\frac{r(1-p)}{p^{2}}\\) 3.2 Distribuciones Continuas 3.2.1 La distribución Uniforme La distribución Uniforme es el modelo (absolutamente) continuo más simple. Corresponde al caso de una variable aleatoria que sólo puede tomar valores comprendidos entre dos extremos \\(a\\) y \\(b\\), de manera que todos los intervalos de una misma longitud (dentro de \\((a, b)\\) ) tienen la misma probabilidad. También puede expresarse como el modelo probabilístico correspondiente a tomar un número al azar dentro de un intervalo \\((a, b)\\). De la anterior definición se desprende que la función de densidad debe tomar el mismo valor para todos los puntos dentro del intervalo \\((a, b)\\) (y cero fuera del intervalo). Es decir, \\[ f_{X}(x)=\\left\\{\\begin{array}{ll} \\frac{1}{b-a} & \\text { si } x \\in(a, b) \\\\ 0 & \\text { si } x \\notin(a, b) \\end{array}\\right\\} \\] Gráficamente: La función de distribución se obtiene integrando la función de densidad y viene dada por: \\[ F_{X}(x)=P(X \\leq x)=\\left\\{\\begin{array}{ll} 0 & \\text { si } x \\leq a \\\\ \\frac{x-a}{b-a} & \\text { si } x \\in(a, b) \\\\ 1 & \\text { si } x \\geq b \\end{array}\\right\\} \\] Gráficamente: Función de distribución del modelo uniforme 3.2.1.1 Propiedades del modelo Uniforme Su esperanza vale \\((b+a) / 2\\) Su varianza es \\((b-a)^{2} / 12\\) 3.2.1.2 Una aplicación del modelo Uniforme: el muestreo de Montecarlo En ciertos casos es útil simular el muestreo de una variable aleatoria con una distribución dada. El muestreo de Montecarlo es un procedimiento general para obtener muestras aleatorias de cualquier tipo de variable (discreta o continua) si su función de distribución es conocida o se puede calcular. Supongamos que queremos generar una muestra procedente de una variable aleatoria \\(X\\) con función de distribución \\(F(x)\\). El proceso comprende los siguientes pasos: Obtener un valor aleatorio \\(y\\) entre cero y uno. Es decir, obtener una muestra de una distribución Uniforme entre cero y uno. La mayoría de lenguajes de programación incorporan un generador de este tipo. Considerar el valor obtenido como el valor de la función de distribución a generar: \\(y=F(x)\\). El valor \\(x=F^{-1}(y)\\) (la inversa de la función de distribución en el punto \\(y\\) ) es un valor procedente de la distribución de la que deseábamos generar la muestra. Si queremos obtener una muestra con \\(n\\) individuos debemos repetir los pasos anteriores \\(n\\) veces. 3.2.1.3 Generación de una muestra procedente de una distribución Binomial Supongamos que queremos simular el experimento de contar el número de caras obtenidas en 5 lanzamientos de una moneda trucada con probabilidad de cara igual a 0,75 . Es decir, queremos obtener una muestra de una distribución Binomial con \\(n=5\\) y \\(p=0,75\\). Siguiendo los pasos anteriores deberemos obtener un número al azar entre 0 y 1 (un valor procedente de una distribución Uniforme entre 0 y 1) y si este valor es menor o igual a 0,75 diremos que ha salido cara y, si es superior a 0,75 , cruz. Utiliza el siguiente programa para simular cinco lanzamientos con nuestra moneda trucada: 3.2.2 La distribución Exponencial Este modelo suele utilizarse para variables que describen el tiempo hasta que se produce un determinado suceso. Su función de densidad es de la forma: \\[ f(x)=\\left\\{\\begin{array}{lll} \\frac{1}{\\alpha} \\exp \\left(-\\frac{x}{\\alpha}\\right) & \\text { si } & x>0 \\\\ 0 & \\text { si } & x \\leq 0 \\end{array}\\right\\} \\] Como vemos este modelo depende de un único parámetro \\(\\alpha\\) que debe ser positivo: \\(\\alpha>0\\). A continuación se muestra un programa que nos permite ver cómo cambia la forma de la función de densidad según el parámetro \\(\\alpha\\). La función de distribución se obtiene integrando la de densidad y es de la forma: \\[ F(x)=\\left\\{\\begin{array}{lll} 1-\\exp \\left(-\\frac{x}{\\alpha}\\right) & \\text { si } & x>0 \\\\ 0 & \\text { si } & x \\leq 0 \\end{array}\\right\\} \\] Podemos utilizar el programa siguiente para calcular dicha función de distribución: 3.2.2.1 Propiedades del modelo Exponencial Su esperanza es \\(\\alpha\\). Su varianza es \\(\\alpha^{2}\\). Una propiedad importante es la denominada carencia de memoria, que podemos definir así: si la variable \\(X\\) mide el tiempo de vida y sigue una distribución Exponencial, significará que la probabilidad de que siga con vida dentro de 20 años es la misma para un individuo que a fecha de hoy tiene 25 años que para otro que tenga 60 años. Cuando el número de sucesos por unidad de tiempo sigue una distribución de Poisson de parámetro \\(\\lambda\\) (proceso de Poisson), el tiempo entre dos sucesos consecutivos sigue una distribución Exponencial de parámetro \\(\\alpha=1 / \\lambda\\). 3.2.3 La distribución Normal Se trata, sin duda, del modelo continuo más importante en estadística, tanto por su aplicación directa, veremos que muchas variables de interés general pueden describirse por dicho modelo, como por sus propiedades, que han permitido el desarrollo de numerosas técnicas de inferencia estadística. En realidad, el nombre de Normal proviene del hecho de que durante un tiempo se creyó, por parte de médicos y biólogos, que todas las variables naturales de interés seguían este modelo. Su función de densidad viene dada por la fórmula: \\[ f(x)=\\frac{1}{\\sqrt{2 \\pi} \\sigma} \\exp \\left\\{-\\frac{(x-\\mu)^{2}}{2 \\sigma^{2}}\\right\\} \\quad \\text { donde }-\\infty<x<+\\infty \\] que, como vemos, depende de dos parámetros \\(\\mu\\) (que puede ser cualquier valor real) y \\(\\sigma\\) (que ha de ser positiva). Por esta razón, a partir de ahora indicaremos de forma abreviada que una variable \\(X\\) sigue el modelo Normal así: \\(X \\sim N(\\mu, \\sigma)\\). Por ejemplo, si nos referimos a una distribución Normal con \\(\\mu=0\\) y \\(\\sigma\\) \\(=1\\) lo abreviaremos \\(N(0,1)\\). A continuación vemos gráfica de esta función de densidad (podeis probar a cambiar los parámetros): Como puedes ver, la función de densidad del modelo Normal tiene forma de campana, la que habitualmente se denomina campana de Gauss. De hecho, a este modelo, también se le conoce con el nombre de distribución gaussiana. 3.2.3.1 Propiedades del modelo Normal Su esperanza es \\(\\mu\\). Su varianza es \\(\\sigma^{2} \\mathrm{y}\\), por tanto, su desviación típica es \\(\\sigma\\). Es simétrica respecto a su media \\(\\mu\\), como puede apreciarse en la representación anterior. Media, moda y mediana coinciden \\((\\mu)\\). Cualquier transformación lineal de una variable con distribución Normal seguirá también el modelo Normal. Si \\(X \\sim N(\\mu, \\sigma)\\) y definimos \\(Y=a X+b(\\operatorname{con} a \\neq 0)\\), entonces \\(Y \\sim N(a \\mu+b,|a| \\sigma)\\). Es decir, la esperanza de \\(Y\\) será \\(a \\mu+b\\) y su desviación típica, \\(|a| \\sigma\\). Cualquier combinación lineal de variables normales independientes sigue también una distribución Normal. Es decir, dadas \\(n\\) variables aleatorias independientes con distribución \\(X_{i} \\sim\\) \\(N\\left(\\mu_{i}, \\sigma_{i}\\right)\\) para \\(i=1,2, \\ldots, n\\) la combinación lineal: \\(Y=a_{n} X_{n}+a_{n-1} X_{n-1}+\\ldots+a_{1} X_{1}+\\mathrm{a}_{0}\\) sigue también el modelo Normal: \\[ Y \\approx N\\left(a_{0}+\\sum_{i=1}^{n} a_{i} \\boldsymbol{\\mu}_{i}, \\sqrt{\\sum_{i=1}^{n} a_{i}^{2} \\boldsymbol{\\sigma}^{2}}\\right) \\] ###La función de distribución del modelo Normal La función de distribución del modelo Normal se debería calcular, como en el resto de distribuciones continuas, integrando la función de densidad: \\[ F(x)=P[X \\leq x]=\\int_{-\\infty}^{x} \\frac{1}{\\sqrt{2 \\pi} \\sigma} \\exp \\left\\{-\\frac{(t-\\mu)^{2}}{2 \\sigma^{2}}\\right\\} \\mathrm{dt} \\] Pero nos encontramos con el problema de que no existe ninguna primitiva conocida para esta función, es decir, no sabemos resolver la anterior integral. Sin embargo, si somos incapaces de calcular la función distribución no podremos efectuar ningún cálculo con este modelo. ¿Cómo solucionamos el problema? Una primera solución podría consistir en aproximar la integral a través de técnicas de cálculo numérico. Sin embargo, dado que el conjunto de valores que pueden tomar los parámetros \\(\\mu\\) y \\(\\sigma\\) son infinitos, deberíamos repetir el proceso para cada valor diferente de algún parámetro. Afortunadamente, podemos ahorrarnos el esfuerzo aprovechando la propiedad de que cualquier transformación lineal de una variable Normal sigue también el modelo Normal. Por tanto, replantearemos cualquier problema en términos de una Normal concreta, que suele ser la \\(\\mathrm{N}(0,1)\\), de la siguiente manera: Si \\(X \\sim N(\\mu, \\sigma)\\) y entonces definimos \\(Z=(\\mathrm{X}-\\mu) / \\sigma\\) se cumplirá que \\(Z \\sim N(0,1)\\) \\[ \\begin{gathered} \\text { y, por tanto: } \\\\ F_{X}(x)=P[X \\leq x]=P\\left[\\frac{X-\\boldsymbol{\\mu}}{\\boldsymbol{\\sigma}} \\leq \\frac{x-\\boldsymbol{\\mu}}{\\boldsymbol{\\sigma}}\\right]=P\\left[Z \\leq \\frac{x-\\boldsymbol{\\mu}}{\\boldsymbol{\\sigma}}\\right]=F_{Z}\\left(\\frac{x-\\boldsymbol{\\mu}}{\\boldsymbol{\\sigma}}\\right) \\end{gathered} \\] A la distribución \\(N(0,1)\\), es decir, la que tiene por media cero y por desviación típica uno, se le denomina Normal reducida o tipificada. En cambio, al proceso de transformación del cálculo de la función de distribución de una Normal cualquiera a través de la Normal tipificada, se le denomina tipificación. Debemos remarcar que el proceso de tipificación no resuelve el problema de la inexistencia de la función primitiva correspondiente. Sin embargo, sí es posible, mediante técnicas de cálculo numérico, obtener la integral numérica correspondiente y elaborar unas tablas que podemos consultar. Naturalmente, la tipificación permite que con una sola tabla, la de la \\(N(0,1)\\), tengamos suficiente. Hoy en día, cada vez se utilizan menos tablas como la mencionada anteriormente, ya que los ordenadores, junto con los abundantes programas estadísticos existentes nos resuelven este problema. Sin embargo, la imposibilidad de integrar analíticamente la función de densidad persiste y, aunque nosotros no seamos conscientes, los programas informáticos realizan el proceso de tipificación para simplificar el problema. 3.2.4 La distribución Gamma Este modelo es una generalización del modelo Exponencial ya que, en ocasiones, se utiliza para modelar variables que describen el tiempo hasta que se produce p veces un determinado suceso. Su función de densidad es de la forma: \\[ f(x)=\\left\\{\\begin{array}{lll} \\frac{1}{\\alpha^{p} \\Gamma(p)} e^{-\\frac{x}{\\alpha}} x^{p-1} & \\text { si } & x>0 \\\\ 0 & \\text { si } & x \\leq 0 \\end{array}\\right\\} \\] Como vemos, este modelo depende de dos parámetros positivos: \\(\\alpha\\) y p. La función \\(\\Gamma(p)\\) es la denominada función Gamma de Euler que representa la siguiente integral: \\[ \\Gamma(p)=\\int_{0}^{\\infty} x^{p-1} e^{-x} d x \\] que verifica \\(\\Gamma(p+1)=p \\Gamma(p)\\), con lo que, si \\(p\\) es un número entero positivo, \\(\\Gamma(p+1)=p\\). 3.2.4.1 Propiedades de la distribución Gamma Su esperanza es \\(p \\alpha\\). Su varianza es \\(p \\alpha^{2}\\) La distribución Gamma \\((\\alpha, p=1)\\) es una distribución Exponencial de parámetro \\(\\alpha\\). Es decir, el modelo Exponencial es un caso particular de la Gamma \\(\\operatorname{con} p=1\\). Dadas dos variables aleatorias con distribución Gamma y parámetro \\(\\alpha\\) común \\[ X \\sim G\\left(\\alpha, p_{1}\\right) \\text { y } Y \\sim G\\left(\\alpha, p_{2}\\right) \\] se cumplirá que la suma también sigue una distribución Gamma \\[ X+Y \\sim G\\left(\\alpha, p_{1}+p_{2}\\right) \\] Una consecuencia inmediata de esta propiedad es que, si tenemos \\(k\\) variables aleatorias con distribución Exponencial de parámetro \\(\\alpha\\) (común) e independientes, la suma de todas ellas seguirá una distribución \\(G(\\alpha, k)\\). 3.2.5 La distribución de Cauchy Se trata de un modelo continuo cuya función de densidad es: \\[ f(x)=\\frac{1}{\\pi\\left(1+x^{2}\\right)} \\quad \\text { para } \\quad-\\infty<x<\\infty \\] Cuya integral nos proporciona la función de distribución: \\[ F(x)=\\int_{-\\infty}^{x} \\frac{1}{\\pi\\left(1+t^{2}\\right)} d t=\\frac{1}{\\pi}[\\arctan (t)]_{t=-\\infty}^{t=x}=\\frac{1}{2}+\\frac{\\arctan (x)}{\\pi} \\] El siguiente programa permite visualizar la forma de la función de densidad de este modelo y el valor de la función de distribución: 3.2.5.1 Propiedades de la distribución de Cauchy Se trata de un ejemplo de variable aleatoria que carece de esperanza (y, por tanto, también de varianza o cualquier otro momento), ya que la integral impropia correspondiente no es convergente: \\[ E(X)=\\int_{-\\infty}^{\\infty} \\frac{x}{\\pi\\left(1+x^{2}\\right)} d x=\\frac{1}{2 \\pi} \\int_{-\\infty}^{\\infty} \\frac{2 x}{1+x^{2}} d x=\\frac{1}{2 \\pi}\\left[\\lim _{x \\rightarrow \\infty} \\ln \\left(x^{2}\\right)-\\lim _{x \\rightarrow-\\infty} \\ln \\left(x^{2}\\right)\\right]=\\frac{1}{2 \\pi}[\\infty-\\infty] \\] y nos queda una indeterminación. Por tanto, la esperanza de una distribución de Cauchy no existe. Cabe señalar que la función de densidad es simétrica respecto al valor cero (que sería la mediana y la moda), pero al no existir la integral anterior, la esperanza no existe. 3.2.6 La distribución de Weibull Se trata de un modelo continuo asociado a variables del tipo tiempo de vida, tiempo hasta que un mecanismo falla, etc. La función de densidad de este modelo viene dada por: \\[ f(x)=\\left\\{\\begin{array}{ll} \\frac{\\beta}{\\alpha}\\left(\\frac{x}{\\alpha}\\right)^{\\beta-1} e^{-\\left(\\frac{x}{\\alpha}\\right)^{\\beta}} & \\text { si } x \\geq 0 \\\\ 0 & \\text { si } x<0 \\end{array}\\right\\} \\] que, como vemos, depende de dos parámetros: \\(\\alpha>0\\) y \\(\\beta>0\\), donde \\(\\alpha\\) es un parámetro de escala y \\(\\beta\\) es un parámetro de forma (lo que proporciona una gran flexibilidad a este modelo). La función de distribución se obtiene por la integración de la función de densidad y vale: \\[ F(x)=1-e^{-\\left(\\frac{x}{\\alpha}\\right)^{\\beta}} \\] El siguiente programa permite visualizar la forma de la función de densidad de este modelo y el valor de la función de distribución: 3.2.6.1 Propiedades de la distribución Weibull Si tomamos \\(\\beta=1\\) tenemos una distribución Exponencial. Su esperanza vale: \\[ E(X)=\\alpha \\Gamma\\left(\\frac{1}{\\boldsymbol{\\beta}}+\\mathbf{1}\\right) \\] Su varianza vale: \\[ V(X)=\\alpha^{2}\\left\\{\\Gamma\\left(\\frac{2}{\\beta}+1\\right)-\\left[\\Gamma\\left(\\frac{1}{\\beta}+1\\right)\\right]^{2}\\right\\} \\] donde \\(\\Gamma(x)\\) representa la función Gamma de Euler definida anteriormente. 3.2.7 Tabla resumen de las principales distribuciones continuas Distribución Parámetros Función de densidad Esperanza Varianza Uniforme \\(a, b\\) \\(\\frac{1}{b-a}\\) \\(a<x<b\\) \\(\\frac{a+b}{2}\\) \\(\\frac{(b-a)^{2}}{12}\\) Exponencial \\(\\alpha>0\\) \\(\\frac{1}{\\alpha} \\exp \\left(-\\frac{x}{\\alpha}\\right)\\) \\(x>0\\) \\(\\alpha\\) \\(\\alpha^{2}\\) Normal \\(-\\infty<\\mu<\\infty\\) \\(\\sigma>0\\) \\(\\frac{1}{\\sqrt{2 \\pi} \\sigma} \\exp \\left\\{-\\frac{(x-\\mu)^{2}}{2 \\sigma^{2}}\\right\\}\\) \\(-\\infty<x<+\\infty\\) \\(\\mu\\) \\(\\sigma^{2}\\) Cauchy | - | \\(\\frac{1}{\\pi\\left(1+x^{2}\\right)}\\) \\(-\\infty<\\mathbf{x}<\\infty\\) | – | – | Weibull | \\(\\alpha>0\\) \\(\\beta>0\\) | \\(\\frac{\\boldsymbol{\\beta}}{\\boldsymbol{\\alpha}}\\left(\\frac{x}{\\boldsymbol{\\alpha}}\\right)^{\\beta-1} e^{-\\left(\\frac{x}{\\alpha}\\right)^{\\beta}}\\) \\(x \\geq 0\\) | \\(\\alpha \\Gamma\\left(\\frac{1}{\\beta}+1\\right)\\) | \\(\\alpha^{2}\\left\\{\\Gamma\\left(\\frac{2}{\\beta}+1\\right)-\\left[\\Gamma\\left(\\frac{1}{\\beta}+1\\right)\\right]^{2}\\right\\}\\) | 3.3 Distribuciones con R (y Python) El lenguaje estadístico R es muy potente en cuanto al cálculo con distribuciones de probabilidad. Dado que el trabajo con distribucines de probabilidad usando R está muy estandarizado y explicado en múltiples fuentes no repetiremos aquí estas explicaciones. Tan solo os referimos a dos buenas fuentes de información que podéis utilizar para aprender como hacer los cálculos con R y también una aplicación que os permite visualizar casi cualquier distribución conocida. R Tutorials Explicación detallada y de nivel básico del manejo de las principales distribuciones con R https://www.r-tutor.com/elementary-statistics/probability-distributions The distribution Zoo Permite visualizar de forma interactiva distintas distribuciones y proporciona información diversa sobre sus propiedades e incluso su aplicación. https://ben18785.shinyapps.io/distribution-zoo/ Distribution explorer Más completo que los anteriores. No se basa en R sino en python. https://distribution-explorer.github.io/index.html 3.4 La familia exponencial de distribuciones En el estudio de las propiedades de los estimadores, vemos que algunas distribuciones se comportan mejor que otras. Muchas veces, este buen comportamiento refleja una estructura común que proviene de pertenecer a una misma familia de distribuciones llamada familia exponencial. Definición: Sea \\(f_{\\theta}\\) una familia de probabilidades que depende de un parámetro unidimensional \\(\\left\\{f_{\\theta}(x), \\theta \\in \\Theta \\subseteq \\mathbb{R}\\right\\}\\) tal que el soporte \\(S(\\theta)=\\left\\{x \\mid f_{\\theta}(x)>0\\right\\}\\) no depende de \\(\\theta\\). Si existen funciones de los parámetros \\(Q(\\theta)\\) y \\(C(\\theta)\\) y funciones de las muestras, \\(T(x)\\) y \\(h(x)\\), tales que la función de densidad puede escribirse como: \\[f_{\\theta}(x)=C(\\theta) h(x) \\exp\\{Q(\\theta) \\cdot T(x)\\}\\] diremos que \\(f_{\\theta}(x)\\) pertenece a la familia exponencial de distribuciones. La familia exponencial no representa un nuevo tipo de distribuciones, sino la constatación de que muchas distribuciones comunes, que pueden reformularse para ajustarse a la expresión anterior, pertenecen a esta familia. Veamos algunos ejemplos de que esto es efectivamente así. 3.4.1 Ejemplos de distribuciones de esta familia 3.4.1.1 Distribución de Poisson La ley de Poisson pertenece a la familia exponencial uniparamétrica. Efectivamente, \\[f_{\\lambda}(x)=e^{-\\lambda} \\frac{\\lambda^{x}}{x!}=\\exp\\{-\\lambda+x \\log \\lambda-\\log(x!)\\}\\] y si hacemos \\[Q(\\lambda)=\\log(\\lambda) \\quad T(x)=x \\quad D(\\lambda)=-\\lambda \\quad S(x)=-\\log(x!)\\] se hace evidente que \\(f_{\\lambda}\\) pertenece a la familia exponencial. 3.4.1.2 Distribución normal uniparamétrica La ley normal depende de dos parámetros \\(\\mu\\) y \\(\\sigma\\). Fijado uno de ellos, nos queda una distribución que depende de un solo parámetro, y de aquí la denominación “normal uniparamétrica”. Si, con el subíndice “0”, indicamos el parámetro fijado, tenemos: \\[ \\begin{aligned} &f_{\\sigma}=\\left\\{N\\left(\\mu_0, \\sigma\\right), \\sigma>0\\right\\} \\text{ Normal uniparamétrica, de parámetro } \\sigma^2, \\\\ &f_{\\mu}=\\left\\{N\\left(\\mu, \\sigma_0\\right), \\mu \\in \\mathbb{R}\\right\\} \\text{ normal uniparamétrica, de parámetro } \\mu. \\end{aligned} \\] Si queremos considerar ambos parámetros a la vez, debemos extender la definición al caso de parámetros \\(k\\)-dimensionales. En estos materiales no trataremos esta extensión. 3.4.1.2.1 Caso 1: Fijando la media \\(\\mu_0\\) Consideramos la distribución normal \\(N(\\mu_0, \\sigma^2)\\), donde fijamos \\(\\mu = \\mu_0\\) y \\(\\sigma^2\\) es el parámetro libre. La función de densidad de probabilidad es \\[f_{\\sigma}(x) = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} \\exp\\left\\{-\\frac{(x - \\mu_0)^2}{2\\sigma^2}\\right\\}\\] Vamos a reescribir esta función en forma de la familia exponencial. Primero, reorganizamos los términos de la densidad: \\[f_{\\sigma}(x) = \\frac{1}{\\sqrt{2\\pi}} \\cdot \\sigma^{-1} \\exp\\left\\{-\\frac{1}{2\\sigma^2}(x - \\mu_0)^2\\right\\}\\] Ahora identificamos las funciones que se corresponden con la forma de la familia exponencial \\(f_{\\theta}(x) = C(\\theta) h(x) \\exp\\{Q(\\theta) T(x)\\}\\): \\(Q(\\sigma) = -\\frac{1}{2\\sigma^2}\\) \\(T(x) = (x - \\mu_0)^2\\) \\(C(\\sigma) = \\frac{1}{\\sqrt{2\\pi}\\sigma}\\) \\(h(x) = 1\\) Esto confirma que la distribución normal, con \\(\\mu_0\\) fijo, pertenece a la familia exponencial. 3.4.1.2.2 Caso 2: Fijando la varianza \\(\\sigma_0^2\\) Ahora consideramos la distribución \\(N(\\mu, \\sigma_0^2)\\), donde la varianza está fijada y el parámetro libre es \\(\\mu\\). La función de densidad es \\[f_{\\mu}(x) = \\frac{1}{\\sqrt{2\\pi\\sigma_0^2}} \\exp\\left\\{-\\frac{(x - \\mu)^2}{2\\sigma_0^2}\\right\\}\\] Vamos a reescribir esta función de la misma manera: \\[f_{\\mu}(x) = \\frac{1}{\\sqrt{2\\pi\\sigma_0^2}} \\exp\\left\\{-\\frac{1}{2\\sigma_0^2}(x^2 - 2\\mu x + \\mu^2)\\right\\}\\] Identificamos las funciones correspondientes: \\(Q(\\mu) = \\frac{\\mu}{\\sigma_0^2}\\) \\(T(x) = x\\) \\(D(\\mu) = -\\frac{\\mu^2}{2\\sigma_0^2}\\) \\(S(x) = -\\frac{x^2}{2\\sigma_0^2}\\) Esto prueba que la distribución normal con \\(\\sigma_0\\) fijo pertenece a la familia exponencial. 3.4.2 Distribución Binomial La distribución binomial es un ejemplo interesante, puesto que, a priori, no parece tener la estructura propia de la distribución exponencial, cosa que si pasa con la distribución de Poisson o con la Normales uniparamétricas que acabamos de ver. Sin embargo, tras aplicar algunas transformaciones se puede ver como, también esta distribución pertenece a la familia exponencial La función de masa de probabilidad para la distribución binomial es \\[f(x; n, p) = \\binom{n}{x} p^x (1 - p)^{n - x}, \\quad x = 0, 1, \\dots, n\\] Reescribimos esta función en términos exponenciales: \\[f(x; n, p) = \\binom{n}{x} \\exp\\{x \\log(p) + (n - x) \\log(1 - p)\\}\\] Agrupamos los términos dependientes de \\(x\\): \\[f(x; n, p) = \\binom{n}{x} \\exp\\left\\{x \\log\\left(\\frac{p}{1 - p}\\right) + n \\log(1 - p)\\right\\}\\] Identificamos las funciones correspondientes a la familia exponencial: \\(Q(p) = \\log\\left(\\frac{p}{1 - p}\\right)\\) \\(T(x) = x\\) \\(D(p) = n \\log(1 - p)\\) \\(S(x) = \\log \\binom{n}{x}\\) Por lo tanto, la distribución binomial pertenece a la familia exponencial. 3.4.3 Importancia y utilidad de la familia exponencial Muchas de las distribuciones usadas para modelar gran cantidad de situaciones prácticas pertenecen a esta familia. Esto significa que es posible estudiar sus propiedades en conjunto. Es decir, si establecemos que una propiedad se verifica en una distribución que pertenece a la familia exponencial, automáticamente sabemos que todos los miembros de la familia verifican esa propiedad. A continuación, se describen tres ventajas importantes de trabajar con esta familia: 3.4.4 Los modelos lineales generalizados (GLMs) Una de las aplicaciones más importantes de la familia exponencial es su uso en los Modelos Lineales Generalizados (GLMs). Estos modelos nos permiten extender la regresión lineal clásica a diferentes tipos de datos, como los resultados binarios (por ejemplo, éxito o fracaso), mediante la regresión logística, recuentos de eventos (como el número de llamadas recibidas en una hora) mediante la regresión de Poisson, y muchos otros. Gracias a la estructura de la familia exponencial, podemos conectar la media de la variable que estamos modelando con las variables explicativas de forma flexible, lo que hace posible aplicar GLMs en una amplia variedad de situaciones. 3.4.5 Estimación en la familia exponencial Otra ventaja importante es que, al trabajar con distribuciones de la familia exponencial, los métodos que usamos para hacer inferencias estadísticas suelen tener buenas propiedades. Esto, que se explicará con más detalle en capítulos siguientes, implica que los estimadores que obtenemos con estos modelos suelen ser precisos y reflejar correctamente la información que contienen los datos. Naturalmente esto se puede ver al revés: Si podemos trabajar con distribuciones de la familia exponencial, solemos tener, de entrada, una serie de ventajas, como el buen comportamiento de los etimadores, por lo que siempre es una buena opción intentar utilizarlas en nuestros modelos. "],["distribuciones-de-probabilidad-multidimensionales.html", "Capítulo 4 Distribuciones de probabilidad multidimensionales 4.1 Distribuciones conjuntas de probabilidades 4.2 Variable aleatorias bivariantes discretas 4.3 La distribución multinomial 4.4 Distribuciones marginales 4.5 Distribuciones condicionales 4.6 Vectores aleatorios absolutamente continuos 4.7 Independencia de variables aleatorias 4.8 Momentos de vectores aleatorios", " Capítulo 4 Distribuciones de probabilidad multidimensionales En este capítulo se extiende el concepto de variable aleatoria a un conjunto de variables que pueden interpretarse asociadas a un conjunto de medidas distintas y que pueden estar, o no relacionadas. Tras introducir los conceptos de distribuciones multidimensionales, condicionales y marginales, se pasa a considerar el caso más habitual en inferencia estadística en el que las componentes de los vectrores son independientes entre ellas. Este es, de hecho, el punto de partida de muchos modelos y métodos en estadística. 4.1 Distribuciones conjuntas de probabilidades A menudo nos interesa estudiar múltiples características de un fenómeno aleatorio: La altura, el peso y el sexo de un individuo. La expresión coordinada de los genes que participan en una determinada via metabólica. El número de nucleótidos A, C, G, T en una región del genoma de tamaño \\(n\\). Estas características numéricas que, de forma análoga al caso univariante, podemos suponer asociadas a los resultados de experimentos aleatorios se denominan variables aleatorias multidimensionales o, atendiendo a sus componentes, vectores aleatorios. Las distribuciones de probabilidad que, siguiendo con la analogía, asociaremos a los vectores aleatorios se denominan distribuciones de probabilidades conjuntas o multivariantes. Antes de desarrollar el tema es importante remarcar que consideraremos dos escenarios: El primero, el “natural” es considerar que si trabajamos con distintas variables asociadas a un mismo fenómeno, es razonable suponer que varien de alguna forma coordinada. De ahí la expresión distribución conjnta. En ocasiones, sin embargo, dispondremos de vectores aleatorios que varian independientemente los unos de los otros. En este caso su distribución conjunta será de un tipo especial que se conoce independencia. 4.1.1 Variable aleatoria bivariante Empezaremos por el caso más sencillo que, sin embargo permite estudiar la mayoría de los conceptos quenos interesas: Las distribuciones conjuntas de dos variables aleatorias. Una variable aleatoria bivariante es una aplicación que, a cada resultado de un experimento, le asocia dos números: \\[ (X, Y): \\Omega \\to \\mathbb{R}^2 \\] \\[ w \\mapsto (X(w), Y(w)) \\] De modo que, para todo par de valores numéricos, \\((x, y) \\in \\mathbb{R}^2\\), se tiene \\[ \\{w \\in \\Omega \\mid X(w) \\leq x,\\quad Y(w) \\leq y\\} \\in \\mathcal{A} \\] donde \\(\\mathcal{A}\\) representa el conjunto de sucesos observables definido en el capítulo 1. Lo que viene a significar esta definición es que una variable aleatoria bidimensional es un conjunto de medidas (números reales) a los que, por el ehecho de poderse asociar con sucesos observables a traves de los intérvalos \\(X(w) \\leq x,\\quad Y(w) \\leq y\\) se les puede asociar (calcular) una probabilidad. Fijémonos también que, como en el caso univariante, la función que transporta la probabilidad, del espació de probabilidad al conjunto de los reales, será la función de distribución, que se define a continuación. 4.1.2 Función de distribución bivariante La función de distribución conjunta de \\(X\\) y \\(Y\\), \\(F\\), es una generalización inmediata del caso univariado y se define como: \\[ F(x, y) = P\\{w \\in \\Omega \\mid X(w) \\leq x, Y(w) \\leq y\\} = P[X \\leq x, Y \\leq y] \\] Como en el caso univariante, esta es la función que define la forma en que podemos calcular probabilidades sobre los valores de las variables, en este caso de dimensión 2. 4.1.3 Ejemplo: Distribución conjunta del estado de infección y activación de células Supongamos que estamos observando dos características de células en un experimento de inmunología. Las variables que describen las células son: \\(X\\): La célula está infectada (\\(X = 1\\)) o no infectada (\\(X = 0\\)). \\(Y\\): La célula está activada (\\(Y = 1\\)) o no activada (\\(Y = 0\\)). La siguiente tabla muestra la probabilidad conjunta de observar cada combinación de infección y activación en una célula: \\(X \\backslash Y\\) \\(Y = 0\\) (No activada) \\(Y = 1\\) (Activada) \\(X = 0\\) (No infectada) 0.4 0.2 \\(X = 1\\) (Infectada) 0.1 0.3 4.1.3.1 1. Función de distribución conjunta La función de distribución conjunta \\(F(x, y)\\) para esta situación se calcula como: \\[ F(x, y) = P(X \\leq x, Y \\leq y) \\] Los valores para los pares posibles de \\(x\\) y \\(y\\) son: \\(F(0, 0) = P(X = 0, Y = 0) = 0.4\\) \\(F(0, 1) = P(X = 0, Y \\leq 1) = P(X = 0, Y = 0) + P(X = 0, Y = 1) = 0.4 + 0.2 = 0.6\\) \\(F(1, 0) = P(X \\leq 1, Y = 0) = P(X = 0, Y = 0) + P(X = 1, Y = 0) = 0.4 + 0.1 = 0.5\\) \\(F(1, 1) = P(X \\leq 1, Y \\leq 1) = 1\\) 4.1.3.2 2. Cálculo de la probabilidad de eventos específicos Por ejemplo, la probabilidad de que una célula esté infectada pero no activada es: \\[ P(X = 1, Y = 0) = 0.1 \\] 4.1.4 Implementación en R Podemos visualizar esta distribución conjunta con un gráfico en R. library(ggplot2) # Crear los datos de la distribución conjunta data <- expand.grid(X = c(0, 1), Y = c(0, 1)) data$Prob <- c(0.4, 0.2, 0.1, 0.3) # Crear el gráfico p <- ggplot(data, aes(x = factor(X, labels = c("No infectada", "Infectada")), y = factor(Y, labels = c("No activada", "Activada")))) + geom_tile(aes(fill = Prob), color = "white") + scale_fill_gradient(low = "white", high = "blue") + geom_text(aes(label = round(Prob, 2)), size = 5) + labs(x = "Estado de infección (X)", y = "Estado de activación (Y)", title = "Distribución Conjunta de Infección y Activación Celular") + theme_minimal() # Guardar el gráfico en el subdirectorio imagenes ggsave("images/distribucion_conjunta.png", plot = p, width = 6, height = 4, dpi = 300) knitr::include_graphics("images/distribucion_conjunta.png") 4.2 Variable aleatorias bivariantes discretas Una vez introducidos los conceptos de forma general pasamos a estudiar el problema en el caso discreto, que es muy intuitivo y, a la vez permite introducir todos los conceptos relevantes. Un vector aleatorio discreto, \\((X, Y)\\) es aquel cuyo recorrido o conjunto de valores posibles es finito o numerable. En este caso, toda probabilidad \\[ P\\{(X, Y) \\in B\\}, \\quad \\text{donde } B \\text{ es un conjunto de posibles valores de } X, Y, \\] se puede calcular a partir de la función de masa de probabilidad discreta bivariante. 4.2.1 Función de masa de probabilidad discreta (fmp) La funcion de masa de probabilidad de los vectores aleatorios generaliza la función del mismo nombre en el caso univariante, es decir, es una función: \\[ f: \\mathbb{R}^2 \\to [0, 1] \\] Que asigna la probabilidad a cada punto del plano: para todo \\((x, y) \\in \\mathbb{R}^{2}\\): \\[ f(x, y) = P\\{w \\in \\Omega \\mid X(w) = x, Y(w) = y\\} = P[X = x, Y = y] \\] 4.2.2 Propiedades de la fmp bivariante La masa total de probabilidad sobre el plano es 1: \\[ \\sum_{(x_i, y_j) \\in \\mathbb{R}^{2}} f(x_i, y_j) = 1 \\] Para todo subconjunto \\(B \\subseteq \\mathbb{R}^2\\), se verifica: \\[ F(x, y) = P[X \\leq x, Y \\leq y] = \\sum_{x_i \\leq x, y_j \\leq y} f(x_i, y_j) \\] Es decir, como en el caso univariante la función de distribución se puede calcular a partir de la función de masa de probabilidad. 4.2.2.1 Intuición frente a construcción La presentación de los conceptos anteriores suele generar cierto desasosiego entre los estudiantes que afrontan estos conceptos por primera (o siguientes) vez. El motivo de este desasosiego es que el papel de la función de distribución no suele ser tan intuitivo como el de la función de masa de probabilidad. Es decir, es más intuitivo pensar en como calcular lña probabilidad que la variable tome un valor concreto (\\(P[X=x]\\)) , que la probabilidad de que no alcance cierto valor (\\(P[X\\leq x]\\)). Sin embargo, la función que realmente permite transportar la probabilidad no es la función de masa de probabilidad (fmp) sino la función de distribución (fdd). De ahí el contraste entre intuición (fmp) y construcción (fdd) 4.2.3 Ejemplo de distribución bivariante discreta Supongamos que un estudio mide el número de células infectadas y el número de linfocitos activados en un campo microscópico. Dado el tamaño del campo y el grado de infección los valores observados de cada variables son: \\(X\\): Número de células infectadas (\\(X \\in \\{0, 1, 2, 3, 4, 5\\}\\))). \\(Y\\): Número de linfocitos activados (\\(Y \\in \\{0, 1, 2, 3\\}\\))). La distribución conjunta se refleja en la siguiente tabla de probabilidades conjuntas: \\(P[X=x]\\) \\(P[Y = 0]\\) \\(P[Y = 1]\\) \\(P[Y = 2]\\) \\(P[Y = 3]\\) 0 0.12 0.06 0.02 0.00 1 0.10 0.10 0.04 0.01 2 0.06 0.12 0.08 0.02 3 0.03 0.12 0.10 0.05 4 0.01 0.08 0.12 0.06 5 0.00 0.03 0.10 0.07 Puede comprobarse como la suma de todos los valores de la tabla es 1, y calcular probabilidades de sucesos como Probabilidad de que hayan dos células infectadas y un linfocito: Para calcular la probabilidad de que haya exactamente 2 células infectadas y 1 linfocito activado, se puede usar el valor directamente de la tabla. \\[ P(X = 2, Y = 1) = 0.12 \\] Probabilidad de que hayan menos de tres celulas infectadas y menos de dos linfocitos: Esta probabilidad es la suma de todas las combinaciones de \\(X\\) y \\(Y\\)) que cumplen con la condición de \\(X < 3\\)) y \\(Y < 2\\)). Es decir, sumamos las probabilidades de los casos \\((X = 0, Y = 0)\\)), \\((X = 0, Y = 1)\\)), \\((X = 1, Y = 0)\\)), \\((X = 1, Y = 1)\\)), \\((X = 2, Y = 0)\\)), y \\((X = 2, Y = 1)\\)). \\[ P(X < 3, Y < 2) = P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 1, Y = 0) + P(X = 1, Y = 1) + P(X = 2, Y = 0) + P(X = 2, Y = 1) \\] \\[ P(X < 3, Y < 2) = 0.12 + 0.06 + 0.10 + 0.10 + 0.06 + 0.12 = 0.56 \\] Recordemos que, al tratarse de variables discretas, no es lo mismo \\(P[X < x]\\) que \\(P[X \\leq x]\\), por lo que si la pregunta fuera “Probabilidad de que hayan al menos tres celulas infectadas y al menos dos linfocitos” deberíamos calcular: \\[ P(X \\leq 3, Y \\leq 2) \\] Esta última expresión se corresponde con la función de distribución evaluada en \\((3,2)\\). 4.2.3.1 Código R para el cálculo de la pmf Podemos hacer los cálculos usando R: prob_table <- matrix(c(0.12, 0.06, 0.02, 0.00, 0.10, 0.10, 0.04, 0.01, 0.06, 0.12, 0.08, 0.02, 0.03, 0.12, 0.10, 0.05, 0.01, 0.08, 0.12, 0.06, 0.00, 0.03, 0.10, 0.07), nrow = 6, byrow = TRUE) # Asignar nombres a las filas y columnas rownames(prob_table) <- 0:5 colnames(prob_table) <- 0:3 # Mostrar la tabla prob_table ## 0 1 2 3 ## 0 0.12 0.06 0.02 0.00 ## 1 0.10 0.10 0.04 0.01 ## 2 0.06 0.12 0.08 0.02 ## 3 0.03 0.12 0.10 0.05 ## 4 0.01 0.08 0.12 0.06 ## 5 0.00 0.03 0.10 0.07 # Calcular la probabilidad de (X = 2, Y = 1) prob_X2_Y1 <- prob_table["2", "1"] cat("P(X = 2, Y = 1) =", prob_X2_Y1, "\\n") ## P(X = 2, Y = 1) = 0.12 # Calcular la probabilidad de (X < 3, Y < 2) prob_X_lt_3_Y_lt_2 <- sum(prob_table[1:3, 1:2]) cat("P(X < 3, Y < 2) =", prob_X_lt_3_Y_lt_2, "\\n") ## P(X < 3, Y < 2) = 0.56 4.2.3.2 Código R para visualizar la distribución conjunta Para visualizar la distribución conjunta, podemos usar el código siguiente; # Es preciso instalar y cargar el paquete scatterplot3d si no lo tienes instalado # install.packages("scatterplot3d") library(scatterplot3d) # Crear una matriz con los datos de la tabla de probabilidades X_vals <- as.numeric(rownames(prob_table)) Y_vals <- as.numeric(colnames(prob_table)) # Crear un grid de valores X e Y X_grid <- rep(X_vals, each = length(Y_vals)) Y_grid <- rep(Y_vals, times = length(X_vals)) # Extraer las probabilidades como un vector Z_vals <- as.vector(prob_table) # Enviar el gráfico 3D de barras simuladas a pdf png("images/pmfTrinomial.png") scatterplot3d(X_grid, Y_grid, Z_vals, type = "h", color = "lightblue", pch = 16, lwd = 5, cex.symbols = 1, angle=60, xlab = "Celulas Infectadas (X)", ylab = "Linfocitos Activados (Y)", zlab = "Probabilidad", main = "Distribución Conjunta de \\n Celulas Infectadas y Linfocitos Activados") dev.off() ## png ## 2 # Añadir texto con los valores de las probabilidades en la parte superior de las barras # s3d$text(X_grid, Y_grid, Z_vals, labels = round(Z_vals, 2), pos = 3, col = "black") knitr::include_graphics("images/pmfTrinomial.png", rel_path = TRUE ) 4.3 La distribución multinomial Antes de seguir con el estudio de las distribuciones discretas presentamos un caso importante de distribucion multivariante discreta, la distribución multinomial. 4.3.1 Generación de las observaciones Supongamos un experimentoaleatorio que puede producir \\(k\\) resultados posibles \\(A_1, A_2, \\dots, A_k\\) con probabilidades \\(p_1, p_2, \\dots, p_k\\), tales que \\(p_1 + p_2 + \\dots + p_k = 1\\). Repetimos el experimento \\(n\\) veces y llamamos \\(X_1, X_2, \\dots, X_k\\) al número de veces que se presenta \\(A_1, A_2, \\dots, A_k\\). La distribución conjunta de \\(X_1, X_2, \\dots, X_k\\) recibe el nombre de multinomial. 4.3.2 Funcion de masa de probabilidad de la distribución multinomial El vector \\(\\mathbf{X} = (X_1, \\dots, X_k)\\) tiene distribución multinomial de parámetros \\(n\\) y \\(\\mathbf{p} = (p_1, \\dots, p_k),\\) denotado por \\(\\mathbf{X} \\sim \\mathrm{M}(n, \\mathbf{p})\\), con \\(n\\) entero positivo, \\(p_i \\geq 0\\) y \\(\\sum_{i=1}^{k} p_i = 1\\). Su función de densidad conjunta es: \\[ f(\\mathbf{x}) = P[\\mathbf{X} = \\mathbf{x}] = \\frac{n!}{x_1!x_2!\\cdots x_k!} p_1^{x_1} p_2^{x_2} \\dots p_k^{x_k} \\] donde \\(x_i\\) son enteros no negativos tales que \\(\\sum_{i=1}^{k} x_i = n\\). 4.3.3 Relación con la distribución binomial Esta distribución puede verse como una generalización de la distribución binomial en el que, en lugar de tener dos posibles resultados, tenemos \\(r\\) resultados posibles. 4.3.4 Un caso particular: La distribución trinomial Veamos un ejemplo propio del análisis de secuencias en el que se aplica esta distribución: Si consideramos el alineamiento de dos secuencias \\(x, y\\) de tamaño \\(n\\), podemos observar: $A_1 $: \\(x_i\\) alineado con $y_i $, con $P(A_1) = p_1 $ $A_2 $: \\(x_i\\) alineado con “-”, con $P(A_2) = p_2 $ $A_3 $: “-” alineado con $y_i $, con $P(A_3) = 1 - p_1 - p_2 $ La variable $(X_1, X_2) $, que cuenta el número de veces que se observa \\(A_1, A_2\\) (con $X_3 = n - X_1 - X_2 $), sigue una distribución trinomial de parámetros \\(n\\), $p_1 $, $p_2 $. Obsérvese que, dado que el total de observaciones \\(n\\) está prefijado, aunque haya tres categorías, \\(A_1\\), \\(A_2\\), \\(A_3\\) el número de observaciones de \\(A_3\\) es el total menos la suma de las observaciones de \\(A_1+A_2\\). O dicho de otra forma el número de probabilidades que són parámetros de la distribución es \\(n-1=2\\), lo que junto con \\(n\\) que es otyro parámetro determina que “trinomial” se refiera tanto al total de categorías como al número de parámetros, aunque, en realidad tan sólo hay dos componentes \\(X_1\\) y \\(X_2\\) independientes (concepto este que se definirá con precisión más adelante). Estudiamos los posibles alineamientos de dos secuencias de 5 nucleótidos, en un contexto en el que las probabilidades de \\(A_1\\) y \\(A_2\\) son, respectivamente 0.6 y 0.2, es decir una Trinomial M(5; 0.6, 0.2) que dan lugar a la tabla siguiente. \\(X_{1} \\backslash X_{2}\\) 0 1 2 3 4 5 0 (0,0,5) (0,1,4) (0,2,3) (0,3,2) (0,4,1) (0,5,0) 1 (1,0,4) (1,1,3) (1,2,2) (1,3,1) (1,4,0) 2 (2,0,3) (2,1,2) (2,2,1) (2,3,0) 3 (3,0,2) (3,1,1) (3,2,0) 4 (4,0,1) (4,1,0) 5 (5,0,0) A partir de la tabla anterior podemos determinar las probabilidades conjuntas: \\(X_{1} \\backslash X_{2}\\) 0 1 2 3 4 5 0 0.0003 0.0016 0.0032 0.0032 0.0016 0.0003 1 0.0048 0.0192 0.0288 0.0192 0.0048 2 0.0288 0.0864 0.0864 0.0288 3 0.0864 0.1728 0.0864 4 0.1296 0.1296 5 0.0778 4.4 Distribuciones marginales Dado un vector aleatorio, puede interesar el comportamiento individual de una o cada una de sus componentes \\(X_i\\). La distribución de la componente \\(i\\)-ésima se denomina distribución marginal de \\(X_i\\). Representa el comportamiento de \\(X_i\\) sin tener en cuenta las otras componentes, es decir, como si fuera una variable aleatoria unidimensional. 4.4.1 Las marginales están en los márgenes El nombre de distribución marginal proviene del hecho de que en una distribución bivariada discreta como la trinomial, los valores de una fila coinciden con los valores de \\(X_2\\), y todos los de una columna con los de \\(X_1\\). Los valores en la fila 0 o columna 0 (los márgenes) representan precisamente las distribuciones marginales. 4.4.2 Densidades marginales discretas La densidad marginal de \\(X\\) es: \\[ f_X(x) = f_1(x) = \\sum_j f(x, y_j) \\] y la de \\(Y\\) es: \\[ f_Y(y) = f_2(y) = \\sum_i f(x_i, y) \\] 4.4.3 Trinomial M(5; 0.6, 0.2): Distribuciones marginales \\(X_1 \\backslash X_2\\) 0 1 2 3 4 5 \\(X_2\\) \\(P[X_2 = x]\\) 0 (0,0,5) (0,1,4) (0,2,3) (0,3,2) (0,4,1) (0,5,0) 0 0.0102 1 (1,0,4) (1,1,3) (1,2,2) (1,3,1) (1,4,0) 1 0.0768 2 (2,0,3) (2,1,2) (2,2,1) (2,3,0) 2 0.2304 3 (3,0,2) (3,1,1) (3,2,0) 3 0.3456 4 (4,0,1) (4,1,0) 4 0.2592 5 (5,0,0) 5 0.0778 X_2 0 1 2 3 4 5 1.0000 \\(P[X_2 = x]\\) 0.3277 0.4096 0.2048 0.0512 0.0064 0.0003 1.0000 4.5 Distribuciones condicionales A veces nos interesa la distribución de una componente si conocemos que la otra ha tomado un valor determinado. En el ejemplo de los alineamientos, podríamos querer conocer los posibles valores y probabilidades de un alineamiento, si sabemos que hay exactamente un “gap” en la secuencia de prueba. 4.5.1 Densidad condicional ¿Qué podemos decir de la distribución de \\(Y\\) si conocemos el valor de \\(X\\)? \\[ f(y \\mid X = x) = P[Y = y \\mid X = x] = \\frac{P[X = x, Y = y]}{P[X = x]} = \\frac{f(x, y)}{f_X(x)} \\] siempre que \\(f_X(x) > 0\\). 4.5.2 Trinomial M(5; 0.6, 0.2): Distribución condicional Distribución de \\(X_1\\) condicionada a que \\(X_2 = 1\\). \\((X_1, 1)\\) \\(P(X_1, 1)\\) \\(P_{X_2}(1)\\) \\(P(X_1 \\mid X_2 = 1)\\) (0,1,4) 0.002 0.41 0.004 (1,1,3) 0.019 0.41 0.047 (2,1,2) 0.086 0.41 0.211 (3,1,1) 0.173 0.41 0.422 (4,1,0) 0.13 0.41 0.316 Total 1 4.6 Vectores aleatorios absolutamente continuos Diremos que \\((X, Y)\\) es absolutamente continua si existe una función \\(f(x, y)\\), llamada función de densidad conjunta absolutamente continua o bivariada, tal que, para todo \\((x, y) \\in \\mathbb{R}^2\\), \\[ F(x, y) = \\int_{-\\infty}^{x} \\int_{-\\infty}^{y} f(u, v)\\, du \\, dv \\] Si existe, la función de densidad absolutamente continua es única. 4.6.1 Propiedades de la función de densidad conjunta \\(f(x, y) \\geq 0\\) La masa total de probabilidad es 1: \\[ \\int_{-\\infty}^{\\infty} \\int_{-\\infty}^{\\infty} f(x, y)\\, dx\\,dy = 1 \\] Para cualquier conjunto \\(S\\): \\[ P\\{(X, Y) \\in S\\} = \\int_S f(x, y) \\, dx \\, dy \\] En particular, la probabilidad de que \\((X, Y)\\) esté en un rectángulo: \\[ P(a_1 < X \\leq a_2, b_1 < Y \\leq b_2) = \\int_{a_1}^{a_2} \\int_{b_1}^{b_2} f(x, y) \\, dx \\, dy \\] 4.6.2 Densidades marginales en el caso continuo Las densidades marginales son: \\[ f_X(x) = \\int_{-\\infty}^{\\infty} f(x, y) \\, dy \\] \\[ f_Y(y) = \\int_{-\\infty}^{\\infty} f(x, y) \\, dx \\] 4.6.3 Densidad condicional en el caso continuo La densidad de \\(Y\\) condicionada a un valor de \\(X\\) es: \\[ f(y \\mid X = x) = \\frac{f(x, y)}{f_X(x)} \\] siempre que \\(f_X(x) > 0\\). 4.6.4 La Distribución Normal Bivariante El ejemplo más importante de una distribución de probabilidad absolutamente continua para vectores aleatorios es la distribución normal bivariante. Esta distribución describe dos variables aleatorias continuas, \\(X\\) y \\(Y\\), cuya relación está modelada por una correlación lineal y tiene forma de campana (gaussiana) en dos dimensiones. 4.6.4.1 Función de Densidad Conjunta La función de densidad conjunta de la distribución normal bivariante con medias \\(\\mu_X\\), \\(\\mu_Y\\), desviaciones estándar \\(\\sigma_X\\), \\(\\sigma_Y\\) y coeficiente de correlación \\(\\rho\\) es: \\[ f(x, y) = \\frac{1}{2 \\pi \\sigma_X \\sigma_Y \\sqrt{1 - \\rho^2}} \\exp \\left( -\\frac{1}{2(1 - \\rho^2)} \\left[ \\frac{(x - \\mu_X)^2}{\\sigma_X^2} + \\frac{(y - \\mu_Y)^2}{\\sigma_Y^2} - \\frac{2\\rho(x - \\mu_X)(y - \\mu_Y)}{\\sigma_X \\sigma_Y} \\right] \\right) \\] Esta expresión se generaliza fácilmente de la distribución normal univariante, pero en este caso incluye términos adicionales que representan la interacción entre \\(X\\) y \\(Y\\). 4.6.4.2 Ejemplo En vez de proporcionar un código para visualizar la distribución normal bivariante podéis seguir este enlace: https://datasciencegenie.com/3d-contour-plots-of-bivariate-normal-distribution/ en donde se extiende lo que acabamos de discutir y se proporciona algunos ejemplos con R. 4.6.4.3 Distribuciones Marginales Para obtener las distribuciones marginales a partir de una normal bivariante, debemos integrar la densidad conjunta sobre una de las variables. Dado que estamos trabajando con una distribución normal bivariante, su densidad conjunta está dada por: \\[ f_{X,Y}(x, y) = \\frac{1}{2 \\pi \\sigma_X \\sigma_Y \\sqrt{1 - \\rho^2}} \\exp\\left( -\\frac{1}{2(1 - \\rho^2)} \\left[ \\frac{(x - \\mu_X)^2}{\\sigma_X^2} + \\frac{(y - \\mu_Y)^2}{\\sigma_Y^2} - \\frac{2\\rho(x - \\mu_X)(y - \\mu_Y)}{\\sigma_X \\sigma_Y} \\right] \\right) \\] Para obtener la marginal de \\(X\\), debemos integrar sobre \\(Y\\): \\[ f_X(x) = \\int_{-\\infty}^{\\infty} f_{X,Y}(x, y) \\, dy \\] Al realizar esta integral, se obtiene que la distribución marginal de \\(X\\) es: \\[ f_X(x) = \\frac{1}{\\sqrt{2 \\pi \\sigma_X^2}} \\exp\\left( -\\frac{(x - \\mu_X)^2}{2 \\sigma_X^2} \\right) \\] Esto muestra que \\(X\\) sigue una distribución normal con media \\(\\mu_X\\) y varianza \\(\\sigma_X^2\\), es decir, \\(X \\sim N(\\mu_X, \\sigma_X^2)\\). Del mismo modo, para la marginal de \\(Y\\), integramos sobre \\(X\\): \\[ f_Y(y) = \\int_{-\\infty}^{\\infty} f_{X,Y}(x, y) \\, dx \\] La solución de esta integral da: \\[ f_Y(y) = \\frac{1}{\\sqrt{2 \\pi \\sigma_Y^2}} \\exp\\left( -\\frac{(y - \\mu_Y)^2}{2 \\sigma_Y^2} \\right) \\] Lo que significa que \\(Y\\) sigue una distribución normal con media \\(\\mu_Y\\) y varianza \\(\\sigma_Y^2\\), es decir, \\(Y \\sim N(\\mu_Y, \\sigma_Y^2)\\). 4.6.4.4 Ejemplo Supongamos que tenemos una distribución normal bivariante con los siguientes parámetros: \\(\\mu_X = 100\\), \\(\\sigma_X = 15\\) \\(\\mu_Y = 50\\), \\(\\sigma_Y = 10\\) \\(\\rho = 0.5\\) La densidad conjunta es: \\[ f_{X,Y}(x, y) = \\frac{1}{2 \\pi (15)(10) \\sqrt{1 - 0.5^2}} \\exp\\left( -\\frac{1}{2(1 - 0.5^2)} \\left[ \\frac{(x - 100)^2}{15^2} + \\frac{(y - 50)^2}{10^2} - \\frac{2(0.5)(x - 100)(y - 50)}{(15)(10)} \\right] \\right) \\] Integrando sobre \\(Y\\), obtenemos la distribución marginal de \\(X\\): \\[ f_X(x) = \\frac{1}{\\sqrt{2 \\pi (15^2)}} \\exp\\left( -\\frac{(x - 100)^2}{2 \\cdot 15^2} \\right) \\] De manera análoga, la marginal de \\(Y\\) es: \\[ f_Y(y) = \\frac{1}{\\sqrt{2 \\pi (10^2)}} \\exp\\left( -\\frac{(y - 50)^2}{2 \\cdot 10^2} \\right) \\] 4.6.5 Distribuciones Condicionales La distribución condicional de una variable dado un valor específico de la otra también es normal univariante. Por ejemplo, la distribución condicional de \\(X\\) dado \\(Y = y\\) es: \\[ X \\mid Y = y \\sim N \\left( \\mu_X + \\rho \\frac{\\sigma_X}{\\sigma_Y} (y - \\mu_Y), (1 - \\rho^2)\\sigma_X^2 \\right) \\] De forma análoga, la distribución condicional de \\(Y\\) dado \\(X = x\\) es: \\[ Y \\mid X = x \\sim N \\left( \\mu_Y + \\rho \\frac{\\sigma_Y}{\\sigma_X} (x - \\mu_X), (1 - \\rho^2)\\sigma_Y^2 \\right) \\] 4.6.5.1 Ejemplo Podemos calcular la distribución condicional de \\(X\\) dado que \\(Y = 180\\) cm, y mostrar cómo cambia la distribución de \\(X\\) bajo esta condición: # Valores originales mu <- c(100, 50) sigma <- c(15, 10) rho <- 0.5 # Condicionar X dado Y = 180 y_cond <- 180 mu_cond <- mu[1] + 0.6 * (10/7) * (y_cond - mu[2]) sigma_cond <- sqrt(1 - 0.6^2) * 10 # Mostrar la media y desviación estándar condicionales mu_cond ## [1] 211.4286 sigma_cond ## [1] 8 Esto nos dice que el peso medio de una persona con altura de 180 cm es mayor que el peso medio de la población total, y su desviación estándar es menor debido a la correlación positiva entre peso y altura. 4.7 Independencia de variables aleatorias Una vez introducido el concepto de distribución conjunta pasamos a estudiar un caso particularmente importante de distribución conjunta, la independencia. De forma aparentemente contradictoria, en este caso, las variables se caracterizan por el hecho de que no varían conjuntamente sino que lo hacen independientemente las unas de las otras. De manera intuitiva podemos decir que dos variables aleatorias son independientes si los valores que toma una de ellas no afectan a los de la otra ni a sus probabilidades. En muchas ocasiones la independencia será evidente a partir del experimento, por ejemplo, es independiente el resultado del lanzamiento de un dado y el de una moneda tres veces. Por tanto las variables: \\(X_1\\): “Puntuación obtenida con el dado” y \\(X_2\\): “Número de caras obtenidas al lanzar tres veces una moneda” serán variables independientes. En otras ocasiones tenemos una dependencia clara, por ejemplo, al lanzar un dado consideremos las variables \\(Y_1=\\): puntuación del dado, \\(Y_2=\\): variable indicadora de puntuación par. Es evidente que existe una clara dependencia, si sabemos que \\(Y=1\\), la variable \\(X\\) sólo puede tomar los valores 2 , 4 o 6 ; si sabemos que \\(X=3\\), entonces, \\(Y=0\\) forzosamente. Algunas veces podemos suponer la existencia de una cierta relación entre variables, aunque sea en forma algo abstracta y sin concretar. Por ejemplo si realizamos unas mediciones sobre unos individuos, las variables altura en cm y peso en Kg probablemente estarán relacionadas, los valores de una influirán en los valores de la otra. Intentar determinar la naturaleza exacta de la relación entre ambas es lo que en estadística conocemos como un problema de correlación (si nos interesa unicamente la asociación) o de regresión (si uqeremos modelizar una variable en función d ela otra). Si queremos una definición algo más formal, basta con que recordemos que dos sucesos son independientes si la probabilidad de la intersección es igual al producto de probabilidades, aplicando esta definición a sucesos del tipo \\(X \\leq a\\) tenemos la definición siguiente: 4.7.1 Primera caracterización de la independencia Diremos que dos variables aleatorias \\(X\\) e \\(Y\\) son independientes si y sólo si su función de distribución conjunta puede expresarse como el producto de las funciones de distribución marginales, es decir si \\[ F_{X,Y}(x,y)= P\\left( (X \\leq x) \\cap (Y \\leq b)\\right)=P(X \\leq x) \\times P(Y \\leq y)=F_{X}(x) \\times F_{Y}(y) \\] Fijémonos que, como en otros casos, la función que nos permite caracterizar una condición de forma general es la función de distribución. 4.7.1.1 Variables discretas independientes En el caso de las variables discretas la caracterización de la independencia puede hacerse, además, por las funciones de masa de probabilidad: Diremos que dos variables aleatorias discretas \\(X\\) e \\(Y\\) son independientes si y sólo si su función de masa de probabilidad conjunta puede expresarse como el producto de las funciones de masa de probabilidad marginales, es decir si \\[ f_{X,Y}(x,y)= P\\left( (X = x) \\cap (Y = y)\\right)=P(X = x) \\times P(Y = y)=f_{X}(x) \\times f_{Y}(y) \\] 4.7.2 Propiedades de las variables independientes Como consecuencia inmediata de la independencia de \\(X\\) e \\(Y\\), se cumple lo siguiente: \\[ P(a<X \\leq c \\cap b<Y \\leq d)=P(a<X \\leq c) \\cdot P(b<Y \\leq d) \\] Que podría re-enunciarse diciendo que la probabilidad conjunta en un rectangulo definido por los valores “a, c, b, d” es el producto de las probabilidades marginales en los segmentos “ac”, para \\(X\\) y “bd” para \\(Y\\). 4.8 Momentos de vectores aleatorios Una vez hemos introducido los vectores aleatorios, que como hemos señalado, son variables aleatorias bi, tri o \\(n\\)-dimensionales tiene sentido preguntarse como se extienden a dichos vectores los conceptos y propiedades que introdujimos para variables aleatorias unidimensionales. Ya hemos visto como, para las funciones de probabilidad, la función de densidad o la función de distribución, existen extensiones imediatas, la función de densidad conjunta o la función de distribución conjunmta. Hemos visto también que, además de dichas extensiones, aparecen nuevos conceptos, que sólo tienen sentido en dos o más dimensiones, como las funciones de densidad condicionales o funciones de densidad marginales. Al considerar conceptos como la media o la varianza veremos que sucede algo similar: Por un lado conceptos como el de esperanza se extiende imediatamente al vector de medias. Por otro, conceptos como la varianza, han de tener en cuenta ahora, la posibilidad de variación conjunta entre dos o más variables lo que lleva a introducir magnitudes como la covarianza y la correlación. La extensión del concepto de varianza pasa ahora a combinar extensiones y conceptos nuevos en lo que se conoce como matriz de varianzas-covarianzas. 4.8.1 Esperanza de un vector aleatorio o vector de medias La esperanza matemática de un vector aleatorio es un vector que contiene las esperanzas matemáticas de cada una de las componentes de dicho vector. Si tenemos un vector aleatorio bivariante \\(\\mathbf{X}=(X_1,X_2)\\), su esperanza \\(\\mathbb{E}(\\mathbf{X})\\) está dada por: \\[ \\mathbb{E}(\\mathbf{X})= \\begin{pmatrix} \\mathbb{E}(X_1)\\\\ \\mathbb{E}(X_2) \\end{pmatrix} \\] Consideremos un experimento en el que estamos midiendo el nivel de expresión génica de dos genes \\(X_1\\) y \\(X_2\\) en una muestra de células. Si los niveles promedio de expresión son \\(\\mu_1=5\\) y \\(\\mu_2=8\\), entonces la esperanza del vector aleatorio sería: \\[ \\mathbb{E}(\\mathbf{X})= \\begin{pmatrix} 5\\\\ 8 \\end{pmatrix} \\] 4.8.2 Covarianza entre dos variables aleatorias La covarianza entre dos variables aleatorias \\(X_1\\) y \\(X_2\\) es una medida del grado de dependencia lineal entre ellas. La covarianza se define como \\[ \\text{Cov}(X_1,X_2)=\\mathbb{E}[(X_1-\\mathbb{E}(X_1))(X_2-\\mathbb{E}(X_2))] \\] Supongamos que estamos midiendo la cantidad de dos metabolitos \\(X_1\\) y \\(X_2\\) en una muestra, y queremos saber si sus concentraciones tienden a aumentar o disminuir juntas. Si obtenemos una covarianza de 0.5, y conocemos la escala en que varían los datos, podemos concluir que existe ligera tendencia a que los aumentos en \\(X_1\\) estén asociados con aumentos en \\(X_2\\). 4.8.3 Covarianza y correlación El ejemplo anterior es claramente insatisfactorio, puesto que valores de 0.5 pueden sugerir una gran dependencia o cas ninguna, segun cual sea la escala o el rango de variación de los valores que se consideran. Para evitar esta arbitrariedad se introduce la correlación lineal. La correlación entre dos variables aleatorias es una medida estandarizada del grado de dependencia lineal entre dos variables (es decir de lacovarianza), que toma valores entre -1 y 1 y que se define como: \\[ \\text{Corr}(X_1,X_2)=\\frac{\\text{Cov}(X_1,X_2)}{\\sqrt{\\text{Var}(X_1)\\text{Var}(X_2)}} \\] En el caso de los metabolitos mencionados anteriormente, si \\(\\text{Cov}(X_1,X_2)=0.5\\), \\(\\text{Var}(X_1)=2\\) y \\(\\text{Var}(X_2)=3\\), podemos calcular la correlación, que valdría: \\[ \\text{Corr}(X_1,X_2)=\\frac{0.5}{\\sqrt{2\\times 3}}=\\frac{0.5}{\\sqrt{6}}\\approx 0.204 \\] Esto indica una correlación positiva débil entre las concentraciones de los dos metabolitos. Obsérvese, sin embargo que si en vez de los valores anteriores para las varianzas de \\(X\\) e \\(Y\\) hubiéramos tenido \\(\\text{Var}(X_1)=1\\) y \\(\\text{Var}(X_2)=.5\\) el valor de la correlación habría sido: \\[ \\text{Corr}(X_1,X_2)=\\frac{0.5}{\\sqrt{1\\times 0.5}}=\\frac{0.5}{\\sqrt{0.5}}\\approx 0.7071 \\] Este ejemplo muestra como la correlación aporta más información sobre la dependencia lineal, puesto que, además de tener en cuenta la variación conjunta, tiene en cuenta la variabilidad individual de cada componente. 4.8.4 Matriz de varianzas-covarianzas La matriz de varianzas-covarianzas de un vector aleatorio \\(\\mathbf{X}=(X_1,X_2)\\) es una matriz que contiene las varianzas de las componentes en la diagonal y las covarianzas fuera de la diagonal. Está definida como: \\[ \\text{Cov}(\\mathbf{X})= \\begin{pmatrix} \\text{Var}(X_1)&\\text{Cov}(X_1,X_2)\\\\ \\text{Cov}(X_2,X_1)&\\text{Var}(X_2) \\end{pmatrix} \\] Siguiendo con el ejemplo de los metabolitos, si \\(\\text{Var}(X_1)=2\\), \\(\\text{Var}(X_2)=3\\), y la covarianza es \\(0.5\\), la matriz de covarianzas sería: \\[ \\text{Cov}(\\mathbf{X})= \\begin{pmatrix} 2&0.5\\\\ 0.5&3 \\end{pmatrix} \\] Esto nos indica la dispersión de cada variable y la relación entre ambas. La distribución normal bivariante Una de las distribuciones más importantes que describe el comportamiento conjunto de dos variables aleatorias es la distribución normal bivariante. Un vector aleatorio \\(\\mathbf{X}=(X_1,X_2)\\) tiene una distribución normal bivariante si su función de densidad conjunta está dada por: \\[ f(x_1,x_2)=\\frac{1}{2\\pi\\sigma_1\\sigma_2\\sqrt{1-\\rho^2}}\\exp\\left(-\\frac{1}{2(1-\\rho^2)}\\left[\\frac{(x_1-\\mu_1)^2}{\\sigma_1^2}-2\\rho\\frac{(x_1-\\mu_1)(x_2-\\mu_2)}{\\sigma_1\\sigma_2}+\\frac{(x_2-\\mu_2)^2}{\\sigma_2^2}\\right]\\right) \\] Aquí, \\(\\mu_1\\) y \\(\\mu_2\\) son las medias de \\(X_1\\) y \\(X_2\\), \\(\\sigma_1^2\\) y \\(\\sigma_2^2\\) son las varianzas, y \\(\\rho\\) es el coeficiente de correlación. 4.8.5 Matriz de correlaciones La matriz de correlaciones de un vector aleatorio bivariante \\(\\mathbf{X}=(X_1,X_2)\\) es una matriz simétrica \\(2\\times 2\\) que contiene los coeficientes de correlación entre las componentes \\(X_1\\) y \\(X_2\\). La correlación mide la relación lineal entre las variables y se define como: \\[ \\text{Corr}(X_1,X_2)=\\frac{\\text{Cov}(X_1,X_2)}{\\sqrt{\\text{Var}(X_1)\\text{Var}(X_2)}} \\] La matriz de correlaciones \\(\\text{Corr}(\\mathbf{X})\\) está dada por: \\[ \\text{Corr}(\\mathbf{X})= \\begin{pmatrix} 1 & \\text{Corr}(X_1,X_2)\\\\ \\text{Corr}(X_2,X_1) & 1 \\end{pmatrix} \\] Dado que \\(\\text{Corr}(X_1,X_2)=\\text{Corr}(X_2,X_1)\\), la matriz es simétrica, y los elementos diagonales son siempre \\(1\\) porque la correlación de una variable consigo misma es \\(1\\). 4.8.5.1 Relación con la matriz de covarianzas La matriz de correlaciones está relacionada con la matriz de covarianzas de la forma siguiente: Si \\(\\Sigma\\) es la matriz de covarianzas de \\(\\mathbf{X}=(X_1,X_2)\\), con \\(\\Sigma=\\begin{pmatrix} \\text{Var}(X_1) & \\text{Cov}(X_1,X_2)\\\\ \\text{Cov}(X_2,X_1) & \\text{Var}(X_2) \\end{pmatrix}\\), la matriz de correlaciones se obtiene “normalizando” cada covarianza dividiendo por el producto de las desviaciones estándar de las respectivas variables: \\[ \\text{Corr}(\\mathbf{X})= \\begin{pmatrix} 1 & \\frac{\\text{Cov}(X_1,X_2)}{\\sigma_1\\sigma_2}\\\\ \\frac{\\text{Cov}(X_2,X_1)}{\\sigma_1\\sigma_2} & 1 \\end{pmatrix} \\] donde \\(\\sigma_1=\\sqrt{\\text{Var}(X_1)}\\) y \\(\\sigma_2=\\sqrt{\\text{Var}(X_2)}\\). Supongamos que medimos dos variables, como la altura \\(X_1\\) y el peso \\(X_2\\) de un grupo de personas. Sabemos que: \\(\\text{Var}(X_1)=25\\) (varianza de la altura), \\(\\text{Var}(X_2)=100\\) (varianza del peso), \\(\\text{Cov}(X_1,X_2)=40\\) (covarianza entre altura y peso). La matriz de covarianzas sería: \\[ \\Sigma= \\begin{pmatrix} 25 & 40\\\\ 40 & 100 \\end{pmatrix} \\] La correlación entre \\(X_1\\) y \\(X_2\\) se calcula como: \\[ \\text{Corr}(X_1,X_2)=\\frac{40}{\\sqrt{25 \\times 100}}=\\frac{40}{50}=0.8 \\] Por lo tanto, la matriz de correlaciones será: \\[ \\text{Corr}(\\mathbf{X})= \\begin{pmatrix} 1 & 0.8\\\\ 0.8 & 1 \\end{pmatrix} \\] Esto indica una fuerte correlación positiva entre la altura y el peso de las personas en este grupo. La matriz de correlaciones nos proporciona una forma normalizada de comparar la dependencia entre las variables, sin depender de las unidades de medida. 4.8.6 Segunda caracterización de la independencia La independencia entre dos variables aleatorias \\(X_1\\) y \\(X_2\\) puede caracterizarse también a través de sus esperanzas de la siguiente manera: Dos variables son independientes si la esperanza del producto de ambas es igual al producto de las esperanzas de cada una por separado. Es decir si se verifica que: \\[ \\mathbb{E}[X_1 X_2] = \\mathbb{E}[X_1] \\mathbb{E}[X_2] \\] Esta propiedad refleja que, cuando las variables son independientes, el valor esperado del producto no se ve afectado por la interacción entre ellas, lo que implica que no hay dependencia entre las dos. Una consecuencia importante de esta propiedad es cómo afecta a la covarianza entre \\(X_1\\) y \\(X_2\\). Si \\(X_1\\) y \\(X_2\\) son independientes, entonces, por la propiedad anterior, \\(\\mathbb{E}[X_1 X_2] = \\mathbb{E}[X_1] \\mathbb{E}[X_2]\\) lo que, a su vez, significa que la covarianza es cero: \\[ \\text{Cov}(X_1, X_2) = \\mathbb{E}[X_1]\\mathbb{E}[X_2] - \\mathbb{E}[X_1]\\mathbb{E}[X_2] = 0 \\] Por lo tanto, si dos variables son independientes, necesariamente su covarianza es cero. Sin embargo, la inversa no es cierta: el hecho de que la covarianza sea cero no implica que las variables sean independientes. 4.8.7 Relación entre incorrelación e independencia Cuando la covarianza entre dos variables es cero, se dice que las variables son incorreladas. Aunque la independencia implica que las variables son incorreladas, lo contrario no siempre es verdad: dos variables pueden ser incorreladas (tener covarianza cero) pero no independientes. Un ejemplo clásico es el siguiente: si consideramos una variable aleatoria \\(X\\) y definimos \\(Y = X^2\\), entonces, aunque la covarianza entre \\(X\\) y \\(Y\\) puede ser cero (especialmente si \\(X\\) tiene una distribución simétrica alrededor de 0, como la normal estándar), \\(X\\) y \\(Y\\) no son independientes, porque el valor de \\(Y\\) está completamente determinado por \\(X\\). Consideremos dos variables aleatorias \\(X_1\\) y \\(X_2\\) que siguen una distribución normal conjunta bivariante con media cero: \\[ (X_1, X_2) \\sim \\mathcal{N}\\left(\\mathbf{0}, \\Sigma \\right) \\] Si la matriz de covarianzas \\(\\Sigma\\) es diagonal, es decir, \\(\\text{Cov}(X_1, X_2) = 0\\), entonces \\(X_1\\) y \\(X_2\\) son incorreladas. En este caso particular, cuando las variables son normales, la incorrelación sí implica independencia, porque en distribuciones normales la ausencia de correlación (covarianza cero) también implica que no hay ninguna dependencia entre las variables. Sin embargo, en otras distribuciones que no son normales, la incorrelación no garantiza la independencia, lo que subraya la importancia de distinguir entre los dos conceptos. "],["grandes-muestras.html", "Capítulo 5 Grandes muestras 5.1 Introducción: Aproximaciones asintóticas 5.2 Leyes de los grandes números 5.3 El teorema central del límite", " Capítulo 5 Grandes muestras Este capítulo está pendiente de revisión, para corregir posibles problemas derivados de la importación, desde la antigua version en HTML, a la versión actual. Estos problemas siempre serán estéticos y no conceptuales, por lo que la lectura del texto en su estado actual no inducirá a errores conceptuales en ningún caso. La primera sección, además, está pendiente de ser introducida en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). 5.1 Introducción: Aproximaciones asintóticas 5.1.1 Convergencia de variables aleatorias 5.2 Leyes de los grandes números 5.3 El teorema central del límite El teorema central del límite (a partir de ahora, TCL) presenta un doble interés. Por un lado, proporciona a la estadística un resultado crucial para abordar el estudio de la distribución asintótica de muchos tipos de variables aleatorias. Como se verá en próximos capítulos, va a resultar básico en la construcción de contrastes de hipótesis y de intervalos de confianza, dos herramientas esenciales en estadística aplicada. Además, el TCL proporciona una explicación teórica fundamentada a un fenómeno habitual en experimentos reales: las variables estudiadas presentan muchas veces una distribución empírica aproximadamente normal. El TCL forma parte de un conjunto de propiedades relativas a las convergencias de variables aleatorias. En este tema se estudia sólo un tipo de convergencia, la convergencia en ley, ya que es necesaria para entender el enunciado del TCL. Se descarta, pues, en este documento el estudio de los otros tipos de convergencias (en probabilidad, casi segura, etc.) y el estudio de las leyes de los grandes números. Posiblemente el lector con poca formación en análisis matemático hallará alguna dificultad en la primera lectura de la definición de convergencia en ley y en el enunciado del TCL. Si es este el caso, los ejemplos incluidos han de ayudar en su comprensión. Consideramos al TCL un resultado básico con el que hay que familiarizarse, ya que se aplicará repetidamente en los próximos temas. 5.3.1 Sumas de variables aleatorias El TCL estudia el comportamiento de las sumas de variables aleatorias. En temas anteriores se han visto ya ejemplos de sumas de variables aleatorias. Formalmente, la suma de dos variables aleatorias corresponde a la siguiente aplicación: si \\(X_{1}\\) y \\(X_{2}\\) son dos variables aleatorias definidas sobre \\(\\Omega\\), la suma es: \\[ \\begin{aligned} X_{1}+X_{2}: & \\Omega \\rightarrow \\mathbb{R} \\\\ & \\omega \\mapsto X_{1}(\\omega)+X_{2}(\\omega) \\end{aligned} \\] La suma de dos variables puede extenderse sin dificultad a sumas de tres, cuatro,… y, en general, \\(n\\) variables aleatorias. El TCL se ocupa de las sucesiones de variables aleatorias. En el contexto del TCL una sucesión corresponde a un conjunto donde el primer elemento es una variable aleatoria, el segundo elemento es la suma de dos variables aleatorias, el tercero es la suma de tres variables aleatorias, y así sucesivamente. Una sucesión es un conjunto de elementos infinitos, que se designan simbólicamente mediante \\(\\left\\{X_{n}\\right\\}\\). Cada uno de los elementos de la sucesión (que es una variable aleatoria) lleva asociada una determinada función de distribución: \\[ X_{n} \\rightarrow F_{n} \\] Así pues, la sucesión de variables aleatorias lleva asociada una secuencia paralela de funciones de distribución. En los ejemplos se presentan sumas de variables aleatorias de diferentes tipos. 5.3.1.1 Presentación de los ejemplos Ejemplo 1: sumas de variables binomiales. Ejemplo 2: sumas de variables Poisson. Ejemplo 3: sumas de \\(n\\) puntuaciones de dados. Ejemplo 4: sumas de variables uniformes. Ejemplo 5: sumas de variables exponenciales. 5.3.2 Definición de convergencia en ley La siguiente definición se ocupa del comportamiento de las sucesiones. Sea \\(\\left\\{X_{n}\\right\\}\\) una sucesión de variables aleatorias, y sea \\(\\left\\{F_{n}\\right\\}\\) la correspondiente sucesión de funciones de distribución. Se dice que \\(\\left\\{X_{n}\\right\\}\\) converge en ley a una variable aleatoria \\(X\\) de función de distribución \\(F\\) si: \\[ \\lim _{n \\rightarrow \\infty} F_{n}(x)=F(x) \\quad \\text { para todo } \\mathrm{x} \\text { donde } F \\text { es contínua. } \\] Se indica que la sucesión converge en ley mediante el símbolo: \\[ X_{n} \\stackrel{\\mathrm{L}}{\\rightarrow} X \\] El significado de la definición es que, al aumentar arbitrariamente \\(n\\), las sucesivas funciones de distribución de la secuencia se aproximan a la distribución \\(F\\) de la variable \\(X\\). En los ejemplos se presentan gráficamente algunas situaciones donde diferentes sucesiones de variables aleatorias convergen en ley a una variable aleatoria normal. 5.3.2.1 Representación gráfica de la convergencia Ejemplo 1: primeros elementos de una sucesión de sumas de variables binomiales. Ejemplo 2: primeros elementos de una sucesión de sumas de variables Poisson. Ejemplo 3: primeros elementos de una sucesión de sumas de variables discretas. Ejemplo 4: primeros elementos de una sucesión de sumas de variables uniformes. Ejemplo 5: primeros elementos de una sucesión de sumas de variables exponenciales. 5.3.3 Enunciado del teorema central del límite A continuación se presenta el enunciado del TCL en la versión de Lindeberg y Lévy. Teorema: Sea \\(X_{1}, X_{2}, \\ldots, X_{n}\\), un conjunto de variables aleatorias independientes idénticamente distribuidas, cada una de ellas con función de distribución \\(F\\), y supongamos que \\(E\\left(X_{k}\\right)\\) \\(=\\mu \\mathrm{y} \\operatorname{var}\\left(X_{k}\\right)=\\sigma^{2}\\) para cualquier elemento del conjunto. Si designamos a la suma normalizada de \\(n\\) términos con el símbolo: \\[ S_{n}^{*}=\\frac{X_{1}+X_{2}+\\cdots+X_{n}-n \\mu}{\\sigma \\sqrt{n}} \\] entonces la sucesión de sumas normalizadas converge en ley a la variable aleatoria normal tipificada \\(\\mathrm{Z} \\sim N(0,1)\\), es decir: \\[ S_{n}^{*} \\xrightarrow{\\mathrm{L}} \\] El teorema anterior tiene dos importantes corolarios: Si consideramos la suma ordinaria de las \\(n\\) variables aleatorias, es decir, \\(S_{n}=X_{1}+X_{2}+\\ldots+X_{n}\\), entonces la sucesión de sumas ordinarias converge en ley a una normal de media \\(n \\mu\\) y varianza \\(n \\sigma^{2}\\). Si consideramos el promedio de las \\(n\\) variables aleatorias, es decir, \\(n^{-1} S_{n}\\), entonces la sucesión de promedios converge en ley a una normal de media \\(\\mu\\) y varianza \\(n^{-1} \\sigma^{2}\\). 5.3.3.1 Comentarios al teorema: La convergencia a la normal tipificada se produce con cualquier tipo de variable que cumpla las condiciones del teorema, sea discreta o absolutamente continua. Un sinónimo para indicar que una sucesión converge en ley a una normal es señalar que es asintóticamente normal. El TCL presenta el comportamiento de sumas infinitas de variables aleatorias. Veremos posteriormente como interpretar el resultado para valores finitos. Existen otras versiones del TCL dónde se relajan las condiciones de la versión de Lindeberg y Lévy, que, como se ha visto, obliga a las variables aleatorias a tener idénticas medias y varianzas. Dichas versiones del TCL necesitan el conocimiento de conceptos matemáticos que exceden el nivel al que se orienta Statmedia, y por esta razón se omite su enunciado. 5.3.4 Aplicación del TCL a los ejemplos Ejemplo 1: normalidad asintótica de la Binomial. Ejemplo 2: normalidad asintótica de la Poisson. Ejemplo 3: normalidad asintótica de la suma de puntuaciones de un dado. Ejemplo 4: normalidad asintótica de la suma de uniformes. Ejemplo 5: normalidad asintótica de la suma de exponenciales. 5.3.5 Casos particulares más notables Aunque el TCL tiene multitud de casos particulares interesantes, son especialmente relevantes para el desarrollo de los próximos temas los siguientes casos: 5.3.5.1 Promedio de \\(\\boldsymbol{n}\\) variables aleatorias Al considerar \\(n\\) variables independientes, todas con la misma distribución, cada una de ellas con esperanza igual a \\(\\mu\\) y varianza igual a \\(\\sigma^{2}\\), el promedio es asintóticamente normal con media \\(\\mu\\) y varianza \\(n^{-1} \\sigma^{2}\\). Este resultado proporciona una distribución asintótica a la media de \\(n\\) observaciones en el muestreo aleatorio simple que se estudiará en el próximo tema. 5.3.5.2 Binomial de parámetros \\(n\\) y \\(p\\) Es asintóticamente normal con media \\(n p\\) y varianza \\(n p\\) (1-p). Históricamente (de Moivre, 1733), es el primer resultado demostrado de convergencia a una normal. 5.3.5.3 Poisson de parámetro \\(n \\lambda\\) Es asintóticamente normal con media \\(n \\lambda\\) y varianza \\(n \\lambda\\). 5.3.6 Interpretación del teorema central del límite El TCL hace referencia a sucesiones infinitas, por tanto, la igualdad de las distribuciones se alcanza sólo en el límite, y hace mención a una distribución final teórica o de referencia. Sin embargo, puede utilizarse esta distribución final de referencia para aproximar distribuciones correspondientes a sumas finitas. Algunos casos particulares importantes (binomial, Poisson, etc.) alcanzan grados de aproximación suficientes para sumas con no demasiados términos. Los resultados que se indican a continuación son, por tanto, aproximaciones que se consideran usualmente suficientes, pero conllevan errores numéricos de aproximación. Binomial: aproximar si \\(n \\geq 30\\) y \\(0.1 \\leq p \\leq 0.9\\) a una normal de media \\(n p\\), varianza \\(n p(1-p)\\). Ver aquí más detalles. Poisson: aproximar si \\(\\lambda \\geq 10\\) a una normal de media \\(\\lambda\\) y varianza \\(\\lambda\\). Ver aquí más detalles. Para evaluar aproximadamente el error cometido en las aproximaciones, puede consultarse los cuadros gráficos de los ejemplos de este tema. El TCL permite aproximar funciones de distribución, independientemente del carácter (continuo o discreto) de las variables sumadas. No sirve, por tanto, para aproximar la funciones de densidad discretas por una normal. En el caso continuo sí puede establecerse también una convergencia de las densidades asociadas. Finalmente, es conveniente mencionar que existen resultados teóricos que permiten estudiar la velocidad de convergencia de una suma de variables aleatorias a la normal, sin embargo la dificultad técnica que conllevan trasciende el nivel marcado para el conjunto de documentos marcado para Statmedia. 5.3.7 Aproximaciones y errores numéricos Ejemplo 1: error en la aproximación de la binomial. Ejemplo 2: error en la aproximación de la Poisson. Ejemplo 3: error en la aproximación de la suma de puntuaciones de un dado. Ejemplo 4: error en la aproximación de la suma de uniformes. Ejemplo 5: error en la aproximación de la suma de exponenciales. 5.3.8 Acerca de las variables aproximadamente normales En general, cuando se estudia en experimentos reales una determinada variable no se conoce su distribución teórica. Sin embargo, puede establecerse su distribución empirica a partir de una muestra más o menos amplia. Una forma habitual de presentar la distribución empírica es construir el histograma de clases de dicha variable. Es un hecho conocido desde el siglo XIX que esta distribución empírica presenta muchas veces una forma que es aproximadamente normal. Por ejemplo, al realizar un estudio sobre el peso de adultos varones de dieciocho años en Catalunya, se observó la distribución siguiente en la muestra: El TCL permite dar una explicación a este fenómeno. La variable peso de un adulto viene determinada en cada individuo por la conjunción de multitud de diferentes factores. Algunos de estos factores son ambientales (dietas, ejercicio, enfermedades, etc.) y otros son congénitos. Con el nivel actual de conocimiento no se pueden desglosar completamente todos los factores que intervienen, pero puede aceptarse en cambio que la variable peso es el resultante de la suma de diferentes variables primarias, congénitas o ambientales, y que posiblemente no todas tienen el mismo grado de influencia. Seguramente, estas variables primarias tampoco tienen la misma media, varianza o, incluso, la misma distribución. La versión del TCL que se ha presentado aquí exige estas condiciones para la convergencia a la normal, pero, como ya se ha comentado antes otras versiones más elaboradas del TCL permiten modelar la suma de variables de forma menos restringida. En este contexto, al considerar la variable peso como una suma más o menos extensa (pero finita) de diferentes variables primarias, es esperable que ocurra que la variable resultante, el peso, siga una distribución aproximadamente normal. De forma similar es explicable la normalidad aproximada que se observa en muchas variables biométricas (pesos, alturas, longitudes, concentraciones de metabolitos, distribuciones de edad, etc.) así cómo en muchos otros contextos (distribución de rentas, errores de medición, etc.). A pesar de esta ubicuidad de la distribución normal, el lector no debe inferir que es forzosamente, ni mucho menos, la distribución de referencia en todo estudio aplicado. "],["introducción-a-la-inferencia-estadística.html", "Capítulo 6 Introducción a la inferencia estadística 6.1 Inferencia estadística 6.2 Problemas de inferencia estadística 6.3 Distribución de la población 6.4 Muestra aleatoria simple 6.5 Estadísticos 6.6 Distribución en el muestreo de un estadístico 6.7 La distribución empírica 6.8 Los momentos muestrales 6.9 Distribución en el muestreo de los momentos muestrales 6.10 Propiedades asintóticas de los momentos muestrales 6.11 Muestreo en poblaciones normales", " Capítulo 6 Introducción a la inferencia estadística 6.1 Inferencia estadística Para comenzar, vamos a definir cuál es el ámbito de estudio de la inferencia estadística desde su relación con el cálculo de probabilidades. El cálculo de probabilidades proporciona una teoría matemática que permite analizar (o modelizar) las propiedades de los fenómenos donde interviene el azar. El cálculo de probabilidades utiliza como modelo básico para cualquier situación aleatoria el concepto de espacio de probabilidades \\((\\Omega, \\mathcal{A}, P)\\) y una variable aleatoria \\(X: \\Omega \\rightarrow \\mathbb{R}\\) definida sobre él. El conocimiento de la distribución de la variable aleatoria permite: Análisis deductivo de situaciones. Por ejemplo: si asumimos que el peso de los recién nacidos se distribuye según una distribución \\(N(\\mu=\\) \\(3 \\mathrm{~kg}, \\sigma=0.25 \\mathrm{~kg}\\) ), nos puede interesar calcular la probabilidad de que un recién nacido pese entre 2.9 y 3.1 kg , o encontrar unos valores centrados en la media entre los cuales esperemos que se encuentren el \\(10 \\%(25 \\%, 50 \\%, 95 \\%, \\ldots)\\) de los recién nacidos. Modelización de situaciones aleatorias. Por ejemplo: si asumimos que el tiempo, en años, hasta que se estropea un componente de un ordenador se distribuye según una distribución exponencial \\(T \\sim \\xi(\\lambda=\\) \\(0.3)\\), nos puede interesar calcular la probabilidad de que un componente dado dure más de 4 años. En los casos anteriores nos encontramos en una situación muy común, donde ya disponemos de un modelo sobre el cual efectuamos los cálculos, pero del cual desconocemos la procedencia. Parece razonable, y de hecho es precisamente así, que si queremos adaptar un modelo a una situación debamos basarnos únicamente en las observaciones del fenómeno. Si queremos saber cómo se distribuyen los pesos de los recién nacidos tomaremos unos cuantos, los pesaremos y después observaremos la distribución de estos. Puede que no sea necesario pesar a todos los recién nacidos (jde hecho, no es posible!), pero tampoco es posible deducir la ley por consideraciones puramente teóricas. Ahora, en lugar de partir de un espacio de probabilidades, partiremos de unas observaciones \\(\\left(x_{1}, \\ldots, x_{n}\\right)\\) y el objetivo que perseguiremos será obtener información sobre la distribución de probabilidades de un fenómeno a partir de una observación no exhaustiva del mismo. 6.2 Problemas de inferencia estadística Hemos presentado como objetivo de la inferencia estadística inducir propiedades del modelo probabilístico que representa la población a partir de un conjunto de observaciones. Según el tipo de conclusión que queramos extraer, diferenciaremos diferentes tipos de problemas: Si queremos utilizar la información proporcionada por la muestra para obtener un pronóstico numérico único (es decir, una única aproximación numérica) de una o más características de la población, tenemos un problema de estimación puntual. Si queremos obtener información sobre un rango de valores dentro del cual podamos afirmar, con un cierto grado de confianza, que podemos capturar un parámetro desconocido de la distribución, hablamos de estimación por intervalo. Si lo que queremos hacer es decidir si podemos aceptar o debemos rechazar una afirmación sobre la distribución de probabilidad del fenómeno estudiado, hablamos de contraste de hipótesis. Este contraste puede ser: Paramétrico: si la afirmación (la hipótesis) se refiere a los parámetros de la distribución. No paramétrico: si la afirmación es sobre la forma de la distribución. 6.3 Distribución de la población Todo problema de inferencia está motivado por un cierto grado de desconocimiento de la ley de probabilidades que rige un determinado fenómeno aleatorio. El caso más sencillo que encontramos es cuando nos interesa una cierta variable \\(X\\) con una función de distribución \\(F\\) desconocida en mayor o menor grado. La distribución que teóricamente sigue la variable de interés \\(X\\) en la población recibe el nombre de distribución teórica o distribución de la población. La distribución de la población es importante ya que, a menudo, se utiliza para determinar la distribución de alguna característica de los individuos de una población. En los modelos de la inferencia estadística indicamos el relativo grado de desconocimiento sobre la distribución \\(F\\) en función de su pertenencia a una familia \\(\\mathcal{F}\\) de distribuciones. Por ello, en lugar de explicar que \\(X \\sim F=F_{0}\\) indicaremos que \\(X \\sim F \\in \\mathcal{F}\\), donde \\(\\mathcal{F}\\) puede ser un conjunto más o menos amplio de distribuciones de probabilidad, como todas las distribuciones normales o las distribuciones simétricas o las distribuciones discretas sobre \\(\\mathbb{N}\\). Muchas veces, la distribución poblacional \\(F\\) está completamente especificada excepto por el valor de algún parámetro o parámetros. En este caso, podemos concretar más la forma de la familia de distribuciones: \\[ X \\sim F \\in \\mathcal{F}=\\left\\{F_{\\theta}: \\theta \\in \\Theta \\subset \\mathbb{R}^{k}\\right\\} \\] donde \\(\\Theta\\) es el espacio de los \\(k\\) parámetros. La familia de posibles distribuciones de probabilidad para \\(X\\) se denomina, genéricamente, modelo estadístico y se indica como: \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\). Veamos algunos ejemplos. Ejemplo 1.3.1 Supongamos que \\(X\\) representa la duración de un componente electrónico que no envejece, solo se estropea. Es decir, si en un instante \\(t\\) está funcionando, su estado es el mismo que en cualquier momento del pasado y la distribución del tiempo hasta que se estropee es la misma que al principio. Esta propiedad se denomina falta de memoria. Un modelo razonable para esta situación lo da la distribución de Weibull que, en este caso, podemos definir a través de la siguiente función de densidad: \\[ f_{\\theta}(x)= \\begin{cases}\\alpha \\beta x^{\\beta-1} e^{-\\alpha x^{\\beta}} & \\text { si } x \\geq 0 \\\\ 0 & \\text { si } x<0\\end{cases} \\] La familia de distribuciones asociada es \\[ \\mathcal{F}=\\left\\{F_{\\theta}: \\theta=(\\alpha, \\beta) \\in(0, \\infty) \\times(0, \\infty)\\right\\} \\] Ejemplo 1.3.2 Supongamos que queremos determinar la masa de un cierto tipo de partículas elementales a partir de las observaciones en una cámara de burbujas. En cada observación obtenemos un dato de la masa de la partícula \\(x_{i}\\) y asociado con ella un cierto error de medida \\(\\varepsilon\\). Si la masa común de cada una de ellas es \\(\\mu\\), entonces podemos escribir: \\[ x_{i}=\\mu+\\varepsilon_{i} \\quad i=1, \\ldots, n \\] donde la distribución \\(\\varepsilon_{i} \\sim F\\) es desconocida. Nuestro objetivo es obtener información sobre \\(F\\). Si admitimos que \\(P\\left(\\varepsilon_{i}<0\\right)=P\\left(\\varepsilon_{i}>0\\right)\\), según el grado de exigencia que queramos tener, podemos suponer: Con un enfoque de inferencia paramétrica: \\[ X \\sim F \\in \\mathcal{F}=\\left\\{N(0, \\sigma): \\sigma \\in \\mathbb{R}^{+}\\right\\} \\] Con un enfoque de inferencia no paramétrica: \\[ X \\sim F \\in \\mathcal{F}=\\{\\text { Distribuciones simétricas }\\} \\] 6.4 Muestra aleatoria simple 6.4.1 Definición Para estudiar un problema de inferencia estadística analizamos una muestra de tamaño \\(n\\). Se trata de escoger \\(n\\) individuos o elementos de la población \\(\\Omega\\) \\[ \\omega_{1}, \\omega_{2}, \\ldots, \\omega_{n} \\] que sean representativos. El valor de \\(n\\) y la forma de elección de los individuos de la muestra es una materia de Estadística llamada Muestreo estadístico. Por ahora y para simplificar, solo hace falta decir que la elección se hace de forma que todos los individuos tienen la misma probabilidad de estar presentes en la muestra, si es necesario con reemplazo, y que el valor de \\(n\\) está dado. En realidad, lo que nos interesa verdaderamente no son los individuos de la muestra sino las mediciones de una característica \\(X\\) sobre ellos. Es decir, los valores de una variable aleatoria \\(X\\) sobre estos individuos \\[ X\\left(\\omega_{1}\\right)=x_{1}, X\\left(\\omega_{2}\\right)=x_{2}, \\ldots, X\\left(\\omega_{n}\\right)=x_{n} \\] También podemos pensar que los valores muestrales \\(x_{1}, x_{2}, \\ldots, x_{n}\\) son generados directamente desde la variable aleatoria. En todo caso, los valores muestrales no son únicos y podemos generar varias muestras \\[ \\begin{array}{ccccc} x_{1}^{1} & x_{2}^{1} & x_{3}^{1} & \\ldots & x_{n}^{1} \\\\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \\ldots & x_{n}^{2} \\\\ \\vdots & \\vdots & \\vdots & & \\vdots \\\\ x_{1}^{s} & x_{2}^{s} & x_{3}^{s} & \\ldots & x_{n}^{s} \\end{array} \\] Si todos los valores son independientes, de la misma forma que \\(x_{1}, x_{2}, x_{3}, \\ldots, x_{n}\\) es una muestra generada por \\(X\\), podemos considerar todos los \\(x_{1}^{i} \\quad i=1, \\ldots, s\\) provenientes de una variable aleatoria \\(X_{1}\\) con la misma distribución que \\(X\\) \\(X_{1} \\stackrel{d}{=} X\\) y que genera los primeros valores, los \\(x_{i}^{2}\\) provenientes de una variable aleatoria \\(X_{2} \\stackrel{d}{=} X\\) que genera los segundos y así sucesivamente. Todo esto nos lleva a definir el concepto de muestra aleatoria de una forma muy conveniente para trabajar con ella: Definició 1.1 Una muestra aleatoria simple de tamaño \\(n\\) de una variable aleatoria \\(X\\) con distribución \\(F\\) es una colección de \\(n\\) variables aleatorias independientes \\(X_{1}, X_{2}, \\ldots, X_{n}\\) con la misma distribución \\(F\\) que \\(X\\). Esto se suele indicar como: \\[ \\mathbf{X}=X_{1}, X_{2}, \\ldots, X_{n} \\stackrel{i . i . d}{\\sim} X \\] Definició 1.2 El conjunto \\(\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right) \\in \\mathbb{R}^{n}\\) de observaciones concretas de \\(X_{1}, X_{2}, \\ldots, X_{n}\\) se denomina realización de la muestra. 6.4.2 Distribución de la muestra Una muestra aleatoria simple, como vector aleatorio \\(n\\)-dimensional que es, tiene una distribución conjunta o distribución de la muestra que depende de \\(F\\), pero que obviamente es diferente, ya que en particular \\(X\\) y \\(\\mathbf{X}\\) tienen dimensiones diferentes. Sin embargo, gracias a la independencia de las variables \\(X_{1}, X_{2}, \\ldots, X_{n}\\), la función de distribución conjunta de \\(\\mathbf{X}\\), que podría ser muy complicada, toma una forma muy sencilla. En resumen: Definició 1.3 Se llama distribución de la muestra de una variable aleatoria \\(X \\sim F\\) a la distribución del vector aleatorio \\(n\\)-dimensional \\(\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\) \\[ G\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right)=F\\left(x_{1}\\right) F\\left(x_{2}\\right) \\cdots F\\left(x_{n}\\right) \\] En los casos particulares en que \\(X\\) sea discreta o absolutamente continua, la distribución conjunta de la muestra suele expresarse mediante la función de masa de probabilidad o la función de densidad: Para variables discretas: \\[ \\begin{aligned} p_{G}\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right) & =P\\left(X_{1}=x_{1}, X_{2}=x_{2}, \\ldots, X_{n}=x_{n}\\right) \\\\ & =\\prod_{i=1}^{n} P\\left(X=x_{i}\\right)=\\prod_{i=1}^{n} p_{F}\\left(x_{i}\\right), \\end{aligned} \\] Para variables absolutamente continuas: \\[ g\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right)=\\prod_{i=1}^{n} f\\left(x_{i}\\right) \\] Ejemplo 1.4.1 Una moneda tiene una probabilidad \\(\\theta\\) de salir cara. Queremos estudiar la variable aleatoria: \\[ X= \\begin{cases}1 & \\text { si sale cara } \\\\ 0 & \\text { si sale cruz }\\end{cases} \\] con densidad \\(P\\{X=1\\}=\\theta, P\\{X=0\\}=1-\\theta\\). Es decir \\[ X \\sim F_{\\theta} \\in \\mathcal{F}=\\left\\{F_{\\theta}=B(1, \\theta): \\theta \\in(0,1)\\right\\} \\] Supongamos que hacemos tres lanzamientos. Las posibles muestras son: \\(X_{1}\\) \\(X_{2}\\) \\(X_{3}\\) Probabilidad 1 1 1 \\(\\theta^{3}\\) 1 0 0 \\(\\theta(1-\\theta)^{2}\\) 0 1 0 \\(\\theta(1-\\theta)^{2}\\) 0 0 1 \\(\\theta(1-\\theta)^{2}\\) 1 0 1 \\(\\theta^{2}(1-\\theta)\\) 1 1 0 \\(\\theta^{2}(1-\\theta)\\) 0 1 1 \\(\\theta^{2}(1-\\theta)\\) 0 0 0 \\((1-\\theta)^{3}\\) El muestreo ha especificado la distribución conjunta de la muestra a través de la distribución desconocida \\(F_{\\theta}\\). Si escribimos la función de probabilidades de la variable aleatoria como \\(f_{\\theta}(x)=\\theta^{x}(1-\\theta)^{1-x}\\), entonces la función de probabilidades de la muestra la podemos expresar como: \\[ g_{\\theta}\\left(x_{1}, x_{2}, x_{3}\\right)=\\theta^{x_{1}+x_{2}+x_{3}}(1-\\theta)^{3-\\left(x_{1}+x_{2}+x_{3}\\right)} \\] 6.5 Estadísticos 6.5.1 Definición Para lograr el objetivo de realizar inferencias sobre la población a partir de la muestra, solemos basarnos en la realización de cálculos sobre la muestra para tratar de obtener la información que deseamos. En este proceso aparecen los conceptos de estadístico y el caso particular, que más nos interesa a nosotros, de estimador. Un estadístico es una función de la muestra que no depende del valor del parámetro. Definició 1.4 Dada una muestra aleatoria simple \\(X_{1}, X_{2}, \\ldots, X_{n}\\) y una función medible \\(T: \\mathbb{R}^{n} \\longrightarrow \\mathbb{R}^{k}\\), entonces \\(T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\) es un vector aleatorio (variable aleatoria cuando \\(k=1\\) ). Si \\(T\\) no depende de \\(\\theta\\) (donde \\(\\theta\\) es un parámetro a especificar en \\(F_{\\theta}\\) ), entonces \\(T\\) recibe el nombre de estadístico. Solo por su nombre, parece evidente que un estimador de un parámetro \\(\\theta\\) será alguna función de la muestra que sirva para aproximar, en algún sentido, el valor desconocido de \\(\\theta\\). Si añadimos la condición razonable de que un estimador no pueda tomar valores que no puede tomar el parámetro, podemos dar la siguiente definición. Definició 1.5 Un estimador de un parámetro \\(\\theta\\) es un estadístico \\(T\\) cuyo recorrido es el espacio de los parámetros, es decir: \\[ \\begin{array}{ccc} T: & \\mathbb{R}^{n} & \\longrightarrow \\\\ \\left(x_{1}, x_{2}, \\ldots, x_{n}\\right) & \\longrightarrow \\\\ \\left(t_{1}, \\ldots, t_{k}\\right) \\quad \\in \\Theta \\subset \\mathbb{R}^{k} \\end{array} \\] Aquí tienes el texto traducido al castellano manteniendo toda la notación en LaTeX: 6.6 Distribución en el muestreo de un estadístico Dado un estadístico \\(T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\) nos interesa conocer su distribución de probabilidad, ya que para hacer inferencia necesitaremos hacer cálculos del tipo \\[ P\\left[T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)>t_{0}\\right] \\] La distribución de probabilidad del estadístico se denomina distribución muestral o distribución en el muestreo del estadístico. Encontrarla es un problema que puede ser desde bastante sencillo hasta extremadamente complicado. Algunas de las técnicas utilizadas para intentar resolverlo son las siguientes: Uso de la técnica de cambio de variable. Uso de la función generadora de momentos. Aplicación del Teorema Central del Límite. Ejemplo 1.5.1 Sea \\(X \\sim F_{\\theta}\\) una variable aleatoria absolutamente continua con densidad \\[ f_{\\theta}(x)=e^{-(x-\\theta)} e^{-e^{-(x-\\theta)}} \\quad \\theta \\in \\mathbb{R} \\] y consideremos el estadístico \\[ T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)=\\sum_{i=1}^{n} e^{-X_{i}} \\] Si aplicamos el teorema de cambio de variable unidimensional, se obtiene fácilmente que la variable aleatoria \\(Y=e^{-X}\\) sigue una distribución exponencial de parámetro \\(e^{-\\theta}\\), de donde la suma seguirá una distribución gamma \\(T \\sim \\Gamma\\left(e^{-\\theta}, n\\right)\\). Ejemplo 1.5.2 Supongamos que \\(X\\) representa el número de averías en una máquina al cabo de un mes. Este valor varía mes a mes. Sea \\(\\bar{X}\\) la media de averías en \\(n\\) meses. Si \\(X\\) sigue una distribución de Poisson \\(P(\\lambda)\\), ¿cuál es la distribución de \\(\\bar{X}\\) ? Como la suma de Poisson i.i.d. es \\(\\sum_{i=1}^{n} X_{i} \\sim P(n \\lambda)\\) \\[ P[\\bar{X}=r]=P\\left[\\sum_{i=1}^{n} X_{i}=n r\\right]=\\frac{e^{-n \\lambda}(n \\lambda)^{n r}}{(n r)!} \\] Como ocurre en este ejemplo, uno de los estadísticos para el cual a menudo deseamos calcular la distribución en el muestreo es la media aritmética. Una manera útil de hacerlo es con la función generadora de momentos y la aplicación del siguiente lema. Lema 1 Si \\(X\\) es una v.a. con \\(M_{X}(t)\\) como función generadora de momentos, entonces la f.g.m. de \\(\\bar{X}_{n}=\\frac{1}{n} \\sum_{i=1}^{n} X_{i}\\) es \\[ M_{\\bar{X}_{n}}(t)=\\left[M_{X}(t / n)\\right]^{n} \\] 6.6.1 Demostración: La demostración es inmediata a partir de la definición o por las propiedades de la función generadora de momentos. Si aplicamos directamente la definición de la f.g.m tenemos: \\[ \\begin{aligned} E\\left(e^{t \\bar{X}_{n}}\\right) & =E\\left(e^{t \\frac{1}{n} \\sum_{i=1}^{n} X_{i}}\\right)=E\\left(\\prod_{i=1}^{n} e^{\\frac{t}{n} X_{i}}\\right)=\\prod_{i=1}^{n} E\\left(e^{\\frac{t}{n} X_{i}}\\right) \\\\ & =\\prod_{i=1}^{n} M_{X_{i}}(t / n)=\\left[M_{X}(t / n)\\right]^{n} \\end{aligned} \\] Si usamos las propiedades de la f.g.m tenemos: Dado que \\(M_{a X}(t)=M_{X}(a t)\\) y si \\(a=\\frac{1}{n}\\), entonces \\(M_{\\bar{X}}(t)=M_{\\sum_{i=1}^{n} X_{i}}(t / n)\\). \\(M_{\\sum_{i=1}^{n} X_{i}}(t / n) \\stackrel{\\text { ind }}{=} \\prod_{i=1}^{n} M_{X_{i}}(t / n) \\stackrel{\\text { id }}{=}\\left[M_{X}(t / n)\\right]^{n}\\). Ejemplo 1.5.3 Para una variable aleatoria \\(X \\sim N(\\mu, \\sigma)\\) y por tanto \\(M_{X}(t)=\\) \\(\\exp \\left(t \\mu+\\frac{t^{2} \\sigma^{2}}{2}\\right)\\), entonces \\[ \\begin{aligned} M_{\\bar{X}_{n}}(t) & =\\left[\\exp \\left(\\frac{t \\mu}{n}+\\frac{t^{2} \\sigma^{2}}{n^{2} 2}\\right)\\right]^{n} \\\\ & =\\exp \\left[n\\left(\\frac{t \\mu}{n}+\\frac{t^{2} \\sigma^{2}}{n^{2} 2}\\right)\\right] \\\\ & =\\exp \\left[t \\mu+\\frac{1}{2} t^{2}\\left(\\frac{\\sigma}{\\sqrt{n}}\\right)^{2}\\right] \\end{aligned} \\] que es la función generadora de momentos de una variable \\(N(\\mu, \\sigma / \\sqrt{n})\\). 6.7 La distribución empírica 6.7.1 Definición En el apartado anterior hemos visto que a partir de una muestra \\(X_{1}, X_{2}, \\ldots, X_{n}\\) es interesante considerar la distribución muestral como la distribución conjunta del vector aleatorio \\(\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\), sin que intervenga una realización concreta de la muestra \\(x_{1}, x_{2}, \\ldots, x_{n}\\). Un enfoque diferente consiste en asociar una distribución particular directamente a las observaciones \\(x_{1}, x_{2}, \\ldots, x_{n}\\) con la intención de que, en tanto que la muestra “representa” la v.a. \\(X\\), esta distribución asociada a la muestra \\(F_{n}(x)\\) emule la distribución de la población. Esta distribución se denomina distribución empírica o distribución muestral y se define así: \\[ F_{n}(x)=\\frac{k(x)}{n} \\] donde \\(k(x)\\) es el número de datos muestrales menores o iguales que \\(x\\). En la práctica se construye por ordenación de la muestra \\[ x_{1}, x_{2}, \\ldots, x_{n} \\longrightarrow x_{(1)} \\leq x_{(2)} \\leq \\cdots \\leq x_{(n)} \\] y con la siguiente definición: \\[ F_{n}(x)= \\begin{cases}0 & \\text { si } x<x_{(1)} \\\\ \\frac{k}{n} & \\text { si } x_{(k)} \\leq x<x_{(k+1)} \\\\ 1 & \\text { si } x_{(n)} \\leq x\\end{cases} \\] Ejemplo 1.6.1 Extraemos una muestra y obtenemos: \\(x_{1}\\) \\(x_{2}\\) \\(x_{3}\\) \\(x_{4}\\) \\(x_{5}\\) \\(x_{6}\\) \\(x_{7}\\) 5.1 3.4 1.2 17.6 2.1 16.4 4.3 Una vez ordenada queda: \\(x_{(1)}\\) \\(x_{(2)}\\) \\(x_{(3)}\\) \\(x_{(4)}\\) \\(x_{(5)}\\) \\(x_{(6)}\\) \\(x_{(7)}\\) \\(x_{3}\\) \\(x_{5}\\) \\(x_{2}\\) \\(x_{7}\\) \\(x_{1}\\) \\(x_{6}\\) \\(x_{4}\\) 1.2 2.1 3.4 4.3 5.1 16.4 17.6 y si hacemos la representación gráfica: Figura 1.1: Función de distribución empírica con los datos del ejemplo La distribución empírica refleja exclusivamente los valores observados en la muestra y, por lo tanto, no se relaciona directamente ni con la distribución conjunta de la muestra \\(G\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right)\\) ni con la distribución de la población \\(F\\). 6.8 Los momentos muestrales 6.8.1 Definición Sea \\(F_{n}\\) la v.a. que tiene \\(F_{n}(x)\\) por distribución. La función de densidad de probabilidad de \\(F_{n}\\) es una densidad discreta que asigna probabilidades \\(1 / n\\) a cada una de las observaciones muestrales \\(x_{1}, x_{2}, \\ldots, x_{n}\\). Así pues, tiene sentido calcular sus momentos, que se conocen como momentos muestrales \\(a_{k}\\), y también sus momentos muestrales centrados respecto a la media \\(b_{k}\\). \\[ \\begin{aligned} a_{k} & =E\\left(F_{n}^{k}\\right)=\\sum_{i=1}^{n} x_{i}^{k} \\cdot P\\left(F_{n}=x_{i}\\right)=\\sum_{i=1}^{n} x_{i}^{k} \\cdot \\frac{1}{n}=\\frac{1}{n} \\sum_{i=1}^{n} x_{i}^{k} \\\\ b_{k} & =\\frac{1}{n} \\sum_{i=1}^{n}\\left(x_{i}-\\bar{x}\\right)^{k} \\end{aligned} \\] Observamos que dos medidas conocidas de la estadística descriptiva adquieren un significado diferente: Media muestral \\(=\\) Media de la distribución muestral \\[ a_{1}=\\frac{1}{n} \\sum_{i=1}^{n} x_{i} \\] Varianza muestral \\(=\\) Varianza de la distribución muestral \\[ b_{2}=\\frac{1}{n} \\sum_{i=1}^{n}\\left(x_{i}-\\bar{x}\\right)^{2} \\] 6.9 Distribución en el muestreo de los momentos muestrales Dada una m.a.s. \\(X_{1}, X_{2}, \\ldots, X_{n}\\), los momentos muestrales son estadísticos y, como tales, tienen su distribución en el muestreo. Por ejemplo, \\(a_{k}=\\) \\(\\frac{1}{n} \\sum_{i=1}^{n} X_{i}^{k}\\). La distribución en cada caso puede ser compleja y depender de la distribución poblacional subyacente. Lo que sí es posible calcular son los momentos de los momentos muestrales o, mejor dicho, los momentos de las distribuciones en el muestreo de los momentos muestrales. Si consideramos \\(a_{k}=\\frac{1}{n} \\sum_{i=1}^{n} X_{i}^{k}\\) y escribimos \\(\\alpha_{k}=E\\left(X^{k}\\right)\\) como el momento poblacional de orden \\(k\\), tenemos: \\[ \\begin{aligned} E\\left(a_{k}\\right) & =E\\left(\\frac{1}{n} \\sum_{i=1}^{n} X_{i}^{k}\\right)=\\frac{1}{n} \\cdot n \\cdot \\alpha_{k}=\\alpha_{k} \\\\ \\operatorname{var}\\left(a_{k}\\right) & =\\operatorname{var}\\left(\\frac{1}{n} \\sum_{i=1}^{n} X_{i}^{k}\\right)=\\frac{1}{n^{2}} \\sum_{i=1}^{n} \\operatorname{var}\\left(X_{i}^{k}\\right)=\\frac{1}{n} \\operatorname{var}\\left(X^{k}\\right) \\\\ & =\\frac{1}{n}\\left[E\\left(X^{2 k}\\right)-\\left(E\\left(X^{k}\\right)\\right)^{2}\\right]=\\frac{\\alpha_{2 k}-\\alpha_{k}^{2}}{n} \\end{aligned} \\] Si consideramos \\(s^{2}=b_{2}=\\frac{1}{n} \\sum_{i=1}^{n}\\left(X_{i}-\\bar{X}\\right)^{2}=\\frac{1}{n} \\sum_{i=1}^{n} X_{i}^{2}-\\bar{X}^{2}\\), podemos calcular: \\[ \\begin{aligned} E\\left(s^{2}\\right) & =\\frac{1}{n} \\sum_{i=1}^{n} E\\left(X_{i}^{2}\\right)-E(\\bar{X})^{2}=\\alpha_{2}-\\left(\\frac{\\sigma^{2}}{n}+\\mu^{2}\\right) \\\\ & =\\left(\\sigma^{2}+\\mu^{2}\\right)-\\left(\\frac{\\sigma^{2}}{n}+\\mu^{2}\\right)=\\frac{n-1}{n} \\sigma^{2} \\end{aligned} \\] El cálculo de la varianza de \\(s^{2}\\) es laborioso \\({ }^{1}\\) y no lo haremos aquí. Su valor es \\[ \\operatorname{var}\\left(s^{2}\\right)=\\frac{\\mu_{4}-\\mu_{2}^{2}}{n}-\\frac{2\\left(\\mu_{4}-2 \\mu_{2}^{2}\\right)}{n^{2}}+\\frac{\\mu_{4}-3 \\mu_{2}^{2}}{n^{3}} \\] donde \\(\\mu_{k}\\) es el momento poblacional centrado de orden \\(k\\). 6.10 Propiedades asintóticas de los momentos muestrales 6.10.1 Convergencia de los momentos muestrales Los momentos muestrales, tanto respecto al origen como respecto a la media, convergen hacia los momentos poblacionales. Es posible establecer la convergencia basándose en la ley fuerte de los grandes números (convergencia casi [^0]segura) o en la ley débil (convergencia en probabilidad). Si nos limitamos a esta última podemos afirmar que \\[ a_{k} \\xrightarrow{P} \\alpha_{k} \\quad \\text { es decir } \\quad \\lim _{n \\rightarrow \\infty} P\\left[\\left|a_{k}-\\alpha_{k}\\right| \\geq \\epsilon\\right]=0 \\] La prueba se basa en la desigualdad de Tchebychev. Si suponemos que \\(\\alpha_{2 k}<\\infty\\), tenemos \\[ P\\left[\\left|a_{k}-\\alpha_{k}\\right| \\geq \\epsilon\\right] \\leq \\frac{E\\left|a_{k}-\\alpha_{k}\\right|^{2}}{\\epsilon^{2}}=\\frac{\\operatorname{var}\\left(a_{k}\\right)}{\\epsilon^{2}}=\\frac{\\alpha_{2 k}-\\alpha_{k}^{2}}{n \\epsilon^{2}} \\longrightarrow 0 \\] Esta propiedad es importante porque hará posible el concepto de estimador consistente y en ella se basa un método de estimación llamado método de los momentos. 6.10.2 Distribución asintótica Si consideramos el momento muestral \\(a_{k}=\\frac{1}{n} \\sum_{i=1}^{n} X_{i}^{k}\\), entonces \\(n \\cdot a_{k}\\) es una suma de variables aleatorias i.i.d. a la que podemos aplicar el Teorema Central del Límite. Como hemos visto: \\[ E\\left(n a_{k}\\right)=n \\alpha_{k} \\quad \\operatorname{var}\\left(n a_{k}\\right)=n^{2} \\operatorname{var}\\left(a_{k}\\right)=n^{2} \\frac{\\alpha_{2 k}-\\alpha_{k}^{2}}{n} \\] y por el Teorema Central del Límite de Lindeberg-Levy la variable \\[ \\frac{n a_{k}-E\\left(n a_{k}\\right)}{\\sqrt{\\operatorname{var}\\left(n a_{k}\\right)}}=\\frac{n a_{k}-n \\alpha_{k}}{n \\sqrt{\\operatorname{var}\\left(a_{k}\\right)}}=\\frac{a_{k}-\\alpha_{k}}{\\sqrt{\\operatorname{var}\\left(a_{k}\\right)}} \\] verifica \\[ \\frac{a_{k}-\\alpha_{k}}{\\sqrt{\\operatorname{var}\\left(a_{k}\\right)}} \\xrightarrow{\\mathcal{L}} N(0,1) \\] es decir \\[ a_{k} \\sim A N\\left(\\alpha_{k}, \\sqrt{\\frac{\\alpha_{2 k}-\\alpha_{k}^{2}}{n}}\\right) \\] 6.11 Muestreo en poblaciones normales Como hemos visto, a partir de una m.a.s. \\(X_{1}, X_{2}, \\ldots, X_{n}\\) y si consideramos un estadístico \\(T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\), puede resultar complicado obtener su distribución en el muestreo. Esta distribución depende de: La forma funcional de \\(T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\). La distribución subyacente de \\(X\\), es decir, la distribución de la población. Hay un caso especial en el que el problema se ha estudiado en profundidad para algunos estadísticos de gran importancia práctica. Si \\(X \\sim N(\\mu, \\sigma)\\) es posible encontrar la distribución de los estadísticos más utilizados como \\(\\bar{X}\\) y \\(S^{2}=\\sum_{i=1}^{n}\\left(X_{i}-\\bar{X}\\right)^{2}\\). De hecho, obtendremos la distribución de funciones de estos estadísticos como \\[ \\frac{\\bar{X}-\\mu}{s / \\sqrt{n-1}} ; \\quad \\frac{n s^{2}}{\\sigma^{2}} ; \\quad \\bar{X}_{1}-\\bar{X}_{2} ; \\quad \\frac{S_{1}^{2} /\\left(n_{1}-1\\right)}{S_{2}^{2} /\\left(n_{2}-1\\right)} \\] donde \\(s^{2}=(1 / n) S^{2}\\). En el estudio de las distribuciones de estos estadísticos aparecen algunas distribuciones de probabilidad que han resultado ser de gran utilidad. Son las llamadas “distribuciones derivadas de la normal” y se conocen por el nombre del investigador que las formuló: la \\(\\chi^{2}\\) chi-cuadrado de Pearson la \\(t\\) de Student (Gosset) la \\(F\\) de Fisher-Snedecor 6.11.1 La distribución chi-cuadrado Sean \\(X_{1}, X_{2}, \\ldots, X_{k}\\) un conjunto de v.a. independientes sobre un mismo espacio de probabilidad \\((\\Omega, \\mathcal{A}, P)\\) y con distribución común \\(N(0,1)\\). Consideremos la variable \\[ Y=X_{1}^{2}+X_{2}^{2}+\\cdots+X_{k}^{2} \\] La distribución de la variable \\(Y\\) se llama chi-cuadrado con \\(k\\) grados de libertad. La función de densidad de la variable aleatoria \\(Y\\) es \\[ f(x)=\\frac{1}{\\Gamma(k / 2) 2^{k / 2}} e^{-x / 2} x^{k / 2-1} \\quad \\text { si } x>0 \\] De modo que resulta que \\(Y=\\sum_{i=1}^{k} X_{i}^{2}\\) tiene una distribución gamma \\(G\\left(\\frac{1}{2}, \\frac{k}{2}\\right)\\) y su f.g.m. es \\[ M(t)=(1-2 t)^{-k / 2} \\quad \\text { si } t<1 / 2 \\] 6.11.1.1 Propiedades Si recordamos que para \\(X \\sim G(p, \\alpha)\\) entonces \\(E(X)=\\frac{p}{\\alpha} \\mathrm{y} \\operatorname{var}(X)=\\) \\(\\frac{p}{\\alpha^{2}}\\), resulta \\[ E(Y)=\\frac{k / 2}{1 / 2}=k \\quad \\operatorname{var}(Y)=\\frac{k / 2}{1 / 4}=2 k \\] De la aditividad (reproductividad) de las leyes gamma se deduce también la reproductividad de la chi-cuadrado \\(\\chi^{2}\\), es decir \\[ Y_{1}^{2} \\sim \\chi_{n_{1}}^{2}, Y_{2}^{2} \\sim \\chi_{n_{2}}^{2} \\quad \\text { indep. } \\longrightarrow Y_{1}^{2}+Y_{2}^{2} \\sim \\chi_{n_{1}+n_{2}}^{2} \\] Como \\(Y\\) es la suma de v.a. independientes \\(X_{i}^{2} \\sim \\chi_{1}^{2}\\) se verifica \\[ \\frac{Y-k}{\\sqrt{2 k}} \\xrightarrow{\\mathcal{L}} N(0,1) \\] Pero es mejor la aproximación de Fisher \\[ \\sqrt{2 \\chi_{k}^{2}}-\\sqrt{2 k-1} \\xrightarrow{\\mathcal{L}} N(0,1) \\] de donde se obtiene para valores de \\(k \\geq 30\\) \\[ \\chi_{k}^{2} \\stackrel{\\text { aprox }}{=} \\frac{1}{2}(Z+\\sqrt{2 k-1})^{2} \\] donde \\(Z \\sim N(0,1)\\). 6.11.2 Distribución \\(t\\) de Student Sean \\(Y, Z\\) dos variables aleatorias independientes con distribuciones \\(Z \\sim\\) \\(N(0,1)\\) y \\(Y \\sim \\chi_{m}^{2}\\), entonces se dice que la variable aleatoria \\[ t=\\frac{Z}{\\sqrt{Y / m}} \\] tiene una distribución \\(t\\) de Student con \\(m\\) grados de libertad. Su función de densidad es \\[ f(t)=\\frac{\\Gamma\\left(\\frac{m+1}{2}\\right)}{\\Gamma\\left(\\frac{m}{2}\\right) \\sqrt{m \\pi}}\\left(1+\\frac{t^{2}}{m}\\right)^{-(m+1) / 2} \\quad t \\in \\mathbb{R} \\] Esta expresión se obtiene de la resolución del correspondiente problema de cambio de variable para encontrar la distribución de un cociente. Se trata de una distribución unimodal y simétrica respecto al cero. La distribución depende de \\(m\\), que llamamos los grados de libertad (g.l.). A medida que \\(m\\) crece, la forma acampanada se va “cerrando”, acercándose a la ley normal: \\[ \\left(1+\\frac{t^{2}}{m}\\right)^{-(m+1) / 2} \\xrightarrow{m \\rightarrow \\infty} e^{-t^{2} / 2} \\] Este hecho es muy relevante en inferencia estadística. 6.11.2.1 Propiedades Si \\(m=1\\), entonces la \\(t\\) es una Cauchy y, en particular, no tiene esperanza. Para \\(m>1, E(t)=0\\) y para \\(m>2, \\operatorname{var}(t)=m /(m-2)\\). Cuando \\(m \\rightarrow \\infty\\), entonces \\(t \\xrightarrow{P} N(0,1)\\). 6.11.3 La distribución \\(F\\) de Fisher Esta distribución aparece cuando se considera un cociente entre dos distribuciones chi-cuadrado \\(U \\sim \\chi_{m}^{2}, V \\sim \\chi_{n}^{2}\\) con \\(m\\) y \\(n\\) g.l. respectivamente. En concreto decimos que la variable aleatoria \\[ F=\\frac{U / m}{V / n} \\] sigue una distribución \\(F\\) de Fisher con \\(m\\) y \\(n\\) grados de libertad. La función de densidad tiene la forma: \\[ f(x)=\\frac{m^{m / 2} n^{n / 2} \\Gamma[(m+n) / 2]}{\\Gamma(m / 2) \\Gamma(n / 2)} \\cdot \\frac{x^{m / 2-1}}{(m x+n)^{(m+n) / 2}} \\quad \\text { para } x>0 \\] 6.11.3.1 Propiedades La esperanza y la varianza son \\[ E(F)=\\frac{n}{n-2} \\quad \\operatorname{var}(F)=\\frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)} \\] Esta distribución tiene una moda en \\(x=\\frac{m-2}{m} \\cdot \\frac{n}{n+2}\\), siempre que \\(m>2\\). Si \\(F \\sim F_{m, n}\\), entonces resulta que \\(1 / F \\sim F_{n, m}\\) y por lo tanto: \\[ P(F \\leq x)=P\\left(\\frac{1}{F} \\geq \\frac{1}{x}\\right)=1-P\\left(\\frac{1}{F} \\leq \\frac{1}{x}\\right) \\] Esta propiedad es de gran utilidad en el uso de las tablas. 4. Cuando \\(n \\rightarrow \\infty, F_{m, \\infty} \\xrightarrow{\\mathcal{L}} \\chi_{m}^{2}\\). 5. Cuando \\(m \\rightarrow \\infty\\) y \\(n \\rightarrow \\infty\\), entonces \\(F_{m, n} \\xrightarrow{\\mathcal{L}} 1\\). "],["estimación-puntual.html", "Capítulo 7 Estimación puntual 7.1 El problema de la estimación puntual 7.2 Estudio de las propiedades deseables de los estimadores 7.3 Propiedades de los estimadores consistentes 7.4 Información de Fisher y cota de CramerRao 7.5 Información y verosimilitud de un modelo estadístico 7.6 Información de Fisher 7.7 La desigualdad de Cramer-Rao 7.8 Caracterización del estimador eficiente 7.9 Estadísticos suficientes", " Capítulo 7 Estimación puntual 7.1 El problema de la estimación puntual Informalmente, la estimación de parámetros consiste en buscar aproximaciones a los valores de estos, calculables a partir de una muestra, que sean lo más precisas posible. El problema, claro, es que para medir cuán precisas son estas aproximaciones sería necesario conocer los valores de los parámetros y, como estos son siempre desconocidos, debemos basarnos en el uso de estimadores con buenas propiedades que, en algún sentido, nos garanticen esa proximidad. Más formalmente podemos plantear el problema de la siguiente manera: Sea \\(X\\) una v.a. con distribución \\(F_{\\theta}\\) donde \\(\\theta=\\left(\\theta_{1}, \\ldots, \\theta_{k}\\right) \\in \\Theta \\subset \\mathbb{R}^{k}\\) y sea \\(X_{1}, X_{2}, \\ldots, X_{n}\\) una muestra de \\(n\\) v.a. de \\(X\\). El problema de la estimación puntual consiste en obtener alguna aproximación de \\(\\theta\\) en base a la información disponible en la muestra mediante un estimador de \\(\\theta\\) que definimos a continuación. Definició 2.1 Sea \\(X_{1}, X_{2}, \\ldots, X_{n}\\) una muestra aleatoria simple de \\(X\\) con distribución \\(F_{\\theta}\\) donde \\(\\theta \\in \\Theta \\subset \\mathbb{R}^{k}\\). Un estadístico \\(T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\) se denomina un estimador puntual de \\(\\theta\\) si \\(T\\) es una aplicación de \\(\\mathbb{R}^{n}\\) en \\(\\Theta\\), es decir, si toma valores sobre el mismo conjunto que los parámetros. Ejemplo 2.1.1 Sea \\(X_{1}, X_{2}, \\ldots, X_{n}\\) una muestra aleatoria simple de una v.a. de Poisson \\(X \\sim P(\\lambda)\\). Para estimar \\(\\lambda\\) podemos utilizar: \\[ \\begin{aligned} & T_{1}=\\bar{X}=\\frac{1}{n} \\sum_{i=1}^{n} X_{i} \\\\ & T_{2}=s^{2}=\\frac{1}{n} \\sum_{i=1}^{n}\\left(X_{i}-\\bar{X}\\right)^{2} \\end{aligned} \\] ya que \\(E(X)=\\operatorname{var}(X)=\\lambda\\), pero también \\[ \\begin{aligned} T_{3} & =\\frac{2}{n(n+1)} \\sum_{i=1}^{n} X_{i} \\cdot i \\\\ T_{4} & =X_{i} \\end{aligned} \\] Ejemplo 2.1.2 Sea \\(X_{1}, X_{2}, \\ldots, X_{n}\\) una m.a.s. de \\(X \\sim B(1, p)\\), con \\(p\\) desconocido. Podemos estimar p de las siguientes maneras: \\[ \\begin{aligned} & T_{1}=\\bar{X}=(1 / n) \\sum_{i=1}^{n} X_{i} \\\\ & T_{2}=1 / 2 \\\\ & T_{3}=\\left(X_{1}+X_{2}\\right) / 2 \\end{aligned} \\] En cada caso resulta claro que algunos estimadores no son muy razonables mientras que la decisión entre los otros no está necesariamente clara. Básicamente debemos ocuparnos de dos problemas: Dado un modelo estadístico \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\), ¿cómo podemos obtener estimadores de \\(\\theta\\) que tengan “buenas” propiedades? Dado varios estimadores para un mismo parámetro ¿cómo podemos escoger el mejor en base a algún criterio? Para poder alcanzar estos dos objetivos empezaremos por estudiar las propiedades de los estimadores, así como las medidas de optimalidad que podremos utilizar para decidir entre varios estimadores. De entrada nos restringiremos al caso en que \\(\\Theta \\subseteq \\mathbb{R}\\) o en que queremos aproximar alguna función \\(g(\\theta)\\) de los parámetros donde \\(g\\) es del tipo \\(g: \\Theta \\rightarrow\\) \\(\\mathbb{R}\\). 7.1.1 Criterios de optimalidad de estimadores. El Riesgo Una forma de poder comparar entre diversos estimadores consiste en definir una función de pérdida que nos permita cuantificar de alguna manera la pérdida, o coste asociado, al estimar el valor real del parámetro, es decir, \\(\\theta\\), mediante la aproximación que proporciona un estimador, es decir, \\(t\\). Definició 2.2 Una función de pérdida es una aplicación \\[ \\begin{aligned} L: & \\Theta \\times \\Theta \\rightarrow \\mathbb{R} \\\\ & (\\theta, t) \\rightarrow L(\\theta, t) \\end{aligned} \\] que verifica: a) \\(L(\\theta, t) \\geq 0, \\quad \\forall \\theta, t \\in \\Theta\\) b) \\(L(\\theta, t)=0\\), si \\(\\theta=t\\) c) \\(L(\\theta, t) \\leq L\\left(\\theta, t^{\\prime}\\right)\\), si \\(d(\\theta, t) \\leq d\\left(\\theta, t^{\\prime}\\right)\\) donde \\(d\\) es una distancia en \\(\\Theta\\). Por ejemplo, son funciones de pérdida: \\[ \\begin{gathered} L_{1}(\\theta, t)=|\\theta-t| \\quad L_{2}(\\theta, t)=(\\theta-t)^{2} \\\\ L_{3}(\\theta, t)=\\left|\\frac{\\theta-t}{\\theta}\\right| \\quad L_{4}(\\theta, t)=\\left(\\frac{\\theta-t}{\\theta}\\right)^{2} \\\\ L_{5}(\\theta, t)= \\begin{cases}c>0 & \\text { si }|\\theta-t|>\\epsilon \\\\ 0 & \\text { si }|\\theta-t| \\leq \\epsilon\\end{cases} \\end{gathered} \\] 7.1.2 El error cuadrático medio Una de las funciones de pérdida más usuales es la función de pérdida cuadrática \\(L_{2}(\\theta, t)=(\\theta-t)^{2}\\). Uno de los motivos de su uso es que el riesgo asociado a esta función de pérdida \\(E_{\\theta}\\left[(\\theta-T)^{2}\\right]\\), que llamamos error cuadrático medio \\(E Q M_{T}\\), representa una medida de la variabilidad del estimador \\(T\\) en torno a \\(\\theta\\) semejante a la medida de dispersión en torno a la media que representa la varianza. Además, del desarrollo de esta expresión se obtiene un interesante resultado que muestra cuáles pueden ser las propiedades más interesantes para un estimador. Sea \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\) y sea \\(T\\) un estimador de \\(\\theta\\). El error cuadrático medio de \\(T\\) para estimar \\(\\theta\\) vale \\[ E Q M_{T}(\\theta)=E_{\\theta}\\left[(\\theta-T)^{2}\\right]=E\\left[\\theta^{2}-2 \\theta T+T^{2}\\right]=\\theta^{2}-2 \\theta E_{\\theta}(T)+E_{\\theta}\\left(T^{2}\\right) \\] Ahora, sumando y restando \\(\\left(E_{\\theta}(T)\\right)^{2}\\), obtenemos \\[ \\begin{aligned} E Q M_{T}(\\theta) & =E_{\\theta}\\left(T^{2}\\right)-\\left(E_{\\theta}(T)\\right)^{2}+\\left(E_{\\theta}(T)\\right)^{2}+\\theta^{2}-2 \\theta E_{\\theta}(T)= \\\\ & =\\operatorname{var}(T)+\\left(E_{\\theta}(T)-\\theta\\right)^{2} \\end{aligned} \\] El término \\(\\left(E_{\\theta}(T)-\\theta\\right)^{2}\\) es el cuadrado del sesgo de \\(T\\), que se define como \\[ b_{\\theta}(T)=E_{\\theta}(T)-\\theta \\] Definició 2.5 El error cuadrático medio \\(E Q M_{T}(\\theta)\\), o simplemente \\(E Q M\\), de un estimador \\(T\\) para estimar el parámetro \\(\\theta\\) es la suma de su varianza más el cuadrado de la diferencia entre su valor medio y el verdadero valor del parámetro, que llamamos sesgo. Si en la búsqueda de estimadores de mínimo riesgo nos basamos en la función de pérdida cuadrática, parece que los estimadores más deseables deberían ser aquellos en los que la varianza y el sesgo sean lo más pequeños posibles. Idealmente, quisiéramos reducir ambas cantidades a la vez. En la práctica, sin embargo, observamos que, en general, no suele ser posible reducir simultáneamente la varianza y el sesgo. Además, incluso si fuera práctico calcular el \\(E Q M\\) para cada estimador, encontraríamos que, para la mayoría de las familias de probabilidad \\(P_{\\theta}\\), no existiría ningún estimador que minimizase el \\(E Q M\\) para todos los valores de \\(\\theta\\). Es decir, que un estimador puede tener un \\(E Q M\\) mínimo para algunos valores de \\(\\theta\\), mientras que otro lo tendrá en otros valores de \\(\\theta\\). Ejemplo 2.1.4 Sea \\(X_{1}, X_{2}, \\ldots, X_{n}\\) una muestra aleatoria simple de \\(X \\sim\\) \\(N(\\mu, \\sigma)\\), donde suponemos \\(\\sigma\\) conocida, y sean \\[ T_{1}=\\bar{X} \\quad T_{2}=\\frac{\\sum_{i=1}^{n} X_{i}}{n+1} \\] Calculando la media y la varianza de los estimadores, tenemos \\[ \\begin{array}{lll} E_{\\mu}\\left(T_{1}\\right)=\\mu & \\Rightarrow b_{T_{1}}(\\mu)=0 & \\operatorname{var}_{\\mu}\\left(T_{1}\\right)=\\frac{\\sigma^{2}}{n} \\\\ E_{\\mu}\\left(T_{2}\\right)=\\frac{n}{n+1} \\mu & \\Rightarrow b_{T_{2}}(\\mu)=\\frac{-1}{n+1} \\mu & \\operatorname{var}_{\\mu}\\left(T_{2}\\right)=\\frac{n}{(n+1)^{2}} \\sigma^{2} \\end{array} \\] de donde \\[ \\begin{aligned} & E Q M_{\\mu}\\left(T_{1}\\right)=\\operatorname{var}\\left(T_{1}\\right)=\\frac{\\sigma^{2}}{n} \\\\ & E Q M_{\\mu}\\left(T_{2}\\right)=\\frac{1}{(n+1)^{2}} \\mu^{2}+\\frac{n}{(n+1)^{2}} \\sigma^{2} \\end{aligned} \\] que son respectivamente una recta y una parábola. De manera que para algunos valores de \\(\\mu\\) tenemos que \\(E Q M_{\\mu}\\left(T_{1}\\right)<E Q M_{\\mu}\\left(T_{2}\\right)\\) y para otros, al revés. La figura 2.1 muestra esta diferencia. Ejemplo 2.1.5 Un ejemplo trivial bastante interesante es el siguiente. Para estimar un parámetro \\(\\theta\\), el estimador que consiste en un valor fijo \\(\\theta_{0}\\), tiene riesgo 0 en \\(\\theta=\\theta_{0}\\). Sin embargo, el riesgo aumenta considerablemente al alejarnos del valor real de \\(\\theta\\). Por lo tanto, no resulta un estimador razonable, aunque su riesgo pueda ser mínimo para algún (único) valor de \\(\\theta\\). Figura 2.1: Comparación del riesgo de dos estimadores Los ejemplos anteriores nos muestran que los criterios de preferencia entre estimadores basados en el riesgo o en el \\(E Q M\\) no son de gran utilidad general ya que muchos estimadores pueden ser incomparables. Ante este hecho nos planteamos si es posible completar el criterio de minimizar el riesgo mediante alguna propiedad o criterio adicional. Las posibles soluciones obtenidas a esta cuestión siguen dos vías: Restringir la clase de estimadores considerados a aquellos que cumplan alguna propiedad adicional de interés, eliminando estimadores indeseables para que el criterio de minimizar el riesgo permita seleccionar uno preferible a los demás. Este criterio lleva a considerar las propiedades deseables de los estimadores como falta de sesgo, consistencia, eficiencia y analizar cómo combinarlas con el criterio de mínimo riesgo. Este proceso culmina con el estudio de los Estimadores Sin Sesgo Uniformemente de Mínima Varianza (ESUMV). Reforzar el criterio de preferencia de estimadores mediante la reducción de toda la función de riesgo \\(R_{T}(\\theta)\\) a un único valor representativo que permita ordenar linealmente todos los estimadores. Este criterio nos lleva a los Estimadores Bayes y a los Estimadores Minimax. 7.2 Estudio de las propiedades deseables de los estimadores 7.2.1 El sesgo Supongamos que tenemos un modelo estadístico \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\) y un estimador \\(T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\) de una función medible \\(g(\\theta)\\) del parámetro. Una forma razonable de valorar qué tan próximos son los valores de \\(T\\) a los de \\(g(\\theta)\\) es ver si, en promedio, los valores de \\(T\\) coinciden con el valor medio de \\(g(\\theta)\\). Definició 2.6 Bajo las condiciones mencionadas, si \\(E_{\\theta}(T)\\) es la esperanza de \\(T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\) y \\(g(\\theta)\\) es una función del parámetro (en particular la identidad), la diferencia \\[ b_{T}(\\theta)=b_{T}(\\theta)=E_{\\theta}(T)-g(\\theta) \\] se denomina sesgo del estimador \\(T\\) para estimar \\(g(\\theta)\\). Si el sesgo es nulo, es decir, si: \\[ E_{\\theta}(T)=g(\\theta), \\quad \\forall \\theta \\in \\Theta \\] diremos que \\(T\\) es un estimador insesgado de \\(g(\\theta)\\). Ejemplo 2.2.1 Los dos ejemplos más conocidos son el de la media y la varianza muestrales. La media muestral es un estimador insesgado de \\(\\mu\\). La varianza muestral es un estimador con sesgo de la varianza poblacional. En concreto, su sesgo vale: \\[ b_{s^{2}}\\left(\\sigma^{2}\\right)=E_{\\sigma^{2}}\\left(s^{2}\\right)-\\sigma^{2}=\\frac{n-1}{n} \\sigma^{2}-\\sigma^{2}=\\frac{-1}{n} \\sigma^{2} \\] El uso de estimadores insesgados es conveniente en muestras de tamaño grande. En estas, \\(\\operatorname{var}_{\\theta}(T)\\) es a menudo pequeña y entonces, como \\(E_{\\theta}(T)=\\) \\(g(\\theta)+b_{T}(\\theta)\\), es muy probable obtener estimaciones centradas en este valor en lugar de en el entorno de \\(g(\\theta)\\). Ejemplo 2.2.2 Sea \\(X_{1}, X_{2}, \\ldots, X_{n}\\) una muestra aleatoria simple de \\(X \\sim\\) \\(U(0, \\theta)\\). Tomemos \\(T=\\max \\left\\{X_{1}, X_{2}, \\ldots, X_{n}\\right\\}\\) como el estimador del máximo de la distribución. Obviamente podemos decir que \\(T<\\theta\\) y, por lo tanto, la estimación siempre está sesgada. Como hemos visto en el ejemplo ??, la distribución en el muestreo de \\(T\\) es \\[ H_{\\theta}(t)=P_{\\theta}[T \\leq t]=\\left(\\frac{t}{\\theta}\\right)^{n} \\] y su función de densidad es \\[ f_{\\theta}(\\theta)=H_{\\theta}^{\\prime}(\\theta)=\\frac{n}{\\theta}\\left(\\frac{t}{\\theta}\\right)^{n-1} \\] Su esperanza (ver ejemplo ??) vale \\[ E_{\\theta}(T)=\\int_{0}^{\\theta} t \\cdot\\left[\\frac{n}{\\theta}\\left(\\frac{t}{\\theta}\\right)^{n-1}\\right] d t=\\frac{n}{n+1} \\theta \\] de donde el sesgo de \\(T\\) para estimar \\(\\theta\\) es \\[ b_{T}(\\theta)=\\frac{n}{n+1} \\theta-\\theta=-\\frac{1}{n+1} \\theta \\] Podemos preguntarnos si podríamos mejorar este estimador corrigiendo el sesgo de forma análoga a lo que hacíamos con \\(\\hat{s}^{2}\\), es decir, tomando un estimador corregido para el sesgo \\[ T^{\\prime}=\\frac{n+1}{n} T \\text { que, por construcción, verifica: } E\\left(T^{\\prime}\\right)=\\theta \\text {. } \\] Consideremos el estimador de mínimo riesgo en el sentido del error cuadrático medio, es decir, el estimador que minimiza \\(E\\left[(\\theta-T)^{2}\\right]\\). De hecho, como hemos visto en el ejemplo ??, conviene elegir el que minimice \\(E\\left[(\\theta-T)^{2} / \\theta^{2}\\right]\\), porque también minimiza el EQM, pero alcanza un mínimo absoluto. Este estimador es \\[ T^{\\prime \\prime}=\\frac{n+2}{n+1} T \\] y, por tanto, es más adecuado que \\(T^{\\prime}\\), ya que tiene un menor riesgo respecto al error cuadrático medio. Cuando, como aquí, nos encontramos con que dado un estimador podemos encontrar otro de menor riesgo, decimos que el primero no es admisible respecto de la función de pérdida. En este caso decimos que \\(T^{\\prime}\\) no es admisible respecto al EQM. ¡Cuidado! Esto no significa que no podamos usarlo, sino que existe otro con menor riesgo, ya que existe otro \\(T^{\\prime \\prime}\\) preferible a él que, por cierto, no es centrado. Efectivamente \\[ E_{\\theta}\\left(T^{\\prime \\prime}\\right)=\\frac{n+2}{n+1} E_{\\theta}(T)=\\frac{(n+2) n}{(n+1)^{2}} \\theta \\] El ejemplo anterior muestra que, debido a la descomposición \\(E Q M_{T}(\\theta)=\\) \\(\\operatorname{var}_{\\theta}(T)+b_{T}^{2}(\\theta)\\), puede ser preferible un estimador con sesgo a otro que no lo tenga. En general, sin embargo, eliminar el sesgo no es una mala estrategia, sobre todo porque al restringirnos a la clase de los estimadores insesgados obtenemos una solución constructiva que permitirá obtener estimadores insesgados de mínima varianza en condiciones bastante generales. Los siguientes ejemplos ilustran dos propiedades interesantes del sesgo. Por un lado, muestran que no siempre existe un estimador insesgado. Por otro lado, vemos cómo a veces, incluso teniendo un estimador insesgado para un parámetro \\(E_{\\theta}(T)=\\theta\\), una función \\(g(T)\\) no es necesariamente un estimador insesgado de \\(g(\\theta)\\). Ejemplo 2.2.3 Consideremos una variable \\(X\\) con distribución de Bernoulli \\(B(1, p)\\). Supongamos que deseamos estimar \\(g(p)=p^{2}\\) con una única observación. Para que un estimador \\(T\\) no tenga sesgo para estimar \\(p^{2}\\) sería necesario que \\[ p^{2}=E_{p}(T)=p \\cdot T(1)+(1-p) \\cdot T(0), \\quad 0 \\leq p \\leq 1 \\] es decir, para cualquier valor de \\(p \\in[0,1]\\) se debería verificar \\[ p^{2}=p \\cdot(T(1)-T(0))+T(0) \\] Esto claramente no es posible, ya que la única forma en que una función lineal y una función parabólica coincidan en todo el intervalo \\([0,1]\\) es cuando los coeficientes \\(T(0)\\) y \\(T(1)\\) valen cero. Ejemplo 2.2.4 El parámetro \\(\\alpha\\) de una ley exponencial con función de densidad \\[ f(x)=\\alpha e^{-\\alpha x} \\mathbf{1}_{(0, \\infty)}(x) \\] es el inverso de la media de la distribución, es decir, \\(\\alpha=1 / E(X)\\). Un estimador razonable de \\(\\alpha=g(\\mu)\\) puede ser \\(\\hat{\\alpha}=g(\\hat{\\mu})\\), es decir, \\(\\hat{\\alpha}=\\) \\(1 / \\bar{X}\\). Si aplicamos la propiedad de que la suma de variables aleatorias i.i.d. exponenciales sigue una ley gamma de parámetros \\(n\\) y \\(\\alpha\\), se obtiene que este estimador tiene sesgo. Su esperanza es \\[ E(\\hat{\\alpha})=\\frac{n}{n-1} \\alpha \\] El sesgo se corrige simplemente con \\[ \\hat{\\alpha}^{\\prime}=\\frac{n-1}{n} \\hat{\\alpha} \\] 7.2.2 Consistencia La consistencia de un estimador es una propiedad bastante intuitiva que indica, de manera informal, que cuando aumenta el tamaño muestral, el valor del estimador se aproxima cada vez más al verdadero valor del parámetro. Definició 2.7 Sea \\(X_{1}, X_{2}, \\ldots, X_{n}, \\ldots\\) una sucesión de variables aleatorias i.i.d. \\(X \\sim F_{\\theta}, \\theta \\in \\Theta\\). Una sucesión de estimadores puntuales \\(T_{n}=\\) \\(T\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\) se denomina consistente para \\(g(\\theta)\\) si \\[ T_{n} \\xrightarrow[n \\rightarrow \\infty]{P} g(\\theta) \\] para cada \\(\\theta \\in \\Theta\\), es decir, si \\[ \\forall \\varepsilon>0 \\quad \\lim _{n \\rightarrow \\infty} P\\left\\{\\left|T_{n}-g(\\theta)\\right|>\\varepsilon\\right\\}=0 \\] Observemos que: Se trata de un concepto asintótico: Hablamos de ?sucesiones de estimadores consistentes? más que de estimadores propiamente dichos. La definición puede reforzarse si, en lugar de considerar convergencia en probabilidad (consistencia débil), consideramos convergencia casi segura o en media cuadrática: \\(T_{n}\\) es fuertemente consistente si \\(T_{n} \\xrightarrow{\\text { c.s. }} g(\\theta)\\) \\(T_{n}\\) es consistente en media- \\(r\\) si \\(E_{\\theta}\\left[\\left|T_{n}-g(\\theta)\\right|^{r}\\right] \\longrightarrow 0\\) Ejemplo 2.2.5 Muchos estimadores consistentes lo son como consecuencia de las leyes de los grandes números. Recordemos que la Ley débil de los Grandes Números (Tchebychev) afirma que, dada una sucesión de v.a. independientes e idénticamente distribuidas con medias \\(\\mu<\\infty\\) y varianzas \\(\\sigma^{2}<\\infty\\), entonces \\[ \\bar{X}_{n} \\xrightarrow{P} \\mu \\] Como consecuencia de esta ley y dado que una muestra aleatoria simple es i.i.d., por definición, podemos afirmar que \\(\\bar{X}_{n}\\) es consistente para estimar \\(\\mu\\). Ejemplo 2.2.6 La sucesión \\(T_{n}=\\max _{1 \\leq i \\leq n}\\left\\{X_{i}\\right\\}\\) es consistente para estimar el máximo de una distribución uniforme en \\([0, \\theta]\\) : \\[ P\\left[\\left|\\max _{1 \\leq i \\leq n}\\left\\{X_{i}\\right\\}-\\theta\\right|>\\varepsilon\\right]=P\\left[\\theta-\\max _{1 \\leq i \\leq n}\\left\\{X_{i}\\right\\}>\\varepsilon\\right] \\] ya que \\(X_{i} \\in[0, \\theta] y\\), por lo tanto, podemos escribir: \\[ \\begin{aligned} P\\left[\\theta-\\varepsilon>\\max _{1 \\leq i \\leq n}\\left\\{X_{i}\\right\\}\\right] & =P\\left[\\max _{1 \\leq i \\leq n}\\left\\{X_{i}\\right\\}<\\theta-\\varepsilon\\right] \\\\ & =\\left(\\frac{\\theta-\\varepsilon}{\\theta}\\right)^{n}=\\left(1-\\frac{\\varepsilon}{\\theta}\\right)^{n} \\underset{n \\rightarrow \\infty}{\\longrightarrow} 0 \\end{aligned} \\] Es inmediato comprobar que \\[ E\\left[\\left(\\theta-T_{n}\\right)^{2}\\right]=\\left(1-\\frac{2 n}{n+1}+\\frac{n}{n+2}\\right) \\theta^{2} \\] que también tiende a cero cuando \\(n \\rightarrow \\infty\\), y por lo tanto \\(T_{n}=\\max _{1 \\leq i \\leq n}\\left\\{X_{i}\\right\\}\\) también es consistente en media cuadrática. Normalmente, cuando se habla de consistencia, se hace referencia a la convergencia en probabilidad, es decir, \\(T_{n}\\) es consistente si \\(\\lim _{n \\rightarrow \\infty} P\\left(\\left|T_{n}-g(\\theta)\\right|>\\right.\\) \\(\\varepsilon)=0\\). Si el estimador no tiene sesgo, estamos en la situación de aplicar la desigualdad de Tchebychev \\({ }^{1}\\) : Si \\(E\\left(T_{n}\\right)=g(\\theta)\\), entonces \\[ P\\left(\\left|T_{n}-g(\\theta)\\right|>\\varepsilon\\right)=P\\left(\\left|T_{n}-E\\left(T_{n}\\right)\\right|>\\varepsilon\\right) \\underset{\\text { Tchebychev }}{\\leq} \\frac{\\operatorname{var}\\left(T_{n}\\right)}{\\varepsilon^{2}} \\] Así, para intentar establecer la consistencia de \\(T\\), debemos probar que \\[ \\frac{\\operatorname{var}\\left(T_{n}\\right)}{\\varepsilon^{2}} \\underset{n \\rightarrow \\infty}{\\longrightarrow} 0 \\] Ejemplo 2.2.7 Sea \\(M_{n}=\\sum_{i=1}^{n} a_{i} X_{i}\\) una combinación lineal de los valores de la muestra con coeficientes tales que \\(\\sum_{i=1}^{n} a_{i}=1\\) y algún \\(a_{i}>0\\). ¿Es consistente \\(M_{n}\\) para estimar \\(E(X)\\) ? Comencemos por ver que \\(M_{n}\\) no tiene sesgo \\[ \\begin{aligned} E\\left(M_{n}\\right) & =E\\left(\\sum_{i=1}^{n} a_{i} X_{i}\\right)=\\sum_{i=1}^{n} E\\left(a_{i} X_{i}\\right) \\\\ & =\\sum_{i=1}^{n} a_{i} E\\left(X_{i}\\right) \\stackrel{\\text { i.i.d. }}{=} \\sum_{i=1}^{n} a_{i} E(X)=E(X) \\end{aligned} \\] [^1]Calculemos la varianza \\[ \\begin{aligned} \\operatorname{var}\\left(M_{n}\\right) & =\\operatorname{var}\\left(\\sum_{i=1}^{n} a_{i} X_{i}\\right)=\\sum_{i=1}^{n} \\operatorname{var}\\left(a_{i} X_{i}\\right) \\\\ & =\\sum_{i=1}^{n} a_{i}^{2} \\operatorname{var}\\left(X_{i}\\right)=\\operatorname{var}(X) \\sum_{i=1}^{n} a_{i}^{2} \\end{aligned} \\] Si aplicamos ahora la desigualdad de Tchebychev tenemos: \\[ P\\left(\\left|M_{n}-\\mu\\right|>\\varepsilon\\right) \\leq \\frac{\\sigma^{2} \\sum a_{i}^{2}}{\\varepsilon^{2}} \\] lo cual no tiene por qué tender a 0 cuando \\(n \\rightarrow \\infty\\), y por lo tanto no podemos afirmar que el estimador es consistente. Por ejemplo, si \\(a_{1}=\\frac{1}{2}, a_{2}=a_{3}=\\) \\(\\cdots=a_{n}=\\frac{1}{2(n-1)}\\) tendremos que \\(\\lim _{n \\rightarrow \\infty} \\sum a_{i}^{2}=\\frac{1}{4}\\). Observamos que el resultado obtenido no puede asegurar la consistencia de \\(M_{n}\\) para cualquier familia de coeficientes \\(a_{1}, \\ldots, a_{n}\\), aunque, obviamente, el estimador es consistente para alguno (caso \\(a_{i}=1 / n\\) ). 7.3 Propiedades de los estimadores consistentes Muchas de las propiedades de los estimadores son consecuencia directa de las propiedades de la convergencia en probabilidad, que se pueden revisar, por ejemplo, en Martin Pliego (1998a) capítulo 11. Si \\(T_{n}\\) es consistente para estimar \\(\\theta\\) y \\(g: \\mathbb{R} \\rightarrow \\mathbb{R}\\) es una función continua, entonces \\(g\\left(T_{n}\\right)\\) es consistente para estimar \\(g(\\theta)\\). Si \\(T_{1 n}\\) y \\(T_{2 n}\\) son consistentes para estimar \\(\\theta_{1}\\) y \\(\\theta_{2}\\) respectivamente, entonces \\(a T_{1 n} \\pm b T_{2 n}\\) es consistente para estimar \\(a \\theta_{1} \\pm b \\theta_{2}\\) \\(T_{1 n} \\cdot T_{2 n}\\) es consistente para estimar \\(\\theta_{1} \\cdot \\theta_{2}\\) \\(T_{1 n} / T_{2 n}\\) es consistente para estimar \\(\\theta_{1} / \\theta_{2}\\), si \\(\\theta_{2} \\neq 0\\). Sea \\(a_{r}=(1 / n) \\sum X_{i}^{r}\\) el momento muestral de orden \\(r\\). Como se ha visto en el capítulo 1 , la esperanza de \\(a_{r}\\) es \\[ E\\left(a_{r}\\right)=E\\left[\\frac{1}{n} \\sum X_{i}^{r}\\right]=\\frac{1}{n} \\sum E\\left(X^{r}\\right)=\\frac{1}{n} n \\alpha_{r}=\\alpha_{r} \\] donde \\(\\alpha_{r}\\) es el momento poblacional de orden \\(r\\). Así pues, \\(a_{r}\\) no tiene sesgo para estimar \\(\\alpha_{r}\\). Su varianza es \\[ \\begin{aligned} \\operatorname{var}\\left(a_{r}\\right) & =\\operatorname{var}\\left(\\frac{1}{n} \\sum X_{i}^{r}\\right)=\\frac{1}{n^{2}} \\sum \\operatorname{var}\\left(X^{r}\\right)=\\frac{1}{n} E\\left[X^{r}-E\\left(X^{r}\\right)\\right]^{2} \\\\ & =\\frac{1}{n} E\\left[X^{r}-\\alpha_{r}\\right]^{2}=\\frac{1}{n} E\\left(X^{2 r}+\\alpha_{r}^{2}-2 \\alpha_{r} X^{r}\\right) \\\\ & =\\frac{1}{n}\\left(\\alpha_{2 r}-\\alpha_{r}^{2}\\right) . \\end{aligned} \\] Y si aplicamos la desigualdad de Tchebychev, se obtiene \\[ P\\left(\\left|a_{r}-\\alpha_{r}\\right| \\geq \\varepsilon\\right) \\leq \\frac{E\\left(a_{r}-\\alpha_{r}\\right)^{2}}{\\varepsilon^{2}}=\\frac{\\operatorname{var}\\left(a_{r}\\right)}{\\varepsilon^{2}}=\\frac{\\alpha_{2 r}-\\alpha_{r}^{2}}{n \\varepsilon^{2}} \\underset{n \\rightarrow \\infty}{\\longrightarrow} 0 \\] Así pues, hemos visto que los momentos muestrales son estimadores consistentes de los momentos poblacionales. 7.3.1 Eficiencia Como ya hemos visto, un objetivo deseable en la búsqueda de estimadores óptimos es considerar estimadores de “mínimo riesgo” o, si nos basamos en la función de pérdida cuadrática, estimadores que minimicen el error cuadrático medio \\(E(\\theta-T)^{2}\\). En general, es difícil encontrar estimadores que hagan mínimo el EQM para todos los valores de \\(\\theta\\); sin embargo, si nos restringimos a los estimadores sin sesgo, el problema tiene solución en una gama más amplia de situaciones. Supongamos que \\(T_{1}, T_{2}\\) son dos estimadores sin sesgo de un parámetro \\(\\theta\\). Para estos estimadores tenemos que \\[ \\begin{aligned} & E Q M_{T_{1}}(\\theta)=\\operatorname{var}_{\\theta}\\left(T_{1}\\right)+b_{T_{1}}^{2}(\\theta) \\\\ & E Q M_{T_{2}}(\\theta)=\\operatorname{var}_{\\theta}\\left(T_{2}\\right)+b_{T_{2}}^{2}(\\theta) \\end{aligned} \\] Si los estimadores no tienen sesgo \\(b_{T_{1}}(\\theta)=b_{T_{2}}(\\theta)=0\\), el que tenga menor varianza tendrá el menor riesgo para estimar \\(\\theta\\). Si, por ejemplo, \\(\\operatorname{var}\\left(T_{1}\\right) \\leq\\) \\(\\operatorname{var}\\left(T_{2}\\right)\\), diremos que \\(T_{1}\\) es más eficiente que \\(T_{2}\\) para estimar \\(\\theta\\). Para dos estimadores con sesgo cero \\(b_{T_{i}}(\\theta)=0\\), el cociente \\[ E R=\\frac{E Q M_{T_{1}}(\\theta)}{E Q M_{T_{2}}(\\theta)}=\\frac{\\operatorname{var}_{\\theta}\\left(T_{1}\\right)}{\\operatorname{var}_{\\theta}\\left(T_{2}\\right)} \\] se denomina eficiencia relativa de \\(T_{1}\\) respecto a \\(T_{2}\\). Si solo hay dos estimadores de \\(\\theta\\) puede ser fácil ver cuál es el más eficiente. Si hay más, la cosa se complica. El “más eficiente”, en caso de que exista, se llamará el estimador sin sesgo de mínima varianza. Figura 2.2: Comparación de la eficiencia de dos estimadores para un \\(\\theta\\) dado Definició 2.8 Sea \\(\\mathcal{S}(\\theta)\\) la clase de los estimadores sin sesgo de \\(\\theta\\) y con varianza. Si para todos los estimadores de esta clase \\(T \\in \\mathcal{S}(\\theta)\\) se verifica que \\[ \\operatorname{var}_{\\theta}(T) \\leq \\operatorname{var}_{\\theta}\\left(T^{*}\\right) \\quad \\forall T \\in \\mathcal{S}(\\theta) \\] diremos que \\(T^{*}\\) es un estimador sin sesgo de mínima varianza de \\(\\theta\\). Si la desigualdad es cierta \\(\\forall \\theta \\in \\Theta\\), diremos que \\(T^{*}\\) es un estimador sin sesgo uniforme de mínima varianza (ESUMV) \\({ }^{2}\\). 7.4 Información de Fisher y cota de CramerRao Obviamente, en un problema de estimación lo ideal es disponer de un ESUMV, pero esto no siempre es posible. Nos enfrentamos a varios problemas: ¿Existen ESUMV para un parámetro \\(\\theta\\) en un modelo dado? En caso de que exista el ESUMV, ¿sabremos cómo encontrarlo? Este problema tiene solución, bajo ciertas condiciones, utilizando los teoremas de Lehmann-Scheffé y Rao-Blackwell y el concepto de suficiencia, que se discute más adelante. [^2]Una solución parcial aparece gracias al Teorema de Cramer-Rao, que permite establecer una cota mínima para la varianza de un estimador. Cuando un estimador alcanza esta cota, sabemos que es un estimador de varianza mínima. Informalmente, este resultado sugiere que, bajo ciertas condiciones de regularidad, si \\(T\\) es un estimador insesgado de un parámetro \\(\\theta\\), su varianza está acotada por una expresión que llamamos cota de Cramer-Rao \\(\\operatorname{CCR}(\\theta)\\) \\[ \\operatorname{var}(T) \\geq \\operatorname{CCR}(\\theta) \\] Antes de establecer con precisión este teorema, consideremos el concepto de información de un modelo estadístico introducido por Fisher. 7.5 Información y verosimilitud de un modelo estadístico Una idea bastante razonable es esperar que un estimador funcione mejor en su intento de aproximarse al valor de un parámetro cuanto más información tenga para hacerlo. Por este motivo, la varianza del estimador y la información se presentan como cantidades opuestas: a mayor información, menor error (varianza) en la estimación: \\[ \\operatorname{var}\\left(T_{n}\\right) \\propto \\frac{1}{I_{n}(\\theta)} \\] Ahora nos encontramos con el problema de cómo definir la cantidad de información (contenida en una muestra/de un modelo), para que se ajuste a la idea intuitiva de información. Fisher lo hizo a través de la función de verosimilitud. Sea un modelo estadístico \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\) y una m.a.s. \\(\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\), que toma valores \\(\\mathbf{x}=\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right)\\). Si \\(X\\) es discreta, la función de masa de probabilidad indica, en términos generales, la probabilidad de observar la muestra, dado un valor del parámetro. Si \\(X\\) es absolutamente continua, esta interpretación ya no es tan directa. \\[ f\\left(x_{1}, x_{2}, \\ldots, x_{n} ; \\theta\\right)= \\begin{cases}P_{\\theta}\\left[X=x_{1}\\right] \\cdots P_{\\theta}\\left[X=x_{n}\\right], & \\text { si } X \\text { es discreta } \\\\ f_{\\theta}\\left(x_{1}\\right) \\cdots f_{\\theta}\\left(x_{n}\\right), & \\text { si } X \\text { es abs. continua }\\end{cases} \\] La función de verosimilitud se obtiene si consideramos, en la expresión anterior, que lo que queda fijado es la muestra y no el parámetro. Es decir, fijada una muestra x, la función de verosimilitud indica qué tan verosímil resulta, para cada valor del parámetro, que el modelo la haya generado. Ejemplo 2.3.1 Supongamos que tenemos una m.a.s. \\(x_{1}, x_{2}, \\ldots, x_{n}\\) de tamaño n de una variable aleatoria \\(X\\), que sigue una ley de Poisson de parámetro \\(\\lambda\\) desconocido. \\[ X \\sim F_{\\lambda}=P(\\lambda), \\quad \\lambda>0 \\] La función de probabilidad de la muestra, fijado \\(\\lambda\\), es: \\[ g_{\\lambda}\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right)=\\prod_{i=1}^{n} e^{-\\lambda} \\frac{\\lambda^{x_{i}}}{x_{i}!}=e^{-n \\lambda} \\frac{\\lambda^{\\sum x_{i}}}{\\prod_{i=1}^{n} x_{i}!} \\] y la función de verosimilitud del modelo, fijada \\(\\mathbf{x}\\), es: \\[ L\\left(x_{1}, x_{2}, \\ldots, x_{n} ; \\lambda\\right)=\\prod_{i=1}^{n} e^{-\\lambda} \\frac{\\lambda^{x_{i}}}{x_{i}!}=e^{-n \\lambda} \\frac{\\lambda^{\\sum x_{i}}}{\\prod_{i=1}^{n} x_{i}!} \\] Aunque la forma funcional de \\(g_{\\lambda}(\\mathbf{x})\\) y \\(L(\\mathbf{x} ; \\lambda)\\) es la misma, su aspecto es diferente, como se puede comprobar en la figura 2.3, donde damos valores a \\(g_{\\lambda}(\\mathbf{x})\\), variando \\(\\mathbf{x}\\) o a \\(L(\\lambda ; \\mathbf{x})\\) variando \\(\\lambda\\). 7.6 Información de Fisher Para calcular la cantidad de información de Fisher contenida en una muestra sobre un parámetro, es necesario considerar modelos estadísticos regulares, es decir, donde se cumplen las siguientes condiciones de regularidad. Definició 2.9 Diremos que \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\) es un modelo estadístico regular si se verifican las siguientes condiciones: La población de donde proviene la muestra presenta un ?campo de variación? o soporte \\(S_{\\theta}=\\{x \\mid f(x ; \\theta)>0\\}=S\\) que no depende de \\(\\theta\\). La función \\(L(\\mathbf{x} ; \\theta)\\) admite, al menos, las dos primeras derivadas. Las operaciones de derivación e integración son intercambiables. Definició 2.10 Sea \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\) un modelo estadístico regular, es decir, donde se verifican las condiciones de regularidad 1-3 anteriores. Si \\(Z=\\frac{\\partial}{\\partial \\theta} \\log L(\\mathbf{X} ; \\theta)\\), la cantidad de información de Fisher es \\[ I_{n}(\\theta)=\\operatorname{var}_{\\theta}(Z)=\\operatorname{var}_{\\theta}\\left(\\frac{\\partial}{\\partial \\theta} \\log L(\\mathbf{X} ; \\theta)\\right) \\] Figura 2.3: Probabilidad de la suma de \\(n=5\\) valores muestrales para 10 muestras de la ley de Poisson con \\(\\lambda=3\\) versus la función de verosimilitud para una muestra observada. Las condiciones de regularidad son necesarias para calcular \\(E_{\\theta}\\left(Z^{2}\\right)\\). A continuación, presentamos algunas propiedades de la información de Fisher. Puedes ver la demostración en Ruiz-Maya y Pliego (1995). La información de Fisher se puede expresar como: \\[ I_{n}(\\theta)=E_{\\theta}\\left[\\left(\\frac{\\partial \\log L(\\mathbf{X} ; \\theta)}{\\partial \\theta}\\right)^{2}\\right] \\] Esto se puede comprobar, ya que si aplicamos las condiciones de regularidad \\[ \\begin{aligned} E(Z) & =E\\left(\\frac{\\partial \\log L(\\mathbf{X} ; \\theta)}{\\partial \\theta}\\right)=\\int_{S^{n}} \\frac{\\partial \\log L(\\mathbf{x} ; \\theta)}{\\partial \\theta} L(\\mathbf{x} ; \\theta) d \\mathbf{x} \\\\ & =\\int_{S^{n}} \\frac{\\frac{\\partial L(\\mathbf{x} ; \\theta)}{\\partial \\theta}}{L(\\mathbf{x} ; \\theta)} L(\\mathbf{x} ; \\theta) d \\mathbf{x}=\\int_{S^{n}} \\frac{\\partial L(\\mathbf{x} ; \\theta)}{\\partial \\theta} d \\mathbf{x} \\\\ & =\\frac{\\partial}{\\partial \\theta}\\left(\\int_{S^{n}} L(\\mathbf{x} ; \\theta) d \\mathbf{x}\\right)=\\frac{\\partial}{\\partial \\theta} 1=0 \\end{aligned} \\] De forma que \\(E(Z)=0\\), y por lo tanto, tendremos que \\(\\operatorname{var}_{\\theta}(Z)=\\) \\(E_{\\theta}\\left(Z^{2}\\right)\\). 2. \\(I_{n}(\\theta)=0\\) si y solo si \\(L(\\mathbf{x} ; \\theta)\\) no depende de \\(\\theta\\). 3. Dadas dos m.a.s. \\(\\mathbf{x}_{1}, \\mathbf{x}_{2}\\) de tamaños \\(n_{1}, n_{2}\\) de la misma población, se verifica: \\[ I_{n_{1}, n_{2}}(\\theta)=I_{n_{1}}(\\theta)+I_{n_{2}}(\\theta) \\] De manera que podemos considerar una muestra de tamaño \\(n\\) como \\(n\\) muestras de tamaño 1 : \\[ I_{n}(\\theta)=\\sum_{i=1}^{n} I_{1}(\\theta)=n \\cdot i(\\theta), \\text { siendo } i(\\theta)=I_{1}(\\theta) \\] Es decir \\[ E\\left(\\frac{\\partial \\log (L(\\mathbf{X} ; \\theta))}{\\partial \\theta}\\right)=n E\\left(\\frac{\\partial \\log f(X ; \\theta)}{\\partial \\theta}\\right) \\] Se verifica la siguiente relación: \\[ I_{n}(\\theta)=E\\left[\\left(\\frac{\\partial \\log L(\\mathbf{X} ; \\theta)}{\\partial \\theta}\\right)^{2}\\right]=-E\\left[\\frac{\\partial^{2} \\log L(\\mathbf{X} ; \\theta)}{\\partial^{2} \\theta}\\right] \\] Ejemplo 2.3.2 Vamos a calcular la cantidad de información de Fisher contenida en una m.a.s. extraída de una población \\(N(\\mu, \\sigma)\\) con \\(\\sigma=\\sigma_{0}\\) conocida. La función de verosimilitud es \\[ L(\\mathbf{x} ; \\mu)=\\prod_{i=1}^{n} \\frac{1}{\\sqrt{2 \\pi} \\sigma_{0}} e^{-\\frac{\\left(x_{i}-\\mu\\right)^{2}}{2 \\sigma_{0}^{2}}}=\\left(2 \\pi \\sigma_{0}^{2}\\right)^{-n / 2} \\exp \\left(-\\sum_{i=1}^{n} \\frac{\\left(x_{i}-\\mu\\right)^{2}}{2 \\sigma_{0}^{2}}\\right) \\] y su logaritmo \\[ \\log L(\\mathbf{x} ; \\mu)=-\\frac{n}{2} \\log \\left(2 \\pi \\sigma_{0}^{2}\\right)-\\frac{1}{2 \\sigma_{0}^{2}} \\sum_{i=1}^{n}\\left(x_{i}-\\mu\\right)^{2} \\] Si derivamos respecto a \\(\\mu\\) \\[ \\frac{\\partial \\log L(\\mathbf{x} ; \\mu)}{\\mu}=\\frac{\\sum_{i=1}^{n}\\left(x_{i}-\\mu\\right)}{\\sigma_{0}^{2}} \\] de donde \\[ \\begin{aligned} I_{n}(\\mu) & =E\\left(\\frac{\\partial \\log L(\\mathbf{X} ; \\mu)}{\\partial \\mu}\\right)^{2}=E\\left(\\frac{\\sum_{i=1}^{n}\\left(X_{i}-\\mu\\right)}{\\sigma_{0}^{2}}\\right)^{2} \\\\ & =\\frac{1}{\\sigma_{0}^{4}} E\\left[\\sum_{i=1}^{n}\\left(X_{i}-\\mu\\right)^{2}+\\sum_{i \\neq j}\\left(X_{i}-\\mu\\right)\\left(X_{j}-\\mu\\right)\\right] \\\\ & =\\frac{1}{\\sigma_{0}^{4}} n \\sigma_{0}^{2}=\\frac{n}{\\sigma_{0}^{2}} \\end{aligned} \\] Este cálculo también puede hacerse a partir de la tercera propiedad de la información de Fisher: \\[ I_{n}(\\mu)=n E\\left[\\frac{\\partial \\log f(X ; \\mu)}{\\partial \\mu}\\right]=n \\frac{1}{\\sigma_{0}^{2}}=\\frac{n}{\\sigma_{0}^{2}} \\] 7.7 La desigualdad de Cramer-Rao Una vez establecidas las condiciones de regularidad y características anteriores podemos enunciar el teorema de Cramer-Rao (1945). Teorema 2.1 Dado un modelo estadístico regular \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\), es decir, un modelo donde se verifican las condiciones de regularidad enunciadas, cualquier estimador \\(T \\in \\mathcal{S}(\\theta)\\) de la clase de los estimadores no sesgados y con varianza verifica \\[ \\operatorname{var}_{\\theta}(T) \\geq \\frac{1}{I_{n}(\\theta)} \\] Demostración: El estimador \\(T \\in \\mathcal{S}(\\theta)\\) no tiene sesgo, es decir que \\[ E(T)=\\int_{S^{n}} T(\\mathbf{x}) \\cdot L(\\mathbf{x} ; \\theta) d \\mathbf{x}=\\theta \\] Si derivamos e introducimos la derivada bajo el signo de la integral, obtenemos \\[ \\begin{aligned} \\frac{\\partial}{\\partial \\theta} E(T) & =\\int_{S^{n}} \\frac{\\partial}{\\partial \\theta}(T(\\mathbf{x}) \\cdot L(\\mathbf{x} ; \\theta)) d \\mathbf{x}=\\int_{S^{n}} T(\\mathbf{x}) \\frac{\\partial}{\\partial \\theta} L(\\mathbf{x} ; \\theta) d \\mathbf{x} \\\\ & =\\int_{S^{n}} T(\\mathbf{x})\\left(\\frac{\\frac{\\partial}{\\partial \\theta} L(\\mathbf{x} ; \\theta)}{L(\\mathbf{x} ; \\theta)}\\right) L(\\mathbf{x} ; \\theta) d \\mathbf{x} \\end{aligned} \\] Así pues \\[ 1=\\frac{\\partial}{\\partial \\theta} \\theta=\\frac{\\partial}{\\partial \\theta} E(T)=E(T Z)=\\int_{S^{n}} T(\\mathbf{x}) \\cdot Z L(\\mathbf{x} ; \\theta) d \\mathbf{x} \\] En resumen \\[ E(T)=\\theta, E(T Z)=1, E(Z)=0, \\operatorname{var}(Z)=I_{n}(\\theta) \\] Si ahora consideramos el coeficiente de correlación al cuadrado entre \\(T\\) y \\(Z\\), tenemos \\[ \\rho^{2}(T, Z)=\\frac{[\\operatorname{cov}(T, Z)]^{2}}{\\operatorname{var}(T) \\cdot \\operatorname{var}(Z)}=\\frac{[E(T Z)-E(T) E(Z)]^{2}}{\\operatorname{var}(T) \\cdot \\operatorname{var}(Z)} \\leq 1 \\] Si sustituimos los resultados hallados antes, obtenemos \\[ \\frac{1}{\\operatorname{var}(T) \\cdot I_{n}(\\theta)} \\leq 1 \\] de donde se deduce la desigualdad enunciada. Definició 2.11 Si un estimador alcanza la CCR (Cota de Cramer-Rao), diremos que es un estimador eficiente. Todo estimador eficiente es de mínima varianza en la clase \\(\\mathcal{S}(\\theta)\\). Sin embargo, también puede suceder que exista un estimador de mínima varianza sin alcanzar necesariamente la CCR. Ejemplo 2.3.3 Sea \\(X \\sim F_{\\theta}=P(\\lambda), \\lambda>0\\) (Poisson). Buscamos la \\(C C R\\) de los estimadores de \\(\\lambda\\). \\[ \\begin{aligned} L(\\mathbf{x} ; \\lambda) & =\\prod_{i=1}^{n} e^{-\\lambda} \\frac{\\lambda^{x_{i}}}{x_{i}!}=e^{-n \\lambda} \\frac{\\lambda^{\\sum x_{i}}}{\\prod_{i=1}^{n} x_{i}!} \\\\ \\log L(\\mathbf{x} ; \\lambda) & =-n \\lambda+\\left(\\sum x_{i}\\right) \\log \\lambda-\\log \\left(\\prod_{i=1}^{n} x_{i}!\\right) \\\\ \\frac{\\partial \\log (L(\\mathbf{x} ; \\lambda))}{\\partial \\lambda} & =-n+\\frac{\\sum x_{i}}{\\lambda} \\\\ E\\left[\\frac{\\partial \\log L(\\mathbf{x} ; \\lambda)}{\\partial \\lambda}\\right]^{2} & =E\\left[n^{2}+\\left(\\frac{\\sum X_{i}}{\\lambda}\\right)^{2}-\\frac{2 n \\sum X_{i}}{\\lambda}\\right] \\\\ & =n^{2}+\\frac{1}{\\lambda^{2}} E\\left(\\sum X_{i}\\right)^{2}-\\frac{2 n}{\\lambda} n E(X) \\end{aligned} \\] Aquí recordamos que la suma de variables de Poisson también es una Poisson, es decir: \\[ \\sum X_{i} \\sim P(n \\lambda) \\] por lo que \\[ E\\left(\\sum X_{i}\\right)^{2}=\\operatorname{var}\\left(\\sum X_{i}\\right)+\\left[E\\left(\\sum X_{i}\\right)\\right]^{2}=n \\lambda+(n \\lambda)^{2} \\] Finalmente, se obtiene: \\[ E\\left(Z^{2}\\right)=n^{2}+\\frac{n \\lambda}{\\lambda^{2}}+\\frac{n^{2} \\lambda^{2}}{\\lambda^{2}}-2 n^{2}=\\frac{n}{\\lambda} \\] De esta forma, \\[ I_{n}(\\lambda)=\\frac{n}{\\lambda} \\quad \\Longrightarrow \\quad \\operatorname{var}(T) \\geq \\frac{\\lambda}{n} \\] Sabemos que la media aritmética verifica \\[ \\operatorname{var}\\left(\\bar{X}_{n}\\right)=\\frac{\\lambda}{n} \\] lo cual coincide con la cota de Cramer-Rao, indicando que \\(\\bar{X}_{n}\\) es el estimador eficiente de \\(\\lambda\\). Ejemplo 2.3.4 Para calcular la CCR o, dicho de otro modo, para que el inverso de \\[ E\\left[\\frac{\\partial \\log L(\\mathbf{x} ; \\theta)}{\\partial \\theta}\\right]^{2} \\] sea realmente la cota minima de \\(\\operatorname{var}(\\widehat{\\theta})\\) en la clase \\(\\mathcal{S}(\\theta)\\), es necesario que se verifiquen las condiciones de regularidad. De lo contrario, se pueden obtener resultados absurdos. Consideremos, por ejemplo, una variable aleatoria \\(X\\) con función de densidad \\[ f(x ; \\theta)=\\frac{3}{\\theta^{3}} x^{2} \\mathbf{1}_{[0, \\theta]}(x) \\] y esperanza \\[ E(X)=\\int_{0}^{\\theta} x \\cdot \\frac{3}{\\theta^{3}} x^{2} d x=\\frac{3}{4} \\theta \\] Ya que \\(\\theta=\\frac{4}{3} E(X)\\), esto sugiere estimar \\(\\theta\\) mediante \\(\\widehat{\\theta}=\\frac{4}{3} \\bar{X}\\), que no tiene sesgo. Por otro lado, si calculamos la varianza de \\(X\\), tenemos \\[ \\operatorname{var}(X)=E\\left(X^{2}\\right)-E(X)^{2}=\\frac{3}{80} \\theta^{2} \\] Sabemos que \\(E(\\widehat{\\theta})=\\theta, y\\) además \\[ \\operatorname{var}(\\widehat{\\theta})=\\operatorname{var}\\left(\\frac{4}{3} \\bar{X}\\right)=\\frac{\\theta^{2}}{15 n} \\] Si evaluamos \\(I_{n}(\\theta)\\) en su forma más sencilla, obtenemos \\[ I_{n}(\\theta)=n I(\\theta)=n \\frac{9}{\\theta^{2}} \\] Así, la CCR resulta ser mayor que la varianza de este estimador: \\[ \\operatorname{var}(\\widehat{\\theta})=\\frac{\\theta^{2}}{15 n}<\\frac{\\theta^{2}}{9 n} \\] lo cual es un resultado absurdo. Este error se debe a no considerar que el soporte de \\(X\\) depende de \\(\\theta\\), por lo que no se cumplen las condiciones de regularidad, y la cota de Cramer-Rao no existe. También ocurre que la varianza de un estimador es inferior a la CCR aunque esta exista. Esto puede pasar, por ejemplo, con algún estimador sesgado. 7.8 Caracterización del estimador eficiente Calcular la cota de Cramer-Rao es una cosa; encontrar el estimador que alcanza esta cota y, en consecuencia, tiene varianza mínima es otra. La siguiente caracterización permite, en algunos casos, obtener directamente la forma del estimador eficiente. Teorema 2.2 Sea \\(T\\) el estimador eficiente de \\(\\theta\\), entonces se verifica \\[ \\sum_{i=1}^{n} \\frac{\\partial}{\\partial \\theta} \\log f\\left(X_{i} ; \\theta\\right)=K(\\theta, n)(T-\\theta) \\] donde \\(K(\\theta, n)\\) es una función que depende de \\(\\theta\\) y de \\(n\\) y que suele coincidir con la información de Fisher. Demostración: Si \\(T\\) es el estimador eficiente, entonces \\[ \\operatorname{var}(T)=\\frac{1}{I_{n}(\\theta)} \\] y, por lo tanto, \\(\\rho^{2}(T, Z)=1\\). En general, dadas dos variables aleatorias \\(X\\) e \\(Y\\), se sabe que si \\(\\rho(X, Y)=1\\), entonces \\[ Y-E(Y)=\\beta(X-E(X)) \\] Si aplicamos este resultado a \\(T\\) y \\(Z\\), tenemos \\[ \\begin{aligned} Z-E(Z) & =\\beta(T-E(T)) \\\\ \\frac{\\partial \\log L(\\mathbf{x} ; \\theta)}{\\partial \\theta} & =K(\\theta, n)(T-\\theta) \\end{aligned} \\] Ejemplo 2.3.5 En el caso de la distribución de Poisson, tenemos \\[ \\begin{aligned} f(x ; \\lambda) & =e^{-\\lambda} \\frac{\\lambda^{x}}{x!} \\\\ \\log f(x ; \\lambda) & =-\\lambda+x \\log (\\lambda)-\\log (x!) \\\\ \\frac{\\partial \\log f(x ; \\lambda)}{\\partial \\lambda} & =-1+x \\frac{1}{\\lambda} \\\\ Z=\\sum_{i=1}^{n} \\frac{\\partial \\log f\\left(X_{i} ; \\lambda\\right)}{\\partial \\lambda} & =\\sum_{i=1}^{n}\\left(-1+\\frac{X_{i}}{\\lambda}\\right) \\end{aligned} \\] Queremos ver que \\[ \\sum_{i=1}^{n}\\left(\\frac{X_{i}}{\\lambda}-1\\right)=K(\\theta, n)(T-\\theta) \\] Si reescribimos esta expresión, obtenemos \\[ \\frac{1}{\\lambda} \\sum_{i=1}^{n} X_{i}-n=\\frac{1}{\\lambda}\\left(\\sum_{i=1}^{n} X_{i}-n \\lambda\\right)=\\frac{n}{\\lambda}\\left(\\frac{1}{n} \\sum_{i=1}^{n} X_{i}-\\lambda\\right) \\] Así, \\(K(\\lambda, n)=\\frac{n}{\\lambda}\\), que coincide con la información de Fisher \\(I_{n}(\\lambda)\\). Por el teorema anterior, se deduce que \\(T=\\bar{X}\\) es el estimador eficiente \\(y\\), por lo tanto, de mínima varianza. 7.9 Estadísticos suficientes En un problema de inferencia puede suceder que los datos contengan información superflua o irrelevante a la hora de estimar el parámetro. También puede ocurrir lo contrario, que intentemos hacer la estimación sin utilizar toda la información disponible en la muestra. Ambas situaciones son indeseables. Parece razonable que, para estimar un parámetro, dada la dificultad derivada de disponer de varios estimadores entre los que queremos elegir el óptimo, nos basemos únicamente en aquellos que utilizan (solo) toda la información relevante. Ejemplo 2.4.1 Supongamos que queremos estimar la proporción de piezas defectuosas \\(\\theta\\) en un proceso de fabricación. Para ello, examinamos \\(n\\) piezas extraídas al azar a lo largo de una jornada y asignamos un 1 a las piezas defectuosas y un 0 a las que no lo son. Así, obtenemos una muestra aleatoria simple \\(X_{1}, X_{2}, \\ldots, X_{n}\\) donde \\[ X_{i}= \\begin{cases}1 & \\text { con probabilidad } \\theta \\\\ 0 & \\text { con probabilidad }(1-\\theta)\\end{cases} \\] Intuitivamente, está claro que para estimar \\(\\theta\\) solo nos interesa el número de ceros y unos, es decir, el valor del estadístico \\[ T(\\mathbf{X})=\\sum_{i=1}^{n} X_{i} \\] En este caso, un estadístico que considere la posición de los unos y los ceros en la muestra no aportaría nada relevante. En cambio, un estadístico que no considere todos los valores, como por ejemplo \\(T(\\mathbf{X})=X_{1}\\), sería claramente menos adecuado. Las observaciones del ejemplo anterior se justifican al observar que todas las muestras de tamaño \\(n\\) con el mismo número \\(t\\) de unos (1) tienen la misma probabilidad. En concreto, la función de probabilidad de una muestra \\(x_{1}, x_{2}, \\ldots, x_{n}\\) es \\[ f_{\\theta}\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right)=\\theta^{t}(1-\\theta)^{n-t} \\] donde \\(t=\\sum_{i=1}^{n} x_{i}, x_{i} \\in\\{0,1\\}, i=1,2, \\ldots, n\\). Como se puede ver, la probabilidad de la muestra solo depende del número de unos (o ceros) y no del orden en que aparecen en la muestra. El hecho de que la posición de los unos y los ceros en la muestra no aporte información relevante equivale a decir que el estadístico \\[ T(\\mathbf{X})=\\sum_{i=1}^{n} X_{i} \\] contiene la misma información que \\(X_{1}, X_{2}, \\ldots, X_{n}\\) para estimar \\(\\theta\\). Observamos, sin embargo, varias diferencias entre basarse en \\(T(\\mathbf{X})\\) o en \\(X_{1}, X_{2}, \\ldots, X_{n}\\) : Al pasar de \\(X_{1}, X_{2}, \\ldots, X_{n}\\) a \\(\\sum_{i=1}^{n} X_{i}\\) hay una reducción de los datos que no implica pérdida de información. Muchas muestras diferentes dan lugar al mismo valor de \\(T\\). Fisher formalizó esta idea con el cálculo de la probabilidad condicionada de la observación muestral con \\(T(\\mathbf{X})=\\sum_{i=1}^{n} X_{i}\\) y para todo \\(t=0,1, \\ldots, n\\) : \\[ \\begin{aligned} P_{\\theta}[\\mathbf{X}=\\mathbf{x} \\mid T=t] & =\\frac{P_{\\theta}[\\mathbf{X}=\\mathbf{x}, T=t]}{P_{\\theta}(T=t)} \\\\ & =\\frac{\\theta^{t}(1-\\theta)^{n-t}}{\\binom{n}{t} \\theta^{t}(1-\\theta)^{n-t}}=\\frac{1}{\\binom{n}{t}} \\end{aligned} \\] Es decir, dados \\(\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right) \\in\\{0,1\\}^{n} \\mathrm{y} t \\in\\{0,1, \\ldots, n\\}\\), tenemos \\[ P_{\\theta}[\\mathbf{X}=\\mathbf{x} \\mid T=t]=\\left\\{\\begin{array}{cc} 0 & \\text { si } t \\neq \\sum_{i=1}^{n} x_{i} \\\\ \\frac{1}{\\binom{n}{t}} & \\text { si } t=\\sum_{i=1}^{n} x_{i} \\end{array}\\right. \\] Obviamente, \\(P_{\\theta}[\\mathbf{X}=\\mathbf{x}]\\) depende de \\(\\theta\\), que es el parámetro que queremos estimar. Sin embargo, la probabilidad condicionada \\(P_{\\theta}[\\mathbf{X}=\\mathbf{x} \\mid T=t]\\) no depende de \\(\\theta\\). Tenemos entonces la siguiente expresión de la función de probabilidad de la muestra: \\[ P_{\\theta}(\\mathbf{X}=\\mathbf{x})=P_{\\theta}(T=t) \\cdot P_{\\theta}[\\mathbf{X}=\\mathbf{x} \\mid T=t] \\] Esta expresión muestra que \\(P_{\\theta}(\\mathbf{X})\\) se puede descomponer en dos factores, uno que depende de \\(\\theta, P_{\\theta}(T=t)\\), y otro que no depende de \\(\\theta\\), \\[ P_{\\theta}[\\mathbf{X}=\\mathbf{x} \\mid T=t] . \\] Una forma de ver esta descomposición es pensar que el estadístico \\(T=\\) \\(\\sum_{i=1}^{n} X_{i}\\) ?acumula? o ?absorbe? toda la información relativa a \\(\\theta\\), lo que se refleja en que la probabilidad de la muestra, dado \\(T=t\\), ya no depende de \\(\\theta\\). Es decir, podemos imaginar la construcción de la muestra en dos etapas: En una primera etapa se elige el valor \\(t\\) para \\(T\\) con distribución \\(B(n, \\theta)\\). A continuación, se sitúan aleatoriamente \\(t\\) unos y \\(n-t\\) ceros en las \\(n\\) posiciones. Cuando la estructura del estadístico \\(T(\\mathbf{X})\\) hace que el segundo factor en la expresión anterior no dependa de \\(\\theta\\), significa que la observación adicional de la muestra es irrelevante. En este caso diremos que \\(T(\\mathbf{X})\\) es suficiente para la estimación de \\(\\theta\\). Dado que esta propiedad de \\(T\\) queda caracterizada por la independencia de \\(P_{\\theta}[\\mathbf{X}=\\mathbf{x} \\mid T=t]\\) respecto a \\(\\theta\\), se utiliza esta independencia para definir la suficiencia. 7.9.1 Definició de estadísticop suficiente Dado un modelo estadístico \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\) y un estadístico \\(T\\), diremos que \\(T\\) es suficiente para \\(\\theta\\) si, dada una muestra \\(\\mathbf{X}=\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\), se verifica que la distribución de \\(\\mathbf{X}\\) condicionada por el valor de \\(T\\) no depende de \\(\\theta\\). No es necesario que \\(F_{\\theta}\\) sea discreta, como en el ejemplo introductorio, o que la muestra sea una muestra aleatoria simple. El estadístico suficiente para un parámetro puede ser \\(k\\)-dimensional. Ejemplo 2.4.2 Dada una muestra \\(X_{1}, X_{2}, \\ldots, X_{n}\\) de una distribución de Poisson, la función de probabilidad de la muestra es \\[ P_{\\theta}\\left(X_{1}=x_{1}, \\ldots, X_{n}=x_{n}\\right)=\\frac{e^{-n \\lambda} \\lambda \\sum x_{i}}{x_{1}!\\cdots x_{n}!} \\] Calculemos la probabilidad de la muestra condicionada por el valor del estadístico \\(T=\\sum_{i=1}^{n} X_{i}\\) : \\[ \\begin{aligned} & P_{\\theta}\\left[X_{1}=x_{1}, \\ldots, X_{n}=x_{n} \\mid T=t\\right]=\\frac{P_{\\theta}\\left(X_{1}=x_{1}, \\ldots, X_{n}=x_{n}, T=t\\right)}{P_{\\theta}(T=t)} \\end{aligned} \\] \\[ \\begin{aligned} & =\\frac{t!}{x_{1}!\\cdots x_{n}!}\\left(\\frac{1}{n}\\right)^{t} \\mathbf{1}_{\\left\\{\\sum x_{i}=t\\right\\}}\\left(x_{1}, \\ldots, x_{n}\\right) \\end{aligned} \\] La probabilidad condicional no depende de \\(\\lambda y\\), por lo tanto, \\(T\\) es suficiente para \\(\\lambda\\). Conviene observar que, en este ejemplo, no todas las muestras tienen la misma probabilidad. 7.9.2 Teorema de factorización La justificación de la suficiencia de un estadístico mediante la definición no siempre es sencilla, ya que la distribución condicional puede ser intratable con las herramientas disponibles. El teorema que se presenta a continuación proporciona un método sencillo para comprobar la suficiencia de un estadístico y, a menudo, sugiere cuál es el estadístico suficiente de menor dimensión posible. Teorema 2.3 Neyman-Fisher. Sea \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\) un modelo estadístico y \\(X_{1}, X_{2}, \\ldots, X_{n}\\) una muestra aleatoria simple de \\(X\\). Sea \\(f_{\\theta}(\\mathbf{x})\\) la función de probabilidad o la función de densidad de la muestra, según si \\(X\\) es discreta o absolutamente continua. Un estadístico \\(T\\) es suficiente para \\(\\theta\\) si y solo si existen dos funciones medibles \\(g_{\\theta}\\) y \\(h\\) tales que \\[ f_{\\theta}(\\mathbf{x})=g_{\\theta}(T(\\mathbf{x})) \\cdot h(\\mathbf{x}) \\] donde \\(h\\) no depende de \\(\\theta\\) y g depende de \\(\\theta\\) y, además, solo depende de la muestra a través de \\(T\\). Veamos ahora la demostración del teorema de factorización, restringida al caso de variables discretas. Demostración: Comenzaremos suponiendo que \\(T\\) es suficiente y concluiremos que es posible la factorización. Si \\(T(\\mathbf{X})\\) es suficiente para la familia de distribuciones \\(\\left\\{F_{\\theta} ; \\theta \\in \\Theta\\right\\}\\), la función de probabilidad de la muestra condicionada por \\(T\\) no depende de \\(\\theta\\). Dado que \\[ f_{\\theta}(\\mathbf{x})=P_{\\theta}[T=T(\\mathbf{x})] \\cdot f_{\\theta}[\\mathbf{x} \\mid T=T(\\mathbf{x})] \\] solo es necesario tomar \\(g_{\\theta}(t)=P_{\\theta}[T=T(\\mathbf{x})=t]\\) y \\(h(\\mathbf{x})=f_{\\theta}[\\mathbf{x} \\mid T=T(\\mathbf{x})]\\) para obtener el resultado. Ahora supongamos que es posible la factorización y deduzcamos la suficiencia. Si \\(f_{\\theta}(\\mathbf{x})=g_{\\theta}(T(\\mathbf{x})) \\cdot h(\\mathbf{x})\\) y llamamos \\(A_{t}=\\left\\{\\mathbf{x} \\in X(\\Omega)^{n} \\mid T(\\mathbf{x})=t\\right\\}\\), entonces \\[ P_{\\theta}[T(\\mathbf{x})=t]=\\sum_{A_{t}} g_{\\theta}(T(\\mathbf{x})) \\cdot h(\\mathbf{x})=g_{\\theta}(t) \\cdot \\sum_{A_{t}} h(\\mathbf{x}) \\] Consideremos ahora la distribución de la muestra condicionada a \\(T=t\\). El Teorema de Bayes para densidad permite escribir: \\[ \\begin{aligned} f_{\\theta}(\\mathbf{x} \\mid T=t) & =\\frac{f_{\\theta}(\\mathbf{x}, T=t)}{P_{\\theta}(T=t)} \\\\ & = \\begin{cases}\\frac{g_{\\theta}(t) \\cdot h(\\mathbf{x})}{g_{\\theta}(t) \\cdot \\sum_{A_{t}} h(\\mathbf{x})}=\\frac{h(\\mathbf{x})}{\\sum_{A_{t}} h(\\mathbf{x})} & \\text { si } T(\\mathbf{x})=t \\\\ 0 & \\text { si } T(\\mathbf{x}) \\neq t\\end{cases} \\end{aligned} \\] De modo que la distribución de \\(\\mathbf{X}\\) condicionada por el valor de \\(T\\) no depende de \\(\\theta\\), y, en consecuencia, \\(T\\) es suficiente. Ejemplo 2.4.3 Si X sigue una distribución de Bernoulli, tenemos: \\[ f_{\\theta}(\\mathbf{x})=\\theta^{\\sum_{i=1}^{n} x_{i}}(1-\\theta)^{n-\\sum_{i=1}^{n} x_{i}}=g_{\\theta}\\left(\\sum_{i=1}^{n} x_{i}\\right) . \\] Si tomamos \\(h(\\mathbf{x})=1\\), queda probado que \\(T=\\sum_{i=1}^{n} X_{i}\\) es suficiente. Ejemplo 2.4.4 Si consideramos una muestra de una distribución de Poisson \\[ f_{\\lambda}(\\mathbf{x})=e^{-n \\lambda} \\frac{\\lambda^{\\sum_{i=1}^{n} x_{i}}}{x_{1}!x_{2}!\\cdots x_{n}!} \\] \\(y\\) tomamos \\(T(\\mathbf{x})=\\sum_{i=1}^{n} x_{i}\\), podemos escribir \\[ f_{\\lambda}(\\mathbf{x})=e^{-n \\lambda} \\lambda^{T(\\mathbf{x})} \\cdot\\left(x_{1}!x_{2}!\\cdots x_{n}!\\right)^{-1}=g_{\\lambda}(T(\\mathbf{x})) \\cdot h(\\mathbf{x}) \\] donde \\[ g_{\\lambda}(T(\\mathbf{x}))=e^{-n \\lambda} \\lambda^{T(\\mathbf{x})}, \\quad h(\\mathbf{x})=\\left(x_{1}!x_{2}!\\cdots x_{n}!\\right)^{-1} \\] De modo que \\(g_{\\lambda}(t)=e^{-n \\lambda} \\lambda^{t}\\) depende de la muestra solo a través de \\(T=\\) \\(\\sum_{i=1}^{n} x_{i}\\) y \\(h(\\mathbf{x})=\\left(x_{1}!x_{2}!\\cdots x_{n}!\\right)^{-1}\\) no depende de \\(\\lambda\\). Ejemplo 2.4.5 Supongamos que \\(\\mathbf{X}\\) es una muestra aleatoria simple de una población \\(X \\sim N(\\mu, \\sigma)\\), cuya función de densidad es \\[ f_{\\mu, \\sigma^{2}}\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right)=\\frac{1}{\\left(\\sqrt{2 \\pi \\sigma^{2}}\\right)^{n}} \\exp \\left\\{-\\frac{1}{2 \\sigma^{2}} \\sum_{i=1}^{n}\\left(x_{i}-\\mu\\right)^{2}\\right\\} \\] Para evidenciar la factorización, utilizamos que \\[ \\sum_{i=1}^{n}\\left(x_{i}-\\mu\\right)^{2}=\\sum_{i=1}^{n}\\left(x_{i}-\\bar{x}\\right)^{2}+n(\\bar{x}-\\mu)^{2} . \\] Entonces, \\[ \\begin{aligned} f_{\\mu, \\sigma^{2}}\\left(x_{1}, x_{2}, \\ldots, x_{n}\\right) & =\\frac{1}{\\left(\\sqrt{2 \\pi \\sigma^{2}}\\right)^{n}} \\exp \\left\\{-\\frac{1}{2 \\sigma^{2}}\\left(\\sum_{i=1}^{n}\\left(x_{i}-\\bar{x}\\right)^{2}+n(\\bar{x}-\\mu)^{2}\\right)\\right\\} \\\\ & =\\frac{1}{\\left(\\sqrt{2 \\pi \\sigma^{2}}\\right)^{n}} \\exp \\left\\{-\\frac{1}{2 \\sigma^{2}}\\left(n s^{2}+n(\\bar{x}-\\mu)^{2}\\right)\\right\\} \\\\ & =g_{\\mu, \\sigma^{2}}\\left(\\bar{x}, s^{2}\\right) \\cdot 1 \\end{aligned} \\] Así, vemos que el estadístico \\(\\left(\\bar{X}, s^{2}\\right)\\) es suficiente para la estimación de \\(\\left(\\mu, \\sigma^{2}\\right)\\). Si suponemos conocido uno de los dos parámetros \\(\\sigma^{2}\\) o \\(\\mu\\), podemos obtener una factorización en la que se ve que \\(\\sum_{i=1}^{n}\\left(x_{i}-\\mu\\right)^{2}\\) es suficiente para \\(\\sigma^{2}\\) (conocido \\(\\mu\\) ) o \\(\\bar{x}\\) es suficiente para \\(\\mu\\) (conocido \\(\\sigma^{2}\\) ). En el ejemplo anterior se observa que el estadístico suficiente para un problema puede tener una dimensión superior a 1. En general, buscaremos el estadístico suficiente de menor dimensión posible, ya que a menor dimensión se elimina más información superflua. Si no es posible encontrarlo así, siempre podemos basarnos en el estadístico \\(T=\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)\\), que es suficiente pero de dimensión máxima y, por lo tanto, no aporta ninguna reducción al problema de información. Estas reflexiones llevan a enunciar el principio de suficiencia, que aconseja condensar al máximo la información relevante en un estadístico suficiente \\(T\\) de la menor dimensión posible (“mínima”) y seleccionar un estimador \\(T^{\\prime}\\) entre los estadísticos que sean función de la muestra a través de \\(T: T^{\\prime}(\\mathbf{X})=\\varphi(T(\\mathbf{X}))\\). 7.9.3 Propiedades de los estadísticos suficientes Las siguientes propiedades se prueban de manera sencilla utilizando el teorema de factorización: Si \\(T\\) es un estadístico suficiente para \\(\\theta\\) y \\(\\varphi\\) es una función inyectiva (o monótona diferenciable), entonces \\(T_{1}=\\varphi(T)\\) también es suficiente para \\(\\theta\\). Ejemplo 2.4.6 En la familia de la Poisson hemos visto que \\(\\sum_{i=1}^{n} X_{i}\\) es suficiente para \\(\\lambda\\). Entonces \\(\\bar{X}=\\varphi\\left(\\sum_{i=1}^{n} X_{i}\\right)\\), donde \\(\\varphi(z)=(1 / n) z\\) es inyectiva, es suficiente para \\(\\lambda\\). 2. Si \\(T\\) es un estadístico suficiente para \\(\\theta\\) y \\(\\varphi\\) es una función paramétrica monótona diferenciable, entonces \\(\\varphi(T)\\) también es suficiente para \\(\\varphi(\\theta)\\). 3. Si \\(T_{1}, T_{2}\\) son dos estadísticos suficientes para \\(\\theta\\), entonces \\(T_{1}\\) es función de \\(T_{2}\\). "],["métodos-de-obtención-de-estimadores.html", "Capítulo 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES 8.1 El método de los momentos 8.2 El método del máximo de verosimilitud", " Capítulo 8 MÉTODOS DE OBTENCIÓN DE ESTIMADORES En el capítulo anterior hemos analizado el problema de la estimación puntual desde el punto de vista de, dado un estimador, ver ?qué tan bueno es? para estimar un parámetro. Otra cuestión que nos podemos plantear, de hecho la primera cuestión que hay que plantearse en la práctica, es cómo obtener un estimador ?razonablemente bueno? de un parámetro. De hecho, desde el punto de vista práctico parece razonable empezar por ver cómo se obtiene un estimador y, una vez obtenido, analizar ?cuán bueno resulta?. Existen muchos métodos para obtener estimadores, cada uno de los cuales puede llevarnos a unos resultados de diferente calidad. Los principales métodos de estimación son: Método de los momentos Método de la máxima verosimilitud Método de Bayes Otros métodos 8.1 El método de los momentos Este método fue introducido por K. Pearson a finales del siglo XIX y es el principio en que nos basamos cuando hacemos una estimación de la media o de la varianza poblacional a partir de la media o la varianza muestrales. La idea del método de los momentos es bastante intuitiva. Si lo que queremos estimar (uno o varios parámetros) es una función de los momentos poblacionales, entonces una estimación razonable puede consistir en tomar como estimador la misma función en la que los momentos poblacionales han sido sustituidos por los momentos muestrales. Dado que estos últimos son estimadores consistentes de los momentos poblacionales, en condiciones bastante generales se puede garantizar que los estimadores obtenidos serán estimadores consistentes para las funciones de los momentos poblacionales estimadas. Algunos ejemplos típicos de estimadores basados en el método de los momentos son: \\[ \\widehat{\\mu}=\\bar{X}_{n} \\quad \\widehat{\\sigma}=\\sqrt{S^{2}} \\quad \\widehat{\\sigma^{2}}=S^{2} \\] Sea un modelo estadístico, \\(\\left\\{X \\sim F_{\\theta}: \\theta \\in \\Theta\\right\\}\\), y \\(X_{1}, X_{2}, \\ldots, X_{n}\\) una muestra aleatoria simple de \\(X\\). Sean \\(m_{1}, m_{2}, ?, m_{k}\\) los momentos poblacionales de orden \\(1,2, ?, k\\) de \\(X\\), que suponemos que existen, \\[ m_{k}=E\\left(X^{k}\\right) \\] y \\(a_{1}, a_{2}, ?, a_{k}\\) los momentos muestrales respectivos \\[ a_{k}\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)=\\frac{1}{n} \\sum_{i=1}^{n} X_{i}^{k} \\] Suponemos que estamos interesados en estimar: \\[ \\theta=h\\left(m_{1}, m_{2}, \\ldots, m_{p}\\right), \\] donde \\(h\\) es una función conocida. Definició 3.1 El método de los momentos consiste en estimar \\(\\theta\\) por el estadístico \\[ T(\\mathbf{X})=h\\left(a_{1}, a_{2}, \\ldots, a_{p}\\right) \\] 8.1.1 Observaciones El método se extiende de forma sencilla a la estimación de momentos conjuntos. Podemos usar \\(\\frac{1}{n} \\sum_{i=1}^{n} X_{i} Y_{i}\\) para estimar \\(E(X Y)\\), etc. Por la ley débil de los grandes números, \\[ a_{k}\\left(X_{1}, X_{2}, \\ldots, X_{n}\\right)=\\frac{1}{n} \\sum_{i=1}^{n} X_{i}^{k} \\xrightarrow{P} E\\left(X^{k}\\right), \\] de modo que si lo que queremos es estimar los momentos muestrales, el método garantiza que los estimadores son consistentes y sin sesgo. En este caso, además, los estimadores son asintóticamente normales. Si lo que se desea estimar es una función \\(h\\) continua de los momentos, entonces el método garantiza que el estimador \\(T(\\mathbf{X})\\) es consistente y, bajo ciertas condiciones de regularidad, también es asintóticamente normal. Ejemplo 3.1.1 Sea \\(X \\sim \\Gamma(p, \\alpha)\\). Queremos estimar \\(p\\) y \\(\\alpha\\). En lugar de conocer la función \\(h\\left(\\theta_{1}, \\theta_{2}\\right)\\) sabemos que: \\[ \\begin{aligned} m_{1} & =\\frac{p}{\\alpha}=E(X) \\\\ m_{2} & =\\frac{p(p+1)}{\\alpha^{2}}=E\\left(X^{2}\\right) \\\\ & =V(X)+[E(X)]^{2}=\\frac{p}{\\alpha^{2}}+\\left(\\frac{p}{\\alpha}\\right)^{2}=\\frac{p^{2}+p}{\\alpha^{2}}= \\end{aligned} \\] De modo que podemos obtener las funciones deseadas ?aislando? p y \\(\\alpha\\) como funciones de \\(m_{1}\\) y \\(m_{2}\\) : \\[ \\begin{aligned} \\alpha^{2} & =\\frac{p^{2}}{m_{1}^{2}} \\\\ \\alpha^{2} & =\\frac{p(p+1)}{m_{2}} \\end{aligned} \\] Procediendo por igualación: \\[ \\begin{aligned} & \\frac{p^{2}}{m_{1}^{2}}=\\frac{p(p+1)}{m_{2}} \\\\ & \\frac{p}{m_{1}}=\\frac{p+1}{m_{2}} \\\\ & p m_{2}=p m_{1}^{2}+m_{1}^{2} \\\\ & p\\left(m_{2}-m_{1}^{2}\\right)=m_{1}^{2} \\\\ & p=\\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\\\ & \\alpha=\\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \\\\ & m_{1} \\end{aligned} \\frac{m_{1}}{m_{2}-m_{1}^{2}} . \\] Los estimadores por el método de los momentos se obtendrán ahora sustituyendo \\(p\\) y \\(\\alpha\\) por \\(\\hat{p}\\) y \\(\\hat{\\alpha}\\) en la expresión anterior, es decir: \\[ \\widehat{p}=\\frac{a_{1}^{2}}{a_{2}-a_{1}^{2}} \\] Hacemos lo mismo para el parámetro \\(\\alpha\\) : \\[ \\widehat{\\alpha}=\\frac{a_{1}}{a_{2}-a_{1}^{2}} \\] 8.2 El método del máximo de verosimilitud 8.2.0.1 Introducción El método de la máxima verosimilitud, introducido por Fisher, es un método de estimación que se basa en la función de verosimilitud, presentada en el capítulo anterior. Básicamente consiste en tomar como estimadores de los parámetros aquellos valores que hagan más probable observar precisamente lo que se ha observado, es decir, que hagan que la muestra observada resulte más verosímil. Ejemplo 3.2.1 Tomemos 5 papeles. En cada uno de ellos ponemos o bien un ?+? o bien un ?-?, sin que se sepa qué hay en cada papel, y los guardamos en una bolsa. Nuestro objetivo es estimar el número de papeles con el signo ?? escrito. Extraemos tres papeles, devolviéndolos a la bolsa después de cada extracción, y observamos que ha salido lo siguiente: ?++-?. Los valores posibles para la probabilidad de ?-?, llamémosla p, son: En la bolsa hay \\(p\\) \\(4 ?+\\) ?, 1 ?-? 0,2 \\(3 ?+\\) ?, 2 ?-? 0,4 \\(2 ?+\\) ?, 3 ?-? 0,6 \\(1 ?+\\) ?, 4 ?-? 0,8 Supongamos que la variable \\(X\\) mide el número de ?-? en tres extracciones consecutivas y que, por tanto, sigue una distribución binomial: \\[ X \\sim B(3, p(?-?)) \\] La probabilidad de sacar un ?-? es: \\[ P_{p}[X=1]=\\binom{3}{1} \\cdot p^{1}(1-p)^{2} \\] Para cada uno de los valores de p, las probabilidades quedan asi: \\(p\\) \\(P_{p}[X=1]\\) 0.2 \\(3 \\cdot 0.2 \\cdot 0.8^{2}=0.384\\) 0.4 \\(3 \\cdot 0.4 \\cdot 0.6^{2}=0.432\\) 0.6 \\(3 \\cdot 0.6 \\cdot 0.4^{2}=0.288\\) 0.8 \\(3 \\cdot 0.8 \\cdot 0.2^{2}=0.096\\) El valor de p que da una probabilidad mayor a la muestra, es decir, que la hace más verosímil, es \\(p=0.4\\). El método del máximo de verosimilitud consiste precisamente en tomar este valor como estimación de \\(p\\). 8.2.0.2 La función de verosimilitud Una vez introducido el método con un ejemplo, podemos pasar a definirlo con mayor precisión. Para ello, comenzaremos con el concepto de función de verosimilitud. En el capítulo anterior presentamos la función de verosimilitud como la función que resulta de considerar que, en la función de probabilidad de la muestra, el parámetro es variable y la muestra queda fija. Es decir: \\[ \\underbrace{f\\left(x_{1}, x_{2}, \\ldots, x_{n} ; \\theta\\right)}_{\\mathbf{x} \\text { variable, } \\theta \\text { fijo }} \\longrightarrow \\underbrace{L\\left(\\theta ; x_{1}, x_{2}, \\ldots, x_{n}\\right)}_{\\mathbf{x} \\text { fija, } \\theta \\text { variable }} \\] Esta definición es básicamente correcta. En el caso de las variables discretas, donde \\(f\\left(x_{1}, x_{2}, \\ldots, x_{n} ; \\theta\\right)\\) representa la probabilidad de la muestra, fijado \\(\\theta\\), resulta intuitivamente claro decir que la verosimilitud representa la ?probabilidad de la muestra para cada valor del parámetro?. Refiriéndonos al ejemplo introductorio, resulta sencillo ver que se trata de ?dos puntos de vista? sobre la misma función. Fijado un valor del parámetro, por ejemplo, 0.4 , podemos considerar la probabilidad de diversas muestras posibles, como \\(x=0, x=1, \\ldots\\), hasta \\(x=3\\) : \\[ \\begin{aligned} f\\left(x_{1}, x_{2}, \\ldots, x_{n} ; \\theta\\right) & =P_{0.4}[X=x], x=0,1, \\ldots, 3 \\\\ & =\\binom{3}{x} \\cdot 0.4^{x}(0.6)^{3-x} . \\end{aligned} \\] Análogamente, fijada una muestra, por ejemplo, \\(x=1\\), podemos considerar la probabilidad de esta para diversos valores del parámetro, \\(p=0,0.2, \\ldots, 1\\). \\[ \\begin{aligned} L\\left(x_{1}, x_{2}, \\ldots, x_{n} ; \\theta\\right) & =P_{p}[X=1], x=0,0.2,0.4, \\ldots, 1 \\\\ & =3 \\cdot p(1-p)^{2} . \\end{aligned} \\] En el caso de las distribuciones absolutamente continuas, el significado de la función de verosimilitud ya no es intuitivamente tan claro como en el caso de las discretas. En este caso, la función de densidad de la muestra ya no representa la probabilidad de esta como en el caso de las discretas. Algunos autores intentan solucionar esto explicando que existe una conocida aproximación en que la función de densidad es la probabilidad de un suceso ?infinitesimal?. Lo que es importante en la función de verosimilitud, a la hora de hacer inferencias, es la parte que es función del parámetro. Esto hace que a menudo se considere que la expresión de la función de verosimilitud mantenga solo aquella parte de \\(f\\left(x_{1}, x_{2}, \\ldots, x_{n} ; \\theta\\right)\\) que depende de \\(\\theta\\), ignorando la parte que dependa solo de la muestra. Es decir, si podemos factorizar \\(f\\left(x_{1}, x_{2}, \\ldots, x_{n} ; \\theta\\right)\\) como \\[ f(\\mathbf{x} ; \\theta)=c(\\mathbf{x}) \\cdot g(\\mathbf{x} ; \\theta) \\] podremos prescindir de la ?constante? \\(c(x)\\) (constante porque no depende de \\(\\theta\\) ) al considerar la verosimilitud. \\[ L(\\theta ; \\mathbf{x})=g(\\mathbf{x} ; \\theta) \\propto f(\\mathbf{x} ; \\theta) \\] Esto implica que \\(L(\\theta ; \\mathbf{x})\\) no tiene por qué integrar a 1 , como en el caso de las probabilidades, y que depende de las unidades de medida. Ejemplo 3.2.2 Si \\(X\\) es discreta, \\(X \\sim \\mathcal{P}(\\lambda)\\), y suponemos \\(n=1\\) (muestras de tamaño 1), tenemos que la f.d.p. de la muestra es: \\[ P[x ; \\lambda]=e^{-\\lambda} \\frac{\\lambda^{x}}{x!} \\] con \\(x=0,1, \\ldots\\) Ahora, si hemos observado \\(x=5\\), la función de verosimilitud vale: \\[ L(\\lambda ; 5)=e^{-\\lambda} \\lambda^{5}\\left[\\frac{1}{5!}\\right] \\] Como solo nos interesa la parte que es función de \\(\\lambda\\), podemos ignorar \\(\\frac{1}{5!}\\), es decir: \\[ L(\\lambda ; 5)=e^{-\\lambda} \\lambda^{5} \\propto P[\\mathbf{x} ; \\lambda] . \\] Ejemplo 3.2.3 Si dada una muestra de tamaño 1, por ejemplo, \\(x=2\\), de una ley de Poisson \\(\\mathcal{P}(\\lambda)\\) queremos comparar sus verosimilitudes respecto de los valores del parámetro \\(\\lambda=1.5\\) o \\(\\lambda=3\\), lo que haremos será basarnos en la razón de verosimilitudes: \\[ \\begin{aligned} \\Lambda(\\mathbf{x}) & =\\frac{L\\left(\\lambda_{1} ; x\\right)}{L\\left(\\lambda_{2} ; x\\right)}=\\frac{L(1.5 ; 2)}{L(3 ; 2)} \\\\ & =\\frac{e^{-1.5} 1.5^{2}\\left[\\frac{1}{2!}\\right]}{e^{-3} 3^{2}\\left[\\frac{1}{2!}\\right]}=\\frac{e^{-1.5} 1.5^{2}}{e^{-3} 3^{2}}=\\frac{0.5020}{0.4481}=1.12 . \\end{aligned} \\] Como se observa, al basarnos en la razón de verosimilitudes, la parte correspondiente solo a la muestra no se toma en cuenta. La razón de verosimilitudes sugiere que el valor \\(\\lambda=1.5\\) hace la muestra más verosímil. 8.2.0.3 El método del máximo de verosimilitud Si partimos de las dos ideas que hemos visto en la introducción: Escoger como estimación el valor que maximice la probabilidad de la muestra observada. La verosimilitud de la muestra es una aproximación a la probabilidad de esta como función del valor del parámetro. Una forma razonable de definir el EMV es entonces como aquel que maximice la verosimilitud. Definició 3.2 Un estimador \\(T: \\Omega \\longrightarrow \\Theta\\) es un estimador del máximo de verosimilitud para el parámetro \\(\\theta\\) si cumple: \\[ L(T(\\mathbf{x}) ; \\mathbf{x})=\\sup _{\\theta \\in \\Theta} L(\\theta ; \\mathbf{x}) \\] Como suele ocurrir en problemas de maximización, este valor ni existe necesariamente ni tiene por qué ser único. Ahora bien, bajo ciertas condiciones (las habituales para los problemas de máximos y mínimos) el problema se podrá reducir a buscar un máximo para la función de verosimilitud. Ejemplo 3.2.4 Supongamos que \\(x_{1}, \\ldots, x_{n}\\) es una muestra de una población de Bernouilli, \\(X \\sim B e(p)\\), donde queremos estimar p. La función de masa de la probabilidad de \\(X\\) es: \\[ P\\left[X=x_{i}\\right]=P\\left(x_{i} ; p\\right)=p^{x_{i}}(1-p)^{1-x_{i}} \\text { donde } x_{i} \\in\\{0,1\\} ; i=1, \\ldots, n \\] La función de verosimilitud es: \\[ L(p ; \\mathbf{x})=\\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\\sum_{i=1}^{n} x_{i}}(1-p)^{\\sum_{i=1}^{n}\\left(1-x_{i}\\right)} \\] Debemos buscar el máximo de \\(L(p ; \\mathbf{x})\\). En este caso, como en otros, es más sencillo buscar el máximo de su logaritmo, que, dado que es una función monótona, es el mismo que el máximo de \\(L\\) \\[ \\ln L(p ; x)=\\left(\\sum_{i=1}^{n} x_{i}\\right) \\cdot \\ln p+\\left(n-\\sum_{i=1}^{n} x_{i}\\right) \\cdot \\ln (1-p) \\] Derivamos respecto a p: \\[ \\frac{\\partial \\ln L(p ; x)}{\\partial p}=\\frac{\\sum_{i=1}^{n} x_{i}}{p}-\\frac{n-\\sum_{i=1}^{n} x_{i}}{1-p} \\] e igualamos a cero la derivada, planteando lo que se denomina la ecuación de verosimilitud, cuyas soluciones nos conducirán eventualmente al estimador del máximo de verosimilitud. \\[ \\frac{\\sum_{i=1}^{n} x_{i}-n \\hat{p}}{\\hat{p}(1-\\hat{p})}=0 \\Rightarrow \\hat{p}=\\frac{\\sum_{i=1}^{n} x_{i}}{n} \\] Si la segunda derivada es negativa en \\(\\widehat{p}\\) entonces será un máximo: \\[ \\begin{aligned} \\frac{\\partial^{2} \\ln L(p ; x)}{\\partial p^{2}} & =\\frac{\\partial}{\\partial p}\\left(\\frac{\\sum_{i=1}^{n} x_{i}-n p}{p(1-p)}\\right)=\\frac{-n[p(1-p)]-\\left(\\sum_{i=1}^{n} x_{i}-n p\\right) \\cdot(1-2 p)}{p^{2}\\left(1-p^{2}\\right)}= \\\\ & =\\frac{-n p+n p^{2}-\\sum_{i=1}^{n} x_{i}-n p-2 p \\sum_{i=1}^{n} x_{i}-2 n p^{2}}{p^{2}(1-p)^{2}}= \\\\ & =\\frac{\\left[\\sum_{i=1}^{n} x_{i}(1+2 p)-n p^{2}\\right]}{p^{2} \\cdot(1-p)^{2}} \\end{aligned} \\] que es negativa cuando \\(p=\\hat{p}\\), de forma que \\(\\hat{p}\\) es efectivamente un máximo. El método analítico expuesto en el ejemplo anterior, consistente en el cálculo de un extremo de una función, no se puede aplicar en todas las situaciones. En estos casos, una alternativa puede ser estudiar directamente la función de verosimilitud. Veamos un ejemplo: Ejemplo 3.2.5 Sea \\(X_{1}, \\ldots, X_{n} \\stackrel{i i d}{\\sim} X \\sim U(0, \\theta) \\quad \\theta>0\\) desconocido. Sabemos que: \\[ f(x ; \\theta)=\\left\\{\\begin{array}{c} \\frac{1}{\\theta} \\text { si } 0<\\min \\left\\{x_{i}\\right\\} \\leq \\max \\left\\{x_{i}\\right\\} \\leq \\theta \\\\ 0 \\quad \\text { en caso contrario } \\end{array}\\right\\} \\] La derivada respecto a \\(\\theta\\) es \\(-\\frac{n}{\\theta^{n-1}}\\), que se anula cuando \\(\\theta \\underset{n \\rightarrow \\infty}{\\longrightarrow} \\infty\\) que lleva a una solución sin sentido de la ecuación de verosimilitud. Una inspección de la gráfica de la función de verosimilitud revela que el EMV, en este caso, Figura 3.1: Función de verosimilitud para una distribución uniforme es \\(\\max \\left\\{X_{i}, \\ldots, X_{n}\\right\\}\\). Efectivamente, consideremos cualquier otro valor \\(\\theta^{*}\\) diferente del máximo: \\[ \\begin{aligned} & \\text { Si } \\theta^{*}>X_{(n)} \\Rightarrow \\frac{1}{\\left(\\theta^{*}\\right)^{n}}<\\frac{1}{\\left(X_{n}\\right)^{n}}, \\\\ & \\text { Si } \\theta^{*}<X_{(n)} \\Rightarrow L\\left(\\theta^{*} ; \\mathbf{x}\\right)=0 \\end{aligned} \\] ya que si un estimador toma un valor inferior al máximo de la muestra habrá algún valor muestral, \\(x_{i}\\) para el cual se verificará que \\(\\theta^{*}<x_{i}\\), lo que hace la muestra inverosímil, y por tanto el estimador no es admisible. A la vista de lo anterior, deducimos que el valor que maximiza \\(L(\\theta ; \\mathbf{x})\\) es el máximo de la muestra. Ejemplo 3.2.6 El método del máximo de verosimilitud se extiende de forma inmediata a los parámetros \\(K\\)-dimensionales. Consideremos el caso de la ley normal \\(X \\sim N\\left(\\mu, \\sigma^{2}\\right)\\). Aquí el parámetro \\(\\theta\\) es bidimensional, es decir: \\(\\theta=\\left(\\mu, \\sigma^{2}\\right) \\in \\Theta=\\mathbb{R} \\times \\mathbb{R}^{+}\\) La función de verosimilitud de una muestra de tamaño \\(n\\) es: \\[ L\\left(\\left(\\mu, \\sigma^{2}\\right) ; \\mathbf{x}\\right)=\\prod_{i=1}^{n} \\frac{1}{\\sqrt{2 \\pi \\sigma^{2}}} e^{-\\frac{\\left(x_{i}-\\mu\\right)^{2}}{2 \\sigma^{2}}}=\\frac{1}{(2 \\pi)^{n / 2}\\left(\\sigma^{2}(n / 2\\right.} e^{-\\frac{\\sum_{i=1}^{n}\\left(x_{i}-\\mu\\right)^{2}}{2 \\sigma^{2}}} \\] Sacando logaritmos \\[ \\log L\\left(\\left(\\mu, \\sigma^{2}\\right) ; \\mathbf{x}\\right)=-\\frac{n}{2} \\log (2 \\pi)-\\frac{n}{2} \\log \\left(\\sigma^{2}\\right)-\\frac{\\sum_{i=1}^{n}\\left(x_{i}-\\mu\\right)^{2}}{2 \\sigma^{2}} \\] La derivada de \\(L()\\) es la matriz de derivadas: \\[ D \\log L\\left(\\left(\\mu, \\sigma^{2}\\right) ; \\mathbf{x}\\right)=\\binom{\\frac{\\partial \\log L\\left(\\left(\\mu, \\sigma^{2}\\right) ; \\mathbf{x}\\right)}{\\partial \\mu}}{\\frac{\\partial \\log L\\left(\\left(\\mu, \\sigma^{2}\\right) ; \\mathbf{x}\\right)}{\\partial \\sigma^{2}}}=\\left\\{\\begin{array}{c} \\frac{\\sum_{i=1}^{n}\\left(x_{i}-\\mu\\right)}{\\sigma^{2}} \\\\ \\frac{\\sum_{i=1}^{n}\\left(x_{i}-\\mu\\right)^{2}}{2 \\sigma^{4}}-\\frac{n}{2 \\sigma^{2}} \\end{array}\\right. \\] Planteando y resolviendo la ecuación de verosimilitud tenemos: \\[ D \\log L\\left(\\left(\\hat{\\mu}, \\hat{\\sigma}^{2}\\right) ; \\mathbf{x}\\right)=\\left\\{\\begin{array}{c} \\frac{\\sum_{i=1}^{n}\\left(x_{i}-\\hat{\\mu}\\right)}{\\hat{\\sigma}^{2}}=0 \\\\ \\frac{\\sum_{i=1}^{n}\\left(x_{i}-\\hat{\\mu}\\right)^{2}}{2 \\hat{\\sigma}^{4}}=\\frac{n}{2 \\hat{\\sigma}^{2}} \\end{array}\\right. \\] de donde las raíces de la ecuación de verosimilitud son: \\[ \\hat{m} u=\\bar{x}, \\quad \\hat{\\sigma}^{2}=\\frac{\\sum_{i=1}^{n}\\left(x_{i}-\\bar{x}\\right)^{2}}{n}=s^{2} . \\] Para decidir si las raíces de la ecuación de verosimilitud corresponden a un máximo, analizamos la matriz de derivadas segundas, denominada Hessiana. \\[ H=\\left(\\begin{array}{cc} \\frac{\\partial^{2} z}{\\partial x^{2}} & \\frac{\\partial^{2} z}{\\partial x \\partial y} \\\\ \\frac{\\partial^{2} z}{\\partial y \\partial x} & \\frac{\\partial^{2} z}{\\partial y^{2}} \\end{array}\\right) \\] Una condición suficiente para que un punto \\(\\left(x_{0}, y_{0}\\right)\\) sea un máximo es que el determinante de \\(H\\) sea positivo y el menor en la posición ?11? negativo, es decir: \\(S i|H|>\\left.0 y \\frac{\\partial^{2} z}{\\partial x^{2}}\\right|_{\\left(x_{0}, y_{0}\\right)}<0 \\Longrightarrow\\) Hay un máximo relativo en \\(\\left(x_{0}, y_{0}\\right)\\). Si evaluamos el Hessiano en el punto \\(\\left(\\bar{x}, s^{2}\\right)\\) tenemos: \\[ H=\\left(\\begin{array}{cc} -\\frac{n}{s^{2}} & 0 \\\\ 0 & -\\frac{n}{2 s^{4}} \\end{array}\\right) . \\] Las condiciones de extremo que hemos dado más arriba se verifican: \\(H_{11}<0 y|H|>0\\), de manera que podemos concluir que el estimador del máximo de verosimilitud de \\(\\left(\\mu, \\sigma^{2}\\right)\\) es, efectivamente, \\(\\left(\\bar{x}, s^{2}\\right)\\). "],["estimación-puntual-1.html", "Capítulo 9 Estimación puntual 9.1 Preliminares: estimación del error estándar e Introducción al bootstrap 9.2 Estimadores por intervalo: intervalos de confianza 9.3 Intervalos de confianza para características de una población normal (media, varianza), 9.4 Intervalos de confianza bootstrap. 9.5 Intervalos de confianza para proporciones binomiales 9.6 Intervalos de confianza para parámetros en muestra grandes y para casos generales (tasas, OR, …) 9.7 Aplicaciones: cálculo del tamaño muestral", " Capítulo 9 Estimación puntual Este capítulo está pendiente de ser introducido en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). Se plantea el problema de la estimación como una forma de aproximación a las características de las distribucionesa partir de muestras aleatorias simples. Se abordan las distintas filosofías para la construcción de estimadores. 9.1 Preliminares: estimación del error estándar e Introducción al bootstrap 9.2 Estimadores por intervalo: intervalos de confianza 9.3 Intervalos de confianza para características de una población normal (media, varianza), 9.4 Intervalos de confianza bootstrap. 9.5 Intervalos de confianza para proporciones binomiales 9.6 Intervalos de confianza para parámetros en muestra grandes y para casos generales (tasas, OR, …) 9.7 Aplicaciones: cálculo del tamaño muestral "],["pruebas-de-hipótesis.html", "Capítulo 10 Pruebas de hipótesis 10.1 Conceptos básicos: pruebas de hipótesis y de significación, pruebas unilaterales y bilaterales, tipos de error, valores críticos de test y p-valores 10.2 Potencia de un test. Cálculos de potencia y de tamaño de la muestra. Tamaño del efecto. 10.3 Métodos de construcción de tests. 10.4 Problemas asociados al uso de tests estadísticos. La crisis de la significación", " Capítulo 10 Pruebas de hipótesis Este capítulo está pendiente de ser introducida en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). Se plantea el problema de las pruebas de hipótesis. Se discuten las aproximaciones y los conceptos asociados. Se trata el problema de la crisis de la significación. 10.1 Conceptos básicos: pruebas de hipótesis y de significación, pruebas unilaterales y bilaterales, tipos de error, valores críticos de test y p-valores 10.2 Potencia de un test. Cálculos de potencia y de tamaño de la muestra. Tamaño del efecto. 10.3 Métodos de construcción de tests. 10.4 Problemas asociados al uso de tests estadísticos. La crisis de la significación "],["inferencia-aplicada.html", "Capítulo 11 Inferencia Aplicada 11.1 Pruebas de normalidad.Pruebas gráficas. El test de Shapiro-Wilks 11.2 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas paramètricas t-test y Anova 11.3 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas de hipótesis no paramétricas de Wilcoxon y Kruskal-Wallis 11.4 Contrastes para datos categóricos. Pruebas binomiales, ji cuadrado y test de Fisher. 11.5 Riesgo relativo y razón de «odds»", " Capítulo 11 Inferencia Aplicada Este capítulo está pendiente de ser introducida en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). Se muestra como deducir y aplicar algunos de los tests mas populares. 11.1 Pruebas de normalidad.Pruebas gráficas. El test de Shapiro-Wilks 11.2 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas paramètricas t-test y Anova 11.3 Pruebas de hipótesis para constrastar variables cuantitativas: pruebas de hipótesis no paramétricas de Wilcoxon y Kruskal-Wallis 11.4 Contrastes para datos categóricos. Pruebas binomiales, ji cuadrado y test de Fisher. 11.5 Riesgo relativo y razón de «odds» "],["computación-intensiva-y-multiple-testing.html", "Capítulo 12 Computación Intensiva y Multiple Testing 12.1 Tests de permutaciones; ¿Qué?, ¿Cuándo?, ¿Cómo? 12.2 El bootstrap en contraste de hipótesis 12.3 El problema de las comparaciones múltiples 12.4 Métodos de control de error: FWER y FDR", " Capítulo 12 Computación Intensiva y Multiple Testing Este capítulo está pendiente de ser introducida en los apuntes. La versión actualizada estará disponible en el momento de inicio de la actividad, durante el semestre actual (2024-25-S1). Se introducen distintos métodos cuyo nexo común es la computación intensiva. 12.1 Tests de permutaciones; ¿Qué?, ¿Cuándo?, ¿Cómo? 12.2 El bootstrap en contraste de hipótesis 12.3 El problema de las comparaciones múltiples 12.4 Métodos de control de error: FWER y FDR "],["404.html", "Page not found", " Page not found The page you requested cannot be found (perhaps it was moved or renamed). You may want to try searching to find the page's new location, or use the table of contents to find the page you are looking for. "]] diff --git a/docs/variables-aleatorias-y-distribuciones-de-probabilidad.html b/docs/variables-aleatorias-y-distribuciones-de-probabilidad.html index e257ce2..9e1bee5 100644 --- a/docs/variables-aleatorias-y-distribuciones-de-probabilidad.html +++ b/docs/variables-aleatorias-y-distribuciones-de-probabilidad.html @@ -6,7 +6,7 @@ Capítulo 2 Variables aleatorias y Distribuciones de probabilidad | Fundamentos de Inferencia Estadistica - + @@ -23,7 +23,7 @@ - + @@ -363,44 +363,110 @@
    133. 6 Introducción a la inferencia estadística
    134. # zWudYmNVU6pN2Ua`F|`sx)#Sd5XPMG^d`~i+MXtv4;{-)53rzdx4rfXiuoO=EIV`Nq z(8T>t0!L8#V#0oUq>+D_Z)uOVTpsNUf%%g;fA4P|J@0ICvKu@&89x~)huX!z+4JT} zIZc6Uc1|@HiKndDBv5k}HIF(+xkv5#EXLW)s(27he8XZbbQ~jlq&s#$@RkQ#XTn#9 z^N5=M;->FoPxLK(Az%S3DH+=oJFf_1mg%&Owy3*0bs+l`{`H8Ry#;gnwJ=ff#w=u*3Gy$tc1j%15Xf5czn&6jhpPh*)Ipw%y-C{76fK;pF-qHBwt zendCAvw=Zt_RcpQO>Fj_3{&hXtG@Iy5k4*SeOKOgP-Q~Q{^&^SJBpG_7D}t5Lewk{ zoM-v>2a}{3Jy`{?WzzWel@{0&(S{Rx+iwx)=x6oS`a9Sb%*!(%5Oi z+eL-9x~zH2%4p#IQpt11+ZUP*FR--mAPFNAaw^7BA}#j>6Hwk<;EJqtvSFyeiHVdi z%Y+t*@rqtx(?8)9dGR{-TZ=*De}SjMNz&bN#Y(BReTjw;IkF^GX6HOSOe^QxGT*#s z``gMt;o8k0IG&Bf)79w1NxE%1grt~xFTS72JI$5s5Uf|b9U3JRh-!7xCl29M`jYZB zjw+azl?ZO`O|COR32;05O^9O*ywXH4`T6bd2=dGPWBsch?ve*^vz177|9 zS}uX$w{H9SuQZ-kmw7z`rSfD&VwCr|l>yi*`F9Ns<%e^Y4tvR)f2Uh|$u!%?3#V8_ zkH^YFqVuf+y@x-K7>Qfz$UBeyEazP{yalVC&3!sa3O3pH$NqtfLFGn4K5O^2RLEic zHX%8En_jp17tdmAFkXlG&j$tg9LA$D0acP_m|0&QM@yZ)>b55EkBp?)8fVVZ^eBB} zA-_r@yn|zWs-fX&e`O?`U6{Vch1Ek)+!?m1h}KM%eCsJIUKOsrhNcf&lr`ZD*HVTMfwZ#9j{D{;e+&Pq*H-+u%6BY`jpS*+qMD=gT|Q2Pnx-G=+7Fdqij6 z1#`RK{bTI>%xz;1P+q-v;d}q)aoxlF{^4&oM^PVF%CAU;9u}enx6FicEGrGInmr1T zIvmUUbRu&1-H|Dd>cKDJB(@@KGy?S;_ehIr^r)2RRGp}!;+RAIGs#XJah`1ezjA7Y z)kdy8Bli$RO{m!bsF63o5u1JR;CQb&iIjs{ueT~K!(=iDq-Ikf6-$q^->^rW_zD7` z>~)K>MFd~`4+pJD372s)FcSkYHaVB^9y2QjO-WZ-LRyz1A2X+y44U6F)=ncATS_O3YTHOFclv>JPI#NWo~D5XfYr%H8e5`FHB`_XLM*XATcvA zIX0K!W;YcCG&MIlmmzdBD1WzgSk&LvJ}ey~C@neC-Q6MG-ObQ2#Ly`qAl=>F-6@^Y z-CYs_0@CmJJP|B;yk!2l)z&;bB+GqGU&o%)~2`7LJtErztj+tVIo4=^*baRPckXJ#zFokx|E$62*CX>F@(wgs{Usjs8|>v`-vK| zX-z?PHh=B_Q=l0#qdW)<84jxdfA-vegzjvDr zWUL`aljZNj?YExezjTm^HLIynK@nEp`#A%C6uFZPh-_{|-_D5a$!t0Y4Ee+<(< z#$t9RAX7^_a{voF2f)bD(a0T{2{Iup?CbzfX2{^10^R-@Apj$T9S96@0oXf(y#Zz* zN95nj%)t&|6#gyx7vcagiu^&G07lV2hzr2@@ekq#FpB*faWVlI#s45?0Heeo!~$TH z{C|U3AyxfBkeKp+5G1C;zY!NCrs5w2iK+AlL1HTZL6Dd#e-ImhQS}dkRHXg~LGo$- zL6Ce}|3=)9eA<5yq;{i!BNirzqmhlh#UBwjL}L7x0VI|&@Nr@(fm*IA%9Bq-xnz40R3YENn!C9ge~p=a}ZO#k>mDzg2{=Qnizqh^LU*!@wnLLkT%X#Q8l%n;i4 ze_8@zWDj(-1pR3O3(IedzgROv%69k*LP~V}%Nn9}v;h4jfaskp&Hw5$8>CJr8-F9G zzZ$~~$qW9g3`n0KcLVruo)D+M3xhPrW-DM()ZfWak4xDSjEOQg4qYb*-;#<59{Kd%*DDcZ2W>mOQ zkMI)BjA3pN_NX+xeRmheE>w7d;A0roZW_}ebhw3X)JqQ^Ds7bmeX7jiYdfyt>wKv- z`fpNv$QZAneh^kOY_tOXyO?+T>zk+gk_llH|0&T?PKz?<62ywRq zxlvUq;fgVYAmy3Mb%S?UTw{5=1K{FuwCt@(vq27$R_^!BAPEy7=wFR{T90%mtl7WE z-E659;j(b2p&fqhwsdC-M>eQA`TXF(llsPt9c3XrYFMn0KOAA`MSst1YhlTxN!^zc zt=VPzg~;XN5pNM%d>3Pevk2ER>)-?tR`T(ijP{}!OYoxgAZ52uVQu#f88^4p=}^*~ z_`ol+cO?GAA{@zs|d zwaVwZLacBLb%nQ|z z{x;1OWMkHKj?Zg!sV@6%@%5ynrWv?JBxc3YVnWNpZb^&s;nz17G7VY_A1HTXp*cL# z*IDT2i&nnT*?&plmw3Zg*XFD$ilD;lkx!dx=^MipJ2dwfEUuh`UOcDSpg_=WYOH1la+hlqpKa)Tf5WHS@Uy;c71r;Ec7GsD$KGG$H z#4sOMi(jW;X8f_Dobf$EbxHBN!s+=SQVGe5m{Fw{)2%649x6S9(Kgrx@4f{6KCNC!*h-fuo9FL=Vlwe#e#B-cqe7YH(# z^%OO&?#jueW+-za3`)a(tHXZTvr^lNd>z4CpA^1%A&`Et0EayiOywBTX*ZM0m7vSK z$-fLPNM#5|t>>mzorAqr)Vfa|ce~&5&>`jV!hb+`YO?U!Cu_VSmvs1)7nu3ocwFie z)79OIwc+(UITa|OVTJPe3_{=IO67LK(;ihDA**ZpwZZ7t=9Kh4s9^M~X$^;Tsw9f~ z)3>x<<*D`_O#DEmx)urX{6Lx<-xl0hht1qO+nQQJf6NrCM?3if@;S==viWZP=UlhF zw12%hQFhh0>8>RU1k`t*SscFq6mj0~R&k$_2nki?i^58ugS`qhvu~CZ zrm`TjmDcv+mHin>*g)b_0##2hG-Op7Q94tX^2qzSPw)DQriel^5b4ZrIrK}cI;ItI z3S84>+W8?9^SFrmbI=V?gRAZWx1^;q>VJoHzu#?#+l%(`2e^=0N}ibU%2kF<2hNZO zXnbf!6*5o{N+TUylf|v4@XFZHZWK}pix)3JV&LLuZM&`&eyk+QND@9SciY#j!}CgJ zZn7wb9XEYkc`Nnf!*!BYo?36>p0o*gD{`}0_pl06+u+`s#!KKPY(j^^sp;n4P`osAfW;c4$@D)}B6C>^!r&I-p)pyHiwA64%0x&3 z@M^x7chpszMYny?iQvg>M<=2?{VYHyPTT$+siv*5D?IF}v^bqum&eIi8t+$~xU$}d z`7tD*lT>?5mS*HxT8}oOX3d+gqJLw_Y9GmyT9r{PY$_xBjjjY{QgvMU-M?H0Oef@B z5jXi)V@yvg@*?#B;CwlV;kH3c8E3BaD2E3WejN%mx&{lM9XIg!+@@xt-m;>&n#Pg|l*Z#3`}fisE8fFAMTbUnu{Dg)EWv;(SbMZ|tsrvTBuLa{uXCYANB+f^ zaaX!9`Yj%FS3h>pqE~jJihmM)1n63z8oG7taI-n;4IeE6M9@9MyADxqK%2o~8?rwU z?e?Or+;X`%<5yV3kvp=U(})Xxh20|~cXXTlO;74acc@RO)dl>5f3S^?6(QAC36!hf ztKObLF@W*Luet$Li=TnGnJBA+` z8zESci?^a|TUQ^#J-S+VKQ0p8<)+n|dHa7`meRZ%{z8X$aN(F-(tAv_Fe8oOTI8@D z#)*j0EyFUmZ3MCya0ud>hdH>WW}-DfMI0*??SgEm{n~|o3uy+p?~eU<^-}Gq_b_?{ zvxh#Sc)(q^YrL8C2YW}qTiMM zaql5CW1GPyn8uhC!-XskROUL5D#TRr`9+#wITFz}Dua0{OlkFk8n?0l4L-d7#rWCy z=3QY|b`*NSJhNHFif)Z!Tu(B4H2A(;ZT;Yxr5GS0E@jaA6n|}6mZD>rEDWz0BSSeW z2w%0tds@@GD&nX;>i4A~Md=oe>EMFvC}hQ;^O?n2NB3+7c0Y=fTa_;j215hsYh&p= z^F3qrfETDh?K#-^)}H-Bwsb>e7qe>Nf|}xEV~Jo*Y~7ue$!jMP8$k^!*_BTuNS5V^ zoOyvN`(CGF(|@&V84Xp?=o3Xm9vd4MDd>B5q0j9YF(t%SXhYm20;1b!bsNYSIfp^xth}c_Wq3Rw6y$o zvnOU>Xx{uJKJm!M8J7V!VG+66g`Lg;oW?(CVc+)VB!Ak_u4RQ94fz*d4x%qOUl0UP zZ8cv1$`4IXu9I^gA{5dP#=!*b)(}#ww2`--S*&gT#H*T`%aEnyi5yQz5+#M9n5#F# zz6LihlRRWJD&C^7#R||&##JN#z#5zUnk|l3FeRpK2K8XYlhV`+q?{&YO1tcMmZaT| zU0cwn%72N}ibzwZl-5b6$|xMk7~VclF*>j%JaDLcnT&1geWqXwy0u`9bucsio?>a@ zWfL@3`KsWp>OB5UAHJMxP{x!}@K<}yX1n`)x*Bd5+Wcu)8`9MumLzyobAvx+?#)sRZJ?Y+T7jRrD!BA5mjziH6hbeGT$4K{2J(xq>Ju?RhXOJA;&z%ZYpg#yYn`4MmbE;(UYBV4{^XzFZAIL^Kz)CPOeNRxp%)6uFl^rk_9E+TG zFCrD&;KHkKY)8u7+-zjimA>`)De4!|kwfeHA*m~C}C^*?J)QPT~n^&%rsCk2=z zOyYa(?5E$o_5YUkSSm727Ou3pXv?B!w!rmNBoSv-I1=* zbi-JZ7=f59F3}yGU9lIK?=k4wLH^m9*xRfX{0Q|aX5HDmkF?U;FfWf|`BDS%&h8iL z9kPA1e5s|B@JhiH+L&E|g-e+#ML=(IxH4&r|Mv`kPzycWz}2(iB~q*bB&Q^P2pT!3>t7HE{uQ#cf!ap*tbBIT zs*_R|Duh@qX5fy>@@3?17%F%lTTL>}J%0P^*!f|eY_-0wa{N$iSdcj=(tlt80sFWx z1Bv|e8rJE7bQlbrK%g=6kSv*Zo4D0MI5oM8GeWg~_)xb*9SM@yPU*(at_3;NZ@wkj zJc^piE4If?Wk#tHn{_Pdm{h+U8BqM6dpi=D3a0ihXGnZ)$aD;y;jpCQV(=AjVo``0 z#G#{tLL_b14$FR3@)dU4KYx`foqm?FP~(EGxssy0ofmd2)eU_R%<0JTg8q2l*jnwW zi~50~89$MOmpwUs`7vgcKi#${()3oO}ty9MniB^RtW+Uziv8L(8Td?@npL4u_kp)11DWAE;-vUtX#P>sa$s-bVnpmTMRQ z>zy?A#zieGm>wxXx?#3HyNd1C(ywe-CCxoms?pwVJVqqN?!LocGcIZVz(2Ru^?4awDdxa*m+<*P=OI>VJ9s#Nv;1X-< zJfxukM*d2>lxrziCvM_{hH<3s8zHu2&GH0EgE1|oO}-6&K|-3mvqD=hz48s@Wv$Ny zW321gtPv5(Y?{nY6d86WulBNY^y|JmdX+kz<|)%q7<^oFdw&6=iVEKmd`?>9GB%Z^ zAIZP#oNT}vj(;F_F}ZhD-UAxQj2X+Lohr~=ItLD7!f$gPLlm)ujz)ptm;?zq&R z#ttoiR%nKAK>H4xyLmUH@fLmDhDZy8G5T%cmjF}Mfi8D+8&S~Nv`D#W2e*L~k`xXK zVPte=!Ke7LV#6?=vL8hVosVuqHVB35zIm__ZaQ);mVc*Y)oATM`O@+^D}+(CtG+EC zCZInX?XJlDI*o-EbDhPy^(&}Ki7;Kc<-Z8d_~{}_rmni+R?*`fJ&V&YEw*1J^Hrtk z;LdD$VpqXrq5Y#9OA9?+C=2c)mNf6{f^ne|AV-6=`45`}>+J*iFo{mYOG=a#?2_P1 z%zFi2kbgL1Z&#O(m)BgRtQU&JCt0@Xe%z%b_=;=-Jzaw&hKk@mCKGJFYHD)wQu_8- z+Yd4L4nYx*ubdBNYH4_k0tu*=}X@8+M9xcaB31@({7v(YTpx zsplu|L@fGsP7L&8zNCM%6mzW-T@LJ@EilUDcYll_U++3{W4dcov?_W|XVZK72!ywO zWxRUPjXmAK^5J`U{aPJ0;42#o#j_mSmtq6ks-jS-sa4(4c3PKgKIx;dvoq?Knxq5T!h=-&-72riP)zT*K&*^hcwmR07FSy# z*?)=(-HgbLnk{graoN|UnH_^B@jtgX`x`hJ=3Y;uvXkgto;=4OD9Pdpmg!}>-XFJK zZ`GL7+CxhYI(PJ@oAKZs%myp@m#BOh2U8(ORO#Yc=k%Vl}-dW#%nDu8IlXP9F6rQ_xZE+egHGPeEB+SXH3gCUB=( zwh5&@zM*fl zao7(}t-4rgMlU5gm|V8U=?HC4+E4*G`pb800c`Rzoe1rQ!VGFTuUwx@TNbI3BS96D zP&(l)kDP}6%%)<7MLIoeBMU<4HbWKV@7Pdny6hcg7|d|D=Jx09V+Hg~#6m2ZECAeG zezpDqIg+d92r5X8zzWOp8Yo2D-hauOu^Q24(o~Mf&7!2H51DxAw=ol@6SWU5R1s3V zvH=nmob_4Y%P7qArHLAn_B^vJ2|Hi?_nIojf(H{j_44zjIgjYw`K46xh&5YEGa8zc zlvMyfBx@MGPY*1o#8Z|8#QIl8*0vlq_k1~|tuN&!9|P&IJQ(9&I$V|Fu7A~94?kA0 z!BHRI?S$`Tu7+_doSW&5o49AaJ;4t-Pck+DU$EgT?B7|@e-c)GBI+J<=OJz*5|~*S_1QSe_=*cPCH0vWb0~ z&uocm_i{?(hS2?%5}vi{sINx?uf!zt*Qh0OAb-$h%UllFOYY=)#g2KGA_4|l*Z3PK zWiyIm?Q*Oh@V-C7uchaR_;H6k;1i+EP~jxNs|S#@l~dPOb1FLEj9Q-VtV{#&E;{^VnGo7&g+I?yF0v%<#HEm1Uy z*u9}N)FK6In&>Seuz!Xby5C3AvB)_U^IQ*Wlt@Gq;b5=Cu;4fXxZ!{Cb0s}-1h@x;+ASlS3}LXy;h>Mr9>pnQCaON zXy zp<)TYu2ku)UVpymw`n*`sS)TZNCRIBkym#FXL26lIaF;>4KZ&;LF{p1U4VY%>s+%e z>sie+EbI?^g^hYSyau(}^=1@g#4-qONM^4>Dce$cYo53`ruN8DI%xP?xStR$9!4JJ zjymoEXgF=5FV0te-*4$(2{Ln4N7V;9>fAk9&+E9e%71-|ww*AN=-A#cjW5~hTnu$u zK9D|L@=d!8$R>E|<%3CA#_4BWdXN}PH>6278U+kNU(xanf6hE$@{n`CDN|-sMCsBg z(Rv+TBhGcZNHJdZ{9v9H`<=__5Ya=WY%AxZf)F8H5q4ie$K_BzoDSqqcFv?KxtE0R zNPpP@u74t6T4vo=GI3UFC@(Y=)qcMeN6G{vN&iWEb-oD?ZVS6~$3)(xhs)DTDAn`O zN%jl(0_-beb(+-(C(jW*>@L@jSdqv!s_7rFFfZGx&_D*g)X@zDha_s`Ew6-Zee_Yk zwd=b_h4)?o+ieA4So0r$D5af$)TLM!L6)j7lYdjKP$Uz_#}VB{6+I;U?rq)~PJfr` z_ylXx?qtm^)e>T)R?@`8jzfws9COc`F3pT+!d5JuP|IdjUY@uiMUd*rrSJtz>MxLN z1sf(xIqp>Vt`llcP+|>AJp3Cv?G)AS_@H3#%3!?ea>BfczA&}! z=6}TjW;aycYwdO?U%$7vn{EvRa;xJ2;q~^K$0&t}(2^`CyP&sEP?ZePWx}w7+8y zid=47cae9bTt>bB+-04+40v~pLky%I5)YyrWAD5+ee1WWk+i;M7S~yuZg0_ezSxK< z6JF9KfLd?0&w_Oz&FLvk=k$>KW-TSMINeT{w!oUai!y<4Y|_M_I7WpR%8xk;4S%^? z5g1s;Of9c_p~r3(VVsVeWu5D+&Gx)0u|ll|h2C&UNm-InT=GqQN?&WBLr+@VuNz$} zlFg!3NmWw&D+9(Sd0G#=tbn$DFC;OH`Ymbz8^9uKeW9u}sR)E@GLT7Q}ucHfs2 zc=gGXB0Vwa=gDU9y8+h$TC{-d3C(qEUZPHk#*{s;N;J}s*WbH64n=2l4dd%sLNPgb zvwW!bw6ZT~KRW)8q-yTFjH{_)u-nyx0S|kvAvd|LV$Gj~dggtbi zL}7zg66!$Zv3z`-4e1b>Oq?mC~sIUz8l#xr?t@J%g7uORfwmYT>#Uiv;(0)r(K zSl-b}*1tHr8>3~G-C3Ys&BfOP$HIjEutmbAP6MA6SGJl|5q#i4lrll^1Scv@|TJfZz=dWlry^D2=)bgw8@91kzBmmJRy2%ya2U((|~Hi5Gx@GE=h);_20vjvqUk(3^7 zP zTAP&evYZ(^43PGv zo-LoCU90gt)Pk|zK7_8?FmBOSEl$2|6t_cZ2dAYD&IHl_Lo>XhU#Ii5qu{a$|1Pvr z^F*pxbYj2DFMosbI`W#*QM2>NV-9<@c9^to<7pQR z_ycG~H)Zkic!rPS@)d4UI|o;_jQ4f3gY2Bl!C$|&EWS3bdX*Ki<+_*`eEEtdR0>oq z?NQfdFKHF~H9Iae>?we!-hd~O`E$PSB`BBt74hiXYEj8>s>Yt zgXgu$j2j1AZtA9@R0j+B*>XyG9W`10>x38zgnwDbE7rXz^ zH5IvQBSweR#(@AXGIuaGiT2QtOJ#C$9`^3!Ac}@?b{c+zZ4npdz8G30RcE>RyEvzP z09_-vrh9@l&~n*SLszUWv_%(^kX}rV3we8+Hk+P8$*|u^$p@qvWb5B=Q7b912Y*`o z+}w@*TF(;c%>uFgvNpkpBEh_W1I^vA%FhS)T1_gWia~PL*HvOPx&z7Tm~np{)hdVkS$`Qu_vRc6Q;VX$SuH=yjmW6nAI2KIR%FXco`FIB8}WuDE|oZSBqq2~ql;|^ZM=tt7h+wgzfNJEJ$q8FbD-GI zDb(Oz@jK9JpZU>wSi$0l1wA|81H#Kw#?KYgrQaBO#QhmXzI4 zZ$Y+8rE2P7|IFlbw=j=)1|>bdvMWs|BavR(oK$znT&poI`$f|8rYz_V{o#W49gflA z8 zwgwhDmj;V4 z!lhv&AMLqNnp267y~`f@c?qhcu2Ie0%-z@vq5A!(qM(S>nM@dPG;6j`NP>pV0u_c907`zeb9Z7tC{*e*x)=dN9aHd zTrO)WO?uRUt(^H~FjGEOX6`u+POKK&FAX>mSL7Se-z{v5~p#8%9-Tk$gt91x=S9k z`^a}Wn84dgI@*Q`!t|C)7~1wSJg`95A~$hQR)55`HNtaDYRh+8dhP#B%H;uPm*^o3 zg`=)c499U5iS}}6czD`cjFK>R4;))lXH9CMA~=mf*=#LF56wO2YVhWW_87!&Nyk%G z9Czsc3wuRm4wpplo(YUAbzUwNhWwE}DinlaLbKzdxtc50CM^0;D_LsFXM0cA%r_&0 z_kYbgmYPaEF(qZn=wx4t`PJdhh|2Q|s-ns%ewtWdXoWQ=hSb($ zzCmA5b!D!G2WEVF|)SeJQgYSSx$t?wVasnkLHHGjsNBEI2S z6J9CA3JW-B_LQD4z3{vvNH4_2FH3-_Df&$hQhIeq>aXMrQbYD^m_Dr!+(Os z+vWZtK%I7yqPWngM8q=K!ozSxcVbqpE>+R9oM*ojwCWf0G%~Y0K7|!hQBPdj;+m51 zrI>08LyoHY;C}Q51nL5+y;f%mjlZp2l<`?J$;G>1X3MRjc;3+!Eyf-m^VB+PKzDji z{Jw$lW$?C#pKVz+r4PTqAbThh|9^|b@rXd4;&M{iMZeUy;cGZvx6fbZhB!}Dh?`7c zT<v9X>WKm~ym`q;9)y6>9yoL&zu-ol0%RPDjy)A5N3 zP_OYQHz%Nb&lPd&VVglk^Yx_^7KD9jIu83>bj^$YEN!+Dh0cLk8QDz8zJGUn=)?FG z?|UK)FW2Ho=7zk=_0`gQ};5uw&r3l zB<|-~r}Akye~ay+g}q0wz|T!NKg(zCOe)L#3*+K(y_NTeiNBF(42I$r3RHV%o>*%} zt*XDFlg9H(6f90a${G&(nt$Jk@GCc)26zf5bdv^s+mKbpu)5}c2#2~4t-w+>%~~Ws zed_k=?1En2G2+E&sW@&K%5?;jN?e;&m)bme~9Pn+Ddq)_q1+K2J*@E&2CLKo_zPbLX7)fk^bAMRdop3Vt z1b<(z6SPQnFA^Pt*P^FcxgRMZ(}BK+cfO%vsPRdokxWGl;eQ+6(M^&*zDJZXUY_k{ z8x|vpb>nfrv%Bu`LsU>tb*79s+e>c#+q1H>`7`Xfb)u%FQWBmjUafY0SW0ecFJEuj zop=eMwC>c04w}0?0>_SEJ-)i#g)?AmN|2@ffa0=EEWIx<44Kyp_BaxnT5fa9YGPUO z;DjnxfC8?#kAIWwNuFq+b)*q!X39dhg=w6o7y~GfQ^Htmi(G~uEO$kOCoV_(;62I) zM&3uC)*S>8nrfPuA4!tax1(X-ui>Lv;=UPX9z}_sZtc}eH4J5t+r^5S-0yul*EQd# zKaF9Ua+UoxpBBHu=HS8tpfK6mXIEw#3jk}B1rTC*Z-0g5^~XFg$WJ%0z5l{c<3qfL zKj5L{vEnkZ6asjO_-H~6Ev1YWjq~{`Nrpv_L^ft_)gI-vo8iN~jg2v2u7gTK$0_EB zYG`3%TJkA+5HnIDm(eWzl--Rg;Ml!OQmlH+adG0g#nJ2J()Fv6Y7kB}sEdR!ZMOAm zfA-qBvVSr(4~54Yz>hZP#VYE1UcC>|u~zl&7dG^l6?Ez|y1RR>@JA~BdocFMr*zvE z=3D}b&6;@%3q^s^)(>Hpp6(?I4#JWlJRBHpt+S27sIXxSY^Ssb?5U2}0O@E+t}ZJY zI>Xl){rd>)t@DVjIeqXv@vX7IBv_09313Ni%zqNS8S@^exDEyC>RTA5P70P0^TuWH zcN$T*O>&)+d1Hf`z;vF@DF(piDp)%pnM2kHMp1cFnobqFb-+C3AodqjLbfz_Sauxc zf%cl{F7Il8K`h*+o4Zo_u^dIZ)8}K-YFC;C;V>a^E@tT=?eGO z50O;hoqx*Vkb9Q5*EUOuhb2A!aQ!%;8YY!BBa$Ik<-6*^Lf5Op(rfUNeUtTB1_f{C z)toevGfmgmfDo!^MPY64O&!Sc1`2bQv40;LyFigEV)JYzwMh+WhnE?Lx>bsomip~! z1Rh*V6O%y2|1wg-M<`f=PRkSXs=9i?&$`KSm*!WM14w*k!(@vU4@W+4PmJlx*4qZnaj9kP0Zuvi3V&%w z{TIq?oZg>egcj7~l%hkQ!UYGoM>cKpk zLe!_FlghkHQ)A^Kjlq(BnV_+Mi+}T8^eMo3IT_)7@sz(;z!!Mbi-x++^$w}>s#1Vx znFd2`EW#+hd50-B;gh#5t6M5k&u28j^f7a5?t~=JVu3>>_T&kG%PISsye-^L!)fN+ zhxDLgrJCm_Oq2$j8<~~gsG~gO87LPDR*=TizT(l6}Ww z)<K+Yh4fyqmC{F_hRe+OU}|0WGMvrxa|AzDiz#I^E|QJ6eHs^EOO<)P zf3sfFB0Bhinn6sH3AZ_6d4E?fAs2d*HE)~ya2d-|_Hl&8-TNrO%3Y(SeuQUhME%PT zxkMn(z>w&god-}3o2<+sT_a;PmJuCg(G-D|k4<3uRnFzwI5oC@dGM7>u)m@zmpa|9 zoi8y#R+yc9U1kXqiNtE{qBY{CbJ^5O%taGRm;{~)nC!(lnJ95ni+^z)_yM-VzR|xx z%J(D&%_w|>ziDAvIpXv29T(FUkkXPukxRnQyMz{=m{@-;qL1`&EfY=D&a z-1&_1gjC<&$FhtnQjplGP-c}g3~l-*Y?FZ&@XC~@vaor9%(Cenyi*XUmvDP%tkj__ zr;MXFB}bo;j&Q9!!+*tm@^~v!K<8^mBeCzySZckbK&|sC3!YT#xZvw`O-w0+`VNtN z*iW27k>rm&;Z2hKh^Me-ksOP(8ZU_R^eyft@a7S_y1l0(rB(|Z9MA;`$rcgv_3tq` zVuN-Su-de3vS6a0pmoD;%5aBT$phe5Bm3Io9z6;&woP$*7=J_zF4YJ-znIWk!*coH z?AgJNixnQD4b6cJZ#Ct%evk_}^Z94P8x0KQ;b!?kp{JLmYs}joRU_x?2_xV?kE}&! z1(SG59x!mulozgiTyt-xf&M|E7%V24;OhvT?^-KKjc~J9c&44UII4W^6oc6|1(&{8?^AyjUFx0rH6VY>GiKn4pXAZPGvI>tgESX3;~L zYMKv*?}GM8ha)zNRmCwueQhhsxQp)2hF-ab^`6kj4lQEB^>fmi{wWVPG=W;G0lkKh z6?B4un*kY?g-B(m+VTw>$w5YFa>Bz*oZ-tv+{g_ak$<7nLhRSI*PpzjwDI8(;S^!D z#CFwLuu3mnVl^x2NH3^8_=pU)B^9&FdA=18nIuV$x0VrR-t~5K>X|4RdPrvDb%|dr zcwk^mjIv0S01I?6+3p^Q^$(&eyg$#=5ETfzB$qna@%5n4Ur~-=;lQb8(D%XTjr+>s zEYa7EFn=!9zjvZs6q~VBE_qs{9ga{@g&RE?QlC0)i*N zk8Z?Y)iRo|Va9e^vDX`>IIv7Vyyr9#{Z2$U!3fDUWg4u0 zWW7^#o>AMb9b1i!hHdb~ZqV3i(AZ8IH1-`gwr$(CjmEZZKCAEdt^Z%zo8#J;8~4sV z<~7daJPwu6eANm@xp0ywJf$RcPfpNE8?TR4)gqZ_D_cv82(Dqb6-Q|3?dUIEH7Y7A zRY0C_-tD*e1bfuch_*ipN>9a&dzC6sh*<~dseza7l^N}^V=6ZJK(wj4X3!Er>nO{| zMZx);qc1@HvrKNkC}H?#sskU0=? zpQ4Cl%=Eo`E&@oW0eWZ9d>i3_1RJv&f!2#?Uhji!vsd%aG1c2lkp%ttzL^UK{utQ9 z!(XAH*@!$G*>$WaXuqi!hDP3G%I~CNMxS*srDTD@8lt}F-ZYHLz&>>SeSaRMoFthT zQ3nO;bl%G_=_5b2`dt${+6yE1tHPoLiA`5wPS;Qxc0m}YvB<#dZUjxA$ICb^a~@HU zGP+Y$RMZ(9M;rUIx^84?Aco+N#iEZ^eahc;I#+%zBNMEvWNu=@a_{2YC+^=UXB74( zEI$lasI+0$CFXhtM=@-imLPW__q6P-7>oRICuZ0PLZZd$_!2tt*(#oYDF52F?(;?C z9ef^!Yi(Y>2&>_#qs!v{VHYl3DXrwn0gv(%*4bxgM*++Dv=oWNI!JjCjNY)|C;eXt z=)a!#t7$eySSbw!*&j(brfiky@*o9}BIpN538V~C0sTzMZ~w=GellZY7BaE7ur&tR zS%7|n>_PVCwjc)!Giw8o!!H8|bC4s*(cHw*0OSO62DyM-L2e-T|C0v&*Lbq*#ZB7O zV8+IW49&vD_TSa;qz-IV*eqPE|8F&X_68dcCJQ(7|AvaPaj`T1ryCvzikmAbW}fj2 z(4hLS{tbAWsz?x3D)wA!vbOokVYb)UqLgxOq-AO(5gvfu;(!_wyf+*Z&Gt2<-*F^? zF6SjNey{jp_3qot!|TV#+qZ|M>(;ES!_#MP1*ypqRb*f4SHGXem~zOKsBDmDXXi8Q z?Wm}7RQh)f+Csz`!G#cZ)+G2Sx%tNO0OSliREn{0p)U=@nokhCc8?Gt{uZ(lgnTHA zC}K676nP-l5L72hH)(!OOt=sRT5;|o3N33w;eJ@5eJ?qp1i7zeI;Mj?x&Qa>ZHqP1 zR!z+{`87*6>u%hLYg%~acSMNP0N7s*=M9kX_RK?45Go^7-FW?ZA>I(n=t6#^0L1A0 z>;O)+^KVg}mQo7`!nRpx=#hBAn&h_6KNeDbV0$4g5PfV?eKEykBt%k*k?idKo1EcC3KU#5^rz;5}@#tGaWQP{bK*?oK zZ*A#Y6K6=z(J0%k`1W&nO7i<60Wfi2J|GU$pfGzl43DT7{>T%OzAgK-5qC%WKuW1Z zYZ;4u5TI-+j(pj9vH+lWF@$#?s6J%ji^-p=SX|kiDi$V3M$iz1uq4@|185AmL)h6P zS^3fIB>!kM|{f z))49J*DBLq8ro@Rc^!Uo@g&jQG|gUPdD7w3YG36I{wvzy@~hJUah{`_or z$sshR_}GLYQHBp-N)|xzid#`ci;USW@w9DyhR=SmIdDFBAOth!H)zXX28B~c+xbLx zLi!XcPNN`%=b@1RUS8xVlRx-zQ8ePvA?9gfEYdN_qves|--fXfTn2cVDIr2>;C5!T z!C6d35GP|Tn&5|SgBOVSt1t@)p{RF5LMTP>zehuQq^P40=phNtjs$}6DXauu=nFWR zml=Yv*7PF{p7sK^hQ@74u>Z}?p>nyB9ch`&kyf7vOwlgG3`bf+0aaAUoRT5?% zPgb^2m7N^G(VhN!$W>XK+6wZt9gOpm|1Omxml(VeX0uYP-0~n2v(L3Zzp_-Y&IbQaItk6XUq+@e1o_L&d%h#SO0i|o`}s5|J(f1Pf1LJv$v z`kJ{4gwbb+xwnHl@`}9rbxyz7$dc<^MWJFmI_U++BQ_-4onCRjKE$sSS|My5$vIef z-Y^TCZOv5@!T&_l6P8?afe)hjZ4y#eks`~mgA9!F#@0h2)Msvpx=&luwyvoX&I{FR z>91Dy2WlWPh==h?@7sQF#BH)wHxW#VSzwa}#5HTgWjbQirk1q9S3+0?n2hm7VT`G! zx5=5)BA!S2^5mm@_q3aC-b&3q#(hW6tS$PT&DtkCb0G`xt;yCbDKpOnEmXAcTWV3U zi_1B9jL&AfhDfxJRikD3jEwHM!R#u}x;i!q!OxKb3=?L`?t|PV6F;q`LbGETTF-9) z(f586$$DY>vnm9vHuK+_y zu_otZS*5n96P=|O#$T&SwJzzdx7{TmW(E`TRyA7J_6{Y5n65x9CH2{pf$zacQY0t! zJ-Xnuv2iOhOrtN+aHIJd>XLNs@-=m1D7~E{1*4>2WbEw9PKeQnkpFuz{T0`2H&nmI zzmBH$`jMY`brU8Bn)mWtM3S4tmQ;(&GLn`_?uH7^22}@?`P&?_g;{#{*y4wP`pglu z^ZNd|xSTlKXFd*6UFTDRT5OF8yfwDwza3n>*K^^%guB)lZ?)34G3$MwYq_+CD9yk8 z=gL*m0)h&N##TJ@0jO$J8~ZBlv!0uAFtQeaaWJQ zglBsgL?wLn8YAtjn(LqbR>3s05SOa?>Zdj@ZLmFbU$T6$Uz{I*Vvw8GuVF|hA7J2Z zgCc$x@{pgO*e<1DgA3v=u>F?Uv@RyzbX0AF@Z;C|_3&Yb!F96Qxi9lPa6Kv?%xu|o z@-u$L_b~+SeX|=`Zh&&30p7USy5!$V2cbdvvMxc4Z~}GrFV0^%=WQ&^1PN7F*#|l| zr1OYNydm^Es+w|W&8WRS(kgsICPYVqs~2yCkOPgI zRG`I1NAm4G0xINzcZco}z~aP}Dm^u_9hx&H=`F?aQTpH^3DsCV@>x~XZI`x5E`+3^ z4XttPn%vN!p(8JT7y4_%<3cjik>JI3k#B3-srdDylE7paQZ8*#^^Ld-(_Z-F{2m9? z7c3?=r=3SPge>T1VjVRYbwqAQ3U?;4Z7*XXr)p6LFN!`;re}o$qybI_Z@6qpmzq+t z;KqvB=#6Dg<8tN>3EV|w*?^!yg-z}k&VL=-`H&D*}^D(an=+CuuMjnkVu7|m^IP(fc3|x$ds#)5u|&fu=WX*k{TP^z+(?s?LJ^pXM9+;xdxh?2;V19 zFD=58lrRYA4hHsxy$+HyreL|4=%hzoQ1`hE(`ED9+yNWlY{ueegx65Rsy(?Fi6o-Z z{xtqi@+Fd>g9z;JE#TMp;~R91mQ9ZKL&;t}565#SrA=U&(*vt2P~h3}HUXJna%Ce%>U!BcmfAxY_Ki{rsZUVjZ!6t?RZ1R~X|;>Y_iO9;rIQS$Bg|EaIHc6J*kpJNwu+1|as7Cc zD}}UuhUgnYg@eP5+X*Ub0=>T_wpJeVcM{|6{ua~&9JNbYovvBc{Ff5JWyYIh2ZDz) z7O|+gpLBA`D{%=R8w8yuefUm~O4G9>+6Z8h(Spuv@<6%05=ArTpYK8|sfB|2IW5N5 zanVaDN&$x-J!DF8k;hR?Dw^|p+ODu#q^P&+*DFl8={Ki|cu(fx+ncBspPmjqWA;b- zLCX5eHfu}I3D1y|E#dYlJlS$JPkw#pY$tq0XTeC7*H$)f6)(}}vvJDK!2zXaM+G1Q zOnet*mU|o$#h7Q~n{y5_o*jI8X~kp3*bBULhcD`|bwTLR;I9Q0WUI5!Q5`7G2?KJ| z=i!(bA-}Z8E$Po=pYlAevV}eN%l1cdPzzd^oh$T{5ztQ;B8v3H;>!w+t)5^^75&za z?BmQLqdH{RzMQwQzId%>ck^Vz&I421eJ7}|q}+dg_J7ckuIO?5OS#UGTwZ?FCf3$W z@G!5Yb(t%}59`*-k69XYN=9=;#l+Myb;V*7E#c9!T1|N@G+kE*s_kv-63e78AwRk8 zB(LYh9Th&HX`!wU5?%9&B2_5w7m3XUm4zz6byh^=G)X3QbToW6nC0&>sstq39oH|q zM}^b}cd>ET7<0=w_9l(otA31y$Em5b%r`m2MPOd}rO(cl$X`1%gk#u_KBOR`7nNUV zhbY5QIMZ`ea;|m=%p10;|7zO%)b;uJ=Hzt_b}DPQm`=8TryYsWlkawxZ06sSW3#E* zEQ(QD%UWP!-r1Ubo&|>AMFJ2rs1U?)y*Zy*JMIbod*`G)qkMs^o<+J?{8Cctu^L9v zqG2VR1!06Yvk@BDhQ~G(C2w)wh*g+b3k)Wo-f}_Yv{qgg!jmT^*zVNP#_)J$t|;Fo zm`>B@`XySI9p33iSwQqbcWT{IJg?fo=h+}r*Pr6$WZ?elMWZ%OzXCLHD=-rre7bAu zsx-f>%KaAqcJfkh3-A3m_;6R@axLIyA7s9yqopZmU^j8DJCg7NzI^bjY>%aV=oDIGy3ffJo_>OjW( zYhBwiL5vY*$^QJlqZuG;-{&zO!3l~f*A{qSW2F29sh%kl-;@GZ8l?0r)H!gNg1VJ! zS2Y8WcI{?3$rmnC&sUPJK3o(UBmETWJ3C|O!~mD(*b z>=AD19B1F{(Sd_WgvumG6N6F}ItGW- zhi^lFU_Yf8Xky~VP1pS`*zpwjyQIICKW#j95XGlx47?{me+^M$%j!@kkUB->i%QpS z(33TUOp&UcT4s!M8g8?gk_q6iRXR8%&K;PnyHGVj76;C-bW`PZWmV|57k%K+_SD3P1 zdBO7awQs;`XO6N;zGi&a=kM1(OR^$Z*CxEi^9&ukL#v?u!S6)cT$2fj8E$F4vh*&p z=8^Gi+YL`o{3tm+d+YJP570x}NY3P>CEMO^E{lk%=P5rqO3f`N${>x7E&cikS8B0R z^uCYPW9U!@3|3KOa*rOG^F%40x7!O7B6xq7y>WHI1LOraq%ABdW;0O@}UBy^y}CA+z(TsE)YU;iIubBZn*Tzd`*g1Pxt>Wo*=udpP5J-Ek zA@&1^+b&ODXSvkx&>YX^A8Yj&t?1CR?yo|Vh~ND9dKK&Rl-v7DO=m%5>E%hmad2rl z)#F^;e47$!vo1?7f$1P@)1b-aX$$UJYvl09eInf@wnMXVa{p@+B*9NZKhVL7bFu>c za04C1BIp+#o+aJt=UwUqmUrRE_V-)le2_#CfwU|>g@2~4ln^Tw1w{C8~+XZjEyec2>d9=^q2K}TJEGs7DfL;WG#6DEzfJo?=Sw|@q8e|H}ao?MbHn>wE!<|xOrTAaH(>^l@1Gaf=O zq7V-x4Ks50UqF3g7=N01mWzY=0IL_5^Wou2CMV17s0So8YZP`=a6tj&BsISH2!pH0)nJppkKSy4;8OtP*A4SKG4yqC>om~x401BTelT7L z_7MsOrn+oV{O%rZz($;4{zgiqW7x-D*LT%VaNIqgs*xXb@m$~}K5CD@9$S=_5u_oU z=r{bq{wroshJLmTJ{DhxiZxnFh^8a@{)yJ9&*<-K@bEP0GUh+aqHv= zsl)zJkcQ0m)EiDBsqX_n3T@{{-mdR!M~na9&)$t}4-cn5y;0rmBS-=k&DWQLKyvBV zr;hUC%VpTK<7W?AN&3uC4F87iqPDHGy7Ga zz$W0bSj<@hNNAWI!|%Phn4bYRS&%Lv6urfnrk@@IXSv?fra-wS$$B(12qdI(mV_LX zG1fI~1lslEg_u=j<(y+_z3xi5qyGt@9tZpN#!UJIH^V>(=TUg)_o}-E2ZupJ>X#qn zFmLL;Kni`A#D+_Qa&LHfjl#bcEqBrk2LsF8fa0m|~J z9j;h7p+tbv!T`eYl`9rTD7x!ke*)(xzbm_E>)1g};tz!G1^e#GhfVMDo@>CCiY7>G zY3OMc9d|Gj@&mq~wD%r8`26yrjURs%74o->&j%B^?|xWwbM&V0QsTu%mz7V=r(wZt z1c;lb353-t=%Apy>@MVBZPB+L#Bh^{kG_aNUAsd;bjZPFM)4|9y0y>|pMn-uhC^__j1`@2y+OPl2m)v~x532_$H@Uxoo$rL9RE9%&E2HF?vgRRxs(aAbb z8qU<2=;>~xK@0-^qL-KCzSepJfu!joJ7R4Ke{scEd1Y2k7CCgTZNteZ z3(^7Ml?2nLp|jiEBjBYWn14mH(#DwM*JxF?9~`Q{pI@MwmCc@R&dqgDbE)X2E9~Do zDcpfHxw~esP+j^@?DxftcSfx)Ed$!Szuhe7$@k9xnB^<3=P^s*Nqx{6>^$M`aTM~= zUoLY6tVVAZus=SVA z<+{ZD+Hlb7-;q&wv1mBn~|?Yqpi@Y1lm4%fVAO=du+J z)p{`Y`kZS~#rY1tsEyd9c%{9(rX6O-`H-q>Rwi{$;*aV+zzJi%FZZ_ZLMN>w_b(ymD3*Ig|? z)~P5XPh@1H#j^ugR@~{8GL^CIExE`$IAh}NDcWM=`0}GS>9>2n^o}fI$2*IUGEb0? zuy_u2izeWPNB8(x=<3q46u+e4>t+JSWpIAVIA_<2*PX^V^__R7&;`B(ZS3F5uaUX2q<_GORbnkxh&4sGcc#e7h~E!LhJg9gx8wm@ss5TEb0o&e=v{i+>HFjmC)X4E zsr~Bzx#4 zc)9|+yEIa6i;mOs9d@MG+vgkI9IBrr}TJ!@8Py}3$3J}>gtQUU6FVxM$tfh)PiQy2kYZf z2W;*~AttVva8YnDnUvX8k>7aBnM!YS7IJ-g#7)#_y^C$`pk{Z~^Y!K0(?3zAmJ85j zx5$4nGE!ob`kT(RM{C1C>hh^s(kO6UKd9wE3JFp4dD%IP`#jXOnL1-_&qddE z4Dhg>=F<`M)mJSs52`2ldDLodqz@E`?7x>{`)w@8H3JnKChc<#;aJlBv;*q7M!gxN6(#q*<48uP?~X`f49pvlaYsl1j_PtXHwMvIt(|NJe? zWt6{n++t#RBz_80Sr4b1C0trA&me;Zafc~f+pk?X!~#$4dVkXg=0~&-J|r$5Qz}kA8mVUXuBG`C?xqc1 z)-@lLg~n6GKkgUXldaL0Pvz~E&!3dOC~1A0#=RbOAePHANhxRIV>Je*Do)PEnOtrw zY1(BQW9}XO-*hYwVCOKb_9=|!%kQ$FIQG{)r&7>y6R--{h>pBBFn=wU(Jf*bV|j3j zL?VJ?orI8Vvl(=EE0>sl^dGk<4GOAe^6?VmI(7D$`x1qZjx z>nu&c0U3A~*v#IbENQ?@G%a5?^?L9nZ}^+kNE+yREz^2@Q!S*5O%73R0tJ3(S=6MbRx5^@{Y#iM%P7=e@6cYtd8Wd5?|UCzE}; z`MbWLdEx#qJyKRGUtZ}3*5=KsGF`{4K|?0YpIt*QZG;nXM?--lb{UNZ2Oenn?}g2! zTCcO(_Ie$5C)rz1UrTduAbD^t8WCFmu2RivDc<|qy|j&^=*7Y9Zuecr1tkd?$MssK zaFe)>Mttd!V>sE!3&Q4qYKOJe+>`7XBZ#Fp|9DQrnIa-JMW*3Nq&<>e{-e6RBuZF5 zS3C?Gn;F&=^e@*>T<93L+242ot0c?6)~kny`0cB@=G!s`4jZF;*iiqBXG!{vyfn8w>p7pGBB0 zyIzA^Sm*noi+P`L@9NT@;s7gtuX(SV76~t)k>n-AVy#K4H}P>mo{E2{OnI;14C|8l zlmb1ewRR${eCQUBbrOS9T9FPDjuT!+nAD&uny1_iM3t<3E5HjjqCW}!a_e6a#7!b| zBk{vJ)^~rZ?gx>9My`NfPB+ax$cw?W-osSn}L+7SBBOB zs+MP$;3fmA&$2_A#f=?lp*RK>`>4i<#Bka=s*P_7}}n-Tm1k z2!75^Tv3lYE_D=L&_6bFmurW}?LEG*ZxU_v!&{F+enB8jL|W;9FyX6=`_iq(fu9^ME$5Wrz6k*GG|C<)H*;0PZ)n$!E zXNMMk;`eEc33tGhHNIvt7NnuTc9!7Osg}e6{p!1Lc-Yr3DYb1@{q2OiD|_n;?XtqU zS0B!DlI@I&WEcJMZg_iQ*Y?y_=z%lw59TxAp35J*FsYn+5F0mEKKDaP z^nJ0nDJAFo_&FGS=y@3Q;YlF_m!u``=lkst1yCqE+xcOMiFg?~`;qzwc9nl=x@!B{ zbqF>67h5sBmxk|a-}nM%tQB;?m6^kzBCZwoC9SCkzXw^AWn2J7imD2)-5rGOT2iFY z`TnONT1mm^ZyBF+>}Az>NagcB9iTj~h(Dsnhsahn`e5tr`0kVHz`Qj`^s^Pa^0KLy z>ojRhK;AhJjG;W`hl8xPF?2i0K9iT-tkImg|Bt7}7I`=>(&ji+J$ZBSzajF~{~B#I zfsAf`y53XRbPm{-*4OVH=yr{x=At;FB^q1h+a<2$&B{$&#Zqf>+t5lc=$;|b^hsHv z;d{8J2|d!1R*Ya#>5N>oUH%jAZsO~-ZO0sr>H3rfB>$|7!dVR-i8k(`{N9x6*nr03 zeCTIT+xkm)g+=STJNy@Dml07$`3iV* z)`1x7KQGE`L+2cXNS>j3*))3tp@K*7IRZ*nSuUUcBDuidY~Y5lb zXNJVWZ6N@f#h}#&n<$D{l81n;EcJ?0ZMVHyQ~UkYH;xxC%uLN4zW5S8@r0pBxxJhI zhW#6sUUu1)iJR}rNh{m;N`0mlkK9tOl{+K|UcA&x$^5U|Gk7Nj>1OBFA0@oM@3&|l z5sl#PXfD@{@+Krb630_H_(nckF=0}6m^Ie7Y={FbX$`@EAy`!#Zn-(Q4RFZ~=Kb+sK=#x6%6-`%&*p>rx}pDLB_Y^RueQ0^qRjLCG0_D6 zCPo#=D&>xT@6}=dq}Pr&-`}W3b~abWUa(Rd?}eM)g@Wz&=~fs41owuo5(j}hJX6aGI?MgKr+1(hRbCELi*S4Ql5n+R9c5YE z7Q(?CG{YfWkRZ$5C>-*6oFNw}oIX*<37RVq+CaNK6WajC>i0}38R9LJj{Wp{xL44a9uh6uMn(Cxf4>(>kOOy==uEzz-8?V zYvXI8cfM+&vCDbh2~XTqa^W7CzXdj4w3s^YdfiO}n{dumA%| z#r+b@Ef;y3qBQuYlW3hcPXCFp719ZesXmw6^1rGffA$c?PZE)t_A*jHG;u}3gDT)a zL^Fy-x7~VHHWErSFB;l+QW!-qIeRyYTPv9-@Y=Y1EO;#!j6h*u4mbNq;b_{#LpxBB zMrC7o$L5o{w%E~}e*AiVMe55@mIi}Hzr8-KZrFA;FW@WvVipNkN^#%%Y)T0bU+iXp zq=Yx+Soz^s<|QT!foji=P>C!i?y^M8yVm3B?$2#sHrre>kQ9XH7;X^A+V5r=$5*nv z+hNBOOHDHu4-h#n^@&MQV=?LfRW1H9b9ikz87nLG?zc95jl5>~jI`=9%;I9Kw|v8N zbT+Wo&n9r9Z}aC^jrlr{q*o27q&n1yDWCkrh*|c@mTi3%WlQs?PfQ-}WNd+^dfS5V zVJ*68OHv>Kb4MuZjGmqR#Dbe~fYkg+Xy<$TD{1dk%FEX;dd>~);WE7q(@@Ph>9bYN z*cmE@O>l0>sH)Lop3GvyTaQVJe`|4LG(e?t0i8dvoHE%>CKH`l*Q`5$PpDJ6kP$?p zUPbRxSk^?pDlh0W3V!n}?!{Ql5mzFB&P3A?Cdx-7MTt7oMhPBL$pINz3 z!{2Sz;#rHn0v{KuzL^al%W*hmSZjXJfd1R<>bOwpAA!woUxlsngWfvn^?m))qS3f7 z(2bwnxg#EG;whkwlBDCDR2lyy&JI1D7U#V@)}8)J5ah8|J8yjf&RRMwoYOOB_oh}K zh*lc{eBDZ zNP*F{qC0nG&)UQT2wr;640y;2Yqu^+BLyVJA;U=KxJD_$`j#)Xc{fFLc7hb(Jg;xq zM_!tysqIDl{TAu?vbd*9u`DU2hEJJaG*uLVEv7KpmrJ{3uL;zYz2? zMs4ss{%IZoAX)V-cVgCiXd)t`&M%&k4~7B8%!oc3Y%NSu0G|KT~gZgqg)9ljmg?RejQ{Ae%9s-Q2FLCHPvs*L35HHQ^(n zlWzOuA_RwuP$9taN6k-rUH!8)mUDZ5yL5T;?*cAMKz<^D=zJfC>?&Dj!5WQ*%XvL= zHH2~1O~Gl@nUlxkx$blMxA;Apf@cPctQl+yDgElJ`+}DY_^SIv>~j$kdw##YL2W|U z-1|b23nIa+zb4D=Qzpy<^)Be`?%!@0XT2sZ`I=8hgNe!29T_ocXQ@eRp|f@Z4T(z{L4iS>8ZJrPmU?0bG_g z&+mWwRx4+M4-0m_ZZ{Gfds4M{@WGx}U2KlhkcFIG3(~|JA=^29K7TR&y7gVla>6PE z->7shST>5j#;7P@VSoG3CaICu>M?2Yg;c8r9^mGeaW97OmzbZ891y;4SVwJs-0ks2 z00*u;*xjT(my2Y`5DvN@$!P49w3waQ5?q8|Gtn=e5IARva^~ykX zfNHc%`2Z?zOcVXVUu%2(k`_NMip3sv75L2*ZNdn_47CIKAX|&Bg--rM*NU6#+rKF@ z zcMsjaExd0-6&sR6DJOZJZ?;ccy=V8Rf$xjFnY8g>*UVYWe69tL#KkmLT&{kR@Kam0}Yx2(V zVDFKH+u_@3@5+8ISrZIGtG1zuPL+zqKa}Z|v6rbGPa_}oRqBr|QJ_$(lZ{4Wpxd#) zqGv=@(u;PDPK${)xIV_+x_9XB?DTV+zDD>pt9t3-xH5FQxH2-t9Oc%2M$*7&*80`q zZjL>vusFRYCc}sxjGb5dK|(~7u-=?rEV%n>YQJ=xB{+5M0@0k66H}n|2kASeS%q0>q>kVj4d47?u%efxd=R)LP23SEYH9Hi|Os%;FHhm(IV zTz%wbANM%H{?urw#Z`QMW7Ou4h30Q%MLD0ud^cD)SCCsfwx^b}ucCpP(wU7faiZo2 zulzO1K{nD4UCY?rA&4F~&4_0YZ3M#t8vdT7?%QnfXyoYn1I?7qVI2`8pxIjSmE|}+ zK>WS|8mV%yheEWjXTe=5S}3eEjZXl%qgrF#psqdJ%5wne6e-@g%u~J}`7%g<;QoA5G_;c;+#LWe-YDZnWtB%z^;!IS9cYY{lPO1a4k-8NEWBiYB zy$kz<;zjN8N*3P@>x-HXpdaI*mG`sFf;|_~P+ud z&TtpiCe_aQ+Yb0D3DL{Q4`)*4?5 zU%zw^gRBy#Owk3@fKzIr1Wf5D!M*Z0#MGiLhVU$g4a!wz%f`qMTzvn#X5X{mtM3gF zNk@hLsFha8HlnJqD7ATmQd+ZuGCwHI6J8)$gt%9I*-YvSE%{D>W(|D0ZnNK==rJiqw;BZTHh$V zK6p(&lH=9V-}`6oUimzP3oJ*Ses73^ZJ5Bx4i`C2k0;MGsCOYRx1Cl7=u^-V4y-p> z;>t9Uu-9EE3=9~SKg&`>z@@cqKdi*EuizNs!4OPTCyr*M5H+Inj++8+9P@>pbzy0Y20ek$AA%NB%n)`dfhg z`v3GQa&i5)S5ZP(`KPQ>(iy?Ocul!GJ5~}+JKJwS{vTPV4$=T=f($?gzwFEnK!za0 z|FCmLAR}Are?*-H$P#1)`ek5kXlwxbW#ZrfvUUR5fb2ka|389f|3Bfo{|~$S2i*N% zft~-PbCmwiz|MbsjJAeJj}2VtO$r@s*;xNDy#F>pCXvjr{rlf={kO64e^2>vGdDfW zu+UF6r`xdc7bZz!7;?(!bu(h3;+8A@lIa zt@E<$5_a6Ks$o&{vGZ}|weAlxArgliE+Tz3tRftWU$tFzEizPmJV&?u0Xdp8E^2l} zTV4yjPh3Jq22nzg_$ZD!S`Djb8fa-|g#4V~9~QW;R;V`< zTMhy1AOl}rl;%&;O>7LSsIO`YTkP{KN1PAh8$L`m#7ZikCUo}#1Yv84*_{uMaliCDl&rKO_Kp!vAOVj z*NG7P2a;OiLhSUcTHJyDD+fFTd^hybiRok68Q3l_kQMr^5DvA$8J6!|6+*}s*_Ru+ zw#Lofy>_L!O<29BlCyj=61bkLZE%2g1^jeKAf{c^vMH}X25Z7U6?rHcySuR7G;w@l zGpI54;NEbkpg&fRVG=M2VH!j}DBy6QZs?14H~S!Mgtodymr~o_amw-w3t{Y7o1le# z$Q`1o9m)HNcP`+VU&r9yAvI^-i|WzMZv0ph4O|@YPEd2>(>lr=_K{;`*z1(^2bx0t4CRUiZE^ z=nUceO}G4g2TvwJNZXgED9&)|X?(4a@8{*d(_AWgTn^~u5IZMmcaQIL*R}zpJ@D1Fbpb+J zB&|A%;87;@S~zH!4^EMkx5fJ`nryID8LQA^2@d|=5o$G*W?pTH55+W)m<Ak z61Yf6;5g8dzk_G)0QgkCWgd61#}OE12KK{HrV7g0iPhzeEGr`|JOgi9dIHVR;MnEptDSmuVx8M{f6dR#rZ z{ctO%QDFnPp(-f4&b7fy;EhzU@m7#hy^jse7MXtz%@}}zUY|?7^l4=h++gPbuI1)= zH=XK1%SfFUj7I(%jk7d!jc!PMrf3StMj%TgJPFS2`&GhUZO#Qca}r%`2DoJxWTzcW zi5EBo(}KYpb8BWn)7xJYN}ZRQQ69LtYPB(8eYUmY3NzS)A}Le|c}FpQk( zqwO(w_7pYet01{!a32{)Yd|C*bTkg04us~N+MIXI&LKY%zK3@+XGbtR1kCSO2VqTM z>|JV~?wPBf{lCDgKwa4ut||IxwVnvQZT}896O8c=@InHg+lh9JuCd1CUIC!?*X}tQ-6U+`&sEo?ZOnE3qQq-Dy`B0k{le;!s z;>oL!Pa{;5{to~*K*+yVe-Vi4DI~!!WKOgZ6TQmYpahB)1vdv}(H4P~P%`W(}&{H-W=eCL*;LNQ5)sJ*zsA z*$pitVh2b@DM}({&qNxg)yRHT?R1r1xj}CD4zojERdS`zf8RZ{#tVD){L?4UCo)VD zy_wV+Mo;q4AQ|v7gkMSqP4J1xhS%Rpjc}uM$N{UhoG3fPxDtV)`jq;-K4|R2r04Yh!d4qJMl%zFd@l%zgJG71xjFKFm!r zF@9Vb<^>SZN|hG-NyVlnnVQgrc56+4uBTigk9gkwv6?Oy)5Q6KhR+AzmO$@dD$G4sKUFV)OfMQoaCxA@6;RcHPQB8)?y7z2^T>x!A|_JnW}%QuN+i@xjYg)u%*Dl77lD~X^?*fZp0vJvI z2#{7rW%g4P;A#u5!a5}(RiCn$Z8n(uA*Zcpy=gi=!f+xmfgAVxBH0CPmk_lAaxI%u?qSAK$v{Or)}XH+LoD=aTfWLxuGLn;G2NccZtbhSf|-j9YNZ#mouAdXtU;^ydr``7Qu$Y ze>DGxOp}qrO|u_gYx7hILcqkdVJ9JL$uayET|B|>1C1U)^y`y@PVcObV4JnM8Ml_O zf|#)x?9tkLxp@oq-!!00?te{W2v&+2d$B?a`miSJQL@2ru}8s74kMn69r~Up4s4{w zxm3QeX@nm4d?D+V5XmP7)p;da!xRN%f8FY>L_9x(=7S-((KrE_?--i8-~Hxqc%s%| zPd1u0A$}#}i5Q&J41wn8g%@=eIUBC4Z`cb>2k$$Do&!hG2qI9&nP)*s3Z(*0D)42GE_ymO#-p1gG4D7xS#54fZq4@>)LS}rZI34FVxF|g?C|{3bx!4_Rw0n4QH;IHL4^cMLD>+(e7%J5t zRC|vbO~1_1*c6+TaUK98VZ`3-nEA?F)4FsS^}68aVwg9r^WJ5vhOd>Um^!CTLn-CxIg&8-G;l|F+ zV-^MX=1E7lLvam?ziXnWo7SW_A8voPV8=$xJ=t2YYi-Y-6>YhUjVO5dOl?8l{Z7n6 zLNd6mLAc01*nEb!X9D&m^P=M1+)H(Wbu`0qcV^yqYeMx9bDybaFqUyQoBFvHHT3qc zAH)53xfc1sDb;M$#71QehUanZ1g>bceax9@9eP^K(xUD5f};WsA!ex zKC|`n*W#;u74A#se+Tjml@<{!9}4EY(+OO!=IBCSOo%2okXek0_ZWL&nJtAJQfq#8 z%G*4lBwH7LJ|^=#q6R_NaW;a^MWt=AcFpcVn~7SUV!5EQ0LPS9l1~Toi$0A|{z5Jn zm6vU3D4*xxi9u|pVKasl82{v z;W+$z*uDa4}8c*PhPQr?0n)T7St*;*T#3kC$Es5HJIUf<}nKI zHA3j~s5@y$e?lD)I3P6o6rtemqWYEk=e)Iq%FO9E<|i4ailo=saPf1)9d;?L5ba?; zB^mYy3BDOq59G)fL5y98D>8{;ZM`L_%9+~^-v+o&P&o5NW+$o4XXSg%9VCJaKuqg^rZPStdge`0c@MNHUV-c`6>EterN6DG@= zW>hmLbdVWv^eug^!GaDIs($Aqm27_gZz#l_y?V}kja-a~#MEAYW>L%TjtsK{ylHDei}`F^dMAN^wiyzAzn9m~Dbn%>T~s1gHcuCH8sNU)teobic*DT0TjpCQG6(e; z(kB?O`!9>?n`r2&wm7|qzeUYmmKJclf2>1bC;wh>B}2`jAH0;KPa#NVzq*jr1>470 z$DtN@h2QTbjdZg}9*zCB$@c~sBE#bJhPYqZe0Jr$K4|A9#P`%k5EY}2BMmWb|L36` zJma+Ju;z_l_~P5KvepDNxCU_e@fg% z;ZZ-?xU=#xKW&&c$h4=dg942@LG92rimWM-OO6Z;?a~1yXbzF6jH2bM%q@nk`haz6 zbKn;83}f4CvXul=(r<-0KH3~wQ*0+L@uQt{YJx~=&zvRS13t8{#p`k#pS^M;o#JA` z3N#7rvwyq@B5WH{(aO==*SAK0e^L=#7Z^fvW>zo0CdZwunFEkEh!G6C$_@GY2BAwDd%B&oZZ!Tpwm`5t;lgbDKXTP$7h%ov5?HwwWg6i}2 zic>{8`(DD-5{6LP6zxWdc|dJqtiIpIon>Y0&tZez5RhY_SfM6)^c&B{4n0v0ZW+}A zqwC7Lu1t88hVrv7ci-3}fBHO>CGI#%oH4nKe=MMj8TA@HPBQN2uPfr;=Xb74+lPop z_u;)_*US-pOPUQKgxfSeC8Uy{ee}ed`Yv^GrTwxm1j(XD+p~ji{%403^>ON#OrxjT z@{r=O2;hb-nN{<=g5R8)ir#RjzT&X8!qi|+g07rbk`rO~d#kip zah^B~J%vR{(pt1?m=dVYUfo@GT8|Q6?R7k{0z9#8G1Cz24=%$N8;tv(Em*a{kZ!1D z)H}hv|2S?&4z5qEf9m*T?=Iw-{&MnV?>6izBFI9W*8a8z0poqoQ~M?7ZC*zd?m?2V zBOC9B+l1V<%8|Fq#MCYh(`9c3e|xX867~a*iN1KUS4y2r zbZ1uQV<*88*Q;DeCt23<7qLn!Pd^YF+BO2XE{c6d*JJz^f9{OrFsPxZDmdWFgLd{A z|IwSSx2DOSLXtk6v~YI9#aYyz$`P4?YYibK7XjfqQM7XE3X$wD_e>F`FG-o4JjBd# z>)q+5$&6ldBD!Iij9(Y?5p8vJy-~qU!g2LV;@0W9_|jECQ|Fmk-UO(&5 z)#!S3B#Z?^bhr^07T6my9XX~w>b_Txr{}UZh2DtIXnNK- z85i($MJ8#)PnlUl-GIY*<@Kc>yNlB6h4anF67RY926cFMvXnfkEhDUvo9pK0NEDg$ z7v&VlCCgqZ{aA)KHq(ew(#JOo5Sm*qR*n-4BD#p7e{-Yy6!lbbVfirXRIxMpZP~0YU{fHuYIRnD~yWVZ0BM0*A-tt=`vcNr!o>y}*!#;`8Rr$wXwo6`;5|Pl!6 z=&fi}OK6+#ysGp`MOXandgUwfUBcWF^JtWXe|)Y)xUpds#qPNt>S(Nx_{E26zV5CG zy2N7|gKsv2MER7cyCQS8K6mH{LgvG{mSA|t9=Ws+iVIt&8-T|fK#Lq&6+WLToJ*>x zzE0?vaKZj!0?0}1gFu_e6HE_JWL%C2_2*^aCDL7{ZMDz)P-1nugl9QFD ze}{~C21XfXK(tg!Scx^xxcS3~K89?oXChh4{-FdW6Z@OTvhWZwVXdO#GODsm__`Dd zG@*o-BNP>S7P`Z#V4Yjn49j4*A}wL3QWxw!xHC=F`oKofcI0eT%UwFz;ZISbJLtlDuvnrd2+c+7{91kgYDADU*&%}0%KW8jgS96@j`HnU_7L>tMmDw|BfJe@={2 zVn|T+_-{iztle(H_N-OdLC2VSoaHl9&$s@nJ%fnw^eM0OV}q5WL|OB= zS2g$}0-e&c4g~;=Zp_KZ+3*UMe8PIDBtYaz^L43S z-5Y10QKh9XnYtfQsL5f>dR~p3jU8L6og*N!qq2|s)Y{zAprxxq7WOKJMpEe^``|$xpKv#i@6F?_4sze#8%)9Iwx;R;#mCigU^kQ|V$c zn$-TH-7=TwF0Z$h7=I6F(w;(WJ+p3H&@lIF@#biO;7mXAYRSMo%Wyw#`YhnpjeqtQ z0})c%K92Uf^mV94$yunYfqH<})2VtC_~XkBBO)q)8YSbza-c)#f7wG`nMg@`Nmd#B zr|OQe2HlYG!JKWQ0M&x+Ef59$wNmXuDw_A%1MEPi-V2xL~v>R0u!*@#CSdeUBL6lhs3o%+RbtQs>QV_?$zu*Hb7B z2Vm4k%q@#hCdh5n*$-;0D@Rnp=QH;l1_~ruW;Rn1ssmtle~G)3!8p$e7J)---5LI_ zk0bg7Jzw zaM%=aIJ90qd4)fzHlh%@Q|;APJqd$|pBU&d<8J5Z=hmeizL<00@XoZRQ23!MwnS8j zetx@g4QrGqf9P=ho~0qD9+gubgK6sS{r)mjM3sVde|<8$!$y?U&qFtWyK)zEoXr@7 zJ5m5M;>uy2>wV%VO}ByM0H+k3Fd&r8||~9BC*%VvP^cl zyH8VY1^Bt~yF(Wq^Q60eJtSEKrYqJX9}) zeugQ_H`$2Sb+vK2J->##c*VNT`Xar|p^1iKE(AAS1(Pt~otxR7umMVOiU1A%cDG(C z`khn~@PZQTJKs6R{@1&HB5!#D53g4ZTON zsZ|LkU1;e~?^(*{U%Bn8sjRQ%P2zbUQKc69v3+n!?@4QrW+%^$?r@1U+#G?MWLj$N z4!ze2sAI^;;hZ|Y;h)@0XzERyab~cye;)iO*rurDyg@FwP$h4+LJ(c-$GJs5t`-1c z-q1SB=}%L1f9w`iMGC)vvQ-QB%al>`wUcjK%BeX1j=->frVd$E*h38H+xDcfVF4;$ zJ8WY=M{Yu(*y_DFnZ8vXV1GT5Q@d`sV8u=&8YS`JSPw3urAU_O2fzMlWZx$5e_Yjz zLw7Zohxgug(G3WQHCId}^NY@es?$z|4*OmH=da+`)J7Y7=d8m$(m2o3$37;t%xL(d z1{;xQxU#Y|(IEvdR&dAQ)vc!r4!`8t8=^V&J2fvIqq&G$VNM#_(m(?nMIYNfKcJ)_ zs@-6+w+Gw_2wR)eGis(c%)SFV*B_aP;QFqzFjZK`#l+o$sqS>9n-leSs(p-uRpFe@FUTM6v~a z97iH2pJ{y-Rw6cpsqy?IZ`^IMt}9T9c9gs2z6TQwq5A>|iU*zIlWEK(H+K{4oK!l$ zCjfDr-HO{&GSJ|AY5X&vHj)-aYmqOa>}>LH{38id^Bpyj)nt=M*&B_{#MPDkj|HCh zN$7SMUGD;5i7opkyBS@_e?CU9bE6jIfihxx1n!)uIo0G^Ml##W0U)8Vt2I2bA%~@= z8=SF}s*U)K&Yc?Lo9eeo$@n-oD=A!o9M0IfPaH5h(*Pb^Rq&8{_`t3bE6K_GU6|4b zWyd_$CX9MP22NAn%9yP7vOZhq>%psVIhWMuewLj^_SXqrN_-@2f9iTiiS)J@R{IuX zm#98I2dafKhha$J_AOy9ZxMLtoYmg*{G_oFoYHo}uDB;8tB<9@*uS-Ok*}jON^lz;wGeuWrFw?Fq~Qoe8OAB?|L9 zNrE{@p>4*9^|u`S{_6?YR1I{!Ml?&EPu^AG%nL#d}G(cQvvb4RTwQ$wK|AbNS%(i6zlsZoMTZ%eL+~qhM(+U$&w|kH7WXS z)!mCLR5h6$e}P8jVw7Os{@B4HjUb#=wIwagoiZe;ntm9xb3vVlhe!AwUef6KG9-?; z@a$?KdcC&C5HxXew&Vo@(NA&?_!c9#yGeV)H&8}_wYW72Z13CegvhK z<3k-J-;0mhV+<1;eD^x;ntXGRZJ+T4{76Q>HZ7ZSe~yu!$#iEl;T&{`{uC*;)ZExMGp*@TA19odC=`SRW74?g`gX z*pJy2nWaG_OA=+eUD^~FO?E|ai!r*YGY*#wY>tQr3p^pmd;uqkd$DJ9J)n(Sn<{YYwgBtl}aKVD>Q z_|1{5@|8C_ihFj$bPFx*>+;6cUhrD+Y`Kz`y5%iwk14_tQa>BYcHrNae5W|zW$>~d zM_|t}=j-$)ww{V+{#kDvBZW=7jYqWG;d98;f3jVv8Rx3e{gULIJWeA_&im&tJ(U`X zUOm>~S+C?{>%F^S0mje-R`!g0d^N4^)f!8&n`sW5yRGj!{`lFXslF7cWLkFdq>%=- zr5kJj5GY5Xro7dLll<Hx5bRtmS|OAy>i?1E5nAx>P;Qr_;ssDb??asRlGE;J)o*>B=Y8@PEK z@>&buN>sRJ8MMdpYL6=C8r81ldD#}tePD%gARX+}4}I>4X%VBWVpq9Hcb|FKL#qTo zvLrYGz8?=;eA!qZ5TD=0;(Pm(nmCR@eN(|l3EJ6N$IwTP4${PK?r zmG)ma$BuD6c)&DooijyMO7cBhf7X^rDQ6S+lG3rmSW0KpemwbcCo{0P)PJ=dfFtGA z`})PJx4z_a$ani*587P@8tU8lpJin=3nR9k95Rs3BaxSr+1deoWP;sqV8hpzJU-4^ z)xT>nL+bP!s2%z7?0^Jtt~!3vY*meyOy5i;hhBTlS)GOK@77lFBOssJe?Q*M8p&3c z56y6BUxgXfa1;B&{@HWb*?ol!oN(*cc21(KFfZdxA}(q1USX4w)Dt+fR6yWhMrgH4 z@Vh5Gw)wLXATB?w9cxp^l?mt==440f4L+0=Q5}iMQE42zV1UF|f6Bm4A(SG-fQgdq z9dDDmjtb#v>o>z)MMlb(e_D{x%Pw`;I7wkpm$^lmUT}m-Y0vnGm4*84SMw(J&x!SL za{DUqYh1FF61wMTyCdZDg7&-dSV2-d{TLG;xE5z#G!?$mMkVE{TDr2dlvyh%LB&v& zvI_(-JW>mIWZSH?4_3#9lO=xVWQ48GQ#dz84LQSB=t>W|MW$Qof6z$y$u@I>^{PV- zi^fl#L^O1j)Du7CwPXNCWdcgP&T(V2`zKE_`os+gb=Hmpp2f&htqt08seQc%t4SkvTl= zoD}-mlX_C3p%_)nB(tVv(nUiZ7b8du{$3;1ouBR!NSE&XB}AD%ZC03mKs26zmN7ZX zrADc)!>bhKu)8s{iZV5?QnO9V+z=cLvRKIM;iS{yTHK9_6(U*vu_Geu&wtbc8{Ql@ zOv=t$4yl~V4^6z%`R$NmJH-u!D7?N=TZg!QIGRwT4_EC@BW zpv>nM-k)C&Y*mQ~qSPVM zc)07h2JIYM?6nzg*Uwl3`6o498lxWGPfz+UrOjUTCL?Qd15;1GJ_F0cc%li^MOuC} zJm++e}Z`_eAb$w{EhenNIV$?#`wHpKA`YSWf{=DFb?$Q$`Y z(2pHtTzt>7wQ-d6wq?n?6ab>_YAlXA4)8SUQWmf?WTr1k96MoJ zf_09Is&M;1jC&p1MRksEKZ~?j&!&9}NTx0Sf5!YiA$Cum5e5`GMK;fokttLuF1w*o zU1Q|X>>>BL=-5YW5}3M3gdZCigLZmR$5Ijy(CF8Kc<;!e2)Ow95b1_vtu@v!{;S4X{`QJ*3ZOEa&nHftIA#_v(Pp@EB@K2~oranv ze=r*3V$!eK@!&Om6{fW){>d=uG4s)xfBlXR_`KAw@ z`o;Y^1pLb8NqZhfO10r<%PEc(>XiEYu7ZB(?>fUGH(?*=Y)ftf;QE2E?%8iK zNLg1^Us1y=QlcB?zhM^s81c9|Qi8`qe+5Bags@%1>icB|*@ncj;%r`W^a&HPDYA{S zbMn=Y;Z9Y&$Bd?)f9J$~DcE42@@^m5l$QMPvg_Nqoi0MNI_WD1r2x+Wk5hrZgT!+E z&E4=eO#=GS+{Fl@V4nKfF)Wrd-|_&MY_ND*M!Z*xzzI*7*{&2gt zgB1M3CXj6P!FkhX2Ce^np}tPH6aZpXdE0kn7(e?dQ2EqHdCebgJL_Q(e~7GJVOgbM z;%2)2fG?^qp@VByvtV`jNL9ERKBC6)1OQy`pW0ZKx)Ga-e~M(@3xt|gls*91$o^*BO;)8WdM9=1=>?S>Xs#WZNF5BG_JRPbEv+S?F2XCO#uMldpD zo`HeT)iQ--A^lJ#IEKxtLd2^VxhL`Qu(5OXVML}X7a>HhZD z{A0{`oMb;&*Q{h``ZSJhe8Zib7e}&8i;gd)Ul&rf2DEkue_tIm(`ZLuMotDf%rG7l zt8P^x=>(ol&eY_8H5PBU*He4;2&rKbL3hXkkO=mVauC)f!Ra)Pm=Nsvvj=FTz)zGf zQVC(;B)?WQujNS>V0+Gmc*F4?#CTk2{dSFTg^c6Hqg<|K7$eR{bG%lEpL|jNVUmS@ z?58C3M>0hQf20Q_DGx7?wcy$K)Fw}5H|}0ie+$ref2${T9CN=HO+qck8!cx0)E!zl zkRPHWR(5-xSMXfiD9dPBii9h89xfZH{W{ma!R9C}AjV*U{)|(Kd&+i{%Q`mA>6poh zvRkXQNC?+y8BO7!F{An`lT2h!1x1G{0*XlUm!7H9f1vLqq3k!Gbwt@6Jl@Q(;daAZ zM)p+KkR*f29Vay!2PE~~+y-!Ved$CRqZMAC3BXHV2a$VVCkrFN1TJ?+ne-uPNdyQ8 z`8UuUUsQijHS6QyCC=I4i$S9T62@-bet6mh7C8q;mA3EKePsm6D7>#%Gq}9%*TPm< zbW4kWe@pO)l4x!5(q>1JbGTPSYSOocONvd@A|>awqTI*1yZpncpYxiaFP_}Eu<5qg zO`q+=uT`ED9-6wt&_ZZfo<;H<&BM2&c@W1>?hwgE6*|Xj3NpJ~+NEGI*jTG#5SA+d zXR)FR1X1hE5F5Hu;q@oOf<-)RQHN2;G<;*If9{4Gby_)xeYFqGSOGsWW1eb_VIvuY z$3F239Ke-?Y9!1~aRtka7w`lN7NiOz4B<32!bz1b`-p*G?q`Q5FGYM^&JNmXgUh?W zw<_&_oPW_#Th*%Es&Gs0vKe5HZh-RhFpk%&`%!ZxK#D)r(~#xt)+JeKqf0iYY_OM4 ze@*_B0bW^R*FP8j^4?2ZNXZ9ndo`qI4_}BS;aiwt>UTQqL%PA3Do0xwzp1*Z?g{6L zEjzg*IgU^G%^T!aNYZ(gmIaP2+|bm-|cCvJaki#6~~FOd)%$;#j;TfAYt*I^fWDr2V;STy=^zmV#x4g6l|_QZad0 z!6@4LPAEA1m|AO-=xRjwl*2`&9n$mrgOMtaw4h93ZxJNkdE&Q80k;Nc83_iVSv9WX4?`ze75-z2s>jwYUvc26M7pL@JtiCBcJ^1M3yu{88_KU*KYLbyLju8^MDQA-30D! zpvp4+)?~&28`2)JVf?=Tu6SOGbY4RJj1-X_!A9j(-JyzUhHmTXDd>rRf9h3aXeV*e z7qbh|=Vtymmyr*U!bV@yxAkpgu(eev{rL3+9!dV#vlV@JdQ0Z@SKsvC(|t&hucKON zZ+L#;cyB-;d-JFmU}OHevcv!Vor^O(km!kSJK&h{gH=>@BRBS~bCHJN?mAeKvBp0V zru*CI2WviOC0kKPeYEqFe@Me^gIrx}W-sH*IH_@UgScq_FycrrgPEw0>J5!IAx{k! zYV#1m>Okgduh|P$?HF}*bUNOogwF*`R8zXIXr{lqWsZ3of%VcnTY%!|7*dyc8Ce38 zGj~UoxnrB|4!y&}a3k3+i)N%oy}okF-wk^VTN}jAb(Qv?QP0!1f7-!wnq}H-B3|G0 zj4CbM7SXWG1CYu1Db8uA}wzf44|T_*|Q)H7-xsrUf)<@vA7)jZgWM9s&c4M!)dR{^Pd3kbPs& z`xi}&+mq?ivx1@j62sFosLCIf1j;L0VYBT)k_Cv;fZ4^ z*pKm>pp6N~ooH&TbWxoo^E{Tfo9Z+SpK1Gec^lvU<{tUg)cvVZ_7`rk-cen@AYd0V zevW{Z@hBdDtc%s2{lyOPnoJd*;WjC`YiHsK{znZMJCU59tgz1;#W!O=mL84dc!R=} zAN!ZivQ^T2e~^kOBMO$L83S@CNDvC2A<1*S4erqWII5N?xF((GNg|rd&a_nQU*b|= zZ_n6~E%Zq#*iO@5eZkDzw~Z+9D+l-3Qut(X1{M64OZPi~AJ0V%9xku+LvFlg$wvMN z^4L^><9Q+hKq(u%>~q>(-ce*Ql@V)4n|6taF`0Aie^k5^wETtrEa-N%W~|S8AvcFK zS!q7^*8icuDPU5s>jasFd*4Q)&fPUhsfZ{|zErstGk^TU=)7kCK3`thcI;DW(CQ&E z%SJ%UWJ@KYi1HA87wwq`vepd;yioNJ-gMMQr13J_c>7d!pih^pFvgKHP0{XJ=E_f5 zk}13Sf4pxN=t{|+UoCy-kpuLd8fR-MJ3Gv4nd~yzz9g>Je{;ilI|;LFNZg8>)-WQ# z$GvAUB&y|xb1gqX-_&Pqe@Me7I{o*%xG9TxI_LyaqxX=0_m%>J zvCXa>LGGWXQKwlnH{o2jQ+5Y2HxHDaUEIdG8wu)HTtf29$y^wwc#yamjC=9|#$Wg%iGOAedtcMp7L0YFV$PF~rSO ze^jeUnTaI~b=nEGKh$tBkq0}g<=Z=2%$`xN;4qbNP%*m<)YKAIz~xX~jt>!|%4rMw z&`+WxB69Uug@`JT8PNp?=BT@ORm+$6o$qu<#WC)OlcJ^!NM!08V^blxNrJ7@^kL{? z9p#Ksor(%WWJif55qv6uW8wTx`n=TInn5+xMeu;=v%n9;EQa z|NfWqqh0(8q=T1(27dnLx(b10{V0;9UIjlQ`aa)EwVd*YPR%C~PF|*R>u*~xcWf|w zbvO-Q=@4ROuAEX^75k%im8ym5d{;baz43G8Y)-g1g9oY9ji$0Xdj{`nd?ns-e_g&} ztDzp`RV5yO8+gq0ng+eDVeO*?LRR$KPZOYeUz>8*8`SzxI2JtN;TN$CL?jCrEa$=) zi5G&aMGNWK0yG5YYz~tdKeZ=OxRf6Cp?CA$lnDeSetMXm=!-AGI7EoCf7{uXe_EI*aN!5c;7Gw%a z5PmzpO4dQnAV&;wDHlPaA;4wF-%Bn*57N(?eib=%~9A0vuWDmsA#q?w zr!S{B3?p)BQ*l?|>-hy}6Yjg#9@ZSGgr?;HZi{bcBI663JnPE$6-BDSwgDk^NZ*cNe>q}?$_LAL=kRLt zXFH>&za09Be^UD*Ri8UP#vZnH&_NV&4Ex{`=1$`AG`hL$y85umf;bOz#fltq0$2Z` z6@7Stv#6i2#qXKYPSW149>rloUY$7;9(RL7{ARb%Sd>4JXs`9kec^3^>Je8*{pd&h zOZlPNOMC);sVSd#f2$OC< zgzkArNmL5}^xT}x{K^h=SeK()jUAu$o2Q#qTdSD6@6~^>v4;B=YibDROj#e>w2%+X zr4KdG1l5Z_E_b)j_(vLkmWVy7iJvRXZzd$VC{L|W+TWi%e|vaVkH9#zFocy63|B_c ztIK_gFQE4QhV8nnl3WeG=p&mzQHsg)Gqj3M(~1h&5@Vi&F25ww?9#-=dQl$>GZUa% zX8f!-@)gm@3RlGo5%WTmmcW4LL{gi^KQDH=P9`u1*7CDn*ZhQ_poySNXY|&P3moUK zL7rp8Cr&XIe*@FLGx}90y}BrZH+ZzxTJnDL?aTpnc3*KRV*U9XDBAT6H@snPCu6agQSn8Sx1XIfWZ6DCu$Yvrz2evcVo@J0BkvG)%0QWT@7USBb+`y9Se zEn5RtQ(kNT3abT&;cain`%Ee4;SqZwv)#0UeAJOQiA@vB`EGrluX71wyK7Cj$Z6oX zZ{USEeRc=F$oN@1GnZ1+3j_1Z{TuJ(I}#=cRwZX)JSeXU7KxUm4DB zYK>n=#ec20OP*qQ#iOvv#Gm9pf^of&pfgPJRl*&pyb+njUFm#FZtp@ypx~mU``{(c}*H3s{C0F4LvPNrW%q1Mw+2@r8 zS(`=Oky1%Sk7g|{IWe6vUh$$Hbkbc9f5vXpkv^MLx70IksBmb)Pxc!}eV39cT}mt` z(13s|$o|NPq8Kh#KTWrB={tb1BO(giX(kz$2B+iGk;k&!Q$Bg%UOTO8OcYpUs&BDc zdX$-97HNQ|eIIO5_Sg`_qI7=tjR{P7jz}qeC(x(v6sNW)DqG0U-~HBK;DoQme?0*! zyL%`|`UAErI@|e5r~}t;2khtxyA!`{{dDGvRo!s}Yrx;Y^|BYeQ&2IO7}Vw!jOr}_ zUTz^9of#azMmp>9!w;j(8r5@HxEV?Apds`TOnLky@f2^c!d&UVyKoHdK+1>1@_rX> zoY0}n5wKtz6pj*c+({E&dl7Y%e}$;xrP-Y86~rkJ7{`USNSETYsvt?dN&&dnZ1i!? z%X{ky_uOFFl9M^ZN+N~$+9~Kc*!AjYbv8XIy=N*SMzGu}nYFu6yBJUg628<&8L6g!{ z`N2FGpzELUHF)QHDn5l-f7-~|xSYF8ih~F4@A6aA5Co7eFarj%xgXIhL!?cnWgIZG zLdyaJK+lP+xWAzK_s|s?H}Sxgn1m^%CT9YWoR3&Mhh{3`~063bEz9H z)xoN^eOSB1^2W0^FVkih_Scew_tYm^ve4Z>QjL6mvU?^f$~%#@fAD_mfa4w6Ntlxa z#p5U!iaFcmS*#fj-%*Yne@uB{MN$~$tW>g;( zteuggCJq0HUH7|V_1D5Dljm>DTs*|BghIlDO32LOhY?B#+@@0$^7l`UWK*I1N-hbN zuX?b^zUp$Je`)lJ1`lDoOgEv%)#5cPBg#%5rLKDtV{_ueWm)5t7-ixFBVWz@YQ3VK zK3sQ;$V{3{5G?tOX(inuX^|Us@5HZsey)3vc}qMOlm01^P75))_mGH3KipGAVGo5{ z+P-9m#+k2v&*6Ti5K5aM8E>cUX#g# zO)@=WE`(E<>of5upaU;&0H-b!k1_%<2Pbw)62?E@DMl(CKlr0b>%HpmmQ%YPW&$hA zQ-7htVXHEi9py>?>yNuxTyEz7p)IP4+9iz*f6q?H@Gyki!XgHyaa{Q#IX7#Nx9Qo7 zE{bf64_*C|7AA-2a!C^o+Ma~59*R`|RfpRNz;$z$U*7HKe)qr5^Z#~v>wsnq^b^U3 z_RSS$lkN*kA*uMH67G!xwh58K#x>+5f~zZVMR4b82P0SPeJb>!$?>ynP1|#E{-C27 zf9?gJElW+WZB6)UWs#%>uJQ+YL&}oc(}>Rq4Bhfl5Wel3Pz;sQ(r(fHw8ycHOKqp% z8&SOrvMkHQr^W^q;zgjOc*OJL8IfS7U!jGZD*p{fhPTBXX7S&<`7cRaC+q2^F9GpJmcFZA&amb!kYf6=^1h(xyak0&f5@)az(S>&!PGh>Eue=}K> zHmB$E71>-eKVCBl)BpWT*UGl*!y}qJU2@oFb2(g2V#7uUr`#xUgBl9P1vHa(44V)e$oAhjFBbwbiX*!K;04SZc&<-ulh?IxIo{PoZ8E9(e~udesVXc6Mwy2sE_qqKSN;^4HPT zGnX&-N@khDFKStI7th(dytR36?`SeiT@zw66L zRk=ZCeiF{fH<OA@4~Wu$G!$Zj&g5nGSyD$@k3g z>VZgg3O#Pe(Z$tFLTx@$2L#*8hWA($Lopbp%mL&4+z6RMOG_j~UKkDbiQx`E*OvBx zXGKimGV*mg{nl=z3Lv6+y3Yp_!F{iE!Sv^vl=p)g%1872w}+>rIB+@q4t@A;8ZVeH z$f;j=oZ03;A&weF51*V9uO<`(^yOUFey_uFs-Cvkew!{9CILV^HK)&^aOp^%7Fg0H$u@5-Z3weGa#y>WR)gmpws&> zEyajk!^r$EKCP{^Lf%8dj#7th+UJ3de?%0V4`YwUssLR!o27pib$?@KouP~9ZYVhq zY*}Uuuablz{lFeD_J%Hf%y{x$d{C@vwvpU6qYAnhoAU*}w2D+B%5FnQq78&NT=&Io zw4{UBJ$&0MqDZ4=)#ea(zp>URPp!7KtJ*jD8m7;sq)zF=gQ2QZt-24(wPe4YyxSry52S?@^c^`BZDU?%q*fu2D!P-;zG-%>c z@lh%R69e?KafS447)AJ*a+$voPjjSEi7_gP;Ojv%mdAzj6B_0Tzp9+2aCWY2Z}satT# ze5}cZ6Im;K0X^!Q;n^^y!(y;97Hejra1V<1)Owb)WG-)K81qRjUkFp4n~RB2chOMt|qBkjlQLN#IrQvt)(wA>hMZBp+r_fM4lT@1|tsJ7ALpqHy8L=uz5R zSAQ?{q=u-_-tHnj8c|(R%ZD<(DI1EBC-}9L@|@4w>O7$*Yy636+MRR2`hkmEPnufK zofHeSRRG}r2$5lYl1VL8MwO*<>IFD{XkO?U|GCy44n{!h2g}$QlW$dqw|ueef^VNj z{ec)Jn)tE(mVA*eD-AA;m5ZdfLf*Q@{D0wA3U;LmbbCR+j1(tEf(yLCEW5M-L7^tF z0p|ru28{=jo;;F?#>owEL|y#li>_nf!j}Pu`vcD#k7j7dwgM*W>7i7%V`I9uvhKlY zF$NdJOMLgAah`1J9xEv@+7x4xcL&gB5_Ps~yro>3)~ue^ofY^N;{cpSuX}1O34gn` zNcYAG%zkd+mGP)P`ehA0@@T^$cgG-A6x|&O25C}f>%~_JffDoE z7VCJpG43+eY7YVH(5X!o4VdkSjoes{Lzi{%cHn;K; z=L>_B{Onp|nDTYVGO#gJQ`)hBlTRalbeA>cO6=w$#0t{WHES9)5!)b))FxyvRX?Lkm?02q$*%722s$4u&q zGp#A5mInXul~7+wq4Db#WcoE41DPn|`_hGq0be2J+) zN8LnaNG)@ZF$|!@;L3xOB{^&=iv(%)vt)X z_CY(O-nVSwx5&@fX31f{Mt_ebtZc5Nx@L33={?swX=AH-B%C^KCy|8tKlf|#@Vn^) zt@lP-u-7h^wXj|!1QL-Vc2&pWhbA!8QbF{K%Q@j@fsQ$FIFV63zw`e;la*vTW0sp> znS=~Om;m_9T-nVVr1Wda4z!Va77$?*IjJqXcZ^&k5Xre2&rGrM2WRfN8^vuC~I-b@xeCS&~Bv{VZTQ->q zU=`e^^637G7qIGOP2;&%Lj)%c{|BsL1KV4lNJmNjUC+BzL7rr*a476U z07NWgyIE)tuEBqV!?MRr?M$>ob$3%bELKO+6*il86g48|akM}xtgEMtr zfinWdO2+S?L7A&=uVEnt)^n+1)4GY4DXELtCFMipEJ-~BmOTG@oEY5`5)e@T8<@U- z!ExE1v83~~>wjO$_37Rx@zd2KZmD^Kz}d+H!_~48E(n%|W2#p^Zn=mZ3lh~>S;$P)oOO%#QkhBz>zwr=)-MyDbM)6??}`p ziaxBZVR${L8(VyeQu0}`AzMk>{)LjH*Fo`~=WcZQ&wn*q>raTCWnNOe;kNO%hEwgx z%w$zdJMT+M{{?21wR#U2HF9S&E7^8fG>3HC;89|(toz(ooxEbsw3OoW=qPxX_{LI( z3eoiA$F0LBMSHGP&7m87F<@o8C%gDqMH>sqwUTcROGcBp+saGpM}6bW&I01HnO|$5 zGMN-!8h@Ytd=~F>8n3C@5$ZQ3rdMs6FWTcr7m|D*`7;I)c$_;TNF)fXQL!B>Wvbk? z#d;rFcTfp1-{FC02ngk-)pDlFI@L520Vev0!(-V})KAEoCMn)Q;G5U= zZ2~pzPFt!gjavJ9=^i?|Cxp4R7W-myHa#r{K7Tx?%sK;^ZuKf#uE|A~Beca{`|tZ; zTC|AV?N^=)d2q^x929lnsa7+IZZNvY)B0oyDNUHtdWi`%-)Nu)3~qv>EJJ?nzL)VL2-CnQ=lU+J;b<+GJd@E@J|=FAzdR0jUH_jB2e3+YQ1O zRz`)bsa4D3lx9x}$9mKJyMUhR7?dQK;(zpwvEAN1&JU5e$*{da=V|rAJip(aZW)y$ea%-N*Y|f(xqla-9Q&Xh zI$dGyNxkn@W-Q2ipkkrXNU^KvIWuPtxM@)dQLEYo-os|UQ}S{9`01G=%$_;7Zj~V7 z-Lx-upUXbDwW=UIzXohMG2hhJ;!ryT)IWMM$)gjqNq&}DUwcu_u=7PhxozWgA^vH3 z+yW#o)3cf}u7Cp}#_X;qYky zBJ756l&de9mz4g^)Q$K;?}{{ddJYZY7EH8zM#1#P#9N&sn!Vuvz%mcSZVbzOsWfVC zHaqB3p$^>yVmz_4O3Q!%c+`mzEWJC!Kw)cVU8E59-OzadE-{)nYk%A==$E9E>uj^~ zbmHUmxb2f7ud<0hE(-*7N7u(l&!F0Z%Qm)UDt-wd%||sLn>P3X3%(nL{2**>o&d9z z=*DzN&}Kxeda&9E1x2RjDZ*^kcN*om-vo&*kyggO9&rvX$#|~>ae_lVFRF-y0W&^` zh+6lHTqa4vlTODkt$(uXWA(oWwDWrq)$Be@&h>oLI)uBviA_XA2Z*txk*bitqGS>G zB-z5_o8Mpz{@ISt&r(Q5(yl3mwNJopjiRDdcfmsCIE@$9mnbQ3veZjWif3;rWe^7i zoGc@oRfAbe;{<~_o_lb;wh#UOj_kK?L38kAs)w|IKCg6=3xBV;XfI2~0^6L4u9!46 z?zm5==EUOl#U7fIBiePK#Vzx*8S!Z$nvM!IewxhX+_xwb^x$CLB5%- zol}PpCq)aYAAiPm7tLE~>WO2W8zxZqcty19Yjb$tzc#PsA~l@OBD|Q1nxb4RlE~x% za9f24V48(X(kLRNJgUy-QUA^po>-(oQh#pxS&x$T+~93@#i;16A;Q59n<~Q$1|-L6 z%FOx$gU5IO*0w47W)wifVQbY@+bHpuW>l3%WIY{BWq;aMI3l1ptXmrNv=OQQ;oh}m z)A;Y#jg$=k24GdXFug#Dq)XO%EH-K&#eE*?!$VGp9GeWXjkr>+oN2e?;_R!l;0k#+ zl!s1aOYKcb`A>3KpqY4+LsQCRT=XA#voV?cKPQAOy?-zA->t_eqO@Znl$=TrtcCIsfs1*4 z`695HvIZYtOXIi6mMqixzj1gI`Qtq$11gQR!t0hC@@j-?7XT35egZ5rbAd#nJW}60 zR(do3nO0e^fxeqj9``kuN7w9~J*X2%T1O6lnJf)l#SLFt&b;wl+3maW4fPlzyw7?9 zLVq2SA=ZAD4BvcrER`9DOM9qDu4zJ1X%0 z@NX)gDtW#dhJ5Owf=E(?nb_Stw12!%7_bf}&JH3E_yGwemDE5HyG)fJo^tpCDF%afgo z+-c=E9pzS9j%XJ9do8MB#(6(CM)bPVs3+7f`T-RK0s#qD#UQ8judtOGhksE;knyJV z>)QjqYvrhFo|Jna2Vy+Rm+~JrW>no3!|3iamQKO6>_opQledIYauecuGAX%9=5tj<#WG?Lzh+20s6 zEZ!SphPv%qx{PBc;j;ubWCM#&l_;#?oFn(-I!sJfZrjJNJP7QBGz2;u_4J8~Pp8@? zV^0Qf;Pxb?1|DLj^h&sKo0Z7Cs+M>+Y7K1fF6=<+6q{kxo2p9D@qfZ+Sto(2x4DOv zy4CpB_&+85F{w#pqbbE4E$RJX^Ci^#ZP)-tLX!b~Xx#;|ZBM>_Ar0oKaF>sYdejiZ z-I7Bk8Yx9BP<#YZ8$>uNg-OU2pL~!~2TR~-(dY@e@P_w9qwIch;gc_PM>!gg-N#hq zh9Z)HB6ab-8@{Yxn}5Q>22x#>61oOmLEdT6gNz|rLC#`Ig-R)Jo4xAfL$b@y4}E@x)(jSt0Ybe~gmtlO>4}PAH`2L64zlaI}2^ z&ZQ0wWmSbkBmMv~4(ve7%PARcSs>SnC+Q|hO4bIUR`<-vio+NJ)Wt}MQrSJ^C50KvJK9llaHDK4 z#rZ5GMq{#!`YE)g3$R_&F*uBPi2Xu)f`FCNX3PP;-IEI-eUXrA&5(~8gH^piCpx)? z_zqwp;}L;l`8;AqA2PV6gV`Ci;W{i2G@&BUFhgiYbAP<+906;5MxB$m%<();KQ4EN zpfW515hCeg&2??$jj1=7``rUiLjk{Q_$7q)+L+@PFfs4(E1d4 zmgEWZpMOY%o$Pa#Q3irmvtP9XBZNd%_2`?1j-=->$s6aA$nRFS!c%Py0LYLnl^|te zhOs8XB2XmvQwnk9Y8dlt6^BG@#=lO~P+Wgz2ip6bk9vVX2o+zyO5IN_j-(cxmV#+( zG}MghWZrR3Swo81fZ(zJ)gIxNlI>wumyBi+)qiL1&K^Sk{@tJlj(3SOKCo{^L672k z=z17=_==@;%DShT(*~GSjZflC~hJ zgE;wO%@%3Y5;2VNUR}cOT-5x9&c&!&U|9xy)7cF!^}2yz+Pp#92c4v+QQw+j33+WD zUw`kE@08i{32t`r#aQ$R5=2aI4^6G@WMpfBbKf<0F+ajGv~|%T)u2PT@om|@ch^LV z^i%xVr12Cv*t*F4_b&@15y0N)DM6o6G|2XlTs`wDdIM3DRSKElXJSAcNsL|?%2cC} z)Tt4?5RN@IH`0v6%|>ey*PxpU+m4Q=sDDiWbJrcif;l|apHK1ZVJAT-v2DAn!j!M6 zN~}ePXP-rw*<*!IJkVy~#&-vFsuR2a=>hZVW~0yQB#ptK&W;}@qE{ySg*NTJ!Aw$C zxs(qG0Os8$02|@`NN&lDA-#L<3@vDIm4gZL|J^jH6lv&FZ}9Jer+zeEzWV}z1b-v^ zNE68ONuqVFzQ_2s0ji2%0_x|A?Ce}8$}ePnOhiudJ!*X{@;qLTMJFl+pOlEBn0OBj zd+lQLz$Wo@Ux|iMWS8JNRiTZRSSq5j8?lgm&eAX&`>)OGvy-56?m%6dWyiINE={!K z^atA@07drdbsOtIEr+A7MA<*Lpnuk`3(bly?c8#e>J^+3vF?|Ah^{6IAAo?q>ICl- zO(zMmP7wB}F{!Cspj9Gu5xfu##-U|Ni81^>p4gE#7emG`Ej z8SQvUSWWKK%4tz43wxq*BTL4e=Jz|){Gp#ZsxPw=Tbs%=a)x>&05*~wsec{NCPAytw=ni-tZ1HBL2{gw98JQ_& zE38j!IJT5`;QSc&&J)w{r#3w`yq-a1#L4bZzgqCIPa2tSf{^p{kuj3s?Y4Ytj{#wr(coQvXtA7Xre)4>hKjFTv4G@s$Q+Y3tuvtpme;9O*O&X_#FL|=Sh$ed- zY2C1n`-rZ(zcX%!);C>vl7A+6A@mG~EJliDaGG0256V+0;)8L<9T*b#a*P{9Blw6| zi0q%0LAZ5zb1W=zrVAXIQP`wcr18r%M0eMwQDHZ1AizAnI)An}8NX#g=SOq9mB`n) z-s4Ku;C<9BMPL3Zu&KQ0rgjhjj;&b8U&aj{mWvB|aR}H*Z^eV@>IU@LCB+vxoTDYk71M`t%D!DJ?XR0)L%9|%rd}z3q?XmjeF5|Zx z6|RhRo!MqZHGk9647~vFyfZa4Uv+u*su&fP{dPcjo(DUS>Ry}DCtlrNLQ`hqYkzQAyS5w2P8&lI`+hXR`7KQn z<{_`j6c6UVF^y-U%GRlt21|e~2TbIkDjzsCK~m(Ih3fi0^D^(35DmH}lR_+HW zO!pXX{BrIjH}gcNWCl*(>ryRPm?BWkaUQHCFK@)V%d2eNKgtv{7m|=3Gy0== zHGwCeu1Y{oaj+LstJT%t{(k5=9)!CBe8r8U0DnA;{b!)v!I%C(C+G2lc)sM%jce2( zjJv&dQcFOD)!X5dMkrE=hwYgvh1pw*U94hG|K_pjPaUN}(7YCg!&k3LvXMJ~j+d$1{78wICkq7djk8rKG&=Op8CIx^n z;(xWTmw*d_HX(b*dmaZ`OG_e1RoIGAY2}2rnOPRp@{yxqrB7;4oqIK;x(5#GH@){T zZfpuRr_8JkKDQpfY!EI0UvPW{eX$P&McmSrbJ~o)!sgF(g*%h9C#aB#=~Ln2@|Abr z>a%#<0be@CQ4P$*XnTIdwiP=nK_lw1pnn{lSA{iz=J9|uJ))kr)Rm4MNSZgLLG1s; zA3f9kF1>`da`dVc?gtQnT^T?Mb7B+uk!=A=Rt(!i6Jmv_gd0WQqp?MfsSRj-cF-T( zhfh*kykiqCoS$VEFuy_y5DNg*`D}uZ|!%f3~57F7OUl7C{f zVPuW7@O5ZF-4uW%`yqt&)E{}U1&WBERJ*4!*VF~1yd61B#NYBojI*RBszK;tF~S@3 z<-Z|dhN#McbNk_NEq432fwZpQZ?o)B3?_X(vf4pU&vYB)Y&UE(9|;ebC^mCuB^IFR=lmPoIR0QB0LBy#{=zW_?2%wb$6N88h{r8#@5$_eFN;n^-FD8 zPX|mC41HeKudM*f$WGOsWE(KVuCf&Uxce(rmAVUSMcPQCT)}Ct)|`Qa5PzZRTRWug zF4aKDJogI2)lUD`YV}$jBDo`#=n8l3VsT$oK%lu+xygrNfyKW&t2Nk!3Iv2MD)!Ndbi)oR6U<-iI$5R zg`mfH0}I?9!x|sp?Eo*o(9V zPOkGMPS1o(5Q0jMxJC%2X@Qg;wt!m*f?7tl*AB23``$TlD@%)D!b^BDWinzX;m|vn#3O^hF@Ls?YGVn>ya6W=`0^8f z1@$DPYL{2pLpAxTpF+Vi4NJ60Mk!2H_>k-v1vGsS7@gbi{1nnq=3(DBw-pOq0Ge&@ zPniE@J9miCt^4V;EH}@5Q@&Bt79N;B@E1_%(Ue<-(6d$%|&=eWT)XVwA60EqhWsvd;%3~uM#C0&&VrhmQMeiH4TrjRkWU;8ciBsKUR ze;HY&kwap)T;?#}T!~S-?E&7h=fF8@v#x|j(fOH3wr@YB_v_H7-rAEIKRU9dD&6+% ze~iPqo06tG6|}9vm5b?G#McpzM?k@}UuwC+`KJ41O7fFVB@T8Ty7c}Gw`c)76+;Y# zQrdm)!hhqfR%8KEr2!2ku8>;eN@P?8*40B+N>u4BHy$y*WQ*v&QeJsG4SFjAy(BJh z+6aQ{NeqXX|AL~|Lvj4Ze$M&?9TAF!@&P;S?fVsHLz?#()3>lB7T;a$tD>Us5C}xi zcjr5M0;BT{@g4lASj+$t-!SSow%WDT*X+$gy) z$3JG8bE0fs0XM=3-0`OrGg~7MAVJ!hw1fI}SxoA=j%L4mrY zpCs2kC(2vjEX3aQZyJT5DH3y1?e79!r+;IdY^cg5Z1~Kapk{%wnUo)jMxySwF=EtQ zbO~qXh>S%}3S0!@%|r`K`>S~Y`gZFSnR3FM3wnoK>8ugRU69`;OMewn0NSGNMG%&XB3T6B)~CWS~krHC)(hmP<~;O(M!wZX?tzdH?s}%MT%$^;&y;N81wSrI?R&!9O^>)dem0uMS0v!%O9ReJ=YL&L!UR|5 zfG*XQ+r+Ehj8puDsf20<>fO&+RMg~bJ*?qHy2pdY@8I<xx29K`j3?Z~4osf6O22qwdd}r;&R+fL|8NFn5 zFGNbL?VqquOt8Eyww1y+u+Q(;&GDb)C#G%<`$7}EN0|}4n>2+J!XfQ!w1nr3YsV_G zdBt^DkkGs#8Kq69IyhgN_-^*&^&uO+BhR6F7hx{jW&eFORx90YqkqD*6lb#U<~5J> z!uLEXJ|_8G%;{I*Dn-31Ig@H;EjLrd|D7i;n4s9X*`Hty2R#fs1fiaH`+u3OlNKqwA#A-ut=jX{!T8}jM8@S8aGybG zZ4bG

    =Am$4D?!-EdPe0B7)~zb)Fp5{qz`#g~4q8dIj8t8813HqRD4T6S5>vA4I8{$F zb-h~{R&-@Ilh)Ww4uwrE1E>$7j~LFRv_}U@;xmoeot263)q##}aXiGXMhKU;(1mnN36-5Nc=Qp)w=@j~c#MR`EzF>|?DBZ3obtpRh z9GDO{#l1Wv)TkrkA*ftJPB+Ak*h}3Eejaza#h#tSD)&e>_a*!&4R8lPnPZ#*WvvM{ zABzIt0IgdaC%VotXDreI8ncIHSg9RR1=Nr9O#=2U_du1mG)$9tV`TZ`WprJpSjy2v|5`Iil<_ufPo)jp`dPV?AMH^g3tF z+;YQYL}j!~?&Xq7cHx@xa`pudD8r`A%;EOG!Gr?{atXeDVjagkUkrYsi3 zl)HW)H!zoth}x>)+AXAE?fQW$bmDIy$}tT|dAz}NgSqih--iYO8YC`vSD=en24 zm~wsA!*>NiaGbLciO}7Rr#^Aj0CcIIe%~@=$K1Ixe zs0vf$T)hxofuWsTy0bqB!>FM^W>LH1xdc|7od8;}V(P>rT*tqM(spNx8jzW6d(zTw zZ^}ocZkcc=>{dHpoKpiEW`~JbLY)-|TMdkYntkTHs%r1cJF^J%&UWM1L#%HC^B|U9 zZU|pkHKP-As{kQ}Q`f|!4wCzvu0NsM4EX>EbzH&@`EI13B~|NCzUsH_K)fpzpGNe} z$OQ1HLN0DY4wwF<;_9Pt32r$`` zPse7MZKvAfo0=Oz%nqhtH<9#rUb$a}DP|gc2kkBs2)?`5qwKs+>)zy`;-d%YE63gQ z#r$d$G7(iq99yuKcN{b4=84BcO;XEj8WKP7Z{UGVb23o*ijnAFAjrP*bhN%7b-{mG zY5JGqlbiXE_B%S)M1P`d>%&zbw)JG(P|6nge&!qJgq-G9~=zr3L6Zu5n=a z-&dtdVn=BGWQ4v_nWI)Z5&hy7$Z#Yu%vxJ6!s;TKZ8u}M(HF^980P9qsf(6D`IY?Y z;$o-8H@xuj#5v4z!*J{3PPdk8=xEFHMi^)UDK<#J9>jZP$Hm)Ly3M4^Q*-ZZHu`3S4HYQqnjgf!hen16|1-$GA{F7k_or z*OAlg%sB2Ol%-+YRx8wL=dEB%LQ!V3i z5%_WHuIksz5zwe=gTDh{Kci8HFf|Kk2+23-QZd|;l1hB#uzt#NBb=(C1eLUnX&-_F zYS!wsNaPE+sau$ZrKIr$M4Q_~GbRS1Enra%Sd71wfxG)651QY`68(Pusiy8ixL}B# zt!iI>{<({GqZ)q7VozS2TUC1^w49e4668uJqe!rsHU z6YV-`!qcuzaQGYyNPXqu4jmPPojf=5M94}uy2qf^@uAn4>T710G$84$g{4<3Rmc9I z{trHiHlKZZu54^!8W%lp@hyDkAIz(N$Y6po6Lt#By@{^^G!$$b^*N^5V4itG{P24_ zGqOI%pELr~F;e&PI%)jMLjT#2*TaEJC{-3lLTApCRJ|Y8j}JAIDokj3&!nE20Moch z*T?STi6sP;89|$jpkI^#8EYi+(HCd73jYkslP!g3VALBM7~>xcY8R{vKfn~4xeO%; ze$Q`=QduekNVgF~TMnXd$qn427O3Y&;d-PFOvpk1^N%5&(-qhf8vSq)9RUK+*hIY< z9yQZsJWiqeX4i%#7!J~af)GIOOcA>R%Y2jcQq28W_wQkO@RmSr2ml_k7fq$G8Gk|-N^X`kdzKZ7#b^<4gf?ygwyJMCgP z7FV^Ow=^aM&W5Hp7sg#JIHF~A@Vc%)J1c)Kw#S(7?fPY+y!J(AdAjku*FyX7Kx(;} z9>gx0j4V{7Gs!3#CY~R*SOPlRO$In$XaXRa133RO1)NY1arGqx{mjr3P8Jjr!Uaee zRT&j!R&~LaNt)D!!Oyy%EX`|T5$&!>W$D>BWcNU9*ze>k{)CYcliWaA7r#suW7o{V z{1WfeSi+4aqfFNOPLTh0cz?T{HA5}hcyYGV9oZfP>oZk!uI6MF?&z4KZGQT9*P+vyCzpSDo&jNcs*P(H^4`(ecP%F@IE zQ5y!ykhLqt^p9SOoO&^$ zc)1MqI$YM@EM<`tDbYEmjo=rv6<~)ne2;+(l{Rdc;Q7#swXHku=RY{BRviP(G4b%r zD&P|pk3alwNJXHa`oiod*JTmJ;S2q!ZgUwnE%!V7aYWBR-*^cK9T)vkMwlCJ(IgUQ z`%h=PA*Y9t(>t;AN}Gnw3RCh7p`${be|_3X88&o$yCD0_q6?yf8I&s(EQPC_K*N%P z2Nwd#LJblB6)SX3i;m9>H0cLm7f)q7NXB6-TnK69j9Jj)Rm0gY@n<1~eTKYc~d`KLpIZWOweWuzbo&LmFEC@>cD+p zjKktU7~TyR-MC4W?okh-Pfz;hW8PfUM3o-|ni zgcI1+x;22Oq8}dRc_DUWYGptKIc+dhN?K-UO0#agEWlRj7}Y$)o;9qHq}XDN>dcvZ)EyIui_7`;QI7E8PYHVj1mTkh|aWcdrJj^*WO7WOT`TdiNp1TAn5VD|v zxNO-ugtehy-%9J|9rqoEh_u5ez4b@VE{!+s`>lnm_8QLn{dp2LD@x9rd{Apvg9^5- z$|h)DVNp)jj%v#<7uA4SC)3kt=$V5yMjSxjC!UM^GvgD$WGNq{zsKPlD|jaYH|gMx zl=>hd#t`y&5VlyJ$7l0`0!{9Ew~UC&+i;5|^beD`(Fs3R4VXt>aJEmu-I!3Tj+A!g zj|i^MhEU;-Vjwa#gNWEC0qraH#dIDvh)8&6aX5*CYhyu~m zqfBHq^D&hlfTF!FSehY?nz>%IkBNR9V^lXV(OkJ#%ucnN_{~_yFP( z-3drbE)Q_2o>t_97DWR6wPkk}4ri9mPoJzVI#18;l|f3LI@L#8>f<{6e<}m^|7}ZQ?);}M#m(_&TMGF@ z%=-IPJ|%aVij7U|T?mtK4|Et<%`3PBJWB%)kuRKMI1Nhfb>c3z0e-9%1?WX?! zLlpr2r{~%qjUiy}lo|p04*5=AZJ8FMzq(pW+j>$PK#=-%17INd zxUa5$il!12v3}czPYoWAz7DOPS4+}%+;>*8eYbsZ{N63rfGQ=ellB=-TERo}qs;?Y zt7sx8cF0#l77wic<}t!&;1k4b`Gsagh=%u|BS(lN8V{NX*|i^=1&$fp_4#fa1~!d6 zLN)|ifhwL+A> z_S)y{wbtI}`#G=qPE`G=8t)j-J%(T?8vtBTHfF&M9?7XhMkwVx*zWRo9B|LmG}{90 zg3yQC;r2?cw}1;l zS)cB;N$rG-lPdmPU?htymC&ShVU|Jdi*k@+npabks*4tHIH5IJ!`?Fi?1~uXmMVmI z)f0@9sgBBe2)yI1X}Cw;p>6Zo6G>M;aZp_D+!^Rq>)G!L6LHTLhXW&?+brVVhmfV| z)sKuAL~ctw>d5vT4=>u;4EygHT!4`zw0@RCI;Jl-t;G!lKicMHAK$ge7YBS+0Ptg!4-l2 zwyQ7p$?(Av-+;tnJrrxwro7O{{8U~oa_p+2+%cy}qf$kHM0BM!igGQ%>wvNMCEu_2tWB8>pCmK|+KnyrT>_RjwFe$O+6 z$L0~6WI?Am&WX0+L;%|tOGO+UFJ&X>c%596Dd6^72b%+0J>t=Qo_JCULJ zA1g(L7hTc|+TV5!nX^*C(a0u8fCvJPr?7s9Bf%#~2!Yh{T{hc-jZB8 zc47jG%5G0rq!Q4JBG~F980#v{lT#?UB>$;UfCK*>$3bix_yB;HqK2z#S3#D>Vcg-i zp~4urXSt@KogoLbw(jxSiyWvic}#455~m!gR%1q*7}E|N8kt~xGz(HXU}~2<_jXGb zMa6mnVI{-R@2QY1`o=c-c5;7Do6!3nTNyAelb$L}uwQo$hZsU=S>9~8SP+RMg{;5V z3G&$(ZUaOjkp!Sw>&CJfXemIRrV-Ju9w(KWBqEh+K$@hV59wDeU@%CKwqA2GN5AVy z6Z}|m^?8ggSO+e6FM3$ z2?b4a`GS;CjCdxHC&6r8YY;5|>*Z}QnH<-EF^=lvh7pgHT*%k4$|;3WiKe@RZ_Uox z5}qYH30;Ujhvxg8QW|7%u9j%oEbNi)!UDxl>#%w z5;9ybBtii5-c>tRhN+8ery>|S_oaY{0sj?af-i;1&oMixJxd$`ws189RrTF)teIH) zhSC%fx=wN!$(dZefcS}4=&dN=*H?QC3{oOVKL1_xO+e-pV{%mvi(v!Y;}iBJ#eCLc z!P&KaFpzo)2ahjkbreHy{27MhWxsrRYke)-UM-+Mdp`-fW#c*telvB6iR#YKPlVGp z>RWDDA4d}@Cv|?CX9|U4>;ko3)J{@ILtM zxi*|Cv({aB(d3krToce#1xhsO{p=xFn}+ewTnK=%<-UW#Nm)0@DU4iP^lSQes1E`s zVZNt~$GB9Y-3V4;;!=5Hc z9of~xv;rIWX9J`>N&j`(GEqRXs$oHS@l z9t1fH9#7|TX4fs*9H>b)*Q4=hhEQQz#wTw+@o~=ELR=@m++r=&c|aXdhY&0S5-gya zBJE=2V~ekR5N|Vi3HB=4CgsC`1o|wKfJP1q^>*W{Q0XVFoaYfSpVAW3Di>H|u zy7XmW5`@?1-=?($ch33qwe0g}i$rlL!#!Uq9Z<8JFwDS`N=1u>LffLQksfvy2e{!8!$fi9 zHZJN;mRP+#Hn1PorV1w2_55o)pP7^j-&nO)Q(?Vl#5K;g7YT%OonN`8mH5o+4(6wj zoA$ZCb*3VAziom*K)mnmVS@l>>)_ZvUVlLk8#8ml^~4MyQm9&fBz4ShF6r?vdY65c zPb_f7`FxFp$}R=9dJ9rjoi4H-#PhURva8^v<16MoPb=J__GwzqKAMAnZS}+CmVL%_ zjkGYlL4UQjR`_+xbZj&AgDuQ#TxK#u(2cRyE$J=qckEosSou#1yorR*oVVj{YHBr1uWd+VRLu`uKamR8FwnNi&91+Bh0se_i+oFpN1# zar3k8>Wc#0ACrgwT*CZ$Z^3_G4;s=`_nlReUF<@L`I4@K`&(DSa(B}4 z_?TOL6ZfMtmfSgg_m+#XW?jmm+exvH#gJSZ+s{8%nJXrqi{y(;oqCu^y?rZOm}q~J zdyX+%hhp}4^OL zH+L;-UiDHK7r(E}x%9Jmojar(_}B9ZB3wAWa7B__*|#LuwcJ6t?w`%AECAm2xeu6- zE`6T*x#u~Ml0KxZtsL#`0rQs?Z78GIy6rdHA|HB87S>BX=qsLI##$48E`K$>6lUtV zdWOT+WtWY6zSHFH39LNitbO8Siyj~!X)@I*a=1Nv6-LauoD{X{Ir-53 z(CJI7(YO6g9{u9Msx5nPM$9UEv0jg(G~rOcQYK%fFV)r9Vg2^r4mj!f9>_uRsbXft z5>ebTXhlIPPE;F8M3D#Y=?riY{ABpv?bs1Ye>D6IFK0^lVmdB>H8jjuJ7NNtsKjXI z)zH2msla2kC5hSw^i3Jmx`$q=e75@nrA7( zXK;|#tLCxJ_aUXw>;RY65*m=Ns^+?7{_3}Ol`v`+U=4>R1q?etx@c(k*ZMVkXa28g zEXLz3C|3uiE#ne=q-IpkmkI;2LeU<9bT1!Iqh5iClS$P2%cI}fYizE6+N3Mk%|61j z|ISAn!Q$*L9Gg^9=*wJ7p!&%t_$xRC3R2<~B z*s>hTyXSzKDHtw;PRm(Jt661#hf#mz+0kyMljljDI-sF+Ro%2Xq(MhF$LN4|3O(>( zUmS>!WC>9JGP<<+v@DRZFQ$Ug*9To@B#%;@2nQ#ryty9sYA$I~1PsJgW2blnmda+K=)@DE&(0m_Zd zgqOxJ+|dmOKCBCC#&Slqp0^54SeisVUU;v6_*X4ng~%K7%#E8(3{O8BZQS#H*A z5dd-VTOMrBC&M2T1Vm-(1}mISr6&+TP-f$5iVHrmjWDoP*hg9Gdno&~%))^fOMuuM zLZN$bnP=rs;Z5PD;`xQZ8`HwT!}%ETN8T;8jTKa%XbY zDTLo+wBJEZn!*`7W(#YMMxd>P=FbrhURjoeSUpEvh0qDQXk-ie14!1ikY66!3|YMk zJqu~6---^KFK&|6na$c#!H41jP55+L-4UrQ9E~0KPt@ybSOtnuG-VcER2s_3ZGAX{ zVHB}InFYb>Sfo8o-}?b6vr|ur*tdtk3&Rqu52GI6PcirSJkQvZdyHUndZWVi|*YBw`?YgcB zu7MFSF3H0@sAgE~-XLTL08tNx4Mwc}c>Ut4OvBQQLn#^dmeq=VK*Ka?lzqTF7b2C2 z+$}A7(u_DCre;pZcbtwC(CWw@wwt$B8O{t~>VyGn|f%J;-Tv#$WB8XIXUQ_A_XL;3h{^rY80CiAz zrxuVsIYTj|Z^H%5R|T>=+TE-G7I5V#P+a&U*Py1~$9wQ75(fD$s+4IiYBojFM;|sO z{IZ)(>@KKonZiYG0I<_rU0!&XUD3rUjNad2z7S+~%-L|c`oWowCT6bs zKx?I!b}5GNN>J4tP&vXAWMoUyVXq|lB+ofcBHl+%f$Gypnjq7Q3K|)M99{mz8#bOk zxLCYyHU_sfIKwo=xl!CnSSX2A2FQSY7B_$t9V$r~Z5XE+z$A?wWsMNeQWy!HcMieB zeB|`4b_RbX`TBYNnKSmP8M~Kyu{!c$_Rw&#*|lWlyrgUp%em2zXk;q%v5>99*?DpK zS|{VRVQwp070wkDAzbZTW=aZk5cfB9RK{LFxSF?mIO}WUTC&1)tc)}6=F>Z+qy(?} zjO83;o|pz7K;==eDP+JSiaXOcMGHjjikp}tV5IE;Wz$1|0cwGi|NV(G_SEGdH^G&>{_Fxli zl6gf>qGI~&aX~Yuk-#mvW(!6goXfJohADIImSAG-=UK={Wq}V_D83f^^z22 zj74P@fIf!3M>B;=Cl-%5bJsLB7OVIaId=W#o*cUDU&qC4VIYOiclC)5ply0SdOwU7 zluH6geJ{+OUp(NVlHslt-CHNWhH-D_O6tkZM!hxKUHfd5K=x)?o)(32AKEDJObNh+ zwoJ}yr5knHiJ+QG!RX)?G5HUPMFr->HSEC*12n+G*nX}`Kmc`>o*NeVjT}1I5oELy z*U~n5YAt(_v+z2l-2(46qk57qq_Z8q`dz< z-u21Njl0Q0UFG=p=tC;P!{-hXW5+hO*{Vg=3ehozG7+v`+I;6AU*e*afX+i{V1HI4 z3<#=|tvrmbW_G{(7^mdspl)P0P!yRIBe-RaP7E9qyv2}+h_y763zHsJm?|E!s+(iL!Fsp8ASbpwbh$qP`rU zIjczHD`j5(9Wx-*&H(c+fGVDazeKh31t27{I&eddzzEX_ER)EMXm3AF-Ybf}MOO*s z>L-f%VNSl)lQ9Th&1H)m9@3Ggns=vP9SS@f;}<|QRp6Vnjj!+VFB&Yf|(G%uUe)E&#Z_Ke(|(2py<2z4Zx0S zPV!}6g>Po6(+2u<3xcvNR-gEb8~_tJK$b?&fXyY}0)?OGtlotIH!CQ%_!rChY&2Jf z5T7OKONQIy*Inp_L7UEcjJ8EfHF$fZ5P!B7VLDbkkpQ9N#WP25-Ic;EGB#oS#j`f0T}qf9?qU%YOY2B%G7+A4V$Y=WU4IKbJE8 zgHrT);!pMa?}0#;&#J6XlFw(;^yk`taEbo8mYLyG_$LuvensKo{KQ@V&C&hmS|(10 zPv`c(Q=Ok5;*S=r|DDtP+g`!n$k+dG@Ahvo&A<7*f7AMZ-8uN&ctHHm&I9A8r_8~W z1RO*0HR*Aa6+WpP5*QMciIXL6%8BZ8+D|%a=hNAJ_7vJ!4^$&C`VS>MSkL(h@$j~68+>#6>X@X=7E{(bsCtm98E4Mv~23ZT4P+!^~;-0f}`k zbd3*yawqUIK%|82w%mB3hs_1>J$hdlnkkgK&ZUzkA`*ryY>#H|{(u9RO)wn^okHU< zkr1Ew7tFLFR&}hznQ4Hae!yexkkYqwb92ntUG-?MAbzgbC)Kn$bSK-ROhyJYsYrq*8e6jfJHZaYU$ATs z*gs5bE!oytaOsdo2}eH@M@|OEJ;DYxI7>_0B=w1<-YB%iMI#{ZMX85`bY^UcDEZdI z545T*xdPGIiVPzWuK;tcQ{)*YdJ|0^GtID5RA5hRI>>7ylmemz;_(!faeZ*!vl1H+ z*n5Lm!Tgnn0~%Wcw`n8*kqzN#RX`8jN_9~wfB3q8B^-_UT%sp`w_9V^JlA;R7n?=} z5y^y#=Xk{|;^rGwPD^A#0MnHIPr^W$eodhmeL4G4;tVGAF1RY<{@+EgwG74NRaD*sQU_dd`Vu3AMFB5bst-rRuX9Ko*NY$ z;2{>Qf%V0|NPO)sms9666SzhO4NrE+2EUS~p_IOcO_@|6@wduJkqH9*jzfAz0){|n zC_u0x?6t}04OMUlP<^B}o@j?cN%awsvJGh4e9G!we~Qw~^VSmyt2Wrf?NnH#v$k7K zd_WY>Ek>Q}Mx4_4V&(KM0mEd3F2iXA#DdbyFMruxOP09gG_7u^3sl|cK#n<+jZ(hT zNNmy=H!N~bMr*&CN7Fi_5kQXoIF1>>*}$Dm#W;)`!G)6z@N}sq#lBAeHa;^el%)*J z`E(^@E%e%r=`gB~)h(f0&^>x=;LUQlZk5+m+EOX%@a0Qq1T?YDZR~>L2601T^2P9? z=JzyNG$w0kVI-p{@ez0Eu>hu?23C?;$f_E6+RW~}p6d4dPyiY?=^J&fxExtFqKE;e zVJx^XrHujEJDKo3XSD#?X%wKN<2y28Jaz^uN6F#j^ zu9On2$ba07VRL8;}|os(@jzG4c(WrOKjP&UBE5# z3PZh9pduCAFwyBOwC{e#JF~}c!kE4`m}g>_$fw;e*2pPzm zCHT|6pF_&`Y7+I!o~T{$U#jiRG)&G{LgX7unc&46QiZYD!#$;#x`|I&X$iGre5bf_ zWbpi~h^vx-aukwinn>oCdsoKyj3yH_TV6Mk$G^F7@MN;Zq>t62Ub` zsI9dtLpl#;@FQ+8+o3QN7aq4XvtMkj3hB5Iwv*2WkiiTl*~1joC^3D8ZWSA3NwG) zYLlM+R_3V{WW){OP_k5nnlzT9O^5;@UMf~n7)zR?LmJm)$GqgvXcvIpm^0*t@+Ziw zI@Do)>$UOxS2DChy_C+MYH(|$qBI!MSI7O_B2 z?rg6Bpm7wmC27@fKOg0YFeiM9YA=cWYRt!e^T(&XaH*+Bns;{}oKQ$;G)tp$0y<|Z zWyF}v>alrPH_*(m7E<6_B-m-#g9$h1eMhCL4700ucu9iDxdAVG)i<`$onUzj232)oBUCq&zK)$=_RDS(aTltpTVD)NXSh)yXPd^s6y^c z$9t8E4nr*{mA*M)>|HQ(&La5UUBQkvy)cOk$gd-OYbKxy!!*>wy2w~~7VT!qqRTMC z#@l(6UpdT;${sho;m@gg9yY=A1Z2x-V_;>9Isg?T=iEYRD+$k!&xW>eog;}Wz%bbG zk?6`7`5RT5Vn_O@k^4x^@I)0nTJy>8gujA#s_PqEJi}gETo+0i#II5j6XN09U&2Nz zA;CYNqe?rV4O@GS20d`{eZ*L3Vuf7S4o^&=GB9QWSagE<{mUT4z;(`yRJY@z2 zcsvL@@H&hl$*yxfX)mB75UD&7jepHlyX&d&(4k~Sc&H^`pK1PSh)r*LQqZ@Fv+|m6 zlU#q^pI|@5Rl(W{bc2_Po)~h%>cLU`MLG4dCF;UF)eXAA2BcWm9k74CiU-z1lhN8| zl~-T(rt07YozN5(Ja03{zi_m1)Vp={6M~h~ODF(aN`ET(eM!}Ot@P_zXpji;)^m%D z;h|T%+nek_<{q8bb$hsM^3V80C>qz`)MU0FH}s?s9W6z$m}T>EhnXPisP-RaUyske%+s}%B9r{g_ z&6HnE$mSyUY6Bq0E4~d>EL5-(-qcy5;d)@t(ypu^cYlFn0#M}}LOJRB^ur#Tu`7i^9P_e${2C?yenE=X}@L)~rMSb9&dYP_#n zz9W3Es_04&PE>M^?{f9Sac0k4R=fzX(##zlP>GwVp8#07#dDI{CM8L$M28DvNf^2h zkF3l-o#%?V8z?3PU4z8+lHfeQP>xsMT51K|Rkrp-95MGdMD_JhS-WcQn`&vj+y$17 z{E)FvRxXZZ6|LyP^K`MD+htP4wA@#PT2BOVX4# z9V!D1{r`A7#?P!R2j_o-ZvXfO{YZc@&HjUv{Y!E2UtQS0=5YU}#Qvt<{x0(VI*j)p zKNf_ODJg~%0R@zqnIkD1jE)MhrnB^OryuRJx!7QR_OeLl#i)ngZvYqs(tcCWpz{o} zj&!BEZnU;}N2Z;x5M7C;TB1rD+m>FKRkf_S^rP7W??qk`7Cea%}(yA3}Bn&5;?PYY0pY9fkrKF#>Sj7Nug7fo@Wgyp5 zdU-%pQ*o4ypSp_h7DSY7R24KJ!dBF{Y72_CQRMp?+MOkQMBN{zV&pc}L<%u7#%W(C z*iJPn78Zk>i@8Muw~_}iY-No^iTE8?&2LQRDS$807pgd9`9Zs^&%LBhI_8uNW=Eq8 zXAEN`v8HS|kP7clA=p8ExQIk`a&b{aO(cY9mC8uQVoq$B%@+O;ltAM*T#&UmYXxUj z);3>InMeqdmdy(FyZ`&a>LPKl!FSj@JtScx?BG+|A4IzS3I#F%JFJ2!w^9z8$R_u< z{rxq#9;RBO1P1gL1^-Lb?0T*9@9l3t)xLT`3WnO%Ka)kS3ThqbduV%m-~0w~WJA$( z_BioIYLN4=(IV2eyQbcW{Dm~nnY^MWxag7NU&$#B9ZgMh)akW9F{-$9>sUbuy6#Cw z$Rsblijf!{h;zpTVCNXxPOsiHultGfwnuJj+FeRz<0Bi_5wFCAcQ4B)^n5HTl5QXA zA2;FN2+!qE)%hZq`HHwe_8Gg*F4ZZpPNhV#QS{M2KOC#PDIUopUq%^Asq1~z5X1E4 zf&Q3y*?HdLZ;+ZmZ|S*m`FZ&5{@mh>KXi$D9jRu`qfV0+FikMh^A6NuY&J5}rs`qT z5~^Gl)nI+!sIdl}|1&Dhq`3{|AqgR^Aqt14#5Ce@(dh2nqQ*z#VkcAn$Yb^O6TqfO zloT;XL|gmB7uj;GX?$eLJx$xAwpVmF|G<;D5?Z+)~Bok@r& z(+A_3`1K;82a<0k2Ane%c_*JUIew5!mT!t3ypM=csi|)Sx?@%|^^J<9K-OL?OL0fc z@I*fK8U-+QWpq4Jcx7sV0o^etS}ezqr;o^L2&m3YQ|F5+oC?&Nn+jYNMG58(%ktJh zE64m!fbjB|jbk@A(biE{lHudNh_}5a&M(~j(x`c{@M6BSqx{-lU`9|z#)3}S5rhdX z)Gr;BRGixgv_#{eNicY(BgOeLyurnjXU|{mYTFQ^E{gGKufl!ksC=L8lahtxUcZA4 z1UPslKW@1o#Y?yuMqpY5K9KDz;%!e*v)svKLG=eiuMt{4Snn5&S?V=8hN>30m)=(W zcGT+a7}vubvO5}~&c*K|0-2l4Fr_Zd>YjPTD~2v?%0;cW;93%2El`^gMEGQoh32Aw_@<+!sT+aUM!x=&mFOD0pJ^{P*tI&=N%AYAi@~P*(7TmUpAGT! zUC|;UY){Cmn)xB(!LYwzST8!F#dSdyvhb@^cp~iT z7+OgCR@L*~2z)J6!M6>lBSUYYN(1cd?Jgnz)Io<@)=rj@x1 zkE6-WpE%MDz8*}8DoiqBky@(9FKGPHDg#-rLDWnzG-z;qptHmihVdJAb_@VT<5!2w zmqmZ)`Y=9uKf~4-jkYsYEiZRBjq(Q)Y!wi!FqNkg{wV2^K(gkS(NZL>3g|Jn@*|FS zBu0v?dr3jIlaXuRIw0TL(QzN{LbCM|Cy%~|Juu8OPLJC}f`pLfxg|%d$QuJGW+|@A zSiZFEKyF^#IO6R1dgSh)ymx@VmIyBr-6?{uz4Af5-A7(W_RKl7!o3`yT*CWUzI63_ zzK+)>d0R@&l!S$Z| znjOKA=(**%fPDY65I2JOpy4+je)rHhe_(15Bg`a}CJDJM;-!NeyJA58kue67bRZ0h zdx-2N9^Av$)v<1uNiT|7w`FK(g(rjsV9nT!bDW2oA?lP7A!5|HKSf-|7+>`pJ{alc zidpgiJEd$jC3@`i4+r`5QuCQt8JHQNf&P7P?xY1%N-ydgZ_aaS7mNjJpOw|io|TCP z=i<`-Y!k{WNrhPDl{tXOZ(W;IlpCtdD06!95RU@nXs$C2wZnQ8oQ9zEWYlD;{=!*olCyPgMqXt8}hVB8)_LjhpPMW6HbAFTo$)78_$+{(`o1UW=rj- zYjbR*RknpbL1NPm~--dK9$)?Wl0XTZ#E7@7hhYV1?8WUxENa0=7xHVI3K8UCp8o#tG#W zdUezFLEQ_BeUb)GF!of7DJKSCx=^fk&0D0UQh`zKidWsg47W!7O18Q#?)hK zmG?MbTeL2YbE}^fs#KPLfjWw?+k{&SY2+53zj~kU#;b$CE3VCymWhYOS>8?7$F*U z`=NeSXR1#Gw*GH_F=T^w?v4oGFY(LW%onlD?o($YJJYUXSf?zc;p zDwb1@h?9gJCpxWVB4hD;4c8-3W0jX^!aR^l;cNh$upR1#shw69?4`(X-@6LQ+<L*3Pl6y9OZm1tR`HMXt@oH^Z8H5fPW(L(R209PP zHW&|#Y(9&)KSQSdAZroB&Bt=B4g9R%AMBq2-p5L%bC)~YTc|$t>%33%9kXUHcgncf ztTi@V-=oMZ=c(Uk@k)M=I1^;~@L^|;ob(>#+=9ML@p4EZo|X9F{@~qp9QGyo>XMBC zNRcYX+c&hnztl&3bmV8pHhRn;81E0ol&Dl-&h^c5>7nV1p)2~n07R?I)+2x-)Fg-k z5RQs%qg>^;31E|icjLb>%N>y z3}1k|X}Y{4v9IIuey8YeTV>JY5<<4DFd0Q`*yhsA{OMk9l-rH25R6eAe2$%F?vHz}+*g&NyuroGM&5Iut`` z;=bo-p{KaYvxq)c8O&bJY21seL)n}-WIUxmorL+Ojwp|1K}Ez%;26Pm3Z2wftpTN<-5?@$8y+Mvo z;rJ)~yUEqs^D|vv>IK{^LI`{6xHbz6Z;{pYa!`lqpFO zfezj3Z(5b}ll}Q`TlDW;DgQs_;$Ma9Uq$fW!^eMwm;Y6qg2l=FSCRjJ62>flB#i$> z6~!5e#c8-|*B9JqRF%fGH7GlbUUX2R>&uUS$f7QXui2HrPK&yWR^6@$VITWJkb>DXta7druG@|zT&`mSh=K1d5|DasT$9nj>RZ=s zT+d_>?B|;TIm+R0OEQ`x#TZuta_iI`jkyffjdp4T-r{!V3x(6^fYZ4R)qZCHpnu)0 zfRB5%TClbqH)EI_-BD<}oseDV=Dc)e{gqjBWLkGc--C?_H&SA8rcT@AI7hS0wV7^< zJ3jF^fHZ&rDB+ERQ($O>+rA#U+lFe_R=E zIJGcXAZ46a#-PH89D z^R-!7q0pGbg6cjNyr*?$T!dEYXBB#V3sB&VD3!pfi7hUwNu9)t%i=Td zaK=-!Y$lD2pdv~)9_P>i(vzbcWpQyS#99z15U1G(;Uh=v`8GscJPygjB8JkbP$U=M zEo3;PlU3usCDvqv(9XA>`M*i41A(S&B5^X5`+Aaxs<>qgYw+9R{Tz$aj8)MQ71*ep z7KBp-qV&5dsLTzQSW@26^=nVpFx?K+hjrs%Y|gv{djEL|l$Ig~usCXT!@zq-elW=7 z2t$&9Dqu*t{hG=SE6_werHoR7+*=?ZD_In8KkkWeo)4Jx2O0wdy%C0ksv;-%=v(Nr zTXlNb=Xw?U8kP!Kz#QoYOXR@}s#f{d_&dpfa@$wm!5zNB@n^vmibtB&t24KF+)eRQ zvH^sNg>;V8?>Y&DyGy4? zP)XBo^;|vOZcDzw>Q(WA_?La3U`N*%DAD9C{RsG>m&0f;IlS11DWaz!r$ah9(Rc}8 zJ58b9P(#Wv^3xMlUT|NVy|q7vz`gS9IeHTj96^bSru$ z_Ly)tzqi)u6UhHU4H4w3lg${%vT2MFp11N0+z)zwX)OUfMM0& z-*3SEOOBcaRS_@0DW(x!(sIzP3NK|PtJnz*6(Ep_Q{kermNxiH;vLe=h|&B|*ML>BMxWEZjUg;rvRVSRLFUy&t1x8Th(&uufJ3Nz zXdnam&PE@hdj)x|FisUOv4K$6&qt`?W&`=IDK%3&x>^wsgF;>`iR78Npxb!#9B?ir zAb_nBmPUcX?$Wt>9l`azzu{&s;iW~D7>2a4Mvm3-8iZKGfNbh)Clr>9mb6wi)R7TG zEaTl5a_wETT%v$7+e8C}=GpJCGSXWnGpwaRdoKpq%^p}k^pc;kX>zpcTFA3L_+}Ns zzg2q69y4pyjk)$QfMa$O0{L+ai|9X;7id?UC8P8HSglKJ|d^@?V^S*W^`Jd?n(G4>8uV^Akwcjo@dGwvjF3aox{a&zu?7X{v^0171r=(y zfx-~(p3^|Y5NY5*z_C~jc*2!@&td^w11V-tNQuF?a{L`63=hQ2Ut_R(qZtHXrr=9| zst|(32n1$>T!ly<3-exurlC2DX3boa`0dwnsp&*yA)6*DfgNzrkOGC6$SBYVFM1AX zWV5hRPl0Ph#W3E1m)duJhh5)^_w_@YE%xOthbn8gw(;o|%MWFGh@mwg{{0hxS%^Pv zze38Qw*Pc9C>wZ3y5dCqD zD}Bd=BU=pDIuFxCVsuS<3~bP<%!oJtiBON>LDfMK6-b{8R{Z&70vvLrGvCgS3Kz|L zoy_7&ZAEML%zD3PS+U=_(4a=8KhD}SgW_<(x^e0pCUF(IIm1qs)5;DY)8=O}kKZ!8 zS?OyG*WiFbs=p*V#mlTn_4vl5=(tGm5C|0VI-5p}=xIZtLpdqv$gvE15V*jPi;_D@ zje5&sg%D(o1WI(8(_H~Sua8|hN%}0Wo@>k2J~mUA(TT#O+4bzxwaDMR?o`?%o9seK zFXSs93AHDxKeH1J7Lp3UZx~*{55tJlty!aY zt?K9BDAO6@*Yo~fQ8iW)!E2h`dQm}CrIoNMvQ2i%)j^4Q4wd$!1xR5=y|SdkO0V}s z22*B>1{;vST4oGzA7!m-{_5YZ{=PzhW&Cu9hC9W%Cly$^9nQ?96(1J@`s5LU+Va4c zg>~!3e_9oP;92tWvg*%W0)^q-dW#wqU5F~QE>0A_?WsWW_)#ME4LuMy;U`up=@uQT zv7~rk?yj-@0s8t;KdaOWZKAgo>S4dSZwQxdF%-GZgZwz)T5*R2k87XK2uFxM+!{vk zUeu>heN}HGSiy`JhYrYYW)L_c7a6vj_BFyC_Bv{rV8Oew(pBRN+j7VSWib8M&Hg@f!{O$2U`q?Uw&8oS3QBCNzFqC7+(SaB|UIf%h)pjXuF+egZ;%=MwSzNmkLBp zga{*S@jzN z)V|+@i#ay8a%Ge1;w`T60Z2@agn~v{=e5$F|7%8nUx8VYLTB!8#17snoM53G)%N@q zW8&~7GR#ZsF8aPzX>H9$2o}f&|AOeK`s?cWya8|}#DIL}hjPisFNaZwDMPLSyv&Wz z0|mwatWq$k9y*#Z)zVl%>&fN{sP1f8I%!(WgZ~cc^`*hk(DOTuVr<%Wm z1BC5o{~IE6{T++?FOd7)naiA-PXbH<`q!xL>)O9Zb(vEgA%H2+m_BsdKS-79Z&g{J zi{($h?Z?3GKRNj~Rr#NKG0UIk+dm4~m{{rA5(B=WCbqL8eELi4{o?>LGc!Fi$A6*Y zln880!2h3#+y9lHe;efeUF-elRPS&4@NbyS1peV!W@b*^M5L$vNLd1If|7Yim2>Hlq72{#fczN<lBUwpfNMex_9 zS6?D$Q)d~Ea+BI}a;RMA;@p~d?Jxg~$;b*Ta!uXjIX&b^KI6Fj#M41;3AQKwZlM z=AMWpSftGG&{^|pWI4lAEDN?5Ct(wiLb2_c7K((HMR34Vs()>Qu|~4M=F^yoeO1Bm zFm@!clb3?yfl*Sp?DyJhLhz}cs2fx-6U1^v;9)uUiLC^-$6I3!|MBIN=_?9C#u4qz z{*%r450>#si%VHy=e@u~t@|BDB#Mb0fa^RiD~V!&T=jCI@;853WIJ^82UhWrt^}Nh)gHCc0Ug0^N^ zlbWyFFzidu*Urm%5uBZ+9_zjU0US3E%{j)2eXIFbP8UDlN8Q@Ba`zE#=P^3FALwQ7 zdYg`I+O;ngIgZ=b>eH!PcJA#x`7P6VQ=2`GAR>Y(l6Xg&f}t|Tm1u|t?A9*7o|QFg ztyiRuGy7d1`#wmG`3)e9vv-_-4tvH$YKk&ODEIZTOl@9kBt1W$F$!EV1tev*|FqrC z8$$7Fwq*Y(LqSvIObdqQ%I&#&z8#b)Fh4!mj^U6y>}sDa%Ye=WYg|3$7>8#^>EmU4 zmPPzx+!q_QiUFBum!k1Kp!s0ij!-~Mi1t%$bCRE1y~1_MB_yA={o!-$4WyHfevr~L zCz%r}gB0P-3FVY9=(+tGfVR8?A*VTHU{Vi;`09W*D}*PIxeP6EO{N<%agNA{XTG^R zMXvc#kjVxSkM=VwcIgduBCzcDa!>oIz?i#huZ|}Bl;;wL0Hw>vClnoBw&z|u9?!F8 zr!kox=nFDB3g4@sb##Q_>nJ-xnLFI2dz$bE`jI%^jdJ|b6GPWUK>y<9tixW_(fb`M zgUlUJ6sD0!R_bx@WclmMxLdsrU0%sF!!m#WFJc1J43@EBGA$s_Pwo*aSp3hG-CE(` z66fN-+P>)1(={nDhIteXrPe3-5VbqJ%X~%FF!JG4HFl%@$EAEy{bGg z3`daiiu4u@7_;QX`G5ZMrr!w`$3oD7mN&i5!F0eSBlWdL005{f4gv$NWNm&ZDB2c= zRhK}jMxoX)k1%q@&F>%PnbjF2I3eS-LOH4>+c5UkA(^hxQbrB*v90NP&jB#Htv^}1 zIJ5+Rcn@}fKoAbJBT)nG;0Mf7}!TE}W)6Retkj?h&>g=l0Gtd>U z*Rwp5@yPzo<1;|ob~D+Q@&r?if;j#3fW{N-LQ*qJ35spV3XcmWYG=T#!(0)0iU{bi zNUpY%TdfeMpgT(}$OjBQC_`19YMVq${Ml?GY(j8&~*1AYJxTrjA*Iu2G7n5|M- zJqAbMCuk@7oqmgMMHLgILB^!FgHS1(6&6sA0(0*f|2=h8fAsQy0GF z0G6N@1-%*tTHq2=HGT{sad`*@8V^ia{y6_Aa=hr-j`B1~ZlmF~MEyf_ooX`GeKBMR ztM$hVC);5yIRbI=0rJdB$Xiq@h~|7q^xSA>6FI=3!+ojjBpDkr?}RsxFO3ZArgELAxD$rcp{1RADU4Q(4y`cQBhM6-Q~`km+|gnzGfBC{;F!t`F;h z;6kE&4O^CvgkskG$PShm%cI$+M0`W|6T(l{>$n6|*qwZ5ROD z0whWNLTF7&|t@LOoPdT6LqYe1SbZqyqtqqb#k>3;R)NOMPlhq7UUz2rw*Uq5CevB+X5GRT@~IYv#aDmrM@9zx1_6(?(Iqs2 z^tBEeiZH#>L5=CtYjzg2GBSD4Yjgl&vfBoAA2Ri~nq#|GDlag2okJd&PU`iR`!AQQ zXKx)kFiK`%?ugsX<~jaf7rg3xMX3F8Ii2a!a@u@CnBle2YCsINB(Oz?CVHZ>8i6P8 zjo?;(I24bki(`pEZ%@nl5}T7bQCIi{va#uebB^PjSihoK&v2VAc%ZHZN^b%dm6}t8 zZ%fQsq6hsV*!!Q2tvfc2Y(8ml^-XXUO}U)knb15{wn=iSqn{9*1<`A@%3hxMRKzLa z_%l4n_Lr{cQuX<7Ud1o8yHC&pq*ZZW1O$O>so4fQbP%5I zhS*Sy!+m9*Z>;H3Mhn$)g4>@2>Gu_m$Z%iO*)$@l3OL4** z6U`w6hgH4z-26=H^hIlO6O~PIVC@0?Q&}2I6zP2IROMw};fJRC3szOqs~1g8mf*c% zIZ20J@S3TW`<-oN()4sP|woO4~Dd=Kh&CR>7#TFpV{taql~^996T)tUj;3C#*HL;A=DEf`4yl+e`ZQm7rP>#KhyDsM`m?OEhrg3N^P*bq?kX%?fHWBY}szvK(k>#8z1X9zM4+setE z?t)5NljtX8z~J#3V!s7-tgrrgGwUu)Ao6OS5o2~D!{^ddp`3`-IjNHr_j4f09T*W; zT15ARDJ2I*>F68jIDN_!1D_uUiql2aFuo|?ml@ck=WgujDxFfOzZWyie5J(ZXlY7t z6{L10RPF;rAER?jP`|#mmQ2YbWLChOYV%ucS!|*sO9^kfN0tlw#^+k5I_0gDuw-AP zHest(^>+88YhEjYO2jusZ0|=_(k3_@wQ1wFJu@%{=`a5mlxF$2Uz_EB`n6g9<=6h3 zrIr4}(kzKYZxjG7mOq7MmfvmIY@A&5Y;6Bi^Zn3ge@E~?>R32FaQMH8#jO9-Y>EE@ z=|3x3IX`w;{%6cJRWO7e4eviv_8&)?KiuDpsZ61iAJem}f0F;7XIVaWqI_h6{kao` zi-k3DvjGF}Ay|L-$p7vYi2swse}nJe5c~fjQUAlu{hLwyw*lPW5FPcm=&pYZ(Ei2i zWcVMc$V?x}&wuOMt6JJWP=}HI1Uh@#9-)dG&r@}gsecL0dwcUAQpQj8aMTBbK3>dg=vUgbldrzeSzB=|)2iBz~& zvm3p7fen_;F#2LSkV$MGpnHngI{&Zc0Y)4)c+K{Nkle1uldko2lMxK50BA zC_x>t`|&FglKt*ie$%${edPX_rh{ft&2wo>?d2T?!_8gWf#)ME1IE2?Hea`GX<@v# zCh??UAa?(pw2ngS%Y$cA0JCs?Ci7H2RWM6%5oIn5;Ae`il%b4HVWwY`L(ENE`Lxvj z828U1u1)!3+)mkQN-8G#=y6h7xq{pF75pe!9k6H858FGYWlu;N^w)H&h0CTPc#LVy zd}y`?&FW?sTL=41<6*iS)=+eKJ8cH7%;nGDhv~}T4B0PO$is_j^6!_KPEfC158p@n z?lSec0ke~0s*#H3eHBPqlEyO^jJ*1!5Uz$tmN5xLI$Je;LqZ-Mo_9}sjhQK)XLtcV zYztau=27G0neHwPef9!EPCY+=cJ_{p!$IWb5pru!>aD&MNMUP{l@cWwk+oe?u4U&? zIS34RXqY!=a3`oxtrtm9aGY2$31NK^zbKFG2H3o@n!|x(Qk+n20I63|>568Sq#Nt9 zBaTKPuV{XyCIokgw;Ezf1#_4Ncd)nq;`uP;CatTzWszFui9CF*TPVh-$r48bmtl~3$`Pa$7&{x|E0#h7TXLr&f5HKD+dR3kSt2#u9XG3i z(FFg%t__w}GT98#J1HCH9NC=%rqQNkW=@UCq`NT%9IhG)6*H5a-rA-VQDP11skvX| z)r`%=PH0BBZ)&Qp?qf`lMO-C<)WI4P-vDVU{;WQII$twmQbakG&$KQ5bFBb&TAgh$ft!AlTpTuUeAbOnR*_^Fy|qV&{9>)=X?oVfg(W$py3UNTY|>- zX>cKf^Jt0S+r+79PDmPvLXkps)Ldguu;`hCR53Vk+um;A$6h~f>xfG*-gtZ+Wdnpo zFS5q)P8<~6bP0;+nr2~yrI(&eB?RhJ$Pf#Ypz;b~4Y4oO$WxG%vAaHtQ(TC+8TFE$ z^vF@1HH+dzM=1H{LNW7|$&?UXUot^qp#(hHH2UweLcRpcU`SH-9Ep08))I7mk%an% zC#^I?zx;X)hjPr62(pu>w?@Fiw+tXOTKmqwep>cgCL=@A!^pMXLAZ0c3uSCL>EV%nI zYLz?NoJr`mYlp){1BM2HhE`a`AH;{!@Iro!!Sx^;PWya}1;AfeC_nTh+W;ha6uMOL z3O;I}1tult%;o`OBKDL+z-$7a_+NwrvF3JKXmTR^n-@f)9fkIG9X>{iDfK~mSUatb*SVm5EeMvQ@Kz+u zn}DfW1C5Diq+>3;ugmLnZ3a+t5QIok>>uCdhnT(ntR?V+n;K)Cs_@+H?USgXSetI= z%}Rf7el%5~3mDAU9~x->n#z?&onGU*IRg?By34*=yQCI1vaWMrkn(nbxV%cipAzNd z{CT0sJ^Vs?{QismgZ?J2lU_sP78=f4@~u;p`JKrx!a_Hols3b!eFK1gZDQ=Zv*j7; z+h^C?B2Ojny@mCC=A407;YJ8>wM>W(-5FH=LuiidTbm)TC!2+BocZKngkYHTZQ2?= z37DZJC8q4#zIsiC7ebSEVqnN@rgfeJ)yCnqw*6ftgk$s=D)=BFWRkEF45f0~zi9Uu9pCNRc{i3RzOjecFOmv;???x9*T*qsg+CdP{bcf1 zp_1PJq29a}4W>%?EQAv2Q`Bu@zmvZ=etVk+V@OBuGb2TLXeLF-r0`Qv>ZkiTLj$AM zt&3a&;plb`X{^FqRY@g7qdHuZMLu$pqfTlorEQ&E8V*ql0uhng%Qrl!netGJGZ7Y2 z`TAWE^)&`Q7J?{%sgEq`Foaw((X4=JaI9*;RVgl-i6prFkpz6c$lIrH;$2pzl@DN7hqJSSV!4jT(;I`NsnGptve8?PZB!Pj?6EwEiH%l(%p57s2HG)68Iq>?!{tH1 zXL(Ja$Y=$<0m!_{EpHcopl(K9xC|)4^zHbDPjvRXB1u`Sni))LNr% zc^gxx>=L~IIW4l(VX5RKO7-FWtX8z|OITJ9Tn4@`V(9Jqbmh8at`*CR`7!!%n>1Xn6m zXu}ld*c+-B_<=`^rmqRcYl}pf9t?$c;;~Y~9UftTa!OCv1^s9SjVGQRO3IQEkM+_P zUarRk*9(6A9Suj{fg5sf7Og{W*^e*0)y#4++jN!ac<#KdK$&<5J~wfGeXWM=uT42T z!jVc`m(EM##0~uP^=(@U&7%`L6JI_?&x~A8TmhY9uNHxI4C%h^Umhipt4iP+QC}0I zhVyd(xrL)2Ptd+b0$Pf;?Qb%8NAr*QIWRmvA%q!_euI9umk<8=Iiy+DN^xkUIulRm zwuH=;#Vq91s`@ykjnQnaPr5O(rXzjl+ z`$zo9Ms+(lc1{T;6w(QUqI24G(5W6KL0Sh`Vh69uRf62z!s}XNkSiYLU8IEFM&NOAlErW$S(qJ zXQLvqlTf6%B|Ig9iZqD_f<~wDkim2CIs5l3(!D6X<5ZgJXpdxzmAMZoj|!m(Ct>); zY8I(hpbU`M^3P*1Zfq-BCGgW=#l`^M#SG1G0RPcK<{SFn%O9_ye2X>`@wbBY6Ai%l zpRw&Goi6kAzPdxN|D=$uOT6`w0ObU9UGS@A*;;x87AG=~CmRTdA!5L+lR27c1iU)p z_hRl=k((LIRM`I5?W8-#IJwSC6A=>!*Rc2{ys7C1vURoy>6t@rwBj0(c1#q_zc-iO zME@FAG-1qQ_N|&ciR5I?fh?hh-UT!CE~`&gW(i3;>vX$t?+91U4a=gy&43bcUCO^G zVtRO*b#2(Um&%>YwU194%hJ>nZO}hYS7Q%E(V@&`D~eNuh?RRsS{>zPO4K`ijzn6N zuenRVK5Qa#_rx)W`AU&4We`99b4dJLspxbxQR{SDyI-m%K!6V zfZml(@~N}v?S=lo@MtQNH2p^kGwa_t`J4HfmF3?l%xvtb+^cN(V1GeiYIO?Xha;Nx zPY*Kd-{$H68^X-RMgKSO(R2MhJNu6%m|TAxW#M9>XZz0*%+$>lHf)T)F7)RqcCOTJ z4n%YcF1CMy>3=)P#zFs)7Da@J3gG%XWBLDeZB{mV=8x>B{{fq9e^Tn7xAUPQe-Qlt ztox@tP5NK%j*0!F@PmQ>Q<)kUMUSTSF9Y}=*I;7($dUTM(*GR&>!0`6XW{zb{NI`W zk3vqSkNl~B6Lf0kDjRlU^wdX2^bK>M!~F-~EQ)Bd&jAm!%?1H=D)Nj4(TkJzcd@}{x4*#6m)_>UW$jWf|O=Oc3pS2uR0;c~Up=(!=x1N$;F zdNZ|7emW0)W)B7{{5o%04UW8ZMyz#t;PEz_m^vbf+H%rOCC`&fO2^5JlO>B`0zI=a z)98BNynp9$_qBGibIZ**LQU5846uYHRI-382dnJR-Yj6#vFzk@|N6Sv`*qx%M-y$? z-umOqM+-3ix+{xB&n4>&+j+(E>5CbV0kx~Zwp@1<99EX-JXmx!u2{t$ggF%nO#4qI zl8TF3c?KK-hM$P&eUhyadwiYCjuVY)&VyrjGwjbt(WFMpYVI!H9Rv(T?{AMF<@F3%$}Jc zWl_0};GUIvF$9o7lFN|Hh@y7qf;H&bdE`6{Nz^>=j^2JwPAc+5!ml!_AQ>--Tf%xg zngIY_cdPgPdq4ty?bJ|>X4m!{x4|!>AzXGHzIW~bn_1^Y5#N$!UEgE&s0rHC~70 z3eG;j5GveOQt`7IKHHt?ZVuoQt3DvR2fzT|IJ}aTkonX5q5zE4i}oCvG`Tr9veV;4%aGEpP(uW5LB?A zFy47Xq4yVh4;BeVflie9yLg(HrGy$uc;7wfGC_fCoH1yO7>ZDTWkxH~;gt*hc=rcj z=$W@;YzL=z$8y)_<7DJKivSA* zGyOD7&h+(;DV$1CUx9SuusTUqoFp1xqaln3x^-xfyJk9tLvoAczEjuV70=$7XXIc8 znX@lk_R*$bp1J`IY7wp92o5>|wBZ~|6_zxmgSibCCw9evA>m;L?i(Rc;^B}Oz-A%C zu8ob)Iiye}T4)}rH2+w4=${s}X!dPmch9n8SiIs4Ea;OS4&?8tW@XhdUUC2+9$_uG zpY~RBC%=tqVtNqty1Rn*m;`~hLC^}a;Esw+uv0v z>#&KG(A)HjKV=oSO6c3sOuhO0Y=`Z{?W1x?yca@QIdci9X&&Lut>J z|K$?s^I~>zxAF2VD#E-V>R3KtS@5WX_w0uRW0M}ww^sBGlZy|jK0Y8sbcDfme;wa> z)6=#mma^~^hO-6bHkUb-u_<>V*%|&~&&Vn(8c#4&A4s6ZD)wwk=MIz~PGC_G2Md9C z=?-0%^KMpX-~!sn&Evrh07jqhz0}-JY_*>SG${xYw>GPZ|HOClLsA?-1V8M+TG1>q z+-1YK$K`D2*jzWHBO%b15=%vu4Fxkei4LVVG6P^kPYbCj*M5hlnfmJc^Q?R#mNQ@r z7D^Qkq#t+N4}+cjU|sgtR9Nr}Y%mxr&wke0)6}rs)l05my56o1cv!+p zHI>kAVv8bSn{h@jL4L6rr|Vv>VbJlbK+{vsRr2!tYMn#sC=E@!-{n-qi&1mH0y zpWNfd#g;49&|G;_71v!%hb)`w*9Mx@?5e7bDU-O{W79h<1Nbhf6pwQM78&Us;KJ!= zy>$eG!nniR?#VGUfWGH3y_p>n>8*GRQz5R}e_~q@Fg;{c;X6=yPy$4 zjr)YCETELDXU;jo#Ajw{Xitu*gqC2#W}GN*f$3Yw{4ndu9&{?)1zln`pjoySs62$r zNKO+@AGmmtq6k$V9fN`LDOz^1L$6zccrT|CdPv7&3^lAfsCT2=uxmEiYxV$ZQK$XB z`(Oz^+ObRkS*C`Rn6(Phqwu(=$8KAR^p zX(?;)c6Ed&Y61&BrMX`ouljD$snxwDkpV9sH#q%GO%D^SCd66u1I-0(p5t%7ad*6n_0kZ&$ z7*<)4MK>|lC_(0HGnM$qV_brXsUHUcDtBn9nW*E{JdU+^2y)E7yX*9GnZGcUQPY*f z8OsWDAJuIVZvA?CcACy3bhv%3F% z^P=9wZQ>3!DgCLqufpu^0gquyR zuRvs_S@HASasGnKk&5WPx5nUlvuX=);@lcB1B<&@q0&eQ3rI$ao%=)-^hu0TO&iqq zFOMJ{#h$oueL~TZfmj{_!TVL5XkS$UOfNU^f!4xzF>7)o+oK^{dJhkAkG)yH_7{ z_$zn;x&Vr#;Yk8|baa!dCpsA(= z4uJ5l>8G!oBP5W8R9StC%Eu(7 z88z*}abg`{>z+v(r0_iG7+ViXO9aB+n6=t^Ny6OZchcKAx$kC4veKn679?6qt@p_L zE9^HpTF-p>wm4hG69*E+f_}yaIF7FHk8o+)_DyHWN3$3AZ4ApAyzAha5X0sfQo^!A za+Sktw1~@6fEI^Oh<9cZt~DXgiW@R`SvrM>59n@_$S%XY9@W0r%HivPaIg5{$cyTS9+Qk9fqJb_jUKIuCQ}V+>$$L>g9B`93~M? z3FPuEvoQ3|@QG)@j-? z_O=MYDaVdBV1BCT5a(6{=%0K)Lw(Z;h>RTwF^z`ZA;;?>Du&xMK*flLO(QJ0N$@;0 zl-hYR>aiJDnJXSvr}`>W{_ztUZF`8NDtA6wH9z>1dF}z$r_($;td)pCaT` z)yf;fo+@3c% zD5}NFxg!y;zL$G%zA){$;lcQ-%S^7aVi9y;bQ_IoOF@I&^wty_=M0tC?+tYbQ_i(m zSan#lFLG%bp#cs8prh#HuQXJ_uvrftk-|h_zYVsYv_BiT`7!zW5NG(bJpMqF)Jm|^ zuak^!;M?sPjADFH)lJ(5wA#3oRU1(R9X~a@O5MJi-7=QYN;J8KxASwEMFul%tc(Q9 zl279!0p<;W#Ms18%ywWYz}Doo?^XEF=@^m-z)3jEEw0K0sPUDKb=j$eHYs@i!lkc} zw*o(J+=+hUFkiXU&nBB{bas<|!6fMw8h64)+CVw@m5rd!Cj^71i4x<}aQ9Bvm~5e$ zQk3XrRrqLzLOjg&Q}zeadTU%_L4S`PO8JvjeQQG1vajdCk87EAH_Jxd`S)Bx1j14J zXheMA%JN=qfD(`GM4fhB7w2eWk`r!a=KAAwc^^};Gv z)?hi>viq$2YnxlY&bBW-d~!egO@Cm#-LIx?aO?NCR{Oya!=V_rIXNsIs%CqZJ33yY z=OXKaihI+Q!H5YknJ<=*pAhXV0KRxn29Hzz+dd0i)V9-?1ST)<$^%5&z}Iz&NlPS4 zu%ii5am=rfDkQOv|F?gUI=;+?nV1cZhVd_+{N0q!_Mf=uk6^M70{y3foc+)C!3TMM z#6_oiEVCg%`~~c6oT-@-m-?#IVX z&E`Uc1Y_Z3`g@Hp6<}9KGj@9b*)LZ=zs+$&Dbv?|Sp!$T4VTCPh!B;?e-RNcf@f2B zFf9p>vXg%vb6$>3YB)#tNA|b;68`dz78wD9WM#PR0(lnU&$Nl&H)`6qTglF#ylg|(6^V4|I(qkJ@P5@w9=t3FKjLwipef8tl z(*zVXJbTA#=U8nIF_Y>_jz$ z&^i*ve!Z>SW^^WHa(Gg`)Vi?>kXDCJJ$aw~g7vz@$g@Diq57n&HH`XLVP%lFAV$&@ zQILl*r<)X*p8<}2)B@SmpOWx&NTeLF5|^cV<8LhEolKAyVm)0z#UG{XLKS$)pR%`C ztV#Nh*w9_9HL0U04ZhQW1T{WSd|4I%dPcmhwDXSP(C!k~cDGw=nV4SB^{0-6!sF!X zj^Hn#G{*r2b>u!DG(MehD1j#EZGu*z~)Hp9g$YHDyv%H); z%gyl8{eFCQ9ne-N+yJ(r^yx%@{Bc(~1twh)#4rH{yT4zdF$+^|S)-=cJdZw(?<;GY zciFEIK79AH^M=C)zW_=s{rVr&y~|HiPpQ<2rzOr5%d6_o5~GG%7`FoqdY!9{Z{D5j zBJ=ZhaRLCzdQTrY@^q8n&PG=05f-C)_Ang!=SL{Gx?I?8aLn*7AfEGMZO+DmK#7VI zhV4sDTlG+s)^~Nvt}{^8UQqvEvR>MR8M$K#o4)O?)(eb0;ewqCojIFhj;q1&>}ptx zBGBRU(*2JHr9r}BP?5QEVgKdA=>Hdp5%_X z;XW9hV%--g?dL>513$waZ+Td-e<97o58)f%>}}Cwv-X$&ggg_{qnfmIr9)GIQ~SE<7vkw~Wp>j#bfb2O?K(a-`4mqB z18_TqNSaC!%6?XgPlkl8WbRA^<_WhO!pP z)NvH~rljSjcn>QWJGQYN2H^6pJ5E?>koX~!hNb_B;Yf7Qe_OF_rOCd-_UOzpS0V%u zgEdUPqT?z0(i;)^Y3*eBJHUl1VwG(73ql*1txa_8JKC`*%j^;s(ys+XCu*+uFK=#8=k?=arYYr8y$FmH3VzxVSLfmVRfD08mU zV-u`ut!jI=K7a~pG<^Qm2}w(4Ftyfccg&cdTB^}^-eWZTbwWtRurzQ&gY8sTegSwu zHd_K@xD09gLNE9%s|ok`bXaS!?`s5iET=rEN_zd&hBv24L%CV!wMusG5Xc4`z;Lm1W&kf|Gx!y} z-2<2K6>p}lv&(UD)^fI@40;xVI3Pv**#C5jU-pd#H_Xv(Ce=72fkfRYbxEJ z-W8?>hhyzHbT7)0e~90!kZI(*Ohki%@1a=AhC1(+CZ5pxH{s;kMpN?Yf07BW0!;29@i(Rh zHWkkuwhiOb#A%PrLg((uLri3!Wn;1>6k`i@!ih?!?nvg$aiurovyf4BAQ*@m^f7k87>YWGV!gUTf##wj3o}Cni8);Myi%J(iH)KF`^~7G zWktJ<_u*4q zIz1Lvj`GE*cb2vH z(=v_sOmSau?pjq?69HeaoXBzE?odJZ3bIPH4pVk7HRroBJELheNcB zK(3fM=@tf+DoHAlXU}uK?1~SK?mk-80^4=PPvmp zIwcWXslow8n;QX@p}=XU`G5EI2T!4Z&#UyJn_V;~w?^#_DkT=}03BFwYwLWx+}rs= zOI8PVE=m0T(5Sxs@h!}$I+S6v2??mQzw>nJG%!gLrFPxya&?@e($OHUg83E!Vl7=9 zq=}u=TUrHT2m=7IA=>Vp@FWYt2`Q}yEO}>W5l$_daso#>%+!T|S`~yceYF}i+y{yV zcjxRM5hx*y)qy8FQ&HMg7aGsnYm^7d#*V|w&tBBqmF7&2AroGhte7e|z%Y0n7avu~ zveTY+^~uO&ZYEJ66l8Fsj@z184(o&BTCWd4oQz1~x zk@KnN;SB2`TiUA)3%+54^VM3*2~nr0wf#IQmssUvVz!8A!l3BV6&+ecZ3PTI_n^C$ zL=I2JC7W^0mnCEO3U))I)5Yb70Lyf`#wzNLEQ}ZiExC|MFc1N#B;H*$?b>8dxi zG`|al(zGl$Sy0DWDb{4G8(qNgcRjNVj-p$wtMSYTbo2$OnQ&Nk%~F<9pzzD?q!C)V zHx>Y=+5KbXtg;T$+9l^`Qh~oSAbor^72uRXi7^ir&WlWk2FF%| ziB|gh0w>GalrM#)$~cBg#G1y1^~67MSxI|Yvlr)=pKR9;;`)grEC%5X6GVRfi%cq7;4+kRnsEhnmKscx{Z#@l!r1QWUgP{Y& z7VplLIFLs&*y(zIzh#2+NV}?Fm#Aok2{tv>J}4;A*3D3O6Zh2V;qtHuh!x08%%+ck zUCx08+#`k!u{{ z`UWk|hkxw4N|^78IKjrUj__}v=4nE^5`i%DcVD>%vtmZz{70yk|svJE(Z~w zO}}?;4X~$tG*GrEj9orm%^VJdK_A)kOspROEGXuT3F$`nuWl4`8S~O7ZrVroU1hQ;jUA^0FE z6^_yx7Va4xTq0?AlyRv+~|Zs@qm^11kXVEmHa<3SIxj zdR@K4v6aWJJbN@saleD{xs~jh`7@}0qVA%j(|0Z`Aqaq(Npy+DK8O=$!*_`U!`9o4^}b#FUnC23`qo*MU+YV1ASrU84!E2HXRH) zWhTAQ*;18<6VLM`#6NZc53NWMzzE+1BE)@nT+TIm@M0u(31uY4P)r66)7UO^fjK&uFW>VO4V-_>x7;Q-bp!+XSx_xa$JZfIBTst?GILAUw06hBwO#-~H6EnO z&g<*nBZ;=ZGexGI{$P8=UQf7=3xKFaSbA<)e(`Ox>=ZGHeWgq!cb=y#5GcH`%Pk&G zO1fLPhc6M);o%hCkK$ zk9YZKFz9o!|8?}AW`qxx|63maKh1>?z5fH;|I;w|zqj$H+2W5v7M2eeLux!99V*C& z_xvN{4HxittomPK|3A&|zgy%viT=+9>i@mn@Q>aBgZMu!0l#VezqKCz>QI2Nv;Rx$ z=lEy0<=qp?;zb4vc61SV;KlV#aDWO+xA=x{$@joclR>!2nFY9inK{X<$bL7}7H%C&9ixabGpu)yVR^k7u_#Wr)|&q#*VpbWSW#P#>ZPFZ-j>Rt zcM37z!oAIK*-O9&DWRRUl|PAKrQ^{4?djtAM@Ka~Hdo9@5tTuo&CYWsk7*;|B_=}+ zS65YB!)8E@cziDgy(S?uj8D}Ms(!55(y;($z=gjjOgT9!dmm4toeM!QcI1P<>MUU z(Lr}RTq7Xw8QX<%es z=L3=9Db75qxg)Q#w~uU}qgf>Zf>xk!y8H*%2Dxk{lV=7g{EMB9H?GNC)IDdlD!Q$9+i$>WI@wMgdjiwzcFK>Hr4Kg zC4n~43ntF+@AQ1`DMvZoI?F|%p2kgRN5L9hd?u!(q-B5Dxs z5CHVtT^Z{j=t4%0E-Vfop>dmXE#{u--=9v%JEBM+Q3gWGIB~2zjt*7cIa`3SEE{rK z&}%=9%&~(pfaR)zc*TN9 zYC78JJBVkO^V!2cF}$x%V&w>S%Ax^F>j8RuX+hj}+78z(k)D23hqc4jP)cXoEfNg! z$9N4eyYxT;xf@EN^AqS^d{W!tlVu8JM2D(d#b4gA`c^%< zYl^S1z44S3>jLLlKBZHdJN4?h<6ffJj3tMDj*!EzzX7`kwbfI~f13J~1S#9&Wej+@ zuI6Wj0+ai+)Cue*eGxb|Ll*j0?PsG^7aoPsNHe0mZ~I<_0(K;<$_)!L`MfKMimEtv z)d8)@6Xt|xz<_U~zg7XEmk4sv zVAfv^wrpdOt0|j{q<|PifKc>w-Kj4?<25x)68d7=zgSA*QsM{B&q|5x4ABitr`l-s zjL7zJ_p1>pYhjL1C7i_~s4H2JwglFH3MYL1-0XXPB-2Dz-Xlns>3R#wwgFB5GmtiY z6Gi(_Jy5hvPWdpE!(BFWo&X!bz=~F=do_7*W$klt!FYK&s`$_gQw4Lun>-YHOz)h= zqOmKPdA+wZAJE_Z98`p$s@PcRcL=GIK(zk)bs?93N3d^4O%RcdnucAfZ4<>XkmlA^NevjsXLU+IK@BYs9EAYA4=fn3KboZLkTYuhQY>OFbaO%Fy&ykRL+sty&>S zskN49=SV6 zu8nKq-nhHFHcsR2?hcL9xHoqBW_Dxeo1MM)MpQ)osLHIYh|C}7yytz+DW2ey><409 z_NcHVK}9vBQXW;L6}cj55S0$}#Wt>{;=1Be6)HSJj^Q5-8yx7?K_f?`HN#)~3R2vI zG6HKqU&7phKrSt`;QmjcuZw}-*R{F3Y4EOX|8Rx6><-5N7F+AJ0u#=M(QLzYx&6ih zv~@Q(4X^-zEaHS4(8Nt4(H%Oj3lL;`g`}oGTIc8oS40m9&3i*CTS)MFwbNvFak8Mi z7}?o^vpecIG)Q2`<=LG49EGEwSZBLQGfx3b+WZOd6>$*|$)%bdyGcR8dy90%=e*Qz zrF#~twrJl2&eJ2D1h)Uk<7Ytg`!nDH)%bIn;I=3Og7mN9{o#eFWV(IXM z94C&O5G^a2+3RJ4wV@V%BXN~X6l=lR^hlZxZcQz)fz9a)9?-PB7TzJ{MSf+pv7tS2 zAN??>2yCl@#jVhqu>>{IK;ak$5v-CPu?D|)>;?Qf2lFEKs&RzY0WZdm9~QO*7GU)x zLaHZ+FdF(G(#H2r^;v;LQ){|zt_oYdQ2tbNz)1O=Gb$euEZDZ3GR%QVN-!2QDq|wM42Z&9V5hkg+W;+~t?nYe zDC63V=^`%%f?hy~n;MB|;b^h}spj4lQx4#6dp&!nMQznCHsQO(7bE~npOX5KvboD z+2Lxme^lAqX9+Vp0!je4w3>5VU~bSMlKlGbaEYOxL*GlrspxhHy8isq8Qc@n31z3tTyp@dU^%) z*S>qazoRSm41Nvhs($O`T7Qq>;aMOc=t*HCxmJv#7^W)F%^|O&E7cSalEiY(PJW{I zE>a88W{+BD@KYtfeXSeOyBimNjSg;xmmKZJP=41fb>qR;Y|8RE213veo@Csg1oG`g zJbs+}JRePJ?3>mDt-oBjju{u&@d5Y6)}1*HxDlr;)H$7NqfxTz?Sa$Xl*ABB*NVTWOQ?%X&F*oKr>Xe>=z3MkjiW+Ex_kh=GLH=jDAYE=;jCFo$7z(PjWzLPNG6?Al?p5@ zTkgyl*d=7(?iI{lE-ROV)wh=}lA*5-sw#&INn+{KZTv$B>pa-|g!l`;q~6b^unMFw zz<*gvH&)Q-wA*jS-V1ig4zf!o+khV`4nkpPIsoXpld29ddKrcNABP%m1v}#e*3bPJ{FH z^-V|N+1qoEDH1fuwI$XTpWuLpbCdDdcp@Hh`RR-X;|iZ>+BjbpCwjduvhL6!rc8@m zUZ6#3_VD$D#oPhixJ2rw%URK|H!9PpnZF`0gzxx#l}XAL^UFdKeD&6qoJE}Ta z9@N4fx$H*1*i^(J30f4(NHAuuPX$@Q)3RSY!6odj6$Bf6m9d!mkxvTCMOO;cQcGPO zCx-qTENH<=j*oF&O*4a@t$+7VPI5VGpt2X=3Dp-5MWw1G_g;ADQ`Z?6yZIt#Y6P#? z`&j5&#eDgs+#1$rBPMPHSW;7utf_(UK#{CHi$Hd1^*=Z`seM7QXDr{f4Yzp8G>)n< zr{9Yee&mu#Wyx5|tlrlXKhfek?_VR+vNk{R1kpSoy5hh}x_H(Ih~yR}c{I581M@x0 zr*X>lWz`x2ZP3<^wOekpaE-6l5<|UKV#KNU2$DHz)hDJ(4yO1*dRZGl%C`3=gs&1^ z*9PSV7 zCj2|6MKC_D`LvBBK29nWJYKqN_`S%vTU|bAq_Xq|x3~>1?P!EwV-97;fDcD_bT>tK z2nd(kz>m#b7TSqxq@Ed~*)0}MhoNhmG><+%C>sS_mTMCM2nxy8)B)*yLxG51ipMs} zuC=;nMzkqF7|D(_|IfLogM+kQRnW* zIA=imiPY5AuTxy^bHP!tWtPbkw3`AQF9zFTWy}AQI{6<<<{v;r48TA9jlVlXsk1{2 zR51T-45gwZFk-;|Hy45PA7DfS!2imQ{DYME>DT<16~qGIU}X7Es~?~C(7$;|f9EE$ zeD0+HQse(X{lf|ZjljjV`j2}b|F`4wH!tUJj?v$uCx62r{L>8j%kcpNaHZx$gJOVj zG5>R)L+2!ReF*cT3m7uvw@W%}dO>D|LR>vx05gNJ1tN5gk*9GN8bHo7H}?H@`LQ#d zWH3K8%m-2|08-TH$mi&iprA4gQ}69QbZENv(w_fiC>+ydfM!s`ok=6K7NIa0uAzOs zDhD(4YMsMG7gHf7wp4C&qb5XYummo5{RRg}s85ig;o3yQwOCK!R5gaZe!I+_AHh`d z%cPTzYZ6ra)#K5fJ4_$2$G+@=(5}rU6YRQ41JmzJt80B$;Vu`BWeWzdR<-`&yTVh0Mi zPTApKn3{PcOw-!u%NuCYNmkb?z!hU@J}=UNfL?Vj7w2f6wa@e-VlO66k9i(`q&hP} z+ru^J^7S~AyRVwvNn8^@KceW1q)d^@xpJ1opT`Io2rlbIyhl%S0kI^-Beo`Z3TUo@ zs|)kCY<&FDZ0vlps1f^#e)j2*Z^5*{^to5L+`=1rZvg3#EBSKpS^&tV8KYsu;vXN- z1&ZNn3 zcsij7N8VMt+|TOpgeWyq-$=Ozm4JO2Zj(MJ2U%VLnJhk4&&lvSR_k>upn(7oTbuYS zgvM>L1j-k>pS{Ve0Yg!yO5#oi%X0>x~I2F$A@ePoGrJE zVH`9AlESX`Qqfl=uyTmTC0{gv(53?nD{}^ChGx45^${PN%?|B@6;H-&gLH!wv$`eA z?U|^w`7k0sH*!_X59@MNr6htIjcj=&0YB%rGv7yfObP2?m_2p|JG0)3!8Dj2 zU73w`rwmuXxw;tn(w^I34Ztzr@78;w%?-qw&;5T?^>7`O@OqWd8vY4ZcCzWItiNMc zU=7_y0qt@F%{$gh__~7(dx26C6R%z+Rt7lj;Sr>&X~xOi5U0 zl|Ezv89i0J0Mhk;P*x{7?ht^eOzRucWW+gJ3Ns3!ujzqPJ)v>O>)lje1wWy92y27( z+l_^Dsc_E-If_ExFb6@BJ7%(aCkN9>N0?#n@s!F&()y!ZXwzr_dlbJe^e$CMXmaer z zcSAfv2H@H1n`fg0gQA=|O3=Ud%M3?F7fBHv-$62zCVvq>3CQb=nvRQ@)^s+BVscIe z*{-(z`T%@=y4>dnk}ECfdI$aVF_c*>9+vNuLwNl|Vr5VE!4A%{!r|t_(#FJr9;_Qs zSJ)V&K2Ci;T(LOp+fezaR4cqxV<5_&Wmt|@JN%$swzfmP;qMCG))Q2^(&;5l?D z+ha-)?N>yfvlP#|4!SF9LDegmzSn4Hbc2hry&U#*p?QP`q_VLhF?T9=^|E-YgTEJ< zItlZ`yMHGze0bt9*jKhhV;1|`5^b1C2mcHg6yEheUb&*3d_!CkF8VsrLxI$_))$`$U~`PX6Kb64 z2Q<`&)r;x@FW7@pS`S1u6XkEU(3E(e+txbQ#K*4UN{5CWbQtZ0?|w(pMn~7WhkxH= z6Se&wOGON4|3P$1%7~LE==#x?4QdhjO*jN5>=S>nw#Q`!gKqpR;)`VH7TzLn_yhT1 zY1|)K{ikuS#Wr)wF}m)eAuBE!9wB578&6siVPcRi(B;pqohQ;Un}uZcsnxbSjS#yL z80D?k8~`iKY2m#~<%mZ_%<=Vz{N?U^Sr?{{dx%<-cXs>&nf1WKG#Q)?Szql-UZHA$ zUI6K7AmB8Rxgtsm+(=a#XVF|~Vby7nG+I#!>f8FjpOGj#Pvqdi=-#Cl5gp!D_p>dc zis2GDAXyfpTZC4@=`GDKNK~|e0XiBQ?kwsm6Od&M`bHZkIs9VbMNx=fm)F%nY4r~2 zO_J$!h+iBFDdP!Rm4lU26zA1+L@CKb@2_B@<$j;cpBb{LwqTfPmBJ@%Zr_Zro=)Lt zE5cTLNn9q%pjA#n7cR4i&`TNidm0N7XBIDk0CVs%Z!9qKAL-0Bt{lU|gF#2!2$K(x z$e<7)vg9bABlq`Hn5me+qd@(S3Dylh4o5d9nYi>QBYJ7UFv7qy2T%RnZ+}a)ul0P? zA(8sueq58e(;-1g=fSVn%l@+1ag!AGa2@6EdyiN-uyO6TigpQF^@*oJ9S~>opinb&Q ztPs+CEcvg|xa6%8(qwhlkZ#Z(SK&~b?K_-1V%?^f1|WpkiJMTQ0G1%2ie+L%@Iu=Ko1{!_XFpAE%Yva{IRzZFpHu#gemGQ81%JN z{IehK>ZnMEG;M}1-nj5^Px8G{kf0i|evzb=qV2=B&B)OlDkoV#(|rxA_ORFMtS)G$ zA~1sHn{;U{3eh7hm0d08*zSXMZ>Dm@dK87q0y}P~1EI>KqSAW7dlW+|z@h6`fE+4i zgh*#Q@1r%B)fdD)m!mG{ZPX%yc}PnF>1-Sr*4K*`%e>{PT@6u3A8O5mrq^Q}08hL^;qncO z@E^kSvXY5CT=8A20%+7ca>|F{fOYs}%Hd_bEw^n$U*n3Lm+oGyxELXCxfxf#Q236S z8f8`Wcv2*i+8m-rCOv5z*aE-_iUJK0=rvdoQE+}K`)f6WfVuJO00NxT0&mviL?+j{WhA ztbUHFMCnIFy)4rkmRhez@Uzt zs}t^#OjlIqNJSRz58#fnU?;>{J@q(n{221#tR7k2+)e~?x{=Ohy%*qtXi+{~+&GN=o&brXYHu!!z6mKtQx$^O9h2kZpBN*Sr^ zvO3E8NZ+VAS^$4pnOwOOPy3q?v?K;1L;v!jel}^hv2fME=~?v|#WYWD(X;NQ5cDqo zsq8x+H(XqdGOSkelX`OJrojTw>RHIm+5y~FrlGX7{$XLpJJrS4B;xV+4MpoKvDwNi znlq?Y9yw&mIH)veR!Wq%#=h`6v4H8B^r>o~QICtm!Z8qNR)ZqVaweMl_2j(41`&iH z*bIyN{kKm!ru+__)C%cDCMEpve!^)N-MBjukTbb!JE*Ow6%+S_fWoDVG?HEx>A2b1Y zcr?akRRgMGDu3rbj@9ao3w>GoF7L+)h#O*7o4rVJ=ED~|EBFmCjCmL~=*xOeF#D;V z`}M_^$hUUk53DBGR6{RMj|`=*w(9thhfOd3NZt^1pXJQJ!er{-R06=?DCL^OIE_*v;CBp%P2PW46LTplR-> zdz3F&tqu`TL;a@BJ}5k!HtA5?!lJ{d5ZE5C4e(bQdoi6}9H-#+ zE#HP;{n?Zf_tvQmad=j)H`i}`Bt4<-7bZy8c-JIFU6o8&5vEd>oD}B!@}QYZS6-6s z0_@36P2HTxhPFAMrqj}BGO}96rn|`O&-W{?g z{`tY|HWUdjfa~93j$Ho*SNJda|9`e0d|t+1ee}Tp&p!IU3HN^mKK%a_{(rCX`6D4m-KKg7gM;bU$%AG0Q2en1S)GTi{I?$oG+hW5p={F#7L|jy1=_C% za$?i9+nvvQ(@TuHC+y2n?nGD<>R0wyYbQVU+^+3ApXxmxujYSt`(0ZMW4F7AYyP&B z);|G;(Bq=#t6=ira%IRROWzKDTR5wnq0>uD4&B`lZ=Id-Bv(BD`uc7(3Sh!{ z@VgohF$rHkPk%u?5b0Yb_|E4C zBb|G3$@WLK3U3duY7BdAc4H?HtS!c1SudSmu*|W3>9l?sc1cDr$33T|GndHJC`r-{ zoeZk!g%I3s4k2jjUId`dXi}2n3uXi51=orO(>Ygvuqs(&PM3il`x{3cv~G9oWwZCx zD-q40@y#XBa>W8OsU3wC6?d$QQj8Mn6UbQL-mOc71#*o1>5JW-G|B@=S;%lhheR5Z zejfBI!|A+61mD$~-}lH}Gu2{Tc{klkA9q8Xhb$Ycy#;7z#^m66z5iV8vK0gdyt-?= zUdQ%}>PrEwGHW74GLD)R!W5Fs7Il@dRM}zinfIXhW-r9W0InTnG^bEu1 z?!HZV%g(3u!>gg<=Zp^4aAG`AR+h%ad+m~QxF2aze{ApkT~Jk)o&~2rD^tbr0FpT| zSw2$d6@#U`;s6d_5yC0BydC+h%io(5SzBt)cr+=ne2O`9HSk6z$GG_mX>aXCZt3kJK&vs=n z+WYn(U$r?r1TamW3T9Su?c(MKehq{3{QiAq-(bX0b+8>tFf62VujhKVx*+0uU6*Tpc_a5{ z8mtrJaFmt8l@d2x0%uD?7&-cMH(YpMc9sjEUWkZh!4f10UN7s2J6<5!SW_KKLNehe z!8~Tl$I;7~;$$J1g*Wy89D)y|6kU)ihe^u>K%B75w2 zPF@Nn%>Dv`jJ9<1QtK_~z-4{2?g}Q*kfePQN)K*YqFBcQ0S2d3CCSSP8SOzfArmF| z<x|&f8n&RKZikTudNqS?2FMEU{m0q4ytxN?#!p!TQWzchW}nf=k~%`5IC-n zZ|rhaZ!1j4&8Oq@Xm@Dn2)V&+NjO4BHlb9DDu!w}uvbPG#5O$K^qq(&hPn%RERTTj zpmq)A18PjO5g$48m9Ra3vqky#D}IB^B^Y+OCtlQ&4O)vL3oVq$QJrX!Sd>7FNHpCMbtnu2{{@=iVn+9R>5hd z+fb@`_gUz(@k`3nPm?wGrwtkNw#qR+FXfvxmxL+`oQZF(EKwNqb2O~=0E8nh7+8@K zJ^Wd7T{V9RbSU!#(ix>EqBmMeX);MQ3)T-2S`*Rg;>w?P`x|hW&N7>)PN`}Q!04zd z|Lz6oMtIZuEj`jRYe`x<|FFh`02k@4B|b>rOjH(LDS&@XQV793wZ^D4>G) zggus2_jK&4z;nVi%S{*#hxCo8$7&V|7u9V3P4ngvAHeA?$7t;*iW zRyy-_Hc)hTP}OGXSx`@l2%7=-HgzU9783h@n1-c4#5CvI(i<%JX&IpR5{C$;1Wu5k z7^XJS#?%sa43r5%ZQTn5?>V@s0w|r%_|WgV)_RCSBs&B_4mMt+&S9~ji{<|jB9R6pU0>T$>jZYf&v5RdJU)|aC;SrwZrv}1ch%(2fdF7!eVm3rVHl*}zQiD2$L15JOq{^~mJw?ql zbs_NuvllD7{4SVZ%|_b>_>=fVTEhzVYfD4wZ4FY_kKM*7A3uL%>)4)oG|EV=5}C`x z_)rkMO<)Mx@nP3m;tir}dLe5*sN!;8H0sz#KLJL6DmqgNJ@qBO zhivuKxgYq`Y_6}YsS643yy~NN>!R%9F>xrV4P)upbu8&x6O9*fh{7WPx#$YPWbQ0p zrM}lLlYuA?qE&$smZ0wJA+*BWSUZt}FTMNrr1leFV!(*Om5CTAz>O_xAuq`Y5m8FT z$O*>8-fs@j5Sh1;L}2c>lIY~co+e*(_j^$erd}}fNH%9TFIYJ6p;ylFA%}X~L-}#H zFxNCNyKw_0Hm}7JwcmX-p(ekIUN5-ZyulA^zw)=H1%gziyr}EH( zy%yktpB1n1`7Y;CijSK%qWCuF(ZDQSdT=@pAzN{|e1h-01G{KwBw()IP|SMKG<-j% zO`aQC@vbgM1hh`>>Gao$?|Gsi#=>^MQXt`EMijA?ItU?uT(wPth>x{}98VVH0lJF# zE=`i>Hdyg1m+#iPEVVxAn$0g16lGF3|dRjUt-$# zrcb4|8)iCwSbxh(MD$-?^a}K`)gIk7h0-p0+(Tiw9t_R`aCu}#A7(+T^k|(M`+=%X zT^Zsa-iFQ+KlR8&@L|gKxz}b~-P!jt8*pgG3b6bcC>5l z5?#Bp%EKm%^~Fb-gQOPX!>nSDhyd0nDIT)^?%v^N4bq~vP{}eHc%Aq7MRHtVp>(UJV`IdPmDgxD#My|#_4ICN=qh<@@`8(xcFEL6Sw?)23P z7@I##Og7PFp*(n6nJs>Ns8oV1qTIov7B8PiOnNRA5fRPVGX zgTR`lcJKm4Ub@#4Acw#Aul#RZX19$!bF|UY3Vgt{%1G#iVyZbo=RuEaU%Y0;ZbN#( z!RGzYBx?P-4%#im7c8I{zCI0WMCYy#L5nMfiU-o;FT-a`Ymm?WDrh-u)_XTq^jMO> z+Td%Ad^4Sz&+ZXJfv<+${wMWVzn-}_Ac6B@44~pVyvyr$d^LB?u=<+@t{G_*re!SN=9uB3J&+ z8;!xo;j>-RU&+we!M=MRUlunVRF}V<7zA@a@sg;)b!?l*M*O0=(&tI#+f4+@PuLSW z>PfrdfgG(#2qglkGTt-e7zldgq2oy)OmZI#gpFw71+jWATTR)dy2vRqsqzFyyS{&8 zqSq;oNCT>_;k9wRW<$s$e zsi3o{|8ZC5AArbzU5Vjl{%cp}vr7R*mKxjkUyX}@8V!G)`_py!8xrGRS6u#KT8)`KFKpO475NUtysKaRKINlmK$`~@bfO@)gJ-m zKfwC|ouFWrn1(6%)x*SqGm>)6_xtkG3xL-OFZp;N>XT4L5Qp!=vzi(c10kHYkFUtD zd*l|bTt5ok-SBx`?3P;ie)xXs{6379%Dsc%gI--I!V_+b7x^dl*R&SnC3a_Fv|UwP zv1dSQ6}zL2sfX)>AFERan|`+^8s@x^rJ*<`ks*cyQiO-k3dD_WqOExY04Vr-4ELl6 z!F`YX2(~`bc*+FK1ZGMw+{uZu@VNrb=&~G(5|e10Awxkja3x({dL!Z=!2ke##9>MQ z*V$QS@>WkL@7rI9_90kRC`ss6aCS6G>X^Xs$;okzM$KM_ZHy!si>ME;F}YqyqdGb5 zs;Eo*chrI8Dy^P^a+eU!XvfI}S1KFhRtCh(2H~!+!`}(fohTxT(d_A2gdvSZxOZS8Uzy?G5ZwU2&l#T@X?x$mj$&8~vq();XC+S}3SvipseALEa}T;FkM2bt{3J zU0X?&C4&;2m4~*?@GW6>ulx0OglE=jHGRK)+tyQqyui!|a**!3{MaQJ+(ILmQI#bUblUazfsenm9FJ^Tvdv| zRN>lsF)rsx#UAC732<)!|J{v<9!m{0!uC?H;ZxahTI?iZgC`6E?T_vu$-1I?V(HKV zYe+i^s$>2ltNMm-(Fq=NzUThta^;@Si+kbG9L!F5H;zg$E~ z_f0%6;j{T-1djdsVCO3XW>56{kG?o}9R><*h!10;M4^M%(AV^#&0i zx%!L5YYVM7D{3H1bBpbbv)=_0LQ78`CwSIt;tJg;SH3g@!MKUAQS<=VD2ig^rFn&# z4c$HDX&UCkbV7RA;c6_L(9fVS2$O5f%QB}= zZRhx`@>fKd2L2Z_9YZA0L-H&{Yfr7!9@xF*l~FL zS%Ek@SP~Hj`i%~V40xFf36szi6LiIxg=S5dF*S^h)Eo>LA^9y+XG}+`|I8SuI8yas z7AfPq2CES+HGYaJYrh?geZXiQ4-@ln|HCtMW_02m0j4>+k|^|<6{Or;N6s%zkUS0M zQ1aLI#W?d#Tm;R|7{0Rsu)AVPu)+Q(STgaU&Tt(9`r$XAa(@5@4pFy*8;wK2b(|py zu_1ApLO|^)69dEjQQ&W@OEt4+Cf-8KM_4i*@@=PyvzsC7mX6XO)kr>L6z4lE zOfh3T@Y$3SmQFvqOyBHK8YS@v(R^0nTi$Ann7G11M3`{o%vF^M;BXLm@$eJzQ^7$M zC$!6u`*u(_@a6oG-?GQ~%WQy~DH_seebkxw8pryT@v3dcZjiO-G5n>^l9=9WO>}=v zWeY#!d5lzsegAP^IvbeU~7i`7mw0+E@t#X|$%88T~7}otD12y4 zDr&`L)?HA#Yah~9&<)=t-zsI3Es2hOADXo9!yyMFQWhz#*xyG4Dy?&8h2W@l&^z7* zwDI*%jN-3-fFWz`_3}hGc6({=5&+4;HTvEwbqM!OS337A(o#8i*#~bb;b&e?{*S>t z16myis$)tsF{j@{PS0xPzKR+iN|OnzhB&+=#Wwg; zFiIKkV@F!{XiRC6ck}rk7@Pi{vLNq=a&lewJdpV%u`XE4>{=#@LIX*(g>?HD%gHP_ z|7%WyKb{wb7vPk9P_q0hNdgC6KoDY%48}0CF&nUpA#=J0J$il@-O~wT*uxI zPSDHR1_pSG=f?DJ!i8$>I~Xui_MUHMvb1)V+rTC2+p96k_c#D%=sbYR*X1y z%bC{LK}2lt<{E38oJ-@J1%#j+LroBzL4rkkS)K_nl`5Nes{*$&;?>fkk5<6YF!LU} zBD~%ae16^A4RZgHRJg{!Hfb!J?x4kD$CTyRztwQ&`rEzo=|DZ+L2cEC>(Hw>(?y3k zxTo6~)NciLv)BM7f;8<6^khGd#GmkfyybgIlHi04;%tM^=gmLE1Eft}CBf!1$4iUZ zPZVV$-;*1-CJX?3X}=ATlje}dG`@9%RqD2PMn#L&BJT0Ign5qoy@kL2rj)IqJ4-6Q zFM#rXLBt;iObZnn_oJ&fpL=tC&)N;Y`H+BIz@+UFh=x115f<$(pAG`#@W@(*H{ZbB z9tL?HxyXYbwhJF&0i%sC1x3nsL9*vm9<83>tW(_;M^EXMHZb8uAl`Oz=$*xhl+~b4 zV?w-1rU>UO25@{I;`nnSRqE7^runnMTY8|2XMx(|-oo(?)cGfl!cFatAagAzjAMc? ziE-A{fP;^OJ{kdig^?RD$J0O%LxkRe<64Gq!gV-^n;gQ&Kpqh)vl&F!5QIhncX%w5 z>|?c(qW#}Mhur^;8{lUDOItAlKD!qFo+1CN|NDom z`fm;aCmSOx;J?6ysrV}#xLSX45&!L5>>M17pBMDMUtdS1`ff^6P(_cK>~*{m<&Y|N7_RoRFW?g8zmV0RA;( z|K9}#oZPAT5R5dyb9_DL^`Xy(0i!z*2E>bySQ{}WE9x(5yc|e zNc&BL?aiOy9?*o6kqN)$*RjEav7$QPwmSLdPfH3G4fJO`-sTUY9Num14n9SpM(QQ) z6nlJ(+L}~BRt4kHB2yw4cDKIY$7F7kBnW}hl3Fxsg|0u)izqKzCXbv&Rc#*QGrakQ zxB(g7_&Y=aDZ&xxCmyF4r>}9dcLt3RxZJBN4x(YT7hMOF7k+>*8E7^J(nOC^6TV*{ z?eA}kReueEmrxCoG1tngzmrU^Oa{w-)4<>}gJR_|RlW?V8jUvSGDx03hm_7CNF59j z3`prJjv8@sLXDIY6=9y9Ba@O=<)UP^CwdzX+5=T2H8(dNI58|&KjEB)MA4zi#b zRVUB_aKbTvyxhJQq>)h{Z;r{pt7PHCttQe}^}7Pc`UVV*C>Ft;&427AX`;xNG8WV+ z%Vgn|jmy`wCPNF+!G5r&*aVHJhAI+1gIiZ~@PMi4ZGk<7**UXd&dFb#t;5?>E}thW z+T!LmO@1T%(El|kXFlnLNjTAb|E-HQg2pe>Sq{U8>SgOk-aS&;W%4~;&y=YJfywyJ z7@8f>CFX^qqhfzwCGQex-;lD>HP5^LG^K68Y>S9g7e*SNRy*?5=Q25tp@`Iw5pcL% z?C#~dWQa=-+--ih5JK+>MKHtV$c`HIEn=g0I{#6}D96o3Agd$T7h!e*LC)hWPNo9x zkiE}WIiRgTy|*H?xSuV$`ff6=dGY~qKiW^IGn&p)p{p>KCxuX(c>4vzHe5K3n|2x+ z$5@~fOleK@$oQ!(N|Ox@VD1$X!>x3jClet-k#`DC*`2<8rHy9MasOq*;)xaHg6)hJG&m5$=bV|Y6IA=6~20O?2AGBk+*@-$vZ+~e*7BW}q??q^n-!oM5 z2&56sV$;yQ`EABpb9Oy(i|~M*zpVk_k3T<7XfSd`{R_bjB`a17^|E;nPk$e|y1tH& z9y;Y9an$UeWSuN`R;6Pg8-maxflhxoJWL-P4wicel zS0PFRk_a85P`eh<@&cRX#Q&yw4y!q^re+LnSJZ~O-k8rB`Zkq%2s!b%J;pQ$o zO)gg4YZb{xko;)l3agh79moMk$wyFcR@yhfUWe7DrN4|OaG(-QMqH(Z+=f>})8*YE z;!?ycKkm3Zbw${*lTGO_hQCac&}GWdN(}LiPbS)hg?I_vRfhDe!wEM=838N?#j!#! zrWpg!RB%vFV6ltAeN7`!PWYfQagkc~+*iL|-Mu)-jfR}PnAu5wjHx|W9Dg2XPrzinzRF^2uof&5TtRT!V zVstD1i5*Rb6&{R?0!4bo)WNWrlm8vDDpi}j5d`b1UQ@fs7xSwv#J$rW*LuQ(F1<-3 z5+#|_0tUxw8NDo_D?Aq`!UdEs=)6ZMty$IUW(52EI-B~ATy6HLzGlC2nbyoynEHIn zBo<6jJ0is&4Jq$|#!dE|G{G_U@(R3D4BWl0AL-%CT=G3qZBou+Az4kw+yqb4;U``C zE+<#|kY(s%oC!E5ZVX#a3{FXsbtqOs@>zVD39Uz}Xlz4pLx>)BnYUzEbH8EmaEoAV zN5&OMDi)(M>5QIk;>hX{^x2-zjw-tdIc2)}ez?fjM`At$A5Y>roJRl{`>CrkU7mSV z8XL!4WZ8A#nIKqSTfsSbM~Gt3=nO;p5Fr}Jd4-)#e9NY5cWn%Ba09s{o@jdz;aQ$e zHIZgI!F$t%R42BcpI5><#4Yw@<@0zmg{4fz#0^4`-t8d{-@Z!d!S!Mkg(@N_ zD?g6x3;k(>D%?+%BV^?iRo$V3Jac1!$E6NIz=)>+ZUFU+`DS7(gPUldb0=P?SYntc z1b;!5xs;a$a)p37mCtB2KCstkTe3dXtvp#7I~z=y<`fOTao4ARTc&kD6$%gKN^-b` zuq~o+R<;d*%W9Mql=*R}m@G{Fo}0=+{%3=KU=7Gfi-38W#ean(c4WCtDE4QB5Yk>6 zeaVg+=z=cUt*bP)TD!d%wdz)XM(6rQUk0&Qq~CIXW8g|73a^l}$br(e#Pm z*?#I5*01j!YVr-m4-!y{bP|QX)6!-Ruitqrs&^EDEsVcnZkj_3zhi0k>ps=yi}Gur zmW>)vLUkG|lT7olN?ADv*{F@wf(c_6^_Jn>)E{0cVfT*I0(YiwJWF&dz84v;sQE0w zgVfDXq~%{{tfSOUp;Tpy_ZMc(i4HVSB7uuM8GcQ4%9&H;d?E}mR-#P&J%iu~Z}tTV z3jaFvWqZ8^Tz)?E*)WtqnGW(#DEPt`NxqI$2?7E3e#ZQ)K|P*O36u>ocfVVqZ-)p< z9e6ea*{tUl8cqhH!%nOobN72Yoav)bK!0Q%{G#uI+*VykkFKpVAg(@Bx_Hx9(OEZH zZ8JRCY^itu4_|K?RmY-j>*DV29wfNCyF>8c9^73DcXyWnAxLm{2@pKEySuwR*4pQt zx3c!V?&Di5aZ9 zW=p1`lUOdFX|2toDy9vGW>PxVE`YdmR_u+-ZP!#81TLOHsejmUK;X=lrNmbGLG#_6 zLhDl=skL(tP)cF`!e^B}Lzk5^*ug=B0$00loOsa$JJ1Jmbu>w$e-~gPhVwqbS~=P5 zSFnR8s~UkK8FE zD++_rYF*0}_UqKO%W&E64-TXCaJ!BUMS-7lsa;?=wF2azd@Cx1L6=TbW7iYpPa8)0 zIyCGuGEWvIt?zdtQJRp<=GO|ULtqk^q(Z}nU&wjUPWft5g3&1*YHLB~UhKp%V%AS}scLDEHiuSQD`lDw z8yscNEh{+weOW5*2uQ8?N)rad#2q`Kb9`J$3?u^mGutPgE^{18YhL}hm><2T5cRv| z$JddJILpZ970B;Gx=p^$Nzoy(dGIcWr~|?$A9jpnyZxI7pxtn#X?}hb_$3_xoyl~% z!)G&Uy)@q1GknsLzA}gWs=h)VReZX9I=x~@9+HJHt{l{3m_E|?ZSS%r;ODr?&jr*o zm@Q=i*s&|)){?mu5PKF)vIIEtoa6I3;=>ys{IfNN#a&7wL6H-)u?3#Gjb|NupHN_` z?`}!_{oy)Y{MLyslEmIYe%d0$;>S(m3_U9>Z`xfXM)fe2&l0xrrNN2jxj=#V)|qK+ z!$U%f>cC`sNc?Wy^KM-s&9&zeG8Tuj$!$PHf@U+~@zmvVwpf(7+i4+AfO4Ia-1x@} zwlkMwdK+4%{TRkD?&+IK2*mS%(GTEk@^hzO?2~|H(ESArJ_KYXtd@>2lY{!S{Hjgr zVAS^$>kEOXF1ucj&z#|C1ibTg!{*#cA&)pz?9987#JISonLkOT!fvScubL7g`Yo!M zD=ujS9fZz=(G&5u;R$dE1veY^T1jF#hTPiQX(e#XSxKb2-VkrR5g7ks11SHBDCACz zgM3E=e@oUsE$iIOf7dsHadW2%&#@Ch{-xo$Q%T!tDHHFdku?AQ@qhaH{@<;0b|!}R z1@iya^xXfBG<+Y%{*xHIH#l-}vi;|MsiSl3xT)49RPT+0e~*IS$F+YKL){ns`z)u{r@`Sxj7;JDj@u8DLvIQlL0Oj_BSm87%N*U>J-#_&!CQ0 zB6+jJd)0yPK{z2%iaqhCDAYCo`gY+ID53t%a*7-D>R)`!;NX?8`z;Sl*!PS5j zp}5(B(8L%gll}{NIgHrE{1D|2u8!t>pFp24Ok%XArOHXWDsL% z{n%xRV(80C04ujX(QWbQfkk_#vDs^#KyY#FNj2iyY;o~u1%FI=6z(Dlp!@5D*08*W zXM(z}9L6Zj-AuTxe(owAeesK#o)jW}afr$Uik8$%lK}rJeOLRw#uxb17Q;5BMs51d!Ulxu+O^`w&pBb!O@bI%G zN2)c%@b05oR}YTViM*OHlfO$xE~T^U!1s_E?3R9!E|G;OwLo<#Y1V@!h7c#D$g77E zxYjBd_hM{I4MU>kS1CO4sbW@P7Zo4yyVB7tRV<-=-c`f<5bnt=`Z}A!Ml%ekPaz!7 z5?rNqy>-f*0+mb5i~y*6UL=u?xVUL=5*%NI7@^g$;shm*gsDKyR>a18FIh%F4s|{r z<#5MSIBYg#!N;?p^i8pdIm%B6HKAINM5-b|0zj!URAWW8uOA_2o%WkPtxk>oBixeK zM3QtZqy-zBt-l&7x}G&9NL5iZ9d_+1k37}YN_QYTyfYSY6F@vZzc|3bq17B68ydQ0 z`99o!VxlCtWy;*+@~6g4373z%u{gyNNqFcaa*h9{Qn)_A@%)M_aezYf<8C8fAK902 zX`oVPsCdujShm-xvwFcBUvi)MsCwm1QF}?VkHOC#HyX>jzQVzu^Z3}y_S2KK5f>3r zmaw&I@Q93|IWUYnJ84gd?_0Xhh5+(qUp|E*x!T>h&K-55rK%{YDCp^BlYWkq-Pgiz zY1PrE)Vf@#6`nij)TZM52!hN9x2JIQ?4}sx+z#*irBDI6Ktd9w|y`Js9w&uBl&)g6XxH~UWQS60Ffxy!cn4EEwvu&VO;@MTtkES$B z!;Q$FN!(ow`E9mH6xK49NGzXBL19M0|jURhC-i{-rjJmP3{}R)?{8NDq`>y3D9{gjyY{h-i;9iqf+Uva>aw;U3XT ztl9ulKoStS)rZ|l4i*({+D!Q*`)zss0}cu03QHCVqv zn!zvRrxyA%1|V)%A%mFFjbx$Es|@?VsGWVZ`NM{j;r-Xq`M{8X72azF^+D@ zf`_D7vkc)u7lA#De7W8_nM}7!g^aPchwWvXv}XXdYGaF9==X1itK$EsoQRp##JyY9RG}N=CuC zF&qG;*VTpofH%GtD~9(-q-XIf{}4UdX6*EmzLBZ{i4>D z8W+BK0S~EM1}w|>6+LXfj*jQ-{1tZ`@X%lKj^1Iz(NF|EB2FQLYW+M9teQ0msfd2*@XnxD#c-qb zPdQkTbNFT{HA*K(bV+)vB-RWjhmCzs2g7?QHVU&lv+5B&bL&2Dw)gZA5WwQ#7r<`miN!9Zf0-_Y%2j zSM+bSBTEA(W*(AzKX|pjU8%U^#{_ft>`(1(G_O=Fs@;)z`!=(BcQ`xT#~yjz zUC2IPTn#Xt(s1xChkmK;(e9Evdag&HS}Ak#%$uJQ(IHEa%UU3vR#b~U@E!tOgtOcQ z>#GYgbTTijO~o2{VuQv9lIu}Ejy*4x!mE=FE)4n~*GT<38%w)NrzX&|wATxy+=<*g zg3B1(JkrM>$!bnt2n9)%kdxX%_cH#*9h6Jnuay}>_7wwccFrtA$;^y- z%(N?w9xW$CGn=P)-!AK3i|iG6d#Ozt#z8St>^{@!Rz3ZcY%I4!kY5{b*Q+WagxqRi zX%kvRm*X0KDX+6R%<(%|R*t29iy_{*jb}FIx><2XpIkJ$DlB^N_pgv%*>TgI!p3}Eb%@7x?Ib#qWvmE z8Aj|Cb$vas{ZWo?GNXlI#na~>F;2bQxPptBi;g>9PdrXKKro#d6GiV&r4v5r514m+ zoA!a-8!YRs_Ck-i@#C4~QMog!N6OuiyX8~ySnU*GkC!cVJcTzP)j5qiud+Yh4C#?l zmfp?nKx0S|q8gUxRmKhi46|}N2gFQJCi=QeFbiw0gxI-BT-q)0z ze>pqoNqxGVh9WD1rR^8(H1d8uM@Vlec{g44;E>1su@_VUC9wz&6eR> zT6jrnbx-rbAMbP+_)?=F8q;uAfU2=jgItzsPz2jAJf)9ijx;%}6OY-P)(RKzi6d4d z$hZM#A0`oOj9z1CU(8USD8F4J{`*of&W0|`LkI(G>zX-bFso~- zPxl409xDewor83J;PHCKiK8=(79)t3U;cG^IaS;WsiSO;$r2O>8PWEs0X+p_AcZgP zN4WF)!sq1h&ak+qiPN@ez1%@uDH?NcJjKs@pwPnW36sT%ZC((Y0cP5uv>r;7S(dNrwAbkrio^13@sm%%c2 z6@8vu3IbNlFK<8kkBQ}?Z`3Tyzfn9@SbBq6p_%s-%8sPH%9IRPgGQXQeCrAH5py9j zKW;^{-s_Qo8%~Q%R~4A?2`-8`JB%LjZIOf81K#I>EMSzIkd)sQ!?51}zZu^}vmaB} z8`U5K3hut&pomHq9b_)GP_BQ1=A~Rp4*}a~*|+Tb(+Aymt^m8* zR(57P@@t2+U)y!w>o=>kxe6nxoROX+rbH)!2#0!Z*St)*V3pIhrr!~nh0J2ab9Kx$ zzoW*Kuj9W?)tow4chYi6*V$9yWVHt!h6B1}YzFBljB8m5;J9g-ZpGWbDQt&UxbY5{ zQ&G&mwKDFG!L@|Z1*PyI(w`ZPEfRkmn0D2e8rd6mVHYZdX<+a46TJmPQd^GxP>|=N zBKwsc4rYgkfVNVI*BfPERwr~=<=TsTbq`@z_r7*2P_R^rtsV{1euhNzZm#Tmo&|t% zp6VG9;N;Ws!$aKGitMW&W^@0QKE7bPhLl74+zdn$zK}mxlWqT`#ysiB+A;CiQAjm4 z9Yyjp;r+J?*uK?J8&)AaH_=xe2F`f%isiYw8^7_V$ot9mQNI5Dno1>3S#cIK= z!}mNI$;<0Mt69_@p!b%o&I46ee+B|dCywLHKK2ouy370|IIS!F#OIscJo0ZF;Tgnp zOS5mLkr|D;#nsdxOoJ=rW8b{Ee@S6?XXWp(5%atlr;Fw_Wy5@Wo~c>kwjf3(5OLMdXJcc#ccRBLqEJ0%^fC-!bsKns zkBG{+@rb(^w=NFaaUzcsI+`FpwQof_mv}*Yr{deU55G|)Iw!{#x$Mgjw?0eI)11$P z&+IK`iz?vQPpImFISem2S1>)B7)AE@;-hxobb9pMWyUSTEso%!cU%L2Mton~f}p5o zM(mx(VJvA=XKngT`jCw5&NyR)fLdsx!p>Lneui%u_XA8^<^7XimpB&hb{hDfLhYmN zc@6TMi!%p{24SH$E{#7UGdMG~@19Pz8uiyLF~+Z>Y~Q0>`OLls$CWp>?L}rOf-c>0 za8``oXM|pW#fi1U+}i?jpI%U%1xq~*40ja0ogaw}^*?%=XG8N~A3cHWI=u+swf~5^ zKAbPPbwi)Ny{Xnkb#jKrw?khvfO=FCfR<|8P#wn_fy!yeJaG22MRZ5Vmu@XCilB59Bx*;-r5%O#Wa_f6%BuIMp8n>kqc|2b=oC zmBLQK`oA~~>iu`c%EkH@ngVBLVoDVzMMei_eeWIhSEHu|RuY#QP=P!Be96@j*nUna z^GStGZnp%7CAJP{KI13YHCfxB3+$MZJ7QKY!|_rT+Q|YtQE_fp0)1DKaMIE>t6ak?ReZC zb+ouUy=-j(<{kn>@}j{(Jf>3@b6k0G@WXJ$j)GmxgC`=)vaQIG!)Ce_CPxqA_5 zgQPVE&A&5`P=kx^!)%@=N;~aZAB&uv!njB{n8^#6!U^_b6gZk4iyboT^%GD`V{vaa zXUTm3BuO!iv+GWDz(tv`3rcpN+1+QveW*DxBn*>J0G~fe5u`*M%;fxIt$yWO4`B6i zfD9HK5T-bhqR8*Hvb~>))PH?cyhjn+NrTdYiIZXeW)yRmVUeoTwXZWH0;7&Y?o(M* zlcE(DTjV^l3)jl?jWI<;D)FW2h9ar#vA$*~aUbCm*iLN=pzm_;6WUk0l5A02tlM1D zk~@4`=YBuMkpMc?YxwqZ670M%fY)!!Xp(aRl**=6plD&<3N?TXEmim|srskKOs|T= zGcU4H>qMHiR}4|!epPk>yg;wbPp}5L3W^dVlLqLgIWxvozc-Q;Pp|TDMBU6e5&EV~#;xc~&Hs^@5z%=bB31C71 z5L6B4<$xj|J^Ff3?xZn2pVB8?@vnqwez}dNlCqLMei?Hzk@EFNi`ePm^ zV}b8hHLavS@c6F0|cxROequ^_n zRTMvKv6EBk7)g%jcX%&>HWpY+E)2l~E8n6+8!RtIT57E9Tkn#E_5=CSL|97LhI%oX zh$$1ovz`_XE%EUp%Iz|JFr4Fcjdqq;e(i^1y?N?`MYq-zzn!@1R$8Lmy)v0~mSsLV zHS0DuNua~PwamHd#Z@h3a9p=}cG5I1?L;P1o%!5k&_brj8&vWhLs)k5(Z5mxd-nT~ z2~R#MAq%fJnQuQbptwC#b3l%L)mBa^Lub$YG3JAyj2g>Y+W5HOtYgiZPBorZy0NTK z)nF;gD2#i}I7YSNV{dIfs4Q-F=zH8ztv%P=3>1hvQYv+~J9eeuS<`Rm*O#7;%R^H{ zmLnbCL{A?)l5yg)5Yd8VGhr?QQy=Va(eUF$?uE9LT{1l-*$pye;xg2#ESX%1Ii<|- zI*?Ysq-^#?OL6#xz_I+E0KpMs8CrER*#^rKL*#%?#g)^J=U+*z8@=h49`1LdQm_CQ zpPxvy56{gDkm5PW3oo`Ev?5MlMc6+hS_l+@+hq&D{;^+ohR(ypjI#R`n6gIO3ob*K zZ7E&jY-Rbhc4j9eUS@bTE%@Cb#`0JiDXuE^n%J3Z!&PJD7=NB9ZQxh#BSb&@C%-;t zn(#UEd7~tQ2Bm{MEk(`=Jd5-(>7a8t6HiK(vPL2iR4a=35234j&j|FCF5O&0?IwNX zw&rz`78v)@WQ4BVnrT(w02jb1@FwKHhW<*^Zc;I56(@Q|hUm~m)dl@xK$;gqp>8Ix zVvF>;A`9T_{w}YJu_^gIA{BrJ&C3kFhiD+c53*CN2!z-ig7BGZencEj?l^1Fjo^T1 zJq+w}A$3QJR{~wHG4MF8O1_2$*{#L|&HPeE#kE>=zZ{y9xI@VdL>DW^G}!EJ;*CXB z>G#0gut#zEdkM!EYJQjgO>U=o z4R}%gzq6{KjrDP7&_X?nT*9*Mqom$5LaGz*lB0GtR6H-+b`N%wD$6rH=0{CPEf^wp zgZ7N(4|lhT+_b)MxFcFGs}dWDioXP=U*VIj1@l@|JIZeXL)ysH+H2RaW@nF@Ygred z`--3vOg{F-1`3%~h{E@1LsdT1=w8H@>R#j7V0RF2&?wMrD%>|NLOt@_auWJy!^zm5 zUEABWz@-Q=UpR@-QMZuzg|t^Iauu*ADoV1_PlCooa^2pFgK?a9 zOOzk7Gl&UR6|P%a5t+Mc9n-B`<%wa(lY7ODvQCUel9?G{U4MkHnF8Pa+*iF>pc3R&XanP4(hqjo+5zMSNL@ zCci|f*3%VyyqSoL!r;FDNDb=b5SKr*J5k2zT^-U-j7^lj7r7=fH!327LQO2i8HpYH z>L0!y1lp^^Vm=lh{cIS5oZ;_GMtm)Lp9d{4a-mzjoDO}jc+>Z);xHUVPWX80b2Os^ zpK1e4^fu#!@e+sG8GZ2h{k;Cx@859dFEBvs{X z--$aa@ca$^;hC4^Wy#GZvk96I zYl4{-8U%F^-g+%XxF0|ve?c2xINC~dI|_V4Ww+WyGkCI=s3+|Lg=v>7pDUMWiA%-@ zZoDp&QxOb)6mhu>gH*-EItD%eqVU{za@r-MxcIqSDco{dVJEuN4vf?x>gf9k-k??%mZQL2lZz{4e7lnry$!4FtM8#`^~a>5 zFLNYbh{oNo17N%pK=hN&xwo6PH(JaA9xe!fR5lF?Ze%I0h=*K+bam*40P8SENc3 zQ6^s&*Lb{jFJUTTLqe#Dr-V&PFa%L+>^Ob5BU57vShzr@Lo9`a5EXU%u^&+5I$W5G zmz~-A*0ys~SUA{o%{_aqbf1Yp)8^W!#vMw>E&!n)ndt3H*}uixyWCD5~%ng0{Q4tW}`vi*L9Ru{5*% zW+h|dk#LkRr}-tcqr@Ai5w|CU3mZ#zqMVA~Zi}E88>k3Gm&GY)0J*)Rv&KgqB%-Ve zl3dAO?i(sRtl#5fCvkr7+50mWI&%rt-`oDwnAL>Ehfft2paopR)n+*4Z{+M~J+LaN zT3SxN{EidqaUT1=Ip+sDC+4r1?UT2p>$~lu3Z^XV4jMgWDm7qsmrwd8pXIbL;dclbg7+i{QenBH->Qw6IvJG`lnDA;t zLjBpO=H!mt@JhRD3Rn&uweQC-8;^ci*B3#Z#{N?RmwDf)CHBhsev&?W-{dbY_lN4` zeU4&4(>p$ZviDMe%%w@YeI8YQ%_FVb*Atjd=OXM&yO4T7NqaX<%*5xbz z)P+Zz0%>8uLl;ELu_Ei#$3AC)s>pGIgGnl`=*w86u5$77%dBgPQP}80nr(yUd}Le_ z{$B=c-39P@_aZaA9A~z(PAt^H0Fmw3ue`nKIIdQ*5l<44mAlT@6qeU`(uu{=aelzh#kss`o#{_y1k6{~_}K=@|J#@c$8to3rQtbkX=O%DlqiB6kuV;&B9$+iey!1tj1o6XRjo4(k}&fst}(s*ULrEmfoVQks} zplQQ*R$DGO_q&{(czE4zq)ASfVfX78f<>SIN6tN;G$AiuI10n?*BFXg1WBEYS64*_ zb+OXp2nceKDbe4oDbLFSg~0cF_f6}%$*2!YCoBl)VJaL3IL(^MMX8ETWoTkt zagwOmbXsaPtEIFd2qB|1EcRTSC;I6#fI5!hy)R_hC!^=KkG(t*Y~F;0H*8ceB5|8T z{9;^E2gSG<`|&1FuOABe>HBeeD88!pA@ZupHYA0CD`PYZLSM;!mCjI7;*u8oY6}HU zDuKQWi!P?+i$m_^?S6fHQ=m_Tng_x7D?mAf8q0tIA*KXNV@Xo*ISkwC{&ERY0vOrv z>s*;W3Gf493yjU|E0bI^m5Wu5!I_0G5#GR&N9>lv6G>Jk55bA|VSh}_t~=*}kr?bb zpUOI};^oW1$`sJBZbfZI4Hpuxag=qQABxtD?xBM@H8qpH*Q1Tg5{nr7r7=FF!Q40x zdueK~dL9<;jegi#?@{GwufZVVb5BCXW*SM!>=AglTrqSLPSKdrrd$|9{vj*4GY4Oqy3=9% z-gRAKi)#=!a7+Wr2s5 zU$L6}JLw)-X-QbNPUQFO5Jvf8gXcgu$4iUk2Nl zM*=_Q@AA`Oh4<+aKi9ePH*YyqmXIV0@c0Gl6>6nE>t{}|>p?(R&tF)}nhA0lojgYb z&0Zki=wWoMFP*_jrN`X%+*^-bF!?Dx3<|3cgcjFMiSfrE)|e-gwjO3CEz`GNsHjOq z>qW*k8;v8Q6UpVA^YW1E>ke>F19sU2{X!%pBk1A#e3mwc`C$JONcLgTg=L9^j7LZP ze(6^amE$!Qg$7{fWYshe!b=cB|757F1{8OO$ft0C62+7bu67UVbB3kv>54Gyo%9a} zX`3xczYwFB6xfMnbq!x7y1SivQw7)o%i~!#Yx#1NiqdxSfw~Upkj(S88a+#|S_i6- zPEK+6%90A?WL+jEDgt1H!&dXRw3qx?I+-}Qs#)wEjbm3 zjvB#T9-Np$&sXh4_KenWnv4KhM7sa|G5Q&zC6n%zA(JO#Y`1g##}`nzBf8KHX79Dd z%_}nEjHr^IOXJ|0jDA;e~6>z&?Y4jE)ej=9JKwO>Ir(5`ZV-0qTZWxA9HrJ0dC3i z$mBc(;%9PU!KhYp!{ag6>a7^v&&E|RaS|;9QhyTabk;Ep@Q)w?dtLZ8vIR)+pU?8o zFZ-*%b}U~LQX(OtH@aGypIUhx>Tj4BnxN0lFJ1t%ADT-{jmIlf8V$EmW?wc-=R@eH zqDfrsv3bF8^>xaFk{r}kLQ`)WRV=_b;gVSR_shyjQ8J@O@kL_8!J>Z8!X@_QDx`Jh zAsCWQVw;V=`Iw1=3pYeh3+|Qr5*X12j?)rTy^OeNX&U_G-rw|bMa-1ioRT%<9_z`6 z9Ovu6!^l2dvRyARww<>aGH3u$9sxXvrw3{qgWhiVj*!0 zhc-CzlyfH#mJrU($64_SOJ+xctbve7U8utD8_Xip+DETG`X{)B>asl{JkfCNX;pca z%ijr~AeSp_Y1V7nmBodDs>TLCIco4ugLwc6ce@PoaKyH^Gg#+J1WBA8@jHywM!>5yTDdRbM_RMvvJ>U}%k ztbfxH?V`9c;d~|{LWTP*QT6gOrEGIg!;QL~PV~ffUAC}WEpoRRQ+raOJVL?k<9H~VhI-yEP6HU>J zEez(;rymmBq_6EOw(nVc3r-ra`>s2Lr7ynh_+gMbhEz%@&A5Vd|C`<65go4% z=nJXt>)pa`LDDvkJY2hdS zu2`E5@3Ec(NiY`+@UaIxF3ers-1wbH2qea!upTa#{5A2Uy|}8UN3QCdi*cJSgW=SM zTVE}kuYn}pu)o(ue${Z_`(kAS2YL>{T)4;0!^N5O(W-vFaETq;b^7#uBM;vL>|xE) z+IXpt6N`HN1Z>vsnJsBUH>{C1fw< zTYBA$u)ZyB>{3z=&gmpB5F!C~Gt@1!oasbO$WZOAgw2F6KS=I1oOu&)ahXi*`m3&& zL799PXexi0JRBdO7F1is!?G8i`FptuOrOG(UIUKje%^;u1IeOFSeKn}g5R9L; zy5mp%3yituijLlj2M0iqMO-DQL-#A=(GusPAhMR_*2s)u3=mCxZ#}7ox4JQ~L5W8K zj0)KaH^2H@nT`OuBtIP&8$T++61Z$LHfz@#s57AIIe-tL)SYTM;lt%iQVu7|BITdX z-f`N{&)n!+8v(T?6)mlBHqo{y%vuc+ap1Q<>kAXbPPEj$5ZU*pN5_Z0D6pN0k)UV_ zzpwkeo{n5`4iSXh;2_eGuHWO3fzX~B=cpP%2>;fNRNe)0X1VDEP_4^;@e2!%(&2o} zj)R2LraapE{$7$xuT(+pa_96!7`=^GBs9I+EYx495eppwIflqFodj6gzKz*H-GJEU zGT&`|Rk?=CV#uTehk+Nl57HAh0a41@e(4lNQZOuXiBb0t%PDjbr_U=k;EvNe#9@}C zm-KNSmOcZ(;HB!rgp*1t++_>4V|-EL59ZOLpV%4QOuaT!@d!$cM-r2gP%$qxodd<~ zJDKBMN(q`^L&KjOXCe z&-WeZkw7%}p`$#A>mhl}wR+4JYFNY8-onvjBz%D2tgmXlXwJXa9v}kCT%Nc+P@nMO zZ((JvQHZ(kQQZ$PXoCr+^Vcu#sYxG;BzVGNF@8gu`eb(+3z5pSz_qr!EWX|zSP+e) z6k|uka)Q(NcOhvtk}Iy1Y5cAb7pi6A2lWZj^AF6WNG_IzZhnD8oI7Mw(toHz68YrYCUg{KR}GTB;xd3%@E}edWQ|bnjRzPsJ()HYDbRFUIaYwd3IdVypI@+ zE4Re=1@zS_=0}gmiMkZ8?+ESI7n#aNY1(&R7t)dmzmMWNf~bRNUDI(h#Sv~8sUo4b zF65FiC#Y0Zx14wfiZ?^S=h{?J&l$vAKAju9h7x??BF6rh5gtUemyLkYx zN^+n4S09kXb4hFg4v}f@j2>L!2!v!Sbt-P~_S8pTiQy0H6qJeL-rPxaqHFaf?L}x$ zefKoSh-UNrS_ge2s3h!Ac6__5lW{3+(0O7Ls)uKLw>1IMJ1jSmLfzCxd+?BxDq>C| z>DIF}TMV&}V=o@qUPU)J+d+}-<*mT{(W3hZf8QmoTQ6ICWQ#at1U9D%4Nma=HlRg8 zDA&~cw#ame&*HOc#^%MU@xe>ncNJ@ClRmLW{*T4$71|A%{$c{jSmfD~|A;O#Gck_%|bg`(H-F%=9-Sq55~7!}}%vj@J0!Zbo(v z4hFXWU=JE5=6^;-{LNbabv7Fp3j-$y_uq~MO6I?4%O9xY-)FOPFtDah@G_vMHcqo6 z>W(*y(NO8{rF_BVbTkMz7v98O{+`I5Vywz%_L2X*g3cFEMxdr0 zcy)2$SCf%fue~wiEm*tRo*S@Y)>7?ULnordf4)v!>a(mZ3mNA;TDio^omU40D~`r1 zDwxk5s=dBbs@yBxJThsI+9qLUj=&YM%Ml&xn@1tbIZPm=*{MHR;9y%`)5Vvx&Z`qH zeD0txO|@f*&4SxYZx9M%IsXRWpyN|kGddI)el8`$n+AvVVWCL)6=Rba-~l265)qa( z&r`P9XStgM=IwWdS0iX*wl!iAt{fn(jI2G|Yx1nLdvUhdkxGUgZTbbKJB#_Cf5=-b zLqLF(F?vbs%7S-kH2vnAQ5iBhA3CWKRn8I&SqeWbJu4Q?x8x|g76LN>%5`6y@)yB# zr~ajFv*y}vfSSX7kFJrjV$P0FZ~;HDL)3Ia&W_yoDCK{*K=8E9Y@YzB2GEZDvL#2PEgQlc>UI& zMyzqxV};4Gju!WbSrXj=vmaj!TQL1UKdSK0xE~$PWR~eye(}`{6G6LFGbBI@!RqsN zxw)m%TiyiL{CU*Q`_6WLsTp$D<_NfIv~@gcC=B3@Y%rx3jqGL6=i=cnq&0m49hAXN z5RHy_u~ao<4`B7z;f`L(LBxHZHhYB(Z%E?!UDALi^>UOi@*e8~95YZ(aK^g^=rY_c z7V`w65;Ozn8_a3U8L&H^Oa%yCMB6lJ%3(<9eIp(HJY*CxZ6P>WJ&rT`+M@~M7mCCj{C)f zxAn&=4L+1RVAbr~xKNSdt=c~Ke73Z6nkvperQDyv0sA>T>Xl8`b~sY8>;pBydm#NljYnS zlfbACq_&Jo~ zFm*p6fSOWC=AvW?v*VdF780V*bXgSZy*ku4_@+L&9^WX44;%?@j6HK`@HV4z(kp7x zWe-IYRb1IhzZ$4dbJy!Sh(+_KyPi4*1=x!kga$@bJ}?&A;70Bjq)kZ*%ofRJ2n8$*zMuD6SQNYbk^qeME9JlYT zKRMAAK+YdYP!>#>>+HxZwbydvFTw%l5g4xn(G%wf14)IamDodEqw8Kg9CD%xZ4bz6 zy_N84#=1yaUHLZXiW~_FVJT)9k6=ju21%+eBNylH7=8Fq)?POlciqloAN>(}8wkAV z^J#VM2(+fgNMb$+=vc%?Ih+!l?t%sFtD`NOg%SB)(XElkU8Ef&L#oPscx6VslI*jb zz93oW&q1g|GUGKL7PwS%Vhaz&W=tR{39obAWGgrqf0Pp>?p2%INT` zf+3;NAf-}q;pTp7$iJ;oIZ5w=& zXYeMqhnS#6S;E5O<0*_~RUpD<+&V9v3LNi=5!pBv>eu5R2E)k}n1g~&`GDRGUYMbc zaX6fI@ozNw4{okqGV*i%0m#@>>DUo-%seVcY~=^*S}_-bn6>RMmitsA)0e(f)saYM zcid)ny5+UgT7@|VT~>r+qkWA_qb(K--y9;Bca+`|N3IYva$bTiqdJzgsFG6op588=k2SpgxAN zxwHQcbKBb}l|VDEAzd8roiL-2Y*bE3I~b0vHs*Q^z~FZ#3`T*K=Ld^Vadak@ET|y^ zO#-fM(sDI9ibRl|e>D^iW60h^op^ zv!cdGM}J&UQvb{zRx8(A`*=j@Ri8TcGrAUuHD2^1&(X8e>yJ!`I5z~s`$Xe91#XTy z!dk_g=0Ma{fdP5m_lK%|)DvkdNy{LLc|K!W-qDpyVy^O)eZ~uM%?hEs%ecx{mZBra zC1WCGZX#w6GpODPX2QDR4l5THR`?bP(i!oz1wX7nK)_7z?iy@{=0{hUmTTJ#3DM(Tr}3Q z_*>#JqDyQkOzqyA?m-EG59@`M-PyWH8O0xE6q^!!ClP;+yM9}1Mb~?6g z+g8W6JL=dsd++m}^Y(kry>&mWsySE9S|4Vu`j2Of@q3v5UMv6aLGRCN9Df4^p#LZ8 zootj(j|TO31pD(g=idSdZp5`QMiK7-i*rCmN53M^dge**)8 z=02rTCKm!E2sRkfQ?5@(h-rxEHGdKgoXiG zOvyw!=}pdV-*SfVeO4+xyOl zuCC{u^5TiF;8;?Hg%NSH*yw{;wbqg%vHRTZt3B8sm2{TmHxJ3GM+XG&GAkG19A{2i zmGn~j4ZaR|0<_I{W!ma%ZLlEGFdpm&cfNY8N#+RP{DBzZMVc35hiE8y8*1bDvw2Nt zefA4YVf&l<^oBNP?|`bYNp{#|yVEXxbukq2#rIa4oddbJW$qJO9V}9~o3(q~`mXhD zo@oQ4?_oQ@S)hf-M6#*{mV=VaR8Y!46FS@GSrH~^G1a)l1^^zq6~B<(Kx$rA0qe_r z)P`oAcl8zP8cNbew2%udCX&X^s{KGL>Kb$eaoNDMGL8rtXjqSg4TDLE;2Lxo@Y@QWQ{z?p2@-zEdT=o8V*_h6)yx z3ch+n9meek+yfjY;Vk4l@cpCWYop@*JWjVkA%CS(o$D-?SrB;4X|7rhK5ukUr!&GS zwtm6opi&iWg$z#lDpFOYtl6*bn>p6AX!_2Z+q!9%+Gxl}Y76HUjW-$l)#X(lIqEH` zL0mWjM<&kGmXRd3H-D*PyKbSwk+>G|4P8Kq8A&QmZKrp9KV4bMhj@dEWrzF__AVMp zt|LqpN_GSuD6|2VZQI)dU2Dluhv>MLAl&Atj>}>BZ=_*9B6m!~SLi-JF(CWhF|F+i4}E1X88yrfW)z58g~h}YfvCZEs73^j>@_&sm){UV1W~e* zhVKSYlmJ=DJCJHVfJTqjik=Pc3rla&HE)rwZ2Q<`m>kbNY885*8QRr%SP{zL+jdYGUjqYZ&dz?U;R_ z!?wZV!$Q|^qr%jNhO+iCAGoSih#)um)Pn#73^inIv3S`@V_?o6JQx!Io3LD>-{X5Q z943k0a-E4F3Q8g~pt$hp$PiIB(qKXll@6XQKK!zMvcPy7`n zr78392lKYO^bK>fX^T^wGaEAtdZorcDX!bEat_C@b57S$jrtzXPkK-O9asE zX7DeFELapy8D*VB-WEUTKzn}3NzjgbVFaI%1_mq3U;#RpmkoKmWLS9j^3_WV-ss6pVAXrI`Uh)pBs`#XB?~7=`K^njiy`4j@3nN}P}cv;wzT z_QcObYDd2g07&DE^d9mMZo13zanbm+NvwQuKyH4lPQPkcS3`NnUAq}Hjjkg`A}5+` zp(y?Chy4c0e--{q@(T2`E2k#7%@Qi~{-LyDCjk?HfUCTAXy4Pq(u(J>jAbYV@*eOBJ_+7@Qh0=Ahd}W;_W3Q`0fch zkDt;Hw>OXbh|9e-1?uh>9d*CZ*%hW+t8JPS9z#|i^_fSiUIq4+ztOal^|wnvtFuN&X{= zsYpx;3V4$M{*0Ea@nuW+sXRfUrt)X5%l;G?8sU&_Ny0DCwyqeZRNZ=3Ub=OhTFYr7 zlr6&(JCJcaJNu-ATZ`{0eAE84Z=f$M*uaw+Z$f+!Y?<$@_wM5WoEQarz%NLXd3=L< zCC^EfA;y+0If!q)h|NmSq;h#^!xmc?YkG}q4;OkS8O@dQq+8YQwf130-RNhoMm!38 zf;PyubIoNU5-^sy0b@OzWy%xeIG!a97|h6dFtrrYEX&B)N>fMP-$=nqK`?e-U$3Iy zo?V1I1X}m#(yhb+lPUR}Oc1hcFtXH*)9%kbky0i$JuW`nOxX>~YYhEMA|Zm^58Pkl z^p;4|j@!{g#Q7wR2|<**R4yGYRaV-5uauD;rv-(5>`#*4Mlml~r#l%$+%ex@mG)$h z5%75(3TRI9u3q%jY-OIha_fW%KnkeK{i;^4LZYf*Z};K?$o3Vl7M#?`r8z{Gpm*}0 z%)p#EIq~X(#$Z65$K@mo@z6|h++#LW>2|Yu-_hZQpi9^^?q{7{eX{xGIaC77zK|J@ zT#A}lHA@T`u5T*c8E`MAjrFQ8N4Xbis~}iAhPoaODes43r{u&=N8b9`xZ{6m0V7Jn z(ZTGbN}H(x1mEcGga8%!2Wr_rObPodYp+ps&}x{@=q^pOFVsjAqBRYdM+f|VDBA#o zSzFp8?-lalP-KfJ3m)XLz3HfI>zhuMJgzMtH(k-zw0ZUm&*WKOjSgU{v0xyCjTjc` zPD*b+Q)B~P3Vn*19w%0NKoX^DF9!d1qSwT^YRFIr*zDM=)DS2{Sh`D{OeDq2c(@pBH(%#wUffIys_mjB7l(n6qz2mIRv z|BpHUAE)jAf7ZeuNB2Jrgg;G#e>>IlCu<=iU?vmBQNaH7>;7>GfH^smLDAc{E_~blwC+`g>MrRuU!IPZFckC?O%I{X14s1%BY~7KCTeE541vA*YWMfQ z?KLh903Z87t^wbRYRC?+y1PGlDnUf+tG$?7iR$hF{A3h66$Dqdn22Hd&}87_keMl> z7-UBvN{?#vHl9xnnNvn+=B6j^!!T94Lt?oNuneq5DRBW<&RU%0^}49=KOc<%3KKu- z{dXR4>!C0DT3mVLVKsvMs!*<|6l@Z1KL45p8ld-187JT$iN#1) zB)#`kf7}Rjp=nY2$I_AlI93d2G*~I?#i+>0X-r=pEyvs@?6W4*D?6%J(xBQMRe*@4 z+Ql&8^}mQRtzci68cV(E_nA6-)N`6_{jTt7q%TmH`9)K!MrZsY{&Q;*?2DN776CGj zLy&PauNoGUgN1CSj-(F%2#pv~;wZS1A+(VbQr|DCJ}0{X6~eDV0J3xY^bG|nM}M^C zWP$`d0=sc^U4+9kJ(HFqF>e>BrBL)B|K-eMfFviFPr@dZ%gXrWQow+G0-CFN4u|DY zzkVHV35%7|%q$YAaU_IfsIYr0WZ%_57p*^o8IEKpD51M__`Dvvhi}=rMQ;u{yEYAS zR!A(u9@7d0@nDfK0M;KupAzFx*PZ-m)s(B5H`{qU*7?qS*{QGduBTH%2Q`STcC1T! zBnc+h$Py&VD5flEg&?72hL%}n>Y(Rxc%)I;JGZwVA~wOhKa-~5du3={pC-$bc(VCp zAR@B5P}fdM!UOkoV=A(8n{Xnp5d7}8_lSj(ANthPCq|AI8x=$M4Sovxq>5m z;z%i_q^8mjz-|FC5)yAvQ5nol(-o@J4V0zNqKn>Y>etK8fTfda!WT*P9@y=t2I3CseOs8mQa4npj^eThOn`MIs- zC5~n`-DOSfA|AKnwg5SU{evRt?2t9v7hAOuqHg`~l&UYT zuAQX_{n@1c1vSa-cRPMz?j;_Es2{JIwwC8-Y>S8I^%om!MbI~01w^;MtDd;=>&omG zU+k4C0>ce{hpF!wM_3dOv-};V?gey82&wLTPWMMDo5V!6_+wl z2ns+PmifKVwGPlRCUyR@c-np?#VBbDi61hNAd?fZ_Sx&G)#iHG7C?wGw90Brqx9#4 zJFj1)Q>FxShLG$Aa*c%1A=z78tZUks9#ynWjiz`J0Fm%5DpH1{^WY{6neLrxWr-+! zo7aV8S}_ntjB`^$L@E{{UA2@{5S{qiFbz<8o~3jyVW37z)@onEI4fGUIScN4t+f+* z&6T5Ww=Rg>YqLAGSH_v?hy^CYg;uhj-Yuq0$+SJClstl)je3!&qo36!OR;Lm`5nZB z)Rtvl?~=ZZ!R1c#ez^bC(2tE$fsby&Ef)x(3$2<$!z7c}M$0N!%vB~7@eHaOwg#wo zN&CjFCvTtBrejs|Hk#SCBVUZl!zn2@CwGvrwNawAGF%@u?xY%J7pE^|_v@D@O*m&n z;g2#k(s^tSans&Z+}!71S_7yeM+jgpIP4JlS@O784ovJfk|$)pAy8xzFTm1iYMD@= zkDxMR`iPu;9j5TWn|I#|FC;H&$$9_;p=_7U3rnK|!9U}?%yRVGXcj)wByG!L6*n0h z*+zp&W)FIE$QDLqZTr z2UbWx^4>34#l%^9aVGWf&n<|;b4!2O@M&2Ncgynt$s~I3jcH%AEJ=I&v5NriicPv$ zo3=e}cF>Q_v9)ug&?)3!;(8^tRlCZnd_0w#?@DeHmOY>BTmkW=xLe>*4b#>A3^`uZ(LVJmlvbQ&ds`F8xo;St}}GND6F zSUyV8WS+z!4xh#fo!X^OHGU4T+Nb%BSmMHh1qx+)n3ESpAZ0GEez(NzKWJ}PF6Y+| z7c}SUTz`R$!O>1WG&Om_d1}kMrm^Og{h@iT?b~Lj4y00#y)?)a3i~KPOrICauyXpnT?Q%P zA1;KW`*ef8r1#&lBQU?@L4pV*;}N#9tkiwqZi*9b=#fk9D4j(oZ&DW++#ex-9 zq)IGN|1z!3XNCyCjvN6dJ@XXoyNNxymO9aG8Q;q) zD1dXoDd@K+us=&mhT3vp8g46n*oo=fS~@=rZSa7MDLd;w#|Jcy^RBT$CAY`c+kez^%!RV41UKtuV0;Ca0~$~DeolS=1YVKT~|mJwkiDN z>wR*7S-p|RUKzl05`*Ax=(I|*L2*KjQ8jTQEQm@Xh)2twd*B*+PR!_E*Gu>6&~?)A zQU+a8hr_JMXrUA%&y|rk`_aWcU3HYEV?+({Ont8Ti@D4B;+5^X3yLHe7Y!g?MEG;p z@`F_Vm+hXm6(gj;D?)W2)N)W(QkgSR3Br4ipKrNGumi!g|3PK z_LB_6XPboQZk}jd`JPjsh1X#oqYnaySjjNf2$0Z{~*15e(4{Z0EChGKP`Yi2L1n`1Gql7^Zb{a@b6_T z2JwGW2n^zX4)_0@QoS^%I)UBv^ z>&+EmY-O(^GCI1V%Ob%ZTsA=-v2wufN&A zyK=%Xml~Fha2LIUO6&x%L^`0Eixy+8ZyK7C_ti--koJe_$&-d}>DPclQ8dwGETf=U z-?xVyQAQoi!3K)ZyLvJ@PIid0#NZ&88i!FBc{cSQU|(YFEagF!(fcIFOO$;VAiBq5 zRj~^BN0s6uE7}ajzXy0=*IQrc^RBLaFn+L0wVCW7Pj7KrkKU^xDFEHH_em*nE zHD|-CVZf6Gq6gNytZ870+#e~b_gEHEvQqeR321ogf@Mjw6gsrTU{mq(EutW|ZKugS z5r1dX>`iUS$O$%P@rXn+u{Cv8XFzF=6Zm;mPIKe{l7Ctca2{!(LHwe09NPKq4BS}% z5`pIu@nz3M#l7+4`|xDbDfweDt`!;v-##*fs^&rTtCLQ3dYPUgi@<#AJnjRw8l`w9 z31nc^+6#OC9&#BNh~ykH+gDV^6(M_dVuT@y zBJdCqH{e*qJTs2-qt+roZ_t&O#2cAkMjg1(hyb{lQY`1O&I<-&(HTPw#X}U+L8vN~ zdyXP<1A!L4thX?)*S-`>|Ca)!n8dX78*HiI*we7Cb^vcjv3}**InIz2{T!h)lu(AY z8tCGRY{H^4sKyh|ai5Q<+tiBTaSq~ss9${f=;zv7=_i{~Xm$AO>z09MdTAg9ntpzm zcnM|Q_6*l>nPddccjla|a#OXJy0U~@X6Zh5$7t4AnxpLzx3Te^pB42&>})prC; zP_2ZBL1bG5#vgG(Uw_pXvBxDgK`pE+ZU7)u(rsLep|wV%br54E4SWx>@9k3%ACQ*6 zJ$S#r@_gi!KMYUihDWbHF-n!)>)zVSs+^nrQu= zD_Kmf!%=KS{$jrkAst(|VoQ~2AamkYU@{TOLda9d&rtYzP9!S)Nm1zXG7=ps-w&t| z@L+|N^!xd`mdG$78QLMG-q7rXj3lZpq9xa)_j_j7_^vLhfwQr)W4;Hu*4EXwCaXGn zVF*yJN3C&Vas~*g(FzG#SbMA087_Jjy8^IPw@(enh}%3(yW;h@EuRRidhAwhkZ7m5 zZm1cVK=S^A?D*w=i5H~jerzc}5e(pDnX*TLGSHia9O!Y*veRCA-)_^}a;g!eL#c5W zHZi6od-j1hBVW6C^Hg&9fH6zM6(dY-XX?mjObfkgU2v9EDc`$)BS*iHLmOkaskKv| ztg3vl^gTNr-UCmy*Q*rKemg!Ha2&RB$1EH;(rc`2KX6y$2{{p#v{^O0(r^@6@sJ6wb zyX(?GaW1BfLr+VC>Tr_=w}l!=7!3}U?y@9QxCfwO@9DDKXJNyDsWK7hRv$&A80ZbK z#CUko)of&FcJmlawK~)W>I;DQ`IM_^O0t{`X@(T;hy`9$lhhbX9x0=mJ3EI&eK=iS zrHz*pWl)Z0Lzqfd4a(YjZ4gY|Ah4BVsl|51D*k+Os)alAJ*5FObX$Mw$QKwRbL(X8 zwyP-MZDM4}_=0({s#nr&smtrI8#v?QwS}Vqcg{R*0OVQrYtDq43l3l--ECw{;#;#L z!AZ8VPA9iEt?q__!=sR}nW=?h#qry%a@JF2gQ8Ao(@Jo*zOH3)>eQqt*T=WVr7lli z?el&;`0wk~=EA%Psa0$2AR(LL#w zSywD~b5NkMytm5C2W+>XZv8CXn|zqEJFZ=G3?v=M8$s`-s*byaU+*`4T6K=zs;T-` zqqJ8P@a$_!2Z$`B%g&=;mTkKuDCI(+p!j;c>@EwXgg}HXnP&h{hFQ1ub=8vc1U=k6 z)`A`DpdNR_&K{-=*Fmw54H$L%&>hO+@(rYXbUm~M%N~cwMDAY%)*^J`fJP=Sm;?}z z3fz<2S5|U6eSDsIz{5^=1koQ5v^U9}QE4zeuxP!0bhq+9-P>>Yywk1u#2dAL^O5Jr zH#*eTc0rJZUyugSE2=wavq0bPa|4~zVokVJZ-IFaB?b}Rz{ZojE~*(o2)mzqJ=fs| z;dsfiAI$S{2DCT^%0K9~GY6ZEdJMzeV`hvgt{-4USwj=S0*OX~-dZZ;4~1yIUM$0( zuH?9VL#(y~yH?Hh4~@)7;8l)#?Ums5jf9oOH81Z%CdmXe%!M$KO6E!4*K~QV5}e85 zeU}8;$l;fm|5+3Y4YY*5sTP3z(|Tqizpcye{-dnjxGf6>glm`Y*5FqSf(0q&zD$Hq zD_){mo?`p>Z)>*ZZtuvPj_73|-b)lioUv-Ukjl&>P)?Sz)K;j>&RpYc7f)_*xILJb z-#-ti*5S?potP7Nk{ABHU0H#GvEU9yzmW;R^b(DKPnHVGU@l$01K{$JKnuCu8)^BPwg|(Bt)V%esewT*tU~us)aOGbCG|ZfQ<&FkI{nHXd&uqq@A{J>L zXI(*$+u3{J&#cZNU>{G@AT{#=e7omG@G)g_dU$Rg4cTKqwA-09`g+P~WSvnZ{g%H@ z@4uFSG7{yB=o|11^kq7IUC8;u0TmGXa>@#o?^8y9jzfX6zC31Jefqo0V|II;khak) zKK+X;pdIFWoL6##d;OAzJeuEC#eVjQnSU-dCcFBf%a^=RQEYu^ZiT!23_74GGH!I0 zUJgORD+=N)Mxnr}klC{wFE)U+Yp>KFb=Pt6BNzQ2vq+On(QOwEsKM z^oN@H!|(Vr>csr1Z2mi(^na@q2JyeFm*kyN3YuiA5_*{Av`9J_5Ee$(gxMG>z=qDh zw2GnKayVz&18jz}S_UvbyWs;u3V7J6parZ-*m^-SsI-Hy}l{e_|(oy{r*j zcKN(ho0IfrVA|ylz;qM>62Vi$m;p=U9k9UU1W=gqH?KLOg^7^HQNK*P6sVPCqZ4b^ z$T--)#mx-D8dDY{GDNWSZ6N#MclOF|V}+2Gmds))%9k&cq}M-i)z z&1_d&ep8vXUS~z1;*ohAxMlv3#a>wsj7w#5R)3FmTQG70NWqE%`rt?a&RL57mNZPg z2w&~=H#c6L_QWMIY~Pr*5{cfbqJwGB28jP`YoefQ`O1xdm6b zH`5G* z-hMDhsqslHdPLlZpR}xdu^m5o08YRWWGRxpmoltq()y%(y^8=tP`Tq>52|A40_Rc% znd2{lfG$x0H$gm19w%e;O>cY{7Y{S7x4(fAxSO<5!jrYItv`JXCLqy>*UB(ii8Ec? zLb?UjfH2Af*lEGuU)PN)tVbJ)lRA)I#L9<0!cg=j<12rJL)(NfmN@O=f+c$HPp!cG z#yMJJY&92~Yb;HQ zy9YMD)|$nY`a-6>{1gtN{`udizY$q=ih4v$Kfr6q>Q0>p*O2RBZhg4K&28gR41UEP;3Q?ohCaQwpJW?INw9>>_?7g>qq34(+2_UW1V%0OF|KXXTl@9|Nzujk&-^#P;`im#mSb zPETLor5{8y02WoQ!a8hs+o^dVr5sXxk~_2iM7<=afqqL-!HGL$4laNmA9psP6vCVxB*8VMka}aGc4VMW&zUn?8i@&;P(*gHiEans9o_( z03@^Oa>NK*Ew}Qfw(8(x+IBspOa2b~ae5olfj9p{-#QaUHiTaRu842BKa=XA(CW8^ zax{qroC~K>kjsS7f(9k7Q>d%rzKwv5$8n{8>Nv&_hLOlp6fHaC(>M1ss{sKgn^|w;PL2$02rkVSQa!jRtcHJtXk>mR9Bc(v zLqdq@1iNgVnKY6ojdw*R`;N$Y0zf?J@`FBCsO@MB0Z?yM=A~8{LgDVxcjM6DkD>Nf zW!XHqqX~BDwWFc-fHIcq$pM8rMd9&CZlrq>vpV#}aWp_!I~#-_oK2X>??z=t_f%SI zTI{o0Z0|er+@C1LQX(`tKSjhT8R(@Bkd+mpgDK7-eH! zQwAlYicEP~kArde{5reKqcd_EO!76dBH>!E(Kwl2eRYVKXAxzo`c8r06ZH?a&fQRi zeQS&f>tc>8KSFOF-}w~#`!sl61?RYb$?V5rUb*c_94Df-E0P>!;RART&q9dZbQfk^ z29Wg4Yg|{1y{rgcYX(K`IXQru2kmGiGBcc9Ke6A zA@}A8V_Gh@*n%EyI;gVMrOj(@*BP%jJ|lOFp`t{mLKHu3WV6#7QGaQw%;S&2^R1DD zG4y!7+6-JzSq`%wI%cE_}wAL|j!K zj5gU^w;VjmzHJqg_D2{IK03)fHg@ zD!_?>jnuej0Onn#?6z#fYEGYhjS}TfM!0dmH@Prdb`0Ei?8pybEdc&fzWbmL%)~(JGvN{a$PMiP*+ObS zWIw($kL}>%oG{akNrrDskjYGm1-ahBk;G7t;G#{jEx2>LW6l=BHd8Zk^-J;~xjsl( z8;`rv_bb443)O0f$C*#4!VCA*ucM+$5T5NFlSfUL1rfX*k^DkO(`)N$7y9jmk*RgO z>-zjK!mOc|YX*LBdN{5x(-t1IeRD<0;n&o4ZD9s!-)lSf_7$)3&cAz|Fj}vByd%g6 zdnnmR7r@%05wt_ky3)%e88Y`4-F!=+>{d`9(|QK<%-X_6Dvl-E`vRY8@xC~Bup`=%^PpU#xZ6A6vpMWLkLA` zGN>NlZwmi{d7+@uVU5A#qRnq5C;{DD_(wgzT@ zNyqt#14JWO*BnCb{iTuoaL#u*RL2_^sEH;3tcsyXQ?O3KW@mWJPF=`UFX&Diy@uM0 zO&L3;?OelAJxcJi!gxw%g@o%x$*T-z)CKIzt*9a;vN5#fTpmkOWd&F_mt0oEUpVgGRYlS2?$ z;6D5AOmMU)355Fye+i$zY54ykeAxajZ~VWwH2(|U_sQ7*3)P=I@)-vEY|*p)?d<$_ zljD;YL1&D;>#tzd zkI9W-iT~Ns-E|b3fy9+()^I;$7u!)`#?^tJHSP|N5Hf{t=5oJe&id~A?d6xk78Hl` zfMu0=v%Og&=lBj@W^L*YOFw09--I1UJ;4z}GY1UOddDV#m3Q5ZX(M2Z4M|Y2T;H5*0shlekgB&^rADEyV(AjUVOMU zx-!#h-kF^`v)z0+1aITtEqM{a8EB|~`=(b}mcG;s;Gu{$p#ZithXM=t z1a7=*dw&u?@oXHth6k{iL%65a3j*?r<_n0?eWSujOGZea0X% zEy(p?BtJ)2&Y`Vpp)M3ErX6rD{-BKvA-1yHj55%tx4(WEC5TGGwRmu-O4^{F=1{V&W0&TG zD9ZG}<4FO#<+q8Q%8n9EdHCBG9%YZYG%S(Uz9HNO#0pTXg54)W2Gi&NfuH7u(?Aik zs`4nMk$ddZ-d=r??pj}_uHQadvH^;0y0RFOvnC(4h1(n^eDp^8GwV0U@Oh%H4RlHjlo#S&bzrui7fnad?vhi|}~ z)KU~zktl_03Ry{du{@c1lTDEraZnrHPx>)0J5cDDKm zYnE^q^MDjBa)ko`=;~t*%!HY^oEoH}0s81A2>H4kV5!>!by?~9iKLN^eTBi{@Iw;? z3sC@RYZX+lFE<^um3EYs74xP;>DV}sMV zm=voam=#;X718m1_)hT@mvT`*jAIZdKrC$(A*w4b8Yi%7WHOvgad&#Wkmf2uyvBCE z0+)DPGCNn#?u~EL)q6s`d0Z8H-f}#Z9_h88A{ss5WU9bVIWH`Zzq8#Y8%bmdx_JOJ zTw|H;Uz_xIE4JVd*B&-q{pXniX8fx8p;409H!W{mwB0?LNrEBIl8QNeUIhnS!#TgC zexCr^BncG&Lm>9BZL)VeFOnvwZfo&7-2--v&5o9%)E|ytek#*vxAllDh`p)7GRCCl z#2}Ja8U+eOf#%iu+)p}c0I{o>iMa*Hv(M_Sizk3DlDwG+G*=`85hNl9@{%Z9|6zUz zj~FVHk*JxX5wuCUtp#L1LuGEap3_PdK#pgOJvUj#iu?Q_7QhZnR1mq~fCA@EnR0J0&ZSg>Ft-WN4IfW` z9+V^6Vi`lB_G(y}`Gd<=&{ZrgK#?uI43DTP)?bq3H@tkw{m&L*Z3LP+vl7tOGyp+9 zoteI^8)ord@Z`fJyZoq5C8hpSG2v)=jeUCzK@dI^LHP-ztQ zQP--*dDlhbCKnj&GgxOJKwb>s)J1vas{47AB}o9U%&EYKb(i{l#e{S4$v{uBi4+yc zKR=oU)Ssbg?kIq2jRV9aR0jP)`&5_2QCXUqzf6Y-yHLjkFSdDFv@v4UH?cZmB! zkmwVw_jnMzb6m(%3Bk@VpC3L{j3NU&!xt!VlgP2{vN{oUY>`G?;{#4x=1K%sEnQ+< zumv`UiUt_tDNUJ;J1P+!eFf=F_!Ey;Dl0XH50D+b22A51-Y&U=MSQeekMY}MS@}se z`?t()@U1zgS-!hzMB*{q=Ur^$~2+@n@laR4j z2k4%MnR+g$^EN_f_W&oFyo!Q1y9y`9u>y;FYIv;t{HjO=&plnSmJaO#-@`ML3Niy6 z8>Zl7BU&u9M>tt>3imJzVj#%3*j}31qV12@6WljmIe@6YETTHPcq~<%QYQx0@S}Rx zM1i>r*Rj=2&bC`A?)#vk;PE^H5Ql;}X2#2UZ%}vzZ^?4uA^^4)fGOgmuxy}%(d(hM zOKVZN-SAZKQEaZH7hFmK4PGKbOCWl&qrGtpoI6O{e0pmfxrUn3w^zg%hBEf&;P-~H z2@NuHS*bpSxSt|S{PZpeminM|=zH?eMTYW3S;~xP%iZNY^q^tOgp#+*hT%Zcw;7*o zkk}yQK;S`i3xGRm`^1+ThvI53p;&(U%=wqvfxZzmv&bMJJ!#+FbY+4#svD6|T1E)y z@mr^>s)ij=C^qmPnIXGRw7;XK$Q_9kFQ21)`Mg;D#5F*GJFIZ#lh$&&2H5wDRRfjS zw)c^1u|_~m6{Kxh>lo~_-)<`&V5yeX`BBiDHm_HlZUDcAmt30s-E$`VTHNjl44eb9 zP}N!<&Q=hn-_hdje>-sg!pwq%1d-NDr-;XMJ~&x3H(i_RO{Zfe_m(6WG5Q$|>z4&9 z)8ctsA%i$M|EQJx1<$pN&27;%>$pTl*Kxk^XDMJzNuvwHG)oP92-`%ThtYV?noM8+D2NrIzD1pIuE~$ci?t31=1_!FWOIP3s;jx)M8%I(QXQGe ziy~*`L!Es^!GkPEewQeb2XadZ2OJ^q<@`(6}}>k%vqg%3P;?x=L>`?(D@*0L|<89|9d)h`$rh4c9k;$zf4 z_yG^Wb3=%XeugKFC|JX089icwj9o)rR0>&jXJC@a@p#|^qsgeD zHy>!op1Ol2m?ceKoqjaxWM}zbFQYejy5Bx(cq34 z6tHk9!Xvmqn3^ZR=oXWxG0b^Mn0z6?2BH8UX^>i`i&}3s^fxS1ylWjJJlFFlP6*K> zW60N+Z?IAy>w&255M$3z%U_T*fox3|`zcD#SY=>tDvjnFE(sXcb&l60uul%sk(#!6KFYVqz z@b_%?#vK@n1#A#7LarvMI%3R|%V9>fxOXg}bmk}dd7v@JuOPr6ISH*_q<&?{hYM9F z)^|J*iyT$)v84Jpd8!$2U@ z$~s<{;uq&2ofy`Jgeh?@@TU`7-+K9%GpeYlBy(_^o&=GM5T**(K#j7(f3;yegUL&s z?DdyQ0{J~KF}j8mVTmcU=m5?%{1rnvdD&a*^2VEA7SsYiTF$)*GyUy%SLFlX$X!fx z3;r^m)VyVh^ovt$<%NZZ$ARdrhCH;VZ(%3g+fw&Z!go z)Z=GN}v<`tL zLR)=E@Sjy=cKeRSl3jvFAL+a$70Ha&Nqulh$ZI!Vz%sz;XgN-=FRUH_*l5Ee5I0KH zMhM30Jf296(KLr6x1*%;yC%C&H-rLPypDX?we!VnUaUdmS6Jd$!CT!RgxNIEJy#BQ z+IAi#%dLs1bKs_+&zefYRiFt~Jq&~UAkg-?&G1Q~7ms8Qm``A8oCcyFNx6Hytn79( z5hm93fW`PG>t0LoiZa&+cs&!*S^*AB*Lygt6l!G6PBfQ@Y}_r1nHemmIYT+NPtbV(ibhTtGV7%9XDY-Jv+s5(MVh( zs1eyxeR$FPM&LHnJ=Rs~xU)uZGOUDIVp|RS`j+>&5_|I^fPVP_Pz@n35Dku>wE$|d zKrf&=^Ck7_d%+1qUN=r?jxaFSI?6Vx?G+Xg(%DkVJ#|-m-$;CSrh6OKLPR{+RC%!d zQ57%OSp(75S!XhOsQZzW>^_Ue+z>Ub3n264nmBEn#^-QVy;~?EG*7m3@fE zPd#gMO3ySmO_cb+p}ROK@_}iU$(#hk^CiOs3#XkG9{LPbefL2s7i>I;i`j;D8td+y z%7kK{h=dD=(9s$2i#^|iCnR%bvUzY`uk02r47}54Ye-~8CRa=>&pzsg zLV%;_J~ia%x_f22|Wm}4+~QVE%v|HcYJ5q?fT{(Bu@ z^5D!Tcmkdj4+4ahi9IYU9QwQ;7ytlDveuxQm*W%}ZY0@Z^% z5K&RVS3F0?{b43%=jMi&`1lTXeU<3n?<;V5Kia(R7px<% zg-Pf_H7hphP(?Jug9gZ`OLZ&QBeKJJ{KwO?HMRzQ4LXb3mLO0>xxND!n(hqjekA@h z?%diyRLj8j7}?dWOy{9Kz5vH)F8V?f-DvG$Bk!&nZ*}xux!T5kjv&`qxdGIe`dq#w zeP^ypwi_QzrBEd$oG6H0KC|7iMzC>}&77|knb?9t7C$Ah`_a?zR;$JFqUQtZmM@DDDLs)Z)7k@r zscYfyFp5!57kRa-d(Qri5UQ!NazX{|?%L)5VeB2FBi$En-`KWoJ007$Z95%T><+s- zwr$(CZFg+n?6vlL&R*|1@4fd+jZrn8@zlTar7~yDIe-2+lV@|!+Xi;0iwyw|3x_ez ze!T2wzV>x*qQNZrSn?J+EeOuh+`UjVDUv)Jzt%5-emmEbO5lXbad)Pq{a^)rrGF^< zSn0?>!u#pYA3L>|Vnn*q-w}scz;gkB7+yb(3ZYHkpbh^^LPCW58Jn1QWzT|dY?ZMz z?tbZVb`P7;H6`N5W*zj9@V&A;%AEK8jnpw%VnaXo&VYPRqWlj53r>#Y_p-{$SkA@1Nr zIc3DvuB|c2*AW{lW4r}?T#B32W!@=bSR<0)e$&n!#EiHbA`dNV*8tlLnYEn_BSU5= z{Po$GMA6!k;iqiLAa9391c6RX3N<3?)%lQ7Cv8^|hUzx1C~(}E0G{n0#nDjD*k zUUjy$&CZ~zWHdz(TQqB?t?=LnDKbqWA+gn|aB!7@F>BD^b9^CrUVO96LC7bsWdXK( z2%J^UL^9>VZY=mh?TKlL7IC~HU;m#!D2>iNnm8J_o2*fx>mEM0wN{;)R=7ZOq63P* zpHbM5d9@9Jleo?b0u*T#Hm~2dbu9Oe$kZnHl;|;JqLXs~iMBE%MR5IE3|{Acqa{E> zFk?&x>gz^eD0+XIwAewmzkZ&-VLm%k3!~%T=VjStW8f*;TV*m76dUCd3C1%FF@=h3 zj)C`^42)0~^8n@Vb)auXLCj;BV~NnD=Eh1~Kni7xEo-|+0#vwLdq6mGv(tyCy$T$I zp37j?LxY&(-n*_-)iQ&&9U>9MW)W#a9v=e37RyL1pak(~R4d3BXZFTZ#*06hM=&!+ zCHa|Ja2jfgWdQswV3Y{PWfq$xe~Kn^%@20+fnKw;*Wds{^y-AwH7MmSU!1=HW1jQa zFoTIlRCd(O%?akyH99mow;Hka0_ zBhh1N>T*H1y<@a?nu@1f>Qusw11F zh{WdfhbWkGaKvg`Rb(o65+7nt+i#(25y2&C){B0 zzX|D%)Qg1O&w8NoA`uq1^l&N(pp&FiyhPM329opN<5vF^Hiry`(ia3_UsE8JtV9dGpd%WF;t%M#2P=mZ z%OP(ADG(J1gBU4c%WDAJSJd8tXa@4~Q9avkF`#72MH)*Cvv>_ZCtzy3Em5Cl#f>7~N*o!K5MmLD4?HP4r z3jngNaPjlA$9Dc9=YC6$L;^TyLh+pWEG>pW+BwlPyEGc8%X zG6w7nqAo)!ePt*#7ctn5+cwx{<~wug z;&4;ajyvMnr1XJGj;zjm@B=k;*gF1NLbYFAAlY}Bb7;@+`vRIGGJVGFn)SvL_9c60DF3OPjHMZxl((T$tgkBy`|ntamYK{UMhc7 zp$sWx1KH58!RGS4^upyAF>n?&3P4jgeI~yb{D~>Ez~AutO%BTab6%$^V{-tcX%AV`(Dzu(6(JZ0qS`4|WNtQ+QUKM?(2;*ZP;jhZpY#i@o2ubzggn#9mZL9H!RwlU}X${W%Et;4HMl^ zq-{Xo3RcVVH;paswqGC(<^Xckx!Je9P?*?OqD!)^88pBzq_nT#q9JJgvxu5Do=e!8 zGKAY?tzWqn*>>}nQMpQ{1Pu+SaFH_5yh$hr3a4IQU3`;eZ2Uf${gZhh6gQZ=o0Ecn zaE9$m)>=jUT9Piu+t=ggQMmspOq(fc*+nKuj8Irf3fIAix;|Ez0EQG#LB4s#HtBQnQM>;@AE=k0^mxPEZ zA1Fn3*))3p7_J{b&K1MZJ>e*6O$(P%qNawXaw59e&L$ zj{xqJNfT&-37)EGoTyLvN|b7DovR6Gq;L;Sj*MtUHzr>REL3`G{X6#RI`j#i=|J|h zA+ewqlmaZUG*6(Eo8~PLoL(yL4=l)mJ~b#1U&NP zA^Z2GeVz|Z*Q7Z-5RX*;6RlWy8z1vX;pC`>DcSc8ag`?$vc8V+GB-xs89ZLrAr#ZX zRY@!p=H!)qNd5^$8M0(YAa1E49R(-Gk3O-p2p+XY_lNqf3~rA?7!cnKgtpY20d{jM z%I_ahb=bDN-X8$iS6Lu-{c5vN6bL7EYPHoV45OLd5L)67bgFC7;8sDXC`9`zKdz;w zxe*y@`0hKd1x1^)vG;Mtq|*nnkv7Hqfyl(Fqv9An&kLr^M+f=P-VLHthnO|lNFt4O zWqtJqB!h+8)|uSm$FS8HbQ$gBDjYk%C^u&H&vQB;7p`Jxq!%0O7%#M*1(G=t2z zj~)4~mg$oK^^8-NF6u!HTXH)uLcsSmuQ?Cqhl;i3HiPQDuxc+Wa~neq1UIauE;g5@ z3cl9e{3lcK`}r0XN(p=Zg-uo*(G<+tqB_RJQy)u4(eE66=PS{^OW)qVsTQ5uow=Oa zkP7fmU4R3`(Js&Wa#kUHOMOznW&bSrEeU?+Rq?u7$lxubyW@*rp@;Ws7+?4P1P{Aj zPokwE4+oO$k>u5BY}-|Lx>#CS%>&kuZ5PmFNN(z6fatV0img#YTpsA~ws?fV*lPR; z5x6FK2*2*Z`w@up1bVs%aAE<^;;te2@X6)e2+;)eG%0XKHkEhravNM|{{5-*qrSp@Y-s{HA5k>QMfXip169ou%oYimEW@xI z2L2P!1#@0kHtpptEfdpyTfp1ojHuImk8=nE1Kx!u&{OxQ)jG=LzZhMZ_ZdK0xev(B zwv4_#1Pej*+>_UaKdT_erj=xBz^JuQ0D9S0L`y^?qcVsy^gFZCgcbq=aZHZBH#fJZ zYnF2(%ZSDWKEiV26G&r-_gACj+cLu%BT5D+E*%?YF({{wnQ-I#{?Qj%MGnLaKT3!p zw6K^fym9`9ooPhSGt1qVZ*bN`&&RT~nO+t(EX-AXECkOc%Tv1SWb&u;avmPD@Qip= zXK7b+D^13!@b_w$B}L;L6!9^)k*&64?+=1-Vruy|O$UupO#;&oRCl+lS}*VQrXv-= zrF7=|YS(U&t&_(={HwtC%Dp@q%O4UF=aLuogf|bUfiy z+hvDFl3N@&r7Ur2xWetO$LZi z%RNH@n`zKU0r_V3v^G1lm}e*axg2_Pk{U^zKcDAT9KOu|bQ-Y{RDga~=ntL* zqdcZ+A?Hbmk*nltpQ4B&YYR1gXto>s36iX+WP~6K<=|B)F2x4?j>!Ptj0})j70l#(A;N5WRsHYG{GE3LtFnJR5VmB6|3gT zxo36OyOdN(mAhZArKHG7N==R^4o)Mje4Ko#CLd&Xu}k|VhZO2EFBLW40krtEmBpC@ zSh?;u6Lw-rnOdD>jVooQr4(8^)5VDTk=`d5}grLqQ zV3ZqyqK6!j_oF#MG#zD)KxKRMJ#i#;%`*i@+;l(X41hd9U^7sd(>ju=TLAml*PPE# zO#rgzBYnRp9`P380{M_VgT^jmJddy_vg92xUXmRSBxg)BMBRLR!yvu>z_NEJK*sKv#$sY1^(}**O^qX6fB!enow2>;7PJ1N})kh%H%)v zD>C0P*}zo&|5v|Pnt|jiJHqx?7X6>u5w^dfl9d0~hA-Q{q9Ola8YI>HCZzm|%d`C- z{75#oBWXeb>n}yJOACoL1N+fcNFG7T$``h3Hx8M6A;#KNj2BB zG=OtmDHq%!^e+@-H)pl<@m=Teb&q_y>Oq{eG;g!?EHH^Ui!Kq7i<9W*i;n|_;byi4 zuvEM=4JJtX$-(_vQ)s$x`pC+b!SKs%*exdDMJKwBEMdvd{llnG4P|r6CsJ6PkH=tQ zb6g<3gXa@+upkAKI$3hBJe+tELweb?44~vtu(;42rwyyUW13v!B(J`w3RMvRLCY-Wu zN(5W;#WBwz51gKDiU9z~S~*a*)PfSM;Uh^}7l}$(fOO)!37wNgdPSJV6~w7x02zsH z0SMmyej|c^f>|$Yh!Z*x<7K_$z<`;=C+Fdg9(rKPh^mv4ojcb4Okxc7dpha)+DAq0 zdU-Zf5^nurNYZElU4$(K!U~{kJRPEo51La6Uk_9lBP9#18$fIx1x4!!C*n+VVXak2 z=tZf|@Rf8BO{8?>QycTA#z!K|2Z(DsTA_ykGu91k!3pJ||70cv@Yja*pe-3i^`Ppw z`Rvxn*`nze@C!Q^I!w9X?D1tidYUp~hIC+32ce3;CVqo77bDwPu@{AK3l?V!m}(0Mn7@L~~>BiCg1QWd=Ku27nb@2D#+n&r4XeL9T>z=ng_x0OZttUXTqz zKAg0`m}qMS0`EzZ5!TknO6zm3v@LClWD20QJx=5kq)}015BNO5tXIZRJ;^9`ltU%N zg9rR$EB=hX*0*b`A6h+r6fR?EG(fMZW@!xEpC6jHtVYy@xS4;vPqme?vK!3G>wVQ1 zbug_>JYFNdeMN};boDQW0R+}88Gz8;yd zIdJFsIH-|TA^Ww{InxfzsK?*ogigVOoog4hw=9xTCr!4;JrnP5cGBwiGB2IMOo)fV z@Nl%qIB>8}##bZ(*q3<+S+();Y;@(Gw7>YXQ}OkI36{TMp&pb%uhGfIm5SL+ci7T~ z=v-Wz?8f)^^22qE;Ei_^U3~4hv6c@H-zV6nrC_eH$|+LIKaY>#bCxJ z&W9t)Tl?e~K8pUS8-RL!1-@LC-mKTSfr<^cRSb?k$L4PUIAT1BK7kK);;G4aCy-PnH*BmKdKYjFdi^oC_BBPy&*-!>DW$t;f?`lRqnFj z)q4xO)!jw+r3b@3F;oVj_=DmIwy$h#qZ2eM-UtX>k-B8#K;scJxHaS zdCl;Rv)Oqya6>hO+uNpir_#1>vt4+ zJXQO+NCj)eYVg27ItQVGyVrq9livtqrWkz>Yh&w+b z8HLqHu&t*`5_X+FPOKmOw7hJeiXN6BQcn$Sf@*wbZg=L6vvYuWTxw79eai^hs{>o( zXSZv*cH~pvTM?D`iK!SnbV`he_9GYTGfe`= zG;qZ)0zA(xfR5B%-7+dpLRF5-WsjX+ILS_o*eE;J%>1)Pn;pMc1#pu3`d0|($2qI+ z3w|S&>&Eo)P%V{Ff>?wKeWV|ER06fAd-0Lc_Nt?b1MH2E`RsuNV%9G- zb_L6--DQ3A$PO5lakZzsWLmx%-RGDVoaXzA;)B{2K%cTYSA&U~{F{u%288kt@g7EL zp908}&IfqgsDYje+v}RNO^o8CjJzKkcZDzJ(h{$-&5q()lE(o427`n6;nyLT+!bd~ zc~_hD2__XFc%YwzM~dZo3v{zSzttSywrqcU6RpfV_2O0Y=d?N8grd*4Pc=^+In!K zT#Fh>;Y^ku%IN@11rmy{Rp(kNjed2WUoR1rZ`|UISWB+RMCtc4n8;q26PRB0e#-io zcPa;AhQe+3da0-%I=0`ih=8wEN?o%qsFS|~SmC!j|C}f3so5w~s&o*NiraW^3+C8R z@S+I{Q^68dzPz-ydlP7XpSpH*i1W5_*5(RF-`XuQ@~@BiDoc4wD>-PYNnL?k^T(xz z%~rDUWzusFBwREted<>^#pS+q(s19N^|f#Px$H$OCf3kvoJRF6@A`>2&1XjFU( z-%naBR3nh!^flrx_A#W9W~Pvp(^u^#&kKtdjqocb!yaMYnB@>cj%s00G|ARHxRG8i zCCuA+7{aH>4N%1w!yeHgs5`xH=-4MWo#td!VYu}Z*2Z@>jQVc}i z;X29R)0w+hnd3~bNOWrF)Wm&|L%0n^%__~;>7H#)Ej4zPHzA#qLrpt%PIxE#op@kgF7C1@8HGH`~NQ=FMf zCK0PPO+{4h0C_e#X%Q?Rn-;PIxbYV%xprf5GUSzhB&OzY=bmtTnJM#RPuaLxu~4)5 z&Lb>4qk5ZC{k-F<$GIc(?Fh!sqQ}ckXzoG+eso-6i$UwE&@i*PQdJ*Y{Xa|v_P>K0AYTO!WLYYV|DOoMe>P73VGaDJ zfAEiR#y{qW|0gp5gHin7*uuXj0mT1Cmi!AI@|PQs0||@@%ErR_H^h)*lRIxQ>U0MOT!Ao3^45^&*}gc+bkFeVN%9h@gw-fo#w;(Gk) zymB;mA*+&tJ3~a#1piSuAWy6M@M3<`Mlu<*0b?oPELnHc6QCb-Sn;~;WU{3t4N=F4X36)gYw!d+#_{4t69B|j{w4{ZHDs2R7&&hO z=tix~%F?t`X32l7q@)L)Emfd#x=JkKYH5D$MEv}`4cxtdwW@oqSw(mdvHvZt%dH=C z0L|)V6~Sfnif=3Q^XE;l3^cP6jG0n|cX1UT8exKtv!bpU+lP`gI@(TUhf(1-*YncN zEpta&B^oosA2fg#6u*hKXabn!Vj(`&#dP`i3D6y0!9C{k9(-=lFWP{x_E=HALa?}- z$pb4Mep)?>S9~mJwuAlG<{F)NHQK0VU;-cT!P1lBN6y|J?k9`Ip==U_t-T~e)p6kU z{G?FDZ=}I?Z(T&? zV*uX%s{>?<9+aMP(P7#^8s_J@iRG@QLb0IeT|O4sS)SqCcA#f;Lu^Wgl%g~EvEWpF z>MD+)WaV51d3j{9AbLZ+3JO>OpB6QwyR#bH9rp~(v`sbBVYE>=%TA;QjEb@#9+z-k z=Y~sgF*G0^S5jHAk8Xyb_~R-$M@r4gA8&y?pqY!MP!ypMtPfmHhUj)i_-FJu6)NP2 z4b#1+S)e98bVi(JEX-8z{5{E-6pT+)zDwXNxrH;ZXLbXfF)CS-MK#JFAl_;=7b}QQ zKnhi+1@@^{E!@Y@D9gA?0^Bv86a=7SyaJor8w%Km@u;J zjU#}IIyf*eyq>JL$W9qF^Ev#Ai&vk3;RyMmY>K^o#ofV8StFooqgyM$R>p9|XwpyIjR?iA3f{Lc2cKEGX=nzVd}u{TaF*Nl#s`!%ojO47 zd<`uiK6at<24L4)2f=S&rgqzn?(kmb#@C~6pOXy%+SR?tdQ>{dP4LZ)8lg54qf&$1`!Y$JnZ{4dO`a29Q+qjh67y^ zi5=?5AAOOGyM#n>ki%(>_eM+SE(`#=?83o7ogM0r5}*h?S=x@MHS^#WG}4|8IonVn zGtnMEEC(w6Aqz3pkCOV6*0pXZ!&++Y$4i`XUP+)%R|iBloy)ga6CF?W&NB5d`z0To zVg{eeJ{Q#NcE|wC*Q+=9iX495_VQ!l>x7`DBt-zKDV_a8kuLOE9^4a{CJO-S%-;-p zhZExWRHbN2w`&ojPgc$reIf140MOxg>g>s~@hBQFx7x8<6!g+Zt~Ej|@__khWyEx+ z=ydO)WUF18q$d6NxXESQd{FlqJfIw`AO~j9t%Mf^EoI}Wm2|_#xYI&X(C^s{MY1p? zGe@q7;$YC{>=PllM2}>Z*5d%_XY?bS(y7Fjd$HPF6QdaxLW5z!DX{rbX-EyHB`<>J zb?|n%_bRW~=99NEnrf>hSDsH#Le0gFjit6N`+Pc@Pm*RPWF)8P{GIm(o22K~E@!}-1dnCbnCk*>4?`43L!k~WCa8pVJG6f`k;4QM^S)&xojk%{ zkt%+KuUIUbZ+msw#nN7;LGUW_AGz{k&8hk#m2yrrUhAq4VC;Qves0uXwr()t_K8Ul z;+)~9s}ax+3GBIGJpBQvz@ft_4SYMDMDMJp-F7?DsxNa-tIj=Tb;zIfcfU9V3yU3K zMk?F2Yp8O!Ys!+k34mYj%w;AHae>Oszynt@;gZki?fr?zG6c5fJ6VwtF5(V+A(L;T zf4JBWu9;Yj_K~W8IfcDtEKM;7#luI7I%0Tst{X5%KL68f;PCIr##ntHMA#CrZ zPBGZ??py-GOu&*8JeBPg_sd)5Hg$*H%yMB>i{0-BLcy)z88>gouYgd9!$+P^Gt_GQK#>a&)iX4g@bE8e}%F)L^ zD&gd9N>0=9;t48!B}4I{XEtbY=eDK;3G*A*Qudg>I0_R$N75r9Z*!^|qE6w5y-BmB z-lN6nAaoyObcpIW%sJ-Zw*k3nbHj}Y3DU6{nh6x3pm zaJIvFL3ZW>DtjX~b0!g+578W38IVMufXQdKg3B$UXk7XSUi%n+#_ynhgz~lGpt$en zH6GJbSH#ho#`}Jx!s=jPV*z(gW_N4LMl+=|>ziR^#mE>E-jv^6`Jipjb2uF_+F!s5VXh-(qqaBg$WzBQR4@@Ro1xV=zxoEeu|9o#}2jP(8H2r zqNr34@ZD;`rMOMcz(JI4Z}W%B$A>VrIUki^yQGolaq-hlS=h+8B*R7Z7Fc{;|IIyD zSh-g@)?el*M5J1+yB~p&Q8xZ#U~hn0h?L>-?=??&($^3sxd31Ny6rXCUpJ0EkrlVW zMBjWlIur`8I`buyeA9FDq^Jju4GkucW{yXe0p#YYAF(;!=ISE-Lwf+%^X7$|0KrRZ zMldlRgz;5(`bsWWS&76kQ@rIJf|as6IA}lhJo!=I%ErSAbRQ1Tw>|vf$Kj zgV6GGo;2Q&6{FS*BQr6AqN#X~6mZazl|uuS{H%#}{T5{Wp~`58k9_(G>}_i}Wm^b6 z8H^1&Saz5oi~DE^Wr?kjBuAbCWI;qkeq}H*U0paITxfIZ%Yynl55pg~Qe&AUCrqyn zhDl2NMErW9?MrB{#l}}jk#jYJj@3cVBq8*&GlnpkP$;w_RkB;kx9L)|BAB0E-!=S|x2RiHkr>YV;cLa2L1V2~);@5KSJffnsGDm`rS)yO@l@ zn(VzBI;L=SvK4IaQnL@*0f_kRriFjW&Q0x}kzpDekh{t9ZZY=<@4IT;w#w~K382{j zQFUr383ym?f6Q9_25E+JA<&?OtgQyIrYege!0Rae1$=pYfw$Eh+im0d^m#vj--!LZ ze+RXA8@e0YNPE2mJl%e;`aHUru+ZeOD`I zw?u{*y<$2!&d+u(CgF@)Sf zFR%5SBv6A><|I_N9&lCnNpQ|kz~25nbdRDiaw)9Y*sY)a{fZ{~_$qeMN%z5o?Xijw zS>aXe8(#?4q}VYcpZ%_Ck@L`bS~SRhYcJ#HpWciXng_BpJAB-m69fg!4nwzt+rhi@ zI9*%kMI&l={W1?|cr>_Y5bUE;nAb>otC0OhBaI*#tK2RbuW|jK_ zrKE(S8l;daY#c*4hFIx)JE}9Jf=m=Eu(g^G=5H@hpxqw>bWr~x4h}~lGMo%U929qltBG7}4D762Nj;4as8sC#3SIou=lO3}v$HU8aCnJ}PI z{;TEl|90_LHiLnQ?XO#-B~4DU!{Pq>Sbuvo|2_aS8w&#m)8AM9f8LUrm4$(wi}_!t zMWg&bO{sq#mYIc#f#YjAy&GmP>N zH|ie-)IZ`Z|5;Z0ADyj#kaYhMX8DIThAjS{37G%AHVHoYRY$6T1cn0nn(Yrzqo)P@ z@2$yo8v1BYQ0Eq9DJ|&(CG@s>$d-0~Ln%w}uvm5>?%#gCotXswSdM}$3A!!&V1|V= zd~=riK`8OZ}RnjkW#$cK;Zi zY5jp8u(VLQVegTt~f#wD4PK^W&aA)^{7S4^Zj}`Op=+@@2 zxRC3qsE+JQu0@xu4Iby#VcUDg0e^i~QFCj(q?#6M6zrij-V{rly%{L?X27X+{xA`< zh5aj?Y!NwLwEs?&0YDSxmZBoWwMffU;LgW?jtnC$a`*lRn{uC=)Hqrft#bu)qF z<%b8yEN`f_pIJde#%zN8wPYNtIZ>nUfXWV~a;I^p0NX3XS^z`HuXft7gr%4w0_Q|R4xQaWkIzBVN~lPnXznJL!e$#NbYBrTM1XXZ8@!2Sfb^B)c@cgY z6ns06t=D_D0}3{u#u^azH$^5$OR{8T#*bFt0BEZt{B?6DVe|Y5w)!&u-OC}hjMW@< zEn@u3t7pYmHEK=+TTZ(As=x!8;BU+&g8u=~(LOi;Ecv&n*&SOFi6vC=Vmc5qF%!vPp?77hmF2 z3)UyjUXqp(jMrV91E?lfoz{s6wo;t<)P-na4ZsqyLF#;zh*8+fJvenaf$gH1ydXh` zMzp=CNfo;J;dSF}A`FvgE)7Vdz5*ldt zwiZ-LU4$0e{$~Afc<3$9o@e&hTs{#@m2#L?Ex@(?Yl3c<@aYsp#4J*c+eMRHo$y;j zGGH4mZoPz#aXwj(G_~7Bn#H(ejI4IQ4S1dtIyIo`x!~Q3Nl2`Jl1xlo<_{a0n1jz` z(9hHAog;43e)giOP`WzpgoR#V%r#8v6Ug=4es0_7Pd#G|9D7CgG_N$_aHgcO0OdnW z&s%OIN)8e89`{`Dwlt(r);i$zF)%)=3cxJrT2e#^>Dtc@fTR))E8i92GZ=!NE0e-e z0X2Ry5MQLGJo2=(DlT-U+b8<860>qh6ZAb!b80tEJX&$%K^(v!?@t{=gp#CXd9>o_ zC&+<}m!@Cy#Wg!(p-%zHP%epc+U*xd%|g1re1|)td{0y43MkO5Ve2CGYJ~$T9Khbi zc*cst#5HREE$1g#p}KkY4SBoi9pWzp?%!bp1a3}2?RI^DY(izGAqjw@6+`VG(hmzCmkmF8?m+eF8Ic!S-S2 zC5aGTYOs9nWnsi5XZL>Iv%~<84P+rIFy6>fX%p{A65-kdH?|jx+)Bn z6XOHT4x}uF)p^#TrZQAZn_Gy1Q&*HuNkVy3!AGt>dF2E)%mQ+m0QGZVtHi#?YW{AD zY$A_FxVa-xyyIxS<9L0oPH`6ABFemrbe!6-#l&!D5ekfpoUl=)43%i`O*u#M)D)#@ z=~Ltr_@NB@Zc;Xrk}Es0HGl@p1XhF9u&>xqdDyTb*{Y)3&$rT$WnC+oE{R)Kx=%u4 zi~v$XBwB)4qxod^20=XsO^wk^Nxm%)FAcOTf7nzbmmL~77Xqc@^NFGW0f`v|wiLu- z-1E{Rv>;Byv~&&c1X6W*#S)$LyGCzbAM2)2KZpWD3qs<~;3HkBAAs%7)h5|;sY%fn zlcwHA#Vmv>_|i#C$*NW!`zK~n-^43fq!7HzN-*PoM3!N163PIhP48JfG^W^}o6N+V zp2Nfb;5oM(Y;sMDQU^1ix*m(2vGYUQcp&z1v^d01Pe5j1_A0g)|J#5BVvz`XP?8Z( zS|{cjyvBQ!`NGQ|ankc8KIG^BgsF{&~;?1G`- z>s(v#FYWEp*4AoSa(nXL{&KU7RLH-+mY$>FHOQ1ongPqzK!mG=gwFRvq9s^H#f>-` ztE5}%1U4OKr%62DW(k!uaKm&}#N;1capR8=Dx$r*h9^@w*HMCnQI5RXHE_P|CZ4kP zT@G6}w(WF4V;Q{@yA}+O5~eNmm#oZHlHeYhNcec8=8J5(b*wd(bVd@fvl!IQs%ogG zz5o=hMgcan^JJq_R(gOGWtCrZ4d(jY$R#QHG_cBV(b{!=!TV~skDtbgAwU9%8d1wc zBo>7D?{P_A@|Bua{tdCDAVDgktTn2!y|%-0%;qKPH1Q=0S?cWlK5l;rlQEd+ zRtOp|_uCd(jgPUG^LxP5$E@_)RX0uNgmIWg3E-^*oq$ijB;jFyQg$hc)VZ${?^)_{ z)ul5{@OG~ax|^k0@FxDEB)W2`oXK5x@|vW7B{x_eQMXyGC&_Vp5H(4Z>4ms{Dh+61 z@qCV>ZQRbTP8b}e>TLl{>a6V9PN`uH(+4?Um|J{FV-<5o50$HRF#uSfTECRTRh9}@ z6hN-#$seY}mAs{>kIg`C#Rm}SMT-oHusXyihMO|mc**;dc^m^chH|-%N)o#EerT7a z`f($tujYmc;;!D`C5XnKb6`i{bAoTbw~bx8M>6UY;avdNH1>vM5SK^T?uGm&HKON! zD%SrtA>+>sc=?3Th@AYRt)efY;T85O2~evHs<0_xjTkx3Dlz7GK?KI(lDXSjgRMtf zgcM*eB%hRld`U##+v4tIc$=u1wCu%~iv~2)@AE?K*WCR1@bvB>Avae2j_EWr-{!mU z@HKK6;x60fem`fVcAje10EfNXd1EmiE7$C``W?xW+m1u5dAu-i#Wd*>DvwO;8IT?1 zbSuUnp3}@xpwWu&T*w!KB5^<>&hDAjm$7-|sB(siK&<$i*&Igi%Z2|mFe=U=cz?i~ ztqRjEhBY-q;Nj2VF3=C!iVIpH`Ivg8XZ`%ZvYGtN$XAKN9XU?2*&700oQ_jWDwN*# znd9T768(LZ*)kQ$S&F%4PJ_6)+!{e)fno7x+JNpb$_vu~yK5BN=BFq(q0&3ZMw!VO zlQgoM`35DShWs{N3%KiQFHV+ttE-HaG6_U(lL@YEnFK$%u0d;>7EQh@`DaMnH46=k zh2%6#Q0nvK{-0%D*5L4LMe#RCD27eKf9qh5|I)#K2mk+>Vc_^%2Sfj_5JM7E69YQz z|I)r3|5n7@CVw%Nzn=b!sZ7Q67t8D)Que0Rd9cmI>!xw=$oD>)t z@K`M;GP{wWu~5&ho@1po6)#Xl70KUCpAMB&$F1?bmkMbZu;1MQdY=loaU0S$!X zZwA4FwvNMIGrHf@*UDyew3fb@vp-39?n+}+uH{U&rXdSBnhsB1h>zA-X2$d5yGJ}7 zSN$K^*)V>kLIlLAcZ#_`D&lnlThq-SSB|$~gg-{;YQPz5!wgu=;p2Z>fUA#sJXDYK z@0YC%g=GPS+Zi`7AxtCDyKz|fs{==ZQ`rF^kJ)yFEkLsc#8vZnxZ>f88{n99AYEKO z9dFm*K~vaFu#dovzU5PsM@HJ#v_4^lrlu*1bO$eaExhKPn zLCsODKS`!YDo*)p!5Xp&%f}%mXa>;o_4_Kr{7ysIj;BfOCJCP@4SMDZ=trTM2Z9F3 z5T#)LmSm{q((pIeuwrx`q-@|E;3rMJR=LkGRNhS1Ckn7j#oHWvcIP-sKPpcYUDb!F z2%q;E)ek09zoL#p4t1oc%LS5`JnuIacfKDS>Ivs!RFjWTh4`bbrdv(pYpfQ6g&oX- zk($pZ#YV0!rK)6lOS(P<-5TU1)w>K>#uLYs4tJL1V32)&Tkmd#i&li%oiRB2_9>qY zG9&RrA^Au9{ld$dDh*8yh%t!DNmVg<+%X$ z?hG!-xcYuYu7huiSu^gvPBG1f*Zw{gdzPPGhW<@bRn<>F(n?Mp_NniI(tgSV%mY_$ zcjMC0(hW#sU_Fn*si~up5mV7r&EU|qH*dR9lvU!u1Nm|W2B>0y3>ib69(bd()*%CP z0s>2JAA5{D9tm^oQ6ItiW^NNC_RW{DNsN7SD9s$eK%l)@MNGkwdC_|Ys1RTBXI(y?1PPrqR_RiE>v6u`*_m1JNSd+0dIhW$wk zibVWl`oSTb&*d}Aq-9GB(M-HUSs<9G)!~#@^;@lVJ8x(!y|PMMng#U${=A2`8|;hs zyc3zQhbkX5yirN-zXWcVP$fj9&NuUt1slpJNjn9J^Na8*hQyEo&*XBjB;bTd5aYLj ziYDTtgfh7Q4`1&T9$DL{>&CWi+qP|XY}>5Z9h)7qW7|o`wvCQE*3S3Mf3G!ruD$m0 zc(1GKsOr7PqeGlRBo1e`h8G^A9s!qJ=-6p%-J8VB9o_GhHI+_2Mwl^Z59;LA;|nM` zu`1aSB7TzFOtHSY1*S&szCg18a#{aG00H7Napk_V|Wq@!y&=m(>R0fV7*q=)3h`WA1Lhqb&x7}MRtybly5 z-gdkt$T-U0`ou@$7wN*-vO`VA3M*$^KZI;RfLxA2vUBo;T-U&9M*;5+##Et|MEVDI z$3Od@5)a(W6BbTFI2faXTv+I#FZRGb38ahMsFfy3*_afPzu)*~^+V#H?tMQZEM#!s zYo3=w!_z$Dc7o`gPdF(dcW_gvN!Of8iNa~c300iu-%W3|@O1!mA~(O;ppK*ry3 zGc#0+HJdhN1>$iz&H_XoyAptKWPgC?Wk*;BO>h{$))RNtktoCd>ZdfVoKORs@e9o@ zNC>vD*2O}8aCXyl<#6HX%K^g(0VcCKosgG@z%UB%rKuH@L;C~sjBnTbIk%vDWWh-1 zgI+}4%INcI^e3ad>E7j{GTBo+fu%aPdX_kQ!)lv~@kNuGxd0G!&tly}%9}k~;7d#2 z-RPxkPj@w+q;y*WL^W-~+WK>pZLCkEyETle6DNk}ctg z;7OuxT+vV5(y!e&c_E9tMf1a~GVE`qel4rUr7&^+`i&d>Fu#^|EuXy_Xa`JufS6wg zI6YdO{j^B1#r=zLbqd08nVWJ_1J$at)b?4oOBkq?EU>r*9L?X@Iw21uhsIIYj5#x~ z*4>V)Y_f-*HUKIgGLZ?Tc|}tyCc8L%lWvJ{;>hEQh}i(*fp6|cbeuoLh^3WWNYZFB zg;l?P*{hbhYte3Img#@9|JgID*6iPt>#lLXH-BWX#g~lp$7u7(qe|iOOd)b)BlVHF ztAOF%bk`rXXZj++dYz1Hct^B??S##lUKoZtlJEkfjHu)oH0S!~Q%7P|ckoT_Z`&Ly z4+h4iVlDvrBEF0lsskHumWOBAHZFy_EUsJa#oA=|Mfd<2!t`uvcB7%#Xx&Qd9$AP| zk=al)~8lWUZozN+K}@>ErC)~995@a9!z-vERO;{W3E=8Nnaxu1>u$- z*}fO8Kr8NM`DCX6) z%!Gxkp-qkNvoEswC*~oIaiz)|%_BAMnLVIRyTz@;-KhCp38N^B^^kR2i#k{X!0_l8ojJ5 z@n_09H{{b$iFI`{qOWQgklBpE;oZe2w(Pbl4olihY`Z4nEyi3G$4k~A%m(IvfA``yG_jY>GMgrI% zV%IyZ*bn#Xe3inm6cCcz5fq8F_szbVS$;fW`O`as*57eMLW}nO;gcT@tshrWFxAYO zWy6+_+mOSON@c*GuzhSuEC0EXb0#6*5PzA9IsZRe-@b0^v&dhrr!P}+8q?(e+xo`& zU*=&lu78}ye_gvd|1DwrU#VjjX7;3>Y4k5s@|Onk|9_O3o11}?`QIBl2ouM@rewYU zF3J3Lt^P~6`Rl^|-)+c$sW|_;-u`R;>z{b?f4s$mVn_1vpqquu7BrC&Q-6+FVqucX;VHwswLP)+A7n3UuIqsLICMl71yZK zucA?D^wyj`tKnp87TjjCv>KwR#+z+tfx{WAJiR>%=WNXEYpJ1?iD6w7e=*tcDw_uYWAzga!tD3Uq3LRHigKj@=sI{o-J3dMX4tC&vPik&TM)K+xZk^1Pf5OkZogfCCvsdLJXD`)D~C-%P`O?Sw%<}`0sTxGadUih|$hyGrx zt$o@ZFuJFr96B4#l+SLsLHpg_G3Si(p(5IvVuZc^kYhn1<=11~KTx%K$#F67za{`f zU(n!bt+`omhfyOl;TGjcDtv=icRfU_YD%+W2Qmui^@`BnBq;w;yh^3~`$v)i1{$94 zsyrX9DFT4bnobzs>7V@!HQl#QgFF58~AQwbd<~MXP=G{z? z4lq8bxsE0WlB?yc%W^Mk%!{fFajS`7cKa;qmqU5ab;&xg$wZjs+{N_*M>ufzRhZsL zrdeEoFD|fNF*H`IxR88^XeqG3H}WmNS~+Om#0r!jgfLv(brTPrPu)z>nqXU^zJcDh zHV+hy1|h)T$UwnJVOGWuoN#@LvM~>V-pVOvX38SLX{J^6kZC#s5S2cmM3PrJ(k?LaT1=f{8ouuQm(KucsVDx^U|Gsng-BqqyC%-MF6 zux66;VcGEQg3wRGn1GV0^CK|TH=#+C7nPs!u2SN3ln%;n=FOM>@N5>-AOc5uJY56X zD=khI!0NLGYHf$+N1OXt3vQA1dt7HUP-MzA*cqg_v+m%zq_E+Hj1M=nO1#6|!P74T z0OW!E&51aNH9iW8AxjmOK63$-wS7+q?8B5J-=}ri1e~mWkG(*6yU?uZQfY5Zks^nG zk+oixvF<>^{&CVOQRnv~e`N)0&K4UV=LjCgGddxk_f;et@OA3dN-F#7RH;H-2$-6vT!lU!h1r^DBqilh zF$f7GgmBWdtifwhrtyJ=?*XR1sEE8D9k@Id7?kEK5(j|3BEY}IazBF@o9#6%HF)VFg?R_smm1;c8uHyCNMjShkpd#} zgk^Sps62q)6z>kbXE#H)n!@8=m=F(zf7>?;>&Kg=()!4e%k5`ES-zu~-$~LORBY14 zgV>XRGkvmX4Ej6*+syznd*#(Egx={vLKiRyj-rKVMp6Qt-{)*eQdWY;W0HJ0Jj)hc zyNAaNFnKyXpM-3gT)z7FH**niW!`dwoaP7bS*6LMNwPU?Ts1oUv;-|Z8zba#HGVoR z>P%D(gli=q)?vWfDOgtpI_t5CRr?HJXAp7edIAl;4psjuy$=KMWjSO{0TWwd3b{n(T5a0SaMB-dK{-zNX7L~!w8S>}NyVAh zOCyHD?f4lm3!A-{3unk`_XsRV7&g#ofRK}`)pyFhHe;z<4$oy;8nIM;;+>UD5A~NW`UJv1VwG2}E5Jo0u#!eofCTgr*_2#MC?8lk0(z;dizqqjK%PVbXP9hOE#fpDABcsRVEY_BJ_3l5~4i+=w~k(eRVm7^P%h6@q| z0MrHHKpz-ih!}_MeVxsceJL*3Cc6${gHXZhPji6D$g)a+26PJJ{$daC!;ugqf`DT{F z4u1o50EfVENazMIHS0mgXMBZ-p6A8|JU z-XJV2!JAZR8lA1I?%9=R?tC||Pg=4iN0kZbA&SA=Go>hjvqPF6(T{k=XRta*E9Zmh z%%m7$iw6;q@g2dOOL^h5eIT{d@80 z-5j)!o6EX$uyWu1DGgmhDf$wi2Q>%}w%00Zy?6|RwNHgQt&=iz0=~tRad8LpbN=-g zkPlR~L_M5jmxHu4^*29f?sef4dv%Tj*qA)i$>B75qW6M$|6{ z27gDcAA8Smz8U*BSJjXM6NZ1N`bAD8OoT2;#o+o|NLz?tDdEIFV3NGK?%keW>bsV{ zXI5^W)O6z*g=><2NXE7nk*@yvSh>H(%z?q<5S^y3YhKb6Pah4?7uL@Ixa8($_hrx^%x*#9MN2neKhF`z^L$JfXCU)lyb6X*ZY<@ELF zADx4m>5F^*Cq?~jnPcPRVBr3b8<3Lg9~k=^&;CBm%Ff2X%JQ#uE^VdbD_t5jg9u>% z55h_Ocl!DZxc=g*zl4y#Q0#AF`)`dzVWVsq*S?yv_y~UIGLm|BiZ>3Dr zJnWNPl(>JqOvNXsE~w1u`#LKBk?tVjX3fS%IOZ%GTO6p+eSa^3o9^lCdj4=2uA-}p zDqmcWqqUYTpf)(ICzH8bT%SB!-kZF5ZTWoqa9ESTher+qL0$&z>QT#XQxXqH&K6wV zal0DQidP*$@Jba_X>F>KRQ>6)42vNWSyf*+4PW=Ea7`tlhc=@l{*^0q3oeihIQh5< z2COzTAoG?)?(!M6OjF6C^m&dk(4w+hd}m1|CW}ZRnd9l|vRFf7WIZUOP(%3RKL%9; z)k2f-&OEM?!jcMjUxs6qfLr9RF$;DEowCD?Rg~Kz{#%y( zMc#VFoqSdaZ}VjMd^`8=^C?aZ!uEj&SJ`Njrpm{b3A7O=TfcywW-gA)i}JI}9sYgL z!fLM-&MO%J!_wkWP~p|>O``$lRqNhs>n2(c=}tyvR$H@FJCqURg<+BTsOn9o3 z$Jh@FmZ7ZcD@;0~>SF8PlhQ6#GQ>WC8oFDdpS z2zrg`4-g)`mixN1(Tgsmr7TcMkKBA`h_-XdXUa1GxFteGB$UIBU)NQpd{ZRu0+ai3 z74X5jb)PcTY%MA+!p#<##dA<_0urkJz_so9Nb_Y-qDYp>Fj=br{n|kI8EE=1Sun;N zu^DJnsLkMyA3wLko9!%bwy?h6W(E_MAIaV9KkPONh76y%@-h+*I_c(3iXI9 zR)50;I7`TeNcU?wLL)6?Omp4&`)_cZTlYZM`168KF6U(#vd&y}pYek(f^94_0X{3d z!CHWY1vopb@v~+o`AbgZIle&zOB?Z1gt<3_wshqast$F0bRRb6)po|932__oq<8WD zw6TD+kJg+dz`P)MztS3jscNp70ZGJk5J_VK0G}@`KIctdBL6Xr5{-tyT1tX%K(Ham zC1g$?yn`Pn$lW(X#OL(rE|-b)XN_FYO=?v;=~zSezq`X3me-;2;OoM_PDR(=Nd{Gvbi#xi7@_p0jW<6*CyRD)qElX zKy+le2GxDCyU_6u7A(E)z-<1AIcGz_r7H{1$e%A>z@F^ARE{kOVM}!s@A7uu%}5(U zfUj}F7f}0vr|S#;RPS?bS-)=Aq<#DSTtrQWE^j>rK$4w7{hFUi-q7904FX0US2eZ}rVK^WMPg9n zxtwAR2?5`eiFh+haMDcX5dFlHC|VLrCXRWc#?D5ela-W*vk3~H83H9lzS^)KM@8a% z$vrRWy6fo}etcNt;eyEW_JGn8)Ua8>&Juj9=9JKh0&T{{ZiAqmRt7cV~@^> zZ_m7PekKHniOZPef=Ck9YqTn?eTJc@&XND(QbtnK%ZAO!8xQ9E87Dqr9QMuQ+`Px? z+uPNhs;_bHz=LM`3f$>lWt&_809Pbbe)UL~C@~Ql;wGTPghFJkSCXo~_g5lw9_Eu2 z%$W(MFGezyZA9XWN~bXO(&0>5tz_w%=sAb%LN+8m#g@^T@Ca)b1zB5I7W4G)66{DC z8Ch3z|5&4@d&RsW5)#Wwj%F8xsrjIZZ+%F#gECqQ-VwJH=dWvgW;N}@fLFli&wf*Q zJxtbWI1^N-{KjeA;S!MG50^kAG}sg@m8dHhR)$D0Q}qvrOG()TBozc>5rSuLDl#Cv zVVaiMWPraxGC}JBHOM~8j#GS;LOS6rfTk?WF~0L z#R|i8AxbbpitBZbvSXzl5`Dkp0W zLWQV$c@6N^F zGg#MwIA-!FnakmX=|&FcDrU{tCE8qLm+VZ5+3}Y;$}xBBFYGwg`)4K-t{)VCAewx) z4XFqW&Mkij3dutm(1dv8TIIgT8*r6>jo?6KO+E3Xb>$C!;hx;Ce}v{5uBAn&D#HfkWe+TQ5xPXJE#kGP zJHbc(>T-4s9fy$SfU=E3&(ngCPFsi3@d)yIGKPwQX>jv{2&AO9%~wE?%& zxoK0|_^o501eE6cw8lfqg|Yn8c7Z}!W-9~ZP$q^xdQ<{IdN~;^AwO%ja&S``I4;6V z0R3rtRXBMkokrU|IAi+{J|iQ=cvAn`u0{(q9s=ABGUF>pSqs0FK7>OWb`{|4p$Hmw za|3T*t0Dxu+L2Jv!zS8^Uydyh!w!f8o@pha>tfX-OCFJo&J)jtVR};OVoO$`2nuFg z)LuLTX`Yn9W=R);*kwtprVG(t5(TCKfMr(}u_;=8A-Dya6gvgbfEl8pCB=n+UOFjr z_Fl|`0o`y4P$zC0W!vBszYh?OH?`0^DqmPb5O^NMcVf+ZCb(bzW$hLCDy80e#zD<5 zr1Fusj)qi-G4{l&E1T)TK(iXZO3$_}lUNhq)D4t1A%AA6vs3QSI9%$3kRbuE)Mj(Y`h^0ida{tyr%aibfufmg} zu2KfSak&RVr0s(=EuYdEl5nt^J+yV)M^RC^K(H(;l2w5GA(?fa1Bg`=uYQd{ z%4_sku$tS7ztM63*;NWFBxe*j8bnaVd-{RngIL5>bwmr#pc))E50y@C>hTDqT%`?1 z2t&GqJ}XL(qXKaIqogT;cyCt_9@S~3CP723yi7+uD)~L@@t|DTsyDP%M`cW4I%*D< z7H08@GHqdH7R;2&a7`eB2O!w-r|R|`UcH{h1R`?uo<@{Osix9jUc=buTLN*nzCCfw z_9C{&J?~+40tF$10{+lRWrh;R4L?p6?S0JD3v~bjYOkjOJ;F9_?>v6TQ(WQ8G-LAz z_J01!{FlDkAWt;=Cmg>TW(|-%n>UVdXwm633vm*AyqHy@&`sr(2hh3qK$Rd2iUAwO|Jufz(?$$3G*$`%G>bJynGG&aDT{}q0DVa4-U+y0C-!zh2vcx>soHV z?EY{+97ApkA}Gm;K5h-DxPLm=X!itbebTe6HV2}r$J=1=U1RZ3>K1+4{Ql=IRu-DZ zneui3@~F~h92yk`1;rFr+I3}^8eN((0`U`A9NX=`KpcdLD=8kF_^UDbUwr%@6rLvh zNkjQxf@a1zI|2B=k+L+RE?UYo*om)nmTfsDy!HRZ^Y`E9vj5`Vzliw1OOSv2|NaV$ z{TD0$1G;JA<6j^Au1p8{&-%BJ>{l#IS37S1Yolu0fVjtMN4?|9Hg*KiC41mG5;N7Ehq3-S1|V zQ)UW|C2?%^;uTwBn8`ET!nEW>4mpNNwPAhocX*own$e&=MhFx?psQP(iT((X#Y-`o zA4KTdUGdhSeyQ*LnwT_VJkR%-*R#RIG3~L~y@GbW=cv2c+3|jEvCYIyQqJ{~aPtW2W^fPQaT3ui8^%?8id%DBfau1qM3#?~O+C5gJTY?79 zoMj06{W$d)ZpCppehhG4<-RjOdxQDcn5KJ-#9p4CDAZ}J1Truv8v`M-FbS zBGo=y;Wit>)in>ZnblW-bqn;%hFMQwZv{(-0pxfYd-vEC)4o~VISyJ@&&Rr;ZwKBB zxW`x*uiD{UBuo7yoE*c7F_Qp?p|5^0lQksm449VINKt?)jn=@j(X9T=)&O?F$GC@? zqt`J*<+rVGln3%~SOiBmCoSE?>FHA(i4)AVx5B9_`^?O zQtY3m*2WY_#lMRp!^ z5v^zZ21T1+weH%n!~)XpJL8a!bRI14mMegU4aHi)DMz{nWO?DfyYyaLFvHEv(b&V3i9>Y(#mW_qFWX=z#Xg?t{)zSNgVi!_>!KB=rGT}if`)V znSa9KvG3*$AmD=fabOBwKz+N}2Mg@4b_la4u70!|*c9GNb^j(AaTRXTY+sOLA1^n# zto}YK{!^ooCqko%2pi&av8P$=Tk=Dl2gxgpqZ3*-7`P+}@xyZFpL`cWk<+D{*~D0#K(Ir5yGwJ8VNSfC&%W4cH^3am%GWG_F|VA06*^ zRfGT?FJR#ri4A}DyOxpKpSQ%Y&TO%=a3gRqT=pSRBLF#&C@_*Xq6i%UE4_HKFmOtU zl~cACyjv2cX3YoD7esY{?k>ITdz zXkC*N7C1ifi08XlE3(v`Com||mOHbQ2v@|5E#(n%Iw|zYR$hdhrJNQ5u{W$Qwkf<; zQk)MrC(<>swDV@~n1|caw^FaZ=$6rr{jAJ+0AedSk&5F6`boERy5wz_Dz^%GFDMSb zU)~xpc>QAI=p*%7;}5K|>|&5uPOI&Q^$-F$u`BN?LKRq%%(5-#0$}6wSL3-qDqG%B z@Z!c4L>aZo3WXl*>I|o+f_0~M72!erk=BYrq~LI{G6d9a z0s4t0gSer0XD{KJ#bgJ>?4?1VUiw-5xSM&Q8CngQQtgYS=eR=E!&OSeF1z(8!seCs zsl6>c$oc}XeMuu1U5CJ^an<=jxfI3dC~_fwm(dm=@CqEsTlTzldQK}x|6rO52nR8|SyrLf=^ zbts1Nkm`~ea)?g8(Igwp6brV24v=ZdcfPr43j$2%N0^=4748lWUvqF9!9da2Os!q% z>F09Zx4stglS50wTnJyC3g2iQRU?Jxh_QBIbA235?s9v8=agG3ZJKXjow_{Y3VBPMIHy5_6%*(iaZl)w6CiK|d5y%i#v{O^sfdgt6rG8PXuGZGj=l z7YtO8WnjxXOwcE|NEUh}CIBe=w#Si!Zv&A#CSMo%C!)nDB5tyv>p&f`1L|5(4hXMh z5F+_FCl-X6F%pFbKVv31u_*n}MB!v6WYR3DNHI1YM!vRrQ21(slRuQ@mXU#@D4G)& z5mm9ol+?1KK~uG5cI|r$!|95sl@AGCLV-^7!>J<$ZfTM4&(0s7I{?s#G@@V9K_37U zERL{H917EigGj-7ZYf5^L!rE;!$_>z7qshhU(F{SvPtqBz3xZ10$;DPg1I4%jBFSw zpE`bBu)Z>)BgUj7`nAG7BTQsXAU*%)S_(zXDNsG1grob5=sbgX1d}?I{JB;;Movcm zuR9T~C-iR&<{!EtxFvm)AcO!E z2StK8pG@MOC6Ecq-jq*k43@W`d>a|$8E;*#voTDP2h%fCOpM3$*Ex5f*>?FYQw@LH!OmqfHZ5LlKyXzFX}UFoL53}+}?tq_|0nsao-5!+1+1yO#-j4P31 zx12>cq43_Zt$oRimzqysP+Rb#B9d6&8R|qnpjGU zIHR><{1?qv765GYmgadO{p>pR<9-`xF-|#AV7+y9VM;ZS{i% zhyiih=+b8WdPTQLTSZMn4h3kT+cnmGFVAmzrG1)l01_k)_ZntwgDXzX0MVGKVbkK_ z%#J}h35i7JNVqjWSXe7*;4~12a2&IyhSV=)#gc4NcmS!@1=KP*Z6;S)`+*c)byTmK zmSU8ouCKNEGa)(~!V*L9KzXsXnAzT(N~cDcSeBcB-OmSxv{Q8_#Z^%LIDWoL!e5jx z%8W?bNubT{VfP9RkVZ(vB+c8VyAjrh-xz+YOCvw*IBc{m`#(HDEDY4?F1A49^mmW# zHKefsMga(+Jxmx|$pIV8s5MQYk;{-rFX)!KB%o@sJCM6(arMxS`bb*@} zUKV%Nnty3W!(`it!3qSh*zQq`p(_&bOW4|O;)(!iRXtLCAbA{(KH!J=iuRfeQZN@{ zNjwD<3hjCJetevP_ysXTQAvRVJKZGf8#bzB`Uv{e$6AUa-(st`P{BsbjX>a<5|h{d z`6Gbh+~XJ7H&|}r?)(hh-POitaX&5QG3Kz`2oA3z3BqR)aC~pdL6Q+Qg{Fdcc*Oxv!#Mdqzceh z)8s|w$i(m4d^@;B$a~H^kxf&3JtOS|7-D;n{N=|OpR5E?d5j;3@$2OFOhTK?5z=?e zSWTEJ=~%L=Whzp)*hCG))BF)xLtYgcKGpppzg!&ucFCYIeR1pme3X{IN=5ROLE}o=X~qWpui>7*IQD-pEdMj< z^M6al{l&q5v+v)${IAIS&)5Dx27(Cx9dG{6qrdfJ_Al+1`Cni*8)HX=`HvpV#?J9i zl?n|&S0`zm%iaI6W~RHG79*_{H1~e#Xir+5McU5zN<(FTlO~poSMGE#p`9}K{r(vN zC=m!;<;;caSWQbV2hdWO< zg>q@$Q#dp=2+MKcbJ(~YxM_@=Ao7>5Nw9&Qdudx9g|8{Xm##)#c^GitgtqPB-*5tS zbjGpxafO_JbjAO6=@8WLpe-M~oy6C<>|eT0F@7BBKqm-}f4@GO`R%B)*>dh_@%lVJ z@Zh`s?m<VIu7Rf^<09R%@p0__Y2^X;$);7_C!=_ABlcUvx=ny!>H<63 zV*JU>H?}$dEO#oixj{$JwTQzhdz%69{nHn)b~(>@b3Kp`%_+c#w{+o?Kh&p4n-*?@ ziJnv^JT4BO~EB8s+7t4@XoTcQpG zUt79CYS`DM#dwX*U{*Xl`ji2%9g?+a%8(&9BjL%B)q+zM#C=_EoEW}t*8x4f?_MG~ z!Jttw$5OxVM}L-xYMz4P+<29ZR%yHGVjd-@N4>;bw2khYU0&rOl@L`SYietz{?#va z={M;Wm|Gcg2;G&)lwL;nrY8s$qEWCkZjk27bif<)6IRBWR{4?DzS#osl(qA;G;`*@ z-&LqK-ZF{!!SI}4)|mMAQJF|+(NtX&b_4?)*dg>PYUEWR5-;7VNfb7j=|6Ey0)KJP zyIFASoK<(82t|^Ng1x;vX^ZLIB&7|*uI}DP*8ln=w9`-rDS2r|Glq?ixf;`9tLy1T zoRAy0zKbgohfHiIU2?^9=4waXF<%ZE(m6_NdPR(;N+FBr^dBf zDb^+D&6JhT2b%5zk0DEwt@%w`8Ja6+p@0$nX%Loi1wOsC4}+CkT(OZkR9<1^i&R1d z$RIIScoqJ!v@afjJ0^30o(U-gU}QaI(yM7js7RqFAvr!L#kqu`33-n$obc%GI=$HRnVVr3a3I0 zQ|-p9-BeMZ1w;erh-L7pX0}shY+M2Oot$L`we>m+QH&@6o@GyRww{^ET*;12_ui3; z4lyKn3<3{C=$)bO&96wn&K=zD&6w02nksB8`h^M7?%dOvNdAK1*g{RjN_MPD7lGkA z9}ILebnBuH+uZPqLXtc7sf3Ej(0xs#Zb`9BP9X%sue&~UeTS`E+X8k2YwaVXlJZhr zj(&HFJpgRL72eStkRxb$Etd0QybGA%%dPcG8JQCLE!F3B%f(1IDm@e}Dmv&xs+34i zS3@!;e8)bs!N`43-|jtV6ITNmo>mMz>!4;F+4T#L#oEbdnlVw0NiHzIWvzu zDD@Ub#@HB4T^kIa_!mP^1>>}_7>6G8B2}+Kg2E%fNxxrZeJlcbd=x4~r~7manWABL>ALmGq^*953F-YV{E%)F(!bnudFL59TL&{v+GQxzoYOR zSXSEV=E)s*mU5?rb6|g7P|+@j_*%2(oCcr*zMav=gxc}?;hMOa6=#{)7Ts$N>pT5m zF&UtmzvRp898-1sUW%jPpqlHidW}R&AxDmkuOSpD@%cRQruhju!FLS#yWV2N1Kj8v z7^J)Cg}6XYDR{8lu(%g1lS6@qYQ=-)AfYp;#I_GNLuYo(aKj*dZ%8$$hi9;SL>tp-jIxx3D#J_d+cYhP2$?i5n z&IL(Zm!csMJg?dV;Upr#jJujZH)dGc@dm0t{Pd;%lqvsQANhb)sjsJ+k#STHjCA5I z1?k4FtfV71T9aNPp%nC$`iO2QlQh%=;5dIl;YSm^W48%d_lb_e;Q;}cPM@9W0%4p6 zLw3;QjEpM``4Y1!e^rQ7sn!S{9WGftdJml0QuPKQDk4ITmZU41GfF~~z=kD%#2G8j znJ(~yWRPGuGjR@&1ehmb;;|C%?l{8NONF74i-Ech{OU>b?c8-jcb#oeZRw#j0DwPE zwiw7&Rqu|{SiuxeUTeK%T|1kqy22sSOR814B2z8DgHGk45+TFBHb$u|*4Nt5`yx*! zl(<^mtSS30BjVzL`S2{m_^#F1?-XKkf5Q-3zaf8O?$fPndt%X>+pEiy;}5$_fO)iDp_!nn z!SB52p{+5h-<@YOdMYpzsy@Z{#woG;?G6cUi@SIZ#Qe>4ZY!O&K&QA$Pn8fgQ%6H& zF%?)M!o#GD*tb@WMS=qHxbPs*LCP6p6QR13H0;Kou63&qio}~GOsN9R-z#oJv&v>t zz5yk7u+Z_72+K-!?`&4)8|x)~j-%HXX~Zzk4$sFH57a+3v$|^mgMnh<8dsFAS2?AHB4) zs!|{?T^V*UW(YN!Q9K#kNOp}Gnpgs_TUsSl8I$%XW!B0TyF3{EW1=)3>$o}({QEuxkI(nH54mdbCr{OPGr8tRwq# zkZc3~VeW_Fk{#*;_R+4}vt=AEjz_013$wAXeXQV+v?(wd7xWW_j-+u9J(asy&Pv{b z6a?q!>zcmUZEcgJF`U(}6hNTeJ4-K4~4^eI0kxXG#g`pZBc1)B_25P>t3;OrWteLXsC`(sg8Om}wIi@LZQ9NVS)0mXu z3XBabTfpqpX*7L(qaNOe0_Mm?% zbAF#{ovN3b5f(5NHJBpn+sy~dGETy7C|9zDGQUqY9&jb|Yfp)J`YzQ$Lr=dAQnxXy z5VD{hFh2j27I?~EdMe~(j9eJXVzUs@OmJ7OvH>nV5C6W6QDjr=&PF-F*0*}u zAi}xdvOklPstHhORV~bD1HqmM-qf9#vl(+yQixYdo$n5}e&SARUdewW^z#g1;U!3+ z&toaR%1bWEw15}bk1*azGihUpWwyIbun91BE^`{W?K}j@Fo)b)%-1O^`&kXAn{g35 zCv2(LT%c)MnDu&HTkcPyKVs_2=c5^!3ja(SsD7vPQ%AN3+oAL(oTy zdYRW*^$Aj5)XNh95>bM!+UIKDF>zXuNpr2l<-NHK1n*B^0U~_ZHU%Mdnkp=syG55` zb5CknE$5kCZI9H6P3eWDjOAm|?$@?-WB?A2VbWEL8ci@RsNqpI47>3XYtV@K!$KSC zhdSd_Jf!RH9j6EFr1v9&O&BizjWzW*K%xAVI9oacF-=RVJS&pFk`bGYGbuPS+_pCrgh zWMxQF1l;X)_mXZer^_gvD5B~aAtu|ZYs%%xOIqfwsWo8fcNI?dI-_$RT4OR&R8tV_ zy`AjAQIu-bdds3SPj+BzUe5-3Q(B@#VD?SaSzF%bSx>u``))Hs>{^oh)Ecj5wLG?Y zSZvl}grcvDpQ3v3;ODoa?+PoouG5l_A~Lccou`O6jT{HNAq4_UZF_WIv7Mn30*Z{&?N3 zMOPx6uDVK|+qLh0IxTf1JR;ZgAm(Q8eW$a8Jp1#z%q zk_yK>8`q3j;!PQ4Y5J5^b0npfUNwPxjomBeeo8tgj0C1BSK5`GnkJ6(8az^lSnsY= z-rCx{?*wOGYOn4>`iJ754 z@g464lJ_-&mi0$+`D$IJkt5$|!F_pHfdH$7#gAr)RO!N(CqWE$2~mDXv(LQ@UB|3m zHe;k_jAC9H^v$2H%7h3}!E_5BGB)=^yGXs?vPxzDjHWR>CE+&~)BmO$dwa~|cIV}0 zvIjSU4_Zbgc+9mN0$FVbI|;B1-HOT<=Y+P?qb zr2cc7_aC(p;$X`v^m=$+A*ui5^ZuwTEF}zy37@RwsPBM?;=+e1|9`CH_-%>C?-@E_ zHiQ_eS5$`Xw=~>u=Xn7di=fAiPUN8zbidk2A2r93K zEi5c_vJaMoc-(6bKIF!=>BrMul!0^Q3hyfP`v^b8Jc^T4PoU~aD3*M*ePbU}Q|V^z zMJv*WRk`Iut1p5v#QMxk-1PYqU|b>i$>%4ZNA2#L(0Z%tAAT#A_W!y6ZQSLU!)!iD zq>ZM0j_#S&%-go@2>lVda*0mwJln~+=AX7H9^!YZH8LCdedbA!?&D6|WO2=nbhS?R zKlpJ)pOx6CpY~ARV`$i#5x4eXOp&;{?s-1HwMbrO`dg*3_vFifJLR&^iX8eIZtB1r z!?CkZr@g`!xkbwlEbU(%tkcGS+)edjP04AoKAdTM6w$otbwt`!#+w>gy&)&w5R^s} zj6Jw<{gkumK=C!49HjSv*w(fN;yknS`KFlP7-lHGuc|WG(O+{jSU(l@yLWI+@G#!uYtnl9AvI?WPy<*WO5B(bKqVyeYmh0gLBfOwd%97J;h07YcKLxc^i%z2z0bB z_TV^GU0VA=%&^8HqDO?iv!sQfv1M}+bar^0AiSe{#_^J#Tt{bHIF~qqE&F56bq3Dn z9tBI)t2ychG#AE74Je6@pYe$5(q{TJuTGe?-KvRtC6S=FPKGQb*^;Zt`X)z1{PM^r z>hdee`JW6IzDs3lR$Akfj9m?rNO+21h&Z>MwYZ@n#AXYP_e<)R^3G;|lM;^LTa0*< zS^iM5>&o>EO^-`%kK&$J;8JavvhA$IJ~xwmUuT>mTRSj<)J@OPy8c7@{H}Wg>Ck0= zd;DUR$Y@3OzOk(5$fha`!Yr8RrH_ikGJjWskHXF3x1J9of<6X#Zn8c!DCl17$BHF& zRNUY=$fSYA8MxQo!idgyLG&1@>{OVgU)-;A>0EI=k}97IMDgk^UNs$=Y7 zdoBdaFRk8L=7{cALr!VQzgNa12yr@9^x^KysKPZq)vBPHiy9bAFRc^|IPW9z>?9u) zKb&8H-R|RNI^I@MtysHi>%J_YrTVh>%@6efyUft5WDl=1W_A$@6_?^m!7IUaGx!7Z zRyPu=`_3JEoUy%wZ0eX*+e9$s_#6u6MG1dQJ$=A~o-5q*DpO zRiEtEJ`c?#y*#swfd-5g2U#v0>K`OQ*G2ErP~MH91SeIK95TG!z~Q47l{KAn!j;Y; zBK>;S{@~ax@XQg9hgFM3Uaz5tZG5qlYdpfHTDD8~RE#F(5|Z|GD#njHvd3?jWzZ`;W?>EmY{6G~62Qr_Lzzy&tT%azqF}l6Z8s%_og9^2 zSTq}vs-EfDw}V%9-m72H+b=9`;pnEdExxB@tHhY-doi^WIafWiJg_=Kgim)4mr4Uq z=!j`{urQ(kTeI248hdtWxH=HY5KcrDI$F0fw6m?e-r61OEM7U;9_ZwJKdZsH4eW~3 zm_uCU_3_ZS@Qu0E!>S8a_6=jZs(2cX@p4VUmQMtV!%x}lFh6kD_xvEhrEss*m|xpW znvOub-#uFX1~Qx3zPO`Y(~I=IzA0yeh%%`i*6lbEJvm8yPF%I2PG)AR_ceSTUeWR@ zBm;bIEKSC_-JD@O;*{hnKR3B?-ZStsD|t4`j)3!qN#`$0l=yD=eDn(MVK)=&vUL4OOL6zS8`|f9;Ib7 z(AtlV-#n-_qb59ar84J$Akxn_&bU{aH(u;p6!UGLrT(!YJNyMr-_Y8&{%?`q{RSgS zBdp%x^cSTAE!dRa7KKxiX}D$et;pqGv9l?Wt$zGchB?(a2Fm#uqVT?SVc8-ms@Bt8 zi~cxlu{I+cnXrJkYyZ5_1+%LIpw@r^vJyc;+-9$$AQLZa8z{F3<&;I_6xN{P-4Ase7nGLhG zUrh+9M$-XsT@_jHsAzpi$_iE*m zw5Rji(J5r4(Nq4@Ni2-f7?Q!n%-GH0@_RE9?O9BT7hj$^B6#bNnnKewT`RStEOGR3 zY~ypCa17r-cLQR($WTYyoeAsKlqet5h{siKZmnw}Qv_9cNX-xVu3sDtx-yn{-4A5P zq@UVJ*s6ObIFfm6hVk_fSjsHY5>k~mV-XCu`QX4v7uU0&KN3-iWSEtE=%>4g&R^!W z_HhVng~k0yrz+<}i`ZqZ4`ZMEM_}vRH+taOvdxr* zT%~&bVn=+3&rybDSn#&%cW1R`!ZUNP4%fKXl?;#}oM&fwb&!kw{*Nzwlx!7s2)q`v27Lc_ z`8RU3v25>U41YP=MRw8Su}*mUOzk9mPG*UqW2)QM+BH$}3I32&eiPx>Kt^H{BNJvj z$u{VVbjsMbNX^l!3E4wD^7`V~)?n>Fop!IE+>C&@_snqot;0<={Q;Om-!$X`!2$B> zvN|p7G0zu7R>bkrPz32FL_(5epAZj?@YCDVis77_jWT#Gw!=*pn;TrOt1{>psM5B; z$FX|NAo97if^(0tf5xde1PdRMJAm z#)X8PcS($blyw7H51cq>e-8G`y)JcTRy~mShGSt5`P_+h%f}aJl^F6@ z`Ny{^lIOQOp$oFez;CS6r!ksPtHx=-s&Vx0Tf##BWA`nozjogOvj&--U%PJ!3!Ut~ z1^e|uL_~jWjSB+jEmra~a4FasmjQ&)zwg5(CIn_4U==y)*cbSNHAMd3Dk2h+kTBSf z7F~tq21HK(A1GkuH3U9TN1e0+yWIR={fLNw<>z1*FEo(6n-DqOe}M=ILsD>vHrR-F z<|agG@Sh4`W&k0?*=~6{Ihpf*Fnd84dk@$ap6!F{a>9P!pHW&Nt zLyEu8kHHcahBNUoX|RMvS&U!d>M#i!aZOk3i74g|5h+fFK=pxc%MeA z&Jj9IuE-r4rFQnQ@of`a|3qzvmC<3n15nMB8lz z+*#gj-ss0SOPOD`P2J-Cw4paAfV?(d6Er3p5Pq9SS8C#p*DH*oN z8iz0^?45&ywB!f{!IP>pgHVm7^X2tu@fsaprCA4>+~^gR-|sq?JnJJl_!-- z8gBd1-o}x|+U#t|`225A%N>y(X}ce>&-Hf3&*=^Xt=Y;C3co)s0QW1fJ4%wVjcP?# zMOJIM(JF~p`#w2{$D0idXg0aluOs|1%DJ^YSkNSWGd+^8K!`Sum#92tG(z6}#eSim z^T78j5*hdPZ73s84V8X(O{|U@8V@qy8^js6Fe)0o@G70I&i@|NA_xwTAnJXPNBU7s zJG9hb_oin`E`9a$9Oi?v95R_ZV0nc@bO1bg^@j zg%c`~T>W70$6hp~a7C&7K_K#7`Z&4uC^-#_aZuDJWSIgVoDK z%C6%*lQ}dwD2Xc$J|ph?)+f`Q-f-@fu~Na}%%Y67S6Nu>GaD^j^My!cm%kag|0ceP z#Nby+>9Wk)we@5vYkI=fl{m*>)-Nyeqdc*K^1gOMFK0AIzmFCgVD~fiPSrEj46&5o zUF^$x%q&c|H&FRpvdg6a?}EA072#M*ygqlQf%@qT2g>RF&&ax-cD;^~eao$8m+fp` zqm+*0`X2f1u}^F*HalU}$db3d5WczoSMIlRvY7_~9UkB4k8!_Zy_@T~e*#el#!bV@|!H6xD%$Uudo597AZzOBc#!$wcR4}bC*7Zp z+HD5Pl1)gk$j8$ZGSBUPRyNlWV;pSC#_@<-ksUFWt20`a`0V?S zm0ezsebyz;?RyuEIo!e*Ijsm|_VtFpj^~w3(;s6b1h{=c2MF+5w-^}+$;EI_ww4hV z`tQ~!YXkzdH_Y$;_4nOk#HB=Bp`6^0lHZ6Ab>U ziOPhdI!B10>irKi{>B0!0Rko1m5rR548p|2%gAM6km{0)i-!l!O)iAcnXKA_58o zAKSk^Yz6Vp`v8a*w(tcd;d&C`j40=bv3VskHoS6XOQwskMPDJ>mCZGd3{JsOig)6)vUU)7AB7i@8K;f{% zJVXpL7C@9Rn-@d^r+b3IK0w`5FMuw>$S#No3lPaN9y$Z_djS|X6~%~8NTTfpg@D0| zpn1R<$3lt+|MY_J0Y0K9v}g8)hS7m&F~mtN453N-m+XN`zeq3P1HA)aL`6|FFy1Mo&aMUz|@4I54A;TV8Rk{{#&nu?*x&G{cnQdB@(e~$TF7HC)O4>xp@&T_`8(BM%u2uno&e|$3cNTPv$!S-yni?#hUUN?KnSeE^@F$)gCH_cS6mpT z41)B*ZLl$M0pJOmsL|jd`j%n=kO4q9T(~X>sz%>JQ#KZfI;BKdTmsda5w3`b=;7uz zhzc%v3ef$Egyv9BPlO%KX7WFz9aek}5N=EZtW^kszM%%^`U2vNYo;dn2WN?26b}xC z+5tSU%UD)8pt$25G{wPQS!jv_878Vrx&sAaqUwN6k5P4G@1eyU{6a#kbsLco2PXW! z5Fp4VAdU+U`#~b``!EOxp1uz~0?j0a(9PmvXz~7GxFkviZo*rD!SJbY=q{?B2&x{6 ztzc}qfHve!fHt4Qp&8UeaWoK0@!xravJeqa395qBNrgW&2)wxi6=YC^P=hmD0KiOt zU<9@%K&iYRT#%7~#suynq%czfP(p1Q61X`MJw7QI%^@@vfC;#$k(y!x^rTQ4zy*Wv zQ&3hzO5%i6KnUC6%|R5%2#6K-kAVnLPl0GW1eHr;P%wclKpP@ZcMJV1s~9>Hm&rj0 ze~yLlalrFmTmh0U4{v1ynxYBo@(^-CJrzX(L!e4vhwTXH931@&2nV{;;QN4*L#<$J z7QvwO{vKoun+2h8K!8(X&^VAj{)GctX|fk*M*6#iL;f|BF+AM&qa&XboXNNhS@vW(N#}^cXo(G)xf=mYE|P#eG#B3K*-vcDPxpaD~ah87GPhXO!1;~_>| z5Ml7K!NL#3XiuyW8qz=9{xkqa8I=TGhKr*9>icIBx^EHit~4FuhQ*ViSD;5Ag2lg# zC(N3H;x9tv7fb%ajtYM01^ggd!hz+qgTwOyOzBLB33g6BY4J;W{=njMD$0T&L?mG0 zOrVW(e0cDaGzgsO3OYsk3!tzw*a%S}^kcXs9U{X*h@KFCy%>tM5%YrCSH-N6N!f*3Hk1bhH4eAccn8gL2 z`^V-W#D1v?5WQjm@?Rzlj>`XJAs0#oztH}H z1J=(&KNCmskP!~agVJEB?|>q}pE6R3p@iaJQ2+`ciq62|QNhmL0Mm;Bpw*Ln$Q72_ zJ84CZHmKOZ%D^G}fS8OGfSAL;@4*%Y&;&LDSWV!VIAD`P)Tn_U%0-R33uqEhQKG~` zz#N~WUkJpN3KPIjiXZ~e>=&i~a=hFpy8W^M@=I_KKfxF7C`Jtid>HVTG9Y02N`S9c z$6sauZC_PtA)XUg3>^R8`k`KmLI_Y41ZZ7z6e!7qkuW)% z3JD3_MqQjx7aP96tug|B?FOO?pl_7okl63UgE8HKgb!2$QfQ&NSqcGgE3M5ZnF_mA}D@3 zGuWWe`v+T75iv2;9XI%NA;gG{kU9|pT#%VVv5Oo)n@R`p!+9AO z$_0|)9|F|&FQfi{K|B#OfT!^9L7WK8?gPC035$y$0T@u13YM=0noKd7 z@cv)J76JYOAc!`~_PSie&DEnqc=UQT?Rq0#smmtK`@NA zP%erDgnz}-A~0nD=;t@@i)IwMAp)L55qG=^BFFTA72UvefGrD9Dl-5g!Vwlhg)J!C zAW#QUV2Z$V0T3J983!!PsVI;EmKz2vSq=pv2BJr(HbOuuyb{&AI+0l~jh9c=z z)CEmkmwyo#abgOEoDv|;ATi1^#?2}d!09i5VG;p05pas-Z%}AFPm%t+>l1~6j~dXU%0vSC{Ns*5 z)Paj8H?0E-aXZxIU-ALJ4g*9&&o7Rmfc~5em*=11p8J1~8K@3gQzcO9{Vy{P{4qKp z`8zIyL0o14lY^-h99sp@0W9W)3#-6Sv2GAFD7Zm1WdAa9A^^ZIz`vUS)O}Rg`InTD z!xfz%GB8g7hV%SgAXa~a`;G13r1`&93l?Yu!MzBW1)=31rKCtxpbn@}>Y*-LsEf+q zC0$g>R7e#3{kpCC?>p$)N~k;N#^`5PP(PJX7j<-15rhcpfAsDD1xfV;IJzymJ2WVC z+smkiim1y!7@_6wr1HOnKm;|dITKf^N&s&)qU1*OmxiN!DX_I~%Ydw-E&Lz0@(gU^ z0TE&gi-14|H3Q1*04C7B6(R!)k`)F-=??%@C_Ylb>ra6#LC<-BP|K413lmY4(w@w2 z;gT*Cu|@xhzyCB}Xa6s=^S9>{0kIHTdCgt{7Y5!|{hcqUJFJ9)F;TbB(FlGIS`FqS zeltgCgK1s{Z18b4G=&W|NJc}8W6}I4`Vj$BM<5kvVDb?lq{A*Td$_-NqBmN+yC|vmjqO1Ej0xS%+=t*+#3>A3E z`ZMP6*(_bK{UF$TNbJA1A8i z?{i>LFsDV!${(TyvIvh6qQZZDWosfX3c^aZldF`35G2BOaupK?s?7#0HMoibHQ3sL z638W`Kq8h+QbK|aU4rAkL4`2O6ci5+e}_n@*~EoF2Gs0t=@tcPhvq4W9$OS4R3|tC z>0*PD@ZTi_4DOl2tnVPQy3IMrACL@89-Zf*)1V*@N6$m=g~6G$fF^8WLSm3Gn*>Oa zi?E49-)|!6eRMmIwF7V6>oytHt+XG!gX3p z&}}SiQ4vI4+XpBcRT8PQTZNVZa=;;ItwUj;AXfKg9eRRA%_b%)21))Kws_s$&rma} znPlCCFCcv=$R;5H!T~mMadCk4$yF3=JpZr1f47&aJF^3|gZ83Ab*tZ@`>2v|o!dT? zhbkfJP8~utxS%8o3u6ib!itK)nwWySpdenSiY17|x-2UC*Gmu+G4O4~zyBmazyJP? zKw}1gL1O6pC%;7`B_VOPlWW}&j^Gy@09~@KoltNdRg$VJAQPkqIEV?=wNeWn1D=Wr z*R_KUcrmd6HeaknX{jWIM2Q4XHZ4G~ffp%27KJ#3X>fr!Nr}P2)}p*fUr#-nYX@Q% zBWmJ>t<|2^f0&2iv$Yw69JCOJcQta_Xm|z}LjUCuU-zKPC1omzaRy*}dSr zVC{z(!Ss&U+RuX9u*{Gc%uY^+_G1{v6bwsPOf@)3{+RKK+L?(kb@*uo{6peGMboVQ z4+@4;LIh6E#CWgUl{ne2T!(5W#E0jkB$Jboc0W#^YsJ#WxHhFMW4hstsZhbC5Tcrl zn~C)$n9&*2gF>i<`3AN}1(rf7#x*wC;M)9}``ii!%K9dk-~B$)d{uj`r)&=;No@?uVzJo-N~gnpe&}F!;lt z48tqfzHMz;RC>AJt5Ps6HBMvx zxlmwZy-u_h{Co=AA_EDr;SZa)Jr6l&>89kYaICTAua2QnOUG6r@X`Ar$&&e<7$H7O zMWORM%^em>3dj|YJ@|YJEzS=$MyAYl^Ga~eyat9^<~ar;EbLY~AvIo#wGTu>2Yq-4 zc*Y|?BiRVpRzECkH{9Pw-Z%Ye@)G=QEG1wQ}(BKXRrlQ!f>oti9*ZM z+Nau+NE;l?Qm4}j&2JihUKcUhG8eaTrS)ZWxO~o*%V;qqIe}fsv*oO|)<^Sq&0imA z@)2U}P5EGaIyA))H;U7^bB>EWCPrxDseSWuT-Ci*oO{oGDt~GjPTyf?vB)@ncI{2* zxw4>=TdN;Bib-ody|9rznn%<0wn_)q)p&}SP8bhGFqRxF+kZ5SnWt}0_y3$GiE9~p zMYw=dfhGMs^w6nHp@LkL)iCos0fwh5_Wu51;QI`M=yZAuhntx9#H5^ZGLI6>Se$S% zw~qTrthY0=kb?5F=Be>4waVw%E${_{xw?s>^>MN8iDAzkXUKj>%0Ig?!_2G~9K%+R zB>K^OT|vzRza07FC^i!MD4}0}d}eAwziWc}Mv*P?vx_S10XQJ^hm(wi4PKkY~+BI&+cJS-6iUNN_1OTs&Dr{_L&sl_nRcP8|- zaqT*GfSc2DTj?k?ktP*l!FN*eF+5x`{jw@s{lE{V_w8giZ8RUQm|w=Su)$Q$te^;v zV;Up3z;#tTXnZI$gJJMxE+5Ixf>F}J+CglQaCm1Aqx340LOxjkM|1d{=+k&1bhosJ zkCnFinExxgWoF2d#or#hU7<5MBQ0qCHquCReZeE zg1?yg9ly2M@ldg%I0Z>TAFRJl9$J)rgx|`rdZ;LLp&nF!^bScWU;3n#73V9?&-quF znnZ^@@Z&rv7Jat38#Ln1&sA4$41Ye2bnORK3=+EcZas-km;`a7SDNn9;b** zq`_S=!gX`mpGcl?rbO(C00qO;X0A|mn{W7TElI|2eyX?aGu0oTTX*pePwktdYB4Q6 z# z^@qytQw}X_IBu2q4xKlqEV+3{PM+|l_f^rKy#{WtIj^D1sRudIzN9s zW3{cYA(Ywq_|27>=0JtdNE4h}MpT9-L(O?1Uk=+-n8Xy98@qSjmmkDz3@Pq!!XxHJ z)N5Fk_^WTPwOxOJbl1UCGINq8ePaRBp6@3+_%YRkgeIGFeajSMiRM!>)xf)vJ z#_1T8*sg&^DSMBzW4W}*i;AOYraYeQbzA0#7N-=Y@W*MvmB?!p&y8ZGY3Al#bGV*4 zZjW3wb7J~f{z)s8@0?s>PJ8z0w6d2pM(@c1egSeK0+8W{rak|e#o8ZGAH5dzSha1jyeqt zS!NPdw)Y<|ev*sOkN1|K7<$Z>f6=W)Ln*uDp~{r()g)&BxjLnzs<@k0DumUKCqLiJ zB$i%@AVzA7CQ2E-&w)m?Ug*!K?zik%wHy10rBq~KrM{f8XXX%9sted5VVdWs8Z!T8 zP@ORHwr=y%#2a4Oi)6zqyO=%%UFPS$T{O#6jnUhgEU;Z#sZdx9p!V>A)#$W5r(eJ1 ziMuA7afbh3WO>(fvJv_IOi653J6~b+f=>Un2t{dRjrC4FrAypkzqepIm+u0bS#z7E z%*MtWTv9dKAfs;{14Bn!SS?3^-u}k}Wq}t0HMR(G7o#w_R~H!7j+7E7^`=bCjyzSh zKV(lRl;3<;au8NE4V$}8@W>Zf>OH!Ge@2jw{jzzwSIsxlw+I_#pFR|0uf-EA(`#9_ zt2gU}bnA$59=8|`dOayiu_?dN^q79GPc@NdC++*FhmwkDO6E&vR}!pCpED(BseYx$~lc&VW&VjnV$HO53Q^QSVexA%{+wvgn$JgB2n4bFKTW zW=?f=)&;JySvkGjB^MR>qswoJ%RUK*(-XI?!M1nfL%}Z4VUkB9D=xr z>?fK{yIplmO(9r+ISK-K@k!&^XPa?P<_e95E_?BBp@CPWoHsm#b zom_TlmGhn(^^toUy|6WDE7$XSQqvtM|Cw3;8Zz;RXohwdSpiOT=*-bw_L1Vki90RH z7f(B{o#N~K8oSc*xTNuE38#syd|d=*$cR~%`e(0diLJK>!Ghdgx>z48qj&BkR1r1W zsT6jsnBC5HO6DDbb=(H8?;qUYS6|X*nSQuwe(tqSyy!*2m!fPhc5f|~Q|szn@Tu5m zvI8dyy|{lxomS~nr?<*!BiFZIl`D`RqB~?B)n6@`zJ<)4-&8sHRA> z*b8F0S|-T4W_s6ztUd?n_6Bzwo!T4XO#I23Ib#R5BEo+D&CUf>&Tn!(4ex#~oRBuS zTk_LJL~>@6Q6p@|I#W!sl;(4J%L9Y2sVPxU`Xi753lXn_W;}MD>!b!>BfFX(xkUe7 zx1i4b08?HAe>_yEi0--iQJJ`tg52~i=O?lYDP3YuifKe=w;E@t5URc#5w8MgRF%Ix zFri70t>n17W2kWU?1IW!Z5dv9OPag=3m&VSKHeX4@5C6uM+&sj#dF1xNmAFKCpn}= z5IDgOIU8y%m_9g@F!Up$jcP4`!yEgDXEXU{?{AGgPl&NL7|5k1v{SEMdg$kizaO4` zHs)Kly?0{0U;5DdG{bAXt8RtumLtCWL(Z>)rswuK=`2=i9(4)~wQ&j+%P3+RDsn5~VHKqC&uE7)R+%O@ zh=*cKXFBuZZ3xtdcnc(Yq9K9P!q=rvU@%-Ch}p;f#R3zF)BQnuy2q#L-$~8B$-8O3lwB|GKj%Dd9h{4$(FPMcJ|cpvi- zV~?#*<*M{{PWEm2oZF0!89Qat`IwJJs=nNQub}W_TddD|Xsh?ZOagXNWf9 zlIY<%q{(NFQ?ITSkMIbS4Xg=ust=RCD`zn9Yx9KBFsSfsrm#N$0~MV&A%ti6IkL6GRXDicr9E-HQ<6LV-c^P}=E_93D8+G{ z&R5CyRL||+Zw*}0q@h1vy3_Dm+uI*pC#eEZMWBk?{%}te|A*J&}8N zJ>CrjNs|;`8Gc*&!lWR1RkrYy(KZ`lJTJSMq5g9g;e7gC9=YqHWYyO^za&5Vu;BYl zTaqhqHy_DAb~>c~xyadvVUvpb$JTu8{M^|jbKK^imxKh|Ucy%!eVjEZd)=fqBfjuo zL8Oae5*%f9?{;uIYVnsOuUGuMZ7h+fDJ#2S5mCk+^N3R_rpR}vxO!ivHrKzao{F}7 zrafjnfrj!^JMP{)pV)4&rCF9_{Z4+bHDAXAj$R6+SnAKPL>Ue?7eD0_)2Z2B;|NNm%X!9-6=$fJXe9~Z-~B`4vXyHghx2hQh! zwNm9lI2G}lPGm`7Ey&eIvj?nB{7PJ{k;C7++w#(unV?L#iUA7+v{py{atw z;yY@e^rhR5uS!P3%-G#{>fRj*-@(wO_6<3i`{xGkav7vYRI%tQe8ufwkuhsuuYC71 zJ;qXNKfmm}*)XANNSxJi+}&&Oy;_30jqMxR@+LL7?~ob;j~wDA27ijKonlEfeOY$v zhTbRaoXm)U@%^+>%Wt(1{+x}@g)20ZR#lr1BIIKo57kF%Ahd&oW}KGy>R~>Il>{q zay$*^+~Rw=$<}2RjVFVjXFGzHsI$rgswf3N2zcJj3_=#~JdmEQHF-$3yiuNx72EZ> zo+i($L?^XS!mG66;#IGkcjtXXSElDVLq|Av35C;pDq-R^(TKvQGD1Sy!m1Y`6W^!L z_0nuMR6d^#cjqKkzm{8Fys0_1{b@<@%aAye!n|r~8#Hj>m79)9mUelur`}r)FZcfK zdh_AU-RE;iq1*0@5@S7bUne<3$yE<3lER*UvLIdB$++$8fY+pvU7qW3SB0uztt+B4 zsJVVbaO(%BsP4g&5u2V0X??OA)zSpbo|5rjWq5rC&QKBatM6hm-x*gnf$wuZq)})* z>Sn0ey$|0=p50GZocP9-pTd3p^4C)=S5NC(F;K&L3rPBs3&W3~W484aRsO_X{db{+ zgMRFOw=CT*Y;}U8`lzK#0%b85N%XZ6<~LpXL9=CtF z2#i-JEt%{kZdv!KJIe)GUUN|Dr9NP*V86FxT<>(dwW%>?n?9d#V^m|ZFy<20V0P?s ztITSe-i#QsNPR}+WBjc;THg&?!iOe>uO}|LuJ?_Tu508K@o|a2`|jG1^X858a~Z<{ zgV7n=yWisa&Zk&uu36NGHH43}uYWHr@ATR_REyr2Z|xeNBqeiuOcKcasG&5VrhiVQ zXpuoARoz6=YK4GoKQjgKeDz(V!!{U!*DRh)X3@>t^}JK4kJ~ktgzo!f^L1qxlY1`Rw3_V-C{R%z@JxiUHF(B8 zDMgxg$;4I*JHcY$85yj0~KBe;FK=+SOacyo0)#+A%vVZk%+=M65@Oi7*R z+ZT$vhRbDi-YR$b<+n#*C0SJWsqXRO^}8cg-?Md^4df@*1(e-5d^X3f8aqV2pkEa0 zR(XZ(8+CTmF`XJ)m_BJOl$=_cblUn()Qe?N$&UO4`a1){IX>D{ zBBOQfCeBYN&9x4^q=??BNz5GamvvX#J%wXCP5I7iA@?ujD5zh0ZM}udAA0$lZRE-11y`o21pNR_f$%V|!MomA=kV#~rtq^z~1ro#zg9BPERl^-uNov`?{E9d<8~ZMeDAgDICDL&_wom|R3G`ybp2R! z*%5f`f!YR{-X)eRB^F)Db&ZAEYX@>q@!ltJe>r8*f#klQjy-+c0dl{JP$f1>Wl{vPYOu{2pcl0}s%TYfQ z@*+{p5-u{|P5!!^{|)lO+gD*@U*o1w?jVXLqcSG!Bo9@SWBVpdVxyRIf)kc=juI!n=myXrd=Zx3qI0b8oj3?ra zM`P+7B{EoR-XJJ+QIww16HYCQ9INl^5Zxs4oOCuo9;Jn+SREcsY}|30IBbrVY;eKn zNacP%Q(5h6|Iv!_gGQXOjM=jr5T>Qzv|R3&`nJuCJ;#F>R*!y{K{=oM_D>%nFg188)VaKqa8DtDToO}+eOs=yk%hoiZDa(8Z?9@mK1 z?uqUBkc~VWEI#h%T)^MScvE(lD&v!u=uV&wzkF7AFZTr7kwSY8cmcNFPf--xqZ<|; zTpQXd)LLj#dDyvhblb;nBg*`6LH7Jj`Jh_@+Fs;$nUSw^rVp5Za&I{gR8%wZxGJ3y zIDck`BVg$Zz_io7WHTAoXC}aCS@aE9qGkC#FEl?^*(E%|EWWAAXOFX~+XvLJ) zklff&PE#>7STMPhzPD3nG5J7G_{L$GMlq{;SCc}4EB`#gmxfpMbamUUcL>SFQvSV! zX=%w_WE0cjv%T>zsd;5i`Kl(CQ9KcoMlmuSqmevr*-t`!t~tSvk1a>-*+1I_?Gs;@ z61rS4xckEX>l-HjA%f9|&wFaTS(D;T1!xmwxYJC7Da|_Q2jZXH^g7M;vt3mqUN42i zl+R61-IhO)I*n)P;&;aePVwCGiKmQCG`^dGy@SZ0)^o4i8OzvRG}m>bwgm$ibT3?7 zQ@PwoGRHYtYiZ`|(oB&wj4~bT^tU5q4!)di3(tGIQ*^QAQHZlxW1F2B{<$mnnpQts zBSM7Et>eBlj(^6&XP(VoFw6;8-8BeP#?|q&*I&t*!Xn}m(YZyuCO~du9lY`}hj(Mi zNGTH8G&(Ix=7X4d^)hE@*RDv6b%ec0j9!bfX!r>GsqYeDy{b;np0y_<@$B0(kw5= zT0R)5U}hYvyt__YJDAbcyFALS<7Lp{;W7QK2}$N?OhHV$s7PmxIzR&RGal`^crJF;>lF|azxS+qnz_oiDcGee!TZ_Dt z`CjRquUlD>_I&Q2n83r9Ou@4*`r+HcR6)sfN=Sjx*AHWYymhhhax(Pv4Z6d?oy9lj};Q!&D9tEV0ylDPX@Bjjl5AWP*t_&QSt~J$}~Dd z2Ms!FEsd^whjL-PwtVzXt_I8YYvxPM&OR%iyGZ)NYs3vpoIy1Y*1QL-ygoAajJurM zITfOX6YL=Imb(9XX0M=E^Vy2Q%Q=f;cW{oQx*~$p9PJjptjjDeZ?>D5TKaQ}9v@<+ znpsZ!=yU~N?J3mZc@S|$kcyA6nJ9bGP*9p)y0x&X*yKaO9ZLiIj5;gX)7`y^#wN_;Ll{NH6UL1?*+ELX=r;p|}!C}db)%{`4 z`f{1mg|NT6kfiL{}s;5iEvGwDCy6O4) z`l`pShAH++Z*UmmFGwmp&Oa>B(z+8GB=!6m+t(!Xl9keESup$jqe%rwo_-__1N>>!kMBVky3`%!aXfAi`7F&7*uvs~ZF_%fNw zO_FWPU4HnT66Qy&%d`Ri~@nkXI+ts_d~oCPw9a!5R3Kt z!@T$3pqmS>*qV2E$S<4FTBoL3%E+-oR;HD1*)Ta%y_24nB`1wRp z_H!L=xUoMo49q>JC7CWG_)bCKfiUMOKhe%aGocauq*vN1PMUg=rVBU1RNtxo+*hau z)88v5>p5q9x!bslIwU5qaTVnfivHksRV1Kq5xnc@uh3h-ZN|?JAx=MGAegi)5*j1a z?c}v}f4S52yMP}+d=?bFzz{OyovNYQgxfL18h0{d7jFGGKdLIA>J<~u~O&>T>xIrW`FF#Jup z2fMhVgRG6H0G4)8OgtPda-_}~q!)#kg1gyme-kI%2+*l7b$~2EpgCdre3~V3x~)xd zNt|toU=>$;j9Mide6vZiCDd)djUlPB!(=Aru5-*uN=v!i$;22?!IN-SP)zl16%KBq zM1>5aS=mpjZ1PL+KD$Eo9v@HMq2`X{K=~nxeR~t*sAJ%M^S7Wo<6?}ReL8JbgO+|x ze|>tsT@+33IBZCL1WmzfU)(I3Cj4vK7lr6UieMYlK_~Pjf4g5c%LvMg(|Pwqv{no5%jKpMT$vOBfyFqa z_Pc5D(HL<@fK%q5#(5oAKg+W$6b)CQgn|c8po)odwqU(q#(s+Iym^rwfkB=MgAnkL z#vE;V=0|7>;W`FSmG8pXFKVraZ=Bn0(!`myILD=lU;`vE^@@+GH3_SzEyEYDe}-u? zL(FhSP4Pi}pG)8B37{{eo6>fL(2hK6iv(8k$r*}j*izkXTv91Aah_l=5gf0w;F^ z!_(S}O@3$0GZ_UM9!w!RXVLEFe|;m~qDQ^{xji+|zxgQys;H5hU4d3HOIGOt#<9u{ zIw<>ai~k~y-`4oK4fR@#d6il~hBfJX-yK{#Br#6*n{U|D&-n27v@Row*4+!vF`=TD zjEH%!Ug$;CG_)iwOYX+jy>mIzE#N6V&=L00E-HWgBo}F=8f8?;8(R@KIq!y>u$|87J)h+$UwTZ2gh0$p zqI>HhxAla7^=4I>R04@;tF!{&>(%$23}_0X+@XsV$oVsb9nu4&ayZRC&dq!g5<>Ca zX(t~f64Gp;dGiyG{9@e&e=QOlh`8pbDv+)*;M9ndMmXZ#_m_#DXRZmWo}C{8!AWY6 zY!h&7BDeFwikBTSTt)y|*yglAMrNZ>M0uikk7SI`#dr9)& znlur-rEPTXH+;4BaaUUI-H!n&6}@j;`7Tix9$90BIaQ*O?jPpsl8RD67wucC5u za^7b}@vFRbhg(-h9M_Op@y>Is@)r5Xqyt1sA5U_Aja!IsV*Gk?BS&Sz_JL-buuk^iiC)9#H!-eYqP<(MTZk5b8%Sg8yYhaIZhOSKY5SF+TEK}QZ>GrU;wwP@IE`LH$)e~6U(RW#pt>J5beR$xSK{G-rIunrE( zJh;(Iu`TibLb0=&j=>hr=gR-<(}s^!QH(|P?%TejJfk)R|Liv#xO+06G5T2-=1%J? zx@7R$YJxsNJi==fVi#^%7p+fpnT#e~XogF9WSTvyUpD8bGH!@(z8z)X-_j29s&kGY zfBR6960gogX=ts>mt!L5Y#M2L_h!FB^re_#x56`T*+O?umL=VZzee_f?` z-`J0lpzLyJ@ks)6Ofg^=Xs=y^=SIDa=Pp+(Ej2ea6Z1u7IAf#Pu1>Ar#r(-Vp1Z&x z9(yZb@@PP8o`8&g=`vXEjB)sy%=jf#gi&41cClJyPI8~)JeItj5=}-|He6$qebs&y zu=grOkKn7O5Vf_0+x#(3mUW+*e>pibMX0yao2c5@D_R>6PWrWO|7$sFb+5puhY%ki z|B9elzg&#n4WxxcK0g&XC`3A&>|Kc<;d*vl66Pzz$vRQzg87QDjT#KA&0;5XS8eia zlzQpfFRxzW(8Nt>;b9}-$h=Iyb7PzLh`v^h*>c6|=fjTg`2O6t1(#z-e@5k5R$=Iu zl!km2c_=y~1`cOE(gVhtgkbYJfzwv^MP9sCP=L=mU)rYEekU+TZJVGz>?%^hM+d7S z0JGuh&Sj+o@?vYj76-+bZ4Fbbcd7V9IgHyxA57Eep(k9ub9V61nNvX6yCkFCBiVng zoNJ59BomXBDnz^Gjd!f*(l4SF3c0C$S)+2!?Cz&)T z%DBo8+DydUDEA9~1E>3(+`L&K=8LFn#9#(I5toH&_;aJn%C-Knsf?l0fdie(Iniuz zo?n%L)!U-WgFK#qREvncO>5r_?|Paa4p-r*ep`&90}kY?Au%lXf8ixRgx?V-WYEZ< zTs^LTqtVe~o_U@IyhNw{pomW=epX)bF>z*IRIxAfs$Hqq9m~sg;nCx|g2m`)RcbDx@#%nEKUmeIdASF9CqdgS7bDQS2*HU_wBUBsG1KHgr;RS zb6S-`QxGMTtk194ihsTyJUzth{<-vENQL^@%*7pJ5KXVCe@EB&KDuTOKIuu~L}N)i>iW?%kTOaWZW3 zfH%GFKxqw-F*Y}@A?;ejbK8Y)e0TM~iu+jGsf#{@%jXh$`m^*+C<)CLV*GdwcafNI z_%{6J+g-`VtbOMJ={ZB?hdDNVLArwy>3O`NZT9l&e*>dL)9z^|@R->(Gr^v_v-eZC zyW&r7}FiO^_t8*3R=xc04&(2VzZS$MN z^nxiVJ|&LVJD|k|BIW%$C_Ca`Pne{RWhe@xcsW4&D-;L4dL9|KC9IsJx#aqJN2@i` z5>^*hf8q<1&R!G5*f&DG1XaN)Y=PG*0hi}KQl^^OB8?Kp$Z1(lI4d7#?*hAC!W;SY z*ItC~k`@{V^$8YEi^L*aHX;UoeRl9D_#?owIgQJbz6R0BTDnQtm$l=tUj)gfjBc_Y zC)tUBaw$24EE~_9P3!Pd@jbE@W6oR7yln@3e>U=m){m31nZ+bYHMbl32|T%WO6H@Qvn>WA63|CE1n` z_GcOFh{kcfwv9f!Gl3rnx58ny^G+PNw?)J4Y}i(A$EfZCz!~?@bFp#Edo@Wh_+RLH z)n#Jh#UJF54nM0w;1YI(rm!?!zGenGe`yuHO2++xr2tppU9j8P-=8eM_zc;!D5+q) zZQn=j7iGE(sGa7-Vq~P0336CzQ2y&$E#yj9yawJseVq7oou`0^G~l@u4+d}N@mlZP z=H#Vj7w^jdXfWt4m&xlZp~qfHIz7$Uo297XrCfBHo( z^a1V7qC?rGJk}c`CHa$TGqGGzOIG7AVln9WwBeNN&xGTRZiQ>)kXEf+Nw@8VWfkq6 zBbP2tMxP@j-g@07hPU7&^N_UNNLomS4VZ8(TrY~ z{iRs3Fu7OQQ769vz?^5wh4&jE30QY{894a^~d130Wo?PH#On>lg8%O@;NSYheE z)|L!cT8@qlbUznQ(_Na=K~_MJ;hBmH7h&SiqUJYl=ZkyNwu?l^=bm=18KutaICrl-cdz3v_dng; zIme9X3h^i*DRu>LpElC24?HrI$$fNt3?AkPVfU*5^Pa0WFpV+~Vol?IY? z%n(w7QQ;*^w@o9rWfb^ke{xQf<|6Duh*YssMsnYQir-2blU3;_&8}lqJ-R9$f*P^g zyMPPT-hR#4Gu&>}mMT}u!@Tg3;RucIjud5&^j8@*9=dx%3kLIobwo>Vu5$CS#f-9z zR^L(}WG>o#7*7$Sd(sJy_uKAgh?qQyHhl&OO)}*qHX3-Uq0ts;e+{if9H9pErHy0( z6^U%mQTAHz!rwJBI<6~E?&s^KCl96ZQ($!>;a{MYt`1x1oN9aX@TA?@Bo+hK!v*Jg z6zDc2LY8ekNjc^pzF{uE~NR3_bEIQP&u{atf-1Yxex>3*Hi;S3m&8Ep!Ed{Yv zA)d=;{OnF}2gFoNe?~N8cZhs)u0dp%w_7FwrMjP_PfZ}qbnVCJ5A~*;kJ)a zvq__Rf?3qp34N6Jiu35S54i_Qr|W5N%Mk3LiSm@0&l+VOUkW8!*a`!rtT@NyUiV=C z!Ygmyr%^SOf4YM{scFrkKUW=)cOSnJ_5^#smapZ*t^ zN*$Pkkkd}>8!pC@(QH!eg$01>hllC68XT+ZrpB6(f7GgE+Ai*mj9)pa1hQ% z74)vj*M=%DPOL!ptP7GQ&5S}zFJn$xE2VH6s1nDKcp1-IT;2y0r)|9qP8b#}AC&k; zbmDZ9HOyPbXV---=O3;AHM7zAY+T?Dp}i5oH#tB<S6Vsx7mV z`USk~(A>k~Ky}^|*3woAxelU)x9!Lvv&pB`(s0#7P!)yPT4 ze~PERkW!EGsw29|E`K<}`S@`CC_yBOHOCUPxg^H-Z2nMI#dohd-YARnawl>8#=@2YS^8$b5YDbiHD>D2GWiO| zR!d^?z$aTMziD(8VrkqV5Xg0jPn2>|e_pQ1{g{ZPu@|zP6KaWKw^S(Jb=_imv+BOZ zj)g9KI7y9honxPr*DufzaZdgtaS;(wKI+-w_8o!dVO^W(8YZB&1;d#s{r~u1k5I_6 z^x#MfVpJ$NJ&exNi`lZIGe2Z2-KMmQ%^J=l0_k!MAbZ(|LG&e$~(>Ze6cKQ-ZV4M~}~XFechUF+TMK3uCXGJ+;2w`goGeRF5M% zZP^}rdHV5_$*&SDA7X88#!}Ym?9FIk`3stx^dHcwH(6IoUComCY$h$ET5Vy|k<&-F zvKdAVwEJ|Fo3ePQTynEIdi^rTe^fpbV*OgB+_h;&^A?90qPkBpdw!pb#&u2PM?7th zm@S9e({C?QzY_dn(jUETF3i+DH0g(6lWclnE`ouDOBx^0`YWcnSm z*_VbapP%Oj6@JoQ*tLo&=dn$p=5fb|Z?;I_58P$hZ0?bV={;>vzm<|7f2jC>@e9R9 zMHdybP-J;zm6+L4Wbs zScsy{cyyc^SPDuJp1icDXNP%f9mF|sCh139Cm*FUo&yk!Of$JJkkbSz)F2#3) z*2>e+mj9mow2hLZl{#kxD{4h*XIM}BSaw69h@s=94vr(4I1-P`)!~u3A#ERgS`td& z;ZQ}22}iR5_9mhF0h(2^`*C7C8|`q_2P_}T$|{gmdh@oI={?pLe-rlkG10V!%>Fo5 z2?Gs{0D`KbIzI$w%RON2p=-l&=o3WSX5&trXi2!WrHxSzc@j~~Y0d1D`Fo=z>fJFV zWGwsaxjISYd|sL5*%qu4heAmk=}K9=ZcdS#`Z3~fPX=vE)5Z}wTyW3d<;w=X`Q@CNp z;!Tb$@ha-(WgK?7jL+J;3m)vK=oL8I$i0(ONI8@!4$<2wfByDvP@#a{P}zE+^7g6y zYNUn}TR13f3qektR1Ffz|Aw$xeP|-a#DwoDo~%8@96tHHnDLP*IOEsHc4P0gFDZ5d z+w#jaM=>e?`5WnCkyv7OavnJPE3HY0hf9XWJChk*(RCb6$ptSYnTRGZvkF0%0QFg} zRm#KL?stVnf6poJKD`Y;ESWy+YU>U!u@7|796uK%W@CLOy2?C*oA3NS?TDs420soW z^qB;;wn2EdkH{b#Lq(3?p_lu1C~8()X`fiQIusdnL^NuG>Vc~hH8 zyrgPQ0ViQ_f(7OG*E~QUkc&Dd-nCeD=B1g&M-O&_f8Mt|w<4=a8zwkBNNf3ch%LBb z`XBVB&kYAu&dvoKUx$&{Ke$sjKcnjHk+ot>amvoNH2<8*JHYim)R{Y>7jomdV=WBP zu~fe0H~*ApOy{#mU3D~<^|&ji$xk&*1M8X{Y)QiMbF?CS7wo*Nxj!1v zmI1hdBpWo~?uc5bT}-#BsaGhq)w;bUXHS(Nf33;+a)1%z58?Ae;xGaWliDxUUf&*2 zA>^U5+4=>F3nm{|rU*1fnn?PT1-%^y+^~z5yOP6KG?8N*=2!Bj<)ZX#LQ8Ug{EX=! zLq=NMtEpC?pCt+ycK;Qg<+Pfi-r;n~#Bi!=3o?!COu@ond;R9S@R5v>uo=>}xLc|B zf1|}dp6!|kSBEqpED$HtdC8h{FaDM0`O5@kvDbx*uXIZ^j?FcvU7KkjrRi8$KyNdSF640XV1}YfBlBa1mlNCXXKW_=W{<1_WUg`wnPeKc9>AH z(0zrS^G$5Ai6(DmMBab)F?69qm+F+mqV`oM?Nke3_R$}8!+X6o%4gKl>+((hz<%cV zT{iZ+Lq3IwLbt^J#1aG3Y@Z9brLsLN5Qj>ZjxeU|r$b+&)Pb!!3cg&>$&X<1f55f` zCO5TD!Heu%ln5OPwgeJ7RY+Vv@#8(jJm0EeB#&ZtK**2pYU+$$fcv@J~RkR^-vh~G$iwB3(C)-V&tk?oHZnF;G z1X0#kU(SJJbbun7^mSCNcJ)fafBWfkGUzw?HQduU4od{9zQm`R{DMpbGviM#gB%Eh zZb0(amw|-0m+kv!;$X0DqwZo7mb*t(lfMru%iHP*P4njk zL7Cxh6YB6#Qq??1g3*^)grwO*o7flwP(PV~`nTVMDuk?D$}g2LhsqkaQU3z zkt~ERKmZbZMpsG|MzjWNm+xE_L9QP0<#S!FD$sbJ0d9&?BYNQlktD|?$knMfKOn&%WJiZ9$&xrG|WRjOF$`C zT(rI`y1d(_fh%OktGtHLf9v_Jus{!{e4~&ueiU3fTB%zPnSZ4>#us|avqWMawY^5A z@{G?;ljqXtd)laO4PHDQ4g3BqGdf;K7t85;_gyDf75EdW<#H#9zJOWuPqfOCgGSf; z1kIKOW6U1prWWMEGN;L%MJGm({Pyo$U+_gB=ji+wizl~caKri9z>4)hE5 z4?GrAL-@{s^D4?Mf96;dA})cQ{ zRf)~SoaR-n!{@NqMe`L98q!W>zVQk#9;0DYe_ES0^4n~5=6saCs@FPY zv2alog@1fu^;^ub;ErSN+lB$OrM04q+s7N!_9=5Jke5F(@F!vpQ_DI2u6y0^-ImiuwYzIF(>UHg*#b+t%T(p(qwQ zzq*woL#GiHe{qx@=ARUM{`Rxgo_@#y73R4M!$l9V+i87dDK~g+7D-949fG2xVv%zTyOq;k;F-jmv|XzgPzD~C=D_D}5@d$5zv&L@ z&Z+~OPBu~hzqZa{Srh;VqSv-<+qP}nc-OXV+qP}nf3|H~Gn?7XA7s&$RJuAR?JM5-Q)6Cq zWS#7Xew2{mzkyX0>AKaU{i+QP7Y}CX_w#W4e<%lnlKCw0e!+iJZUU1lnNK*<>nLAn z{*U)Cv0Ab+0fzEO2W0fGhlQW3zrr%|T&AaW(ziWMiZUo*aMND9C8iRtW~ii_Gl$cc zzx_JK<{0R*V!$7R#P1m*Fr_VIXbTMR5)`kZe~oT*XIubUpVX~18AfkT+5k$gJ?AE@*E>R# zz#SF--hCQ1jaR@6>GU(vaZ(25}(dZ3nb-wf3b-| zH>ROF>(UNbsp!@#ym29s@wG*hhf#n7YTThXGgzV7;y{ivM{u#8kg(1AibERU*cqnm z^VcEd2!yS(9%??fcp3+=g3d$-^x3_ZSGImQT0{wBGq^uwt)h!o0t%ec7Y>`Xp-)8^ z$AW<=foQj&S}F0PVHqf`CM)$He`b>WXlWLxzM5;!X_S^QB-*nc+x%A>=oS#6h~cBy z3xgBY!xRB}hz`&{rxRkuAriAE@|7^gLcs$Ri>?BzB1tJZ|34&naX(bHm-B+-r8Dvd zi#TWfFZo=xIe4WcXHzLMzsl3rK}9DZ{iIO=Ug)bwh*>~G>-Tf|6D+THe+%x##-%H% zuS)6*J?{1$wl!=zvpw1hS+?iomNf0zp(i%9i?+!?!@kgucP$dd5gLvJu{^|)2a#1i z0BueFPxzI=WNbE&hTVuupO1xYG-{tN1c4&c$mR-KQMF28uNq+6jG3N5j-@MpniV9A zjG{_32HmcOgCfxP{iRsVQ=SRkJc`Yefq^d8`;=(f~%r`kFJXP*^r z&?7lV%zB4K@ZNmef8hM~Q4;>_^R8O3zOzr@V>KM306=v^I@e2M$*Xpv{JqV8f^xWw zd}9%PY+9%r_H5U)KdZneY+PmAi~JWrAjm2Dg9HpT`wf%;@WIhnS-T`x@#`a;G^*qg zK)>XO(lbEy&m%NsLkJsB^{ngJv=?y^6+#!D(bomtS)CL_e*_>1{bSAc0_5r=6u5`S znF2Mcw+bePsv1QB)I~H>S&UH59%M4A{?e%d0*M4Sli0pJ1JUft;*qh&nd?zn!hTPv zxskmD!Y@3aVuA*;L7G#@g+>$rd|$i7K;|h+$LAVAi!Do$~}o_0^sDP9oJA z${HVHv+0~Mo%g%a!g+bvci+vWv~*9@MjJyoaZ`lM@?1$iYxvT<=cvsz3%Rz~Q!D>z zfI0$CsD5D+O;*vdLP*t@+UM&&kelFxLlM8Tp^8iAe{}{j)7@r+ zGGC}U-Defefe}rIdf$Fx0T^rjj#SNNG<{{@Y z5eoOlG>A7Xa`69LcPfIbe22AIWhCcLVZ!ntEn_^SNb<$bEBe#_YT?^^pvbcXspzSk z5g@rOf1O*mQ;`pmUzc|IKH{^_>)SD1jR@}8zk(?hNPwm&5-Mjp7#m-kk8oc;ayA#l z_*~}--}mFplRAw4JjRu{HN^vS_<2xdoAK=tfjB8`zA7phOf>N1|03m_2`Ga)<%(Y4 z`;W%h^i6D8yt0A5CsTME=xiKVH{xl;X^y9_f0$%D3B2&@0P>>lO4atY4-=IcL#P!T zDyHyx)klhlUat-}Vo4b8dDpWLjy#(aWRoIlA>e-AM_M4}jG{kI6D>qJh;Mfn!Fr3Z ze~u^M2JoOcbsl|aR*Q7GI@N3k!zF+Sv*1Mi(!NZ>(2d2XMkBSL1IFFZXmuBG&|_8?tt`VJa`4N|K>FCJ}Sq2`*?Tx8(=x9pY?A@xzyzzp9&K|4CHH8o>gF}6kvFM$pUJJC4+ zq26E={a43T4$N7DZ5TLe?XQz>LQEV`&r?KryRQ66y*`uSh5bY27L7- zhwTleXzpt|QY1yGHo*v^QNaprEO|TzcmN6eD5jTN8U9n-zqccuRbCX?W78ePO0t(+ zYNSb=^{Ac15^U)6e4P@zb0JXtbKeQ%V@P3;HhE1H41+<=A2!KlRs)S^Yu16Ef4Z{4 zc{`h-w{nPw9rnunSZCB{ivi&QN@%8kE#olvXw?F@HF!=Ny!{rl6N5#hbop&|UVk{P zt{hG8`n`u0>Mz>;dJdIG5S33-HP#1Ua`p+eo|de@?J9hl)?%GAXsgK|t4K_R~M zD717{tYZA3LeeLIR?dh<%;`_9qcy<>cddf%Z>wp5t=A)DI~5_$8KMJEe^gX9xEHwz zwJyiVCK5c@p}Sd+Xm|Ff^p9|aL=}+;XLE$dYmgSe+p6X8ZT3gXTCQcSQF3l9~GGlCRD)=U@Yo!1ydkwwc99TO5cO?wYn}qF70T=yrj(EhhZ3 z53E&N+9id+BhJ0jo008+e-YF5g^VR~zX_`o>0T>JPuKOParYUwrfmtMe4}*&rZ!2d zm~oVKnB&_zBIIqwehvLfotr`WqRsplhny=L*%*DP>xVT+|?}+*JXqNK3%S|`E@)tvUpL(MGG0M&fwIuY5f8YW79=ES#1!U&{ z`jc+gP3ZK>P#^eFlwCa?Mtdk`j~>XJa+$$lKwYq==z>+PJ(EaRf6E;5Bi_vxdHsKJ z#WNV1P2Vm(_34+OpIA6o7wv?SiBG!ac#zmHCNyjdPc4;Q1O6oSCb<@f8(8%8s!1{v z`klUQfyO0|CUX^Ne}+(dM)c>KUtD%nlIS;k-pC(yuzHvYzt#_M(Pd=n+ZJC0a6jgj5z(e4`H)#pL#?arj5cravr{xzOr^Uo1U?*m zox{0y5O>S4MfPjNwnwN{wU$#A+Z50|95Vr-(djJ(I|_w-e8jQM(33jIQ8fjDKF~b}%JnoZ#gT)!neaYP-)OV4({q(bPCC z#(WWFlh&WIf6e{DOx-8KHsj?2^n#6Ol!=Cx5Zns~Ujb5dUolFX=6kWI@F;PTN!{MB zVDS`Ys;genj4G>hhS7!z-4?-1A>B&^tB?M^@c;l`EsQ{$Ji zouZ#J1-bB-+&P@D>=q1ezPoPH;)!=O-o1nro+{GnTypCgzdtr6&uNCSIWHfv$Lc=;O8y(a0DE7cS!}y+ z{|Y(ff8ByqUVejk3BxS(N0wca4d(E@l+Y;Ly<(Iia)xhBX1DcDk0i~Tbu&oTA7sFQ zumyM!x4*|YamMjBY7_IL9zfb!tWh44I_f<45^majc~_c_eLQ&VRnRLkxms7O?%bUx zDgu%H{PNbPzCi5R#kco&ArzqkIz22;lk^h^f5h(b_if4CBM3l8{bvx{*|MA@1S4D1 zbFkFNWqOOUIJVfO1BW4S7)>_DC^=(r8z{)rdIu6r6lweyM$ZGO<5WhDLw3(lCfhIj zXzjU=0{bf86&+92Fw_4kE}&SMfdVL>^FwNK=5@Ga0RWx+Qsa|8-pf^vM@n(~c%}e- zfAv`3)WBUthsw|adGa%M+pzL}6j3Ed@pF&<86Wl;K;Z|^ugk(gXS78Gy*hrT`gw=( z0miZ$F6YjhPxl>TMlvpC9wyvaVC%v+U4fUP0Vb@`fU9kj(r4E?XvHd*r1dHsY#f26 z^|8OCx2vm__r2IvqfBGss)tjk4kcx`e|~0eN?EwMf^<)=QJ=l%;Ftd}%NdncmLq$M zCBEdmoo8LjZG>8bU(%A7$433ZinT*T%$oBi??@pf@Xh7r+#pRtadTv!HuSRcr&*`R zSg(;RaVT662N*jr#jl4@4lqemNg2S})N_>--pn%?0dSEea=rVIW;aD&mzY?u;rJhb5)?GPzOj*AX)c$Y zSa)g(the*))e#Xy{tsxq)faVUr$vXP9_meo9oOe)RNNZ-wt@q{GSmJX=$OinYl7YN z@fHO*votjM@T1}G6ppmqt;%S{g6sqoXVcM`qZv|4)17&3P4INoe_$FwZp$KGtZB+P&16af3IV-PdwbYl&kNuOKd};4Rs+~d60yL zz7ILlH?TU>cfD&H4F}XgQZ|6Me@l%V^5D|{U4OUB8($@z+b|sK$yKKw5n%13!HQ(* za24gJnD&5ba<;-rMs zH-7TX3jDaHXh#~G1 zT;nc&xtv)}_$m73UcZxQkqrIhOB%tox<0j21Lu`MZ%1}4RqTb5#iL}*aHZt(3RK@~ zM}#gyLtWkkxxxb@2SLZtzWi?d8B7Rsgv>zr7f&HgtTfSgj~Vtoo-HDbnuEE!&ja9G+|0;??;f6<7?#ci^bYtYbWnG(=@QuaIsxWLb?SSLTm z!V=u}JK!)1f8}%|;qH4(syp-+J>+^BbJU-F0mthcC&!XJo#LryEZ-neAI$S6QMB^> zDxxYjd+-RMhoD?za34|Cnr;VoTSdI+WWoIgB{@4YVT;}8o|q-!vX;4I^7RYvf2Tw! z)6a-mW~$LiZj=k7C0jBPwF0Bo0}L|rcpY$4E>oEP4|9Tg>6mP@EZtD)7e1BdvN!X4 z%>WTx{Ov-ey8{ZwhTLVDQm}Mh---3ct}mx}s6e497Q7xa9{w4Mr=+)Uk-ur@zgA;bNThBqfBE$ibAJHI z*)Pl`D{MxW>K~dh=(nF2#4cK9Q^K8U?LiDN^GohAX(1Go6qNFK{dJwH4&W4xmKb%R zXHu8zI4BsXyv4p!-gBrg1*(6xF(BHmHSC4UK^D3XcOvmCpbNMV6VYT~ByZv%UCk0x>$PxpvilKd5Gs}&)* zL?coq$2RvFGSUudQG@7SzQa!|Y1QzK{A!|4St*P=f1F>1dl|@dXuz)UC7Fb6Vi+0_ znEx!=r@X^HXl(M;_sUHk^v3_qK$`#q;yiToFSK&G(;)Tr%u4)=f1BM{-W!F>OR6Hh zdBK-Eg$hNL>*m%R(+9kwayM#h8$WoT*OD5ju-=iB6ytXQoAYax+dP;|=$O-J2AY89 zen>_R%0@>JjL-UaGA&+s8Y(Sy9|BHviAPJ?Ws}h;w3XG$D5^J1!OHd*blZ{x;R{my z&l#vtjw7pNl`ra8e^i_GBx@;i=pGu$NTKId*fA(m#1b(x2B13qZM7Op|HCLTvxg`a zoP%_+asG&W_LWE1V2vma`>+Vn1s+YOgEL8-fO+|L3bEF3?b2QppeEzgB4$9Ya9&#Y zOioHh{XzKQnoYlk|FI@Uw^+Ta zrd^%K*S^-n9*ejZ^^AM*vL=tR8ljAK^Yi~<7v4m?Io8Y=rk?)1)7vB#J>d8j{GQ`M zB9#pt_zl`Kf1PHUYDBLhqJF2^&7I)ZF!cw^46YI=@gD+HzBL^O zLtDn@X}jPt_vHea{O*)uG{wFeQH3A6V=X#vLAu!Je~;D&nF0P*IT|)tkbE1cY!JO< zp=9D)a9KBB3xs%x{X_->D42>w3Jp{~ZqKGLyO2LL%R~3D&^atj2nzdFR);Fo;#Ojc z(twAls+~eJBK4_yD12gagz+6qSKY%*#O6Vn=H>% zERNB>%+3`Kj~Nq2pjKum?O%785L?tj^1MT=f9Z{3j%kUH*`Lx_4m9Ll1XVXzt10Js z_oHxrQ@#YP_rC3A97PuFRCuNb(?M)l_6L9KJ~UczthfA1&ET-gs6bt6Co$@<0#hAloe&3b}E;B ze`~e~D)OxUKmcbyL*Z-3m-pa8Y$=bo`Z8?y6E)giDtuWk;!l!frH1M%*(WthM4H|R z2;E3=tQweR6V&yAlcu?6IC&{Pp&fphjg&Cb(2q>6x!SVnpjh@|+x@pqv<;I~**HOD zxYWwh!bm{suk=4)!<8D~2F(>>u)7toe}gfT3#m2J^4 zf_I_XoHl%BzYTTV0IpH)QzQf9&nk z04kKcHID&238iUol`Ka9F=K&f2}{0BN20gF4F?xQ(0Noy-8T*5pxIo0ll;x-Z^qz% zc_k022;{&Xc6J@EU0J0-Wj``t!pP1Jvn0SqUKVa(g>ile=M&hF03P{aQGqeOgmbm+ z53v;ItYbl~_Aq-6^*{%oFnreIe>8i|OpzdOiJlb3cjy+n{^6FkwPsH4s9i3A-M6%eu{L(nTEjaC;I(P^6}Xq7fxsd1aq1pF`L!_xUyo{GI))ev znkZM~D2E}Ci$YgMg*~9MfAJI?-?gKN7w;;Er9R~J1PHSs|@v}rlxm-msOp4cog zx5XwLuYonvU|If;XQ1?c5UdGA%o3|N&j{&6#0-A46;%vKM*3f6z)H$bQXnWtZ2Z5kA&gHb4;7J-1dc_jKg?rJ5+ZtOEXyve)T84e2N#~e+srJIZ`S-5Lz8K zlAV1o>e~==Q8G>u7!V4sueG-1wZbfn<%VSSHFV_r_X7-ls0EOc!sujv)sybwSswff z(rj1&Pe8E0O<=-5LvIX8uCY@d3qo9(u%Q;Wsa5TG@n!Q5S98GqJ}KK=6uHY8a{HfH z!N!(Ow^{XtgKaPEt8-E#0e>B%wX!ZfJJ(n*<;r5a0w6&j?z?pAj-k%a{R7(wXO?En zbe!&A|9Xh%@##vN2rfIP|Egs;AJwf{G#Y5q*k7Ul3dBKg2?KoEW>Ka>G{X>`pW zB8}Aak@AH$UFNMdA4C4lPv|sA8pt*K;O&mhE;%<(`eYB!V0$Ot3kFY~x%4a2o%0_! zfwb7v4(roB;w_~2Fn^T4kp{W9ZN9Emc*`W+77C&PS>*EB)csb%8cXV-_%3NTA#vW` z8(ahQY&inpN6*oDiax4IV3Ho=$UNl46ELK2W*dp5n1P>kwVkz`mNE#;G%`#~68~p; z&62jbE{*vb+vh;~1(XP4RvzDVLeFrb9ZxmQx*K)|dw%olRPz8&m!9Gc6iSf7z&baH$ zWzY==VxQ?N=?c9N!G{I|N=VO#FBz~Y)hLXYwancsRX54vYOdG-F}be}qlxx-nQ_2@ zvB+Zx!mSa|TYps!1gyle{!z-t=PCJ3)U_lFapkwnuk_H|iCW_jJ#q>s{m@k4eIP5I-R9O5bvs~sb01kynH43_`@k^8*mQ0< zg64MIf>wrd5J0q1{}!7Vtx+)-7L*%C6SlygvlP*+Cx19ozAT*?Z8vlyitWncHa!A_ zgaCHbl77@JziXlg#6K?dn;<>uxwY}pW3Kglr{On5q^dk@Y0bS`6)r)KPX{4g$BFQXQlg?2O*9#8%=J0*dM6hNNMEtBCXq0h zQU?BfRDX{6xa#GRs4)3}ND#)5-hvz~c2x+GX`>v4dvDmqt@IV|yTz#G9ZKKk3XfOb z)##?1*xNg9RIYu9O`CJbWi~?qZB;Lupj$K0E~WbG>0p*KnH-0~f($k!L`l^Bl+c@< z_$`C=9ZxPnjMF@Wl}aJqIpYg}sUKJNry=2gH-C&B%9i?j=Xj)ubk?~m4~pSBJ|D-V z0NiJ{RKt}BTHv)Jy&vxnolpk0sWJpz(Zd0v`wZDY`_mES;*?Tigih3CqxL~{ zn}1>6xG3CqwBtPXj^08JRCGk!xkDP*a@~NC|9-b=XyKqB41jnD2Y(*<(DCT;Y#F~& z7n4$I&4>>S(yc0ynK`;Wmq;4AxPf.d({pwh}G!82_sz`)LJfpu2LBocRcaNeZ zR94MSN0|_8m*W%1(|ds$E3!Ueme-Tiuz!r%P%+l$m6`1Pr6KNx;+AR1uU|n+4Mh7Cg^k%{WQ}Woo|k5*e%$ZEj@Q+vd=uK7UEy z(*IZmIC%kUFzAqM&1_nx95GBYn{L|NmJ_qpZBR3-k}P%S9-4gPpprH_0ulu^McApz zY+49A)r`|djvy0WvtaWPdVwwF#AAN|c z881kQv6Wdj)bOlHQH1gjHQ{(6>VKo@X+M~L$AVil2`J^Y_W}Mbhdl0^N3j>Hj66p9 zYAjn}I#|xYU1f>JM(LcNr2N05*?1@inPR$m7RZc93<~c@OW~b|@}J2YS^o6kM)YSa zU4^3O$RAcNbB&UR0zh?3kzW|Vm{rRRwxgkf7O`I4!u9*3Yfn6cRweUk)_?JHPz3(V z2x;}%G<}Pv!a{oKzr_rEK&-H+adYL0h)QTZ#^pXv8?W8aVz`y9-6%a}FN@Nont7bp zB<0I(^%`{(I;+X=zL0r%-4Y2HIiv2z^raSu+0iqHdLqOE*D#A!I%e>%*mcR@v3yf8 z42M@LHC3Hjt0h_YA0|A`-+$D91B7z2Mewv#BdE94vEXVOyGTeYYWND5Yg6ngrSp>_ z;qx7G>Ao>Xm@TEpD6DdW;+SEpU7YM5g6`kmfS$Dq5V;l@)O~LQzEd@HiOS(a_jN1=o^MI7$5feTI7FCF@I}Qz#lu1xu&U< zQ23+_dx+S?39%nM=L0BSNoBW@Rd%SYv7%F6Y0oHClVaDe5qNe${q^m0LKi)Z>-Cef zoz<7?{rnpm!-mB$a+7PiLuavmW>Y+aFHvR8)vc^B4I@^~QYC8u8iD}f?r>p0`CI>o zn$CQDZ~=Ac#U!k-l7DFRRM|EsMjb6SJy6okYI_2jY;4H8WRmbG>&v$#(kFJ%5(1-g>A5*oYz6*i^Wv6I-&6LriY(ij!Y_a3ve}5A^C^AnMWa&(Lrn3sD z1HMoV#ZIxo&0Ml=%E|>BOq5MTCZ^j%PKo7NgK{C=K)Y}+o`BsX2!4i-5xkoCCH-IJ z2@y%&G+wv}{(^;y1nZ~DdnD%Pe=k&Y@8WL8ZQmyC%)Ip6K}i2e>UG$}+iZHJzYCeU z)sVt=kwbiTaDRHqtNMes+kR>;N{nsj$z7Yf9kL6@Fmn2TM4 zc9d-7_25J+^Cfe-ReR>s;GTD~sQ;2crF(v;>udKcx`ZgyNaL7j7idoCp)$Z9So{Li zFBPKMlz*y84-~Fc9!xKG?Hk#*lt9rq=hlVW@N9V9{%eB?KO~hL6zJ$cn_Lbv^0wQ$ z%KOs}&bZ0L>*|B^P-y_MLmOFdIu+tjk4Ao{-+!#}-v2$CTvM$kPL*%U|4kd9lbF1A zh@4`GT>CRhE7|8n!R)~$gB8@;Nq=k6GDm~w;eTce)90?ltD#A=nHA1hWx0b0Erd2J zoYq!S`c}HL9Z?@|HK8q#)@!UhVY~JNhDj-}=fC4d+Ngykc;F;$@g^Catp08x)}rSKexet(7Wi;v5KjNiG+H^nQ?2vp^SOfzk1nDC!o?hd4V|I|b}rO({Wy66E61f9EnY;60(@3zT2re1f14q#5q zr{EUNL6(A6V1NZRi$ItJFE^x}#2Mf8WPj{ZwD^KYzkAN~xIIp}#!N!%5eFeKiE0re z2U6lPK`B~v)r+BEpyK5jXXSF21!BH~ErGJ~` zYS%8@ZvPkG;9lBH&sm(LhwxBJg5aBr?f~HCsw&g`Q~W5!PgP4TfeqT8ro&w5X>Hem z{wjD$Yxy2^g+s7?R$n7bJlmC7UiPY)TbLcxlhHdi!(kbZY7%oPw-lJ37~4V&2pcH6 zh%%yt7&4ElK)wY8k#-n^A7vd-nSb@tY-##OaMjHLFWdW#q3Z<`oj4Q}>MIlf;BP5> zvd090W%k+}Y+1P8S!mD-{~k`RY7P5*8YIFpt50#}s3p7aPUdmRUk7PFkz>Yc-bLiH zUWwS0%Ei}}0~L<@fZN9kOG^eNlfTS}8$FN>!F14+NS8os#{B&z*A=*}F@ISxdkth& zhp~T_mywXbTQ==Xei`6+?EeIBYGzWnRSCa=*A;luDuwSF#l%o9?hLeaMCl>bBJ6@D z(|yJq^UL*)a4h-vfxkktTlPt}k>^hu!`BhO@u+u%%~eOy6LNf-#)XLuY$e>P-rX@& zG>V*~aj}}y83!?GyC1?tB7e|cEF&^d`xUiMj-1eY<7DAt^{OR#W*HC+?}NzWa{J;9 zKrm(|nY-qw;3`4M)4_2yl9oE(`~ryu<@AMw1Z(69U_F028`$u$7;!mY=3x(s5hoX`^Cjr z1_HB!p1q-Aun9Nk4HH!}{TootVAy;zLsXhBTECD5E;sybQRungr-4|{LgSh9WN64xLfx0qPwc_ng zxgx+ohF1E#xe#pyO6D#E$(m~{JH*^4Eu_&$KdDCe>VF|tzU%=Ba1pM>N4$FWB-BaI zL{hr^0%5sG{5A=3_jDK>taxE_QDWmh>XZH+Nu`S9leLsf+?he#MyFrH#Dd9J(LMBZ zO%Fq;Jon!o6vM3u&?HyM_gsY~aAoF*r2h!2I@IJ4lDTj0ALL9urTmBAHaW^w;c!sp zm7BHs)_=IRMi0xZ)l9cs%}{?(M%>^UU{I2uubOJ9bpt9yg2(6WVDwmfjPP1R88S=S z@Gg6$tJN}WN%O!1-th3sH+bY3E^8mzv~9M;@^6EY?;~j@2EFA5TSc(axIrv_^YB@_4^FAg#^tuSg{C9TnwdU**{Un#0)d)&tPZ-%&6Hqtvujs<(icbw)>+#H zGJk?fY51J%0#B%55;k7G0*Qt(wY}y8YXrdU%gM`*__k&pP@^+&NY%@!v~Gc*DxCe?uU(QDC12ce{i;TQWu$_%>BAbo#7&$+GKg0tAFAl zqYLg%b@;u|d&Y&*A-(TMd|!<-%_#W0-@AheGcB@Ryrxev#1-7t40``eApdsTSJ?mj zkTaZMpr)kh$_B~FvVz-+h0J9oWlLC9CS{bu-jy^4C7r^JJSHMF?ECp|7ucD<*!?&d zZHsco_Mh0#>*CnB!|>nV^DoYA$bTCOlIWW-4L zt+3r;1D^q17AEM{@dkNxHI>mFbq}KN0c5h1BXb#-qA+&Ij;}h%VaYXyVVJj$#xTwFRp(LFkLbOtzBYzmoQg#l) zQ5t?4w~8mf@q(a7sc~CocPqyHFYYGEBk^A3GOTwxAsoxI#cO`#DgfhAr0sCd7k~R# zm&g6@xF~4gZG=){^W>vJ6$bqWt|bFS^JICDzGVIF6gSm{Hdwx{r`4h^^^D$0S-}9=kJM7B!g-_FHc1Fma+b!)|V74*)CtZbHNVkr4hI3 zcjgeag%_k{@x^b_bAL^RrE)bDydpyCZrIJl(N7b7s%!>FQI5>Z6`^!N{qhE*o#NY| zRh(7ktiNviZg??)uJ~@fy%e0h06Ah=?aedEDN)`G;;yTAj!CFD1Um-eg>)S8lA;Nn zdN}fULg>`uSoq``nJAEHs@0&2wF26GSAWxE#ijgPX9uxb@qeY04)Nb150ypGWR^#_ z-d-Plf?=)G_{;a?w!g_MqzhDW=;Y+a)G2S~{YQt;Bj}0+So&-i=m)owINvax*nuf; zwlEM?@AN1==Lzmtkbj9HPnd^}v~MP_7{+8Grlhh)HxED*;{!^Ton1uzf@Y zms`pJrja*4(RX(10;?ci=_zr;6>d1Thi&%Y&|$?Ydrr4NZX1w0w%Q(1N!!TdjJm7 zG#B6Wq>H~niGM9+^oEbsz$B$LuXJ}VgVp}jws71dl!R?lyR(~75-%wshyglZ zfSRBlE#pO8X;n!Tl+aXSkoTg&Aou-u{z~$tLw|?X-Tt?lv+nsdwsBkNZV5Qx39X>E zW&1X9tuMBL_u0|FoI_0BLfWMjAAFESEdySl55sl+_4WROM6%B=NvI`^W2hGVr=P<4nN z9Dg2XJP$r|d#Z^jxs7N1hMs&O5%L(|Uet^a+r{l&LY=)dlV@i4z}(?dBQ>I)2rYYX zls|Q9!tM1HVh|S6V;&)*lw))huc1ndZt_;6bS%kZ`^>1MJ1Cp)pXXhYraJ=b$XDfFt2m^s06fNv_8B9xsz2LWl{TOlZkzTcYjLu zytXBD)%OFQ*vQ7?_2QXs{PTY!tEij*F81S%^J2>YYm)g(t#fpw_&6CGXDwS!>zdlh z9qqEeIWI&?yj9%SzB31ih31Fxr*lieX|MAzP{oNJm~6L7eiY1i3PA<|t7X&9`sb;M z=jsh6Sa^NVH5DtrvSem>GKzUJG=CX%V8K``2mS2DpOJLbHdfS|*;Gxs7a(U=@C8JE zg@Ami+{&M7d7Y7?>`Te_E_UT}W+ewO+e;JK7W3&@-s*VeJFeOJiGc$k=>Ft-=z%A3 zOr#HndFW0f!z6HzqYScGqKYzj50pfJTjlgbEGxZ2MtK_zZ5^Q<_kfj<$z9z`gL3D7W*x_>q<&T$4gVg!}q zqG#Ceq>P_F@*0M|io1l@5-_Cv7qhHrUWY_yUEhauS|ebhG(+iFJ+PXIJA*Vh%DIm= z=7u#zlu;Sq6laOYURj60UGoq<3t0GTwn}==_&r%EP>rt{sUf^D=}o9Q8FrVyK%kYq z5)b~-7sNc;p5|63va8pyp42p#wtc|mk9``a$2-E2wm9^=<8Uzcwa5iywe z#)t4_JY2oD3bMWIau=VoX(f=vpSl5?lU;g{uhtX&v5o8k9e*EPnFC|mG|k9E1pTvC z1S_8Gb%nerh30l2c}XToyB{sR-!u13_<@1{wD`)Ne|TD$2synDLJb~&hO;Gdp)~IP zJTGbj#vzUYZ8I4pO@|;S3YshdE1<`40S<8C73oI!jcgs>itd@eVT256LWWe9g8@m+MzZWV zANCX8kl$3>`LC!wje%^G%4TiQQP6=$r%#H^Vbh7-9ets^`s)vr)m=fMaj~xll(*w1 zVnXn?pw!|I+e`7Qf-OoV>W_=uim-11EqK1dyvsH0kyFbp6GdRBNLokpn3X3}M%c=h z{j&aFt$!b*Y2w)~^4;jM{?kg-cH+7JFx4sED4l2I$g47n9P<;KO9s39j3=izT|fPI zfvsYDm;2XKVxmal0OT3?C75uMVxiJt=JmA<3aNhf-j`EBGSn@8#AUdTOK!*A69c!-|j zgk`~45<15UBi|yGnsZ47Ysb3*Jwa`^dz$VRAHOf-$Mb&5ucJo86doD18(-7v^L360 zRoV67(<2pu1tG(daf7qb;cjmlfs;-Me#%$Ges_vo59HcFA-t#u!`VftYgLtbWzL8Z zBM0|?0NtaEO_zZXGZOFL)hA zVPkc4WiLiAM=wY(NiR$QZ%g1ft0@F2kn39cbna0wFJ-QB)Q-{;NHFIoW1ya9?pH&YF7CmyJYDT<0H%%> z06AtwW`GjN6Ku2r(1IKRW%Z%O9e;-_N@|E|=&DGv zvHb1F8eQT)L>?SKh(gXmM$QNzX||ot=-(5_*qyyJw2JN++E$6K`vIz zPWFHC)3CO21$cs7?0*2@PZyv)@GoK99WB6ex>*DNli>H302FM@fsU@g-$7EK|13Iy zr343o?QZ`g1{T8YcTW5NxC2~)z<-pnHg)|gRzXEY0pMV2-)cH^Ut=; zL5{9Au5PaX$p{2k+Smhsvv>WyXEu(1*%U>UWThn4HJB8@gXhSk2m-6)$n56j_LukX ze4-Kx`~Y57ZU7q}Cx8_^q>_#n;vfeHFl$%D-||V=fOT>Mxp=euYpU%WL7t92|F&A% zI9gc#R^7tgiGM}Y(Z<;wC@b-QzF-sLADb1>4ZsQjIs<@S=GH8~OZ_z|zs+pF&0q=q ze4Ic|083MQSD>GbB@q09=;LbY0R*_YxC8xs{=V=}gviDNu&^zkj)C1AkMc{eJ}8xJuc00WDN)+{~^2qw0U`vTml}p%-CdF7TQ;$R0c)|Fv*({m=(z#Uuv=^rehwYQTs(D82`V4Ka~x&tS(`De#$;5(Sb_HPjE zV)r))mf8Mq5ZtN5AIJvQ_fIu0aHu2re1HCpJUH6X&Bos1Z?@mF2KqyZ6RZU2pOiSk zML>T~!v@yR>CZB_sFNx9`SuT?INAQs`cI8G!QD9lU2H&q8v{0QN#{Su@i%e@y8dD#G3-E6v1a8{R6ZE$Lu-NW@Wc71FP@xw7gl$30oehyZ7jeqntyXqGzE{Zmp&`_ zdB+B}gTMa!o8dnSQ2lvS|1DZf41eV1!^8=`;h5NY`2cKO;M)znkvx9?h&BJud(U6b zTJS^Rzxek{2LK540-7T(%z?}WLTxj?gje`W7Ee^dQt>e#RpAQh$R)unWKXmc;Y$>3 zyafuE1T_cdP?vxdWcUsJ(}Em7>QIH^*uSi_q*jk#S*VI^n))mH6QN3qj(_B9F>40r zD9#5~cD|+Cm&-5GE#sWZX-#S+1!#^Oi1W2~-N&(yy<%LXzcr|A{Z$C-Svte^72Cxg z(`z1`u!CrRq65(c04$i5k3tgAwk|K$MY@zxrZBl*?7FM6CVXwNRz9U9bQ5QTg^)|y|Vm2@I{ z`ns?2YA}uP-5bjI?1l223VRjpH2erqn?mh-7HaCwD}J?EB`D)yyMLPiotPK*LNux+ zscS1^k7Iv7E1RWaSytoowx8f=Q>KfHZpes
    k4^66S3)H(Lp)S^0&Ym_u4#*=!4 zd!&nVWyo`ePGc{M>L`)p1iSV7{alk$SoZLGM z4Y)v;Q#BMWO;!^WS{Pl$_<~mlEGV`%__sa^)gId3WKkOV$phUJ{+KZGmkWoY`+jhW z13~@UKS9PCoi+6o{qICA1(2yyxs>^)XN%YQ0;aZ5j7-&a>3@r_j?1&!%RzKpkKKoH z!B*HylEo>ENxX^iVwrHo^lslQaMP*IVR&!heJ;YgqYebEEvv8Ov3)$IFVf>PUeL3qa?kH-mP2&YKh=JCo_w!i*bfgQ&u3l9?Qp zObQ?23>b9e6~+>NiO;>E4dAto+s8~+kcA&PaKBV@wwVu=-`qim54tpIHJYn>z>Cq447LxJ)l9q=AHnn0 z!!%CwZ!A!wFL> zQu-yLUVqAo0Ie-e34JPC7}2_?SB4&G^mW0Mzxx~L9c)0;l|R$+eUm*m-b>N$GprhF zmOYZN@JY?PJ_|UMrl4Ilv7Ag}io=4T2)zl-`T84?NtEU*q%JrXY0ISJN)p(9UDD&8 zuWG7YciJH0-2U!uaz1(%6yxyx=n}KWNPa8+41aUl^|QqyhQJX|o)s#d-6mxtT=7i^ zsXgDzxNOM^S9hNt`+is$Xf~>;kI}>#!w3dijdL_1>2CrXaZ_}yZ62;|=*u50#h-p& z8@Z&$G4<;`so*{`%GBnC5m2Oj5B|z`C_X&j_bj5`Fe`YE!Ntr_{vLRjnuFwxf8gS` zReun-=Htw*pTLIBrh8+^T2_qT18aA~I|^ving_i-7OMINaz_&}u1%+o4=h0#jb6L7 zv#yLao?6>;UYatCK7zNc9XeAO;uKjgudC|$RsGc~#MOi&o2olr0D0G%5)CzW|25@< zJfS(zQtp$D2hsanpR^9Tx||dwl;DfL{C}M87A383aU*Z%&xY;I1$N?fJrCbSq6>+! zelLjm{D{0#HY3H2&LsUQv4y4Nt$3QMv{PseNk)Q zgQh|2;>F0#*CO1f6lquu#!wuwcCsbvrOl|Z$&`&~g0b9Ii>E{BZwmuac%o~C6n~GM z8Keus-o8)=A#h%7ZfY`QU*le$8}zs(tNFaAt}5}qQw}%khouWT98=RD8}7gLx+G%O z7M{0EUxT^scV5n<& z?W}P63a1|-Z4E-rA^vsN^P63$E;5e=oE-^Lwg9EMAzF!I+wHwE}3(H zytZn+*xTwzOZmfuajCdJbco+)SZ%1q}i_R6UA$a7n3EXrC=ZN$EBeQ?36 za++V5ppqz+yop3T=H$x`(Zv4I;>~-xhFPm<-6QgSi~=2JLGZNy?YP$Q$4hJt#;ILw?@@lJPUwEkx_`hpkrwr-BdrJ%k3!rN|DX^{4~l@ueuBHD%MX3VTO?lN zxWLWViCnMOE7~fW_A|CPc-a)4w>BTxt}%?fG>TZH(g;;AB&lx+knkI^e(6*)*P0W` zeA-O4j0F+z*Hk}hVSpZa`y%g6#akm_d49wQ88d;$Ed}+5xwL*;tbcK~BzfGLff9%c z%~3^(C1FvSp0P0 zHR!>E@u>G1Eite_)_)PkT?9DMBI{@)rkjUU=KF4^xT~q#4BKkvoT9>>6ITq-)5OB) zlTf)F!LMLbPKlvtLV9{DH?DMceh`JNoK`+3_(U1~yGVj5yy@)G(FMRm*VraykedcwpMw z)?e>FXpQFz-M~hLAPn?Pp*%jLuNoJliDY}!1d_uTcIT!I)yON|a+QiIW*URM(NUcw zTUe#7mB_EL1XA#PbqD zwkjyGxj9o@AR@ZpS>7*v^vJ(M5BRSe?NQ)e z7^wY*Lcf{}g?GcA3;)Fe_(csS93-w1d3}ldq-9av!i)eoVTZ!?h#r*jr4WF za6}N?wT9U=l-~i)rfpUCE@y7M$=rqb2PTzYEerPcfJsct+ax}xfsj)NodEL?zRA68 z8LwlSZGW7Xi7C*@PC8UWht8x_x97tE*{q&M;$V{4MX18p9WDmQ5}BEf_i*z^Xb?MD zp+}l)pCg_R8*iV4MN)n^Vl_L3ZkcZID_WbKofL&G9)yU$Bned@W&iSnGGK@=w$5{} zM=rWC9Fw07Io2NpN8mom(U2*3)X$J&0P;!K(tZo;uIiMjm-ekzL}G zi7JaauX9RY>!*DRdDOlPSq>EP`32&_MNq2QOkDU!G~hd=keG=AnhC77qq_{}Y&X+I z-pZ-QTzWN)QhSh)jwXS=Q&phum90SpvVWo>!cGA-vVvzVv4fP*AE_4A-yk!zNnk9P zBq*OXtUCuIyUI^NXQ?Pd%fBc9c8js7y*PBnA375w$O4YqR4 z-S_fQKQU;vH77}o1tELQ4?}hMZq(d%8r*tfk0(lT*KyT;Sb}uPDa8mb~s)$_`+X-OK5I7j$i2=rVnajPxZxf1|q} zW9*m6S=0mTm1;PwkBqDk-8=})6BWXt;m<#N#*(82-kYr(pKS|;iVnt?9WUWlEmI>1 z(^S*g`*(iOzzttCqAnRe=*z%a>3^#O;4^#SR;09p^QRwlkqo9-kLdVwv$aDPKH@dcYlj-=6Iw6 zZ=JU;8Vn>hCBu{(V8+w;B`_^h@MxBvTt*`p)#XHSQYH~yl{Kar`Yqo<6+^_ObsF{5 zNHe&98nd;lV|8)G=eFj0>LplxSSY)l3PV=uCQG|$cN2e|liWLuG{>TZzR_d}{@6E8 zzm9o#qVyiloZFqN$aFHMzJJJ3fm~afIVBb{)N}F;kYV-%1fy2tvY5a=)iRP)Tllo# zoC92Lvve^IHA{jrhNAPkl{mp19+4O3yf{cECa(DToMfGCh3dA(AG*_zJLSq`Y2;tl z3=xr-(T25Y(OSj)+lTI~gGbX(nlG38HI80}Dtqbr$Uekcx*F&n@PBT$SN#BmecaNv zUz=!F>AzOdH~ks*T`OTm_rbP~1$R4s%yJ0fD-0}e)9y;(mlasU-dG~RnNpND0lPJn z=2s}?nUs_LlYRrJSjLtP_8q5O<*U98j6bKHr*Iqd+T!;tbwSTIT|F8_zF+*vb4w|)cA{egApDjHORJboQ=k_@YTbQz6MLhU9 zKTz%T6`kc2q1P}p4`IW!9N8B!Xy+p%9Va`cnTTW1&Md8H`a~%nJ5&a;%9kX0!u(>Z zl+jv7J0yLE(Y}fzWp-ddWB(_EQsFa2)|@#Ph}8?#C127ACVv|AxMCNiiZwAVs}-{P z!hybQe_kx2_MkV%q7ei4aC9%W$o$Mn?IaPFB`?nyeRB{dUNQ#??lazx2=71h!mumC zB3;i*^<+xL31p2Y6&ar~v&Trnj;V2`OeP3JwLm()lkJ^dC>^WRCeO#f*V|>43JHOD z&32)nDJz4g6MxYU)YkI34$U~)FHVy3I^p;A+2e``C*bX5g9ZT(Yu9L-ux1BX?lN1>Q9`S@yuh`e#;U^v4%Du|%JXg2aC7IH^a>vp2eeA@;M z6@GMPmP{Cj_rO75=_b(prrqplj146|FgT}P!B2VW+YYSH_H{oYB>>9BOyl7@VGrLh z1QOjl%ztffKZGWjGnZzgcxAxj4#fGwGAiO|=!_5-h(*jBg5(@F)nM%yyS7HbNN6<8 z2(FFbQv_3d>-a3M1+vK=w&Q2CY{Q^e;#o>~Vx3)yFA-X7Jo zdJ5@^K+EQ%B|fY7p{>@~`j4$uHcNbXrizWLk!*Ys;9?J0sd^4r4F<`_6E=Pr$bS7yT8u4+|)lw*=!ytahB#s3;n96KdT zaev2}Ar4t5R6PzzCUCP&E%QDRAq*x3ehAITK}QP3VZ2#e_iv?8TcMK=k<>Y_XpWyS z=i7##nuPowZq)O2_FJ6R7$6&J?ME^3#!+v^A9hLGE<=n-*8EiPgXIns6R}x{!nvmaOdQ z=}pj3lh&%ae#C`Ik#E|A_SI%6@ANa}?zf}Oi?=MPMsd?=7Dq@OQ&_0xkbP@p7k|(5 z?f8?mGBI%K*(VHjd7EM2Z_DZS7&jx{0gIJlN0^qt+oE?jA793r)r69)CC@4RZ1e ze6;jSG5kJPUhiui83N9~E3f|yiJwc3i*|EO>x?v#k+&#sgHMV{MXZz^+o^<4xzCg5 z@!E!R^ME!Ep@nFbSVrLB<=y7OFlH22_y1*oCBppE=t^8upk`G2>Tr=dCrDfVP)ngx z3gSNb%k8)bCb!wtjmSaD8AHK}dOY^+rC2>}$(;KDXb>BxwiaUN`6{{J0d2bVf7Gp$ zV!M!Gp;U1DnEZKB!SELfH=(hVTTrwA&*4VY-sV;7Pl{H+T(+y5+m#U`?X`g~hr~fX z?IN7B${$Y%M2k~~@wRj~xf|P9w{eD<0H30NFsIaOlDeZbh$sF$3sj~pT~<6GR+J-S zB5t9vfT+DRSbuk#CS$<0Q&988kyP_IMjKTY@zIRt3>tSj%#p#;!AB(@?4{1G42i;t z_HbX5%pZP|&-!{+ujSoUkvz;4CD|A)fA@7ei%Y>gh?mmaI63-EA%rvI_FMgz zZgZgSwx=5L*v@T*_L1jfQfrNp9d;p05^xYv+i~$wZLVBA6&3VWD?4XFtWXA1XgX%( zD4CdfASt4goK>e-`hg2~0<)+;Q8VIl!M8lj)_*k7?&~COOn3+@a{(((LtOzLD0t?p zWj|Zi1rJ^$f3J#He;?nAXaQ^MvGC6kjSuCA5%2F2&ZG075y&B@$g%ofj&$F^Te)0` z5w>cw(ex(yxF0~@oXx*%)3OLlv}3->00?4JP^?~V*zzt?7*>nGDzE~X3L!P`2cCUh zTYufEIyv8rRScB=x{ax!gWqJ7eU6?QxN_Qxqjqqag&4)jHS$0>;vcwMoJN*=6b;L2 zxPjA%gp$U}yAuqW&)Kl1 zg{;g8-pPpL7SKy(f|hqWVl&2`weG9BQ9GJxt&smL83PV#yo&FH~iu>Fap9uw>N245}lu!6T#sSD-+yUnxZVyc;G zdDdaZE)3J`x+i`-ZCi9_Ej{?XH!cRS*JNi@~LCK zLO<&UFodTKrWOVF+l`TVIn$Xg6?-^EzkH(GFB@5FPn_7&hm>Vk)`EJFmhvpY+`u<* z#Wqa}d3bPj~h#SqMuEK0XYasXSROKfH+gZ~(0NLT;cTqM3Dc=O??}&bK z>#(x{$qWGubkkd6?!~AaH7V?6x%&_jqydVOG^U=eyOv^{7%wRRML@d0&9i?m8I9AH z%rZB!7`}zEC86tNthxyjAB~tr0t2!oE%y3{j7#ZZxZoG538R=R}>vt8Llvyq)Q8ledJ6rl)ly* zhJcec3c{fr;E+Is<#z=*J69vV(B zr$}lza-D!4kO$_5i8V~(OG(k4fkb96`RTz<6ZUB^>Kwk2x?$62WWIyY+TpnO70;Zy zWd-Zg@vmvo>;4H@$3+tNMkRc?3cto>+-tD%?9>U;3q8!%=Qo-kQEq>l9vuusHPX!W zS8p>LaqsE>_qWMdkHs=7jjd2eYW6{l|MicYJS4pSqSto&Z^`6%wm55&L}-ZZz7p_u zL-28-w|+>)H^q`CpP#52Xw4VXE9vW7^%<}5KTBBgvBgJMZY}Tm9gMr%aWPZgoZIPC z`aoEF)(=Wg(EsQ}Iec;H$fq!Sv+fUoZ64w&x96wI5 zyoay$;&wLSMf^)0y2hO7eUXe(O*hBchfY&P`G*+4O2k7>6fq1W-!Ad%%r5WTsUCE@ zoV?_#(@x{9jictIR!Eo&cPi4jC(b&*5KtZqpqd8M$B zPU(s$zPjX|@2r{^;O-DCCwWph(e`$@jm(fB!>u`E@&qqg&>6<`GqmQaL=}Cox;K|f zV7`Y$w$O`L<1$b|S-3SbXm+=Z15|X&i>K*J5zKFm!S{cq31=0X-ZkkWRnXc*l;k6B zvo{R@vx~FxVhg8JNyyH`etiv*me7d{?}4+*ufE*qfyZFrME}05VeHEZkRjGLJ9I@7nM6D^bcXoblxfa%kq()?aZC$fG;BPDgmoR+)*G#3Et>Ui*s4o1$!y0!T?O8G`Gn&%FMz3Fx#{Az^U&O^i zY2qCV#6sEQ*w#O!XjhwnkiHZ;{J0lQBOn0+tZ`tj;@R${xf)Q(kOE{AiWkLZbQqG! zDfU#8p=MnMxojQ=V{0-xf(5jOKPB9q4laLk4!Ump@z#-CMew*_dHTI!V@z|o2+&w z=O2BN6NX_hl&x?+r=o~kS5{68w48M?Z`)kDCS|aZ3|{IcA73Z;y>M}hX&LpL;p=}i z<gP-YK*$EPu9pVwa$VAekuy)$BRl?iY=w zwn-$V69v}cYO0=tmM}Wqw^AZ&3!@7z#vUh^1N(fnt)-Yc$J^zl#mTF9&4T$UuLdmpuav z%x?O0lOOE(<8e@SKumY=^+@hl`j{|Y1drPAlW`)GBg6wqyC>RyOmIX2?LBGwj7?+u z!ja1g=Dqg?(@o4|0qHcm=BmJ3X>4VYko-%n=PVSz20Ui(6u$`eGK4hWjdy%sAdZl@ zlb#FoE=qN3=KTi0vm3*h*dTxHcvd=mU86!$Ou{BD}2r!uRS^4=Gk8ETqH`8^R7ki;it;Y zLC$A(XLyBqk3xmR!%&4eoJ$gmKF5HeE}7~&`4h{C_uiOWkMh`uH+Fw;b0UyT=<%Z* zbQsQI7r(}{#w>5!+Cb8m8P~~d6Q6z-9d8LqdsFc+W44`~3!@fE$m57p?A?Cm&#d7n zeSqk$Ys6@$H30q?l3BBJp-kBPj=gL8fNMUd#^h;SJTVy zX`dw%_!3vglm9Mi}e98*mLvRBkkF;B4L3)OS=Z6 zMoSJTj(2Q1^O~SIIyfYRPv&%E53&k{fr(M#xLBIN9M(IUA_||nNI{kq35$6~`U%-C ziSS+MSV7L@A?$x}R5&%#p*>h@j0AH!M$L~AmmzMHrsU8ac6%?3NW$tee($F-om%M{ zzH5CZtEI{-wlxC+?IVMn>3zC{pp$sk35$@B$&a^4+kN(F>DWD&?};jFb_f|*2gt;) za22WBVcH6TsQx&!hcfo_?|5UeGyTltj+>lhRVj9_k_lGUq@M2%wfqg|}d3QU_Gufe2Byo0(YdIVvv@S~GV)Ce!5#qQ}uyKrh zd(V*BCEXL_5`jTdlp+85hsOPPKNcBNZ>pc76SvJ+B)Byoa)` zK&bnVs{{cNLs8BAXuH-<0PlWidjnBUg#mcd7|(wg#M)W~JK*b%!&V3+p)#vpy|>+U zdV>p{$s+@Gtj&X_-@G5yo?t<3Qn}?XbJO(JJR`vqk5zV1o4k}H zT0HNgQ(Eyz)OZK|^6G!0qgWPTA;@C>m7iUuL(+35(t1JpXn&OOf$aLy^Cd=0n-7+42m$r`zdACxoq^Mho@cG4J!EN`b;g}<@dhRmWZFjGsv01?o3&Et%z{QOdYlcuu z%TX2M*l!dfr*UUiRff+b3W|Szmmjwz*^JJJ(LZtFxk`bR*n&iIF#%23Mqfmki!6SM zCC=nSPm2f=5ez>9-L7ZiFfb<&No*^qzz=G^{i zVH{X7M27kmcAfr1B^JYZN4XzvYYm&vwljCS!MZ6B7n@fxAcR~#Lx1ut_~$l8ZRu-> z;zN)T84r+;iK*f06ZA7=k%_Op3lq!uoz{b~7@tcOK~p=-sv>6PMIHpANptaP0A~G5 z9z4X*q6Auk;ze?i<0Y_Nv{z_kvIZr%Z9P1j3#$#)}#3+BPMLxMJ9VT2e46}J#fvW=?ahwX(Q{sI4Z1{Ca|!NKf7fitEQ*GJ6RY(F1iA`3RS`W z!jm1~avqTwTFsWXE%B4_+lk2b(GTUrGa@(?&k0UnjDt;YC`f;LyD{;&UKwn(ZcDFw zHcReX01pmxQ*eJ(>ajlh!PDCT6?b~ONVSgW3tab%lKtnf_4b5Oov~$ohaL7LG6_$u zWc0&WG0d^rcJD73;gunb#n|F@XODU&p!eitE^iGRm$2=YAP4qh7}=3{zhyYpP-KE) ze-V=mZS`Wao03%Hdv_*EFUH^TQGXNDqIXooEGoLS{WyP>e^r>x_aW^)tj~*6ItNbe zia_AOMSNQx++8%6TNzzeOrQ!#L2KTu|Na?$Sw8}`RWffBrlMX*)a@cbujey=)%h4I z#k=}%kqKLN>ATT+`T^g%##dY6xkP`xxsgLa$ZZ)cKO}>(0eGB9uL!mizi?(BLt4Fj z(G@ys&vJiG>HKbsCj7nNBZK8Dfrp4dEZ&zT(>#v;a|e@7 z(I?7=482IyZ}&90v!LM!D|kc(f4pJ9_`)e6?qP1-gqxk&1hb3__4ot8I0$2J&a!lF zl{XS$24(iv{3#B)WnWCRm>b2hw(4PplTruLSUZ1{e>@7aX?O~CkTO*AAVu*aiUc`L z{!PwQhHGexL#U~0=lcx(J(zy2cTa*=gSfUSMoiEBHZCq1gTrbHCZp~A`QfV*490L? zzry*$b!Y|M7IUNuLX$iWYB{veKryzQ(i&$;uq(oX+YmwR(8|fDL%FD7JgA#P23k7~ zeBXZ;6iA+2=?UzjY6BtWX>SSb`Uh* ztOd^cVgbiLfbwj*M9GOw1VZHN1h2ZO4je5VaWo6Dht|n27Ba9gH}X4KVUnefl1GiW zQgZ?IN$8=fVwPx{Ae%%-O5CrSC~CO1#xQ^XkN?*MeUUMc5_3yE>%2INcqX` z?Y&?RU)_8%yH>#II}N#noG5eX5`Vf!G@FD)h*ylR2H2Jo=ALULaU(^EbtTGee0;gg z@C9b+yb%Q&oh<(4h;7bH6)A^8Leu;BUHPFm(X)?98@RvvAmaRywqc4;}ZG`y@PHPU0v!1;dkiiBbrSiOpagx#KKYGux@QtUi2-#CMUzFh-t3B2CZ zEox^8+)uAX#8*-)!YrT8<8c`(N4RJ~@vm^qouGHJO`1eA^f zJEQIB0FA}u6mJrP%yjaD+-CHk~ki~4LfcH)~) zYPpWABXHqnPHbiA6zqRT?FeA8k!)p61M}LG6=W8R@R6c6yMsi{Fk4n$-fMqqT!Kxt zQCDAF9@;9HxcP23J9{#E+SZI$7&1u8)YVh9aoTzw_C@Aryo;wiMPtf55}fajk@mY> zR!`J0*=}glX%4iIjuZ$SFHY1Op!NpWMJSU0W`Vqsy%?IaFSqn9yS>}N03s`+fOpdzZ@euK^xR@l^yeP|nFvYyqw z&#-b~z9FT?7<_+&v?x?7<_@X3_Su&+A)6mXGigNuouy*lQy{Zp%!_)l>SaHn z5S^0oZje~5z2G&5xpd;zLd`<8W3eii=GZE_1}8TBs^ow7p%$2^P{;HzS}$)Vi?Yt5 zkhL{K7S&AIlOLv^U(0Q~;4P#o@qd!B){+*|E7HR@_1w|v4P*^}=gbadJ)<@7NnCXp z(oS6ZF&98b1+zhh)=^CTSteQouNAo6KDaE~W<@oF?lpiuXCub!(}*iop*Qv;Vd#Tx zVI$dG%*TJy!#O^qX2^2Omz#V^F&ViOC5%T5Mvf-@Km6-t0QNm8Qk064(7ewzAnM z^9o`QeWL#sm((l^R~ee9qfGMh!Hv4qePJ;t8Hs;_&l$7i9X5WR=PlwLw1IR4<~bL! z#l%v-h1zMWH~N`{s^g2L8cmmRGEG^Sqp2^+Gb}TayW6tM=NS-0{jO)9OLjWWcxyPa5j|x#vY)RH8Z^l$2raL{= zN0)!vd%u~pNQ{9O=%{=zCSQW&TD>uM`xYU8NXnn6-Nb(yhzJ)S+@M}+5$__L(O$naH%ct+I9~`o z+Km-Yu0MUG4W(8j?;kviuksLp$hO0hdSm~{r8QR&9h;7+FThBEy-gli!h@S53Nc%9 z*CQMID?uh>#uRIjwRsnwxAH)%zJ3_OFuaT%^m8A z0Y~_1!f!gyk&x;Y6cx8FYF48ocqRo+OUMoZz=X zje=lNH~xue3a#zQaP6npp6~P4_=qji=#{6@U+oX^hH*c*)h?hdHq8>WoJ!WFg7V+F zBtx5JG7N0qn({EeSc7;v{fxYt(dTmRKQTWMe|w4_ztnh{Q+MYq-cS5FNcH#DvbXN0%*!I8noj3;zk0NYGj)iT=A%u8FBcr?ZYOE^ z_O7^Hp2Ni5K5O%CbL~-7GbU#1!R1s5xQ>@zHhvR{^$%y$X%Td41zy=&k zfb>;a@zc(Z5pmL+Ch+IGGfceenGGjq;Y-5qxsB2KXPQ2JXm=s84Xb}BHO;TGbhhm@ z!EB&VkN_2u%#;7 z%)Q7m)cY;;m9qB+pBkeuQgIm!6vV`&XIZKYSt%`wUpVAdS{G7v0y>upUcguX&mLjZqgMFEv&_-!s8hosZ5#S*3i+5-ie%^5|P1G|$U zHlU3NgoqI{Qmub=jf28?(T?PPH(x!Yceyx~DX4P`t8RU7XLB&W$a`j3>c<(<1X3)$aVPdWR?XcpHO zu-#;0*_bnmoh%uCRJ_6Me)WjX^|k5w^%)*SsMJRz`OSaPhsQ=Q))E^nAe0;{GWjav zb|FkNQ0sIhLc2p`mSvahGhVXe?hcj5{O&Q!e+LTYDK-Y8zmPNW!D9;|`Qz9Q3?;&z zQyw5_7Bl5W_X?dBwL4J?yCYV~AuztNq0O&4DH>JQG!7Z6R5{8s5-GtNS+1J6_k--O z?{Q!Gr)GacKhD>9ki)~o8bL~M+K-HVR>KW;tiWGZh#5U*p#IEyAC{02d;HxaODViq z%KhV}`PbK}UFTvieP{c6F02LDD~F1rZ|bM#3F#1+mdM1|bx}5NdF*33^kZ5P^*^?l z%8jr_*KCNX>wQ9u7dnyX8`LfkrzRD|vnRxX`mBG!(cM}L>JsBk#-pH?M)3;(5KfhZ zr}+1;ageA{rk+!xnIRQ?8dP4-*kO5NT(jgzI6OA@;|l!|?hQ2dfV8xFam3c^p-tH( zZGv&=&S1&4?o?F-LHR=fp9#%}R%2NKItw5pRC5FMgcEM%SyIAN@FI^Niz`>^rvrQM zOyqwMpZTOm{HmkP4z*OgXU|-^sw0n|AgAhh3b69F zIb`W)Gx;iI${=?2c8_I!1>|DpdvC`fXSRPFvK@jq3cWA4J;OiaKXM8S4><0q@F*Q; z&yZ!!-l4%f7(G*zkGUS=hy*V^NVyC-AWO>2o6aO0g(q2y4bwNxwaTDmME&BRhZp z{<}7!9l|R0gZ!3E&u=&heNW!mg6y`-*ti~*eQTM|<#8+hgQQ-n8?v+-q+yPMw?`@+ zhLQ;kMwiY5b!J5O!h8Lt1@mb@4|`1iiy`!$vo0Dq=6I~ohVj%5n zE9OM0gjJ%}%z8l1Z}yFuX~x6ELUj%-ra^fvTxy$*2#B*hSS!a&buvPyd-#7qROM=V zRFaY-g8KSYABR_f$znbc9dSsxk$vbI2>@7{qfeD?s44DX9UtubB+b*YetpsK47MT9 zoF&X(@=M-Nc(3DnisVM#O#$>ZGQ{K#2SWdY0f`&&Gp#NrnnNS|TvNh$t3UszZQ@U8 zh&pL|MP&bZLlT;bZ?RmtNBKewQiQ<1tgZA(8u%fxSA_j>?;8)l%mROe@yBGVba=jq z+ipxxh;@=Q@DllB1dMZY&Rg?S`;4W?4u?jcvFCnZ!-nD`tX>r(D-}QLkkZANz~QPU z7xGH`eJ{QCP>s|$KVDg^_>9fTf_-2zV?k0GENS`8Qsrb;DCvKtlyL-6d*|0vSJksf zs^E|xP{X|L!N(78DF1&rp9pG&>Htzxa=qdy@w_K@QAI&;w%f};q%Ckh`nf|o@*a(Z z#g7flxl=v6Z07J?cQ_7G6T)y@-au;*j`CFGj%%y!!8GF+4zyt}A>C+6iSn6B@=e(^ z^iXhj>|s)tWp(eUIUl=YVoD8#5j-dXanr;v6HIDDs;XMy?q#f={sSX!=Wl#ut;xVi&bYo)#m8$WMmn z4Li$T&IrG_ZU$EOjV87*L)rwFl2!C?m|w7!NTbai$Q6pSClEy+a=1#R|Da8#L?B{& zdD!T&n+M0hT`7A9FeVO)iu{1=DQMG2|FI^CFlQAwd4xBv5KWhdq~q}!!VO8(6ZTE( z@E=0pO)`JD!|)Fa`p4TMZu$P;ziN`h;n0EAjj1xWuB&g>ou23C=CcxNF^?6p9?c-w za@C7UFN#*lSa%~&pVqsVv#VSWC)?EBj)Lx2sAc}aq|sNGg0|#U+{2rwYEOAxF3+@P zs4o5`L^k%gXwkEUYoBwSy*9DdsX2K?%f3s+_27RragZ=pPxE5uQluWLxI}|L4m4Bl z%t`y12_KNETy^TtNgq}%er~x>YxocRWKk;Uvfe=9t96)L3 zVfM?LSa{~gN*eq*H7{rw=>qhV#^ja z(<3og-g@*jK_EY2a0nJEh-zOwOSLxD;4|7bm^=umhZ*S=wB0)SPR}$%tLQ$)VFc@m zAk6(CaACkBnJ77POo{VraVW7VsIFGHKG$Xwdd72l2}p^AYj&$?tUU2+M@fIo%F!?H zBj>esIH@DDSLq4tf&5BTL5l)&ntPRrW3w_cTLQu);qxE=Y5+86D(vSzbW>Ym&eB29 z4f1tTAddF8A86^iJmj*o;h|0099EK*@zGOK8{|LSUcO)tz^Plt;6<6IjMF{w>4_zM z_Y>e`h%>0D6y-3DSCZ`A+-844=267T!(SFV#(Egc7>C@pr{n_`|9W(_mzb!levJpy z>#CWBy$=ybHF}w7c)A67giJi8rmpl#;fx;yV5SBxU)ZA4r%t2JNmPih5xCuA4EJnHN=I@7aZWX)pAD` zvK!(pP@{C6d6TX@bn_vT?pm3Kb+MS-_PewTg=l+2tV!|6j#6lQg~MGaI{kbffwL z%MB2VClrjE_Hj==sOxqC$hsz0{JziDor$0)<7z%(i(#}?p%{PhrWw%mE1zx>6?r;Q z%us?ZOz1d3q#}NBg%?f+95~imm}0%|rDb7Yob^M4LVss^$#(b)FHE+Du=r-K&ChP( ze3Js?>@#y5@NA)!26fJ1!j1DsBSD1;VjtE}pdCXv0x#nRaqTO_@!=~L+K;A1^=$IN z8&S$KmYcs~iUog;BSdJhA7po3WMov1^YA(|DE7k{#RqUP2_9450d(-(crbI{^6=4m zktoT>0W6siH&m-pUYwWDV4kbyww@A}db zk7}Pms;G|U7<=HJqa6^w37*e04+A(*N5#a)?1Tv)9IS4f&@|m z3B*u-_~8Y#h|-Kkn?CTw%@RN(e!~8Nr`A8700%i<(m57Ou)n0b%A7c47jK&iVLqSR zrrbebq74YKfa(%I{d4P?U++e<{vI1SnuKD#l}h;KJAHqU8gIEGcjDF>M^M_RhgAKy zZv=x&!1sR(oU6Xp0SKs|sIN>YJOpwal*;!#UC-ROM+IY3dAYkuV)9`<4cHvcvMBJg zjQHVBN#Z~FMbA=Qaf9&;tb`wR2BpQ_Ih3oHNfwfqKDJl4{}2^yYSqsXC8i5wV$CSw z_W{Ks&WL-+>+e60PySJfmQm%+%!k1ZBLa;N>X3hN%Wph6j)E0>XAl;QWGQ`*eYuB0 zij|U9mQTcyvvCR0P2;F0XWZ>Ar&MiT&G7*j89MV?e0m6_9|O5lg!M9iUP_&;MAJlbv6>LEMt;gC16m~wSom+OUwnh8}b8JRSJ^8i|d%Z3?7nBik->iG$f z`~>vVY0qqcql+TiVmzPw-5-%{%f9={NVMsWZnOe3=s9lDXt|jQ^mk0TA5Xt*m#%-f{9Onk)CUh`zP(kxXlp+5z8kLkZq}$+ zE81u2;B9C{Te3&^CvG*mv@y@~!0mRGD%em{hMk%~LTi@_I_%?k1(IO49h%no>?CyL zyK;3=&RT}BCR``(wGQ|t-z|n3+NXYqqcWv2BZ{YDP&s-u1#Zgu;L5 zb*e_nT1Fj&uR-N7%_EI^WUX}v%j{uK?<=NFF`jY-T%X(GD&FtxXcTbs9>Mabtn1-a zMEroK7jOfvbRK$tfcpEz4o@<~!PqeL5~0BG)JYnC%PGU>9dE}mUNrgf1b%F0C~?3y z6Bh8SV}FIytxA>Y?(oAYs=9{7;!S_iEw7X^+CnC1+7XcpaUhQgJ*oxzc1c^^6fPVR zav2ScyqjpZd0$+neU}eN6)qiikK*+;yAmn>?5gMv~B%!;SeY;`5vHR>6x&v`dEto!d||`L#$4WL9lIGRleJR>j9A5A4nlto&Y&%t z--U$L+YVeX<)kgLE!g2YDftJjy)7bn{YMh#&#_fcv{~?H5+?#7#gu-;v$tfC@3IiG zt#t#^G?M4(fU?9kn-g2Rj?)1hPA(c4v-&t8{9?n)$R+-yhKt!02SL)vs!H)Ram?sZ zKY|Ga4IsjtFn#2px;&b#g7JT<`fI_+PL5v~i@O<>m*$QaRRAehn(26l=zfDf0#vpv zL4veYN0>@*-yBzU&J%T-Zi2+JM{ceq_1n?#8v?lpM%E+VtE0#GFgfKRNJXRCKT8r9#ML9SMKY?~pC4q~cuz z%ytD0>Ru3+qh~q)CXn}IoLx2)>*i7cvzr|lJCXR1CqOshzN@h()Twcz1K>IkQCi$3 zM^;5mfQ=(!7At2mnN43~ywU zTGgq%JL4!;RC`$Nr3qeSI2mD2#tRx-b0S8bfGcJ#WmM zz5Q~;)w6NRRIOtFEM|a9%D3CdY+E7E;eIWqai{u-Av;-MbpB0uegeEl3x5#pM0`T4 z7W3RNSUDp)ZF&D1ijqp0u$4NPGHMq(Bs^jN!-EMT-7>|Y*sqTj;UdD1%4jCAmIN&r zqS`_K_4oDxjD&xA;fKWw!)#Cs5FO^h5P9HX!pmDA+++z|L?M{j)i78e96-}o%MMIE zO|F@wJZobN^4_IOJz#qS&oCq0`WGGwC$;HezKgkI9=XdeTHr?U4oRGdHR1fXDdpS5 z>YeTF8V>hIJ>m(Vz%ktxR+7}xg2-OZTgOHS#eGGH+ev>{-5w}yMQ3cE%$$i#{g0N&i4x?&mV!0Gz(IwfFBKI}Hh~TkFx?x?_MLcXXXj z;E$SR$h!C_^5Loh`DJu3;@)hhQVGb2sVfHiGGk!)8LbF3$+z7BXFWR*;oSGzwCiob zKViVB3~PVT{x@{ZM*0y&yM(5&nB2(HylkMj)xpskXeD^+9ottYls~FdPHzwmJXKma zMVQR1Q86rg@a3_2s4@_^*4%)axIlRixQ`4GFjOX@rpPK1{QRGFsNKM>$LPeCm&lDd24Q;&36;;y7{FN7J0vU8fXa?MKagUF(z=I z@PmK2ZznrbhW3h7a|+M3{l7|cOpL@!MksTjD$vRGUwFvqtIF%Ja&PZPb&>;smAz=R zSw$Yk5b#iGJ@`0V>iQ0-y~(RU!)_)D$P{t+rY-5FY&NE<7=C#CH+eoNoLh5t*_vaD zz}yfUo_8?=X8@Zu{7*F~WGr1m+tjXjjjMm`niLIoFarLP&FO<2hDxcaa#+TPCJD}@ z^MoQnB;0MsTa^xSM%%`@??%*y*;U0GIzA#|amXg+|Apn}2Zbr#lp{c-3bD()&8+YQ zU?(FJ=3TO+K=kfVjTx{n0unVE-lDwe=X{d@?y;5r0adUZWXobV3Cwj04ftg7v_21PNwC!De`&bj4=5q3=tm0u}3aM9B)|4K&QD*yY zaywoYu8OMh`$bNlw6}tCUuv+w=x2YY^TB@h`Ba>yHU`YF{P0J^Tz>w4QtvD`aRB?a zLCFbLVjw!GDn0wxVx)R+9r6_d zy_3%w1Pg(2s`&Q>>2jCuS7HMF1OR|}@SC#xg0a!!<#_voY~*j}vO;PJ(~JOrDB}5& z@HjT)&tdMM_Dx8M?@f zVuS~4*}V)ViL|x~P*qevwV6R&V}xoTXg-}V4mG3W`BUSV$$qo#Xq415zum>}HX#AYyU&=Ka^VVYVu)5e8 zSu{Q#_CoQkvMKkf6l8z6oxZ5#lyi2CbMaGeALGZzbQYkt^#FcZnY0t5rKh0{%_rw< z9}20$X6*Se!H$;u`MTq-h&saf3b)TNnm^75wax=0f(c1#cKAen!5FH$P@ev#}e#iy=*n=~l3ksUrzcI2s^_>_znXcWRJa0_e0CX|Nz zYY%wtbiu$l8#+|o@k7Qh$oz)tOXOAjU;m=L6hzKrJ-k@bf zIP+sy=q=FrG**Insl(G2Y&qPvLpRrGpZ^4Sm^P5nF#4K!`(w=~_0J7WC^3KL0F7j5#KpRJ;Sh z52akwei(n-C^K8TJ@4C+9ESVuu<|(fql604Ie^6DdOpYJxU?iYWU`bYA_Kx2IktxQ zheFD5AVSV>?igJ#Szr>qQQ;#1(sDbx&*ErP@ZW!*cdv*Wz-czQd85I&R55#G=+#*9 zU5ki}(aO(Cchkd_HhgU|LZ=+vPfGX6TzVz|IMRXq9Ih`c4*N*ePe5U2P_j)Sqe@`+ z(9R64b9Lc9b{&m=o$KOvR+5(u)g`d^;N|@_?YMF1@qjNLd}V~~|Fh)pVO~}rWKjf1 zVzPfVY`9tKB%SN1%B6Sx)S$!5RboZSWd}-))ZJwI2wPF8d6f3dnIW5eb|!nFKK88rWB1Acv)a- zsjxhP<7AH(HrVTHe%dLS&2lR8V12*+`n~+*081tx(}I%n7!>M#|GRF9_W8GD4VkVx z3P6OxJwOcHlNVCV{;ic5GGH8D? zwF^bX4UapKEi@UOmwH0LwfC|A7l%rx%wh>S^SX+qtHnZaQU1Me*l8zjtUC@+d7wv< z4%Et2f&)m$y^p+RqvWC^q`Nm{ADsKpvOFHgn>`I=`9Je%l8itWo4g<0xZK^&kiYTX zsFO05w1GqlJ1T4hn8bU#7=lN$mr8%jiwGa)+ zs>R$X$am>-A+bWf!1&lE2ZiqG@50JqbanMJB=p(}o%-*%ASJE0Qfyk`+@Ij1yIM6B~-|VXs zu0HTR1t-)RiYuOLCu8Sdtks-6k$vqX;t^dIvgCd}$Wn;8JGM3ae3QAF2N}t^v|28= zlAiJgQVnmM9JVh%Z&ZmJECPQ?4Gadj&GUf;!Cm701{kE%^YLDHv;PCinaF3-$&)(c zp2-bdAV|Q9w)8)K_wwRIVXs#8hcr62tm6itg5HoVtIM!18~dWyBhU3Db#{ z@kevPLu=#1Kht76FtB#ih8~B?vVF&#UYNZ&u}^=;->b8~R+1D_S}69tD~I)J`^lK7 zzw}kx)cD8Q8{--2yKOh#Z6&Ng4DGr%S(EhDTo)4joblkzuQSVv_hDD8doAA;VmGAk z9}2&Jcw;(@qbtN~Fra@u0cV=S3AyOYL~_CpLXmr6a9E9SjVk^tGg_ydpg>F8p~2l(4hqfmRFGE**N?bCL;JEws$@JbxB=Ju=0Cob z_C6T_8Dg^JB$!buPA$+nOEqtrXWsAAYZRV?IA**K8XxZ&fn|R|RG3+GHbkD_`9xbx zfM<wU9$ zWk-*ZkS5k7#{p02eQz8;1Id|T5%TKR(@Qe%a3OLYFpS{}ykU#?bztcU(-f1MZg4>6 zpc4^)lPK}#7a!yJc347Zs8W)G|#&4UPhEw~&Y z2by-7)8~)nB-=N6XDdF#7!b!r293bh1IJA~kAvG1|DyiFikN?;OF+~X<(519aLlFc z53x`F$Y!CoH5>Ga%fM~;tyHb$fHHEV(7s}U8@_)~jlij2a0xyV)*E%}_@B}N3=`B7 zB=cqMzTh_G=Z$?-dK_1(%aEx3TtNFGgfHetSgU@Fo`9bhUVbdBoSo`)mgmrVUL8ZN zzU$-5I02zEj&KF9Ta=5@#w~L;M71)au@o{iwVSJ3z~-muRgV@lsV?CjiCc6@Hf z%D{i-@E)eIo*&GEN9}j=oj_NS=b>;JiTetp@Yjy3XYNP2FCtmvt<2BLyzpI?O?FSq zkS3{~rAf&qUW(t_i%h4@PHE=~um?SClJfdbGcxI<-x1D%g{lK%5kY@dOgwD)+NT$0$*|Kz4B$!R{f`lYHV>mN z49jE>_n#OSiT(X%lN~TQ=F*voeLnIHYyg}+834&J`puQxVR&^WxHCAECU7a0`U97j z&Z$%=gi6%pP(pf=+xuW)__y}+bQPH5!&q?b#VQoI;!zX&6jR$r64{gd`|HJqytsdI z=4PN^O!MX1s4b)y=w#J~XV08C`0f`7(Y~XX<6M7{ti_loWACF% z7aBxrRL`IH75E^uyJX#SbJ#(gz~Qh_lg75$*tV0#wr%4V+i7e!W@Fp7ZQHrt&D`A0 z-CNk%KX!IM`+YtZW^WAj1K(n9!{&bS33)QHVmD^D>!?OOnzruK8%dwGdA_f@+EH0% zIsR}a9y?65gTGvSzAN~vnB;J-Vd{Q@e@p^m$^f@=N-kDujJYelUKY>R)%p>s6Gr*( zEq`IeWZ-KF?e+UG2s^%JG7f&hsRQm++%I0VNCq+y{_(5Rg&NHP6|^-a*LX!GjUH^$tj5?+Wd zL&FC@?Sh34e7pbebUxnV8{OP6ODZf!a_mbp8hV?7pv^H&fJT3Kgyd_&#sC5nS;&UC zp@?UNfGg^A#nu~nIL>!5kD6pY%(QG=-J0|qky%Lw_`spu5ervfef2zW)nOqOX;yDl zI7GWVCW5e($%f`v7czGw*JK)(lWo)NkG~l^5{^X{_=)gor<4)N$KeQNYP+1ZvBydK zFbw9VxSMp4x$lDcX1^K9N^IOi3je_j&X0dEmUWTXAlLIzAzF}wHL}%bZnXyF?i4|7 z6TJ8*yC@izkw2OMGD`$@7b+Pus-r0*yb%0)-64M$aj~A#MEbm_NP}`)g?T$9;Ph5S0iqRr?^{{{ETnKqtI~S zOD>>j>_O8iDnx2`2R%x%lT+|bRZXvX6ouk_ayCb@{pL#}7?wjIZcz&}i9AGw`LQ-^ zh(vo^H36EubV?Gz*tRXLltxK~?N#0_+pg$p+Ug1IgjF3>7t*Mm)$O|v#PSGxsi$Mc{xgdg(4PHa86Qv_ z+Q6%U*>FaUo74qOO@<-EiGNbIZbSYL8mT$)aAzBZ!_!Wev%^V{$QY7NY+CA^7W!r; zJ@~Ow#3Qw|bu+2+_VHY1Sh0--g zq{Pwa$dshkA(k(JI0Iq<>5c;=Y?#}p9|dGWU-*GLuY?6o^t_Cly5MF_Aa*V;(C>d2 zl~!k@Ldm!i6fJ5ZvDmFoHlCIJzgGqz$imi?bC@sBt>&BPigx%8M3wa?Ieno9O^ZUw;sv66!*yGNKX!NO0(*h%lkp9Gwb@Q^r zTek)L(3EzA*aH7;V)LX0UtO*VqO4Pv4z+gBQj@H$SQ}pj>WCMX%l+`0Ke%wj03gPB z_w7sNox-#zhQU-;-jI@lNCW9coNuljZgy|`Qt+X0zZSY`YhOynW+LK#h9Ski=Xd9_wQgJN6Q+%X3&DHUZNH^qIwXJ znNW6zMs(P1XeGW*;R7@aCSz|WfYVYk7`m%J?+NUQvCqad3kqAdSOp98TU!hPpnF56|HX7-toKSAk}h0_&HF2>@|u*@0n`^PWMO&) zjg5)k2KKTf!i7Yyyt84BgmQPTz9^6P5)4>JTP3@i7p*2q%Adl~TK$CM#fLfC1?LA> z9a=26+8>vM$y?}e1=X!CMM+`TO%G$I<#}BC8@v#yJtN+E2gBvCQn{3h1i$4kwb-WZ z5LzngK4L{;%IJAvra^Eo4HTPDPPZt};~u&#{rbZwenmqrQ?YyE=WhG90!2z#Z`($cDQ}HM0@Y8sW5Hutzux!}1$~Z& zlu#CZfwt$W7>{8CN?%T9MYk*B-%JjWtodZ=aL)BeH&ICAMqoB!;-767?1qGY6Fs#^ zzCm&|S$}vIDE?{E#sfIP**EzNb}rE)uAVNv!mF<%J?riS3=wnLWkRUQJ(_T73SW~o z!0gU3Pcz?b5m2jy->uGd7rRwxcNoM?2V4Fg7kbRyeLV`eepu}yB5hF=7sW+dq@%X8 z|SOi^!EG6M~8zM zQmD72b|;US!GkX$^+21B=zY?RnGrC7Y&uT->XXG)2xn37oC~zVpIO==MKFO3@XTYz z13^U6BwMM8xB#JU&`*wj>fd~~CIvHgciOzMdUMMU$&&r#AP3XEGGET{wDByI?9A{~ z4=OWaBW_P%?t1+T61{qt;P)L^`x~MC1v#GcDYuBBf9RL$GKkVw2qV{@HAYW~3T~eq z^Ig$q&-s7JNtC)ePvs%J^py-{{Ru%;f9$6>jufMBnFb8h?T&sHz*UhCVm+CkVf~Eg zZ}!{v4)3dsl|H6+W3bP(Q&;RQLam;+GfhI{$G-J0>Z`1KCLs3fu6?QIiE5m)1&vx> zoreg-BM%Z^I};~VRIAr$cp>8WyT$z8iAkpz-1TeBl(vNvYEJ9z4BrxtbVcnQ(uOiA zaFnPlS`TQnybx5Xh#TDgu7`M^byr_x>GfOE1{I~0PY>)s_d(MoBO>1)5DV|_N(_oB zw@cDzm7X-F8N%?;`8UK$-4qXQg7yN(s>=Gb-V`2OU3oxj9O>hw(}^Xx!8Q~`{@zv*SK&`L56lg&S&JUlno*@8_qnp7 zOnl2GnIkd9xy)4?p&Bl+8AEx}%|W6i8U<8T(ci!0SsOmrylOx1L>9mJsx`1tq|X}p zXAY9`6RbI@$PgRQI;wy!_)*wNZy_ojB&FKf*@OWqsA*HR#I%>i8^mElOw;ju9gh&) zV%P1Y4skTyhW3_(avABV9zXc#osz=oTGVyB3gESF$60zd@~UWMQXc+to>SGstO5N; z_%|QFoObaQG5Np6wlLFaE8%jYXMwRQp~Nv~*$B?i5r;*&cMHcg3K9n|XP`JE`Wds3 z6`;!pAJbp833zOY&zf)H|6Z0Ii8rS+3gA|}H9vx?*}QxlO0(vO3d^mn=`E<%?Jaz0 ztCQ=MS9?6SDs73?cHcq6bcfby*#;n2j`50|hLWn4(+or&ZYUmMu%WW6$x=1 z3@ZASGn-LnM0rzfNyX<#IOIweH?L$I^?&Cga=J=hv&uev?@-OMisUc9j?ws{wh8=9 zyA>hKbOVWGB>LeNOrYuzzi6vr)JhM zQoW_NXDVpVmlGQKe2_5uzxZ()s|xEyF*kZQrF3~|r<(F7yo4??1!`xm1rc8#Hg~BYEEe4_!f)JXT z!Kbs?U>I5A4fh)akkce(utJ~H6>AMqNXjigh$wCqNQW*q<$dkCNJ%`O1EJu-ly*!yvpS3AY-21~Q?fy*98^7Cf{c)4hxFbX&me{KQ2ID9K9b3! zA>_N27@?4)T4NQgmu!x{F2y6FZJKj(*~L4BJ8=*57>8Z2)2OEx>&<@1_!=v*L`*7lTXW>4D9Mw!FaYjSYDzHvCVJxd>IEU2s(0~2 z+qzmRZ{0N9cGMlTM4<9K8V0C7NMV0e4!s||J=GJ|n}xCRBdN-Q5ZbV8EiYM6ypoQ% z-az)*knNnJ?#Pnr{}Fi=ZGhc6yj{-LmO$v!#w&5Wt?gWT~iz`C6rc zli7|6AyB>Ky8CV7)i2M?7U3Qf=fIsR0gha!PCLN!SwHJ>va~YxeX1X>OZ0)S7ZQ~A zBm-otLi=F3DHRpivl49T^U{-kz#u-2H(!D9+7=YyP-`H>O zRF-{$&;nSWmaUJ7s4*`j5BJEV0*gM_ zP#{4%?S2+BnX_*$#Fk;Evfa-auuA_2S;z_ve-0vZ$ma#o`yX4LN;tPV%;*<2B#G+nsQC44{ihX`-3i4GP7rP*eXK?H2B?5 zF0iJo7N9+Tb%jf}3YB?1^n&U6Kyc{Su|Nnqt@-b}CZl~a$0cq?{7xkxGOcfzHMn-i zRDC7oxRAwsOhm2c$`6fun=XAxi`1sM4eL^%($-I!Ua{qQ=Q3;ZUmwA#mgB~hooR$o z5FuRTAx8B)UJl75QF?ZZr3_m}C6cI9C9#EVCdH2%_m9-IK zm55+k+bn<`E?VU#R*^?!=_Gq-k)Lt~NkG?{l^-t=#o1@}$;1dsxP`5bIKjJ^RW1+Koj5_T7XKA@REfzTrY8(+!Wik- zCFe!60?peS4Q}vy%npEJn^|OJ^9$~9E@M$c)QkW@W|~)%C)?>C&^9Z!8^kkM+33}^Kbg^WY6z*99`@k zpyLM2b>DJuz3(Y35LqgPR1WY~K9!Vu3|I$DusIYNL=2A~0>!XvT4;h@D4D-kij~g9 z7JE33qzh)m_E07NDBvz-9WOwb*ED(G@|Akt+v=!VF(&fQIgyp4-{uvkGFovN<&Rv- z7cJfhSTBNP#4~^g+F2Y&HNy(RU}s%QRAPT_ODsF+HLKIeNe`A|NBZhM4&yNGK>sS< zt?8)uoeGmtA9fJqll=zy%MI+`^xClX($dq!wnL+Ivh#?-QnS0NCBEIDrWU)^8B>Nm2#B zue9%iG@&<-$(Z}a(W!gH;A5W1)6%%3}(UR5!7~o+IKIFaA!sX7KP8Uxe5yC0& zeU~~yj=YE~f^Sp%20S0PiwA&GI0&LNw~JyR)!uA zR51Z9f9ZvUVyQhuj#FkJRnaGU*p)>& zDPX35*hKsO=(#jweHk$?5zR5dH2cvD*f`VX#kjkc2`OV8WS$OJMiwyF2HhhIqBKx> z#GDE;-8-fA#B_%^GLE?j*a##V?jI%SXfu|h(O6u;)Q~8DK?P5J)`_UX&iz(f3(TLd zdbPeg`L!$q#xiI3fK$=`yY-^m$9q@zf`V8sRJWo!;a}N$m$<0y$a<;fFuSb|JpQ9q z+|u;ZQBNviXWodag;|Rs_EQ%~ZfyQcY{?W?ajCD5?o;0W$PRy*s3bZ2E&-x!%78L( z&60|6I%CSBUldhThlPc)J^|XRy>?$hQbZDvVBNb|LiC&#aZlF-a&{l85VmdYwsb4&z%n$y|L`XcA23@tR^mZX>G{gR}l?$=0EfB)cT+YrvnLVgAM90h6 zf;sZ4x*|Is?-PlN{^UZ2Ez1Rc)Q_=cZy`l1Th$Tcqv8%HllOg|N(?q^b)X@)TP4wx zcd^i|(}k?oRe&k?)dw>J#RYhC^xl>7Gv>W7ZSLgw`^iDE;6cHc_IRHStnuy9*!;Q? z#nz&#HYhmWB9RRy7UP8@r@{FG;4~_BFd4L+h0bu9T|3u$e`OG zkUq1)(f5n=4P+3DA;#a=zaX!&sINp}mzbo@Kst-ljz6O4NSeEt?1__6UF|lRV=KUz z_a)jeJs$nOYcMH;12{chubmLSz3skg;T$jZ7t{yKCA?!Jq`fpMHtXy~Wd30p3wnV5 z#E3iCSr`9-UX~b84MKjtHPy?s%3xe}&nFpxbg6i?J7KuY}hJe(Uu?-AEXu(;D_#9#l*K<7I4U;@^@=sw7@Z+D^}@ zFp9OleMbS+tGpOg_poqBfsKcd*WX&HZ_B`;8C2fvN!J3<38h0_a)ZyPHZbJcm(zp# z@tG3D4cs+TuGn#|E~v}mV$rek=9;}r56eqQPqUm$ePcefqAenZSrDv@#u>H1!I~ie zleEhv?`0na5JUjlto3uLXU7od&W(v481ne+(*7;8p>5s% zU7bH{;4$yZ{o{$f0H6_g;Ag(+${!fO>+nu(=HLXC!L7&yVZ+Ct>k{RJlWt%K=KBDw7!(%nj+C z+lW8$fS`@P#{57`MBTgCCzW8XqE6W_>o@+4ixJj2H+0KDX>`FTRL7suvO71iS5{J;c$&N zSl+`recTk-m&91vB!)it>0pwF=E|Waotk35Y2dx!#vMdA4S#y5Ub_uHm{AK9~=uPNsRMo9^gEr&05~%Hn9X2tw{% zf1iL@BUtVDX^7banoIzm{JW%%*fYfOv&tDeS0n*!gGTVX)Kvf- zL^$c+!q+DA!&0MkZ=*bnXD8WTEnhfrnPW_Uklj^I{xt z-XBu}X(C$xE0u~piRQ{G#L^6l)I)Fm#VF7ajB7LI+l+W`@i~hI38m>n7X_Lt{GaRG zTKDbJp+AJPsf+$t@e5P9zU3G1TWsQ4m^1zjOY)zmIyzw-3dEApX~L_J1wiAIp!F#g zBd_`Y-Nrenf>cGrOC~CHdV2S zl&rJveu1%i*gG9AF|RHruM?urU!5=+Sx>q&qUuBn#V&cHWcpXrD||PXM@gtj)$&+= zjn=2E6w+25!PKv)?^IH7sLIV*YqYIIev1Bki|ku+7<_ssvCbZ&z?W`&o|02Owbc8z zXEA)$;%(gsPin_}*=G?Szjy!+!4r#F%lJkKC652f);=FiW&HyOE%-Jo3pkdupeMFNYx5P_THp#|w7YaXoX8nb0+ft{2>7 zW9$sg0yxiIfUOUo3;Bt*jEWT5T5_*LZsDce(NXg0Z2}TEpj_q#z*SDyd6vZUaWVt%_o|9hmjArHH9H8R94n%L_4SuODv0~D7kdktZ@-8|Z1Tzx zXZLcw+O{K@Z8$UXOlF@cee zA~z%uWh^k5M$bbscPW>-r%%=K9qa99^1!@X+hIK=t#*S7Mb4>FzJ^u~Kewe<=l+YW z-HeS`nIw{90aGl@Lh5r>PhQR>MDgjLS7J0;cFZ7J(Oa58 zmEiW$xhKDEl&8aNop0{;;T_|Cg$s9=>U`BeF{n`$-Da!>9xu`e2VLA|#=a0}YANgY zC&N20W|}+Vh)6jBrWorU3zQbIUe>d^?qk}c)N1%_ymrkjUQ0`f#O65d2Vdt%AL{07 zlbeoT?4hnrBB{<-cI-04J|c2W8Mmi8O3Xp9c$EXj32dxmTZ9;$7ww>!JhnT~E|ZYJ zcr(lC2jBAFV>kP{BoXc1@T>H)-i2AoF_Aa>n_gOOG7vOYdj|<P(^k%`PIny%jQn;Dt*DvS3DXyw~+uy9*qd5OQJzF&D>_eht zXO^-)a|X<$NVSBDc9WAIYQp$)6qaGj`&}*#G*F6gVt_JzzUW{4Pomw=II zs)6(7ZZv#z=%Y%$tD!4;oU~>_rego4&H~z8&_-Pny`Fe2=|IB9g^86g(puxlnbzRq zA+Z!^lXMlX6Ku@NIMG>laU}HssJG?D5H(2zPve0sVY(r!p3@OWQ%Mp>h_h7Z2#k0O z2_Gp~T}Q5OuoikZD_dj+b)d=+;4@KFaH+b)x23)0&^Q}zX6|z$Dc%pm^^|46lt93+ z3l8_qm&#iiCrfte314y?M{92Nl{MK#m1sl`5{6zrub5lE6sob1m0UFg^a}3Y?S*w_ zr^g(;bGBa)l!9y6OK_f?>4kj;u3PYA`F2@@n9&UpIiN9ea6PO}*cahOyb+9FGEAy- zya~~&blC_sO#lJ%ZolbgCK!BWFeWS|TN&VGt0pLGg|DeC-FmX1VxX(Mm4kkN^wRja zLczstLdj+0WbHXiPyh<(YbCAsbGbLOBVc>6qE@uJ)U)lcBC+0g{XjA`)H8SvCzJ_s zpaAzZHCSoFdLry-)pj5v)W~7zbzN-a|E4hkn+0WZSzcv@hqC^rnJp6Lp0X_S3Yj^j zm{c`&`khrfus?CwCJ;)Sb_wJ%po1S~ipHx9qEZSoWkN&RLfi|`<0*a)RdKtW=+14F zAe5%nprKL}lL*G>ZMLeubile~ALHCp+Ddc`<>p7!P%!O7BW*PPy^ zT=swt1Wl)OvKYhEfh0L#2{lxE0cm0Bgaix?lIuPkFnw^oA& zw~X)o(FekD-WAlSKk`jixF5wg+8Os@ha-Ba_f{;kjtdU}N+{zNxiOb%2}`NsvgR?%PYx8g1@zp&H3AytC=;e>|8IUC-sB~f>vet4 z#njv}GW<_~anVsB(oxZ1V?d#c)nZ4vb z8HioQ{X9v@)Ew7C|FNI-x3eJZGKAk9K9Aw!Zj6i#1b%Xuq3Z8J?{shC4+F$3Umlm2 z&e7?{Aa!KBd-r=Q`WrBr!`oUshBkIXx@7;5(N7v6(1xe_GsT1i@_xjPX%=sPu_5aH zZbWjXbSltdc}xd-F>VZg^itE+Jh^RPKn7|+8tSx6_&(a81Zyb2JJ_zdt!u@1-`CK_ z?R8-!=8LK=Y!@<6@0ro~ty44FOGe6?)I%+$J?R!DK`W4OYdSdO6GKMiq@@<5=mNh& zdRY(X$OiJY1VQL1aPs93wO1&tg1wF^CoIIYo~N76iHu0{Q-~*=_jPBP)?usvru7Qz zWIW_={(KxD=5IY{hCYz}*~{9LnWs}#h&@sOYeh#v3im3q%5~@_WI))uH$z}Iy(ZA} z*>CBMF@qUpBVeboqmgL*uhQS-E7=k=)Px5ze@;O7fsLdt-@Amf-WtGDXkO*sZ?t$) z?T}#y^w^WN_ei$T`h_45QF68z=?%&&Wh!3bJ&AO*i`IpzHsDX0G+N{0bmD754jaT9j#=Nb4WNbrYNG)Laa#2PPsInu*)-e1JF(vtK>qkYC3 zJlJZQ#GlfPKq#pz^tVAGpX-tuCbi!;j!eoNZAYD_@mPkMM? zkvZWeW_ZTgk85>{G|MEv#|7LYe}_?m;cMZsRqSi#`>bS#XI`-p z)0f%box_CSdK^B;{3B&G+Jc-ZR}@dCFOy^~ecto^mPm-*;DH*-ZX1wUgULyk@HWqm zan}1g;?5o6%5(S=iC6H^);<9*z6{0p+Y~OFi?41NvD^<~k?LixANf?-+g7n%7klML(dB!%=~hm7Ekj=~hTEEd zj(}c`Sq!6yHUFvbX!->hd`7`#Tt8S|u?hs#sry#-9j|jav|;vN4MVXpS!cEE4vo{3 zk7dzFuJdp9;&of@M*BQ)Shn&PG*PNXBO+#0*3rq4r%)oup3E=?%;PvT#oL&N zL7{#D0}iHN_Q?p?^J&0EAXv6fc2cy+?o%aJu8|uy;JYbI4FCzOA3pff9XqLWZ=Yoq zR32WeKw<{vho8ARYuZlNr7~qFX7sYOr7Z~+bOQ#@dh1;BBH zvmt`BQ0iZ%kgGeBu~&44%HJ}DIXR&!h#538xZSspC~8 z>6m7!F8NA%5o&!8<86O!prO;D->N9rbNJg=hV9Dca`MloUjgt(|L0vO3pC6 z5_UC3Z}M{$XUo6=-{`Rp$dpOnK2_P^Qm++=GtN<90W}D>ue2M%gF*NfQWAGh@s0Uk zS~J+Tq63%OP9i<+76(T9c*LE|O59Ph{mi$pv9A(#gfsUW$veR^5d90o#s>cS)Ii}b z2-j;@K@@ucf&r~IAjJ)|wy{*m9~q^H%K8l&QOvOBEk+Nlf5*V1%e!Ow;@URRJGl7i zQxXvfEpsIOez~VjS*$uGteYZiO*5arKyv4`nwI=-kCREBkUZV?X2Yi(QBSK*BEyY~ zvCCaxfz13Jez4k^kbu~Cz(Budxrt3m&KPgrXahk zVhsv_PvO_^JVRjC7#R5$KlFpfvt13;>sTLnDaI`^5Qp0ekV>V`^11ivf{DSQQ$~@b z)xlszBuVdUXm34dUk#)u;D0Qex2j$5Rq3(?6n*|p$ZDUVX_>a zIsVbtr&989>3PZW>FtR{B1FcdhG~Kp{vII@3b$i6|?SBzEqKB42(a+*0-4 zJD<_0S9Tz*@YJ4N2fjE>ECJNRv!^Ih8ex$|u>?z^Nxo^}+I@J1h{H|6jRBp^x z#spP;z1tTE)f9@oyG16p+dwvAk#LnCjR7Xx`cYnH$w2l~xJuZhOA5);A#xDF=sH7F zW>(fKmraMxrxz-mLY zf?nJB_WqCI_zORuvxuVY`aXO{)K0=;Gb~feQdab#&*_MSN`}3#ni^j*zy2dJ9=Z+l znj<~Ca`3lZ%Rkn&7RG52*WzCjs>j8mNVP$tQeyx8Y_kiHD$lQUkhl$WXr+^rH~1;XYQ#Wo5w=-HX@Yw;YXBIZi+d=Jq~gHa4gCes@W< zOE)6@v4(r4B>L@znjE@dNTaTpbQroG7iGrMToJwU@KLE9E!B+#SqukAA?`sdz8dXJ z7J8{VVz8dN#7A7(i=G_^pW%Q~y9lO5!MBx}n#Pl5g|SC*+O1Euv- zA?CcCrl@%MDw=A1IM(vf8Cn!tL5q>jjT|l(Ir6}b6{{stGooX`8w_2;FzFkt%BtdM zt=rGHITdsZRTm6HiEb)DKBAlIm$O;a%Zwmtr6Vf@8-^ZKW@Gn2b<}AX-H#W!(7$4@ zYu}drm1P{Z>1ckfX=lX;Crr}rOZGw*V>citJtv1XFcL&+a^IkJu!NG%RI9}7BxBTg z@!x5O1Vn}j3q~AvLh!N>1RC97uasWJ&|vxCZH|)ZOd5rMEF7``(15=O>OTeY%N6SO z@qV=T3yo=hWPuqIqYY&LZlf&B4OzD^FX;&xv@aS~L4l?SGn*-k*`M0haEIp8GRiet zeZ@#ogG$M=-*%T~wf2{+1fxCFEl+7gWJD|99K@XHP-ez;>?{5~9O;CgS<~O-cj8Yk zPRXlMZF3*0N!Wd0ok>Jr0l!9u|MpPSDm%VU%ew}~4srv6O0HwMJ#DdeM~t^iy_LIO z#Z*wxjq35ZUsN;K1jjKo?wd;bX<`|RgONybZrP8Q@JNT$lgn9WQ4G`ChC%RZA@iE` zU-Jb*^0&Qo#c?7h0b^;WkpLh>XdN~sp=zRlxXvb*Z@yu;FW`i;wtMw1S{h5|Wz&0!>EBMPyaaQxH zOU1Afu+S9X1E?ku#q+J$z-iQXW;h+!hR3udu|reH7r5)<>pnh&e}!F!n&}K;|K#G~ zXTrlr89)UjrCafuqDMGsP7Xn(Dbc)wsp7_1?)4V4e1mO1luVWOrpcM_H&GP*EtXT# zk1CN!+K5W_fcj{k_SrW=DORum)e9jaljP$T)u!5NjGLnvOwZpTT6gYxebC7Z zD?!a`XeD=;rWMQ)$5%5p(*k6W`E+__azfT)lHR}*LCa^t^ey#+D607DWV3RvOp8%! z3#NPJN#mW%Fy^OHG5P)gVKYNh=(Bo2@jIpzGZ574B;itTAzey)~O|LeeX`eSM8VR z<_EwDB&dQ-ti%1Cc^Y^OKIl|Y=E}@1f+Q9W!YVsjeRqfvez1S({;cI2?g5>!@;N=W znp6ZNcJhZlhhgW$b}k=xyN#W7D5{z<8y_!U*-_)NY+~;s{pu+{CTZXRMoajV#2k-# zwb?!yhdZijokU1!*#2b9Ulf*Nlwy<1i)i2%uO)6dKywA!E;RN4Q7BI&jh{k7xIL)Dc+?`ZiA9;aj^d~ADnBqTbwR&pV5bWFJA-y<1r zs_!K>%5Xyfzet;K^~59wj3OTY6JtTAHjCWOhb!-Km(x&HD%Y|PY4W@M?;h0nvH*?V zUU$!v#gg^@PnPV=JyWyc8IM1M`Y#@&*qyWt5`Om)oxNrLomCM8Zm=bHPEBQRex#8L z?{VqyOpddrr&YVyLH&v@jS(LKSpJ!gQ~(LL!Y1gP4*EJKDZk|ChmwE2p16idPpNb& zXv@k>LVMkrI*HTGlJIgEm-}yrC*VQYdIkDWDm77D7P(0s%QiOu-y)xmI~nCUk$S<% zloGKHYy#T}j+pd)hH5AoeXDzLnpCA`&gnD>93YRce9_%_>|S$|@qEm~#C zc%RA66%o?2>ev9;YrX{bub&CIosk#gk`}TMGtq5D0a$L*ZlK@X5r}{`ZQWWS#}6`sZ~gtD8mb8-s5eH5?qT zd7Zj9Q~XI-%sl&uMQ!OvRxJ*infN=2AEE^iSXZDY=4+W+%jv_RfO_E(lr>se$4h7Y zkH;v4n+!s>Vcu_pw?^dysS&al=2gb6d(!)OcLf zQo0CH0MNMpI=-V#R%v`$?M5{A?=c;WVMws!>z3ZxOKHgF6X=tUqAd9M zAUipZtU_7-3G+`lc0xp~lNMI0(^0!76(P}O$2F5 zZZt!`kbUBWM6_wHN6+HnO}CG+JT-RN{jc>p;WD_y0eM=r(j3c24ZZa{arcvRN`Q)1`SmDs@f8a*!pHvYy%xO=EWtv0M}Kq`67nY zo?BJzkX$k2O%HY{3SmoaJ9M<=+D0?Os)n42j^ip=Nu4^B*f~+?Pf2=Hhv{TQ@shC# zoYTv!twoCt5h~ovGXC%#;eCtGX}Q{r$Se(J;K(znseto4m90_VOBx$k!~T6JWilFO zk~2%p5gz5jkVjAPw}$O%?4MpFh#hHXKI@@Va++Q&4&c{gtzEU4zH}0HKmESq16>AR z?U$BJkIPwq1s#Edp73Vpp=wp9R6Mx15gpx}1USUwVXwE#Kq!l}(Tfd?N?H-UA5ip& z0Yl^E(W|>BIh7#L?@&|!uG*3K2nYQrMVhN!mM{_%4Q--hxI7C8R);4x)*gN>MCJVs z$q@xrZF@zcB6s%~>`R97FRFgE6n}~{2!u4ppY?q`R>{-c7;lZ6P4w^-72ht!;0fJ0 zH?4Qs3Vd;%%!&egVvDC*-tubN?joA22V#2A*=1!W4suS05=wSC4s64UA1CPdE{hN_ z)RLYa$TSut458@I;C|H5bi%2;6mUAk9?(=7uzO=Kf1ocib`(G}r}~v((IYArmoDah zk{b(uq`!~ozUH!^s9jumrw9o2wVEWg=VqFD909Wj) z_lOi9YOcg>FGi3>r2^D^l5a3S*chUqj7SZ>EHT@_LshWa$H}wME+`jV3}A8aX3P276jp&FperNt6VPgD;yyj5%70hvWAn#X~?VNzau^6C;U zC@^bbmz!RP=7Z3~r4M%)#Vz@J03CTeEFE^h2JJxc&5P3)0OA{fb>IJLLI42PU zqv0TW#Bar7rL9y#xK1TTkKfWy9Za5tc}xB;Sakowv6k8uhO746dObf;T0QLg&fv?e zpvdGOJXO!|S;OR4xVLYRzCto=0vOZNWm|uRpnP`@KS#eTBs6MI;Lbkk@1x4F!oEAdu2GviH2 zNw0r139SoNLc%@gm$h)3fTWhWs?tpUjWxyVjDsEP%Do2lH=?WPR=Wx<^ozf>!_vmO zI_wiTG_21m{Z1kYYI%rW%*aa@ z`XJ+V==H5J<1iff3EAeN@@8ef0)f!w0Ud&X4;KC7-NA59`P@o)KvB5sIs;ryWaD#sTF@6e(|1q2~R+leI8O`vqrD0=DNhmJ|C*Jgu~dA_pKbn zmnI(H9{sw$`g&JA&&@H2M2j0A#Df=D$Xzwaf$*SKTH7wvsIK-wAi^mt|5UomY>yng zXInG){C%@-z}1iGwJ)-VvjZ( z=1k1}OzoW@Ar#;aC{%x}U(KGTmX3_&6KYPDB^i24!jpf^FAyaBxxT{^I;kYtn z1=zm{b>D<0t;$)FYGhc9T zh%&3xv@}<(@;qm%-=U=&Z@qZY&bhDy9k5;PIkF9YOVr8exM_d9C)b*9FX>*MTJ}p*1;@THEJat37QtJlVVQ7b0=u7Yo`b&Zz%5x{`{7@LRup$o1b3& zgZoBdWu#;Nf(LqQN4Ryb&K->4coe`*K0*hd9~Lxw%t)UgdP*abKN%UFwli?>m9r!J zwiCh-oH^`UL*IV_b^=wTFdOTzTCkh5c^O5;5vi(D$-GS6@$}kqVARw8y(G>FtV>OI z)ERkNJ{4IGBDIc>A1MUFy}$Cb_E=j=fBgh_ncdnmlFe2+0gw@05*0#{jXf@v(4|L{ zD-s#)EnS&@y(wR5i*sBqchuq=2PNH@B|-Xnnsjfh9Nd2q#jKO)=`8IU4;I0Xq#A5? zU=W>Sn5@X2#Da274&6ePU%%j=+j(p$3*JAojU2C$ET_0r#y?d5kd*FKv6j#m9kR8G z1(5k59^0R@i{`{w&KuEe^23xWr0j+r*L+>Db_bJwfW-5)7m^~hp#%{^!F<)3AX}D5 zi+WT49e01qAU$Y3DDhjB67GWCx$x}wD8qVyKGvMyxFy?M9TTnpivYLRn>{v^T6(`+ z`&cq2LSjiW>3so8Wwgoeq{^XQph+CpkG;ou(f@sSYX9w_M-7k*T1Sv-tnQ1q26p^n zR9%zang?}!zlfG=V|mORK11Z*z4KOin*ZWKv=)CRk^Visu69h#228EclBpY?$hO>q zS?)qb!|9|?1i>aOJHI9t3l>=KPpuPPc9#2q5Z1LDrP$|qQ)H| zD%-DzgK_Sg95r0mU7_Vsmm(%y<1xV}7sAhzdsK!6Ed7Nk-NDn97D3x&;~MAe2sQTS zGZufZS54gqU%E{b#UN^w^?Nt3V=mFT>)M&T5~}OKC3H|szENEG*BPv{*De3%VN$S@ zJU@>(;GHDEj7F7Zp3th9gxC+i;ku!Uq=)3Rh%#oWk}W{4^>fkM^y4WxLYNFy=CImS zYQ@ADZ`0o(TPTL9SlgNzN7ll5!2UDrS-O9~(7ISZ+(~T5HPxmCC_|)T`D)_3)sjgX zZM6e)RdeTumBpLCw7<{E`1X_03&Lx~b^1^|1ucjzCC9ANfm6e^IqnXO1#0(B)G?z| zmOKiNIBMGMIm1BoV92C1Xyy2+Y)dmuIFBM={vO^bP7#U~xA7u5HGC`65}qtIj8=c; zuy`+9d0%0_O830iGk|hub_-__sKCY1jNcE88_t%0mHzXv`0X6`p~O`0BE3m95HyB{ zAQsnNkPyLPy%hHQn|s`Beb2?sz~cG?vDM8CSUz$VMdw%FNV#V4*)QnnpBTWlN^58v zo3?c>&dpslM&^C)NV`V^mG);VNalYNgm)ya-b44S5aWoU9ABA3!E+;>R9Q3(s4VXI zlYg~b8wi;h{ZZCf3&)=oiq|ChHnyQWMQjLk;yWj`2huZ?F!jVNeS9O2>UF&TV-3$#= zf6oL?gBADIz+ASvXWk1two+s9G~cezli}2@MvzeETHzO^U26Ey6DLAf&g19`xG*{) z_qruy))85@OkIftlN4beQn#eezh#}$ouBcK=IKJ&Ri(c{cRIl*GtxR+E*Dyb#EU*+bWW{(b|8eS@eOXY#O8dHP$1m3#0K+mxBgz`_g%F1bFkj8tIdzWUcm{ zdD6;qUKTSCem8O|>*DoOPQU2E28s0SSEukbO-gs9Q=J^hWc0ohG;nwXd9TwXhj{tZ z>a$HD;He7t;Kafa?GG<}iRWYm@x`cmKm##v&G1Pr@mcH&r^a$4Y$JUZ$HQ$rtJVQT2_>b!AI2GFVOl7s);?5=otYB%_EY%6m zOPsLZ#FBQBBS?Si$b_pe+nhNWd)AIvgIxG(?Jgr-cg3Ww$8juwU+z`A&f7XE+0i;< zyt9|3%R!V1ycQ})iaQK)@Da3-t1b#do$Jgr0`DTADF1G2gK+?q)bNMj~A zlc3~mQcql`8hgA`xb4}LuBAch2lFr=G-4NKv*vbe4*wCeDvu>g_*EzbS5x+2D>R~H zO5N7^h4tL-o=uHp+*iG|W!_2ro1LMLAI7FR>ER%AChF%Em~3|bpF6d*+p_JVXAlMXM<|Bd zza@?VmD8er->h#uP`Tgv^M7Uwx?EgDDps%)u7ge_hkkiT7RRz9TY47USea23(q;7@ zs?@Nk{UnQZi>K6L1K|vKBbEU;m%0P`o|J9 zjElD>D<{i(NOESf()~6wElxVBFwf*z>#)L?n+8sWVYK#r^3w}xHr)s;O;U)|g@UE0 ze370twu7E2&RrtwKWmB<)*IA_oUR=pGfF(4Wqg|Qo^{mqq@3K5rS?)4#}Ls8h3dc( z{xpBhf9*oBcB3L(#hkaP5^AN4ytjwj*ki2XA2sWc+~XD_Tn&(r&{E+&J%Wc2%f zT@x7}EGpa6EwTV((WKcK{z;aaY3y}c<=G7J$k_6tHo%(Q4mh3N7WB`wsT$q*vlA|i zHb-a~LI2~GqIT9zY+~Wv&|xguVB+|?Oj5~N zvHae!WmGLcE=nHC;TVk)C7BDFQ9KCHtz<889$QNE^MoBbX31ijTcLlg zTqKtvp|*B|`D3hYqoh{cH^JeaFN!v^JPapE?mPnWMz61jLh|>giZG{NJ%zbwg_;j_ z{YpPmv{$!$h4KePa^X6%X&$?OCL#-S*Zw8O0Ea?W=SNf_3Xj|z1!yNr3SA*C>Qe53 zG!(o-fzo6;=EI^;wh$M{5sQ_C(zbskTpD&Ho=svrM?`v07Xs)P$mW!|2_I(BZIw$7 ze}gl!l{6xa@ZhS!2Ba-x-x6C4fC9#PWNYdbepyC*_Qu#HM#Q_UQu|Kz==UO7&9+&m zEUyBtxTinxe$jx7o)f+)a1eA(F2D>Yj#N@Pu5-Or(|`_AX(K+ZLaK)oC&qscKBe&v zg9B{fgOqp8aU+|*C5``t?uz!m?8C6Z50I{;A>QnLTzErkp}CrjKlnvL8GbYJGAfw0 zGEq-%aF+R5C4x-yIS31Cy!E5U0h|-aQCAv zU~=&fF{W;z@jKIx@##h8i!guWjF8r^O*Eg2m<_%?QBTH>WqP%KY2r&W(isX~<02tH0#j?s&=Yvqh2YT!KEz>jNq>n?L6&mZaX5dAa`#n^*S|0w zfV`6)+*|~{2>y`8Q%TC`B~eCTG2)8FB2&qtG}8(LqsDTScm}Mc(2G{voqTjwNyn6In^|?1cxJ_xqr7v?1|ocU`pG*Y zuxOnLqq9YiQAgZE)n)@hJrJ}6BV#R1(Bz38C9OZEQ7K&F70fsLCg#yTfVSi=$sGZ9 zGFidJr5GSygXe!eU09Hv2SM$&_1YPOWPq&L=nGV$Jk|BWai&BSd*$|=tOmTMVi zm~`A4U%aa{-db<1&K8kMcLrSx0%cU-v$R54C5cx1`ER~A;`fIo4t(c>X0-1=k~rNF zjizd|k}`>42k~P+9||7|ah4t&%CfROf4SYa5@fMms)c{3)Gy^F*BECgJ)8L5Z^zYf z>^_kKPinN0P{@Un-AkCP%$B4rt;|Ik-Q#&!Bk9L>Od&z1wX z&XyOFmR7)(Xqr|WC&i5}t5o>4vOv}pYcG~Ng-$(b;+IYl&>B%z*o@rjFTTX1w5DAWM8t8bia-^CS}%|CzhL}0h}*mA_NW@>*rT7(4Nc+08H z34bZK)R+Az@%Bn=>BVDLMBg!&E>;VVTGvn4ZA1yKGO|jL+1Q&i2Tz+InJfkpx}LYb zQLNS&A%lU1_=PcSft!(`bT%K~=j!31LU8xCkzmtZs)`;q=e1<5f~e9G9R3bJ`cVB+Q-T{{n)GVDQ?o!V#Dsk>_f>nm4 z+efPndx%1-!AIw1u!q`=)762Tw?tRu>q;Bl7j_?b=rDfj?7eWV70M&5dPmKQiY@Co z=N-w#2I;AVx`oW%cn@dgp{2(h&6wWvO+XyWbZmlBLL=n*~d@&1{#S6{bCc__7uQBw-Y_bv1%65z`p zMGPjmKPJr$Xz5Ae%oXqqeQm%EEWNo5-wl=yp9$-@;56|EHTyv$4^|>Wg}0g`( z=8FJfJv~Nbp!`|4co3f)3l#e)S$r&`#BG-FL*q%C7twee6wE8>;m+EGXk#eh0nSKh z%&-ke_zWwo&@~4+4`T$8;iQj9*I>Kz3r>fr>Rvs){wmt**vVio8>{2Osz5RMPKB4rooT`T zz2N!{f?=2V)UHiM(DMk`;e=&V%~!tDqjzDjLvOj)lKV_6Rx7QVkyRMvVw`_Uta=?h zh`YdkIyr{qRUj1-Oc@R;>7&a@1_+TFLhwP)|H(uoboEU&5|a$ za(xL1{6*Ia=ar)}o0y4gZ0dhvvzfqi`OWIjpj*DwxW|cJnNoEj4=KXNa;G~jvDfn| zzx$-Fl`)l9#UzO6d??^_YFJ8%=3H^iWSO2Db|(b9g?>dHY)9zq@TL+Cc3Y_OEy~pM z`VpmO+8;LHneo@I_Y8I{Pf9gMtWLh6vXOT2#-KH!SfPfgQ0&GwsF`Psvns-BwLxsK9j8czPJ9&^5I^WE z+4;l0X+l${4IbNve#f}RwN>t|lE54)Jrz)vAlGE4T#yPAJ4M&E&EhuxDBPy8$CT?H zG!J{WSIp9&!O>=E9om2Rpjd}kYuQ_Fw)o8-6M z%*;0oj3dNhUYggyARns}zG)k9j*AnPmmhm@Sx0yM$}th7VN*d$7s-v=r1hU#5B#dg z@FpWJnGNRjz6{YOWKl{Wfld7ZPYZ>J{F7{U0y$MG@pRs;s9t}71SxBe>*JcUX6%t* zuqq18-)qevR5tJ@aVq4B(CqD7uY@H#6y1?!BoaH#8jLl%|GEQ_4ba#J2h}Gv9R?iq%TFSX{6HzIImkUFeTWsoJ?PlH~`< zk6)mYCgU4^Y6-N11=G$$>nF4R%*by>X{bEfEDhfXI3iZiu_BgG;zpH@L-K~ap|2f04Cdv2G)bwe zr)Y^clQ5=pCImldAgN-f{MiX{jk)AbXYjFgZM!kjqhAB>ahRn&3CuUsMa(N885P7R zN`_eyraahI1fk3_W52sqKg6$W3%3yRUo^PuLyCXxq9{cvF)hRA*;N?rjf~o)wj1hw z$C^7xTj`QHm}|s!wKvB0g}mHBg}E+dW9{uwfMe5g7bfGh^2wT9F+WO>-q-ko?#@PR z_@ys|c7=td7O$>)L@Io4LlY*z(|ctVCg-!$E9;Q5CH(kZ$vSwABNx~$O*2Zp@h>Cj zj3|Fr8rQ3VIFx}L2HH9i7OiRNz6u?qv~Ix70%+T5}>`J4PfHtGVeU`52#oz>*03vw88nCXAeZH6jj*t=23v)&U1M?yBzxx9-IDq=u^ z>{Z-Mz>xqfc_{~d&-y`LvMW(U7Fb3khu=S|6{k}@V0e1a#IX%_5Ls)Wl2a@mC@pKu|MURu>LvlrG?3o=h|*Wo!lqd@rt(4aQ)S^PG>Nq?B{yOunN&6-HV~la*==2 zHZCD5GcKojs7Dl&xaae`bjCBM`3p{er@JRJ^n>+&A|8_$c&OzX6~89jXG_~1Z)TVu z*?x7+KN#_9O0!TBbXMuxe%+M!5YKXpO#}Fm6PF?w{ja8r%5roB>OJ99S*=L&#nkC+ zqwjaN+L;!eXRa&>8)VNbqw!|>N+W+*g?G13$mdl`)l_}0_+CPN3~fj+ET(x((JdqjPPZXQ$CI81S^HSjBDolf<7CKvb4IDND zhF_i@vZGKUF<1Iv?Nu!a=xISV01)}U5U_e)9=galoNe@|9f z5z@v`0KCZP`=q>|{s)P!w&Iq~N&t39KyY8p2$mRW^Po16l}Fc@tKg!HKY;wwP4L>4 z?T$BH;t!=J%-QJeX5HPR+&!62a&&uZp?y(XCP{Hfy(Qz5unf^kt5L5T2+yfEz z;NnQm^?MDksp4{+Bww`rT9N(~U--mtY#h5faAbIimdIS1f1?qj@KS?oL<~@Xo9k8I z%ckXsotg4Y30j$vMl&f;6Gy@DYiP}&s*!J}?aGeWXH#`?fxw3wRU#=+TMN?D5 zI&AO!&3S2vf38Jz$0-OK zX)v55FL)^mFGg=}bVg}xWgsy$H8vnHAW{lGJ_==SWN%_>3NbV_mw}%!6t@FvFnBZr zG&MPwAw@AOm#LmG!xl6(I3O?}QVKpk3T19&Z(?c+F*G(XmqFz-6B08sFf|G2Vlv~&L0i^|$MnFcSyBp~a=@1YG7;=~) zh6d>lX_O8LNkQorNkKrmyIZ=S!E^3&(EEAb|K1OuVYt?JueE=Bt+n^Qpnj^N&MamM zH3msTAuwik7B&HZqLLC2W+CMQ13?@tp%8X9W;KwxBN%88U}xcAW5b}PmaqqZ0by_? z350S$x9%y0>b#}0}1OOqX0C^TA z7JxF;8E&)$&_N*pV~_<9YzBaTngKLGIsi>|DK&L~jM@uL6?J+Rcwlu$TU)68-&!Qp zH8f?I0Fq+L8d3m|785{5Q(fcsw+09T*Kf`QP}YF++j-yvZ{3xoG{iJ?RixNiZ`S}| z2RMQ3Z!_~>+Gya)0RKvZyPDZUZGKGvptFF%Yz0_Zot>Ro%pDzIEKqxYa~50hFMS#o zmJR@CsJ%4+{%sEegMKB(5n>8YC(Hu$SAg3B0TeAw;8g+LI!QzSf;R9}!kyrD*gwMH ziGbb41phT0-~a;sHjM?);g_$Xii#q@251R^*BS^hfe(ZMVU7*}qhB`o2V_e7mp~9e z!qMLTb`GWgAp3u&`HyseaVUIc`e1iYp!1&<140}f-0tM&_hp+v;jQKXbNDMF2w-Lj z2HmQ6xUHEb%KsErL=wFAa&`Xnvkd4fUhU0MI{9=C=-ogwc3j{#TLG=afeAHIDsenppqm_Y&jf0^M*{)7H*3OWuJ_^zUd zZ(UO;1ndeh1({)guqs1g@D`!_|FiS{m`mCb3|0o(faw0u-2UkRw6O%c{_ie-4AlnR zs;5(i+S>rZe=ti2X-gN7sfs1c#Nw}1|7Dkh0pa^Y3}Oxj!OQf^qr z#2moE%>w}1+XG!O*x)_F!OabDXNPY9Q;^HACIYasK%g+V3&7S9<_R!^+GE@nnx7lM zYHSZQ0l|mC!7m#JH{0Jv3z(&?DZD$uAT!t<%>D=dtN#CTjyv4Z_77*y-{2pvoP2-N zTPJZ#^M43`FX!*zU&6(HhZx^+;pYDx{7d+MbNP3A{=1XdSepI=`0j>++1}CnAMk4( zzX|60gWOTfaTnc{%)|Bvxuf}ar#qs5o9M1;{@-!jDhJGj$;ym!f+{<}N-ol}JGZlpU2yFFZf z+5fwLtUP~^J9@e9qTd8_{6X$0=KBr(E18|`Hw|}1{}%0Tnb~ibZx1zfG=cqh>A3!3 zzgO<|Y_bQ!Z&e`p?m{`>r~iNK#=qG)?%MAHu7APZ_&ooZ?`q}Z{>Kcz!SAk*gB|YS z;Amq5{NEahot^Uz{e3Cy@G?6>{|44Pi>7a~(wKKaBPIR1e0r8{9@mfL+UVLR0L^b3 z68!Z|XAvCVZyx&%ww;hpWgD#@SN9>xUL@yRj6K#hPcWlSI=o}qnPG|=!Yc!_gXE@=0=L#m;7L0D52Zn@JS0cfw0X&-5>;4shsJaO2*Qb*QW&My|e z=-wdgGUo8N|N6Mfy5ok zq;5nCS!T*m>aEafV#4Id)L4ns<{tJTHi|=;dM%qD!afiW6yHb{uC*ACbF$yCkrPdY zynTil?n;c7Vmkmj^2p|SNPH7Bb7_R~{IMlXl?#SrpWXcA&iAl?GI~QQWw&ZHoI$L{ z?$eouuRNbi-)3=yy{?fq^C9ZtgHYT0d0@{lupaMt?$}v;=E>lsO7WvP+S&ofvs~KH z;<=ROMP(N$F}?dK&>xlyDb`veNRvn=T9CfAW9m$vS=KngZ%o>MsrD^4w0(C;66ReYUQU1A z*Bk8|d|A0~^CREn%0X_}UMvMgl@lSu4pp~u1bNOXInm31CvWTN6@|IakkXd{K5rI_ z<0GjmTI1+?3v0uemWGYg`q{7i62=#{Me=K%zDhJBYIU2JhbS+R^{ryHefsQvHmu^R zYA~B)ogWC1B5U8E@;R#R1?%;t$|#y1d1X{EYpq}!6Y8lYq50$=@w88)b$c!jKhlX} z)a83eM^Hh3%#N{nvvM!R$nW$O|Ew?g50kDV%&3DBzkMQ7vB6_hCvVf zgr7=XznwH|Wx)u`1FLjh@Sn+pl-m4 z8LiCfx2fK!c@%^ghleFUQ{G(4%$YKc0aXF>aw6(~YB>Y?HSQlpR#utxJv)K!N79el zmSyHX?rm&zwOy2`VZFD6);Sz}Ps3F)x7OcAd1hoIE%*Gn^sI@ndit2@?oywGz@j_; ze7=ZFnH1wv8345;3f*MJ6jpqKdM+AtUAjqHNa3unjrmh#@_pxnNf)-rxa z;^tp}gC25hi`uMde8}hei7cO2c1+7MP`O!? zilBneXBHy#Y>$)i>N0a^bq6&cokqSHdV^_h7<@67K2hyqg_KpMtq@u4w6;Uh5YbP6 zoQyk^hvpvPv5&!v0>wIIB*6n}w~q;O>dpj`*&M`~jbm^A@QN?V`_ipb>GohGv#!M1Iia3>wEgod@DRHnol0lveHiZjgN*o7G2V z+L;Q0A4U@>$SDEM8Vdf*17JbOz#C3~+Xu`iRCRVkTT*)9CYZ6)cBlk@)6X1{ zqH*-j6N9D=c8Gxz7Zs63mabP&!!fv+NcMvS#VwQi_;{z67t1_m$v)J~h@a3u@wqyf zCQi9Ajh#hP!t@>eysB-Gs%+uCEhA%gNG3w}R^Nn-jG(ixw2cJ=al+Awz9)6MqOU25 z!>V=1di`UaJ99DDGtZb6T%qHCwh-?mhfhLZQ$!M^Ng)U?D4p?Ne#-%-4Y9gYVv4kh zA47as25V|e#x7BcXpr3~1zlIhSALLpgJ&fLL)Y>02uk)taY?rZIWDYO(+Yb_6XFW( z)GkG5;?gznF;u*LzJR;Xu^%j^kMC(7Qio(UbHtp+P7_sSFxW1nBaf7ShB!UbWu)dO z$`Eg_lz8MX|6PP%XFy9T-67>4Mk@pBal{eVliI;X z;SD}NTg`=IzZZ;kMUv8gj25;(URRZGwh_dfci>oFV3SZ1TgPl(wrnv@BlHQ9EZI7k z`cM>L!W|+UbKF5Q6P(js|44|U+a*r53X>t!?FCg+tfV#uSB#rnA4(fCNO1gj$KkU6c+yjKgm z4=_0z-#%Jlr$1Fpi!Im5S#7lTjeGuG`J}R=jF4$b)+oP9-;()b#`1|8*G@T`uT#x4 z7g_k*6VI#8>CEkaTYDi(%JFUZab`nQ@9p19b_U0A1V&9bhG7F~o!rpJA3fdY2fP!)?DTCau}UnzbYjRNO8R(1bNN zkumSv?+J&4!o3O;2Akdtu6bgOk1tl)(y%u2ywu_tX$~t*I)`jISJK`4FK1m0CQtDn zqzwKD!;R#BU?8q95!DfU>8c&(<@ne+Xiv6TGvYG3oS{QT)MxTkKoGqoOVlYuM6Wx) z(7ZIRyQ1Eg3-J59(GpWjE7EK@uq#Ff#OnjkvPOK*Bas;U+~ zNymnN2({KoT=Mq+>2FD2dSO_P<8VPGc~F0T5cDF%CQqxdAdHpn)iqnaG%0HMi`wji zx7w7gbDejx2pT7X?fIaUlqhD@mQJbXWw z16}>b+%IT_8`b+jj?`6?8xI(^cgxjdH+=ek22y12e^1#9G=6ZrLY3d z-Qo&f9*Zt56)hv#$ZwdBfv4Is6u;+qeZj=xXh8vwEyCf0-Zj_Gw#S2><6@v2*;oL@fsDPuU*9{*6xjp;0kXH1*^5HBVY9S}i%C?D-HfR~n012JSZ(Nq+d1%=dJM`%#KS zuNPUw+`c~NaF59Q?|?dtFmhThz9+fcXg2;8s{_MKSN?_bUoLj0ZAs89474J0H%v0< zz#LF(kqx1@dW9DpDUGkz#0$26bAsN{$*2g6ZzzcZ*!r|dch}7eLIW#0#3;A?Tgqz&i&AsgwIOp7x$qM z7%Tmr=5(KB?nXN=KQ}}BQi-mFdUk7t|LgF~lSsC@HM7u2Zp@sKR8lg3)dqt1MK~fF zNUO<0(KbSji8y^ihW4+9=&f6G{DCOxVjfX?9COSc9}PWy+ewH>AV{`u)KSL$nMG!N z1k8yD2uO>LEnrz1i7HG(;S*&EEorrp)QQ|c2NrpCKIXvGhG4CBW+>o#=FZL)#?Hu% zChS&0YDU*|?DOJT9v^{!uqHG->TzGWJVx%^bC8$CdHjkp@x8vM)0FA?l3wFU?(tU@ zIzI9JvoMa-IB$Gas`WzRpzVs-Le7Zclpd$Zb?|F{JI(wUC$d4=F1!)S#_?V4IoE-( z+)1yz;6PPG6P~dXO{Hy0MMPAu;@UaVjG&{;;yP8pT5`9QJ)M<*ur(?J`p@?7#K9IV zZNPLf1mm*`h0wwA!`yCAhs6Xk&xS*B4HmlV3zr zXfNlk2TWd+thg9|g)SP=7e*%>x~Q=M*{uu-(d2_+${M&>9tVxga$IB*-T`b_ky>1S zAq^x8$2HpGA>SP|9T^mAN($m1dM@ahG+aGnv^}4N_gF!^n>uRh;Q-y z3?HiF%MgwZ&3!`MO8;|&usq4cSPLt;-g8ZJLUHN(YM+Yj=aGAPy5i+^N3kyYz~zUI zM2=tT%(23=)-ARP9-?nrw+T^IA9Q_heFX-!VZ0Q4k~CV>%Y~ABBbYiAZie5@`@@4} zj=_E)Ws&HA<-2a0!$p=%jpxU-*ax+}1dpvuFNfk$0Aoq|G@~C7e8HXe1$8KSnU)0=uE336@B0J}PrJ_e+%b+LC zmZs-)qsbGc8hX6Vh+J|%v%Nz6nV#H`5#Iaa;$D)C<=0AqL0t?OM{SiwO*yHp zabZ(``=|1OJcb+%(g#1Dn&Sp|AV`khJ3R-I>VDYFl??A@&>$Em97}3Lwf!=<5r?t>FT3S9L zN)N*ymTy}}ZK#VxA8gn1>Q;Tc=Of5(I3=Fc;_aE1Rq00cMJRy=Is%r9&B0jBCOUQr z-&~5DE1j@^8^nv$(GJ5zc=?K6{DN2_MWZWOf`}oFyW|muUAwiGENR@3%M_1Dt|!xf z_Zj>~BcKDcuFuJv2kF&ZHqWc0=xGt;6ugKhK}BlHx_t!GFQ0RS=ZK=wrQKLywyeFd zJx_3%lsL70-I%m`_U?m66>a<;^8?6NZx?2E1Ch*+G0&_a#DNy-KIWxOVyM0m$aT? zL9#6TVWagbf}Nj3IwwaUxhJ4W3vHzb->5%Vr@d>_lI2G_H=gOpWWIvef=CBXG;X zK51J)KelT9f$1S@Aw)E$v$~gm`7LKq&PP0gd0#wMTnVl?EpOSApZg zz>ddjC+K@3=p?G9u=Gf^hx{VeWzIb(=u* z78SBlpkwXyuy)VdZVO}fP`4~{{;&Z(oAT181gL%mYDVIsg3OmwOh+9FkvcUKG zZ*rQJZ_3$df-eGpF=WrPxN#^hmCV#Rh{5`sXw*AXz2h;vnR$j39eUNTz9_a?(LHoV zOZvb@kCUdhr!QZ=Urk(CyWfQU34A>8wOo7>sP0lQO&xV*Q%IcX-!I14p{mil%^%Vw z6YjlG_+zB-*)VTc(rfcXg$D?1W? z1tNVmAH`&UgTu4(v)xYB{ZOl99n7AZun7QZN#Ysi9ZPD3bcqoP2!zFN6h3MZY)}E( z+YZRN02jM85A;aC1^Y-m^$_{NWMcD!li&9TF=fcZ9K9LtgUU^LLD5vwB`eyM99lAfi!bTeT7V^PiVOJU6kqZCo`p4VBUfn=5KD}I(O3r&Tgmb_xNh!|*2Dq|k+VwG^AzfV z1;2BvWxG=6M_CzgcO**-W42L+#Fl?ku-lC0;_^#5{*Je`x$ET>oTgA0fVy2A>(3DO zggDr=4?kqPRf^mbcfO?MVMLtrv^f4@l$osV{GfuE>$&|S#Bp#@Gm>1~Q8r(-zP#su z%iSNSy3@Mdw9qh{zM^ji=dEC`sO;iTUvi#$(nJDDCKXchO&5Pi&^|wsN&zqxB>mvR ze?N7C$Q^~V^^wA}!?BgQiYx5(?t-j;3vJNynS_FSNdqB!995eKhLs(vWU#O=%rEHK zHMfDe)ybA2h;ZUu+@E6GRqG4=OF4gk)gU}COpOpK=}kX6J4r)rR7#F}qN%;GG((zA^8ByW7)%pq{cjV2^IFF2$Gy+OkB zmRYxFZ4#29)EB^wOl?Sxq~oBYiW|mje>dC_`YiNlx_&_0r*~esLkpEb;v1TOZlaK= z@bST(QkhV1X@oPe;pyjE$;?wjVA z9_frUd>@};Nzv+yWM9Z&UZtPa>cI-msdZ&D;z6>no)Fh~#rP6GLPE=xQSO<9LM)OX zqaU3^DWP~xYYYkrS&XZ_`ZLdxSBypsTykqIuOMo3*L(7n=9q>tz3X3HBhP_7MjH&lPFA_wl*y9mQi8-I4lWiDSqQ%xa|*kT8!0`vx?4T z@oF03t-X*kf6hle=}aW@)9lXColL{BhEJN0e6>xQOG;*H18Jp_G$>;-?4o+e`7BV! zKDyAm87xJ1&8%1iKvS@PCnd2-^|+J+%TB4Hg|e9GiTzwHrX~A@u@61&)9dPr@KrLb zktF0P-8=CiU-`7QS}tRiGex-}fwakHpd(+E4xZ1v;1zOmYg zr)l7XWj=4uxh@ept1WU(9POm2dc7>lfy!5rN3#hSSXNgq+-YEc0GxInyPlJCPNx3c zK`z85BzwQxO^R&|!QNfa+$^MwcdNKU`|Pj`JfKcHV)`+)hlLnrKHG`ZzkQ4)`wabJ za|)USS$@!Fimr8!Ix20eW}!@WW7^#AW_$@8+FW1$F}XHW83Q3wpp=lc5K_WZKtCS zI<`)}Z=Zkc^N&+ERcp;zxTtkebH4RH>2ls)F=Qs`3+;bVwk2!A9t(1#N3KiVV~88X zSpQk;0VhNS@v3!TYbrG!6XxyUfFU5WBsRJeY1)XWXASZ%gxfF#)&b3^HR zU-1sKt+|G4AVDbKAG3>J8f*F%zA;iGo=6oxcNZfmkRJ%OTuU`E(pJA2s~V;&(-g9b z_5Zf$WdLhdhCp^|2hmC~tO>2rpuPG{xmW?uKlxp;O6g4BnaK8^*8Zt)f}|L?#g1a# z&$Sj~>?IS;iezYjh29(1I>imgtFrrF_0o}|In4*XigjrROERXCzu;4cI@K)ho?A6r;=`rY?s(pF=Q}E94;u?oaN?@@Nk7 zS@d725gDjj^WNEV)3d7^#~#E@oZ+s0SwvNN^agY)p4;uf#&LE};BEF6(jD(3xSZC3 zY{}pm$*+*iNqvs|a(2h2MC@qZ?r)RSgSAK_U^+TCaWuGBzZKw`rN6v;cuwVmHCH$w zn9m=*Opu!GJ2DFE1v;jkW#OJYN$q^)bjtV@^o+my+>fJ(E<)!c(hX_pkJLU%7((3< z)z*9z>-5Y(;7Z6?^mZ&NHe>kSg=83FBd(#)(fG>GcKl>vkKaUN(E0VsV%@gJl3>>p z7m0g&#`HE2BXa*-zTv9aE2*!~hDh-Qk=$QBo0H0i6FPRGPoa;5>tym=4)okNUh5>EhslI`cOx^Z=$_FsmT#n$vl{p8#noVei}Yhi zb}u?}2>U4cpbH~XkJZ@EfU7KY121~I}2lgE625_ART zOovc_gFKKfrufkYU7oNe(nAsJq$nZp3JCZSQ3F%a0*0Bn!^AQ9nNDQZ`$KLz3a;%j z`@+`CS8WSde&qGRcKhge;)9GSGACNB=OJ$Ds`y&@<7 z#cRGH`1}M3ktH{IGxOz0k@0#0PaXy`SkX|xTS{fAO+14`)%!EGPGv79W+I6XQ$wAE zc?N!UeOoS94smUR z6wb)w_;rdosP8+W?RV3nS=_BuUQlT8zt2A1-@3+Cc1#bk!8;^dtHD?Bh5yRA;u5pC z`3`F9Y$TWVr2idmP#T4OdJc$us;sAwoaQR82t6|4ls46iqnBFdNyacS{e#ftaguHh zJDQd5B?z`NIlJyPOt~;A&H{Donoq0(Nc{eJeGu$G^w((Wcn_|9>udmK2cPp|J-Su% zCX&^$zbGSEWkqdxS`3sR@>rVs2%9@8s-l$rPVy($u)sa|^msk$Y)mJ#4OSpiI8gsI)vDV;TGdERbm4f7sR95?Mu<$eG6@ zuq~HN;`JcFcLDp&8kxZEkAFgShz2LT((YLz{DAO}0jQrOz6jnV77;NG&tbAWOE~m@b_%olNQGASLh>Ou>C?vmN<%#!d zy6&bd1WUFY{Aiom{Cpqg4-V1dhwG4B4GZZ6=jLc(I@6YMp=g=&jgG)~_jt7;O1AHH z5UDe&|70Td``$rSyQ@ABR>r!JG-S81C3LC0ivp5kC}Y=hbt`EcIs(H+0TpfSOwu1p zzfd=}KrUlFxM41m2=wmcBBaJ~ZE?P9@p;n?hEjM)7-ctUk$ObJ^K5deTxK z>O3WGIdvDqY63`OR!ts1G;ylrT3*IaizS2M!>&t)YJ1<;=pPkQRyf-SC$15A%^ds0 z{1fn)6r?e>=`*W%k9lwAfa5Z>xO_{TY<%6KHmE-qL#r-wp&AYp<(p?x5Ib(0IHyPN zW{E^(yX3PIe>5tezURrD_2Fw+F02}3j&))O`UEO?=C;licL!zsQj3=c_vAqYwnSdd zbaLT#jH0!p^IR%r1ZQ4CLRMwbAXgTjim}v|4J6ogyF9 zgv;=!`|z7@B>#KE-zJcWGFh%{F-nJuo;B1>Je?@0htoyqh}E^X6GLa zPBaKvf^No~WV8{#S7aJ9ydMK#bdpEiuKBtuKn82@Ayg5%oM+#OANjSoc{u+oT~6)G zqWF=jf53tbDJHHYtfrRg;KqiR`tiw#nrc13=q6z9Y+-L~=VohdV(QFb=xAVM@;@_< z7G~!EpD7pn|DEDu|KEhvtpP^L)TaSP-BgJ|MkR0|3$xVdK}O0S|H(G|Kj&MSIR9tl zY@b>+$cXpfl+Hm$68it#?ko1+>-^u;{|=q)8O#lw-7Jhv{%7x)x;@Bv!DH`eXY69+ zY;56VZ*Abg@c#~-P28Os91V;uj0~*5p5T8D4gc3+>f#WiJR^haSMGmcbQZQ|)+Ya3 z!_Ch4{}*MaUK_Hap>VJ;|6fTq6C2AHL(Yi>9fF;U_5aZ1fEE*#tf^+U2(2rSK8wu& z9tgLu4ciUw-#>_ej*bp1KajpHy4G*4*={)viCrUZzT0yJCiHp@YO1`la+SF<6y{*8 z%xK{2TnkKdERNvD#wG~abfnn`Hnh>{n17RGrgW^~@jzwnCZnRD4-WccibJMT1b9${ z&6I6HP&*ocZvtzJ+iQ!D&Q#wl?MY!4sK}RQKP5_mp47?Dw?dyLlKCUAF+Enf&MXyLOzu9FoN;y_oif30(6u4AoZ1;S?|Wb0&s zKz@!2*eRoq18C;3$gU2~Z`r~RfNIRA+%3>k1P3aZ{dd*<8MFQUF#>D7jnm^}XbNby zfp2uGcXo7rQ5RA6OD~H4dwH7eTa#Y2#m}rM$R)|7XoAL#HG94`HwGqnzB<-Us`tOJeY0$(*6zwk0Fut3~dELL2V&(HI=&vCLNLn9J1 zb1SL)Px6PJDg+xko1Y&951%F_wl5vF)Lgj*Re4juU)t4WQ9%C+78UKCSP|4WFrqtaZc7uElb4Ab{F1pi)d| z`cdII>-biU*PBa9%0NLW@(RE&@DJy^4hx`4^EiR9;PCX$&dtq&`=hWDO3r1m`Ax(=~Nv2MOG@o9jX5@e@2j+6Q5T{uKOr3*!01 z;CcyP><0Uw^^so#(?H<&0RWlBPjDZ}5R_5kLooMz9zdq-m?VH0r+XjBXWJYx*EmSPJL&vWDl5``~0`3V>yN zh6{M%ct`a+70(-SN+`H9Z_eh8D0@%~NFIQ>)8K5qW)u?T^?@iWb@yzU7u zfU@xoE`YP~1umep?xO-y!HhkmS&SU`WdP;!g#fd9y9TW@cuk$LJGl{`f^dAQphHK7 zSkK7#6rBbxwdOiQ!M7u<3Y+?721$x7@Y4cDE3Yf}BY;YTQ zJ3&Eu$@Xlul7#d4x|&no7Hkg-n-S-FF3|BQFmy5adR>LO`Fw#w!aiOrZy#MhTa_+R`mQ+PH-1j5Qy6dCnVcLQcj{)CmRt zDXAdbvsHxbvgL)CY8vvV2A?YHX7a!R;a>!#n3RA&v#B>>3pX2B%SQNYVSbwT6o4F( z^D+LnxsQdqxVv);#{T~2uZOwZH9{yUDuk~hs>sbAQZ;#Z<%m1-;y-=^yXIvWhhOfq zvoYOHdY-KQ;A__U_@#&^S+l8EJY&~OQwtp}$#Mh9Gs<)O>G%lDIXZ?**L;!&M@Z3|f z-@)}3Z=2FP5=QN83Dg0Qek>G@gZX-#s7Il_X1CdOlg=fKiEz+me{g=3*A$Hq?cJ2i z)07=qV4y`+JQc`ppK@1TTo7UBFQ2a?Ih?(^f&6R6OY)h0z#`~SMAdkTv0Sq9iD(_% z1%Cw*k5x##lWQ7jmk!P<_+kgmpw-)aU$s6ORe~BgG$~u{)6}+#GOIOTBcb>vZl|w+DKDKB<=iSE}265ydx#J_+^JH*{ zk(!9@^6l#?89#cggh$|_(j|2eJ~LU6Qw z%Y_5CDy6+@p;bb>;4&u+E5yfAV7wz!NNS@8lJ4lD>gg8$Uz0G=WRtMgEZm@Kv{uV}k-JKFP!&}?=70qY5 zvT=dtU{YiaNWR$B-|4`5PTN=*DMzXdI%d1>r%L(_6)qNG29}*4AKNk=jC@a=MyNW2 zohhl3W}hFpmh!IvHP#MfA!>R>EdJ^z(|R_N0okGo{%ypj6PCD2j3Bg3CTAIWKIW5V z5ARA8=;)w%Oq6u$^LH{I1h9Y5ANpneP*j{Yb8yUcfjp^PRl2}tQC!Y;WlgJxi@F*& ziF7!)s|KuPJ^q=^jFbz_kq)c8u;t{Ke)t#4 z14w$yWRFsOi=tadlD?lqUdBoyr9{>%MFiT4QUz3Sp$FsSv;dK@#oxt?Kq9lq@x8A0l<86K`-i zHflAlu|rL-hAfhJwi1!OTbur9uB9c8>=$o)KOt8g=l$EU$2(8`l5NI^!O2cHP4?S; zq}E?zzI!9ahJmr@xC!5y`jIGijiB)ojY)=Eg_Zc5BpaZTDt;{f`GM|xfC{>Cv(m5a zpUfOg5YeRFMY{;jU?gg)b0$vre|y{mpq%Y$EF!2#19oRFQb_ty7a1$V=JPT+SQrqo z(u;!@b%p=QEODJN)Jbbq7y?oVFFS7SJr;PV!l6rwjwAA_Rr7Y-_CdVDyMm0AiJ-5@ znS4SVTAP3uOtlQ|#c+Qrv)Aoz3B)_}a{Za^-jGaD6w&kGUxU{e6KBD>Ngc?!+*?~e z7NE$$vQf8xTpE??S`;p)gqb1K1gU|t01tbKR1&x2Cixow#_?F~sg4kY2ikkUE zYifJ7y0W^tLUHenH0XE78aColTs2+DZYjnyn2_m(Ik#p<71|S=4kbB)uY8n0H)z2I+m9CO_6gWrJGm%*j^W z^}htb1zzh=1?|AG8m6~Skdcrm-*^tKT<$Oe@i?IPGilf^E1iGNAAYWSfr2f|{A9JY zXpjflywXOqgz(%My>0h=T}dt-im-mox~ztn)rhy3_dm1MT&GJDtk795p$j0g7#cl> z{)V{Gf%68j4ShOyDIXLosXwuugTt+1G(`g7*B{nTg(({5!x|a=I_Or0{B`wR!p1bq zNHd+lV_QG~q+w;JkkeyuZ|d1OZ_S+Mxc7X>f(8bU<67By^;E}V4h5gjgg1pQMxNZ@ z{FDq{>uy3uT{%BCy&bJw#2Sxh(x|V{2J?xa%hRn z9qq$(tY^N!b0o44ZJwO*^U9*F%T>z+mTWMoNWAgf(a!>(~cv z&N75g^lX>AdVG=jj!c%*pCM%Er7eE~F(JSpZ>zHm%>_TXc2=V2rP_Hd-Wcd(w|a($ z?*_6t(*bgS8;FO!^pr$JEIfxI`6j};!mCSUAiC1sEJaLUEJ6a_sC-=e(+-kPu!F4I zmYu_K_s_EcxEp(O5}RET|7~d?&Q|^CII#ri&9XtK z0my|de^Labm3==JwMGf4zXZ3aKh$u3ZDk!!CoEdRaois#4!YgD02i*E!~3P^CP(YJ z2bQRL7$H|BWT=O&m36BeeEQNy;{+ohA*0lDK{j3ZQ)h!v7Fmo)H{*tfU*`V%jHb zT3S&k@bYSwPOnGE(}_AAlD346FIM_k4|)-&`Qs)>%Kmn$!c3DR`9+pd;=Bn=dhD7J zF*{qX$F3lnEs2ETF}~zakogiWsV!Ux3l63> zdTPd^fPuR7Az}7z{Q?6l4_$AXog$m2a5hiVpJ}nA{-u>2s2C_oL_9;XRB9ckm?Rum zk_UTXF;k@Bh4rdj_Ts|)Q%iBVrXu1udxza&|DtzPGW65mfAKuA zt*eeW1g8LOuRzuTkK?tQi)CunKNXbAu3&4?P5L}^hk2B1u@o9i?X*voXTRLG8BsoE^E`L2GhAQ$ zxmo~am2)GPljY@}>0ossG=Il6ygJel%3-cy@w-!Sx*CMT)daIs^j_DwQGdanZ(UJ{vsdM zb*#i#wq#rMe-quKCyG*e2U6}~Fte#oYY~7Jf;CKuSJkTP!C;f>uC5SpHX+M{OsaX_ zekqgg)Y69+dW?=fq>yX$C(M-)FHN=!n+QUfZ!4oJcQl-Q1%k0If^g*u$8*n#}QTWt2b?32({_VzqZ)uCUMqMx_@=M2uN5LFOu5&eeU`(TBWL;U7_`+(#R2As&1$dmq6pfl$+q zO7XW9lX^n0WFg85%!R>J2H#{wnpc+Lk!hqti?)rAeZ9nUhGu>8Q$qwpo4$LO_)O|0 zuW_kCan`tU1wENR%e@Cd#3X>$?6|jaIxT%1cg9D=hGxRhZ2N7Rk=TQ#FiU_~xMaGq z>O~A@Fj|Zh2^_`GlJ6MA8dyK^5VLPE{1{hU-tRC#)RI3rRgehuuj}7wTuVcx0{rQ_ z1iE8NVVcTPt88gzHV4pJ^5sZl0!dwU>04ixvB`oJFTz1UJcNTi+e!h0cN1Mo;A0rd zuyZaxT_q5KN!bJ6rpVkHCdcIa)VzPtihM1n!rRmd&dA@T!H|Z;6>SUWWou{IEv4LH z$97t6Vb$MU;K zw>5WIR8ZUaKkpP*#!i9!9O!}NI2DaL8yHcDc-(7bB7OI+!t}0uYG$pjTu2!+9(9v| zXYwS^1cUnKHRu#ZS($EX9g+N)^)*dzMwj-6=_vev0d9=9X@WNR{DF%Em?A6&cw0ah-xjAUu;c3(1tYW z2i|}~|A0Az8fvdi4^(0sLMuLs35id8^uTUSl-R$>K|nrduK5LWz=c9Vm?hicA7dQ^ z_i9G5$dd3Y*4fp$n-9^C+0>5Q3mO_X~VpUiH-PezZ-<_QU(mDL@NP~UV>h07#aA_aci#H7r-+kB08oe5? zif-302ly_IGtszTrVMbpk@T4Ph`VE*5ohwTl$*rcQfF4*PfmLo;c1kt;L;e2Acy z-c*St@ws#0&7ABy(j+eE?&ebdNxis5khxZ{!;69grn|N{GI#sXODTmpawxm=csIP1 zOa>Wt7JrUS#U->9O8Z2oHuYNYZiS(($mSYCp4k6GkzrLE;HPp&yrHkGKWxx5994Nd z0ICk;JXfdl*@z+5q-Rh8>OXDa#=?B8{O6lVm4mnVLO)6E(M5g*#bR(tczpZW6UH=; zVd}0KbzDg5`2sd=sk)Ghu5;)DuR;pBA!q6Pgt!k^g+qsISX`EUJ_1Q?t5N8XUg#{- zR%^hjV%184L61*Hmp@pR$iZUYiiz6451dPF)z2?y?|ZTZL#JP9D?wIpX6z9nl~(Pj z@T-ziqI9s+A&TDk)d8VbEef1zV7=Y*XE8lEUDsVA(0YL~(TJAj{A9Z0xikGHEKvV?LDdw|FAS!0UNVp{JL;^ngiO zpR(znRdTE(4bPgI`9}`@SHX5yAbxMjtdu#n(3(w2rB7??h5xMr&5!1c7+KE`zEslwe8SqG0HuSw@88(nZD~imrmf1elXRcXGmr^HHwW zGG*wsgp?}tG|3F43yV~7f6(yX%Zy{(PEaQbK%B8z8;qCG%@)V?eD#TebTul5Dh^Pw z07=?b;;iTec}A+wO41Za3|!*9#|2h7d_~>D;yA+|6=mpOxF98H^yFD}Z$EQjpu1}v z)b8~=3ft1vsBehbzvn>!2l{%EuyNEj>_`*yVM#HH~y8jF1ZhJIbR&uY4&)9ivM3c2M9gb>(QZj83T)f{Jr$)9Rs=y^t5o1btG(2c>-xqAq@YQ|xs+&B?5L-P z(b;SNg=Kw64rKB8K~S@QSUV^`SZ7Y!s)ak474q78Yu7j;4vEd-CU z+sDb)Q_~l5Imvqzs1^&pf1a>mshd%Rmv*S9PoHR~r=ZX)rrS6ztztVwL5CQJ(c(b5 z-TY}WSFUTV`68~dp##P}fLKcn5A_dCWcA?zZ3^wxLDi7*0!oF;U1nijyZ^G#Y@jUF z3*ry0#iZo$u7H)VnqqlsZsV7?G{XXBj;56-{bPn)9t=w(0L%A8X%)7Wa@^(aDTUwJ z<|hA)-qt6Az|wgx%I_Wv%}&y6*dN4M-Zz{^X^IN$uuk8yw#TAqT6vgK7I3^aDXY zry-8^_XqYxz!l%JC(s|;7}M#Bozaw#R{yRsds$g;OA(r$bBl}uE=D1L3jNboVO0S{ zIOV;9f4G3C*wykVD>QQu)8LP|YY4v&6;hSQZ?_+hXf0i>tUx$x4IUgqjB2JHGAUSf?qXhz~h}_n@s01acBR6D(qZ&hQmR# z{EKQkgMU6l*c$io>wFA`u2^i&c5KinO0GKktmBc*N?=cLuohjAivUthcH$0^o19OB zUAofImN{@1VHWH~8XaN^Nu+i5blZ2QOf$fjOd>8KzbB4pJzpmF9=cAZXnbG zryQ9G5Oc_>ixAc}K&suNO&4_=Ag>ji)s@zH#rEEiki1-p@>z0>ap9tDn;9He!uwnj zxlPf3=XMIEOJ^3clZD@glK5Hpd|8-8vt;{@XGRj+kK`%U8KJ;-N7iDsgcwp2fPRpp zG@8SM^HSn2Q&>|u_G)2_pF5(rYxq2#xxKe(Q|Y zB1b9isTB{T?{)lPtB042?@o9>4r?iX=rWG#>}ooUn=B(FP_Psd@Egp@FP>FNoS1AF zNJZM33c{sOsj_U*2n>u%#dqD4t-%z#HK=aIu6bU~)XKD>%jZTp6_(cc-3|uq-nC8FEto;UDWa+b4q;TM_*_V+jEp3F1}w z@h`I|VQ5PvQn{kt?g2GMf(wS}eI%I>$k)-A>wgt;g}x#EaZdY3Ynr-3XbZvL{i8P) z!|jL*)q8a^L~9U4M3mn7 zeLXcO=@?e{Bs`9C3XXVCjXJjes0u`1rz=KDcWOQy-Vmakn88A>?0E^h$%GUPfOEwP zWw<|#EMoxvmbfQ+5Rq%Y;_bOnw)uv!-_DpII_*Y8Ac+u=aDWtjLiZzUk10z$4V@(Yi(HKJYqL5&} z{n!cCZiJp&seBt;VbpNWU^^eCjlaM*-^S~}=JM=s4f#_dG5;zyW|b!}VYAq3aWIA| z+!qTz?0Bk>4m0*5Ocz-Vxc&VT;+_J6@vBuJ{@?IGi*^{3f4EJ0Rtu}(T!{Y^!A*Xh z*U!yq^|UC}`rvN3!B>*i!MsHz2(SHu6dR#$!c!p}H8Imvd`I|K7x;V_Pfo=8H_t({ zD45rB%LX2AY^dMc1cp#ku7_cO2wUXKVkgj`%V~=1eKV;5xi^)nyiT!Vz!3L)h^v z20lzH-rL}>TK#CQ^bmL>%wRQ>Zzn8{q7hk<{-Ft=lkANsJH9-5g6=DN+p*> zWHzyI15L>>g<*tKWdz2nK@do6oCIXk86+JQ02&|8Qse3SU~5hF&u_eve(dxrB1 zgN%FMJc7ZQE`|C}q##N+vs=w~ex>yBPTCY3QV&8YS@Ms3k%UMIpDvN+$N#NikY@wBO^4FGFgACK8XcOcAx3Kjg_NY7-`ll{Uj_= ziQcqRJ*{7_U7Py%YV~n_ZGroc*}wNkVMt42r+@5pO-g<#C6+2NJ(0AxHO;?Ix7;b$ z^XDb+d&xN$AA z-(&aqBKD;Obn+MDuFOpqF7l}kryLVbFD;a2mqtHOUzZ>oQ`jz7^%C7${WI$mx^gC0 z2VR_|!ee7=xlNfX=khA8e3?|_g=vF9%+L1lTh|jteVt=VtkZs%2&$%Afh?$5brSR{ zEFFsF*L>4+2a79-rEeeyn2^i$k%7TY%l@v>z<7xKbwMxDtuN4&vMY&|*Vn2q#>FE% zDyOF4;%zg6u%P29-BQO$^vP+V5-w*Q#GCN0nM=TDh}V2_=!cAYRx*86R1h+X>&C7( zS!BG{w`zY_sjQxYVtKBm^-zjc{=`qS;1TtlDhq$24Pfw~>k~4HHBet|18$sjarzg? zDr{#qnt3DXaMUvMWfY%yqWCLPb5F#TuU_6IvC_u>{Q(;RuWa0Dqz)f$A^}7n`|fH? zeB#(9ToLSclJi6G<_x&hEpWvy_(pX|m6`*`kM5K-eMb2Tm=AMU@SJEbQijD_5@yMQ z6Eg;@JZbo6XQVGPV-F(Efod?+>l_sa@mB@ShS41)ZX6ksgtr~lC98wS{VwjOFgK-H zTi0x2$w_!sUbn)*E!t+59E?4Ky8FvmP3HNOH(XXtzl_0zv8QfxOydwV%g7%LJ1M@a z!TqWAIKeSs%DEU0&jt??(aXOfw!1`EPAZ#Oc@X~1C^N&3gBxoSa5 zHo>V4v;wM0eBd!NRjpz!6PRkK6z;QH(ZKLXXM`GrDZB%TkqY6x9$ra}&l#PYfqz<7 zYXaX-YWY8-sXqb_(CoW8J0=bxV^_7?)&Ci<9IF5GZ!ca$2EbCj<0fvFv3#M`uST57 z8hNU-p}yRtA>}&7Y3legY~zbT-$oW2vE*--d_9P=_Kj)xPHyaX9|Codz2MwXLyw(i zi43}Do#Of0zjNh*Qz;T(snm!vk6~$XiDayes7rwL)<6#9f(yABLhX4V5o6YarO2XH zPeoxq=!!<@0vUR>{2&nwZ+n3WKLRXG8Vnv>UJ#+M6$cmt+=##yFQysx#E~}-c1K_X zgddWWn(bRt&bJJu1|V1*?&vt!^Q73^(6hU;W2mg`4!DDERuSL8CR0eyIv5ecQ6~@> z_0p%1M`^Sm!h?QYY<8@pt@0*MCrC7kN}r|USTlA00TfrO@%TSQiWZz{i>0R#Bv@m6 ze|U)I)o6DlZ9%mYcn&LOx1805BsZxjNa{BKV5;kz>rIU@yiKb$7X1UIwRn@*VJzu4 z(gjgAV!0i!oi8WY87%as;@t(-DSYew0$*U8x%xWH;^TFgrM)Zn%!KwV`QD{>uaM}u z4^_?Q0URWV$q*bwmy-m1TZ}9yb_Ooi11?V-`o9UC%gmqe29g*fE!sdiAwbXgeb|uP z1cY&Jf!S}rJ6x^L-Zkh(zy~5sU5|@nJR;rJj$>TQJ}7@z9FvqpyfIu9!nCF{dD&Wh z5M)59fI%c!!zX_^*vIi`l_+(;hT})vSQv%Z0}#{z{ZG;>m-y0ReLLdjQF=N3PXE(muIMY?hkQ0Q;sDHdUmXF~dQM2i2_US5LHQYkG&{bAnP zDP7Xcnvse`s|2k0<0Sgyh{>kktNgvb0OD{>-iKcAlT!5J&EA#bOsW2A29D-q+#cJ8 zf$Llznp`B)(n-z~_O}U6@s^RAd}AJhv3hpjc@;BStWG|fSw03h9*04l(%2ptK!Gs3 zE13C$lFhb58?O(Au46?{gNEI6-ksOzwuC+M`U#KTV6d?GsD22i7(FcHB2ZOEsWzFI zO>yVB+k_FVlmoBO_|>ODl93VR%x|Sk9x7Zs~Rn0et*U+p|E(& zjvVR}U<-3t#2qmxo#Mf>s>H({2S06|LuLTG4ED!*w)Yl`^|_?-xEIl9F5}jLkjG=7L!$ z@yZ;v_qx?>y&1{meE!@8N@o`<_OOS949l2%{s|A<=LV~WnHfnQn8;alHQ%c<4#%^3oIzbQ)rWRBe6!Pq62lBw8tymSm)ddlE49z`6wJk)w>gzR4$a zO$&m(V`T)b1n-pP`x)zsjOZ4t;vw#+>9CI95cnqJ1;6%dMshi=l_Gar==PEP5aKg( z8kOjErIXKdkJ0LW17425;To;eh86hOPq4kOld=9~9w!IpU}MRFz_w9g;{LsP(z%p=1-DNj>U2&WUEaDvf$5AS2XFcWm#39&*uLe7jC3Q)@ zWvbSY!^*#hwhfHpa5R&Ol3+=ZcH9%$M%ZH2HgkGihJF7(`bCU@L zduFsJPq%)RG`9NDYk2{GKsbxAVSq$is)YOJl{wT{tTPKfk^}QJjvrMRoq6UVlfL7b z;SXV=OYgfypzoPf)~g z-U^3v!{V`4LwHDJ9plQLGM!3`)hD~~HW~{h)*&e;@Q#d_EmQ4A$>#OW@w<*}l8VGD zo$*=>4?TQt2jb>n7Nl655naw=6Q;w~W4$&C*D0xspD7mH6rV4n1%`~SI@43v$BAtH zmbrShk9SNx{L@;ByCK*ndXyJFWV@yG*ll3<2eIjVgH=#3wEK}Br{DT6hvvRSO>)@P zTU+50fL>;Gsc_;(MlL>Yyd2Z@+bM@<;BPMMwyHdJs=3Hw7mJYh>M`-()6}t6=V{au zH20ts82sOZ@X+}!cRf`Z#C=<%C-99V(v&+whK~t2X=opGs#Eer|YM!M9N+08nig~SvyMpVIP}R{2PEE=emoC#B zD9O`8O4dKTLzdTSuYvZE-`}RW_`y+ym)q)F5?ju6Q|F0?I>+d7c!UvZ;)3RQV8f0} zx_K|bNY4nXe!tVJy_ci1oGWik#?UDPOD`+J#ZkQ1+$YJi&mP@lz#s^VB-ZvEGd&vl z2bZ6Ev=>ITYoKrG_8B- zqT>YyJNM1@7Ye}-B#qKUS0D2Q2g|YvogKF+wyN%lGDe*Vj2}R22we_di8Fq@xO47I zd(ZsbzR%54saILy=2+gPbe||+@;T&4Q2%XMs_@*e7#x>V_S_!x16t9O^2l`$IDy&f z^g-1u6)5s27{4>?e#j9uF64;2c*ky`h}`7T;n9v8dit>v?>a=W8~LV~_RZ$VBYbX1 zbE5m0HP^0yA4|fXp?RNHFja=U!=Cu6%l0g`kC8Rxmt(v4Z@h)Wrbh8Y(ozJCp5=8^ z;a>@FKb$oVZ!#X5vNXxxl+&`-0hh*1jeWoRM1$Stvby&p&Mau%pb*I9qEk<59ZTzCggdL@%aYI^pH!GW6C?})oY@#xk(hp9FM#9 zyx|?62pVAyc%SWBi92q12(a1@2x7U#4trnXZ%4mX8I7lzssWMtZR)-}An$UbQ!l7* zBjFWXjoe7Q{XP7(15vlE5cJ{6kJ-@-2QJsG<`me==O5%V|ZBo*K$VBfGCqbY)W%CCt{K=5nc= z0;PC$Tq%O*A?tpK3MG*XkcZpoWWSt1fdN_j8#zatTj=i*#-JY$m={qL5(z46|4ReN zzz5uW;J}ckS`^Noe`I?frYB4U*LQI#MpyuZG{yZ6>1SiT$j zaG~L#SmOp>|A?Cb4Va6Drf4Dy-A+eIV3LWb+A48@eIjcn=Rh}Fwi8PR4|GY%KVvg7 zThVwLT<`7JrS$v?5y;75=y~PPEYu`wGtX$kwLU{Bh}$<$vvVXueWcn2MI5v2ON;)I z|A(w|iq0eo({*ec9h-k_+w52!+vXp2(6Mc!W7|f@wr%TVX3ng$&dgPk1+^KURmrpe_T`LY@dE#QT6J;zc-@i`UVj8D<$S zI=r0EWA#{tbA;y>U?HjXy>YB*Zl zvb_uDlfwkZ8lHbs;3$*j!p1Y6+Z5?9`?)I8!;fx`YIvQF2uu11PV(dh8N}l{HjJAT zCui~CjX)5 zeX*?}4v|3}ImcWNZcz2YXHDZ|`XDqDs3ysW7Vf0%hlH(+&bU*Ywac*K3jlo3yoq9| z!Rhsz6M?|i*Y9o4UlB*D@uo%M`KH69D&u=OC+8Jd>#;i&cPz+5rn5}I$|8jP+4`rnUu?O zdb|3d0J3%{|e;du6Hq^M8f3C8>HDMfUYkfBSq z{Y~X>ac0h#;U3!g0Z|~S|DJwfpS)btG!oRAV=tE zd-zn(7L0pM03IAmq9&`Ws_96$e}6~apY$s7xZ1lY7d@Ve=3q}lJ%k%h!P3jm( zGS(+H9Y&gbjyO)!2Wwu8C@ z^>|VWMH}JZ&glTe|iXmMB*zd23Fxd_cEmzarsJ1NZo#@gw1~ub$>fy5>Vx74+%pFUk!{W65q&RaTlu zP&9UbYMOzqK!6zJcC;jB>`KO@)jL05*UmU2JdOlir+Ob;ggmxz542(%y2g^CLV=4}Ezn+`hrtmwk?+;^rcC=30 zjl#jkBO>A!^(_JRs3I>C=b7S~)eN}S+Bj`fhm~P*MwEpmuh%80(Y3{39^}F$lpb6=h({$lr2z){C@<#GuDdG?8Ur~sGJt+mXC9n1Zo}z{U6(J5f5>Odh zDrpnAW5IC1pp=;bYNRv18gRDIe3top3Im;;{>>tQ)}^FXI1N40+aLb~W%9nQpezMd zs`>H=$wZ>l=X|!&)rJtvvaoxQd{j2b8b4BwWkHcWN>-e3BF(fOB{WA}OH)?V@{26$ zrZG@puW-32!%A7(KI^Egu7!irQejOL4{Z`A^XW5??yndhiw&OBh47=Xi;QIHb;NN) zqkAM2?89KgRiB~XLb|(BRvYN;^FuFXdP-xT5%g{w8hQa$IllEsg{?7|hWm{%D8}o= zK`%Iz^B>7Hp`?PJF{3K|`h7Q<)O@oWsVL>O>ah5|ogWvADc1mwW!o9cWg`evPr(HS znk_nDGSh`utF3vZgl469<0>Dc+20b4X=wu#4;09v8!9WT?fp504%nj3Gi)PioG^pG zQ!wFHHXc7(`r=`dDF4mx=o^?^4rm79KkP^_r=Aohb+wpJ3{4YOn zHPh{u^hb!+XCg!z^rI|7OCKsv!iMZj@Z(zi;Jj7WFuMGB|$#22!Q$iRlMAcFgTkyPLAl%n$BWfpA8TIJB=O zYTTtoz(8JUzi{Wr6)mwU6dkRDIQav3V4n;z*4p*JZ3}yoC#%+jubyG3a@t1lJ;M6J zpjB`7FWN)lMI@k?9*W|2S_Z5AA_rBv{XQ@5J_(_sxg6_A)@GZPGcOnX`{D%=b=#K# zhz>~M7laab)o%x&Ct!LGm764;&si9y@4;+cxJKT1OJ+PlZuV!)_X!ZJz8SXPY?bnB zmyz6;ik+hLC!Pf^zor`7?(iel56CcZgh4 zkRvIUg#kiDQ9(Fm?~ADlQx+fxkOwFL6ah*AWq=Am74Q?FmXytmPhepQFt)d~H3XOd zOaZ12&XzXzcK>~4PU>Z5wls8du{5+Xu{1LSIG8$F+M56zEG(G;4we8%fD^#U!XDrZ zaJDr6euT4)p|b_R1>j;~>S73R1-Jp+0UiJkOMoZ9>wi!=SpGMagY7?5i5MxqE38P( z=Ag{v@L=B{4p0(i`jl1#=4vc94z~Z@hT}ilU?MRw{XdciJ97%te{wunxH(d0^cZM> zYVLgVF<;Hn@eGBV&&zwU3?}xt=DLU6p?m8mmnOO^apzg`5-bUE{G_O;%8z5T6sTG^ zysti8IRZIbPftfzjxqSvH$I)&S4%wljK-|WYE%tmy6{nb;WA<2bRbY6AxfDQj7WdP zdJ4tmcNq1hsG(v}5-_k!4iD6Zd-Aw|5O_tPgT0s_u(+9Yzo4E5dij6s;P`KoDo(;% z^ea0c^j<=6y@G`}{J=OrgG~W}$SnzE#*09A4K{)`;~Iku2!ux?KDAIZK15(eat6WIL#!XOA)1E+8}2*f|?9@I-XaUO6Ba}b1PAlSqt zoBSk*?cCYnkXfKnaF3aOcDBVtj_&+q&*3Vme@Hp1Cc3{)7|80O*>-{=(+~0OD^f6= z0NBR_K8RuTmOM&LOa$h|M35{#aN_TBI^&wKgodx(A<17*@A6R~u0y%}3g{qURa}`R zU@-d^7Yv8HzX!wfm>G?-M^ycO0W~17t|g4uLHjtNqJwj=hTspxsHvtfzY!kN&LH3r z2+@6gibC4Q1`^03G_b^hgil09!6MrVMx?-2a80gvB1_%8W!1`n+FH3C4OyBoVf^bM4x??~&0i1mo*F%)|V8JK0@!>s>&xO@T~R+3E|25s_-L1U0-V-26oBU=!;+y7Lm{xF93Y7ir?1(ytrfzOiKn7pG9Ao(wGNjk{GK`q(YtGFU&830epbMUSke z?HWi_sA?dOfp7r~7HS2FpJf5T2nu*ri9jzFRnf-lkwu~0guQg;5de`w_&tP5>|cU? ziL@O#q?FU3DS-!4mR+hqA??Tw0wM0zCIVC)1t*s5%ln9t5Xtlxey1D*A#UCh(*oK5 zs{8P&Urld?7B2^kdGx*kKKr$fj@*=l$)h<1_9f#`PIGUe@6n z+H64Ci+)NqD#)Ey8~(k?!-rseGFNbYZegrT9!>j`I}$^40>ywL+^I2~->$i2QHpM) z9xk13dx0Wt{a@)}Uz`OnYFk$JhtlVKXWqi-d5EIpT^k}Tdzw#g<7$b1vO|v|?z&Fm zumKHlMBmsr9%<4`WQqF5iO1KatucT#`#q8&Z0=2&ba{_>`=H}JbH;V}f;DLC`n)<% z!zzSY)#I528*WT~>S2{n_fBTnq3o2QG)By{E!3NdOWO~5|9UR9-lDnfiAFQFNd~jV zUd`M+3fFz`EXGZ6Zl&3`aO{2z4JX6h^M@<&UuNcRVVgXbY_QQ$0Qh8HL+Phk(4F_j zps=e{(ABWl8>$DxZC32v(n_6W?|!XU?XU3=TY*$3(2J4vFJ zM&@lwOn8#LY+04N;n7dow!)(&;talNmFU6FI&PNj6$ITI$1&&04~<`yhNC1agSgZ{ zW6LY#er7SKe+2S%3t=@KFV@iO@38H>vFpyRn9-)*lX8ZFc}?eqZG-Ly1v>W-?kgzo z%tu=AM^@h@JvxntSYiH5*d@;hNEB?2TTqq^ZpcV6n%6YPe`k|KU53XqufF)!DNT{z zWa7~zb=wt|Vy~r8TyL@s1hWN}FR^NYlg4e=rh>f}IfGE<=qjZIta=~V)lQteI&v0~ zJ4@~_kZkzS5Rc9iYhNgOC9zhOn6!7ad`|Tl^rRYs{@x2?ozTM`b>T)>8cpkj!S>Jd z2e5e2mg%)k9?eIE(bltTEk5IoCu*N%v)2?8-Npheu_-ty>vpClUC#U03X`$DQ5Zm^#(+s$z0$P#dAseo2j|C&7sk^&T!f_o#kxV!Y^EOCtFCtl z;>}+FQ_fJ&Yi}Co`m?PN@r>$iXHNvX$BH;2u+O`xmz3TN=jHw|R zxS5F*b*UHzEXUA*5*?_SsE3?JrM=CjlRo2Lk@^Yj19pH!j|4Ml(oOR03!i^DN!4{C zfBuW#wYz9lFqNe_!7D3#0-doZjN&U#I`1ZQ-xNH)gJ*cXQ9gVq&Vb#JS-1b5G6@X) zQW?&L9uZ*eB4FYDBU7|CnbJ-;kiW~ozfdX`zZ5i$$UO;A9Jvn7r_bih;O7hC z^xgg>eZ&#pBPEKCeRCHHmck}3fN~DMj)MvySy&aZ!fbcBsjwVuXofnFu_H%g_thuV zm6%#`LH&v|{4%yTqf;`D5LI5d`lYxXC8Qr#7Mlp9rhpm6^!XcCFTZz5VzzL%5{lZK zA&Se-f-7U&zjM~f7P&c#@x)8@KxP-&kpyCbzJ)}~av4gc4QXGDIcU`Yf?8=LPc#JPjeF66`= zMZ6lwS$YqFO5(Ak&QExa(^61rPFz0m5F&R0J4?oE8JE>4!WpxT$J_0Db13E7RBcQqx38sEQZT7waJ zOqve_brmKWer-q_u0Qwj@Y9H0K;X^YnJv&u9URZ{FXZG2H~NBf047=dWVIeZm z3n`(7q$B4_^InVKI6peD4{{tvTdXGhUn<_<(Rs|%vj{ufI>N2NU~3|n+5OS}(qs_}UC$e#`AKj8a+p)hrWh*G7iPJ>@1W(ZaWKSNlMoGTbKv~IR>8v4 zkdzdAYijOj_x{l*rK3@B^e+D3BQN`Ir!_A-T!n=GSBVMA37sZ2L0A42VvX~sYGV37 z=wD9hWF04aP?@~Nu=Yu%KlGdgk(c=KGoCK<@A>Ut`8!`wJagMUqx(y74GjNNhNyos&NSWF*tH@OGZ+)2 zd#x=rk5_d#PvV(fUF8HV{X&W~kmS8(RbqePq|MA$||YXs?NnC73*e{ z{k&{Bj3^G`Q2p)EL_{Wg-uOv1Nh-jT+Q~f*c28S4D#64z+s>rP-1x6u;@MSvSESQ3 z=TDo3z{(>k9HrFJdQIW5H)TULF-<4ka;F;5OPIe|HzzU2-N3$rB6%qiYQ=^<3jebh z>)xZYl;zN}C}%MMxQ}j@K~Gb1t6t2Bgl~A4A`+3X_wNle>!accOfq{9r*-ndGTOi} zclIhHr#qQB#kPgs8?a8b9?M=#_0-PEeg^(vq)qyJJd{~FK_!n*hoky?gF}tqX*Y-9 zL=zd!+_T2b8fy!&c?2{6D&uV6NhpJy&y>x^ZK*<7V$Jw^Vfg zo_*xHLB@dHu(I%?i_9t6>vKJm?8s7}2sH<3hukGV>qWN^gZ>zHl?cciwKm4-S+kbT zEQ8HK>I)N4YV6vyZiNC?icn>mD!9iQ|9kM_=S~u1t0MF+{#+n+Bz_;EGYy`%=s|UJ!tY>n2nf6zWelZQ)Pbs zYAe`@On;q)!yv zcBZO}aiLp7XKRBh=b3)Ni_=|GW>oBap;R~ulU}wA3`DgjgkRauw(|+?h$2<2&4O!d zsZfp|PU7<@!Ld|4nR9D;JHyq0EN|9r2AeW}nB3eBIQcxUM)|iG5yIBb8!~9%6z`!Q z{#XML;Cu{Or|RKaj3~D8;678m73+9Zn*0SAeyA2F1a+DAJY_4AxsH0YI{hx-`PYu& zHgqx$9QAt0S&`VBsXeZoAph|M6B(fs`f8SR57~+5Ye4H847I!|!{`=nXXix+xxy>M z;-GNdak5NPwOK5{re)FoS-LQ~Hypz!Z-~w#e9DLjxo~ROVF4}cXHc3)0A9+r`fjDn z-#im_n(siDe~36V#4+SY;#_PB%fl@G8fHXgl(`jd*x0p>wtwt2ed5TGoVl|W zFgH7j2U=tEux0F%Ol!~a=wHl}C z;+QN~-k8^%)2e=%$YUNxOtmE{g3C}!q#7vxYzVR>oVau$8w_)l$7 zIFL>25j2Y~vLm!ZL!I-U6JT~vTZZBCXjtMY0Tkp6FL>E;(-q)NzsD1=eLoB%B}Fg52F@V$rV zb>7GDgDgq}uBaJMwCA1ar zeDvE|yBbS^zDW%>(HWyQp3Os2U(%^8Tg6&}P_4bmmMzm;tZT?(cYeFLd1o<+XAWGG z!AM)4%pl2@a{s-$w^Jnpg#1_$w5y#N)={L25yojuFFUo6ubiqLe)JyFCtNqD8ZKe* zA>6R%I@|X;=E4>6LNwuz%3#=c?F=>O{hJ7h@a>+ z>$P>|4ccHU?sdk}`sZIFxI8{$9-2XBmsxQ^B}pZ_-gyq=?%h!UjL{RU%(jAJL)dt* zrQO_MZNG*PfM2u~5j8zhp~XbI&F0N3$^R%jn_ZCS$dpjjrHO2i&*L0MNm!3ik7K@D%JibGUFWhRcaeeFiKeGs&JfEj zXFj|_fG8RAV9Wgs^EA#)>bJA2$wITW_d$)kZU1-Q;L^;2_9 z#TY{1nR^{@JRCoVX^&Ykz^k8WIA%7>ii;YRwq(0?X@v{pHvKHkr=V^FUf$_;`c^+#j>WXuAodsy5F)pFk5u2eq1`m=% z_TItPrf_rz{`N=~v9_4Z=+C*j3|=KrMNU|(E4U(ZqO>6(sHOg#KtM-1@x?bo-=`~; zXdaOiY(a;ijH_q%^zW9p%E;bWFq@ndXFt*ONyX`UpDU|NGm}aqRs5(8`_7gh>QhS+ zRGU<5MQ!Kpt5Z=0Wr54?<|Km)Y{4honAsXepW^ZoIBT4nU46DnVU@@^+5-#sm!iT|_2y}@H;`Zz#;b;nL$MN~` z!#(b@!;~A8mRQz1wLO9#0whoy^e5K>H>gl5uL=w(Q-3Z9d=0}$FCIue)Nvpph!+nK zZj}dw!WNNVo&Zb1`s=eBac+4G!em+08#bJNk0NK#vJybSs1a zWM2IA>XsPsYJCCI#nc6n9n+)b(hB4nWWC1$dqi*bJ7NhlfqE82Jh4Iy<^EIv`PC#& zoGI4Yvc9pwZL6z?lF8J9Sd!3h@7MONkH_}sMX*B_^6TqG+TMzC{H;y07G4ASg}#01 z0AhtA%QO$^b5scPCV3KOLoo|WBl(_zQ->PXo{IF93a;C;{f(G`cY3*~C@w35a)1!d zg<-;gXcWUE6@t;g_J6U*y~VZ}yhj#h5}Lw9>K@Pg1Yo{zS$>M^VTDvqEcXJ}u=hW= zsGtJd+B`lMGQQ~7(4brcT8MQ&!(pH_MSt|TpX*&tA%J}_sHT7lsQ&ynbD$(TMVKf` z5OR)`h`tl>Z0n1yD4{Qp(F34|+1^2iSf4Bdo0ma4JPtFt2=rYN@Pw&Tguz))I0NR` zds9ykoPK;MX^ZBnFS?umIyeOm6hZ&yY7fjA{fdEC3I32Y1D6140sUnTvfMwLe8zZl z)!K^w%{Gcdym@d7PB5XO%45^!+=<^&Fo;-FDe{j~MxOKh1>1cWY(0*w21 zq_Ovt-~)Fa4+`Z)GScK0u<(Td&I+J%%Fv9ZvxW@f@c^srSzOi?!T|$v<4t@4IWD`M zXxezVK!l@z9ey=df7v291#@|PZXJG^79)2VPa*{O5(p!G6$Q0Wi}3ZRr=tWHT?jIK zN`5MmzqcP4 zk8*+F=34ng4JW3+0^$-IYY`KL33?Uw+-`*tN%y0*&I0fG)<=BQfx;%O+ug)T=(zXME4DkKiRtzCTUb)ME911W z!zK-U_aw27c0rt8D)9M6*uuJ7$V7<&o841^q1e(}d*7eYcw~SgJ$lCZKHd1Q!<*U9 zAYdK%xDU*p-O_{x4P6O(AWU?GAUR|cDP zbxg?iNQ5BJ)gVr_9QV3MALh4G(zkGM_~r22EPPwWtuSF`=Bi*8Bi~21WZ<4~pEm zL;Wl;Ra4+`Lq^sMe81#UGP;DAHSr}=6+o@#%a~gjm29d(!8%+M3nXo%sS1b7Cdm`?u{e9PZ+$}I z5juE>#2xiS5q1#KlNo=j$N^btYj?WA9L#cVJcp2GqkDN0T~^~$ii2b7l}A*p>&Zu$ zA}Ha;a;CSYBdbVI)4SaOf@+(9{X_(qw60U@xO3&{+Px3fruir2MkUuUOyIWyJ$I`eOI`4xH9X3Jtxsw8Lfo1d$juBK`ZV6bTTIS0YG)2YHrU;Cikz+V z|2bVM?<(DVmsQzXzU_McdMnJD)6(HjGDS)EvfK+5=Ps9@G0^DPIJX0cZ5MD_6{mLZ z*KGLmy^CdQ^bThJP`oY!KK<53yGZU=tk@19E12DPrf2CypFe_C2~zLhKlX^k5w^y4&GJ(~4_OZ*Fov5LXEH=2lrH!d7>HR!h&n!Do z@l(Qa@}eWYUrdUFn!HaMWv86V%OMBE)%Y5ry5HUxU;}4hfJW-^HRgMxtFpXmRNnh*yhWWjE^633?V3Y& ziaT%7j+|)P>VFfjZBB<-((CCAhqw18*wB^_@!o#V-+Aqt#n|hv$NWQ<#E;Vuxn4du ze6B6KL9schsDF)B5D;Hp^f)(#WFxyN6KEw;+6<0i{yp$OR~5Op7*4gGx1LJPtEXqO z*#miXlBAlbv5!dY)pr7Y&!`>SU2+ol)5RfH1?ADg5-?Ci`)w!w%rTO&4{ zGsM%7kTD<9fC%5agcp@`!SxGRbpz+AxJz)sDmCbxBvOc06h)bQ_s^x(S4#ph?XbI} zhuNTGu!wx%XHohDJW}4plCD}&s<6nP4va$DZYVWu@4?F@_XGDfE&p6GRaLIgJ>-Y@ zMmbm0Z~~J}q(U;6w*BXw{SJ%6hn0L2Sc2+Y#T?5J3NPOuHiZNZi(fmo+->lM=Q9)d zdv=M!^{1F#%uivXZay*$ka|i6&N;`DGfP>%nls;fj1Nc1i~t_w9&M7jgrW3MYoy}J zRalsYYxRZ}g5v2`e!~<@hA5?iH(P_sZeI-7o~6dSJ=!sNwp=5}y=^7-oXL%Ao9_1fl@l9F!N5Z=zq5sUleXW-%D?SCP4Dj zAp9ASWOuWJaA~>iIiaM5++0#L*`y9Ub8h4Peh!6&@J!rwta{k6?4b$r_)Xx)FnH`# z3>Larq`^R%I-A}w5s}sD*S@ywzNh#t3rC2DT7m~n6_lahqva;|k4>T2`k$FEdMn)P zJ{H@=pZDSB8V)svX1tvj#k=a@YtVG1~DdGm;n3Km- zi=^!b(>fCqE3MjPOB`QYij9~wLAh`0`*!a<10m#@xLsw9>WO=#I3@(LmU)lT2s?Dq zA!;jWET4&WWR~8I-;Uf z`F{6#yW0I@S(AS;7^jQJ_{BBQR!))dZc_VR46W@L0M#9xDEg91RLEg;w~uJG7grwD z+!Y8KPLx=1XZHFFTH+iLJMwz$CtAZnhRjb&6IauxjU|2ZEQjFCiJ@OVWmBez#L2zL z**ErlQ0~S5wqA;xDidx51hZs4=G}>w-XB>HzM+@$W+|2aan$2mGA8T=#`lnfFR)h3 z6~rS?8KlhhwLxfB+`r`$F3f1*Wne$s`%YSMe5Epe@UPY(>mqL|GmoeV&415iONna;pe-veHWw%iGrvn8Vu%S$!4^(1Cigc z>KU8icurXkQ#x)ZlGNW4;7ZtQqptpjajJ<7yc7K31&=^HJT->r=4r95m*FlEe-d7B zG$k8c;iEbE>;>;AVe5modpPny;vtuOy@#-W_c{&fbnsASdL_y9mn4cf)&X`ZdcCu9Dj|2Q=E;Xo5HW$9)aD+{mq|zayQoL=!`pCqcT{|HDm`(+0tT%p;wwiPppmSV`;q@%HwXy+1ru z21IU)P>%s!6tcCnRbpJme~se1!aY|1?QhPFP5RBCQtzF3C!1%5UUnTOjtZt}%iL_9 z2Ozn5kJFrbbM;#7W&YwJTYSB>yV-n-g{6*@u!QSBpwwP&1`63EYGwj<;u9da08%}i`MR|~)eeVOI(o-XuG%rU_RX-(fo{)MLC;IfiJcpiQ zf2JvB=o_kIt>O+mQ@_<0v;>QT{+jV|vkb6+48Kec{Ta+QDvK>sFFrw*YHPdt;2uLH zv(jiQ=Lc%_cxdcsE<8xj-;RL=MSX9`s|!8cfEqD04YXl-tXd#+spBe7y@0HlMEWz0 z$p(&9V~$8bZUxQb1@o)xiF{&@8l+7-nl3b-S&T<$Jp9G`9>Jb)T8!FZrs4vn0HG}F zkeB>RY#fuoBiaiepVEkK!`B4K5qg}^6Eo|v%cyGQ7hPn5Tdr72=d6aQ877sJHVw=h+Q{D%KPy|_>Wb%pkTqesa{v8P1!gEd)6oI+ zi7m$mq{%)1gOLDz2w`s>#i^ji9y?XBKFicSU@uA6-k7)Ww$kBhroJqP9gX&aR3k?! z9vNGI=h$?)6{S=zLr>R*sKvQZSbQFMoeQ=WKJeXU&@i80h2U**s!eUl!zI-(_#xmv zL9Z+yEf=V2Vs6?iYBr zjI)W4ML(Xz79k(&f1v4Fv24t!2ZGI@+G#Lj!dv*dLFvpJ!m!Jwy$t-$Vo*N_EwLWp z00`dr^kDcKmn3b={wP`0Or(fJC+KMl5?^hlg zArBF$6yOEmveEk4Om*WmAAwsN&HJ|w5ZV>_>a?b{ZVPi~YoD>$g0s8f{Bh$oK3;Tm zwOGJ3(6(T`q3|>3(d^JIxp&weGu;E?OnBb)t*K}lb4X=z@LI_($YHhR7M`DL$rVocUddWcp zQ5sr2=eA^PbujC?zhvYj#Z2qJ2NEG}@mW01?TTM%^~&pQ%=&dqQV>WM2ma$^sLUiH zVM`d#r#_@i{el51>-iGxRB>!LPlh^5tHu<-u#-n(gcp^nJ;D8kci?30jbb)aqnjS zLxY?~fh&qfl@*5~m7_fvII7#q^GtC1biCRXqDk4XM76-IvxdQYjumVmaJt`;zNdd|czrBc;(9w#Oh>fvoX#Hgn4VJNbtFC&Z=u0> zf5<vFEqvZCHbO4~5S=6G%k@P$Mii-`WUD##d*LTx z6KT=VWcb$6YaP$18+cNJ;>*X4Vpfr8ZufR@DRSuNpm%xpI*4*5P~J`GB-TYlBdb(% zZaWy#uc@ug-c+qPpEZb9V3z=ioa+;&=64THyC=_3BLlYC&M9SN1;y;kL=Ok?0WT_Z z!rQ4!c)1=Y^myDy2}K$6xwl+niUA8)2)dhV*qh0|S|gtE*ke?Q--;Q5-=47)f6tL! zNOv+@+v1a>03U@q&;|a}>tR`f!dHAPw)w9E_^T0sV)x8eFLHjZi5&SHN@~~=b9GR} zLwSZK_BBAWLusl7W&ehuEAu8v$tX#oul>x15^%X!(w8SjJ|3kA=5ocKtSx<`O>`C8 zRx@v(1z+QC74BXY)4F^`arsy0#ckzq@17b_H zKjharCm`j%7K+QMf2_T9OCw1DZ8fD05F?e1{-iROkFP$vl+&vp=?xfNm{nx4!{dP( z=e#Verq59CqBkpYaoG%+`yun)pQM*}M!B#EJf3ZPV!RY=#+hmyrw2{fa`B#`XZK90 ze!DQ<6R9wOfw0vpis;{#mXhH?Oz&=Zt6HBufVi)n-S0Qb{o%8YHn;B8h&@^%NhYeYJYwPcc+bY(7J;#q*~-8t9KUd2`<+ zv^UJ~BR=g;CY-@kPv?IXky6KmYjb_O$3Qaz6pA9CnR=(L@4j>kyKa|b&2YFSOCNvM zR^&=WXZ*1MTdB17{YFZ<7j4u5pbB9y=Ay^{yq&7jg=pgMs1ph_-Ywx0M z4kVWbTIv3&o-P!PV*Z|zbsKU1y$&wWdTvnetR3Z@1JlCRlP(@r2|#X=*A^-z1AI@z zxHUUsj12rvu?ib@DsNq?s8W^9$jA06DCG5hmz~^VsSUGz^>!mnk<` zu!`2F5ivBGn2j^4Cfe#>DwR*c=Da!~=6TAuB2s4$LBzB}Dc7{csYpF+*VeO3itCjF zMQI}w|7Oy0fLi0FK=#%kmn{kuZHo3icME{bm=ScVtb{dpga90=b;DV&$C_?OF-yCV z396YcqhV{YD)P=8ys(nIP_Xsh3pJvj=p^4k4ccy6nqtzY-LqwnUlU)L36?w`EJ&X|y+S9x#M7>VTn!`3}ThY@gV z15O&NX^h6UZQHhOCygeyoyK-!HnwfswsU&E^{@3`d}prr#a!;0_3r0o(qm=~fIB_m z?+p875ET;zvX0amjL%x{;jcG`HR4*;ZyT@St-VFf^1SHhyK23p{jX}|8+MR^iA(5x zb2h`S#wv=e5qLgN&F&u!L}=7L9d{5pI(7@4d(uVjiYF1arEfB~vdYcr<#XJO=X8}i z?ei&B^0#7?G6m43yp2+cb=YhEY=OYqCi+e0OX9AVWG=yKJ};E6#umo z*{L4$al!9oI6CIbM%0+RA;UrzoJ(G~xJObUj~){d(&p5IQ%+89P02|EOpc{ZxX(LX z!F#Fj`7}Rm5ExCj6Y_?*$(yXWy&8C zaY^z$@wNE_#6^)E6((^8cpvuTGqig5b}Q2-?|@bMh-qVf^zK}&Mmm2F+!YKg-hlg- zswznH^oc;>BZVdT7Um%IB{SFr4!>#LR%V0Wl6- zeXk5`t1ajX#6C&BLdb%b9G))9*LOIgly}At7~IYS4Px`>mL=MC8jG-GUGu+`4u!(hnTc6qjtyEz zeMxcI8Ek~+*G!(Nl!bO@XOY3oB?tu4>4tmcjy0&dG-~HQXO=#CY+R{iLIq8m5sZ@v zjDa4Jdd)Fn#lynfDc3WSFc}~<)rEN?By=V!SIS(1MqLkh!rHqx&)7LFlEv#2urXGI zcE;?Chl$1)1C=_F_l93ZW&Wdhqu&gpW6=S6>@g`V&q#ho7lgp6?pg9(N)AKUJGD$d z{n4I|w(66k9TqDeIo{h@%ABEmVp05ySZw-~8S0K`Ojz`)npe8O!&|EkJ{PC=9>6g%xU* zB1_%6e#vAv>P~M>P$(*z-CJ5>pUSH10KvPo$69gh|AkB&ibo%Uu*;*80GIt&VvC}L z?WVQZJ7d)Mq|V_?$ols8ZqK;b3s$r+r0UkUi|Hfa@?;TVd@O_2XT{;@pol&H+4^Mm zighWN*)6C5dUU*n#QkOzhv0YGF?oy)S z^%UZpHUH?*WFy%CFRFcKQ=&q+FJ+Xq;4amINd{h1TZItsi%;6`#WW4PqJJi}s{P$V zAff^gCGuX@8*9j!Gytnyx3x*ehrb{8G_=DoWq&p?MISS|tXBefgFv|*VKdk$fgp!+ z2Ek4=vso;!exqyipvxe*HUkTjkU?NAPV!u(z&;3&nc^Tt$Ur%)8!R0tcM^1MZUpOyW^S!knP*jgx_U~y_FlG0UbyH|%)Ae%Fl`1Xl<1DSKG2gAQ< z?(&P6R4<%5Rp0{S5o?QCKNd9YU-US7tz>wZM4G9UTY_T-T0Bv{+0*DyF`rnlr>YY; z=PT6|@LOA*k9qxTVn>O8W+OE2-CSR7vMNIh+KBRKrcvRniK2_3l7H1W6c%MaHHD4Z z)rTNg)C-r?ePOX=`ijQ?{fV5gX8Ks195(1-Y*Rz7yt_&2M)B{czcy>i2wbvz`G;I0 z#nIw>d~n>hD&nfy{ARAcZ9NG~p(z6JW?Jo`7FCu=(*&B-LM5t)f6Q9aSQqJm%a^NW zcH7?}{Xt1^*Y@4+PSa!H>u4E`_Aje)e2BUQD8$_NZ!JHtpU5IQctVDS&#dH70$t&4 zaw2ZTT3=xvnyoh<%IH6|_&g}R;lZV?Lk}~5q(vv)*BW=D4!Pef7x20V7r3JU3HQ~) zfiMO9&DO2QZN?Q2nsh1f(cJFb6PC(2G|DC8Ao>P`T!t3~yjoK=KUzWO-)8EiKZ~)n zZ&?PdAlXo~CpLb?{DsHMU>mwv zLa=5`3=B`#ZjZInh4mR)rH-MV>T4Pr5?PMI9*@g*j$C>jN8pjjc!d?&(lcSLuzjabfhob$lH780(PJn z3)SPHVG)GAnY!BLJ<;D~h}cD-6)j54;#r_om0vGJg( zPg+LkypQ5?dPSX=+X5qjl~=bTqI#=p5wUjS>L+z7;s<|C@-oK`^vhN9(EE|Z-l{XJ zo&60l$(+wTb@i`wFFI|q`AY13hzKr(_hzR#yQpD`@TLJG(Wu{Nn~0RAH>OQjZRitZ zh|f{Y6r-1hyb46g)#>+0x-v%E8+#+{4R5%?Ob?(DxuWJ14-6&F#LB)|iqREm%>~U+ zNE<^cZXv$I6G4FiP-Y=41XP9^@NU+GL zk$2dUy)Qtz^vwvy4tBgu;%O1T(5ALn>Tc};FAvt+HF~2#;lS79veeJ+kZPH&hf31`bUFi3&LMPj5Q5F9BRz0O+!aMwYD=RPH>OU^TZ;RumcF7;{?=VIpC zaAOVMU)32>VS9`=m2~Wh-!9?JWI9Bg`2Nz{)18VXCR=U+ClE!2Rr1(1$w_wD`6tWn z9dNp9+Om!zC6;CG*fofv8(0J^_^O?}-TcNKyVj6Sy9rgZShqoOyDUUX)Evg*PR;)Y zgd%4C#AHckIB88hT;XM!c2&gM?Wo{e^Syt^(WG$1*^<&?V61XPJZ!Ve z{Y4~e+PL{m)YR2bj95^(6ZSCRvTb1>r-S~qS%zvb#bAPOD#(60d233>)vSt!>w#Ls z*GSaU0FKQ=ifK?zx!4P4At!rnX7%0)4KV75!O<1_=;SdLByQ`kCuJ z%8+i8J59@vRB(~inw+jqx7F}ZH3?h`Cru`pz-2}+sGv;C+#)?mu|FI)0S{s?gPt{Fm%7W_t!=L!0#Bz_#Hp|h!fArfRj0^1 zbQs*ee5R{R*DSv>fK=z|gFqlKH2=fkA=CN5j20lD4JBUgbYud*rn(@sf;kFO`w3)>({fIp7^?xf+ zT8A1(D)YHrK4)AxxZe<#+hBt2%Oah11Jm-FXZ@JF z@wk9%bfaGdB66;9j{lZs&t)v9lA2?*jq4xdx5p0?tFI=neoMeap(b`fP<4FOWr|BT z=R{x7tdX`huXv;GKtwDh9r<2n1^3s3%Ueo3NG?}b#uaZXZDN3VmZ|O)JE9tgVsvS3 zbE`lTW557ahW!uLv=V7w$5i}m{w`Q^EMl@w3(t}_u+9DNqFefYBsOc=dC43Rt%2Fk z%A9m39`C35`b!!34UMC&Suo$K?p|=rZVmHgE3Q#G#LDgS*%TxV+<*#Wf3Dg$mH;A2*D#0j{$Y-+1V*E{o)3@$FnV&z$~k=iQZq*=~I31g@-T%8Hb0HDyj2 zM6(EwGeE8`73N?>Unx_m>}P9ge{>~<=)Mqp%A)KaC?WeRLB|mZkbaEPm~S!4GEsPD zzrzMd_3I?v!xpcT#;9+mzisJD7iQgFXU6d6;L~gC?RnT=$Z>c?Sx7Bqm6wDImbT767+WE$-bb@P zp*L#=O5={`d#G3$GG&zPrGMw^eAWHX(@{dVNyhHGjhDc{^T(Xa`DRwfHwD``YtscQ z0(h4YZ_;o(&P0WbXe$>V%@*>}yVt-nogVp9v>Tg7@^MR4u6onE2JpGpj*&Cr_O1P+ zQb!9>40=pR!}d$f=OXHAcmB+ICsnrmEFY}fQ8B>OpM}+RLI=qfenvg=3sT~oFhEt^73+)8AW(Zb3_!aVam`5 zoAL-wp#yAJd|aaiWfR>i36_l5J4b5OH_IN?UpguBj%3KU2#jkgWVp+8A>W6j&|B|^ zr~>LI^%L8zjo$7Z-nj{3q=IqKpm* zV)WwwY#_ORF3>*{C^?sr2=pJN$%v!jK=1H>z(1D%8zKKcwI7fF1Nq_juQ)k7!+(&U zW*;%eT$F!d_S!E7+Ei&R#sM@Ic833+PQ5W=K~3etU_fk^&}NK>17l%lP9+p&q)vr0 zXRJqOVgGMNi2Xl|5DE%2GaLK=M}e5xIobYSW}TUnos}h((U^q_(8wH{WsL%NCqLf4 z{ND%udmudaIw=PXx=x_<^tK#<#Nj{)@N54I5Gz21V*rx{;Hz9^WVB){EzP7Ect@;B;+eU^jStsrdB-8>ky`xC`7dsY+H4e3q6m{h_ z-&6!Qe-!Zg;q8B`0bkYRSOF1W1F_BJ6A+gcQ-&ibDJupF{tR@(N>(16oWeSNA!1O{ z+TwDW`85QUH^GCHj={&x&CGs&=>9zZwqrjAudopE3@rJ>zvKQPDxl4?&86$>dGz`Y z^4$+(dZX{tedTLM49*bJqZksV(GiOCOBF=G9t!d=Y+dayFR%JlPftHh!ONz~KXSm$ zTvPoMh({o>jtd%>b16W+t>61EI3v6dz6SawckQJLGWw_{fPuJuMW8voC1)O%6h{z- z`;N#M_G5dCGwT!Y`!&e7FV(@x-o0uKQ&(40zxv<~ILu?C9U}-V=q3;^PmuAiI>AoA zMHc`C{97T<#s;vY@KQbYk;C*=LK6<=ef>!bjw}h?!e4#&T2&*!K=eYa z8QQ|~2l?qmzHR@A*R?dhc|e~L5mX*f8I{5o$y9iwqoE@3!&OJ4hi|(}>}!&ouu5uF3@*P;B-y=ApEA+8lVHp zhAxNK4dV5aU?1w18WE130Ob4<2HxYLWN!;PJrL2r)*d3Hfy?AC!B?_w&j2L&kLNXb z!(06&;J4prb=4@yO35Mt2D!c;>ojD#EE+fv(g6PP#m{{KSdDmcah7RufSr8d%YM1% z2G@5aUUh|jPW|BBwr{#GCvZ21EBU%v@fu!z1F2fL=uvY6q~Dr#L2W=!02mByasm_0 zPo|UiO(nUw&EQP_$F5j<5I89ItFLDQTg!vvZ}-w*qKQSms#yEdiEN(a1TNDR~ zjnh;ZN;lb8R11g=>{Qs#?&9Yt0v#YJ8!0IAmN~#d@t4>Sy7DRLUeOEu{t-|Zl{<&J z>zcQrLBySs&nSX-mVbjehs*)jbDm;9d{_Ss${%3~jvn(7L-Ti-gYT4l{TqV+6#Vvs zE@TQC+5Bca3q`57w|5i;{=E;9(9rPg(+lnk1!Bbh1#$P8w-fYRU+YC}P= z3}XT2+vNOV{N-i+ndtvhXa>11-4B2dNvr%6~d#ARYV z0|+og2(050=kWVEmI=o{)37muep~~^V-T8%+g&AaCpK)`T`+e7Qi5y~Ig#UU+|3y! z!E^tFofDtROq$FburF-jA$0=Vsr|DDUTN_VQIfE}xfU?%e)#z*7#;{G)P2~BI(6j` zca)pVF3oQj^QG}c zyJ1hL<9`Y0YJFmjzNJp!-LDsQX|`|)(veKD5~4RB{dtY%@y7#j52kecUu-_y@g46z z9{mWKVWmp|dS-zAtN!R;%ls9f^JRSGSNVxgI{=FGm`;HxLW7uF|IyVgB2k)$jWG z%=5$$!s*Ldl#t5f1C%iF`qOw#5c%aDlu*X|%kRg+M>cQ-IC!JUdNwL zN-D@#ta!Wj(r>~zWWD_iv!)L%9>bw~x+vyW zf&NF^NX02m1+PSAMSOfjVwxzhY<+IXYpPMtTddJG+O>C)bOfJYD ztqoja_P5stn$xgp`cmkk*WuGC?A=;f2K6@cNPBx;y_qtJQXCPdD5rnF({UFcNO15d zqX=cn5)MQaicXjg8luaW<=m_jXK2o3!;s6ik9vG3LKVtM95+sTX;>0(Ld4+zc?uL9 zogw=WNtZL-m}yW~Hu*edB&#LnqP_&g^#-Kg#`UTp|t$M8?-28Eg^ z^%la;OB1v=V$&`rmfPyWvikqLSZwPN+VTqb-W8o1`qydi_-j^mL#g@A7lCN&!kCdq zQLA3mk&`q-?NL5Nf@u(w(^(N{!e{=_p|y6zHB5?!}Rd`y}caUL`X@CBb#_^U#mHlGNu{=YHMPebKY?S&(v%XF{_$FD zUD?lxmZnoSt5R$a30TqjG|3gsTwd1p5F5#>ayA#6jD z_X$h+p;_K`VrtGimRAgCW%ZD5cF-f+@RJ`FM=vP4f~(N^tygChcK|xw%fPcFO@M6Z z3Fwn%@m}cG1b*lIQN>PZK$sB2@C~B%zpdu>Laau*91N1EhD#lLTe5+ft(DGdSj9lVjJewZM zsM0d{njIlwk+TXRfSb?1gB)9zeQIPs7c~=Z`JMUE>8xenPq8c-!S}aA-QDMlLiNLP zP!MYqVFZekN9%)68=B1M*)F|vI2t@#ZusdlQe~aH7a!vBI6^%@P$IHU>tE_~YF62aPQ(S*s1MCe`_X5v^`7z<=v1z&s9iI@NU|xT-W6Q4a$b-9`-Wdv|i-ls8 zSoZ|7BW3aZ6d?Gx)Kuhqba6IbHgNaLH|)7G@<|S|yk9O&*PMDa?^Cng@S2YTr<3U8 zwHEw1#19hnt6P1Wlb=eiWI&cqs@i$9MiQR=jd((i9{&v(T9O{Zd)l2WmI#=# zh;f(#NIm6M3mWAUVvxxnkU7C>-}K_EKFiV38V}4odpKVocS1vd;NP@zvd7LGPEH!L zK|DR}{m~mr;3@=pBC$ujuyo|h?7`{zGtt6b_weKCwUgI+^{I37pD4G+&Es90_S75u zIQXf#3EVtvr8P{@tt#zlJ{i;<`8OB`Q`D$56h9ad+i!V6yB~_8Z6YdbCp>kc)F;Kk zpI9K%xk1;a?OkL9kQsfJH`E9e`gi#ov7C&IzuD=QBH8S)gMpc%0UsL#Q*|+$gy)P* z2B~M%{1lD9qkk{Aw2vIqbfRqG7Ww*dQg=w}0~wl!BJ!P`xqfF1+m@MwsF&TlP^j|1 z6XCd{SdW<-#BEfy8_kC1-$f=Tk5yKFM53%DdaS^1s38`$P#8Y^^(OPVBI9eN$7!h7 zcIkRw#Yfl}{(}W|Jl=V6N0m1upJYdml?Qv^w5{fCBzTd;;}IO5Fhcr`G!F%(f{WXr z6L3T)>l{?yX|-|8?N+eF8c@=1+0O94@@*Bs_;iwDDGDEV5^A67hwAg@ypPkeUgrFI zVB=?9$<c5 zxgvc&9B= zx2LoYAh06070fku?lBCc3L~+NTBD@*YmqQrL^ekKE45Vv`AhKasTv1;v|+mTCL6Oes?k&!Zv41kAFfQL2FH|-5hxQVAqA3md?!hDe`0e$ z9)_v^6t+71YJq)h-lV-AP%tj2D*cvRC`l?HiTwL{8?9zf{x&2dV2}Y;fnxe9Sa|7X zcWiXFtMp~J<)U#F!=MCTK>=Ln)*RFy7ctCSqRxvs1T<4VelOR!BfZBOTJ9@6oevot zjllJJ^YaSJH4gs$wcQubapN)oUh|c53&upzC7WWa!$Yl1PP`zGeb;1I+Zo8EIqZ`+_3?+I zFJU!HXo^>KnnIPuu%SO}(W;KkpQ_XI3DShKmn98lcZLbb_;hnF#4Kq!5bABvI(ZnQ1$5-b_7$FN(B-T3-pBH0Y%_U8FOLcf3k>(*D^O%~4S(H+J& z6US>HI^V6LEMK+JdI$_4IBiBm`OS%f;c&mW?G(|lh6)Zl{Q(UoNbg%!azeZZ(FY6l zoF?7OjfL-hP`}lvY^JULgVa+;Gie_NrAl+CK7}3V9@bqg_YNLEgUvC!v-bqxj&>Pj zqTwq4f9O^oQBDjcA^b4RtO)jIHVAzw3=BIz< zlwdn4cj}k_nYU-OsJ z4kwDrq~VG=!ujT=J{Rq-maJ3BTA21))Dk&tz72`im>J`%KON4ToIO7YljM9Hv=FEz zu1?(5cFI)YgzhtG?>v-Q@JEhML|S$kEZdQ#M`Y@29FTy>Ot!gk>1bxMVa<>UT8&*< zdS#)o7cKEl@3V>D9g_WZN7rMkyQWeHM-@PHr!H)n0()Parmk3y)3OCE3 zI+ku#Iy23MoCe>PugJ*3RbcO8H!+#ll#WulM8NW(Q+&8KbzLI6+A7OpXZcLA_!qhm zY16~L*{#NFHq%kP(wA18#s+KK5?&adqlID^9M%GEX?o-X+LeA~V=YiS8)ug#H*Mdz z-J0?3p=(uNNR!I{{heYA(qr*1+uRRFfkHwNFH=WI5~;)}3U=6i+Lw}+6J5Wkn$a8d zGG@Lps|9#*zC4_X^|ZIap?N3&`i^vZ z7f{lRk@yYGV4gr?b~^28-lnxPXDD+6@?Xe&J+6scMfa540|Pn8)r`(J&zb{(&It zBI)XcJy$t3EWh}iEZr+Vr9zZYWF5hk{bk1AQ?`qn;#s3P$)fm{JRo~(eF)4D?Mxut zyn{i%4Bpaf*zOKlX*HRlcHcKgwTf>zP&r_ z`HUAkxYg(jCNb2W$cOAyMI(Sa%&ioyQG5z)OM(IUph~hQ#%rlDqYz5xruyB(qs$B` z?hK}HJuV?luE-{uX3gDS(O{H1%(41!9S*07^3|$Zt4wR)JbGZO2a4s_&+`TwvmyvC zedIxKPhDhf9FYsKE@3=^4>ux1M-d8$)gbgg?CQ_UKdgGgSu1CgY&8MhQI6}Btg6O# zlL6+L(HSt~A|+xe+ZuA(%OQm6eLhd}_{J-Isa)pTu3t2<@MtKDbaa#@R9zl3aZ>(7 zNfIn_ih1^B?8T6?9gb5Cus0No=x%h*eXD`I3rg1TR_GTZ{rityk zL+5%~c?$Q53^^wYOnw7T9LK*yh+_R`vN)b;m=pbXPZRA}T%vnV-tuHRRcgu8NK#Jx z>7_dzOlWPI`{sr8cyP3)(Z<=F^9?OpWuo!3LuWsVUgbP>;#dY4BbJ7c`2Mw9QnK9l zbT(<(%6I*Rcw8Fz^W6)*FrH=M1^RdQVXtAUBztCQ|7IJ@Q!@v^7oUv#csbxQG+5?H zGW`0^o~L&^y^BNcw9hg4zX^n5fzKvk4B?pHG>D`moeL zeLpddQ_|gOz;hpfe0lLHakUy6urd6A3-gldhy&8qT(9H2QXfI1qTx((^s4Gi9&i55 z%Df1O8S^qywE56ZnEjL_cD^;KtB4IDM5eo)zK&2tbv<9|pof4M*f}<&N&&50aZ(@i z1ZSz_>{^?{mqa05JloATr+1g#VW|)J@7cKNANBej7YMSzWhEX+pWQbn)8SLw3zWA5qTyNJ#Y5{H(@7r(%EgW3p$**}Pn(etr_g8cT zJe@_(aAY-f^go)O*q3&tNTnYx`AA@|0u7cj5@-TIflb0a-Z7@HXO2Fd(r?Azx}W(~ zZPxjc^ene=!xEV%9nwjup8je_og*S8lbvjS=i2cRbo8dBV`0}IV-{qTkwJUYkI^S^ z^|-FDf3VN-Va;m;BfL3H#cV4UNO&z3}nGHR`^*y<=<$0@aqBrE+O6*V!adCdhU zesU@jUMX$!*Tek42hoy&X#sNFIDW8dUY=*5C{KYyIn7P&OkN+8?aX@06sw9kaq_GM zw3P9BZ#kxA#JXDGNA6^?lMaFloBO}UWQhd8){Yychz;B*wS^Zi{3+WAiKBluWAExk zAOOF16+A|Pf~R~KoD#n?2hF6MHf8_%4-L=VMM(jy_OuHZ5n&i{ZER=bYuF)WT5bba zq$pCX?Aczb{(YnsGh{aRgrM<620_|$xIZ56r@;VnPY=EX#E7%f$hJlgXTn-wut&HY@+esfVvevAQunxN;RFVzujmuz=%k0o%v2k5 z3_N|W1floH>iBnMj-FS)bzVi*xU1gUdvc;F_2`w@Zpfi*dzMW)vqmZ4-JtG$A+9$| zydOYt0L@~bVjO}j!e)1~ce+w3%zg*lSG5i!D;5}Rq)ndGp^-j3&BE>fSr^SQVRr1n zq7TA$KdKqI<8@2O(;kT4)99M_BnfVp{__N>o!DW<6gx$6U)m0#beGX1#)x$GT+6&b z7FxA@&PuWWX#}4?02>pKWpPmSEM}9ce_Sv3wwtnxBF-PE35^Vi5ScejczzFKbprl?S%nfc=mB+UD zn6cm|QDJDd3x-qk)+rOYS+)XjTXM6d|E^gikZ|eiHiG-FaQk;MtILFqDn@odsCPjD(q4L{ zzOrqVv9rE~%aw*Dq6?q*ZX4 zoadXsl~KR-K1Wj#4r}+SQ;xl#N>Bw%tEX!-wH+G}hH4zkLG_f^0}*kacVvynzNxf1 zz554;FMkuST>yM}yb755@z}Dpy9^slCgg~*i50yH5q~b|(TD@j-S!U1yw_Rod8Y?? zC2eay(bYaSC^+65q{=6|>gwMbHIImfKC=CoPcY6-b28pAY=}B$Ipvwj_(+gyV&34^?=wqyEimnBeeh<8_h7IEJ2*HUEUa>i|E?r3K_|VN*+lG%9bl{uC z@XhkT9|p5-w6j%4((rT+=E-JsD~dx`hL7$U4#iOo%(&`aCQo01;jQP7zt(N`O=W{_ z#|9A((uaC82}_$qN=rj6X7nY%ps{S%91+&y$xB>hTudsglOuLzJLdJA2KI}7_nvGuE zNMRSJinHmz!*BC*$Oz6XnO`a_cz1tAb=dZ}3a|)j`6r_1x9KoZdez^QwS-7@$AcXD z1?i>UEYJZUzn85H+EQnHc7@L&*_{kKrOkA5x~rI3OWM5OJk*Z7{356O54h-7O81<` zSRX~K7R-9hp5(GdTp!l|~*yp1j{;hEaa5 zH$a)w2vMaN=RX(K%tZIM-n)D9!D^pLX_FRVZmS$vTi&6n6;F>1k`?|kNAAG={m^;P z4^fx1<*yZgZU`<^DC`xqrp0O|)qTj-WeW8Rnv&HEvmSF(=vi&gNfkBd-B@E2IyKCuG^sEo$T{EDOS=`>o+AfQOyppiySe34NV}e_=k+!Dv10JS z5t9S#m|?TC02e;ldev(me)f=+0IL`p=3xQ}PBCGkhK6V@HCc$74O9y8N#g`Umy*`6 z70yd@H<={JV9vnmdg;!WzBNP=GuC`MIZZ&@qL(|OT|39cHugt-G-j20LbzR5^M}Nu zULIqcpQ%g;qQMz$=ka45IpxG_a3pP6PM`o`V+^JhuH8MPR=X!mpecRc#(mz4%x5^6 z6vp=^2UcS6{yYqygvUaLBqc`&aVtfV?x4A)KTFVE%Q>D0Lb0!r?_Spw+lCXE*L(oI zQNnfAl7$-2zFT9|(u(ldPnmkASAj3lMGR-1gG{SI5gC=WYQ_N8i6!BaZ)cW>t?&+B z>)~0Y-X=Q5ct*>MU9**eT)1OVslkgAG)Dq45eo`}WBZc;rH+sZpNHQ21kqJMyxR0VNs7~_N{MVdq&Q{GDH?;NWr80+0a&a{Iy z>;`qTt!vxeG_&*{(H&_#=5Bw{{Hv2a3nQ#FZdm>4v@g9#Um%?G=Mnpy8m1qrr@8l^ zEN)giGs=4tX-y4i4sxGdXuzJx*VuL0VNC^dPV_JoPt!ffCNw)&V)GaiI!S>`vqhIL zi$I#3r;}(Rs+jPql5O7f=S*$iBa@^~v?0!yPbXoQpD;4<%8T*!MY*d3lDK{As)%WH z-|v`aJN7J7))!-6!AOSVYN`=#VOBg3WbE(HFzd${<1z{_hIEj7(M@3I>V zi_+eslwq~3Qi(o-WydgXd$J0Q<(AH*sS(EbOwglvXQ&hPuRob&6%=7cRQdRu=Lv$- zz+;Y!h1Po1vAg{pAo@j+z)?ic%1~+9a`6456mA5o;{3gyNc@WA$0kKYoVefu<<(UN z9FfySJV2p_gQSLlRdkTt&fGeVfZSf`BQr7AF z)6FNRL;6%^F2z<{4rKnz&UGc~cF5e%r-8wo0HWQ17~XWU3tcG7x2Dx|I7d`GV*arp zu)vFGHcWIi&eE|+%pqWzyA_dsxkt8C=-w5B3SZgxB?27+9->fg1nN~4IZn6iIO{0M z77%L6FmLm8SZK2L$RFt?CxB1suP-_6#}~IvX}F|UAf zrWeO{{GxmyBTJ+5SX9$0B_`O_Ay6o*WL+ElA?v4>YwfER_W(eQa9)#ChnhwvDeD#V zz;!EaZMJ!GR}4#v$9Pe(%H@?GS$10Dw#h&CQDIzUvHRI z2Pa=8h#t+RR49FHIB(ZOIWLXF!`o)RiUH^QYbMWaSGfu@EF^j+smA8_XB`#ak+=RH z6NJIFY1uzQj2OW888(dd7*gG#a;G$cw7=N98m#r@@lNHbS3jZPDtVjKSSnzJ^)ETk zs^5A1tup78w**==M{xEza%~yz9ov%u|HZ2H#426w)Y9lhqGvA#mc$Z+BOi%q^bUEH zx4fv2uvHBQw%LRR-p*$f8}3;~;8I%k<=RL9PAdq~MhD>IYBCnc@RW=18quWNEb&ht z-QA>K1jmcpj)b`|v_A=ECXdDP>V?}|v4gwA5C)+^u4C?f(C?|?yJq(MCli`ydUUdTCRauB(m`}9`*;7gquuza?qFH1 z*0EO&yaMFv5&~!?e>#z-PS&0zKX+|??#G5kAIsd4?%S` za%`{<4}R=sw;dAt*}q4^lhr>GlM;OoymCx>rahp{y`{LKs59l053YP|sBj}(q^u&; zQ*9dzY-aUsyq9)V(`axG}itUGdlFx~XtfCHg!TdfR zc+P58SFg#V_Tv~L28rFte;P$)Di#0H$30`{bV8O;ZK73vS?3v_WO&72R!T@xnI4^A znjD2#IScYk{RIrlZl+Y`4vRdR*C9m2%l4hG#M(oW1=!4Tc(TBd&UEHJBPV)d%2Y0I z)&VkrQ$d5+-(Y z$n(e7Ok5?Ooj|tldqkYs^E$8+Z6%-78%a!0D{ zk2Jq>V0tZv=NZ)LZ@5YI3T58G9z!JV-2=CVVP3p~FC#CW+E`aUQYC*cX%k6j-0z5} z=MMDePRzsE-C~~Z+&cB_OSCBXjl0Cb40Nhq6ZB6Uv@Xo@V!~Kcy#t`KTt{m%abp6K zw^SE~)SvV5WZUaPXY%bx!6|%AdnMvy#8Bx`erx*1J8JeT#A^s>IOuR1c_Zqkx&w(r zkLjHneZMAQSulyY2<>C~nOI5)e8~UUa|ER6?+HyeiA5@qZ<|RI1RhCyP2r%|5w2&d zx|I8J``cxOsE2$JXl`tA}`RZ&=G3Ht(7QN@EXGg^?#@%1o*W1i#fP8-LG)zsW}sA2lA<>8+AZ4s^-qB zcZKNTp{G7P#XB;69$P;eFg7DI9c$+&)J6|Y!9!f6_`tr(DaL1)shJpK%%*64kKx~YKyg?5E;e#ca>6>ECp zvWL(95WbHC|1^Z0!sd~y@$p+etNAguK|MQX2Ta#5O37?~L=+F^ARu&LSfNTigE_q^ zudhbRI0KXduSCRvRKpR^3=VbKFtN}lk9uW5Q4fH{MHY2i=+RBA6K505Ti2!QBA&F^ zUh9>NiUcR6(|mSfMopi# z^k~J=v`O2~@VU>N24rRU%AIO7FaLF{67IA=PzM3kG8ULiU`UHp?Fh$oc~!jAWm5Ub zpOQis0uimT95>piI>7LozVt|2oiXrmDht3 zfK9R8Qz&omX}9oS7<(2`F`c~9H1`XF*oZg6TeS!p9(WH!=&8&HV_1Z_df9J^p9pnv zS3RLv9=VQ2dJqk{qf9RL9;$ly%k|?S@FBfwhuey)BgiNK)=5| z6_2i%CU^SmM)$;FlMjDhG`Td9$UF+8o8RK2k2|`|Ka_{5D!kxI9=6+F4QPzXJfuI^ zcp+)w!!Q_0cf~9M47X1b`ak}-g-6-gN8RQxXS_RfSZA0{$w7H)Mn-m&7F2&aWaX9c zCCwZ4Bmy{a2KX5{^+qD*cqr0JTBQ!-J@8wJm~?ZJ-it||h3QD;~23)T=uvFBtK#Di^wY2p9i&*;Frj<_-0)|ao}T# z!=exYmg-=sE1=`4!a4uNdkn3eIE@bssv;A~&KKEXsP}Yc+C1mql8HA+8$)`C-o3Ea z)HBnRwARVd$;;ojy^dCIrSy zJ^+j%YOex=G_+ck%jcTknKj?+`SYzLWR8Z_{ z3iU;`|3Xu4YEo#<8dW=r6tP{S_m86zU*OnM(3XE~s#sweLx;8DUnzB@hT*uD|op`sLV}m#$@eY z+xGkH48c#SS5&L)S-comsO5~I8eO`szcLEk$m>VM+s+j^_(2Hs4jtl6(^h@LJ1P?& zv|4}3#xVQAPxAb&gbW;vL_HECee_FW!lX%vDRw_5rQpD6;$dF3rC)!%K*hsIoY?gP zhuu%=Dz254M6GA%b<4ogi7@8CXC}0qtZ3DzzJ=}RgF02v!C1KA^g-zLo)JJ z++5`dCI)m%L1ST26t9<5PwB$_r`dC`ApQrFG# zRt4M))OUzB+rLprNCz_us>+V@#w zRz}EMzr0&WY`d-yqxl|DqhL?odQC<8Ww^K(c~j`&cXyYA_JIIGn6rZ7t+_}19p(7& zA0oSvz4Lbpx>f@#44EaPnKV4m%RD?Y)QOzeVV{Nl=R70{+;D@-&4d*9O|fg?46PmjOJvgZf#lz zvl)*S|2RgBx&V`tjc3k&g;TDCk{>l}SNvCpQS+kFQM6C1G@~n>h%a=v6!OQl%G=K~ z!fI%7l0Vvbzg)USlflaJv_gM9U$`|bC|SaN7&zpMc+dmL#FX1{<^wU%3(AhqeedC;wk+(AO#WJWXL8UrXh?p z7eL@yG18_X{VB#1WxEq7)z#K7AsK)yf$&Y=yj45drWSw7(bJ1Nq`wNaU%&^TP1hnA zvSVRvHnDct_#F{rXtD8)HjAmO@+X}`>Kcw<+clrodpXD6wv2SuSJi~Obs;o$%wT;_BNv(Tja_F#n&Szhkxt$#}4u8^nUf(K$l`Z4a zj-n1y-N+dgdQIj6i&;OZy2R_Z&u@tYo%2*fb)L$3IuQi0JynFg?SofIz>Y=68v+Wq z8eM2scAF;Tyq;t`7BB0s>ma@rB1cZ@5v!%&;h%pR)H_TThE@}qHIw7QIuRJ6NK~N@ zy?Y}a6bxRM?*Mb%(65GI&LPq6E*cLC`@pOKSKFuBl9!neSBH zo4^|}A-|X)k7~i`iDm<3>!-HqI9uGRxtWg{byz?YMw7T`QakOhoIG{{A+y82o}Qy$ zUN(QRM}EswE2!=AQm=|etgC@jp2avZMhNOG+j=Qc^w5M;@EFkR(7PuPQtV9PgmZjd z3sXip52^y?lda?ld_FQ4PUKMzZ0Syf#n(&Xn^U29VNnop%74CeIb8ehr=%1eVe!!c z{zzlu^pSx}2Bx@X8ZuSi{3Kvl2m{TnT(f_iJy_Q}nsCk(!R-efvSiRCqS7PIWjwMG zqknjQj1NL33G21|r2s`|I$t4+EZhc4BMxSBY^VF13%wn(+tf}$&%!HLY*v}n>nvPC zGkk93K!O-@6f5}V2luV|gQ$i%x)$&-aLJVaW#hq9IDbG-jl3>q(wj0LWE-==di{S8 zMp&fFH`-caC3=?mNkY0nG!ov8Q1w7QuT#=7w^4TP4#rF#m0CWyK5_UTm($SB0PZn` z+!5;rE^3BR8=}0<-PhWJ@2CqtPx{OD$ zypxQ@j0oWQAR;AqwfumAhz894FptH##&MX(j8itYwX|BwG)F2Be(9m6uY^}miP(-WrJ|3*Dl zlfikQTl0$2Dmo9_=G>6f+oZhH9{h#(YjlBqZ!uD)zCw-a1ipL^*!*x3^<#&67)|Fl z+bJxRFb)X}(#c%l4p*GyQ>lLe^V#AFf|vDS`Y(nhE$a7gzGwacv(eLwp09m}K0JvEf9O?x=cBj$ghC2JS{h9Xt+ zWLyoZp%6BmC2~bqk!WPfPvUZhHM{raW&Yek)_MeZdb)E0#l#*-A12j}0>3jp?9tyF zM~=eFD!ZEno{I_GKNS1Ep+fRqO6L5vR5&xdI z6yQwSn!N5G?Jdz$s8fI7JkI&?Rg?1Oiosk$0VgH$k-uk2d!K5qRJCrqqfxSP$*z<_ z%Lfm?Il8bx4}a;~UGiB1nc(y?cmA@8?!64^l;kDe(FKf>kg0)J8-T%j2M?s$O9>2X?U9MkKnVMR9-ZBqidvA!2;{u(9h5 zLLLW}3qqA|hVDqU7HNx>va@$(2DvoVb#;}$Y0HkrpZgiy|Iz3x@5{XxdN7f-D&*gI zrH~cVG8{=^Z_ibiD#Es)Qh3sD9(afnIT|0mG+qgGzMc{L-8xNx6eYS5d z4Dq7ZF!OqMT_jELpD3s|cyaE^+rexcz>GAlcEL==Z)1X=B&PjeuIY)>Q+p8HQ%W;A zSIiN7^dzP6Ve#Z1l(&|Dh^+q%RYlEK_cIOcLjr*meQ_IF>K%nTaP9TWUaftvVPX2Q z^(v80HN$^b%U`7$WBHX?x(%3+pftpiD1@F^nhmO__cBFk5Ub^r7+-su)=S|_kaNvy z%JaStU`w&Y!Malo+E1TjXm;LH(IwI{al1`x}4ZnysvW^24PFq+_q>Ji2{D&LE=m zL?@U{oJ~Ro6-+Baxb)Tmy3u;ilul03lE_cQ>TN?YRUv}>{P!oFm_;6;)!(7c@u~Pt z^WwD#cSqGoejs_LUg6^VcKZ_9A>qq#E=+LHy5^mPwSrgwc19pFeTPGJz!0rNF`zibCZ8P&KkIPk7}irW2DD(Op=Ay_a5huqR=RlGr)ca z-iH8Y23C4S-jcP6(-w#_YYHA`2Jo=h^J=4_s!SAJjK1j22J4m!5g>BgAMyJ4J}jZ; z3pD#)hM_C1Oy;~K5bCY6h*SY+veG6}CZaD7=4@TbH(%ZACbT>rQ-MJ-H3DwLZ?AuG zNaj;XV=pC=ec6s`ZkkM!G-E$337nXe5*XeT`7Q-FVo^tbCwFxxBE)%sY=X!1!Ht*LdSncGt@;U^FD zl>O@sbuGuU5BsYDDML0x3Hwk#>%KO7U+%vRzF$vq#h1{jAKSVy6&|cP-7hl+CM2Cu zI}!GgTn}0$>lG4o`e7(6f1(jGl)I4Am)1j2iQ9=7l$!QvU@m0sXMRXPW=em{mVgaI z7+lUiH02lGi6Gv=ty33A+4W{Se0|Lms1j7o)0QoIYBqZi69GRwGuuYe)EW%madrt#h*mrbWt)){2rk8rizM=~!Y*gG8EzKr_7ZvT&k zT#4teev|_w3C@%{;-P0saC9WNH{gC|51T>yQe1UP799#}{p2Vq))0Sk-{C#T_3 zuK3b92F{k{6V{LU?QQ~F?h}|95wmOU9#hh%1pQ+=6k>NAe$s<`(WP)4C)XYDwfkuU z`kmVabo&lUc#P2jXHkDhq$!iAo?>op*~|F%WX&7uKeB2aTi%2^npH%p<%{jJCE``+ z7aW^qn9yQHvh;1lW@A~k=Un%ZznS@J%ef&Lsd+Bw*c|(?v1Pq%#oKI6*kd9d$W4V)1D?h7xLl3u4qRLRI$2r6PxTT zau^ugZFbnL_28?A5WEgnYEu&-Lq1elVgPDC z@hy3aM3?-szT142mM3YcTgg|VxUAk{)7@3b!jSR3GG2fo#n=BQs;8Xr>cGir%gcMv z0c>#sw9QA!t*C|+?8TJQriSBkv3)x1@4n(gy)_!?$NPU%(@y0d`%j|`3>K?#BZFow z_o{CnUPt%cs{?6*C#b!R1)-ELE%Bh8%$W%6wb{q-wgdsPxR)c&CBfrnV zq;v^UXwiR=kl-5;wPrf?(y%D~sN8pIo-38(Xg71>?%eVn{(1YdMd|$E_pIW*%WID- zep9VUd9Ko(>6s7mGwiV~bEU3jKGhAQLTK+$_&8ayP zM&XvRZRd$5wr$(CZQIVowr$(CZQGnA-+Ob;)&74It9n&+1LQOG1!Ru&p#na>tFjKl zc_GmEuo+$-q{G}6q^oYwH;OcMTB=uOq6MuGKFH{K@9%Y?ZapX+S&;9wEwA=+o=UO0 zx(>#bcgS|pN2cM;QoeTaINZf@2`CE8st$rFNcaADrESd@44hQqA%09SmVKHBs?=$H zlTLrn*q}gU$}PANhTJ(v-4SOkiv4i0+R@2|Wp)PE7DfKxa^)Wq%zVKBSGIDw@G2wK zm6JTRsFt|ZUaKcm^!BOupB04xMH0nZTWm79H|-zsm~R)DUh>y*hfW#VXXhoziV+%m zmYO!5e{p4cL!mi?m}FC@1dw4;W45)!9fyAH7O%42bdJ7^Z56uPfZKcjA97<{l&Ibr~5CI>_2d^*Hz{2`P+h94?3%(5+iAcKEz z!a--JgM8)R7xScbiP8sE6IOw_HGr$qC7^F45uIsm}k`yLc7v zjn5YNBfiWAi!JyXNBZ9FG>eC5asy1H#Bh1#<}=R*`zQZPoRs_9xPHO*n#j{?_qGCx z8mB?VQnjQS0fak(m^69dk7A@$?1q0Yd6>U_tOlwM@9BF#w69rPB8ltqrAj?Y-wFn_ zs>hfOPgCx{dnLArc36dwhZ2Xn90F&wTOcvYjzZmhQR|Wva=o~!{>N3G3}vh;buhA| zR>?%ly@H@w7jNNh4zYI+qF5Z0PM($e*{gAF9^!xSuz~#|6Nb@Ti(Ihlc$a?yeAgf| z**HxLToSP@T<0YGJ^soFA$U%y1|X#QCX!0GuCr^M-dXHS>UF`suP9z|r2LjjOn8+* zd=8&N^lHu|H#o~ zLrG_fTTAxuN=D=y4HQ_ev4TL%P9^mS; zo-tG7ti2kV;0amJIH!Y#wh)r;4P4~{OiD+AdJFvGd~hec#?qI6e&~ti)5VDbaryk4 zJkicx!$^7MEny;n`k(hzzc0uY*h3rzJCE!2K%F#bS{DRkjEPdpAqjt3cNtSBn11X{ zVX5(x9>!c%2_6wv>&W8RaIo@&!pbjng+-XZ6$XFj>s(i9KqJ-dd(Z6HW(jIiF~s_8 zuMeBKu(}gi-&4T6`WXYHm6GhyZNI}iRSBIBrrAEv5o5fulc2ra#7jMYZ{zsa ziY5I+(wdO+@@)A9RgXk0hvjZ?6)e_rWup|E+Be zO}{)b!>7RV4#QSv)VHj>{!K6MpYydaHp3G$2<%Ru-V&OitCX>5@-h4;-R>b%_tHO- zGGzK!N<{#%!>jhm-uy9{&PrK6ZiDh;1))NU_mLp&0J;O2f)s!0#3Fk7=tsQH=sRv& z3RSK>Bc${J$}D~?B&|6Vb_a`~y~3*3#2FMg-v*;{5v0OJae~r@2nZ-grQeDA+Vz@u z!&~8s4bf+_MblK)++w4yU zYFzJE**Dek7GrqZW%4I!+Vm%K4b z26M8orY*P|H=Kv-T9P5h3TEu$lNb0R!aycnuHcOg+@sT0r)pCX&~OMcvDiPsNQO}M z;p~t#*H*`6miBBi5@3tP&x(k6ukG7Sq!)~SD^@VUN)K>57kB%4YjKO#7c zl(;f?*DyM2IQgeSdRE&}nqz53gqoW&Om5Za=zu_N0~w7dJamKWw2A%836I>Wvgg+- zMlcE&I3b+#s)>FXV^B-7J8X8L&J5f*3rYo(JAGE@+HJJ<3W&ae%SfS2M&-D-Zxwn? zci;dWdxd{mZqhFDX?Iu``LrFAwTj_Xqp(awL27meNJWob(P(cK%6th{;g;yf!mZ&D zn>PFbcoA!RONcjJ&;#QwcGSP&Nirr!c29Dk7G_aEfdGx75h>gp7)tU=ns~c>Y0}qJ4bB=#rDfod(#7J-310rIwSV0l!Ml-KD zcrdOZ_GoV}9mHEb+QYtVsD+X#6G}M%Fr^EFTw#Gp;2YI~uBe2g1y1o8OA6qXuN`X! zr&(>~zZ8>%9`bppl6@U66QU)cp-O)tEyz}kX2ZIx`Q7iNvPtbMZA8h8|Fr_TzOn&o zIlg}&2gJEAd7M0IJiJrX)kT?=csS>IFfXG9zg|V<`}&vVEs6|Y2>a@?dg{%s=enL^P^^!EC z9VKxsVMLXcy%6E<6cT3r*pVTBJg?UaWPuKgTXP(r)4%LZSM&iiebQwSl?O!Av5!0LC6S;p0 zobJ!GzZ4Y}&y+2F_Xn5?oWO#EV>cJjc!OOXK$&2F9`Q z?#)Yvq06J`3d`kp8z+mvI|d>s(_4RLO1rhmrpib#fpIXW8-_suLdVO7uP^uaI$|QUZTB^ zyQe0Av`t%3Y*15|wi4XrhKRwYcip@`;Y`cbS&g$G-$by-`#wSM4RW4_nhDmZT-J6j zM_;^EzRAbM{2dex!;~B)(|;)TuGq5@)>ZlE~3Po{!ujStE4l%4wm@tyN(d*|=46Dy)ALv((_mk6)`7 zL+j|9%br9UKfzFqWu-GlcG)xYC`^sV*imUX?Gl9F^me4;w3%eYz%m9 zn9h6o(@Wr%Fx$c^DM`=!-jqe55bQSSEWQ%qc*jhF#+qW<;1vp@og5m$6+W8#y$_m0 zTq9{`;PZxzm+&@3Rt3%0MF{ED`;B&)n%M8tZhs;NyR7yE)LnlXJVGox(JY*$0wtRh zJwx5qBGEUxQ~vc|whY*lm@A3$Rl`yG*M-wyyeof%Oq@JUCcJA%866bxC##tLPT)MS zBD^S@0yx)JL2e4bt#<{ zq}QB;GBF?){-A$Z1w@-)71BEJ*h~2k|AXv3#7$4T!SY2>UeodkRWkcUDLSDxNWA)_wBAIfeRnrn3B*1i{8~5=}vpDdYeHJ92@PN6;p}H!i zJ4&<8s}nDM8Eze#I$~59OYLy_)5OE0@y0v#UL|_t108=(RFA#e!#%>AgsdjmM?$&L zKyRqizAXjO+lv96TTZ|Hv_!2^>R7%w{5Le%L|K6nhG`DI6LOF5NV^lYIXu-gs<%Cm zS}ae<3=LaH8iU&jO1JX`w0$MxVGgS$8HfV-pnWA1IINThl9Vv#wM^u8L&x+CS-R3!m|YtoFmyP8*GI<<7=Xvk za#QiR(j<>OK|9-XgdP+ysfqOEcgcZGRrnC5@AkXBS%1ooacGZ8Af(Issv}D6N*8uO zLUS?)|JF0OqW#Xc(#|`|ztFc*UA|F|^>h+hm??izjvvnm?!TF2zuY^BQmHlcq(-1- zk5E$(OQXq{+g49bLh3fNRv0Dweit^9GTi88xbG5m3;d)8tUULJZagl(l2&&}rVIrO zjNhnTA@BSe!C_=Z>i+eC3;In3D(YLAw1;6-Mhcs_1kiUI`I!G8^h&WDPclb-^z27f5H*m;vA|2lYsOY>phOB;$wi|{hv)C$JS$J1e& zjo%#Wj@(EA3Xu1M{Xw=yS##IzceYMvw?!H@WIL$@e}aYpH*5bw%eE{)16;MgEEoH` zyHMce%?_a&QmqXXolq_Hd@q`$))|aPOZb11zYFNX=7Jr$!43b(p4xkyd&N_1MQi!i zTvwfP#KWcKe?BdYuVLs$LYQM?sJjDCIkNIK?F&3W^-;eqxn7juh=B#@aASHGLi^4{;v1r9Nj>*q4{0E1YB~+x-1YTIUraD-8~$xA2mI5Lb~@2+%rPC;0KoR-TS7#zHoTxAOce z^&C3>O%RKFqfOdv7f<0p!}^1>aLFX61;3feWija`U|1Z*c0GwWZkRJ?`@VmoLbLa0 z#!1ls(9EI^Xpi7ERw89o3XZU2UoAC)k%4s#!dhrA@8}*4Sw?Uw$NLfYGt6J=nLwv@ zC_hBtsdQ<&Ri^(Uuq(&@KEupq_T@NHBBZ@47dh?}?S`X+A1oiHRzTw` z%svm@J|(AbuYh!+9V<;AKFNP+=wzhVh!p=qRGr|Fup|?!%(eMyujGx%Ix6^32?~ghOmuu`|G`3x}L8z|^7oHlF4FgFps5}aVqSzNaztYe~rrcaa za*ktDw3XL?nnBj=ctn5ra|QT&S<${eaL#%FAnqB9V#dbY5M9UbmI|kbkTNXKYZMpf zfOM_1aVNtjE}o0e+|HhJ$|uf?h>vn;VdtN3e}6m>7035ECnT-?1`rD2jy^0r2n?{S zF-@bn=mMVb(`iJfgaI*P+lXu%rtL^v!*j{wvi_F5|8<4&lRA44q7|HD;35%VT19B9h-GkxNAeoWNV&3n)$65-(%2yOVXb zXonLP=&t*uWi7tEpK5qkWGYlpR`K0^f;J@)LS9gRMWN@DLKFhJ+>pZo7V~{>cPIXJirPY5jZmj`a>0^b_ON8;Uq;n*pK&6XydK&4zkik{2nkaJhOq&zo zM-wjwrA=vaz&O7TuUQ4PU0!)TlQ?`{0s8DDZAD9q1}hQdfV`(FVw;(%KB0(^8P@)m z{^kKLCRcx~R$nj6o2d5?y-^6cK{h>AcR05SrR1w_l) zP`kWtAn~o|6&!r{3q9d^D{%L;Y6`Oip2$Je=byr!&iy4dV;{ibySo6ehUTl^!AjOD zgo|kl$5`THJ8=8P^sSjVa0gvWCouBN>odcc*Z+S*n;G+%Tw!-@l(%!P$DWg`_D3Nz z1d0)s5m$y>>(X%_6Ch}?&~c)hTZFZl6thEBl~)r4RE^e^kr!(E+5oe4S=!zmg?#%4 z(dlN=DjSR;o21X*kGh5WkDJq~J&H_D0AGd@rRm3$$9fnp=&9^#LrK;>!1n$BHzv2p zCUJj!?Gm+clYb)S-4U=n$dktG##i?!!m1}5D#>FN{C@PsD#}C`Mk89>=6c9``JL+e zXBYEh{Rjl=5{;Hw{X>^cRLzq+<%09u?W| zno`D)7lF-m?W~xHw*$0|R~$#>mCgDl67MtJ>V2>Wfci?#Z7!^aX!`w|KY$^Zphvv~ zVS$U<#bK>{#dBUHll!D^#M#HpS;2Sz?W>{gi?CQDQ2K*?*~v3C%q61?-*gFam+F6% z&d9Nbn#6BzB+xfIl0MVW=UyEIUHF^?C~$EXrNYU##5JOvgE%>>MY*mJDhfVkQA`X9_Q~nqh{Tug(KmNoW zCv$-(6v^zd7?j?BoOa{@%&Ln+&V>nWT}*(&36iWi&O~@|iXsEo;jCf_($C%uR}RW1 ziid(nIK*l~xWamykytA{~GJ*?T-1 zpG#;uxSHBsc_lob!~gSB_s=r#VHmgnhxk%?m^**pR49vb^|(M2jQfKt$X63Iw89s! zjs4->%I62-fQ;BW1#4KtcSZrt#9)`xYF2=_@Eq+YTsi^2AyHMrx+_V*{ki7R`+r%! zHpEy8vKnfj9W(?LaC%fN$pU`>(e9ovumnoTM8T|#t|s@9_v129HT}fRphFNevi%;t z{iapCvwdWI?zb{T(}9*UuHG7qo!c;o1rZ4@E7EI!YsiR8`Bsn!bu}$xL_??=w!u!Xbg%tP@g0Alk&Wpo;KD&M zR`VX({-{Hh)@AFRWKl|MAtVm>HqcTsGqSyK8H5cfQfKw>%}UVlRFgmVAsUML;gPI$ zIcI$RJu-$7ygnvYX;d;*8e}mIC6XOICU4sgjG6nyB}v0~)FHk`qEYLhH_a|%B);Bp z!ED&)g*R?xTD9oSvl4&n3Ypvlp>tm$BMb3sLl=4}Qnqjwx>h$IvfOjUxaZYHr5_N; zXfKXo2)Q~?{2A`Ab~E__ox#j_o}BG52}1ORJPJd(C~t@7g{LTabZPZWo9ZyOW2&fn&3=Iv$Z$% z*;cHVcb`!6^)M;{=KQU>E;cV}##vROq!2<%SFFp$$<^#Fe9u|A$2DKFij8aZifljk z!o!Jl#KpjeW~+ZKv_MU>lZniF{gg|E!_$kRkrD)A>5WIyJ?lYjX1oX;r~Gn$XK9!B z`1#}Uj1R}41*6bTpnTfg{q|2^vd_3{xTuFUK zfAXd|O%519@k&`q-N}v5#DMV@OdbqiLSq$0` zJ?3g6T z7w`}kVpV^XksYsCZ4SEr%y3GEYExSg_ej4~>6n~6#PDdhE3Ko@zGId?k^*QXaEGmb2gzW#Bo@kF$+iGY!jBbTIdr(a8m&I*v8R7Guv9 zB=CaUE@dY?6yv=f;mI#fG^=(Rp1-Pt3PC&gO~Zer)arxFM;dOAd?Zc05L!%|eXPe* z&5*o|pU`0CU~*y(33HCQwW2ou5Bso@uiJ27y=sFE?}`udOo}x(0@m^pg1+`ZpR4BTHIL$8 zuHu>xM-#!JjZO^-ubh`T3(>)F$Ho5FI%%kImb0t=tVPUBj&{oIzQ_@Pax&2;(|D`g?!n0rouc@JXylt0pkKpXo6R4anbR1Fx!{ z0H)47q7=EvQ>sjTemMzvIz&XmeCeC?zMlJ zQQMz8V^2Ju5`-7Wfk3V-e4a**e5dG4K>*U4^*)Mfv$f4lb~eRs6F+gWeI~&d*9e>$ z-#^c7j6+Z1_qFtcFeMEQSwEdhmGwPc`^wqS+e#LXs1!>a{Q;2`c$wA2prog5-LelT$N#2{L*1XWjipQ7c9vI#> zY6A*WazOUG6*rUncGZ5Y-YLOK;c=^TvBaL6G_Fd}pfQFoZRvYU{68&7vEqN%6s_I` z>7ppNcGZ!^DY#l0x&?$uj-+4?h?F@0N|<@TB7k|JCF5(8MrK-?fgtEJ?H0Ov zml1_Z20NAJk;7g*H{*k=o;Gb*9?-~z&D5K;}*c1sW6 zDvymvS%!Cme|`gX6CEtfkFpVP)LN%u%?$--K}yNnEQ!RA2uJKCOu`~t@;_s1&!2fMT~5*ycDh9WfY5&dwTMIlDch8Z z8;ao9IO%TfS&-Hj->;^~t6z;&9SV*fOCr;b3=NL^c5@)_(DFE)-!$$%V2Ai&?~VG$ z%icE6YW2gODy8dB%hrOcb1>yKV*dopeHvbi8n9fc$+^Ei8CZ?~AVnLt^5yR zlm6<3Brfg?x*#HinP7|*0xI?;o}o1)Q0Ip zA}>6tg}o<~s^~Jx^nwt^KR55(S&)0Le}8(=rU z3>rafzjmF$SpEC&mySSB66Jh2`;~}|0x%SI%D2CFQ9%7#bXP9FQJB1?m2OogCddcZ%+~KAhmu1C?;fcLyg!?a0E0>NP+IV}*FmHre2d#3 zIj*CSUf#@36Gx%O_CS3mG{_q|p3?Eb9?!&Jn2~>dyMLx+RdV?=Tdd;R`^19N>U>vL z@wwb{!3qRfa#$3d24E7TuTN{OP>P=tWM}93S+)4k0u_Z}5+;IAT&ihnG`wm-yu~ar zhOrgA9m{mSPhnyz2FD!L8OUxf1~0!vF^Q5l#zK zuJJ`g<-8xvk;f?Y@axx?Gb>a!!`96N;bk!cF62nnr9taGFU0rX!n^>n2}&Z^6_9^! z-?8g%0af@OaSh;pU+bSmL&KVX^+t}v0Jfl`JXtgXKp}9g>+9DJx0YQ1o<{bf3E+}9 zApP_#IY(cx$J&0Ax!N6GZ(dXFa zus>;nx>~ZY6Q}?I=Jl}0a-=IDBrAXP-$?L{^_cKj6+)~QD3>-l=pjnD8;)~WGl`u^ zvQ`Mm;g(DP8TX>mOvR;N77S%+G?KK1;%+$Tmbb|qUxMOR!+MPR7#tCC6QI@MyK;Oc zP$5q7DRCV4=5EkLAjY<#k}}MDE_!3F&m&PD_$!=}Dl4J5kpuDyF68qQ&OCp3JPL~$ zFMKMvRMoLcf{yl3ea+%HHJ;+%plpOGYh*LySIF^BtHR)0u%_(3&)Ok0M=Pf*;z!`i zM1+zz-6|W{UHLj z?uN3YNNdugN{a)2-PtUET8X^7KqCcALG}Q8p>ilIt%~r$r*l;P+v^S5J{DAoWq6;3 z({9ZXC)H-AZJjC7z3^pYl>@aRx!~jcTjhNF5i97E9WNS+F7OuWoTz{CMl_nF*G%N_ z)E2^FTcRR!*$|)xy#5In#zC}3kVyq+GQI8wi~HKe9F-qGH;`vDRPpOMhcS(z_p16v z`s8MU-k+Sb?1FiFwKxsgm!5siH*-V9c#5DOrZiKH2l*w-^YMZ4fzGMYi1R<_n^$Ck zE6M%pZWLh4{>ODrm_&b_xCPE50>Pwp=;#0{lAh$}3&0tFWxL064slo73h{ZO_CQt! zZ=0Pyfy$E^xW{o_pvzf@M85Yab6-&l%d-J+kI*4@7QZPJ3n0<(eU2Q#oeabyjYupS z70$@m%qlc;a6F*kikf7zuEUsd3}GUah|5UuMIUuf?{YZ zImvNxS+rG-eC4PU_&jK4dX2s+$Cg=py!uSHVT~x=Tq&9DRHpWi1@=>75-04ZD{JPhTnd znt4SPe@U*@zq4U?eqt?~hNjvJAlyeUMTZEu3(@o^Pzn3?d^H%}A>>A+lCQsnK2TuH zjLKI%I^}MQ_8pMn<$Vy6cL%jc7~&zyOoBlXePMoHADMqCj3uuh{~?}EvM;3Z-%aPK z6IK*bKUkN{y%|YFWKUOOS|2yO|K~%tqcv3?J8VF7&xy&EuHYR~Q2l6`UF*c6Gxu#E zXaR++So)E#%6nMnU`h+DR|Gan#Y0LhG0AHCWD&g7;p!hV=r;CQ*=zI~=iz#w$%p?w z@wpP?COH1-om#LO!Y;ywg;Rlv|rNwGs_AsBTO?&LWvRh zyy3o>3x<}1RGFU)3JWqiZAI|z3X_{2!+w+aC`y0C-vz2CXTqh0ScSC|#vk6+cYwVD zY{IUsX_C(LRW6hRp1e0rB>r)*;O4=xrR42~w27C72j<d{L zJ}W=jJMa*=iwu_N9loKt|ObYP~zBj$XUJk%W9ChRr^n-_hr?4FRAC zW=lwT$pZbUs#^OIPZ~Hq>UVj~UTE0su@QwiRP~{l$T%n?0&Jo1wQ-Lf1KDmHQAPv9 zS2LCCTZP?L=uf?$0o3{*P4DSv9iDQe2vvVx({bcxv&Y{gPtg?na!aFkquetWtSln* zg)*F>;Pw!yG%&n#RW0pk(Eer@j49${AeKsLi<#N(ZbW@_pk4B-LaD#1`%!ra>&_$d z#^CGF{+3Ey73Mf<{Br5|5KZl1K;Z)x(XE5p`%o2hgwS`aYmSR>1ipP46MJlHOma|e z-^L|Nsgk{g7|1{A#mwbSkyW&-9*2LKSW80Z%djSDIY|$6&3WQ%f@Z)0 z)sHM%HaqsH+Pa-m3wYU#0=QKDNXjuEl_M6l$(52mIp#3CV);+Gr~`%pk%s0xx=(PJU@|Dkqk49^S*uLg}%Q zY_b@o5D-GCfiZmO9o26UNz&c06YU3IpUQDk#Za8!U6u_NCR*t(*fwFhFNmqL<{P)H zJ=0#3wvqEqLG9ViU%(J`yy1VeWFbh+uPoI*I$9VyVWqo7pqt4IjQs8z7A2~m7mWe# z;`j_xgq1qFOQrI-nIkscj_ zw`2&x^-(%$pKjniAh*eBM|9{hHzNj9pzhw+8>p#T+cD$?k?cLXmcaMu5w6ja-&*f5~6ehJn3zDld?)L zy|@`lpD8DbPEq|!zYbVFjcdJs4x8=tOJt_USz#cQqk`cA^bmw)P&vByZxMekGh*}t zBK3z(4?HphRDhS{+$m22j**9n8PHUnZYssI`!&LHW)Wf0N8a>xwk+euR3s=EW;Qad z$n^}{?*jmmEux?oC8OT+1{j-Sa7rh!7bwFG(nVEkl9y$J8v}#?>xdnHT5j)p`&~{P z7@;Vgm2CEH-J+qil%^yBES*mT$w`dF!Q6)I$YFkb5UpGld-TI!X(%zzDN22AJ_k#H zIH;{#4rgheFDSf_8H(OIF^efx7hZ}^0 z7W3xeN%h7eFU;0l73hQ=l(1@TAf6IR185PvTijMugewuQGx35+fPM`4p z{;DrlX4u6*Rfd-=ZLP!F4U4{?U5hU`VmrD?6+Ph0S?60Cb+CM@S26Ri`lzk%5cGyZ zCmiQZ^7f><)wpiKZ7)<9ag^iDiW@DI7e|FfehYhQN-&sqBz>!YN)1Bza{SMw-X%Dd zib~XgBuJ4d@koOXbUo^`1jBYsG_e)QK~1ZqeO?;v&~zW1hC@G1#|4O`3p7z0gL^-C zN4rSDV* z-DOBR=(Ua<+c3d@!7#P*f~)XE!(pHd34ByIt#&}d${p8>G-nqNlK#pgGF!I(xsBfNaZk%vIAq(I@Cv(lywi#4%| z24femY8!lwXa}EQ_xQtYGpD~Szcy5i{4~m&VFay|N~7#P=jiFhgjp{M3`;GPtzx6a z_yPA}&t82DZjNnm&-q!Cp zq+2q+4N~QQT6;DLP)RlDEn7a!Bg+Kew+m$(pX;s5C=lCi!zf~X+U>C-jCq~$LYI4o zdnf^@8YnD6&jmV<7JL+3^i$Au>wR1WDo4IdM_i4%E3|YXO5Kr|6vxI6`F-{izEtpu zf^NrcT2Og^Jlg;RU~*}9=!1m`<;AG>jfqII75)C+a#u5H1Jl4MAku4+G=B_Tob9l;F`N*Z(^D=*yU4d_nmRWkq^JNLhM^x*z zD99Vzo7Ghq4l71K$xa;GNZdfUgW{A~UhP_g%Hf+neK?x%j?xKy=9FPGL21P}GPXnGz&+E!HmlN=ups5c_z4kd*8cvwk@J}6Q zUKP@gdnF5;{tYkl2eriOOLnn4jXEw<4PGYs;3T^74K(9|`gH>|>h6_qt;JxHB67DZ z6(nj@0kcDu{a@SH=;6G^xUSlCIEL0SQ+BQv3BVVBH#Uzi;`1+3b(l|pPXvK~E+Xe( zTlB_dK>Eern>*2K9AidK!DnoEw8YL8m2Gwg@NiG6$81slwOY$ufI&cMdc0rWR10QII0=Q&vx0_d*<( z(_7NxOqM>>HKOSt?|nnw@7-w=-=x^18UBK=AEru+gJKxEax9r0!N8#Gkf&WL=x)Pk z^n!E->vr6U4}sVBXYbbLce?ue+|5xqczH2izLb|azBs7;KDdB-bXX;S_90{d$JT0v zsX|tjMql10x%roDUFb$izx;3ua)9R(@x>a|JmmVOZ04N*C<0fVDQk!G?WiDNU&{38 zy}E|mC04(%=fc1OZztXXhBqi4PvB++I``00gz94A%7WkT#y45Uolnx?#cVtjSmTSN z5b2}y`^xXZNA>Tn3m{2<`x)2F%hCfUy7r6AVAcP7X;Jp_&GVMHU zTytj)!lV8t=t3Bknn$9>S>5*ggsK7mEGg3E4f4Wio(U$qnFwHiPO( za{lJKCU)frsVXCJP`87OAP+7&seIpyt%2~M4gm2L#4VRSZ~R+z>jG_ttb7jyUb~o% zoT_0MzQpb2w8Qj&ffn=oe6(kGhHx>N5<_$fa2G%Xv3r*|W^aLrs2NVkJhzEesT-ik z*QmPx)3|&j!q?`JjQG6c!HY)%N5tu)xX<}0W;W^U^^f z`;(c#HdMLqSPz+$03Jm@oVml@p=k$$LJ? z+g;{fElzx1U?`~Kk)}tsa6vH=<|U~gp{8A7voEVUuuU62zXh42{Ew`;8UsjYOo~o@ z3Sk16->)ctVLXv;F=A70ejLNh3mbHGtjC~Ibxy=}c_jJ|Z-LSq{%{kLA-HjBXVzZd zQ5&vl3Iftkcz4I){#&o!Mcs(sPzrBZQ~Q8h)e3D`Ewn6ycP6B4fdbvUK3Hl_Ft(t{ z2*cS&M^~J*s(PL&6kFrx0Z4gox2}z2Rpomg+ENF9>Ji}MjcG3ja%M>#NC7}Y0eA4! zcNn$nbnu2o!6)orw<-dB;C9>pAPBFXEwKK}s)UN%aoG{k!!C*=O}jZ-ruYnQY%hT? z?=5g|T91z>II+g#x|zEW%~Zlti?(fz_Z4`~(cyiq0znB7W17j*h6LBVB2_cDOCpdf zxaARlxs~0fklqSQ9M+x(?ApXfhHzy!4_rwLdJ#3mpZIdMGaFfQyjXHl@D_Pvv2oP{ zN7E>wwLK#_Y`=<)Tr7p-t!H5n0PAj~&@F2h@9xaLnp}V5AN0oqy-NBefMW1kDhM7{ znmH9~We!yRnS)}+GHpW~sZInEc&RQuk@fw5d}3?c#lx`B27M=Gk}}aT=4+(FhsxUZ{vWLhXgo(BYEcTj|cBi_-pNQ+HC_mTspCg@D8zqA-%>i znLg1$b&B@9y!2F#LcBtEq0nx`*W+r3JPKR?$A{f-9>}CI)xh7;N7(3CuZ$w5koAW8 zl;@IMHmZ5zueftTRW>2r{axA!PIfDg1E%_u5z<^|Na zb>$RHh|$BWIbpAo{GRlKPs(EuU0ySV`QzpZ1_yyKoQ_<;6b7vIIKi@irL7r8*0xDh z5u%;%LQLYHNR1aOo-JG7Fl*cEyVZ|dpft&8m8u8--!UU8TiBr!jK(*S*y znfI0PbnP=fretp|#}l9DmalUJSKh70XASC3eYy;Cs}mP}S&nL?Zol*IXYYZlj*Uk; z5EzS9MrgsT_$5c+RK}T4iZza|FrHlZk~5t%-ls;t(`++JLM@uL{J(~ijj841^DuKiOHQ$40lUcq24%NmO|BVFkuzpkJ$5(axpH$G~D zbd1(P(6B9H6qZ3RJ-wP#Lb0EF`ty%zl}{!(224)GVzS3Gd~OrWm}Y~|ON(2$oGvI^ z^+?fzi5{dN%WpJ))CBHpA~UrUj*~!Kx}CE?LR?`ZKAqld9j5$> z*SmwU5nY4A+nh!m!|5VkrwpsLAreduMZpjTX{HTw;&b?aVz*S*Jib((Esp1QO`d(t z)sBjDb~$i1w*=7tcFCl!`2Mj=1OeQcmO~-JGN=G*TL?o;}8eO4%v9 zU9`+5U^Py%;I~^4TV_!tmaL~&ab*{l3!Oe(_c6}Xs|ZfJmP9s1Z{fLv=d5wdgY?>v z@k#M}sYnff)q;g%ww4JmuorUrg)6oEvn}`VKCx`iQD#W8X&O^>0u7ZQ^i`kM~X#;)}sYu;h9T2`X}bHD!z+*tjwR?^XHEj66tFfE_4V zV25#4bAMaisNt7*} zIunFek$uwAWDu4eNb`FO#hXFHP?lO^paFR&6e>cU`&51Z3&ockrQ%^!&TOgGo81re<{1wY_h^wR`2l>yP}e= zADiN13;DX?nm(T)quFk}9$FBHSUf#~){voP;G+4L7myk_?(45f{-ZM|lNOHy_MMnA zrxvVjDR98nX(tSJXbZ7HriZvXL)nIZ_3J%U>b*lwV;OC=cBAAWR*t1Rd{G7viArNP zq%Bb0fCJjx3UiR*Xz5>pMpKNTfENVFg$OBE4@dMQ43RW@a6wyQ>T~|PZFUiRkn#v& zQO}+>8p@01SVDYf+I}+K6;o3Q(1+JYQ4M13!}kp|*$R&dc;Z|mFiMva)KPnX_Dq<_ zpJi43rf#BbWv5=sDsKI!oj+=vUF@3Y6hMQSvV1u9#-ymhkwT*<53OnDwCq=+F{`A% zJMFAlmjI3<%;xnuqj)CDY-whTJLYol+xXhKpTN9%<% zwruuxH&j8Tb5ISwDO)G)QF(4gg4v|nccQ5XBX`2p+ze91gBgp=K!}xA`g^;Gp|5BK z|4<^Pv&J~FZHz_vv1x6cF z5OkCJth*U<6Ns0#Lq`&Z9xFSO;2BLa4%rL+f9>=bu2hH!~z zT7pVs9v~>44N_qi9kUf%w~&2*rjgtW`R$T#aP0R{i<NI|lr(hRgV-Quua)eX6GX?8;4E=x(#8Be+Q2Z5EWkAD!^#;*sLI(4OMhdDmX@Ol` z?;j^R%$@K3RIEkguayrFa7s*9Pi%M#1?P0`TRl6*PcsRM${q_162KQJy5{`QO8JqP zbdMx5oJS3#n~p&yWBXB1c5kGS@4vPTF-7vHAk>#j&?FvBQtrS;Hq#wPWgI za|u*1c&*=mkyccdCO9j_fu&7UnC}LbFyWbYd__5i8TT)%Q1vVId&+cbkYK`gI4Uq5h-=*^&FA zTZ)6nW&>``hNlp-V5sZ~!k6_PBQ>!B! zV~Yp=73Q9M$K{u1b>sHRa05;2ws?AHVXu!@Bj$@j*^TGvSJtEG5(&q0Pxtbjb0pK{&=5~_2A|F9EtnJzis~D z9@UC}bt2UXv@Yxk{sFa31jbx)kztkN98b<0JgFHQTQq#@Q)xCD8<}XW@J&?R_xsds zczBtI-C2YSn}2J1_@~~FWyldWV>?lIm~?Sa0x1rYJi6R}xXz-vj96oFwt`3bL3N{ZjW}x9B@Tb% zX;$_%?+}^@FcoG-GY?<{OeN=c6QyiV;bWpvcCz;H%mbxO*O3?{@c$#^qHlw-LB3dQ zl57mH){sx9U&$~OI+C6C=hv1?f$jxR673=ikf4}LZ(01PASXg?u8q;TaRaCK4ET6| z+6|?I($4LpN|7I}jHI#qEcy8gmQbfj)m=h$_!?%&V(GbJgEoj zLqA{0U@|rph^=0^YuaS-q_19jcB(Xg#)o$RtsFta;B4};YKBPH+_hIWqeF8s_#40R zkV+}inp{aBOJ(!X9e)TZJl?g8gYw-jw561wg2AJ5z~fboZmpXZNY27WXiaF)=DQZ6|R%)M&#yC5Fq`k3U z6aBkc?Ud?+Br!vl_o!h@Ts%f)v$;s;OTs#zRcu=AvHypYe1&HF~adlSqhg7nJI7=krSW{5xp&b~1Io+k||8I$a+pq3K$`6?@Zg^WNu}Fi&w~0fvQi44q zVXB)y)Y40h9*;jz>ZY%Ye_Q-$hgV!=KbuSg_g6>nyYm5}xzsvq5Ns*1)YzKIojf%Y zGDVRvPs5)ztY05PV7x0t9i}Ul0OEn3Ay*~|SbZmWtO%tYt4$U7{-tbx4_S8L>)aq! zaIAw5fz$b&$G?4BY3jlOVX9`2vJ!nDBh?)L6Hs^#YQ)35zxV2^EQv}U6@^%-o^jq>C zvvCc52UK6dt)#q6gES_p*vYs3uq@M2vqsWZg2|HVRDjd1yMwmDe!sIhuss?xi7Rr2 z`AMf<(nx#NWd*5@qILbgsmN3b?n$S$zP;l2b>=8nD&&v?)IJM;Ch>bwSI($QvlVTp z5*|v(prSH~^QTHi_YngTt7qw*d<_WlfF_T0+;JN1SAjUcUJzKu5E%dxs6+DU*#LcAtMTG#VVdEKAhTT<<=ttTaZZCeK|I5MEmfo{M!}7XCM~XcDfkSq1n}sn`lHTdlv@9JI zFVC?N$(|U0LilIy++|osvD#fq2S z$m^j>BQ*|S(C5Y*f8Vg`1nN4V@7xE`OcO|%Huyo0vhYGV*U>yJQI+% z62AD3A1l}m&I(oxt0o!> z74=u*&}l&I;v$P3LW4K_aY-MK@5C&+M~?Cs@fOc|!I(tnRjlr{*t<%ly? z7(nZ?NpAJ4Y>H~z3Elm2er4q^h}_(O8xf>iqEQ3} zZN>Y#2Echvg(m!0@=^D;8<}UIlmaY5>}9FnEO3gP8t5KY3^}IfR!l~ktM%~zB1?Ys zB?(YQo%X^8e3`@)0yIgG<(bc2XwLQEY z(-F`_`4%UQ8r|%+`svIitYI+H@eW>2ac-s<}_o2v6jL_Css)!wWUR0LoUbblBg zBCjB0l1DIkFttD^Iw_N}vOaX1&hPhgM5v&>qG#_CN`3mv(>5KEr)=shkGc6-aPx%+bww?OpU^4B zyIZ+7YbIPJV8JIZOXU6(C9dN$vq#_SuMXlikse3OIhUh0!*DXOszujoubLyG&ovy` zeVQeg#G7W6wYo+pBfp+Tf%$!ZGbm$O@(!KWa5Ru3Z(JH%`(cyjBez&&lP)nT&bO$k z_{vmH9{yV$V6@X)^Se#wkjx?rcPW5*bxNGVMTL}6E1}i*6D2spu;LDP&D@gTK;VX* zbaxnLY?o}!E__MRqgDf@{3Q_V$TX^-aevX?^@OStJffRaHP9EaGVx}X=Xp; z7d@GCcFfCy&!nmEIc1(5Z!4_ye1A2`3DhZ>OBHrT+Uz)qq|yNGzSkiD zMG&;#JqNY`#^w@t;yUBgk_Qg#g{zCz!@myQ8{fc|9WwdJ*WO*26X z0k4JydLYq4084EHVtTd1zGuEWginZSHgOn}G3>^JU)I;5GGbD{8svN^1JyE&cj`kK z=%1i1+cEpVRekObLuFlLH%+2)Ya#|SB47}I_+=);Xh7uoDm$iE{9il&&&PK+0G!oY zxg3vgUCZN=|!0z)x zjk0uFMK^n2_nlAryDt@`;f=m$a5AM?IIF3G3)|ipne*+6$`A?;B{0W5-gJbBy1)2| ztHmSIXEv)QCN06Z_{fBKHKh~a(g068nVmywW8J=AHyD(EYIQXwIHxn735Ow_G|H1D zv`3Ns#SxW}Sf{3aFP=N3Yw1@`+uAgeN7H1c(~g+00s4R<9OB5QMs2&sTPj-Td{#3M zfET)+{s~xhD-bqUo=RKQv=lw)W#vxF%hzI+L?<4JuBU*OZ3L<$!VwvC2 z8o#)D{?X+LHn7fa+(^bNW<#866C(!9e*ngw^gGYp?J_i~SMC@br9HlEmQ3rdk6rb7 z6MN?%{{Cy(aK#vsU$Xv%m-@KEPXy})4LSO9LFlYD}Zj+Vm9I(s5=Z?<7Vt}QTzhquO2=@UzTBMT=0Zq8mYCPo_O zqSYGP$6&lkR}MBEZjyySxrpdQH!~`*XD&*p1f4_pFR7Kah9pq_RLg=x--Uxh?SHIj(dHprw_$^X6QRsnx zmiivpcB@$Y>v|)(aZt3ZXJefgL;o%bW4*N&x$%;4S_2_dJpBMmPX#JJbkrQ{YqFz@ za-jOerEO1v=I`<}o6h=`diEM~uDYl`m26Bmog+r~xfvitjQxJxllcsxq<{zBSB2R} zkB-V0Tx&o*NN0xy;Emje=%bU8mpHS3aFo5NzF@6jFJf+$g<}6q-$D7&&K>NN1FCl~ zR$K~WXH~1OI~V>pdv(pIn3rA!H;8h8I}aqh5E-7UZ=XJ`9AHiiYoTG5g2?hT*}%TM znQnqz+p-IJo^_8nY8+Q0o26)K?>8I_l0wj(X7(ONrq-qi;yoPq4xn7TjX#!uApKjc zu}6UiHcYSK{Ipc+usYA@TR)P(R1M+xeloEt_yQ@^QK9caV0S5|f!JH_rE#V(L&4I0 zKomJTCK8WsD(RzBAf2^W82+z@Bb4s;PYsM|VF;K~4X_(b7AFj$@4?_PktBHWYYslF zCG{OW#8|CwI#kECIRk;BDf4kc%-z{LXa6yp@=t7EDyg*kr33-95o0%hcbGZCwIRPHmNhA*EaD z_D!WsLoHKA0*WINNS1sGsAG*tQOUoG4O4my25Eo|vkiOGvjCA@P%W8%1c~Gg*j~5m zkR=qb=UEQOKhvS7jICs=Yj$UIwO7&UK~E34wBVLulx-CL*EFfHUOROUKRG5!t;DGK1l{yd1`HdU=L97v7Pt$@q5C zDjxe^j`i+QpT@}cM@xTyf?01*bz3TYJu}n%9*p^ciNalWBeIZ)+SlDej0kjt=WaC= zG-iqX)DIDi*VeOuI&1d~blC6G^XueE`IdgMz-)Hztk&Yp@|F9Smq{EY{L!a^s&KXw!8 zv*5^#^HmwxPTm23ZJNdBHSlS}u?^KRKvzqGcI=Wir#Ey&swf)K)#&b zB}g{vXlk^(&WOQwMaK-7L|cMVEmsmIVm^o`gA8E%Uu+yQxky)(ckZYahF;Qn%2CIY7Vx-W>{d7re8 zoh?jXjZT1=IX~%KSg|3&+T@j_WqWqEt2KOswqDojNUK=;{*!GWO_M0!{W)J*SEp0H za7T51Kh$KkkJ3jA5eLf-Fc6i~LlI*<1uqQZ5OyVZxvG&dH}N!5eeyBARV?a?aM4(} zBLl%6VAAA&??t&Y7k~=K38LQyMVlH+`AEc~bT ziE{s@d*Dd0n@3$b^JhtJG-^O4^vcl_Sgz7=q36?ovf5P#R9A7}`bR8fwC*$S*k(2bL&7mn+z{BC75Zmwl)$j6ZqWW7>8E-z0T|x!4O#XNQ zr6WG6;i1|)RET)yKDc`5Z3HCtI-^+m9QdFGqx?U5W2ldHT)wP%gr$emj4f@nlSXEr z5@O7MIG&Jm-Mfq&>ZAmk9c4}R6L_oE)S1Wj7hA+R*IC?P-APPLJDjFX(oCC)p^qx_ zFQI*8AW_yawqz8d1IAuPBOBw0b0Kgg z9o0hz#1x{2f0P>#_-8MM1RD?VbYc`Wwg|(2p!@N;F$$^8pl6nPL$h}0997te$!23Z zU4g>ROp%~h{T+Ko%=Zv`Bo7pD%S;K%vIwo5m`MEpEMk>KVJA^R3QEzLj{WsQ3I`?N zm;LRz$irCSeY^JHL*O&^4iZ|s(lY^O?+LHkSbGWOf%wg)K-qwThI3f$}dxs~|Gk1!T#8`q#Uv6!&1*qFP}#9g`bE%~ImR;)?DQNR)r@ zHNxv6B>UuIzV)EC2?KscO1Q5vRDRGwanjyCYqEiQgn7%SGD&?`q{0zhRQ0Y-hCO!$m}(s39!0Hp^I zzE{!F^^I5n8mQ+G<@b50#65A`m$y&yMRgxc&2*GYyX~QM0HOIt0;_+senmm)p8U zvIQ*9jvtmgcY`z?uiP>gZABl2APX@>QpHPDhfGU=foEQmiFR{TYELuCm7mTl#@pRl zd8VL79G$04YW}4=V0gp;5i@s+J~_@hF)E+v8drex0njHCmsAgwES%!tQz4LE`JAPs zhgL0;s4*!Gd41+NhYDqvgAg+j0W^~_OB0u1N1Q5Okr(eWMP+e0Wxn1X>wzAZDwp`c$eYwlH#V0+ZY#uI?))bQGcE0(On;(<=m1iN##VN2 zPF5BGLt7Jo6rC&`K+ewX1GE58*x3S%faZqQrT{xrfC^9ppsFmYqzn*Ol2=twrlk8w ztbgocZ*S-Lk6wh8RaC`k03w2NDxv_O8Vx{PRaxcFUlpM3NB?Ft06CQp`=2@=j(@^s zMO6eHq8jzzA>!IyzbWDf?f&k$rRq_;+g`p{9;@Hh&cWP?$SA+jG&=yScg1 znYlPQ)7d$i(b-%7)t`#Fg%iNd&e00+@qg(EvS%!ud~5>%ZLrPC(#)lrcAS`YTpOK|uy!V`yRP474@0 zHU4mPHgtAz0vP;-ef$DV$p3B-2oQF0bo^68_Maxlf0g-X>q2%PJJYfD@-cM#?|&0B zv~_Xv{2$!>=eCXQY@IBeoSpv82n3i~SOfob@AT))ENuV6WCi6U#YB}=Xk|WxXG<$< z_rZ=WowK|1U*3Q635v*Y0XP`g0F0b00EQ2dirSh8+u7KBbnOKDhdvRD51yRu96jj& zm#(dB?c8j={x@!FVQXUghj|khdw+UWTMGvlprpt@ygwk=e`97qX8;2L=l}q^8=KSr zDfgFJ{=kfX;13#nyzK4l0j7r5PCy?EQ{cx3te2CaD-hu9=mPZd`k#jXT){H3157N8 zoj-*BF)XluWtX%ywF7Ye4S#gfBPBQSXg`fhv$EJs007>N+DsI9S`iG{5hfQgk2VCd**=mE>{p#vsX zR)81dhont_?tcjdKu>3D=ll@@uy=9x0hro3!u~l-b`Ai&+#l$#6&oXf9_Zj=X#FpQ znfU{8H?}sk`4_~>1fVyyb8-9^z{tQ3ptt(>l92&GZ~Lz$3nzfy&VLs8@AZe(-tc3> zt%0V_|3(@Af&Q(Rf59K+?X5p9ihmVn1<*SIU4j43&-xMRZ0-pBcLmmu3eIkJ|4#C; zM^B*R-@t#8tnlZK`D=U_{>}P7F5kb_%Fd2HbFn(tnTb|9^-U60&pmqGe@c1JE)vFasFb*_l3AV`B69k67cs@4>(3?n55` zT>rU*06?HS&=_`Q(axAV*fOmpwA@#;aJB-Hl#}kX3WHBWDgk08bG8cyOC*1X2*_U) z(B_{-R%9n5!KLe)5@1`RK^ly1{kGYjTs?DRqA0Ly=qu}sgMT0@IFYADry7_gyX;@l zLqvHbmG@P%lw~ffBcTHypgM6Z%-PlZ7{fIEj(n9$q*KwcUI6JW9JCP>cyFDEt0i)IHGXV*ZyXioGnZ2UJmtM~BT-)gx%_ z2&Zm1To61z5`WwZGjRZUk`63}TjroFW(s)t3<79EkyDRLz*osxVe;IdW9(++@5@h| z%-7zU0xD~PX`-iV1HaO&NVqa=#66X=Ld`n)Tito#+_+PyL;>+x1t(GsPqG|SSv0pU z4_mJdzqD-h*sMg&9_mMsJzVfOHersNmHK6;WVh-Ic`3};FFdwy*eqWEh-rHDJAd zt!_-t&wp)4WSgsUV{hkYvYM4$K!hBGhKefcyWKA@6s%9IXKASZ;5SzXmC65R4kHGv z9;dZ~LE<;pWPsZv**~DQD$vErTe>RRga4Kj6X?kYNVT{6OgD^=vd1NS3pd6uS}Y%W zvz=Z5>Uvojklrq40M%q(Lp5WOZZ%2NK%#``*nevWAYICQMhpHlWIW%e--8U{_nH=& zjD1Dq42XOIxzY0$Wh!T5%rkBh39}gQ!-w*!NN&U7-L|Rczuc-0N#gysE{!+6O{CNV z?^lLri4{9gslchDB-4BzbZ^ZTkM9)3N0T_g08nu!W#y}ptc&s*b}1ME^20piM2RqU z*neBpHz70Ta1*fQRB*cI8GF;Qx~ZT{D5R0dBx(kyDA=(pMjz#$N8;4ebqrLk1+r|J z*F$CaxC|e9BqH_OTW*KnFZb(9$S+0*752myG&@hJ@b8WKskCS-9zRjc@}^+B16@wI z066)+3CObhTt%0^CfuczU zJMXs(A{g>w`?DH_PgLA~X~+6YN7>8KpSfAen5296ggjD6o^QD$-Zea%a4mmjY|rZ3 zRhpzLyRM@87J6ge%E=@ara<^@|nY&tEk7TI{SE`f0S?WhTN0q&Or{j_j3ZtI9N**kwhfvVi02%q^& z8V@7{OuUENXD_rx(Rn%9jrQTD=JE!&PDSQVrEd!Tyn#dbJ8}TqpKz~WjVoD}fld)}Fl~jBN94-3eW$LCt4N$Gl81h^6 zua=7P{Y^~SD(~xz!@mwc`bW7G|aE`A$~`!kv=K!zE~mibF#E zsDmwve-2d~g7#OZ6*wBVU$AAFc3AHTeoFnFq;^R9xUqQ7A1IO*U;>reDt|9Hvam~| zq+i_{jB*Oe?MkU*`9vTiX$jNu$5x{&EYrNvE zef#wF+w9Af1Kp6Z(r=tJGpLdpHQ2>68g7{3bl`)9=Xy|rW0daanty@!?i;3u!pVDX zlP~7^=iIqujM5CIlCS7X&GD7yrwC_N+RTw{6vh>-x_k9Rj9zBg!OT>A@3~3JQnnyQ z_jo66s%ZjrTs{v1;vANu`zK@Dr1@Ya+h(wx^;F|Ad(4CJ;s`>S{tPJ%hvWw5SH!5B zBt0PD@v#X%uORr8Nq?yEVr__3<-3{bJpC*Dx6k|q7Q?#p)9??73vL9raS)`telq_6 z59<0sxwc)`r!`uzdgyKfL3bNgve+j(Z7Ti1lK9=U6*suA$HBj0_vfCL>vuTsPvJLj z>y^Us(pgiQyfNV*vF4dyEeB|qiFRS#dh`_c?YmL+c;@>V-hUTPibv3#>BY1bcj}|z zE*<+tfOF%Yr1Q|g%*$ggkwN&3kL6;5IWSjWZF7P+h3+?zL(}W8DG=koK0VM1k{G*ha|$>5>Q9<|ZuhLEu*F&bpc zG@na7pa_#|jDH6)+X`}#1JlX`G3iNNmW6Z!WpiJBzBiJAHNJ(@-=^Yv|MHZsGWXR$ zz4u+^@VTY+CNdN<^Ldp_bCsiiySxNa2U9%mD?JfzG~R-Ow(It^x=fVR@mGDVjdrKvtH<9{7d$)F3x+ND{}M3@nn5s~pr z40!vIkYFJ@pZYUDq28b@+^W@vGTEEy>EtBQnI{uVx$*tohztwKCDWQ%Jyhk18%Jo` zD~%a=WGAt2REw!A*i2+?=^b27%6Cv{PLVI@B_Q0K>9ICwMTlfaFce7}xzb#fK{8*g z-H^s*k$+*InW6`4uQz5ZD)Gx&dJOYto;RZhL^;;Sj8VMzt4Eo;M>-05u-R3x5?W(n zpF)Wuj9^_kuz?O68DT~#M0%=9W6<2)xk*W@G_`x$1HU>RQG2lnOYCr7Rb$jy+Y$@z zvZKEQOb^L{amd_x+~e37LYW<2@W^4@w-BbAH-8|C>tr4InixA#p0ALawLvrr+cJ)w z$Q2(F*w{9SiWAU1eI4`BY@II1r#fX1Cnxn!`$Lg;9%=0;3TAOG3n zMf?gs3}A%gyAYIVC2mx(Wp;NGd>;AQJqu+HbV(l{S8>n4XDs?f#2ChpzIUA1=oc?~ z;(vf6$$2ue1TISoZqXY8`~~mNK$whO(oB?+N!00GwjPEXj8PW&8g%T zynP(Wi%>|eELIcTy;}J7Zw|(_Usy_S&KI-pxa-Q`HO4reUnS%!+jgOA&9rhd^bLCT zi3WOF&ORksTXuN&0+Iq^%YOx;3L4Ub*I&m@{6u@ayc0`Os2i9A~dQ|^@a}nzP9q50BrKiHxd}qFFc9kV`%P8%?QV4ffHX@}H&F~R8GpNO zL9t?LzVbM&RS7K^|4IX@fBotL2X*D-Y<2`>CT>86^fbD=B&)?ldtS{mOOtoo1 z6raPueJ#y(?B5ElcI{6KR`T@`&VL$Ul_W~Sxn>9uVR`t%S8w|?gh%wfR~ij1Pd`{z zGQ8ON8D(li9#x!>Cy87KQP8V+^Zd#;*4(H1vl@^6Lu6OgbHCI@gDOp0Z#S+rh>=8? z@oSw2=NM3oV2f8+7xev7&(n~vY7gJB0Y58;Ao$f(2Tu!L(NIgDTjt7#;D2*`N}ra3 z(_jlL7YM|P9DWHs)E$G;Cv@oFY$HFV37^-)py!(1Vi zjJ3|KH#^w`oUoGJA)D!i*4Ae|u)UxAVrmN+H|9iq5fDZK>+Ux3=pI99gQqs>T?ciN zzEa{(hpMh-B>ttxkUkogw`GE`DldOjQ+jcq)qSo=oJMok@@Q-9f0ja43|ptLb%89$BkpRXtKdxX)|= zxQl#EciWQ4FR5})!*BdWjDGv>@t0wU8^vO6ps1#v2d}FnV||aW9}Xac_f&rZpU?qW zR08#eA}uF~8 zjb6JXbja|XsFYslm6R?M8Q6bRxl7>VW2ZkNjJ!P*qBWH~&Y{b(qsRvh5Th+JR^)k3CQ^^i0D-rfLULEl?yibks}M%8l7#tZ!5FWImKX zBEcM%n4$+Jbeg71ed1|QmQ1ni^rh=|Zj`^GzakNwY((Ga9(n4M^c#QbZ49h7m3MG{ zggbO4F5SKC6P+u)NdY#9soea*{Oaq)H~D0-L8T+icBrVMw=^Jhn?6}PDb-T5^Qa(( zx4qtMU-^aNCpl3XXhjC2n6ECc^0L`NJpxb84Rt}tDyKaS2}*L3MJ9C3dV$laaLZ$hF!I|rRG>NLGo(I%4n zN*Wzg!DXq=R5}3*Uf1NVA9A9*a@v2QSAtRjUteCQCP3GjS8kj&R9w$88&m85D8N%g z_gwRuz0pADN=acOv8a@bUOmQVgvI>A7cZ7;WK^pCj#qzF)Ci(D>0E`=2GY>@8C>qi zLi)GZ>x8^L;7PpEEAUy}fTSoMNrdLtC)1eQ$~wnrpG_{kJX5WQ;?i<~!si(}`qO*$ zH=i4QtizqjRPU54ytaHMr3_O-k{B}ztswyOf+ovda7wPS^3OtqDHdN$%nDtZI&QL| zLSc~JGjo4A@Ooa`FEbCF$T3g2;$1d6YxhxJJ{_%oHysiEdJnCO*aHRI8hXrM;-a)n zo}>(EjWt9NUUDmKMEjLFl^Ms{Hk9m3$%|XGF@I;4H3l@#IE~gQyzZ}1A9m>t1}|UT z&C|kRK@fQnU}D3moy>Xv?igzq=rEmm#Z@@!`W}C-o6-UzF?U`SLo*_@w{gPO)f(K4 zVt=-61w)++ zLekGws>LF56rVj`lq&|ZHu9F~=!12fkvr%4tD*|F(a~4)(u6#sz*QeCSvuA{-46RH zGTDFMvZA~2OZFGy!-BlbsZlfZV&dXwZAm{druywb>o*9q)V2(it{-&vr2yI7yfVia z>G4v;X7VP1zVY7!Qm*JF%1wUm81zs*o|gp(3)ONq3KZ7RrsoO^V@T! zxcN*QlsG}sPV^|Zp0TNl{>|xCK{?dz#^M_*EikX-+Ma(T6BU+_Q`2l_difiZM&W<_ zOJTk@IahZ~!g?BMbJXdA_-w=UAu;hjqtLsF(1ubIFQn%Qjuv=pDdvs}HZ5A`*XgAi zr8&^XF?x0PETaNBlN3}g9ByR9w3YAfl0MTr+i4(G@4ge=N+BJ^#;ogAT|5k&7^Oc_ zz3r#AGlX^uVpDNgY}OqM;4vlj{K$XOv+kHek!qG=U`I=oYzqX^mhV~r*Rw>~9<>$F z9bQc^%45nw4SZ7v;5YJ_9kT2z9uiFLs5rV^>dF*HsmbiI{r*uitG3$=CI}Nt#K_MR zY0pQP%g7vX7^1NYMsA{uSgzO`LtDI4XXg=5Y`KQ|`U0^+Kzal7^@V@x$7FCS zX*Mn!y2i3s+>->M2cBM~AE_oCooHLXU2Fo1l7ivy$2FE9h-q47Nv`u>b>l8I;xdO| zp2>p&iYUNOBzFGzk319z3q9Z?Xp%>8i^ssW!;LPB()%+tGiZ$tzb8SC%S!K#1z~=s zt-7$5^myEHxm}mrRZ{B~dmw*l;j1=`6`k8bi2=zG^ZE)7ZVy3hZEC@DGPZ=*NEw~M zL!BC~gu8ZW-h`VGvI|9W!eIeWo;IQ^UQPBpxkxqj&%^MNm&T-ntZm=ZYl5dyq$EL! zxOfwVYWoN(m#X71iSz>hr}{A+Ks28wqA0j&!ez;OQG9(YFQdpjKY@RHWyz98)s#6o zlXrD$GjGOP(1h+L?zmV1+!94^?f}hul|riA#VZP*wb;%V>w7ez1vlzDcnA12~}0IA(Ur_``j!Ma;T%wx-7#NF6mnczpxAh z6`zVn>P6XRY-WGkpuuA5HyH(j@hCqpZpK?4yNcr7(WPY|{0tVE47#j!&uj%X#JB&g zhcz7GU7W`%J$HHyZYY{q|nscW|x`@P`FR%J&t_l|-G zh3dVxL^Shv%SgGo__=92wkc@BFmf3hX*pk+(6?>n3HbAszF09^3TDIL%)Cqu%pCiC z`(CvpeIo=KSjj%iwabau=or^xHn&4``1V3x-gizh)lkl2B-#;LL#SC74y@fpc!NAv zm@`%5tmJ=?NJPOpZR2Ugbfy~XE2_}(XP?g&ATrsqn(eB7U-_9;?S1K5So6L%@WZWO=zjNpA3B7H=OtE+A?H zMz7Vx;TfB5rHc166_eo;1(Sbuk|R`<$RAmb8QgzK4l3|}I-IW0*xOrGRwbIs%I)5j zav9~iBuT(^`dK1M2Uh`!Jz=tOKtUc>dLywEb1c?-41SH?fi{ZZPZEyZHB%AqQ%Pv- zvkcNFyn)^onBamiR-&d_`sJecQ#M~S8JYeUVt5OV!*nx3IxKE9_)a1$IEOEE)U-97bJD)`%s!qaQwNJ%Dc88g*OzhJ>Storl z1TO}K95zc`8qb5CCKySc?{@!op@gzcZcI+R-*O}CkL`G39R;D4U7pQQZ6kbu7QHb0 z(rd`ktKxg3%^QGRBM09*gQqR`S)6O;`#XQ70mnqKLpElSe3rf(=OReAAYGGLMDK!Y zpcUHAf^MXsr20kN$?@xv_?!9oVS2i|exboy(dS7557C!_zM6RDQvqtL#aJq3GF+Pt za0SQ}6|31w@qpa0OXy?e46MkvDiLvY5n1x~OxctcxSQq1+Sz=t#*)1!WI;y3&x(H{ z?G|4TjD*5s9XbOS0`zV!Vi!!}yL$OHD#NnpNV=)H=fk*9N1e(?FjGtYy~VxJD3|pu zU^X9y6pIVvEHTtNl2l<#>^z*c1Xbx%?nT)~!Cw)~>hrka47{fDjFtHrVnwj<#e z;C++4?kwva+O-X{12CJiR)}DCP5XQT#U}CZ>dkf?BLshwR(-M2ZSI=9cO)A?tB}Ms2LEa4F$lT^1yae8k8o_r z2**;yYnZN;117qXJgV}hH0~U&HAYhui8}z_6l247Y&(chQE@qPp)$FlfmY2kvn6KA zO3++)gQZz*5MH=F#R2hhS$=<0t1R5|eNGbJ@Bjj4X}@(o9g&8v-}8TDsBk2ByGqw? zY{2UAJx$y%nvkHEodRqt@8Q;?ISJ+wjXwJ%eBIroau^r?W-MZ)u~eMAnyQ4sI$|y& zUk5sGNWx_X$v2L52p*dgt#i;gq*jLKe3+&;mfJUkUL(Hgrz3#P7x36 zpWQL#FZK*ahhn~dWIum0uojV;G2?mYO{gakSiY);T-OFR)*1!fH%b$ZT`z{y@x|x( zZ@JQFoDS^>kGt^~N}$z4cS{!gov+rf#w*x<|-xW~H`zZclN`@XZV z%M3qH;%(+1HkrNl1>{7mNc6DywR2`Fzh6MMo3SM z>!5zTy|(jyWwUy$7uZflKwT2ydpTRgz~JdEg}(m0HRFHS^&`hNNt(ELc+>|vZXPaC z05#ER*PHNcEtaHh+xNvM&>0*uXTl&ZW|(HfTB+lEfdaWl3&+nSp5%Nhg3NCK>SL|B zAvBuO<%tyO7z+?bntQ8Vs|&uR)#)E31oRaHe%~PIo++__3n6 z5lt7LkD!S}Qq9f9mGaCtOCEN*zU+Fb0zTiDq*XoF0 zOHEisFm?sH-W2jZuA2^V-=Q17Ui8g-P4&LX($Sg<=Jg182IDC1PS=5{_$k`Fi~4TMikua}cjm@DQp2)iugwD8bR4S}C% zf0O-SF8LKh@Aos0tSXU0n;Q$a7UI_$4Q{}DvysBGGgq}AO||>tHJxgdB0M}mK{+j$ za&ttN3L%QHh5B5t#l~Zl=ExX@SE1k9b5(zuD~T-8P$jWXjMTddx5L*SvC;)Wu+<~2 zQ++UznQ-if%I`~`q|SMJi6;mQ`x6mK2cD~Q!q0HG(>K#;$C`yEmRD`8@eP+%T>QAX zF=8sT)q)y3!o@?FaWOwbfd(a+4O|CS*mLyjNAG#TXVsXEri<o z5$AmpNfdD?sAZ+X?9Tl?WT&rHc*v1O8pm@N-t>di%inV9lfe;|GyE4qmZ2Fv(ov$$RBDCb+EZgs*V0LsIcC)5vXHzK-*p#jq zg1Kz!T=<^`7)2NCHp*qKA??vfO6GraC6oH4JFd7OE>q%FAd+=`zejGEHHVs}`N z6QcZuF1y%WiFZ5sG@%N+B&`SwV>tQl&t&d&a(&MRu5UTYCrO%C#f)!0`Ls3^4gJ$S zW2knB%uW6aT(#v{xUuC$J`nk*l`4f)^ofs@0uBP&t1J;(&o= zJn45IAHT@Tn#Hq@sC=h0n{NV!j3IfNzBUMYaNl+>xAsgedn<9q`9_q5=XfX;p8 zu(Fa@uv+JNNV!mhB7`h}iC!G{yD2$|lMEvkr9*+RlaHd_$jNF`E&fEow#1l!s9oi~4mos!%OO&6IQ z9w3A!#jhN~IJ{`UA<`Nzk9u_IROdP@_5R&=-wlQp4A6#_J&>NOjE9kjB?Uv3q))1=-J zmbKpDv}Ac`@sgXFGhTnz;DzIow*l`_unoE?yfr-ls1Uo<(Fp#%JaVHiq6(DV&nw(c zG%T66nR8#3mupS${3#q)jZ~R!rhk7%>R>Bq2WnBGJAzQ37MB$`6cu4l!p4G_J1V2E zUaMJA`!1WNGH+=|RQ_P5K;F%1SGD!^CH$>?+39on4T$=z8A^Xe=Fy5vUG(;2(8Is4 zjhRu666&+YkzxCUJ$gY#NFvc2I$lNa;Nx=&zKmr!9;*q7@)VnM#WoLilXDGhVj04m zZ2C3zd1zc)l!^pvXyVtfTWG0h&<<6s1k8wgSFc5Og4-Y7wXkNQJ7ze|^vL)@eL~X6 z@5VtVTq4W;wa0%grm9ram|za`H?OsVW!Vi)T+&7g~g;X-S zd=CQc#@Y37?g|ma&r*+*x8vXJ-@apttB>I%A`j;k$W$u9(ZzF)o%}BG3wnw}B`Wbx z6TvG~#EUy%+6Ks|#PWcmsF8vPQPo2icuX){zaB(`su6#h4Z}inBF++go3=RHB+Va= z&M6a)LeYe?Jx2I~J%yS|#OSB{O82~?iYRt4C$UD$wiua0Qe}6}P zu4Mr-^k*Y|+BHU##{%MWp8m-F!fFB;mfPfiqMAn8@vIQw@X9N0=0Xz(3H3$(0UM;Pvl0VS5eW}biE z3@hVXr^NOe*F$D`dZ83-R^Ln0)^nWhfD?-eN{ zbTNtmw(?L8pV(CM+yp|&LZLKy)f8H-cNWdtNG28sVsFYpSctDx=;M^IPx(pAVq(&0 z)oy=z!8v9~cIa;9d?+IWF9?=wVm%z(rc}t5%4M6qKfP6{kR+b_GYuD&)nudHvnGCy zv2GosM@8npdbA<)ZU-L(&4Jf^E)Xo}DLU9a^qFMtZi{NfJ}~m#S}F;2jK4@(m7tOr zutHcW_dPT1qG;c&rt;!Eo}Vw;Q*pQ8ANYT@ye*4_xgJd6fg6v&?&U6;APWHMu7M7ep&zccL=mi<{^9!j=a8~m`y4EB%1-8~^(At*IzMTu z8qSJWyC*!}eX=ZcYv|`Bx%*jT2cL+x^}iuppBlhmsZFHvWAfbjVpPRNxE^gFyZ`o# zoh#3md{|0hY(K?-cb`AS7@5Atnsy~JXL@QQa&qFXA7KR*4^ zX}S0P$C^S!B5VYrWs85jFG^^Ri70^F= zry*Ouc7ytrRdNa~_RYePpQ?XwI%vPfg-8e=<9&j1yOW5R!v&ZXS`^^_z?k_mKq(i( z!ps7rG;)jr48}* zPqlT%g7Ah`W*YkY-<&%6}fm48U+R{@mt zq}AI>+-H>)uErXUA6I`e#^+0p3oKJNu{m5-Y3UV#pWxtl^6TzT!Is|et44F@JNkz6 zH_nwV2{UX-f{uo+=%cWA)xv#A>7t8_Ss>!aO<8(NZd=7(5dM!FG3IAf-tsP}(uUR} z05Nj3?TJ&6L*rNNiYq(rk0%&0>#L>ulwZ=c1-FyfV@k1~@!x-jGj8+KTWyZ&MX9vp z6XBE5FCcFz=eidTqbQiC*+e7F%{4sPG=bb^nishuIq6;1&4PTm0qe&a2&oVi^X7wmWptWY~X!Ib0&Po2KuehLKl_a=@) z#<*ex$?B;?Q8HVhoQ^s~{w)FD8I`NK-F9y^FL?F(`n?HLT2z7H8N&U$48s?$*?S8{ zrq&v^h_QdZ8xJDIBhi%zM2QPWMdNR%9bUchRM;r_rj<1nMe+gWel0wm0jHk0C%SCC zEW#>Jk85S<-Y`8+xd;tvYaZ>h z0%+o|pMZDVnvKB?`-yb~@2vC8M(Pm6N9RiWfhd1MAi))1IAMn^7~9u}RWe$Hq56u_ z+X@W@_h3{wmpUJl7lKOkm*rdQbsj{5yko0nej`953O{1)nc5rr_s>b7_OK3xy%w@)3DlunFhyslgpWra z=GQQyjhjftz^72((GoB2;xGyZsfYzTO*?-Cd@9zx@9)`Ntgp2U$K>f;q$_IIx1tL# z?lpnGF|CDvud#;;NKRB*-^}Gbt%f!XYmDl8A0BGOxuW_jm~;@mnIO+x{Z#PCKD|^g z*`C+EA?dN1IaxvP*{Kn?KjvsE_638QrwyC~qXk1rgo@Ru|(S;NZy?XH?yfDQ6nZlZ$PVSbLfKy@|={CA9%b7dW^rqL7{G@UWG0EjnTxYB(mEn`X!?Q`K(4_3EcbW zgds+*E>7@zpwbIZZcqCXtARi15U+o6zHW~8NqPIWAA=I4`SM)f%k!0Z{Kz`F0e0u| zyLd$l*im?P;hd}k1BEma0LXEjXgdD>Q>!-N_H(8!Q^)`DR;4&=u++Htq}PAc4=UM;Nn zp+U34P~b{;p1lw?$;_~eO!vkXMoEsUaK`j!oJyx{(gq9}Zg%T1L<)|3!Bn1aSJ>H! z+@~Uhw7!+oa0sK`?X3RNjm>}e=|%MZRV&(66AKLp*K$|7y|1@@3v)ptnz120;6s0s5voMF<_$tM`qQ;5Z=>!Zs{ zW6&Sj<6_(bp`!QaVyGvaohGWjH&2*hJJYhxLp)U7C_S4%L_>5mUg3XPrbnO+Mo$*s z`Vz(F?)K1%(UkHuOBw?jm%J6Y-78*-&ASE$(+l@q?!I2hp59lYol&)PGpMm--LE#9 z)L@>o*M#_6_%-#DlG-C{ND=Ql51K54aG#XX`e^55!^#W9@kI?=vjTGgvPOdmxl#dj z(=u=J%4AF5?;x>M-vxinst0Zbumay%*2pnl*f`%VZ7Vg@K_!} zc_${k;dh;c00g7nH4+g)>`*K=%wFvC=G9BpOQCO{69>|I>@WrTD?Bv)d*>x1?dx-- zTR@IX&zgQb0``CP5v=BMs>tKE1@BF@Ix+4bLLUbsFC1@5^1Y@-ERw>0;^dg1c#SEp zK|rcRtd-J`u+W+}k49M4j$O!%u?TFJ)m8PcSGT$cITdv%#}ZE3=-zs7&9`%_G5u#dPnFR1xFp zT0Dj|$RPe$A(0qhe5)ffFWba!Jn?38thXnrx&oj0J(t4KMc4bgU`563t0gD9<0!>^ zh~on?e&m1HAub<5&}4!@2kRBf0KwBcFKGw+E?=7mI29o*e22YM@1 zBsncQ#7)Oxm!kHe30$dpcy_(&$p)(60zIPR;3qT}qGA}n-_}*8?@x%BDNbK3LJ>H5 zvOC8$_HoQ{vDfdZ%%$0%y~;0NKvrT|G%|}MsM~)d4=4elvN`-4lS<1GxTyWGJB+8R zZjMAOSwQYOK~6L7#?hI&n$s2L$Wo&jpTkaXl@3E+a8*igwou6b$b}ZuO6b+Z?va-qdO#$}XQ)%Sw z&;)n|$berg~Z8OH*AGx=}OvtT0gY$&4)@$Z@4mC05>bytR zU7;Q=%&5+j;RrB=Y@%V*Va}_f$8+kMPRI+hEH~N=5(i8i0waGhJI@dNkRJ)R98r+Z zya%SGtfX1;S@)Vny^U9?j1E%xeG^e++HE^SJ>qI3PhE+Nng1LUpvLz!SQ$(^{M)?;BTM(yC?WV$1Fe3=HT7Qkb6wVt-kDEF z+;gw#*x`{`{ROf^^L<<7gg06YjouxEaPQMcs7-yZ=EN&LDC(G zN|pjs*UupMnP1u6!K8RPa)#nx-7c;x;wilR9gvAC=~w*_y}D}l(fp~JTxG+oE?-Eu znkEuIZz+#Q*;hIq^q5(p#4rTb1*7O0%Q!qpWgQ(+`)~;~p^Bil^Aa-f7EXUTlq=Ym zzX?~5&soYqIly>J(Ad{&7FGNRvL*xK97?f1piCp4ad0p*ZH(&IFhh>MME;` z(K=AF0HDuvLQ?*^G12`R%58+8Aa*8Y8-ttkEYTv(>EDnZbNJJjr-GA^P7x8cKAo6~Tr zHY}uhT4Jym+rG_vW=wZHv2z(gMf{9`)&Pf)jh&Y-Tnx@PTIWoAYZ7MS`A}Cz0ymyUu|$Y&lx-QJ3J1|_hgjw zZ_XGqLCres2XQqhS}~mBI)(V8g#6^Z?6*#@4019?gGkeTjOb?G9_a!`?p~ zYb!5A+!d{P?5dbrKB;__jv&AAgZ|l8EV3nab9GTuP`h&M#AWBE>qxJehJk;WZX-N9 zXb^Q1;?_0iLyNhx_X&Lg_Z~bP-jwfb`8((7lSAaYtT@Tn=cHve5>f`;jg`0Ae#({c z-PievHlj|Vle>R)&o7xNvXQSHBVS_&QoRJfugZ&oMvR-R(nb#IeuoVU;S2OWJ~S1A z%eK9zw=O?(Si<-!0umG!Wbt!ThJd)5MqeF;&EqZ*24PAYO<3;ND zI5)fk@eY4hP*`truw=qhpWa|x-x_)lJd>pHdu?4wHK_Ov z%8mB8gj7v>t-(Oe-KPTN%mV(FCxL<1_d>`C4<EdOyh|6OsW{ND1%R!XyXZOn6lgjkS|HjPzvIs@o1?l@ z3(ET3IgGH5f?H5oxn6A6nL{zbr*#Sw`{a@_oBEO%>@fF6DHGuIi&`Pl2`QE@#M^G5 ze|LX^y1~{Sq>34*sB#!(BLGo^rE^QwT=B)~;9IK@RTP0GQu>}KShW2fi}?A#KJ0=j z7%MqKiMyv9DhpD)_u!sX!7)s`QaDU?^(6@jh-4O@9(FaJo{qk_o0i$POn*V!%`h@U z5O8o(4oOh#%om>Ux*ZJ-Jx1)#U5E1Lp%_4Egi$G7mJN?6~dZ6G6{QQa;7EIL_=P zB_iDLEEN5gtRaRsZ-0!&)B4M3PycsrL5tcW#WOaOl$(RiWyT9#L2bJ_-msi_1VVqZ zbT%JU$+WcA97IS0c@EF<)K$wqnSm*$L)#kOO85|*x@FX| zoEGS7S~x;2O;4?Hbs&IM2#w(7k~2_+?^CzcC(1+mII1QMX|Y<*P*(4+<2#Wv`Y1oG z>qS2sCH*W92N}dY&U~QSsn97`%JLTo&UV%zIH$heoK?FfJ!&>WLr)q$73WWwCMk~mA%V29VL#Um(s z@dx$ie2d3}u52ug4j5&jvKD_mhc&zvhKnil>1>2bZWJ^uIv;`1R5;2p+`Q<7G|ASS zr{6=d;%szfKa96lyni<&Xj!P^_=`3bD|Is^^(j+3<)om}b!P=e#p-S%I|`9!JXgZf zoa__K6tb88a1g<8F?DN%jKDknO5F796!p0OkR}Zyy2b^zl`K>Q?n_f<&YS5l zq`m7!LLik4eWafoTF`)1!@UtXTmI|ZGHRu;1xE=is1gickbM6wMUBO%sGRQS{7~Vc zL7Ri|85#bYl#3trj6Q#o%-dUO)j!hi>%Ss^|AgN0!3uVBxGp#hca+8J$j5(%*5900bw}k@iS;1lWj=ZWGb&?)em9!1Ob=ULi`mW=5h(Di#&+V(K-T<9GH&ztt!}% zZ@-+~#zumfg-4EdZy?#{4bMR{2zck}HR=5ceP5s-kWFc&*}b20*g1r0$; z2+D7ZO5A_eSw}bebe(EaSokV2iN=fJ4N5qp08#!F-b(gD2`5b9%>vO#a!Vy)s~%LQ za;z@%xy|~@^@b7B{T3rBb4WfhEZV_rpkbxATUSJeQ$vs;U+rVqiMTZ!%%|UWSk8B7 zwNgJAb2t zBRFW~JxZMiu)8ZgtVc43q~S<4m9mIX?V(~s_81&oQ(noi$lc`x<{`C+cm_h`#w#w$ z=9BX$(p{LztrtnTuR2A%zJQJZup8MSWxt#=3a@?H7k~|ZZRt<5&Laj8tr#Luz#Aq;rBqoOs zQoO7~M!0e_auZgbS{dA2Y}@qz54;72w7C%gvYXN`Ceapj!GSy@PoZ1)ya3o=b-#aK zGP6+P&qlfqjR7FKFRP4@q_rUNC{7!EAkvE5!{ifhDniTwwsmhJf#5(7cVINCb8yIK zz4-XgJEQ~SafP8z;eQ=Mxg@7~nu6Esx+-*U29G5#zi};3YN^UmaYZBiNWZ!r2Ifh6 zk>&&OB0=KoQnl_VZ8d`W0`|4zVGVzZ9b`|xC4P*OU-gH5$p)!qh8W$#S9A~)Iz1f;me_Vf+)X2IB z6HsJ$U9wjP^dKe3uz4||lAecA4s~A!Mc3~R%mqPi&MyWW{k$?0N@jMpC#C?t1rB6e z>{+qf6sGRXYWK?YAunIOXr5o(3)*|kLy{GaA?5#5=u5C(MNfCoV)m-(Xnn{Yn(!*+ z!2F8#^?!CZL2^8VYjoja_mF?dt1K#>tYoK{c4^J>(Qd96S%=IG6Nob^+^S!{!$8JlP!XUs1Zs`-!fX0}-+qi$u(Tb%cUSYVe zl5qQMdLh>NdG6eiFEu~^^f7#NWkd|4T0?T}2^EW`RJ z+B8dJDrJNiaSbza-0+f}T?OSp5=|L{&rUADVjyeOQPIP7tUQ02Xm)X|T)_F-q zvz;JJFAUn~dw?7aQ*3__8lcyDJ7r}Y-*5z^ED$){ZJY_4yT(>{&%^?vtQ~uSaEJW{ zHN|>Qc3A=T+%Awn=v^a|MRH;~y$rlytFc~-U2LDi7x%uyOp}Z_^oo5qdE<7Mve`{O z_VuhvgjV+eN|qL=(E2vOU0#<_N0J8Rt934CpK_h%1S`?=0IGjXvSJN%CIBH}`Gc;N zbRp6pld#VpTJ3&g~5lx;CM?Wm+t>eo73i!qE*Tk>Q4^ zNdG_aA@{lCmaTuXfQ(mF>Isq`1y*qZx=yZv=L+Fvf~j+5CYvsxe$_HK2s68lMHIaz z@I^EHaTwXk$wOH}Zv(C)YnuYM?q;P)ICL1j>}Qp7 zoQ-b;gZ2dOG+t6F{TcYc`!zMuvg|=FI5U;`x#z}f%%Xo7iSRa6-k0MQHAs0)k}|3w z!kcXKkH}Uo=sb*GS5t&KLX;{Ot=H`!<)dNoP<%d6I^p4pd>Q_mr5c{&xbSP)asAtr zOjvh~c{pt&#~?fKXxOF+7)rjt(K+PH5LSt?ZPpp71VQ4wLF5(7>_tY5v3ygvkD}E>ha)9Ib&P7M{Vnp0%I0n+@v-<^@6u~3PVn>BH zrb#Pdh!wYrEbACtH;#OHVKfdog;5uJeG{^&Ax=UU2S+})1H!U+M?fs3wuORpc^3-j zQ#zfuhn37RupEb*v_>-6`Pdn2YSLbfN`qiT;|YJoit+RR^RrRvyMr;xT&fjyo)kAD zW_+qNX>%Y%qK*WZIN>8~@tzWmxLS3z0_R8Y>M(>;?_SD|cLRR$yM;^Q&)TY+MRP+) z|8}&W9UF$VU1F@aEQflc<3oD`Uw(el_sENzA}tJZt|gk)(K}@~_K6Gi0K1Vct|fG2 z2SI=7G9ha&-ILavrH{$(IQDnNaR1E6)_6^e&Ey@lI)THZPwR3-WrNReRk_D-Zm4{r zB)mC){ROyg>__1Y;aR~Erbdk|s|2&GtYMgI!>>9%h4eLVf;iKp&gdoN9 z0j6V8I7_wd;dT6eNFMi0kTwTZ-@ki0ImdsCvnN6^YVDu5SwhKank5<4n-JS6C6wP( zUNxU7GTSF)cm{~aloB3D`+1{cH5qpy{8cd>Im8^N81?@sxuHXXBYCh2T!m!(nvqP8Cp%B@xd;k%kmuL4-ZUg?nbWI=p{_)Js0g$uU@G-P^A3D~vjowzumY65@l z?qY7=*bvL{m(^V6KN6JzXOmcI><)Ts`(N!&Dg;?^(i6?X+cqKoY})?g)hv8$N-%{z zkiJwPd?-Q$UQDrX$@2Zm!N6hi`MR%TZx`!`mJX*69}fe4-AAVo;MULu)CrEIG997% z2h1BFHWQdx@ncq^rNgwr_oi`n4()$kmG%N?b}f~2dJJCJ$jd>I=}_Cu(-EQz6tov| zaRs|jC<@gEI;A)S0v!usr;pI8m5?j2FJ8;Z(=XJ5$4XO&Vx9wuTw9c6y#cX}Z^`q` zCoy{E$nWjU?S{H<`EjnKdNooR;_egG);6DIXg2N&cOY(uIK_EjTyUJ9CDKm@=4!zlDljbXs5L8g5s6Zadf zlr+pV?+plrtE0z19eDT=Lk4# zk*UO~I^LQ8-2n1@{sqUFg4Pxlmxh($tQ6MBonYJI;doH~?WZh?h%A5dZb0ud*c>ev zN!(*abb@YQsUW3a@|s~ZHpt^l|~-w8a&6mlxaSm zBT>GlM28y@zC=bbmDPV{LZ=h?^W&9|TqSq%37rF}wz$nR{7^Pu$|hww z*M6L^*n3|9UrQ70Ba#$3og#w1+TloK0=s8rS`ldgepXXCL@*$KVJeq!2G^tNI?lB1s{i382Z6zZR5CUd3=Pxr1%Y zp9W#oQ}`576L{;h1ADM$e*=U>4V!PJxJQ1Mh{YsSlDhCRl^<#66Z*%^z@VVIih+;5 zK9R5xTeyF24za!pwlAM2y}NE}y0GL5Clum;9;K!Y?Xy%o*#N+nq>>X3%g^`o<&ERK z&Un6(@}><12P2Luzjt7^>x08+Dc;T@ZkRZz20X{rSRC zL%EMCi4d`VBSZ9-1&<)BS@VN0=+v>%d#3=b)?szaj`HHh&}}2Ew|M|@K#sp!Xban@rZXq`hPS@eaAGOs!>ZR#`K^DL`>HJ^oq`+b=D-MSINrmTpr(XQH#uNq$ z<*FefAfN$gMwacl!a5}Hc+>wWM)>>LMP*5U-l=~rNVQ}`6H?|lCiiLa!z)$00f|_eS(z_H2J`B^-k*mMKF)doIB*LaT;IJS7a2i5g&H_%5O^~Oap7_0Hin+CN5(00NZ@ofXZQ8;2 z4^GNX!gp}9Slv&naANS<)9*vKKdo54TB%{S$7W_kSc+-ZX&g-9eWT1xw!IikA&4GS zBTt7Xa8p5Yt-=y)0XoZ|gG86FaWCb6^$RW0SLax|d~8#>wGwz^PjjqC~Py?@NuB1{i+s&%O|>H0U5O5rWJL!EWRd_SpwuF2G8 zI~7M}6Gp_cH%+S^6Tu_i5#OTUU5)eFvnPe3In`eaQX76i*IKZ>A*VP#QcB1MlpHa8 z+Hr{GWy0wn&sIj%jQuV!MokN7(}*HR7qqV)3!OR$uEs{G*Kr)N>QqjqL=aY|jl}%a z1}$teEg(Xy&31#XkKcRvmmx(lD+W+eNK8URm&gz^nGkVx zVQepDcw=l~Z7*hTb#j+x5i=?TXmVv`myQuL78Nu&Fd#4>QVKpk3T19&Z(?c+F*G=r z@nSR;5;HM33NK7$ZfA68G9WTGH!(DqkOMLm12{1;moQ^ADSx?TRGiDYHHrs!*T&u5 zgS)$H?4~?6vkj-`_hJ(9B0?&3dZd?$MN_%4&=v z<{(p`B*?*)k(G&s4TDsYpI0M+2SXemVDJjLAfhMljAO~?1S0EpN z+tmu7Waj#w`hOn5!omwr36KIh0G;2R<^WSKfCA9fMBU2~$O@n_`3oq6TwEDVO=2qWB^EMsHy+?s}6K{=WodXP*i{S|LOA{_$OUKLR~~%M_GcE`Og{vtN?eQ zvy1hgw*SSA>YW+jZ))$U7S161zZw8&tXy3k`IwnKJUo~z-CSImK+cv-j&^_XQ@65q z0eFC%ZGQppug*X_;9tVHIheo8>1qZ1SAjp90+6>h13I_>|0GF*{^hiPm-0R7-R}Bt zV(&t@{;6sAuW*115cnT$tV~?~%9U4EmIv6ISUb1^9ZVd|-UD4tT-{s%#(&w~e}U%I z{~`zkh`BjC|LLLdzb@y0xA|Y{qM-Mc>D&4EnSXfv_l}u3xVd=$L!19xwi(F5#oEQy zqC!`cFL(ad|!f z4+|H7m6rp+@;;;z4(4JYd;53RF7SWk6SscX$ra@6#r%Kf+SUQ&;o$Rs?H1M!<`#dH zH-C3?WY%!7c5(yCi2qOYy9xepn;QI@_kBf;r5a8wiXo=C6ZF`+iEzK@N6a0CS)PJb$wy$n||7X#W2>XaChp(#_6J(Zn7|^WT#G zcbtj6wVl_0ME+NV7Vr;O8by$^y@}m_`K()l zzHiE3CXGMG$?kn_-|rslKUWukk(Gt*zkKf_X=dvHba4T&bNuB3zRU1mgx|IQLw^^* ztfr|Wt|CMKe`e;dFbM}Ukh!&kC4h~S3t-~xY~lsa@;(S`oSXn3*7un<2YUWBDF9|B z2axM~3c%6L)em3+a)$r2n_S!gX0bn}zYsSUfLZ=;!~#K6|BX4>|3LS@t8lWt8$fQ(|LF1_V)+mF zPRr^akQ2ac{SWxAoXtPryF9l4fbaVJO^=oJeK`*QfbR2Y?^#J{&(Yq+_|Ja~+zvn;T zdjYS%S-;161D*es{h#MV`G3!I;;$=^7F8`;TlG4WUMCqR}E8O_sV z(g@C0SPU%hB%?i&%`4C;;h4#8OKc+sXpA0<@wRt8#IjAip6f>y=0kfF&9OFP zI@_UpE~4Uh5G+o0fPcHbJz&PinDmM)(ajncgkz7&!Z`MHVeIF&9SUuO{3n!;S~zm> z-Ni4Dgda>*uvrZFqMCmnHI1JJTvUIf#SE2j>goHbhE8FaO6ba1w(*k)D#*fj^SrC_ z5OFV6Sz@HInbptb_|bKT_we#7$ITpWP~xB`MwWwhWf+t;5T;sL7qDs1E>_abzIQLYNP2~V ziBqR&5#{w*-&2D|Pf2t(pr<*<&Zifs5aU3}185d9B!6ONqKXG#sNxr4c72rJzzAdy z5dHm%Sg6JIOtV9s4nQ->M9p!jRna=Q{UYvajR$jg?20!BrJm)ylXt_4*vZlg5T{q{TF_ITWU3$(UeBs<*D{3 zu$dmc_98S!a>f>1QcGMtsZSgl+1zP+vCPa4kbf&*s7$P?9B!|ZWWW&mE^MaX>a@#} zOQ5z~Bw-cSukG%h`X9B8$ElZt0?eXOkQ;W`MRf1WiYv?qG4a^z9BK`w!J^<$ONmbC zcD^~k~EwH>B9`qa9)&M9j;i<%( zRvrEsYxOES9AP6VsgN6_jiEPLv<{QTqgV6R#G&WMC`m_`GQ4v|(MiyE#r07>|AVo} zijRb$Y_bnjCW-S=N6A?!e&8K?n1;JBV1Gg6#hp$U)Oegs4!jwAk{t2sBnj)t820-H(fqG=xQX$(q&;--^`NYz!4V(Lp^YwNGNr~JtF&&QH@7p|96j4s_eJB3(G`L4VoE;xzUhEuWj!bDm9xpkSJt9gE{-Q5>*gj^=XU zglYPR;D7h?Gj5mDTJ)`$7cwBrE)o3P{032$w5_7j@zV<(mGEj#2=^YMk&68e)PL42 zZAj2=tdf7e_xreXaAtA+pxWBurq$H@%Sg@PwAO9sY|qqdlu{tITGwNRzJC}3zA-KC z$Mw9xyh%>h*YDC>%kHPPu$N!zxh0iX${b5S2~w_hZfLw(RT?9iAhUH0@MipeTKvv2 zBPuXJm*RLfKo7|tfLPd{yUVN6Rmnwnl1#ob&}MfSt=C)3kGqA{thq%Q?nRl?bulR( zv027;?fNV6_XdxHU#pV8aeqLG2$0|YcP=+SdB;yTlIhLg*G-x0f z(7vMw4DHQ$7DS;ZID6;P8V>|_a-!gvivL(!9tzLElrcDF%tz}dg|8UZnCZCdpo4h^ zut`wZ?zzG~57ukj{5FzXGE?9I&+{wiJY<#{fhGLtYZm6zu9m3FEPqmmO`Bw5eO>hu z)J7MHB9$$JZs7`!ykl*TMoYpZ48xgMw*kMHbLT=34eN_Yq%vT(QbJE>Sx(~+8P-X)M)H+GhvRZ|co{c0ZL@x)(S+Qb zPkt)C9I~$i@tlzLD|}#_Vrq?u*^I;9gBf$Lugv65Vfz7nn17JI{uo!&k`V$e(s#9X zpIuBsYTO|0@66;lGK5dw-oCqzr+@$mA|88D{lmQ?M!K^)OiH?Ze3 zXB{iTK+P65;719U$;2IcU7kk}a3Rx4%z*6}2TlK?GECcnX>S<)5;>d1bmpXt>dz;6 ze3ul}bzQ&+?tiVz_WT6YA4)E*xY;V8Ld-tW&%c^Iqla3R??ivjTuynSl5P=I&eog! z@GV-Rx0K5q6WMXZbhRFfKR77`x57#`sR7ro&9#Z@p4906FKZ3O^$j zvsw!7iL!F|%bn=pHJ8k6O@jp5;Jdm;9rHe@lUQFp6dJDE8z+SCc1lCq@zSsAI#GzH|iPq$D4NOb(M@Vn-+ zzkf;{gu8m(Uc~64_=%@~)qAHc`VYigkKIkx=vG>?XLsIiSX7EHVHUWIfwddYaE*`b#)>_ z0}z1Uks41uFu^sBt3(kF*$$^j5xXt?nSU12O7(lg=@tld{8@1(Q_S+}FFq=MtAi>W z=$j2`BCe0S%3mWd96KLfRD8+pk**e%=sF18=C3DRHX_P_2{>4yiC{t?%a$vVXQ| z(81M1U_TTik!T+%zzHVmmU6drH%Va=>$5SG0#q@<49FEkx@Cyx0P%GG@z0;u~_pqw;r$#p}S@dFE z1zZ9pN+ncQ&+bI{IIW`^CHLDFnty9iTowXrmkaqUGn4E+K|2keprv1?s|F)z%vQ>Tv5?hxdn zc}<;JtsEa5@nne%(Za-B6#EUyzCXrk#L(>@fb- z#nXnmQGrO9eT@IDT%_2K3V-8{2m!vv_mNuPhk{zSiu&AxYb6hVEV?>8(S`py+|Jb_ z!nW^n#UfEmZiK#*F0AbgzSBEV8QV|Y(6d-q=p@kbCqWopmCYO>Gj z;oMpi6>n1(&kaOWrF|=?ncW;F0Zqu<-9k8M5jQa4BH$01aiqWZa(`D@mu6rRGzF(r z6|AbSxh|)t{sH8_uS$lfKLf9&o9LVCoxV_FY3H-C%>mPIF#8y1yO`6Qsb&YwT6WC4 z0Vy0`hSVm=if+aNUlXc8ZQY_u#~O_8k9vjt3bv^aTdsWE8CbXQ8iI{IOf`=^O)|?u zs&@Ja-WmeXC}}%(v40j?{j96>wS*XOx$OP~sx+{k_`zAg9<%uKM*-hGMeNdOa`nmT z4H)=Mk;5t%3z!xQ1qr@Bh-X4PlAw>pflEkS0272UH(eojI_e?(Y z9B|Z0gP?=(pvS&Fz>?PjldjB6QrD@oRi^ur_4etbZfB;4^M6FIgf@u4X{swC2aA8J zq2P_Xm0^EatqfPKJ`TNn{r+kku{u5a%9kdcD`-}|ZI``Sc^^uygc&nwv<+x=Io<~NE<{Q@hhAPv#+1e1i6~m(1$KW>F7O1!EDFKgV zj!b&Hr^g>{#m?>^HN;Qc@lq)t{Q?_G7LoGXm@ZL7`B(-&>px2KJ>>LIl9c{>z7X7s z`h}z%7}RSw42KMMN^L_mjMAPJKT&&$bf#;FyMIHp)?gVrpY$a67{?@M+1Z~5T3lz9 zhJ6a>(zjAu6SDQfqv1wTSZN{f=*~fvBL5CSrKB=rL6e6cQ~eeFlNmpyUaULdz*9wf zauN--rGuC)3h(=+Zr|-v)&cjY5wW#-{17=O0e^7`GE#?{j222cJ8=sVJf7NYvf{|~~H!{Go%-A95@#_#;881SM@bJgH z6-G3@Mi??+d0XH3s_ZZt@V*PeafxP>bJ&x&M+ydNcs8`P>6^MDSvM| zgRVH1;D>6BcjS)Snv(_OVlvj1Wbvls=r1Q9H~8tTE zIz)5+$z)(Af(U{KeW-OvOefx^yRJ%s%r=w7!`>d3Z+?jjU z=Z^JZ3%#x(qLrt%@7U^(MI%Q`S~?DVjHW3jslt@@VQ&RSZM$8rqlZY$(1&5FpwC)Kr=&YF zhXE>Rb1OW?kQ@0|AD-R4aer&2B?_vI%f1?PqJ9wKgzh^jfbXMNZ!|$ZrC?es#WaCz zo=SNp>M8}N1zh3wn3lnkczUg#}pntNPp?(wQqIoHfo zo9k9L1w`kYw=fC_ci9vAq%~8qUF zrbb(5VYYMR-8OPgUtUJ#t=tl@iEaF-CHYh+T#np1%zOgXSN!D_?#1C&oyw6e;Ni@q z#z93EE$LL6D+9GMwop5gNxv-I_6(dNc^Ar9?#GuhKb|8Dh-HBl&#Iro8Q7TSs|GLh zk_ef|x!-T{1QdGVe19i>n0xO&wae^QkO_~uu@0meBABJ|xO>`ymY%*3LiMb0{WfkQ za15C&gJnB`F>!S|56P^R5PUjaK09o%hbDZPn&^^4g!b33d0m5H7GlK?S)2c4{kv(1 z#>22`*=0sG&6=dfQ#p?A%vYV;Be3SB6I-zvfOul6%OJ05;eT{4yN3G1v-y6h$W+=p zuQHawZ9wM+s2S;dNSmi_yZnZ%SG`1#Vdv^%VwQR86(EzI3kV}dd8!FoIEWEnuR8y5 zCrUg_KrR5?>#Zh1gZjXc4VT5EOhS&idLHIk2yd2o$n&DV`~mh8=qLtul}#X#K}}l> z_b8inENN03H@@bJ()^ebwPORf zdl$#|-e=|1rOx)REL8xje&N26^OrYRaQ8maJ6F%GW8c`wQ3HMy-|O+(AVNe^brw@V zJ}EuP4cW4mD(C4y=1C-0#fy8L>T+r%?bYBs3Fln$ynjU5wjFILD|&FjMv+(8#BXu4 zvsna5%o?a+27nzWFP=fbbnWBJqJMisck+2Ph8D-2o^O65+xp5 zQXw-s86nuQozQXrd(kMpoDs@vmkj6*~t8x-OO7G39nHz*sG7?x9 z+FkYd!a+_y9CrORboM36?_a=I9kZ zR=}_FCB6?IQTt8pm!zPB4;j$>WLdT~3oQz=_bLt|a+=?2sU4AC9mffad-{s%P>*^s z?LMSeacYDtQq;9P^xT_P4 zB0JcJ_y#uV%#x`*?LJvfgr$bAZIiW%VV^`;R1MiGmk9=`Ol`-UY%zwVl z_o|(^=M$*>bQ-`S`7kbTH@qFOksg5SOez@G<^mf1GGq{*Y9!Ep=|R$Q>k^JAU$hu$Sqj)~<~}Qu}>K9#xA}oG8GDLl6x<3}LvO{lVk5E5L7z1v7Y)Y7-W zM(?kSlcd+#d2!xvIl$Q|e-ok2(Q`6z)nQ2KNgX&%ZST^f@Q{ODNfOi+_E}Stu{u>O zv?g-=mzHY6TtR^&9htqe+kYT*v$!vWfS+KV|9yUIUkDhDMVR% zaH6ZN9qN|pSo<1U@*aG#qNAPmf+V3GLCTS~Rmw7a#8 z+kM#l1RtFHdQP7#>;^?jqhVD2*3vI8fd}Ra{>qIkIR59lP%mH*uZb@ir9_JpeoMEx zmSGC7q1r822hlZSuYW!N^pc#@s=8hztVQHz8*dV`jPJG;+2+f#A$aZaJuiIqlE(np8Xqj?W8 z>kA})C2~;>5gF-gEh3l0*I%*<+H3S05WzK_#7irBlyWZ zpXp`M850JSy1n>u0&!O|PCGeHdnN~6k!Vyb$qDkr6+|z5YlF|UMR1;j*6nlS z(QNxR27GXjG=E8_gsV1ZNnb^dKCd0e7B%c)f8$LyC=8GjIxe6rdOAWKD=S?zW2n&t z6v%1tQEyf5%s_oQ5oVk@@=xz<>d!x@t9OtLiU&M(y9>=x7HB+{T=R}sEd5mcim|T5 z0KX8YBBD<)Z>vfPslSnfz@LNR#{iFWa!F;@vTn|oB;UH>yztIywxdR zW&-DA|14gtzPy4S^fUWCcf#q5yU2!ctLUfgukLy^e36`E6Dp0!szHuWyR*%Th=nxV zz-fcQoF;S##ih3Wfo1yN^33@HZ z!a34ji{}+d`hyPw97s!u5LvS%t=mzx`+td*<0CG%u}{h0a-(jMW=AV)Ibh;qu1wTK z3sV#}lM=~uecxtyTVV$T7xFH^xlY7O*CUpx^X`7ieSA<)>|Wf^4rEUli3PQer1F_@ zWqew`FT8`vKi*JFS5w~Tme5uW^*?|kgZ=z_r^lLmB7az>S}!>AM`=}~di)G68Gnk8 zu48)@3{$W73B1-8yA)db=e%Pz!DqJ*`R6s82Q8hfFfo(~&<}`*bbTPr_e0E5zSUXwKB0`%}aVUls#AjVoWM zN+>YAdQ%Ood=4~18+Gt+iN}KjNHQ*sF~3Ty?ZbhqQT({#aqQH`Ayz2gX|;{<-bug4 zpI*S+Y+It_Ir)el^R3H}o;FCd58oBxoX6XD>Z(yIsaJA)rzFUw=p$?pD}Q&j)6lPw zLM+3o!K}bLQRZP1@(uEuf*!)aNw{dxdB?4UAbX~fqI!$+S0_ENX&JrD(K4I1M5)u? zwDZ}s@K@~Wvg$<+k^WB7i3ATn;ycQ0l!-Emx5Xc-rA8vmEI!zMdAUef`9bak2_#MY z$-QZcL?{&LMmqNsE;L@`LLMF!h34zmOQ z^KXp!*XFfJ$NGKfA>UO_^Y$-Gq&p59)^$m&ckVuw3z#D9v+IdQ+*;LauKN+0&{v4 zZWa5{I!7pL1GxdVy%+$N$_N?xJ^fsY`h!qtG*fqbwYLsSys|;tUbaGB+Z1|JbLid2 zmd$$Oz?ck$Q|NrxRqf!n5T@F;Yk+)Q#j&p$TBS0x%zt{|c=-L#<;c@{yY?d) z;Sz{kgEHKOW*mc}R_de^f?BPf3cHOXL93nMCIg2^MmIbssKt2M>{mTFoSa*}kzrow z-)7Xaq7KcaiIm*Grx4(>?YwjqWq0`V_GDl7Pkmv9_js(5@q)U4bS5bI85SXRTt!At zqyd4^`Nhnf*MFWmB^)m()txSqdA@M_cD~;7xMZf52elM_u0o*|PI0di0Jczdo%nhi^bo}9JJV4f-VN_#mn0=7!uB+~Wvc%Bvs$UiG-9EyKQJ^mNU& za?JK|#=2{laggBvUl9iiOC(U(ZKv% z)f{>8DYZ&!ZmVyr-*dj@WjxB9mN{|5=FS2g^j(bMh_i#a+XP_J^p6pT-v*-@TL+5{ zYJ$2R!eC{{#^DZZ%F1u<$(%dQgSE0Mh6yLNz<-ydy#2lfR{I8vC;An0o;`x2SoF6& zTsB@a@j`GL(;|yh>sq=frmb6Q9IkyYmJG6=-ao$0%*9yb8m#GeLSqVFjgsZFSpBS; zwz2-HzfGc?I63F-cN|rLuch1w(HGjLO7`#-b@fcGvLf>po2Do^%mwJo@BQ{6G)X5% z+kfAkOY+YQvJ|C0lg^hc=hz}BU8nR~MAuQJQ|NF+bj*#XogJ6LaWkU$dX9`X4pklA zB6_dSrm#W^Of+7PLCn!3()wgnf2pYS=LM0BcIzVA_lrKMF&5hLdW~e1-4yT%9Dc#V zfJbS;S?A&WY_>w}?iPuz|C-tOg)#sMnSV32_wvrUwT*B}-Fq?gtNF4d+Q9YvovOWi zE;`T~n@yUCj>3YkxXivoYtsqQ1-D1l+Sj^6%^Id}vjD2}-mYLdh_T^PaKX}{H+q1@ zqVso@%wD%>S%21-_BT2^cTvmwU%CQ3rBd&_*?2ghO))W+rV$>s*Xn!Tv z=)N;k(#cb4^Voy)8vtM8sVYu6@2h$9?7w=mvlIB#x zc@^O?;={Iov*0p75c-aF;aPQEG2W#6&pVstmk_A*jtIpXBeP%kCblV|G3EjOBx`G4x&VSK2=DLdXUcwMhA=NA^>wCx5k_v!#+)AK(bxp)mRPIw1=Kdhk$)7U44alA6p&i`sfW z1y~33evra)L~deKRiJiDqsVZJ$bNsDFiLYI7y|^z-IJ zT64}^#*raZ3037#M&EHIkjdWAO)hI)GL%?#BcbnnVekq1$?FPVLm~PhIs|fZ-lXE8 zgrQ&o^88xB$E(Eam1RA=Ugp>;NcC1*Rr5Lq1gC@Aq&fR-p)3$>Qu5LdZ7%euUw@8WwvNLTSsjf>)dxPVuKDh|@U)Vv)qxP#HmLf+-L#J3pWm{!j^&YGz#iqR_Jk2b=DZi_7}EDecW^Xg#w^Niv}>4jh*W2gsh3iN7@^- z-IJc?;u*^)U`s`JRt=s$LQYhHv4Z%K&o}<)S|LqZ>qeYkt`x$1#I}{62ztl9oeyud zE3=aR9Dudm<$tFBRJ2?A{a_ewGw=Z61;dI#aSeM78I4DtJ`=6GnVqkv!YwJd-4^TX zMEj^e!RprFxOzeW)7&U=4iFtCWkkhvlv`zbxu;gKb*yAfIfq=pLR745 z`U?;)&ZCVZDjv2p5ksk3(X$R`#0uk`%vp}PnD7n@fYJOSpeP5v^AT+#!*_^4pGNRz z_E)e3$mkq%tt?;#7AhSUoj1*HP*l|^rhgxL+)hAO@=!(1Zf*Q<-6i@@xkMZU^X0%~xd)vi$2nc!SRvY?odgL5dk_LZg%z(< ze82QbCw@;5YCQT2#MoE=7GQ^=F@DB(zA)!YFTmV6s+fTSuH` z9oLqu{oZ3SWdIymY zQ7`p+9t9fRqrz3PTA!7UYpqzBaBw-*g`Z>e;Dp!}`W{|VyS=tr*Nz@YC>uA9fPd=S zL_#mS6!uf~Zf}*GlX(fE3#6w%7WNvy9*(mb(a^#mBPm>dq@mo4=0(%6JFCGZ4Vk;94*h|kpgMxn!zNo z<-{3B!sf5ljj_-2+ItQ2nWS@HqJQGT`J7f`+)FPQ!oI*vsilz{B9q;e$^;L3ouczg zkk&^JKZq;r66l8o>jiw_+pg=1bm>2p;u*0;qI9=3EQ|(m34TG~oG1w!D3sK;_l{W$ z^by!Z>^8E?U-TvnQA3KGs#4k>EQPorFN(mL2M?eg_-4^vBTvOP%JBJ=p?{-ecwFX( zZyf6Z%AL`VUB4ReKC7}G#@mzIPbhi2Je+2k4cSLG&IuK@R&TNMr>?2)A6A5>X!M08 zsKt0M+ooLMqh!L*p2k1=1?)UhN?3Y1Lvko)rwNAI@SoTbw)wQpV2G9vFX)gHT%=4T z(r!cGw>GQ`#6VjfptPL0YkyFxvP>b#n_fifasZp;I_o@$a^oQ`gfevMVQGD#Pjr3u z)7Ug(8Jo6@Qgr*oSLQmj$NiXh<>UNHeVHx2ZM#hXA9RY5Mz$0ee}l$YQ)oO99Y1;? zJdg!T9*poPv67Il>IV4LyKe4GS&ZJw+`d_jKHBDn8GMHw6~5?(ZGTFY8AZePDHTy@ z-~c-zFu*7XhIm<35BB|BR;13IF#ACV0uw+sf51s!VLX|=dcU+4CYaKhpcH|Sq1|UI z2dy7!>U{B{1p}j8(VyqzO^@l>%_Hn7~_7dQ~YA8esp3$OMSoQH0v_x2K+tK@JY4We-e*m1+gjmIO)vUXbWF86t&b|)f6&CYgMUd@?62>MZr%Ak&A|&2 zf9Jkn93J!Sh!%8>d}NI%LL#Q|2UGXQkAI9NNnDY+2s+Owms4Zqgdiw z{f!3Ec2=d2>$bAXK)&ht$vTJQiRRI&-c!0q>4AMhy2|920h4dgmFJ=vNB3#BebqNO z%s4ZE%{^YBU4OrST|D1T#@O?$(WLI4FqMf)?6-2T4>-^L?(vo^A6yKch;}eVfuQ=r zv@~cVP4}GrXk9Tl>}x}=si$V>70A_J|Br7iy?`fU4asG@#s00Cru)H>3T1yt=QGGuYoFwXKTZL;`pK|^B>bR zLs5yLsOEPNok?V>8AGKI#J zb>AbNV?$8WRfLr(aqo*kE$L#V^n5>9;rep3@A@Y)mhDBq>HOFF7-W@p$METfd9ax?0Zozo=z(3_W{d}2#j z;J-J0z&ei-(~BMW#UBqYNdyT4#3;lvKN=4CQ=xBCa38vT+2c8KsM^))gyzK%vEyM| zkmL$*a*@ZxHguXJ{6wWaS$~WblpUGnt}$ZPLdjyS^Qro9Ef)b-ycT;x|8VtsF!G#( zISlbY=8jc4uc;N*TE}vo4$Rv~I*U?bE77ksY%L9gPk*Z*VWn#^>N2co1L*iw+{?K9 zQPD)7+_K@EtN}0kgE;Mv>|D$f4|rBxo1wz*_(Ke-a@<1L5`pCA(0`Cg?V^kb4>53K zM+rPqBz<+DT?u{J*(yi%UsXvMu$Se<{U)t?EkuZQG`eIUR8$WW?V$iG6ou=rW`$xm z_#F3GoMGbf(2k~9>faVCvGe3I?>;r$E^}ID>|7jwa{UFQDNPV)V5&K-pM0}WzKINj zXz#c{cBQueQJPPpR)4k=DiAejx3i&5_X{#PP>eB9@V6A-$o^RI*38&+=qww*GXD(^ z45HH1qho%^&Jbq((fYRmTpB-cE}YWVtfYMKV zJH&QJ)OPiOa9Z(Yw6Gex5pX_GH~}0S7l5nh)U2!^wn;ED+L1rS+^Up##b{5md3!6_ zh|b%V|Kd)mC~UpX+L@Hdy|kE8>S$6Eq_a1l&eRI=e9m7#3h0*gYO(leu5H>hOf? zamt&Ow_W!_@`2Cjf6mvqJ%^ezFby_%|4f!-aZY}c3&T@&a-96APz#CvdFkZ0kfcyq z4|Bry_a~DUyhi#kXx6YQyJ;(lHsAgz#C<|MQ3*-UkAF2u@;uc)XgW(TZQ6PYT5ryz zr)W|?l4Yza9OLBbM55$4i#V4-mzDj3HM2YVrHxF*iepW^SKLDiH$viNC5DLjNc=>v zlzl247)GIt!UuFJ$-S?9Kbf?mmV?ccwmewdcjDFQ3*&|4U_3KH&xBRX49HK?Kb1b3 zSSZ&iPJj8;WDbTV$d+(pXM;@wk9J$lc=o;a2`LWJS*4ifxIXt1zFTv9%2hqS zBkhw--;Pq+H^-L!#ue2>XK@9|mM}IxcsK}>7kvtmJ z3o%NIgt(w~3Sxzne6{{kKXTW%6=Ibyg}|a7gVCKJd*Dss1rNq+z%z8EkS+K-(XU{+ zt_`3HxsqE>uLt_e8A%7B-;ATjFQU1dk2+d5gpB(~>y3c~aQ;F)Wc~ ztx%)1r1Hd2_|1u8>TABvpeDz(I+))C-_>|YtVbaj7t;5>lxofNr?G05g{4V?7r|6m z+Blvf*5{;s2ug2;IwSI@y2=7h$GE~DQcwWoT5x0rW%KnhqmSgW|LTq~tUjq?;2Ng( z7~5l!Za-qPnlpNRk9RBbOGwhu4(pF9XrpO}+K~VSVpv}Yd(p!~x@OJ6+3UR_HKlyj$tDZkz zDlUamqq|Avk^E(K_9ZtP(2bK&t@kxU$2 zl)o6)j0Q2j!C|0)w|MCu^9Yd#Y3cTjHg)9bd+k4$PC(&s5yHMiLALR-1cz-^>tXa@ zZV)B6p?%51$dU%3H12pf zM0QxgDZ}m~wT6=&=LZ(_O;MQUS$dauuPV9P{5~skj8*-M>|(< z@Fup$rz7YAGE(~td1uOx??R$$S;J$r>nfMH@ajkI0wErJFNf$Mg{U@{n4sJOnIl#g4C%AU=$t?VrTRc!6RZRqWR4gnoW;W@zE0Ic zqa2%?BrsyNj!99d`DJH$tT!Zg1k6sMVg(Y`$XT22O7e6tiGNg*rP*>Pvu%pSjtgrC zh~Dj16OJmZH?-fn93u{PfDkc%Sv*RLno=TL^o;jSl;nzLr22<5H_I|2L&d@8s){Q1 z^$DJfdBYEWMeW!%xF6i?AsP$|l0wBBo={)IkV)Jst$5$OEQFb@Q4?eyjlrha4AjC$ z7kX?SRaP0%ApwVtB#*9(vk#9htu}8N+hb*pGV=`ktPYsMG|=Nd$%mkOHj(@LUJCLE zj%fL7eB(v0iE|i7Siuj+`a(CaFzJ=*wjyZoiXXOOIIrjLs0(WMA8i6?ii!>gZhOa6k9}L!QWGMeGsZXw;OdF_yJ591e)hH zDl&O4A_ion#q^cqXuWMQ znNDB1LdIKHP(;rsE;KgGUAG~|sCXWE3fia)_c_=#UI_{dhTszx1S%%GI7OLk6MF~b zBH)~?N324pu48Z=1lr_tNcIml0gR)d{nQ(0&E=evBMvIsh#S zJ@vH-K6Ae(KKiRr1WK?Ed&8tuce*mFoycK(z3`iyuB*;Jj!%M3YBW>Vk*S{&gBb8R zPV%Skb)N}iAwb}xwDIB0$1AgnMZ(s}|EQ%#fQFu8%^tLu{dtQZQB>3xg?PqF4d6Tq z$y-%sZrr+5D+d`GR#&&p*&n&S5yK$I`=-IEM!4vZHrhw&`{_qn?7R12dXYwecmudu+%LJalg5@^s61AKo(-sg$TyET4sFD3VqT#qo5vN|t(*LTqLbkBf^7CI z%o`X_UbG&;d<}KG(HSnTbHD})Gx(91g%1q1i&R%nsW^312?2d;RgN&R$ZhPSv|esi zV4nK`B|}JUM*`j6JE`B|Ik0Fu``vOScE5ro?BW;a-OV#4UB1PZ)96h>mT6n7Yw<}5 zf85@xP`i{ONI^~y*_EOwdQn67Bh-O&xZmlYw*207Bsj|J3XT$~P~8wT%&y2{EQXXz0+@WtDM!a5Jj6Mf~WZ=rRW;sU>Z#Sue$ zCU>y%b#J*A=|q(lZIoo|>q_R@8Z-vfVA!f$tQunJpUTmvEX)n22x<=5&YL`|Bz8>t~u$^(lBdQ235n*CE8&qK*L)!KxG=Ch@1Jl zIR(sU!DQ24f&$}0{y$z+qc3%_cX-e=b~Bfaj*@=*b5U1aEQ36EBG9#ti=jm&!J))O zb7bkS3|CoD=U%9fbDW1NXS2!2JTQG@7Gi|DAI(?_fwByCi@^Df_*_fBW1w-G5@e<} zz%R6=YodDJaPXQ~6QT(!@xc=p2Twm5)O$kXLuBtKa}RJN?hQZYT-E(SKB560R&3WD zn_C+?dKraaYZLKq1s?sQSJ|j~khX5YgRY~GViZE%JGZc1$TFCDY_b(5ZBEc3c|F&| z-+nhM@aiiLYE#Kv3-Sf$Pf64q^Id)`>nqx+2}}eWqRB=n2d}G*h6m&@>IVm@K z=zF+>@&J3cpr1L@vHkVW`Pm#I-u0u3J5|4<8D8XObid&K91<87W-%+=K>bO0u$=lJ z-4pC%aNpq-bSk!ISR^fgK_bx5BtyW0lttW^){v}VNn^<_cLGhlh|5x?^t3UTWPU%y?0Y~W-~2!%)yY89mpP2GcXY>Lcoz^e6f&=;H8A%S~8 zj|)3(q6ISFI{bp=vv)M}_z9u_g;S*tOnA}GqrwtNcI{YVdw#0VY7I4AzV;ZE-hMJ=BghdR^ZI6)vzq_#r%)#gIz$k&zQ zc0g&2aEppf!$BK;+n;EmoyI`+I#u!R77Z{5gf<(UuMxHoU+0RH!NoB{5NPhA4L_gs z4##Y~dVq%E7}cf4d1955R1K?XZtelTItczHk*R{%Jt*6;q)+pz3kr1s37Rkx?lXjU z6~+oLt~Lm(ig-!txT!NM0^sbT)!phwZUugthnr)+K-xlOZ^osLRqnS^Kl4=hDS>}& zoYs#|)LB1_s`K4;4(IE;Z(K0cv~l*FU`sPr>4saSh*0p6t?za;{C3fz}DP{(pxK5Mc5QzPZb$gxW78JGE797L#DDSJ znMvBR_f-WQj&iOgAPQ-aaIuuaT&uhg|ewM;69m>8VF+(T0OrQfTgR^>flQQ9o1 zW_R09f@*;iCINJz2=m3<#Q3nUS~k5oin+-r*VFskZSN5oX-nIleno{IGQd@{WvMP+ z>RL8b7d`u|nHQy3xg?0@pk#GhH8QDq`ws71r51!CvbTVXPAw-5PVBk^v9JeqYiIbF zNUCOadIDKxNiz(cbfFzjCreypQnZG^nlKxq!GE_xz2rbT#PQbWZJ{2LW$b$ZWT&lG z_@yUAz+hXOQx9FK7Uef1dtkKC(XWP5=zCZjy%ne1d@*_pEB&bL*hF)Y{W_1?IT4&s z6|HqSF%%4#Vb4kz{k!BFH$qpG%oofmbLspdu!!KPibL(sWOljSARqGwlYCZWm*CsN zXN1lE)KHSI9h99fn5tgi`;nDKH3}ZwqA;Oh`2k1ZMu`;{`0O1 z)Dm<10CZ=524r1y(in2Tw=U=8khK%9;_%v%+v}GLb=Dm8FjEdK?lmQsg}?#|r`g7% zZ%EtP(aqwd&-5ib@fY#_yV*TmE#@@5LHGXIrdzk zY%o>b^Iod{aPj)FPBV=LVV!?(z*Dl$ygC7D^nN<<8phD-9m;KSl_OPJnR24KXt0PI;`$7ZdX`mu$w4p;ly#PW5IXOZ}bF)1nK^v<~(45 zc(LfPPaepdXYvk1EXg%LvH{lyxf9Bf3N#m7aHd+2RtjZvuGI6RbH1&InwE)fzKk~{ zSoe4%0G51GpD5{wYz=>(CB@U=9d0e7lX2uRcYchlwLC8!e^0yfFX}W*Bhhr#20NWT zecJ5ycW0=3;#5kuUU88v=CVhE=bYU86+wA|LKDj?DM+fV@cU{%_6rBPV8T5<^3$`kSZfv^`!6V<6>dj6C7`oc%EYWUtxNS8$H=4}305X|mc?5jqU=mPc4h5Hbk>FJ2KX`6 z9MJAgsCn%FZ3JkQC4$#aPd%-5cr_y*0i_adi*aXvl9nQem|S$2{po22XJ)3v3%?)Oatjy*1>)Ii} zq+S&ws6wYhV8`mYxuv4%h zLLLRir7UZFbZ)k+_D8-XZ3TQd(L^876A-IjY!9w!{eE~Gic5@1fYvS7V?2Y`}00P?{M9N&B%go)eDVk&%VfzUPre{cHN zH_O2i%}77)Z#U{`Pgs$hB@nx7W8@>iIA2aRF(eHjYiYVxKgLlAl!<6X7 zf1efGx;gmm1c1Cn=p(}fVJxRIOy*Sdr`4gv6T%}}G=Ex;P7@#`jQxhBIo>yBde9L2VBAp&bM@=;)Z3{_|Lh6P)Yl$o#In77RO zU;ksMC;!`FdgbipzjVdp3tY^TCkmQ7FI*v`&b()v;B`R_7oZV8iT+n_io2XWbWoJU z*BmG(&20^+GGQ{ zVi~b0iT}c1;$b>2(PG!AA$Gp{{X&PEj$c=y@ZoELLWGn1P zY~?5v#zQ6tA9|Gz&g$%$3u=^DY+eM8vDF@Wk|(@64V9Tj6r6sJXqCFlRq=W;>tD>B zHAR2yN)nK>@~oV6UsFTU=Y><(4Qp<%loMQ>Y5=L)t+G+}u^fFm{2R0VN;$*=vkH8r zH#9L7#}c&{NhU2&|NJR%jf;oho){TgD=5mx$McusYNhJtP1$g`1GC;9ak6hK>;1a2<(h^bq zGl{9y>-Npk#rkwby5QUj871rWI|n~PMa~}MJ&p-8wqoz7ZSiLqr57t)l+DV?f40mr=uP`Eh3 zviCzLUQYZweWtIziy&6>0t9kqZ_Bxh>x#~u5%QbU@&e1ER)<86!AOBYE{ zd2nWNT0KmVj4eSraj%AwP03^f#fTx9ruJ&RSRCotCr13~TYvlbJE1mlnpVEqr-q17 zpRxxio5``Q2OAqDl?824PjjUTask`-+qtOPPv`%XBD7pgs4{H{m@yToOSV2}AJ`LB z`LgKM&+D|p&z7-_&d@It(=-PtN?vv05@3(p2lX`#^l~)D{Jqk`8=(9|kahvwiPUIU z!59PJpX?g@%ws;Yepg@a3`^X7tWA!kWUa zgDCmMZIiWvhCDd`0dB^nOd!j3d|L={U;R>0yO?W425jeLlxNre->xPy7j>%YSHvB) zQH`m(aXpoYB{aSrBgc0#TAefbt6-!xVM;+H8lQ~1DZgkgM8UJu;3spxOFgJrIr&yQ zWD8vWkkD{0#NKbc`Gq-5OE*8YA{=M5fgk@8w_OKeIIGHW=zQqwfAc1r&V02e)N1vUC=8epJ+^<{N?Case)oplbgM6U$_J&wY zS=i&WTn0}aMl+=p2>wu~_}A38sqsbqhU>-gzHN7_ddyVi$D89t|6vsFB>bi zOR(kI+5;|ul7egWc0xnM4wm89+%o-oq*b)VkK%xUoU~A)-+Gn5Yn8zya0Vo2vDH;C z%xFJHd_QiPbE9GzP|!>z7S(N6}h94Bfdcp_h@SMTV(w`J0=KE$wLRn zZZdN_G{P9lw9QF_f9!}*L~+Sb(%k1FqWYi+oI0bxoM+T~OoTnXL5#H67!= z6a0?b^Li_qaXo=T@L6KV*x3oWj`1D8g0626f2tHNiSAiPJ%~GD2~)v zl9wS`$;C7LH5zuqIJgJZ=(O?{N{iPJs?iFrXUZ@|RDjUXE+$5BeI4N?Wo2DG)Mx-F z@u8-8Jn@Y=BbVrp4JsYR#L}RfqC9)*-Ch>P5L1@}Aqw4%5Im;ffGs_iv1E<+Xx@RX zQAn7y>3lg@>f8&}Elo*Sm?Z=dxDn!#`^g>FxizGRi(FH%C29g7;K}a(-8_FNgZ7wV z{~K0if_nOpV<8a(b?Dyuju?DS(KCrD3vBV>^vM8X$-=#rwCv`9tOi~5n~+8FzkS5B z@@DFTQ>`#q1DD&E`AQ@K0Un_w1_RR=z&2^*C?HZCD z-h;vDxS=A&h9(%Q5|QY@%HwjL*S z*3sB7Eb{?na{rR)2c1%Ne+sAPZ$2kFAoX9IXz`O*Y**)fCtOnr*CM%HMlHKz2mA*a~dIYCGV&gv1>hd&8Ze|NtGgx5atw+r zpm_Q^JFEKa$0|=^wg$I<2f_8c{DB-;hy+=3nDd;BB>_xJ7$k|+N>R4|{AQlBvAPVA zez{(8^Nug=-MqAW`-70+Ttmf0{EI|5=K9#MO5%X)`rIsw!04EQ3z{4LJKBf{F1xSH<&rCe>muxJo`!<59ymrPm`o8w>1^QswaaC8+PA;+`4|Dz-w?2`qNr9I8|V zQcKixTH$UJck|#QskG1)4;H%ZYO)Vm;Hbp77$X3Ct+9K_!@op|_^K3+Z4)P6Tb9KghDCbO!-D2nKflUmGDRL z{>#HE&!;mrOAWpQWZB(M{Ia&vPAgg^)Gxu;&$;7GT*y0?z|rBKR|1VRWbR_(9MbQ_ zY+b-a)UNxb`Q4OLGIKY6f#>xvac=Vfh)rtdz&A*sLZR>5U%s(K$K(V@Hv}_YxLOg~ zFTJAPxTlgIEK=8oX;krnxTLMtjXQOMP{yS``5~G=#}L}kL3V9|Zf;;AEb^LvY6Osx z*2GRUSi||TF3c?7BLD@^anxDdw6Yx!vbezc;+v%)l;}uVw-&gE2#j~#!e9Nr{xpSi z-HLYB5pYRjeL+rQ4l~h`r6Vc+wO@*FQj`5# z(hgGSGP}c?$-%F&Xf{LXbmsRRsK6TP+~1Bx>7_>uWO03ebCFc52N*RFzTOAGW=K_X z2@GwQZKC~L(Tz6M*gch|BAQ0|CL;~x{Ys3WBokJ252MmmU(z{INArzLiH=YBX>qb4NGC$CV+z~Hc2d^ow&ZC;th&#c zi5xt;U0KK@F#ceyd`#d81sJ8x8BNm$)3NMfHUt{xLdim_|}83h}1RZ=Hjxu90~jfzS&mdH-p47v;F? z#n7Lm3VDs}8q@o#WkL6kS&TyqEFXwt)=AmNy3A1{W+CV$-bcx#jCTVt7SJK%xx!uG z4?0bRyNvRS(#6{wDmVy6E$|uN&r^TAesM0Bw@FOuqib{z9a;{Lji{C(S?r}$n~SA6 z66WACOH`lz8pb27lJf$-nh<)Hu7vgWrG>vn;qfpx5@WBdg(*emB;NMYTEZ1yo>Z~2C zz;2B~bM{M5gzko#!RF1jV&qFc$P%5}7_!jI4l6cLNXS;Qg<)b;#|X9J#CaW(ePgs_ zr7PAEzj-fX3h}vXG51buQ<$grc`{(ArQ{a&)3knKIuUy_eK0&S5D?gjG*DEqYB)Ww zj75!ueCZwy&Y(T0HN0W(w$dsdxF$qmV%jrLL%_^)S_dDcNIa zw+gL?$3oGY-)KGmqNMe&b>XMd{o?Yh_lN8jTOs^aDFgU7reD>4^tUH{GyPVpG1=(_ z1Z>nKdc)Rkg&-nCmBZE`98EE(V#ez?ODTVe(9n+ZID%^2=cS~dHtnskJw_iYTmns( z0FvFIxS)kt*7$1;a-EE8$xG z_3TN-W>rLE@EKsp`!`-PdU@tGU__0r8{mK`6;0_6e?mCRZ6qE$qrDYx;~A@`s!aax zlGEjkz#n*+=zO@NK?e+1PWGga6L#_$R;JnmupX*vW#vz___3NEDO3B}xDbz{J(WVV zAd}oJsV@ELXN|y*Tm>xY1WkT(oeqJslEY@rN^(ZKNuCrB<$!r^P}PN3WFHJIR#-sJ zt`Wr(4^zOe#$=RP&$qnt2JbAkeC|zN&yy)Id;*u6*(#}se0>;u`{g2{5G#+@$b~h@ zsadT2d@=i#4M6Nk!%T*W`S<32lA2LDT?q&d+3>gam^iy&izLyQYgwTzTHz=1)rGM0 z@qHyH^fAC*0vswQ=#SO5>qPAbM?i*h4`PbfG)pp{;QX+uNPkqgSm5V27NprBzGxSP~Mta(>V3@=4ehN(|$6m~<=ClK(~?n>t_ zq}Gx7eYp6~C-I+(BvJ!n)RwGr-z|09-bZ*Ddkm-J!yS@Z_px**MbW_0!^W&0(ly)_ zLhHP0nszb1l<;~f?iGPKmPI`$|7Idf^?rzqfFR6cj-A+FNf^}uGw|k#ZAE2?!ExfE zQk*sqt#v!yN%&TMeyIjZX~0p{u}L{VqnV~ar<6Smpey_Tc4ozb@c46y?hva#V&WxA zcjp+%G<}P!Z1br6yM0N0oby2KkWhGS&vl!sX?drPU=vQcWpGLqE0RPcJ1m=LAvWUu z4xEbDPbA6Iay5q}8y12yKs4TFiA11#n6Dg3)9W)RgD43h9D;~k0?2_TIDPiM3PX#p zK7YBJZG+v85AousNERoYyQ2+$rfQ?js~0iO zx44W+sDi=^vr<(f5Y3({oAavZvp2z^hS@*w?ol5f2WH(vd9EV)FU1%|D~VgY%aVFa zV1{d){=q=Yxm8SC3W%4TTG-oWeBn0E4yl+xGzJTN%?TwdGY;JtAI-S_v)A16Q8jpF zG&U^d;YQNEe3+GheQ*l7){`qCaXp{U5LstYesI*%q?#qPuzdRv#Fn~>`c>K5mt`wF zf|d~V&|~z=SE2GyPJ#>723h1yo$vbzZuc4kr4If174$|@6+m)kCn-Fj0%pY8t(sDj z239|^iJZG)(2i%F(KnMoF#hLKVr5p#(n=~CKq*KY`sNiWJP{+=@-JCZNZZC9#y&hM z|t)jDSlAc&e~OE`muY+ z6Ymru$m`P6;DY}kxhli(h8u)VxYR?G9{ogX?-&0h2>@t+qRQH(58sFf?p=&*E>`xFj0(q`#@MHBzNNeoUAZ}`y(0CUhd*~x|@L-<2O;)&;k13lIl9S zl8n!3;}dJhJ6X~%Ea}l#jI!fe+B@fDnUW@XkWk; ziKZeS{`wOHsEBvT`>+sLRjDO=wGixIKAhXT7ZpStZTOpHOI`2hGBGI=R{lzt&~=}m zOnW3|=GI~;C6pfixhKqI#$S4FW5fL$Ku@M(E022E)(ob{xNZ)PI>@sy4Voz z8=*RWt3a-rjX1M^02cmDQygDPHveOGBTACr{L>a&(ZO`J@|dW5f{-1~!&A9M!_>rh zVPV@(hDAYa-;Nau4hY|jj}(GgyXD)s^!t>x^mA8E)5v)8^!e|%=ZiV|XfC|)fcEiP z4?7}eg+fW5ZVFz!%T3E3!{i!03DGvtj{)xOi+)$;d*Z#})cgL|hd(T2=g%oz*5PXY z8cE2IF-Fz)!^RIh)*_ApwsgJ)6vA$KjtJIQRrXT|(p_XMd?9b(9m%#aa$sb~b~4`( zD46YZBr<@5;I>j!bc3pOvQW~bOXwO6tdDITdXgZ;mgg4kDmS5`ETY%*+-n(n3fe)< zJk-XPzXRvEFhq^{KZZQk|1sn#t7(cTN+xePuolCsFshiFI2$k;Fd8QJfU@9;8!;ML zI2yUwm|B~-GaA|1*cdPxGnz1({68u^3r155SCju%>M@!znloB3S~6NOS~J=h7&+S6 zGTJiQCC6ehkwe&9yEr9}VKL!x{KvV+=nvtrZ9>A# z#>Mi#O?+(0f(NYV&BRWu@KRuGT*;uM%=FC~ovb*ZSZrKu|NA`0f1gKXVP#?YzwSN` zW~O9DGG~Z zYHEr>DzvP|;EH^J94w2uctn z=(amRtx%%CKh^~iekv&Dp@Q5CQiPFiGxhM{FhM#fr0cU$BfAp*LfRi9X_~FoJ;5;(g20)nh z*jYj-%Oi|knSuOV#t#*yla_*lf|7FIspW#j7?K8ydLEq~!Uv)u!4z@y{H~)wQMacD zw&R$DcpNsj8KDPmL8$DJQNkg^#XL*&a)?P2A;<#=p7acZM7G2DQM>0s>0v(UA~`YM z<`xI~`XH_Y`{KAzU`0JqFdP&Jh~Qg35>WX`WR9@~QD%mWmtv0?TpnZYWxfB={kJtDIYkG)WqJ+(~D z{@1C!9tACm#|hAvWlu5jM*|v%=)1-5ptn6i;Y=VB1|Un@VqrvqmH^EW0DPTuBM0W=(xxF;yfEdU3C5$F#!CxMzKBBo2!LLqzXi-U7t z{~JUSmI6+k33SF?hk84_Zw7^~k_1`85=~SD?qVm1iQOkjtk{On zE6Fq%p;>bTTA2G`VbpF=$^c|AIu()$!kcn=Uty)MpI=FIqag8@K@7cQIT}}6t1ONp z%)lWssJ}li)Ty9`dlulH822UqZdc8s6yZl9n8-ENornoLraN#1Gw`0?9GL({0xOP2 zg%u6|`JHlzqKX$GsRlL-^YbG7XH1Pt4bU1#r89&aF|?}yl%Qoi_rl^|AhUxZ3;Y0s z7AOA8>2CT0`Jk|)jquWM^ZP$K9llnw&M=6j5U}9ZG zLw?CbtuqE)kD!u$Nb0G<#t!_1wc44EM@xqQ_ay7d=_Zh*Lz}O)@4Nm`{DzAw1b00m z@Q0H8`||J%@Z5r26(h zk7T@sK~NCD_{=w>bAPDh`P5k&j`ulVAtVu_E5vJ*>Z>|2Nfo-Mvo4Q}7CCuEW2M+TqiE z6y5FUv0B_7U+d1gS?RPp$Xb_)P2tdCCPwNfdB}r|?$NE8a_}(NZ$0TH79*5M!M$Rx zG_GOjbO{G>-if97T$?mIQStQ%L(R8H>eSvF|m=8O41s% zw4PmL|D%BjJ6sOub{coK32A<23DS)*X*>*r%kqrjN1rm?h6!Ge*v!p7ddAC`)JQ7R zdzG?u_IgV{*Vy(W=kVhM%uQ)juyE8t949D2~dY)R(KI)FX<`iD2h*4-R^AIlPK8GlA9E+d}Si3V>J zEniwzgCpns`c~=ce^T<2HOG&RT_$4uD_*~xhH_2_Cj1YK}>Nj2%Uf~$QMyneN-Aj|!9FAc2MRp6lTzKb0(k}~*Fk%=Zjz{>^ zZ)S$q$fX6is(jh_z^+h?=htDwqUMJM5XL*U@uT#)v}+U6Dm9kv^WzBR8cUl%&j3_- z_&l7=`2kiHpAa#BPfJH9e>mWHs4{|p?e&}2X7@Y4&oomFNsu3unt%xfRHkY8>~K=b#@w+-0Mm;H&Ng{Wk zu9on>17Pc6PMw?*o@ZGV$8;pd9&@x%8jNxw;}bbHEv2k_Yi>W-+*sUcuKjr+eijgQ z8>BO%?%Ar-BX=4)4K52Xj&454-i!Qvud?UD`{W6}3sJ;N`ONXle9^9R3s$2xlF&@S zJcx;NLnt10?eAe48ld@WhKjTie-+5cr$>rP21o|Q!Dcs4cCwern%wH}>fB$tt28GU zv#eKxefueYh@|~!Ld`ynv=5yaH$5eR2#Ufs?Bf>QNjAmy0!!JhE8QRrw`u26K7zuD2Hxxs0tBLlJz=!4Rn~hOzTuP0@`Wc(6^4v)@i!VchspQ9vHRq@6k{$?;b`+F ziBe76?QL=nE#tklU8dcZ8XltZF=10Y7XjJ!G^QK zonqsrGhDdqKr+dTq13{~)QRiBk#v=;t0^-W1UPx0HLA(He{33rwZn10ry{lvSD<~B z_Z8KCwMDloZfSy^xcpVlR{UD%#`hW(|6z7_{NBqpB`hdr${~hrmpkqxJw3Zk0FQyBPm{eh zjB+&_<3m@A*)#sT)%ts~^edal^qk*y>0`MG@o!Yo7Zedbn0YB0Y;liz(o|j&KFUWj zk$1fHq)k1q+i4-`$Umg;UZgOLfB6THPem%xyKa5B`>^aG9~+m9_4AvFYVDyn@(xx_ zwuim?MwcH{w(eki?TRNp02qlXe?q4^kG+N9z5Btz-Q1=+`^C$2coub&lL?r-dF>H9 zhDQ0<5m(q}|BJEj4y5Y;|2GQB%nD^E`?}-Yi!w8^R|rvLX0H&rZ50hEN6Dy2C_<7l z+D3)!QAWd#NJQax?mg$oc=!8!|8gDYJf4r|^Ywf_U(eU`^*WcYk-)TLiBjG5dvbd~ zVAn)X^Q^%78dC!gzgKBvJrjZ7o(9JlcPr=VJ+PVGuU{YXHq&G@;fLN}TJw;@npdZa z4sTH?d&_eF{rxRP#*YpKrMKGY3X$_?+Adc=G@jBanSC4YP+1zzd+Sv3r@f^lzUf1^ z)yjxNVTZ5EIf-s_PZzr?w`HK9UMA~i--V>4AI9OtBUV3g4kfOK9({AT;BF1>$gQ0n z3zO*F#T{@v@QpU@8}XmQ7yig^kXe6mc3AY|E2CSMKBK4j<&Hgb`|$qbm0C8()Vt)Q z^^a#}GBG_8*HkT@U*GE4;du0dtCeY7(`el7eQ!dO6_ekb=H&U<$kHFjS6B1uKl9L z{Uk@-9iR={``3K0gnMuf-wp20;eV^tK8ce$>dq59ar!1HA*#RJH8BZ#Z_WkN77%=w zy!Gr}6;gk3l9+@*y3NOFtAdJ>%F>@b?V-N3H{3s-T-#3ai0AhcNEuJ;#c%R@*xB1~ zPOV}~NZ7r*(>*QUAJXb)>Tygc4w;^%F17mx zEMAzBGMuJ-8fEoDb<%k%&ZcU73wsnBx_LKwASS1{!#^R=n@| zhVrX#*oV$Gm3VdLJ?VSN{k!XXmrihPgIj)cDC;Bf3u-g(-Cfs7PjPo$jX3Fd z@`uYH5Iua+wAI9M*f~jUgJtA_XFn3ZooU%!8)_2bDp(YuzSa&D9IyU|Gru3`qq>+%8JSlrq)odeG zC7Y=2FKv%!bAPWYmvB2=ZfkD$Dp2LN)mDjQb;}p!3Es)AwJ#Fz`?C0dV;d5ouVwQ( z^YflT^RfP?PA6X#CtdqI^<~i6<^A2tk-DI@JD3Z}6H0D65A6G=gCB72n456vRxZA4 z-}g8)>T+mo$8DXqM?1=Vi6#{bXPel^ZjU9~HSEHte1QNxWHVMzlaTl643%=<* zH1zS{NDw~#Nv?p-<*E*oeOGLHPrYe6_Ht)|-LpBdbw&4mqYfTa#AKgL%7%_2*ae@| zo8*~mT-!m`n8}i~b0X#d7X88^yP%F{gbn!fN&-Hxgm_O;pPKFzT{d-QvD zL*td5!Q2JSpSyf2h>i<{Z@a;FMF$lklk{5q?&jJ3IZwygL06B@&7f39|soGPXC3dM|oFqc>X%i`y-Q@EJ_Ifj2Rbv%o3fz#<%qyPn{lvoR zO8-pyr*@Ypee#L2sa-#c=f2Nu9wy;|{`Kz7Y96U23JDIzx4cqz2mPrWzx8XjWs)Wz z&tl`Bd~@?P*#l=C?ay>{?b&(h`Q|?-Tj;rBuEjq5`5;C(QlhWg?31zHcp2-u26rVE z@7K93!kMkj7ao@sC@x?%OR}UqvPiZ%$*%*-@6-L+n0Y_(3i({P3L&wuZ_n$jQPENV z>pAc04y9p*#v4B05{?`lEWN{cY%rL`yY{D^Yqi-7Ts zo%SsbU$ZQ@9?l1mWkYh=_W48?G+ju!;eKGlwPDt=8%EC`Tz_(m7N9Tnlx@-({29Sx zH)Ls;U-Pq&y=QQX+{xdYr-20W%Zfu`lh1zFf}O=Ff6NwwZypvO|IM}k-TC)1E<=3R z3llewM(B(S7@uxsIi6!e7tpQ#{)e(NT{p>0-!&WiWK;7N>738xn>uf^oog!P6r&vp z^7}vjJfhq5(7T@xdu}lQ`2K@OpT{INt-W_@*roe{<^7uMAAd$)eM-jclG;kz#TwHx zvBy30N*LxehNaxupdm~(L6E1euR1sKLYa2}t)k%lJLH{n9o;v$8+~M~Sl*an9}QT& z51Mg)>~Y&gBjUQ#{8dJB0(}}#zz0_a8hT)O~HuE{2u#fL=Q<=;9xvZmIo@?1Rd>ZXe*&KuMF54x=M~ukfJ?0`D+G!Pd`c6af?q^y1jA|=n z$C$Y4b)vVC?Q?OZ0?>;vMGCx0-8lhOReS5_-*4^e{G!<|`QX6et7o-qGNAuXa?;2D z05K!MF{QMr+`dI_F2eBH<5Y5E%(kJBEtt3aclo_F4GhRqj?I2Jcw1#aH)DI=)3~z1 z4`C(gQgsr}*TToezF#i=@>3~jqn(Gyy`k4GKRJJWjX5Z==^_}{F=f$wNIj#;I{DD` z4sH5sH7@#?qU%hv*StIBT3a^u>drTCE%d1F*LhI*mKY8M1^(#0&*+j?`JSA}GI8K0 z|Jxl;W>^F>WIq1rQDBjDcpzYNFsmfg8Ao{jrd#gSgYvDx;{Hd$o94TpACG=6@^s!U zs}9&eKWH>}DD#uOT4vrOx3TU3g;WVXa^oM5$Clf|`UGB`+MkdDvtEk7TRgtHjWhaUbc2Q8!_p)MSnz8YNWM&Dr|6Q^1??ch+&9$xDKDAFrg=;;Yi~Ajod#Z^K zYn|r4^+|i)TX#$I>EU3(U~k*A)mJ|$w)Efq^5R}iO42%lm)JqS zF28sifOk-8UyRIxh}#ZN@2N zTGB2)erMmEN&T0nrib>=zLMGeQe2whq~jU~(uZrF^W2>>WX8)sd9Mv)0};-SVQx?YExSmEJxh~cK-+Kgru!&CIGM&&-+znk4mBQg%jI`Q6H?p&xHEMf#5YPPX~O=J$qN zAo}D=cW6RdjHxY2*)+hWFfhf@G%)9CCI0UA^CfR@Bpz`ue_83(7n-ij_4L}kliO4y z;-44M0**G9CJuf&=N2>DAaZ86L8xhD+ue3|*SXnkhTJ^P0azOrgD@$_AS~~;J;22h zC!jL9ox}Eb&s1xmwOOj_7YCVRyUg77#gXNBxH37o+>WWHJdGIHb>s0l2d*SwE_>Td zWDZ)Xss$z{7btM8`!M`O_!}?1KoJXcO4gPfwDYyjh&}rm|7rCP;d?l~)_*T>iTh16 zRYD`;2|jjH(bWm+^PJ_%ZGMXXip@G-5uTPPw2T;a1;~bAu-Dh+Obs zZhCG&LCFjM-H)s#Uwn>}WZL|(w!SRJXn%@BSwbj_LZ6J8WTUuiFzISr_E6Ue(OM+~ z<vm@@4m$!fXD?XYmfbX9?Rbsw|*u7#s|T_+|C$u$oR zdVYbi} ze;oG)(8%t{+T9Uj(>-=yhLEqXZ+l9Pe z2m-cG%Vm6JzU#MVK)!prl|MA}{o(yy4+R=a3diML(v7ThkH>`gHY8n++p2S$dDE6^ zf#7YM*R+cssGEMJ9=gqd@x<;E4{rDx{`^of``S)8Z!A5vtvPX9QdOkD!j{RD@(({Z z+stC4tH}i2dkRGx^^@pTuh7qq-si5lg7Rlv1`<=ViYrAQB;5JLQ*ADW*H67o+upT|KxpHXzrLxCIjfyw4JjfoBl`#2L zEpYN}T5ZMK*QZ@fMmilYndeu`q)RL?VU({V)`mh~9bvsAZ4bS05H>{3Z=B}iZcL|Y ztE7*WkjX&GkuK&}A-$~6N*VHxup6byncqx~tj4Gs#wgTQ?e=Ioe&|__lj4)LHM}h+ zWZWh~PaY>cBzz@?51ozlTF2WJ**C7n+S(WKYP$9@0~@#Xj$lSP-WS_(*|zzm zxXzb!?Um{xXUPoSl{4UtH;$xr;Z=Awe0mp3;Z_;MlWok~eeUL;xL&EeYE{`(s5$L+?WbG$NR``fHqx<6xX z2daK+aV;s!FA>`ohI)jxZ!@%}KwZH(V^<;!p{zJug1o_~@i5(Nu72Zn#UWt|lp zO98bHsf;$H)^N?3tE^kc-!W#Veqi#f+W2vs*t?xRlgI6`b8qLr1Sh!l`Z`?yn18m} z<IB%pz%E($Bp_dwlk$j@&4ZK^?APe%(PU~YxnP$$2|oS{LRL#eP)XZeGx`& z>89MX$IjQCDkrCgJAIiW7#pUZzu6OS@wMxy7w?Xgp`v|fy9l2ZyU&*;#b#^`wJt9G z_?&h9BRM~oeP3BZza)1i6Q=tmQpB@K2c&bh~o5S*4m>&LDm!XzH%_ z7<&ejn%&IJ`1tz3FZ;}Y_@{k%wkaj8RwQ@-+5p*aNs}yZ%NoY)>L;W_4wSRn3ie-? zN{=V|^%h){3^w?*{-kEs>Gj{qU1F{3)U9dC-mZuaR&K44mbIl3XmAnO1kNuga)G~E z@&1gu7!!;c#uD^w!{>`rc9eZQeM5pU{(*k}u7N=z&Oxrh)L;ApgFXFxoxDN*cDxD? zL5a9}gBU!Ts>od&*^aMgrY9&VQ@6vxLtpUu(0;Pgs@s(nDf`Jh97LtRyUBP00ShXM zVY$~3h(tWRoop4ZwCndmv0vPXPO#nO5Z>5(Vi6k+-A14*w`4&!>dD)kZpweft^irx$)p+@$e@#?Mo7S=_fJ z1&-p@+&_3wq*0j9XzKQ*jfbw8TojI3(?CnmT7Pnbxi#_D4zfu6&Wyz4MpYad!?-!x zP1^glT>MV6J(Xb)t2x4>eRSadb(%0n`hy%?FBuy}2x)Y=n>J;!+`dh!I`WF+)rFl$ zcR6w4W#ki0CV#jGMtXQ12;3fU*O(L9Ddy5}#nYXp*(pjxWZJf7pQ-B$5l*uk7BqfU z!V)udyY|wsm(bNJk=JkCwD0Seo{`g*I#16B$O)V?SO8=A*~YvxXcLp#KFiZo>CoQ~ zeBG;D5q6sH$8;mj$oT#1T#VLV5<6{sjKBMy=k<{2XQL5NTJxS?+oVnXk%tv-j@q6E2{O01PNitxkA@^+EET$=Y#>t$? zU*+n2J&E!95Y6tJ?AlHmo5T%=NTU2ETfEnNek=U4M_W-@O~1Q|mSN2t?`vU~yKT;! zH|NvvOIRdwtWE#*^sLdvYG)cp*^PfrGIf@7o}j_=CfA;Ens(4$;OyHLVkr}eXSeX! zST$ehEOPP{)65o9#oo?nvVju^ztL;b1&$s=3C&GYEGF+xU*>sR`?9N}fiAlBOZ5O!6?3P z>lwY&F5;HSiu7`A=4YVgTDq81!M8c+Z7&whR1g&bcGK+d^&9SRTPSKAiPX6`wM+8DCYc3w{Is5&A@3O% z_DiBy7Lwc4i!^a@+<(+37wS97>jT1a+AIfME>1?rR^69i&|IS@)>yeYPDe0T6rM{L<_aAleAbZNs_H;d^qdE1kECxOU#GFh?b=qHKc=m^!#H0#(g z^vo_t)A#OcJ7RPKd}=D}K{%4G5hd$K-oUWV<&Vp;mgpi+#T_z73tL1~O4mkhc>WZp z!dd&BeP<_)MuX-f=s(uo$;enMVtaY)LlowcxO?=yScxI`=6Q!vS@%uxCag!MHmviH ziZVYctG|_@hW%KZBs zxuL%^!QraQqmuGeWm&c(X(Cm6=@sBm;oPrhO-b*!^zw!~@XcIdi9pd;qTYmC8Sybq@MlgGr%83JZ3SF9l7V!1H!H=ktILqo$7M2iXRmAI2E1L z*L%4B`Al2*lk!`9!^Eueg6i53*@p1QauxCoyLJAfiA4OJtc6Is;ogFmduk*v#55o0 z`_;bIw7xifP@+1m9GEC#KI~BR;qBMDhJehcy75s(zIh)!+SvqYJCbLC(Y-C5jz;Se z&qi#oc!=f2+XW6D=-=#Q{@H8X#N^$C&EpH7g!4)dN$*At+Vc>d{@YrsU@v*Q>K z!Si=Neq%V`CcIF3$S6wk*L4^DV^-tzyXrDc$5^W6-$(K53>9sR_C9V@Ih5&hE-8fV zyzoU6CKeu>zOE=*n@3^WFVOf#S|7NTYw_sO)+us&kCXRI?c=G4Xs)d(UFFk*`ezm@ zpYY7^=>1s#ZPJ8T_V$)}y@hRt<2%xfn7u<@h2=*P9C>VuqX|l`vftxW19WM3U za3{^O!1vLs0vlC{QcPoR;Jec-x>f;xhb%0mY;HV$^Jbc%XCnQ}WPWcpR^Z2$UN;kM z*=>D^9@RbmJEwv2*`k;;k+XQ5X`+_AW1J+;X%ly{Kp1j}uMjzZg$9Suo4hc%%H{S_r}cTGo$q1s?A9@k5ZaI-TS2ci zD!S>)hj#=V;iS7mN2*K}YI+}>^&G=KV4@@KW=rta5SRefHr6Pe<@p(|*3HD=InY$Q z!9l!MFg)}&-o?^vL~_13Zm$r|^;>N1rcZt!qo$9KW|K!7J*verp1#`I7u<)xP-ynd zLNMF!TtmG0?=HZaH6b8^2cm{$s>*N zLx=sQH-2pBEZIW$YMmGR7D-tL1;>81az|_X&9?dKlZn2mvt6z?9F1qzw^>{nFn!VX z2T#1D(4UtvM*cRj$>v5fZtJ(19*3>_*w(7d9PuMeHUt^OU;Ah>k|&krQun%5e#&a3 zMACeZR7C6sEx!AQO>YG4eHnfzM};}VJu+7}I#zJFOX|5}dB?(4uUnzp1w%JBDhlR* zZgwhb0;?|nEQ*P=Ix4Ex$7XC==)>B4H#hacz?_t9*x8i51X1U8y}`E};U=160w%Zv@4SCxlNrG3aLtoT-Q4gu^Ph;q z@tvFPDu{`^xPumawh7dXoX`sS`tm&SPstPOsMITVpDvuYCqFt-b|!ecn?q9Y@$Drl z1s}UiO_*x-JO~_^X(*eiZ*SUCvN7(g87V<8r&{jTgYw4fS1g0})=Jmkv?pHo^PCnE3yzE_~RTs)H*FCv|AuDe!I(%TPDv6ZsWmnylJuqW>gUwkN%TJm( zfBdVo{YjcKL(BT__1&7_0kI+x^GX{1b+9TN%=aB*iD&jbhE8Tckgk zaQ`HmeJ<#k!=0GqPB#Ph6tmF2Gl%)1320-gVeGt$wCA=a*C$_+h88XgZ&RHt+Lmsp zRP^;Lmg%rbNY`3dq8E1Lt=d*H^mU8I7kUZ~cw3lm@A#AR@TL0**;%7negAWZfY4OC zXqE)46dU`Wmt(JMwL~@)UTDfzF@7n}J~DTbMCh-w%|ic ztM-(qZdvMA1*=cenIn=3(YJ&Qt&1`4w=w*E*J`7gzg?Gpdeyf>^FdyFsjSIvAibbH zwki|)|0@n(G+n!GALh+k;4JJrCd)}T|A-8_erPgsyD+t}wIjXL(G9~7n)wp~0S?e|KuqkQpC!Z%xFO6pA-)K6Qk?Zc5+uubLdB63Y)EI_*u4dgR zXjxMolu8B)6)9nwUiw+1lWsY|bQ0 z=G(CTDs^!_@dTl3rX0y9q&)&MeHeUL&7*WSgk1SdpZU;OeFI~sUTuDg=lb$deq~|` zFYl0XZcZNAw{%pc$kZ)qFS+w;X!FL`MSTyfoc)g7yu0_6n_>QjHFiQH6;b{7!cX6= z8i;f7GmYX5`1wr!7ax5`Rl62>TjQtUpFWzk=Q{Kh9QuoUh?_~9x`O52%54&~3OMqu z$4yCtheOT7Az34`!aFl!d>yI$XleMHx2^A-e<=T6d+CYWN4Aji)OnA*v?Kb>65qVP zZRg-18rJ-p?YqdKN9w0@ ztxRg>d*|N{%4Hai+>3Polo7$Dt$yak=n`j^S2S#?IUJq!`^+YFUAY=})UY;`N_ zPTuaNhB;uhZ|@^DV<}DRo(~W2JuW%(+-uft+m%zItX-EM2=3*rGd}zAx5TG=HwVJV zPe!+gVs5;waC8;c+}34wMSFL5S4%pXZ|+WdhEZJC`OyqDW`0$Ejay1l-l^7)?*E!O zGn(_0|9qOOhX%{DasS~FUW&U6i`pzWp&xp`N)k|SFS9*gL6ARS4NK{#!ag{Z+&Bd(oq>FPv@<nC40 zD6AL%kRO=9RkDd3e55`cXBlb9;6;UBBac|Mm0MqSIps zA_u3k$u2w!{q|t!0k!j;4v!0Wzo6SXv5ThYzCH9Wzc}YjoOKs!qKmh<`;rBQ)bL@^ zm@O?^c9}i8weLh)!MMLqZDH)dgzo$Os=ksRFU{b!d;k3L9Lxjp27`KkwmM|nKWwqs z#CUuja(jmKTSW=Dadmd9(f&7U_>(_PRh5BxeZ_R(F z>C)RYK3jD(?c4E~M|X2r!b6>(ekeNgu5q{}RR~b?DtQ!8@o7)jkX|S57W=4r$5*o( zs$Qf=6=6NQFK4$}G(Q`Pe%~W&Bzr0ed+j*;h-XTKLfa!RO`p`BSG@&qYI$0`vbb1V zOZ(Oyy(XTwL7PiB^MSm1F2~5@No!f{CayJXWfo;0t5Y1>9;bmdzsZ4n4bX(7co ze?GivM#FFt_e=A{FMC?c0#ZD4o5+!54nFRuO-vkh7wXdSC+v@=>S-Lmxh{>BW%7aB z3)=0BU+~f{3j22O;xx|x(q+ENdQpU#i+gr1LF>h7QSOO{VsUC}YD_r2Bjh8$Ccj;? zJHl>RMKhvFTQ$v)_0;IiQw1F3bw5^GOZq9r#AC{g>u#<)TouW|LGLZO_6ze%Q85Lc zFZ7=}X)k2}``*x(1i1_=ALCVAP@)kyI)Bwy?T{pA{5C*Ju9|_? z{wAO`AlpP&wP%PW?k%szr?3LjRdTgt#OZZ~8S%7YQ6vrCP^IqFBhTF@PSBk=Qk^o$ zsT{BS=dIfw8QM?&8o6dPNm+H5s~M#~g--9NWd~oKjC?e&E+-IgnDOp`CeQdqwmr8& zrU!)N{?npum{>Mu+D!(GK4}+dH83=j8HyM2d?VwZj~1FtvdE2!)~7O#(_DK*W>vhX zPydRnNTzKUTyr9lbK}5*Y2_F%%Q=QSMrS#`(+nCZjMyB+vNZI0kN=r5+PhEKKu(=- z-k*7*8(t$m;U{2&2)G?JF=vx%+#wew3AC}3$AKJDlk z3m>U^JEJns=~bPfd8BJk$*0g+^8)g8DFdO8Pn+wPYOBJ|yL&k5e{Bi2;bzm}B-bw# zesJG0uYRS@WhPH+Ayh}3Gf8#0HBtPJu=>>(F2CPl-)ehbT=0AD=jkL>36MY$3PM z>26mfKL|^`lQwpjg;wI&`gN~FX-p+p)_8CT6Y(1y=xIEO^zZBr&C&$6ni}49N}n?| zv|-dZwkf6FR3u@X<(K_tZq8JUV`jT~Ow1prx={tD*<;+hf5@J84r}_+_x@AV#HT)-8yae?@qc) zH;Z#UYB7#RKL+ZV?>IdEW}o`h?!@53$Dwtv9HI>~@_q$(mOpoQ(JSjSkk5OT3ref@ z=_dL0N4|55ykvnH(5sTat1Kj6WUzOyo^S8_4Uq===c`#G5AVpz$lm9n_pb8S&zC9V z>14e+#YdqR_PQU?SL}>$nVNbYZY?fd)>#)R)#|YStK<5noREa1d)H1kGx1BS9oqe3 zhnY@?n_AD6(6JZC-QK_P`x#xPvi%yy7qDN-kkTRBp*G1Z-c0CS z^S7@byIRcvxw}hp{N8@#Dit(cBg>g~i^*D?mh3PPclr92w^d44^{zWMWCPg zth+5ixMn&=PFSI&BdTBj$BWGI8dB34t2%|vJO^HfbTZhM`u;9xb+BN%ryv;gZs&f| zBh9a5A+~5A7F~tmmdU-}vo#nUJg%{c<`$SfYEjWD54d~B`CUo+G0hL!)^$FE_NPTa z)>}>vw`d0=WY$Fs6+6z}jUAREjQ3AP{b)a%=#SgJe{7F<1o>0_`ag&G1`N)W%H&2J zeGq5<{2exCzjRlBB-dC<{kXFR7_cSwgmiIBk|()XTlAXB+{8iYOQ*Wej&Kw097}%J zH_nYezr%NL^!roM-|A=Lp2)MiF-5mN-nuKL%p@EW&GMv0RrMivPkXnG4EsGo_WHTq z9dW}<o5#&>@%DGA_cZN}X?&qP_PF(Zut%kht0Rd2Nf@8O z?h%2S)bL^P7{>{w};-;Fuf49nftT$^2Y<=@F%LvAyD z{0uY1OT5^+MTc>0pvb!3&;s9*J!?9!o;gAOyln%8a~ zkDX@Q%*KjSYQ4DefOvquFMHab65J_AtKCH+TV8Xd9Gq_vZ&-Wl$i?4#*DDA(PfB7y z8^?DkU$~ioGIG(vF+=spO%7^`*p0Of3;x;{am}o8SN7egA=XcjH5T zY8|bAyaHb5M`tveeNB zK60#2tSdfyHmZGi(>iNF;RKJ%5xv1w1I2?vlzn zGdueE^{?yc42JKrnV)3Mj|Z)Hl=Rv5c}DHR%VYNWmFp8f53bK4gPqTrVw6pUFC@zk z+>>nlNqjOmaxK9x@M=OxK7X}W=ocgDxM+`#L*&RaQO>R`q;vri+x6m>^$#(!)!pNd z`+qh^d5(q&%RDfQ%NX18lQ)UOEq_4&(0p++)1dL`HO>8Xsg56l2#2(6AOHS&X5FvN z)~X8w_XPO`UhAK~_5Be!_A__ZQ{Kr|SvQ=tmw3Rt>ZhDj?u>1o%{mh?C3=c)s^Yl} zEZg}R?66N>xa|30I}z?HyYtQ72c-qZ!sleNz3=3V#C0gWYoGL%QM@_-Smj+&8pP!q4#vLA6FBa@KCafQ(7GVu+ypsLsatFp!#CF} zqe8bpW4T$2oPg@z4w3W57Z?S%*@QM7a_drS2l90Sw8A}#h_|mza&m4fWwHl1N(f($ zJTTVhTClC!r1>-OILj~mMlmtn_DyL-&mDm-%Wqe+wLPZuIv+1Ie`kw0s{3l}Otv{cwlTsWmT7}v0r)WzA8=EC zdt=V!=8pP_vtT6H@0uiZw$9S|da$W;aOc(Fkf@|c{-TGsPOF7WTrX?+W~N8>|L)tq zzBOS}jxDEM*N?J`9*5`N`CHF+hur7k&U8#GdtLc{kAm{)Uuv#**3~_URdeg?6%BcM zJ8XuH?5OYl@_5(jEQ9#jn<8t?wY35yt0&I&#On!sZQAYAJ#UjM6$LQcNA96jm{l`5 zcfWggM7$8j)x%%n#@C22?VhXh84~2ulY{ndS1ZO2<=T23Xx|zrnDFb%+NyZrTCzmKJT3B!|RWx`ey~a!R+Ag(~nwE3j`A?uv{u^NF~4I3TR>Zr-!Twd5}* zm@95EkI$+dkGolOyp>DfU0wEh39&5WL1yqYAMa@AQ|qv9Wu_fchfLY}FZk$XDyUaB zE_`+j8+&zyzSWZ`wj=u8v~I82)9x}`H5J75M@WNxOfKndpm`Lh3Wu~ zPgx1$;S?O|>Eeq13>3jC5BnAOynAp`k2A7I83aCp#96OaNgXaMZY0LIln z$kW@;7Ykn305)O?m@rR_zb7Wp!w(bW>F(nsg2!U^dw7cA@fbfJS9d4$ei6Jf#^1ve z3%=0+wy+W~{!Y+=8YgcTPd7JkTm#_d12BddBaAV09LE$okYkRqz*u5-VXQztO@K&; z2?EVE0YQ2KPMJc+YCRFNcvc5|p$TZRQV;2%Cw9O!T7W1UiF$4E;Etpgpu?w#(G?*P zF-9UJC5(xPk|M@TLCunHy_@w6_6KdIEq4qjmx^+Xw_WoG?1R`~6%Xzl6TC0!yMs3}%;~m9Hms75W|v zKyg)D1pxEame#Z%T+9~7cw3l zjsTB6@|7&-O8{|-Kb&$0gur$80ajH4_W$U1|B>vK!GL6lzMnT>RNS>6FrZ(ej=eh| z4IP04z-V_sMwLK-z4m|F40gt)>OfNuRSFbA^2G`sfG0gY35$mZ=8YF1MNd%1gHv9B z^mYR7|0V>xY90cx;L%2xRB->dF~P#OEmZSbT0>hCO&xICNvb$ysyN-H=EJYf zr~fH#bxHt5Bxt#dyH5fj9WC`+j(EX(XXp%U)@h1=kg#CeX-bgdSNr#W3Rs;Au*${i zXMjw)c&s6k&iG>iSqPfy1=5gj!(;kChkkYZ;}nbU#R9JMbO1b!{XN4A;VY3St}V3O z%T|XG4w>VY&Z9`QEsatfoCUsL1T5(3pnV6*tOG-5kvo_-RdL(6>(4^tuCg! z22|3;Z~Y3#kl3;+AO6NHZP%dvfu8=seo*a6P*w(ok^yOHXa@zJk(L>8b$YA~o=K%&4yhvkuYCENgnsH+028x%zBe-U3D{5WdxgDJNGh2nu5KsP;@lMN77RZ&}R zQ|3+F>iHjs#LY6|t8)Mj&H<1Zwl#DF5_R<1t@U@<8Cc628C&@IIQc?f?_~t=K_w0e zWXb`cfm!Mgxc?ZL|B}2q8{puwK)(nmEmpk?n9;|dz5`oqY1IQo6F^PmAoG2I1*&xZ zBU=AU-s*IK11S{(2+1oe7Rv`r=|P@u1~_gR%*=NhX=#Jm4*+o}ys%*X18QbK()5z5 z>OZZzIx|qJ^&FtKc=vx;Jwsp*GdNl^mH!c&#gUuIK0;vxS_E_~b4SjHa;}oj~NNSvSI*m;Ij&-Wl_ z6TvIO*my;%$(JtIpbbvWab60j+6quSJhO`6;j9k*gh8P_Q7Tb9TmgvSVH9bFT0|w79ueN!7a_ueK#YUD0C>+zit5R@6}plXVV@u&EJ$$T5Fx?yi3o|H z2wJ}Yv{zc3ghUGojuvRi4r@a~$dKR{YD7rznE{ZQUEwbY$hD}tqQgf*Orivbi--~u z2}*EDFQSA*f)f1LQiCf&l`O@zpfOwqsRS=?MU;rJQIrr~O2{ZEDZ>$}1fNk@3JJaU zgO1@!RAqR1FQSYPRmQ^T%82hP!=;Rf^6D6XmMJKz)(Wo5h<_;q@IWdPVNXy-Y^n^e zr$v;Ns9A@?6?~tlz#T6*&O%8fW-IX!9hDJBP*#Sc1FMJ(HdYZ{WI??vI3Sj)k5z=G zTEvHUtw4tU22+DRz+AD4NOpogz)=D9!{FoyeW3c*a&V}jLK!a$04-SH2*xVH>vo6| z;@((AWazMpNVbJOz~;s(!e1A<966q2oDVX`I%5Je#>^=Y>IOmmn3YoC*TNtvh;6Wt zQK+c``alI=h6$xW3R@wt<0ZgifaC+zYti`v&8l$8DuPEwk$~hLq;s?k7sTF?=BDHx zRw^>&W>ncIG68W;#QIRmfK5w8@*@dJxg>xZbjzRtkhTb_7XFE?qzGd{fkV|>8Tnlq zfUhgVCy5{n!4=aoaPR`1^hWUMD}Y%As;&MSc^P}ikf@WuSj!-w@uy9b=cR&d!$Pmt zA>)tCHk2WQXD#Rh0)q_Vau^WH3iWDyUjrOuXy~YRfDRNn1wn&OP^3P{jM?EALU97Z zvTi9gWGRi)?c13#yF8(WGIR%QP-cuKCnIGpj8jyql%#MS{^WIVDjLa`qnIiR-a z$*W)xS3nh~ri$gLlsi@oJYE@z2dW6f2@o?7u&ZPso&n3i|0i?KdMb0oqEuLz%0HPS z@3SH!k6(Rq4^O>gC37VtkSHSHnrhL;=E&e|^%fb-9`n#_2B#;t@WITyFQ^P)vcG1xQTE!001Q`v| zQnD~t66KDS27sq4M8xtK-SXE0C@9Q)=@3J!Y$zNZ@Fc`bwh{P!Vn-BarHiBOc?1>BW611= zNBP4Q3hF>;-Xbm61P)u1WhDyq%>$Hr4IXuLzXm0Pv<9Fdg0m=GfiDN8hOGu3?MqQ~ zLi;zXU=SscX3J93fKFXdo`N2wmj5uD#T33+bR*7#uz?!}i*AmN?4oIqC_zkvc6i|8 zO&+&Q3u-yxHCPd~ zmdW_9V1*Zcu&L0UwtvY$JI9ErkY40c5!5@V!K#HvH`XW?Lbp5riHvB9B2$$CzljnB zz`6GTqZS_Blc$2M2-%g^Mt0B88VP0%Mv4#xY>;&U(vpLGl^Gy;YuDKzv@ z%1G#;i)AGAl)>+OL;)4l7U;5oVp_B=L**_CLPMTf9DsG)5Nk@PY2lHB5wOlHLT$y< zIJ87ZSi`FdFolySKt{;m&;R?#umxa#7Rx9rQI~^SION42id}JN z(f==!$amr_l7yp2odJm+GSbF|DWXN%Kf#bhi%>)uFL8IA5>wz=v;>51_Tsgz6=yDH*qAygjAdrVYM;%dHF<)L)QTmHb{;9cQ{b-aEibo_4iVxsFzk+ z3a$64m`E6+KDhz3ntXw=t=>$Hx4>yVAur785xBRiBTpqJPs}HslrxF zX3&2*g6l!VoN&(#>>U9F^wA`V7VgyN(c4i!Uitj;P=mXHVDAvb2o5#0LZ^VC)hw#{ zN-}8SjA#yXTjoE|aWqOd28UMXRMeHBwt^yB0i&p^LydaJN(Vv@x=}?e4>c&`tdxNa z5+Vau1ibzV5Cnzl0R}Z>w-9z8q|E;7;w!+=A{hlEfQ*j;Asuvh(DIu?44s+(Wl^-m zMWL|Z9%zf3xCn)qjtaFRNETH@p2aJHj>&+K%i^<$O{mWz>Z3GPx-?o|Ay8=ap)QTG zL|hsmf)%X*KiF{*V5i0p28Zm`Ql~4lqDF<`P;|tlaYXR(NvQcw2?jMBT0B!|qPyGw zd=gO!p$YAByG1N9JX#}Dp;pGlN)pTC0^;<@AL2xb2@DP`gegF1(YuNhN&*jh?}whG z6mbqXw9utKxx(*P7#)jdRdoCi#;DQJ`WZ1gq%5UzY6CI)uZaigEK>&nEr3zVi;|E5 zSbbCuho#OtYB;nQrt(Kj^e-5+OO5cy62RS9K*$L7KePg-KrNQkNS0d32(3X;DA--0 z{jl@mz(#GjnU6z@Vk+Q@U|0o+7!v_hR06x52}0J3+?K=!Qa3I}`wA#5T9TqraKc_P zzhS}q)zG#-4sBXO{IF=L`w!b;(IOND#evrCcsL| zs0XrE0*tCilbGTfShSw~C$D8;0nr3AIU!!usRD~uw-g|>lKmGD+GU0n#KIf+OQ#B~ z5_PIj!=lwK6?H|(tkf2*GEr1T(1so-1hP~DOxkE+OT|H~@=tclrUNWO7P4Bs8+Idg zMo`8g?Odwa(5~>m@X*SV!VBE%gyRL>b+N3V?^}S;9E%pP6k=$x`cEKaxDf@BI(VtG zLC2A3D*-Mg_zVSg!os2@-ak>7L<7iXkL3k5-vQi2EZU%@GFvf4ESesnf>gGUjTW9O zZUoDrvdIhWhEbkJd$}lwmDvuRAz--0IRVLbShV0pvK_ivhgPWo*z2i?Gy||`2}%{a zGCoi_aIV85W#Li_LPrZI7BodV%G3cyi#C)!v=m-ihGEhA5HSW)ye>nfHUUhrXzfWM zht8w_LPZNf6czT`rKq4{9l&jlMN3jD=*k#bK^3hIQBYWsrJ&GD0~7<8Al+7~0gzhm zZx&pMx;$bK=1WmQj(RFp#Mh`)Q6r*he+4L7B_dQ2=1W1L6GjxOW@u$fK}D<3e_0hR z3{g~cGFg1H21|fr$P8^+Qc+jVC@Z-xi6IIJxKX-{D-QN6w9`pNT^Us?P|;cu;fhdS zii)Q+1Sos3us>2j(fadW20$CPC@9Q)DJb~;J;1F6Z3`^{{U3pZp2I;vVdCIZEvSN~ z%rfd|lZi?YvDGSq=)Km#T|{*ZEM%yF}j=(Xvusw4g$bh}@3qi&npgzGz+jU;TDy`i8{%IfD$9 z0GlRS;ZjsttddbXph6KltUka1WjQ!Rmz=eL!efOwSHdh0CZuX!Y9MHoD1nbhYgsC} zmBECfA{If&fpPWFAeB@DEYKU2f6a@QtLP{#nim}<1Rb>}S_&ifgz6Q_I-U+X=rTS4 zaFezD_RCuaLod@wi@*z55h?v(S04qeG<1BFx~qj=P?Uxa4^fFMUV$zt!;|mgCFnV2 zxD;Bvgri)dLODP?}HH1vpGa5f352rxq4L z3DVFRAmnfq!dMZYUZd*2cps5^4L)Ip-bbQdqlV4meM*#T@F@Ld3Dyk&jKa{_G3h1u ztzfFWjHxmehUzxxBalV#%Pon8>;?&=hTh^`&~4B)YWyxr#Wh01%q`+)e#s>ksK~Lm%qjI5G z1Ar4SdN*VX067YYJP*MF@ZKtV4`c`cIa`k00~rE<3l#JoNIn3)cL*Y{J+A^E!NiLxa;z{?Q_mdX6DSfUuVyF#y+;=wj&D@q^E`vJMO!r-Nug$L zSF#!<<;b*T?yVp*fsLE->p$c*pqP18V(50q3NfUbuv^6Aa!ed z4QY~0ez3WDUqmX}U|iq_YZHxs@IMfV1W+8MhAsirJl)a(gzIHhMcGII#c690381)@ z4WdEvAq0u!{u(N^uds=V>MpxzBRO>YVIw)zCjhkv$)U578_A(t?;FXXTkjiRJ=o0)@f z=yz34PZfPY6x(hZ21K##reQ!7+nV}Yhzt@%P3Nut@0+qr{ST*B2|9Mj_!B%1@L6n9qF?1Sl zD>0OqP{WZJ>I;=hLt^N(;#Q;NlO%c7h)hLvQ?M!ew}@toAa=$5Z1@Ob*Qu{9quiBK zOT$4ByW;g%2!NWP)BrHB!<`W~_e7;|vvX^($@;e};T@9Lb<1;yBzE2M+#!iww>)=9 zV%IsnJ0!8|mfB9kBo>jm5t+(O^8GD``}X6VWYDd;on+80hMi>4w(XZ5|HkWb$D1lD zeeD4PwFRtd4$#AsArQVXZJk zgKyR2Ask@U{jGS22iSIe?T4G|4>HNdSCr7#ezdv$IUZ7|Nt>G54MGA|{o@KlO!&h2 z5Y`6Eh-&)B1j%wKk)8>b2R?rLg>)0A`5>wjH=AiuMJ3M=%$`;jONoU}J!i4hCoXlM z^5b|EQV$%3_meD^64RdAYTU>aZU>aCRfd*7YHn_D1BNcPJ}8qK5zJCV&>Ho_^(-e4V6Z#`qrs7)^4tk zISNFAZ5uPwl|#EKQO(-TQnQ-ISAU4}CnB|Bn5?Xq$4~#C&H2Ym386mFtLPF!^Xv*C z386V<1%eRjgNjB3A*{;*y+L4rR~T6=_eG|5AEs!XrSjSm8Pq}<4HX%zJK@9HvgyUl zi2U7kiEGtH@-u5ylm>zJ8jY*@xi2b(k(K*7lsM4zJYGR%-N{wX?z*`Ug{}lpAEVXo zB!HYN!x^gJNC2H6<;$wlg*dq@G8NH{)%dj^ZtlFcV)#^dnyo$9ST?^ZlaQagDYtF4 zFC1FlNzOHk+{{g? zP!tHXhjr1g_eG|5=8gZm$p;1kSsubn2 z4jlCJ<`tE~2;hENhOAp}>o7aiw{I0w<1ew5)|T;aJE;wff7@At?5=i}AiJxScMv1@ z2_XMnC#NmMDQ*6p7t)RUqEhi($8(FBmq~GB z=jL?F64$6xyFqvfOYXd(Buz8_M*hu;Q%*KfP=J%6^jdimrL|3j;i=kd;;Lgo0!n+xw* zWxwDo#KvcSyt(#N&(HYgyPM~pSkZ9#h;3{!XQGa6+5(z(IBzOBhy6yNtc8}clvAe_v5&_X3^b`F*@1R8bEIo~ne@sy4>7Q&aJkyVw8X%%Z=Li_Q z-~Y+x?h6nd4x6n_wh-t_znzSK^b-hR$@%|l<2&?whBs*X<6=QsubTXGzumakj7wO? z$ue{DtI zOjMq=EhS}s@b2cudC^bf|9p3I_Y8}d*}3<@+UJZ7^|gueq1M~Go9DmrAYIrW)I}R! zdUOJLjc?b&K!dL^trsgZs+G4dztVzEYApV@UjH>!1pT0f(=5~kgIwctg3-De{0YVq zX@~d;hFvKqo9VLSc>MTJH&4DeG4XJQYy9R|#W(ip(&sTo%>$dz(Z?;wG{MlwEzDG5 zc|X?^`2@nsEL(tg0y6aFa{G-xNw*)!_n5(*Eva+ZI{N%0oky4LaNk;J_tdFtAjD;& zeuT76noHf#kk*Nb@DaR_Z30_2k2AT6G51Ec+wrUC(zS1VC0#grgm6x9*j_%9uHLD; zwh_VTp47wm_?E^RRcko$|bLm*yi*xrU zi2a?H_qNbKZ>mRuZc7q1JdnTpn->|IW;uTIe7b%lRZQr5e0(KgxGtoNFKV_PcBrnb zu?m?m;!ErCnRDsJpKr#!YlqlswUxd<1k?Ph4xg37spGr!Cv86C2ts`ieptaLf}`gy z=3Tp_K;%2;(#^AEyy_pN0(o85ecPV zq1Z}sw9oQgHjk_CR;-ldXJ>^)xU7X7x`AhPwrn2lytnK|EZd=C`sIl?Sg@MnB^vr5 z(ae?g?6W+6^~t0_sdmY-B*k=WW?ouYcOv+P%s0!B8x@vUj(6A7agTyXOG=^lsco7L zte%Db_;W9&@ZqHB$ONWu!;X8)q*cXfinHBpNi2%L4b zE;M%I?_ETr;CHnZbTt0Ei-n==R*NB=v#dH##`~Aj&ATo9+4Uxk$d%KlK{$iU`_)V7 zsx;mScN_d0*kO$xjsN^odI7m-jr!nXHm_vr{my0Z(t`iHc7bJfl6Ly1PG~1BVl*R} zz1W&G*bO=5k>O+>M)Z#_r>oC|P4KUtO}EFVE~TR{;5mt2vnu+AdeNo0U-}^~^OOz8 zDXKAL+i;3*OpnlkCp_TS@MI*=hmWgfK6-EFV7_b9BU6NF{NB~d??H& z^*3a3oU-MHN4xQvC(@1aohQ-}<6FUW$Cm-=4_0+ES*yn&n_>F7Dw+|NL-WCaS-%Q;#!V>>0-KiaVOT6%h^hN zF|*KfYbSgTJ>2!(`kfo;@}=qlW9vS_c+cxkZY7^icQ2ik6D$Xpm$ioe@MqF_35oJd zU%!WB^tVhS&wmdH7g*#xDAq(CpOZ}-ul!89dTqfNO-Jh_ps>m;1b z!fG{s>sGq{ME+YOSDQlO`%k5dXQ-f>8T$6q>74dI4-yZ6@ffJ;)rx~NR7(EiTj}a3 z)GKCV5yDr*K~@dR?fAT=8^nue@UkZY=U@+C=N5}aos93Od;A3MK zrxC2UH-PYsBaU$VRY;GEYw28G+q_17hGoFt7dbX(A^al$t}}jPeB&AeL{g8hqz9w= zd`O>puN|g%dCC;C5He)BOngFW^*2~dOp5rpAc~wdzIG#B3sX<9Cr>@y=ONxmw=ZP(K64-{@RQis>h~<3 z#<;(QAv(U5&Y_-vxBXko4%hy*D-@HUtE2Hh-AYeqtSe@DInh)N_avT$*yOd0Iv>A( zE1f@^n8GjL=C4oim!b;H^v$!5 zZl`Of3=#eH!uam(bm1Jqdx|qNqND7l4Jl9OC5D~}r}0a-**DoC8&nZpn0Xgrbj9HK z?K>=NCg6|nrepNYm!Cmve(laFS`+QB^e@!LQ{%tB!*mX%@9ZlL3XQ4n>>%L`=f3xM z>02el`QfCZK49OSXA6IY=ESc3HeMfOv5oc^!+u}Lr-E(}OEle-+ zq%~He6a2xF&-`p=K&eYM40Y1C)wZhZQFy8f(PnV?FGGaOCc zWYUhdTCxmE%J>qZ)NJ$TYxkkeR?r`uL+(Q*2luw}$ID;h1ot)5+&%*7eb5Z+cQ?NL zAiZ>+mB)Dowy%$0d63S@9Bs$NGb~;Hl<=pYE{LCDlc|i~CE~@8Xv^zQpy{$D->vEj zR!4aS->g6NOL$pyRcVJ1cbMasu@aYa)Qgevbpb6_A!HM@D^{T*Fg#8>V(Vg!7H-F5 zG%n5aV%$Vcz9vlf1F@r#d7Go&|Tl#n`bRe24?a{01eSzmEH#C9`Ev}qkZBj3Z$JLkFXn8UTI=liVTEu6 z+O&MP3WDEMUVKhiaG2Ujy<)-SfN7Q3jw`v=XJkydT;n^>rK8uSM_b6E_QZl7T41n( zuna?s3sw+oduTzQ3c_j)#uYBY4q1QyINf-VQ?VLpX~#$6_) zn}3wNwpR~%tE2+<{pJ)fmr4!n(m~_2 zu3R8ZPBnNHAC1=<7ywemG+z1dTuXiF zhnw@SAz_uIOI$)kBsCx9TP(ap^>A zXn>yD4A*EHkS4c!QwyY|(7mtTi?^#8Ig|2FjNEwTc};fRV8nCUWY@SEkS4&I+yjKq zT(`@_&$5kYmqw>vvZNdz^+DBWBi*$j)T2C*Cd+zMC)QsscD^vXAvqimPD0crhh3du zy{V(KHlmsU0Hn#aW_bZQggh_5=Vbi%7t?c}!c9MAa_S`?O&ZtrDw|idRhR@;a_|qx zEUch_+LgboaD&Z>`Z4BPzCS%wR+~uyQstLwA{3B$xZszrrW;Qig)wjOR=b^eTw}B* z4FRb#YOe@@+XMH1n9RpXR&3 z2zz|d@|kGUn639$K$?`QMhB87^uhV;l2k>VL%q&z%?zSNlM{@4wZ9PW6h6PO2ViZyJD9b)9NH>{&MRc*;bs^Y*>oUOEu-Y#j2gL9RqT zQFGvvVftXocES0n@ow5y1^Ys6Pu-sa0rrKhfxSHc5(?O}TU zeNz?iPyda#zxcT~UI+c~_VDp<>TmiS|LMcDJxjXTzxa<2)89Jt5#C}_QGy4eA6lHe zf3bM~2QGi)FTVNLKlzwXFh2a`N0*D`8jJ(V`1e1QewF4t&G=AS?6=x!`tSISt}w& zS2gm7G-i0f`1D6ua>GvkRgXu_ot_45Oa8ya*4P5b_knsDQ4*F+>0TbxRi<8s%XhiS zU-+02Uhr~Y(4|)o+vV494L1J0kE9QefB3OGb{p`!>&WzXgNbYY&*!K>tG3=91B`u z`=aR5HrJr*5J`;+BN+%s`{o+>&}TpStVlko(9d6n$qSs*Sg-fw;+SX%W-ojPuQz;3 z$B66*fXI)TcPN++0S3$8BQV&}a3+beg z&8$xevdW)pu(tW^Vz8mCEyh2seu_(kZKCq3L4<4)TQexO{1&7q!b7gWG#3r?g_-5A z3ih^W=rF&M>N~`J2vf4osn&*kEqoa?(2EM@%fcZN-Jt7}(3XOS=5JrcOG#{Nh z;S4N~+4{@xG=c4B;^&YS#L9Ujh#zl0NP+jcZWM6Pq~UtPBzAWFN&eI(ila+zjld%( z-!&XJ;c;}sDj4DuKGGBhH>B-8h;WGZ0819M-pLlt?4w&Obb#+hyx;>)Ve0tEQI*pN!B5wiZvmU~!QgO8=;xR_Vf0KdL11iI zXOP37d3me-0z+w@8i2G@4gHoAI@q#mZV z1#h{~)Mfck7LZjPbULd#=yXyYgVrO%HXH>xI@#bLOk&7kVOIZ-Ok0Jq`jKE2dl9N} zepS)q;a&Ap0v=W|^v5R-`^5_0ew`zC*5NSi&vp{0IIigh8gKX*i8D>K`Y^iU+)|ua zg)Vv;)P#`=mi#C2pKSRqfg=*~?Y9$zOIWAxkhzP}VoP{`y#pfpY?~EjSR9eZg+13C zf!LotGb}>3lW$K}f3Z01PgunfrNARB66WGEw$1f!jL6znKg{4_W*Urt zQa)^V*YhCe*r9cpD^VD1F#9ed97DoDww*E?pZh!M{GJcJ1#wXWDl8Ieg4B)wFD5kwYVw+MM?@5Y2vcz(|?8!@Yf1CcXGG$?qyt98@?D?UI!V@C94 zqVu=)dLn!+)E6eNv`y3+aXd4uc-rfFfiJh%!i4Sy`n|Y_R&j>!#Y#|s0t!8z8e>3B z)La`XwAv43d(!#+`f-IznDGva5Fk?*8?%_Y4q=dpQZIf*E!;r`k4v4NY4B3ME0`F} z@+V=e3&-hK0we4X{j2Q~F^FGnFiJ`Vu>vzqs1V9B!~=-g?Sr`R+|4P087xsC%sI0k z9e9`$pAul^sDQW0)v_4dbO=FQ)P8sIgBUE}nh3~j1!oZf3y~5$vtV@A_`%)Oy-ai7 zw%Z&7TWUdL(ceu$P6);#I_|=cpg6j4_mOs957zrW2e!;6T=LFx)+!4$|gEcZp@FwEL zJwSi^jvH}^8xkTqM86{uY9;xUaNY@P0hqZV(AX^MuA9^dK#pn7HRqjRsflL>M|$8b zvdue(&2_jyAYR`4KaxKWJ%jlm^biyxNBiI)4+H^y^#cow6^&x&BGKI~_MKA8%?~^umCJCYYfbN6Rmz+_?|G#EX-?De<8@m zVPa?D={<<_Y4(W5VZVcyzpt$|+P177dr`s&1rqjcIpB%2No$?z%Jbsx*f?nM;Wn)MYL`$0<`hB!6{ zRU9C1E1$H%N-RT-b1}VM{M&F!L)!+W0uf^Tt-}&N5X{4hY?5$0u-@~W&7B>5`uveJ zV+IbL2m=X=3k%(wXl>bCMseOBj&MG(XZtg4Cr&5s(ddBTVPYC5-|vJPQI9=?cqwZ? zKmp?mn-gA%WzZpE(+QZZ7>MC?uG=1$0x+V?p)Ca!9Y$)4E%e=PPwdR}Hy!4}X`Q(E zroHKJT`6&M;zVd129nqm0WT+ScK+Xv$dsK=P=hirtrayvb{gePJUo4vYfBLe+`jifHA*(qvB63h5RXgrZa7+4ufQO0i zVO(@Bx=4(_d4GcK?Ih0L+@R{c zLz10sEwH4y#_aKEn2Uw=L^gvtw+xu$VOcYi|ECKjEJElI6WGJ>@ENkhaG(vwiGAw} z7#d~)_Y02U+$Hu~OfY1_U=8s~?ob3}D$#tA&`i*3Y2Mt0_?fQQc&@X+Y} zLf;F~111?}^C>IF1wkh*@U|;Ust^o~=6EQTp0Mz^yc_@7FQsSp+okO*{hGgzHx~zX z#xu9L0%Qe*VQ$wB122C!$@lX@t<4gA|RBdxAxV0r{){BFC z%jMjF$OzDw+Z>Y{*?!#LT4PFObZDwr*`&u@~OHJ zgGYVX`AUYqfVp%^-x%%gb2rGT3LWN}lzm$^U{6?E$jvRGyXA6kW>4|F!7P#(Os?v{ z^Q}L;o+opL}2D**UVnq?%~XjMUm<3Hz1K0hDcQF4b~Rhwiuu(NlZ`%he+1 z>q9WN%fNOezB*@+ql`-i%g^yk_Gg9&(Bds*)nM98rvvkNi|{=7gVrMvuG{ZO0haaj zq0lWs0HyBur3Ek!oS`vi3ZJGew=X_T>@W*=slTAohdm|lT?K>4mS`O2Q$}XcMQwR&@a}11_ch8_;KF7d#%wTv*?K(_n4g!d4 z!eEBTAD~>bv!~bwt-knOVLW56LR2q}33E`SfKHCurb_TIx2E!uccBm68njXUDRw{RPu(Q%F0ohOeh-o~& z{21-bvNNpBsJUtC<^BYJ<_%w%R}+8IPPpd%vvek2?m`G|zC1)b__=faF< zJ#jR$bOmW=_6munMp#Fj*rBJ%(3X@GmliPhWbo{#Z1!f3xDO(;)<>d8UB0SgEEB?n zQhYw?&>cjgY9w6w;0S*g*g-q%b}ERF6L7Chk(N@woG>s~lHeUKT}y&0ZON?fm_a)e zAc=bx6BXu|gag;&bV$OtjSiUY91-^H=M3XzN!M6bnFw4512NnV0z-m6bvXQCE3&37 z#;*RRoQO#~3mCSE+D2wLR2zdBLU)RG>_p3y6JZaVu>W!6O=Sy)CUqi2nS4iZR0yMk znV@cI8O#TEkZ8OUA%Vx|lPL+RbvLcx$-7f3YLFJNU`x2ZoN}sKAb=}Kf4hYgNOX^GRBXX+lg#E(?NfXj0H463_2rAei}nI)$e@ z7}=k$v0uXI1q#m&x@iK21q?9Ma$pb(*e_u9H&arV%55IN@yh4YwTB*&6*>=1d-813 z@mrtAdEg~RFVB@O2P`E-UF6~i-AL86pIf!%I=CmL2Zr<06n%ilhjm0(!mG+$z+7{o zC&JBHr|xp&$u*m`B{1NG!;@RlAjSEBC;9;S3}CMi1ml|WfLQQIg!4s!+HeNBIw!{L zZAlvRc_fPM@eLF{0Xj#-FSb1`JmT0!1Ruy0k?=ef8W{RL4}|egBIK0WJl+Eg1>?+c zmNJKz4oU2ac=?Mm-E6BzheUgXq98Ivf;VGxBA8M*xe1(?wloW^x`x#4pqZ^9MZ{cFO4d-KIv&#y-(&2$}$Mc{0r0D#6fqp+iqA6&?xFJs#?YXH7kfBMrA`E-ubF7DG~pIIN*DD>K0S zg)(i)wu^W?xGQa&^B_bLltYKP(o?sBxyTASKp8_p)Z7~Tn$b&ze$DJ5yd$9Rgu_V# zJiadG3lp_v=|So*SMuqZX0bXm$Y5)!gv=b@lC!y^L%1;p6&mVCLR;MFi04;h!aH1z zP0u3NTQ33tB9RTB5*ZeP(Bt>uDLCbL$^pu-na$;UNO2^Dh+^Zo>&a=b;Ef1-z%j!*@w5K~ z>Oa`JYaJn5?okfSP@2+zfY4) zbAa&(+*dljpb_TtwL}z_{efM;TOAOrL1#|C!_!Du?0tveg*T1Byu#Ruyhm<6tu2>p z?f}qs2Q#uihhvYDCjGnxY~!O7%uO^f;t@`m(0>zklLCny2M4j0BH#?{dlqMj{Fu-o z`zgXaQ3^fHWwhb(2tP=5PcBOk4Po(Vfi$j(B)GMMNd9bYCqcsOzKz9<1^2MUdXm+b zA^@liqrf$na}MKx=_{QM`&cOX-#Ea5uv~+K1oO?kxM8^(5gq%33MMnpVAxo%ZvtW7 zH3vNWP*YMTyn@Y@Q9BWmqv;xsngjl{PeeRB16ZgIp)wc2ddm6DlF|Ba>XzVWI7g{Q zhJ~l;kTiOq5N28Fhg_Sv_z4QRN!3oY+X1yD#9~v&JAc>x;Dw+N z$)@{o(ol6{_uzTPjU#MC@KgMBiq;EW4#D#fhf(F&(jViW#E%wr=MhAbubePO%%z1o za`y_tgy6g_-q3s?&?f;IcgR<(GQM1_xX@u?;*tkZa|j92!c7l)0XKc`J{*NrsH$aL zE3wA+J7{)Y$=)QC6`1BA;nL#PuzFGl|Buf<;rIu_UZMmdgr@@$Ze3h)u@l{^rmdAT z!v9l3VDA(Pwqin!8Pb9L?5(z8D-v+DnJt6zV*k=Q;;eLyS9KQ|BuGF2i}+|cCLBo6XqRQm}6*IN*eEhxUugSI#mcLZ4hiU zUT|21+Oobdl`nQMCQ7Kn#&VAz2BNYcJ~-ws_p zXmNX>L%B;qIlLTTWPfHV7)9uaH1-m!%rUNot7Tr0xT>bDKU`GXS&l~Y|F~ZCEk@&9 z{N5P!H|FY)T$En?wDp`H;f2fplReiq?oiU$-x|<3Jns zEdQoxXzaBwL?m3)0rO`7S|1!?oCpq}Z##}`vu#}bKP6gPlB}?z-A3!Vn@-zP79swh zO$q%aw+931eEzshgvnM7BMHZC2=jzK;vEhb4)zlk5jaHRz-oB?U< zr3qo0R|R25@Pf+p0&P3BEc$9pZo7{JN6{7yjs58sZB+y{w8f?GVYI~s>|wOs$AcmD zPuybBm@A{uIJ#lPsbbskoCKzM7}jbze5-$ zJYQST7m#9cfpECe5}xaHV4mQ?R^%~bSPSU4Ai-ga{t1Ln**YN?6Q+576Pe~X)%Pd7 z$=bEUEZU>q#~l1Wxc2ucBI4=bf>Bi^N0$U#61hY%X0Z+kr2l4RGzglAc&FoW-6 zG!h9@#4WvXC?T%KOFuwD_>}#QzhFdY>t)W67I(`iF4_NSe+toWwt&SFEvVqAe5kn_ z1`;o}AUrR4RQx|#cXzpf#bh33T!ztYLcoHyA!-KU{JE@tz{Ee?U!!p-rb}b5qQ;c) zfH&-I0!C(LX-n+ZrUH^XSSJA#L+V#rqKxB%d)Y z`iz9Y%?v0QjadynGs5$@FEBPq(pdr!~zy_N@yG2 z3JH(rOubkElHuONXdJDgsz&%66H$pe0KMRgP?47kJNSPT502L@Yps|blR ztgUp~`lDgtd1-rsUbvW=63KrOKjto2F}8$<%}6#!S@=k(zHiJ>dui#$iRblQy(!U$ zLqhB(8ZKLc6$8(U>eH5VG57n~oU=L3;-^32aLzR43*GUg!%z#I)y6*Y#(eWFjF=Of z?Yv&Ln&_flM42RxMTF_UfNVr5)u80Sb zn9fu1kd2F#X%9MuBS=uo+;8l|f+PPdHa^7*CeRwTm>!7QZX#QZ72Ho9w*q9EWZ1#~ z(^Y|cD%=2s@EZ3UoUW}yRdKa>=Pn;@W_W1tDfE)J`-kP{;nCPaQc^m0pL$M_QC3`7WT*iuv} zU1tVZNbEuV_aP50S={_^np0g8kA(sY=?S_o@J$bl&#d;6QKFmoN7)pVOC$*M9%x0{g+Fn_j3_LW{W_e4~t&F7tb z46>sPk5sT;ePOcroSDC}1ExGcYs>>qUzl7ggv%a;z?@oJy=iu%fGf7JuV zraES>zElFnZ-uzN_Xqa$N3NAifjq;e9Ht|SO18MVA=x`R=A2Z0Gjo&+XR4g*ZR(4w z9{+{}S5~;{L0o7B_jOS91VT)#luGh7L(+7JsjFI=`_>47(~TclDB$CPH=bMiBUrsN z53jgb=)q^kE$l-SvQQ+iOj9x)S(Nf*iiS7pA<>pp75_FZ?(E7xXd#$?e?l3U?5t#xGqEQB+Gv4(pQ0t>DVS<}I80P|11tp+L(dDUpds^#xQ zRAwx|!kU5X>_ArT%*BfP*1&S{&n*9g_@m_qk*c0fSZP547Q9N;1on`a-j6ip1KpOg zKrG4J5D-Hug1%_rhc959po|$JNi8Td4GxVS7Ul`^cMC{|@xF`~haM-x7vt>UghTaO zCBS-71i{M7P|5$mAu*k4W!Aalxb8kP?`^!=6CF~DCP;zA0hcNOIC-Kn|?~n{EhS7016Q+c^baNWeSL0wzP;aNKYV6Rwac;|6 z4RfsIIiC`Ej(D5!WC`yZ8)%Ic6>!43`g6%}h!3JB(C$Wu$Zvbdaq#~D^1&r1OxVar zLfj&Vn&;te-?_W+f)=ENbMMzplR_4%iW!I~G2EFU*~jOTR|B4~LwG1e5P^jxZeTnU zjvW#;b;2n^H`{L_wUH;g|#wY(#y12)S zx%`n|e)G+@kBMX;nd4u+{Eh>P{_)Gd_4ebp-u|0!z5eT$wJt7`lYIH5mp=9BS1$iQ DmOcOH delta 517267 zcmaI7bzD^6*Y{0#H;8n{Fda%tD}o>)4bojIAjr@tAT`3!WgsnrA`%jcQX(iKNQWRG z2nMb99{7H*>-W3w=k@$Gwaz+wuf5JWpZ8jO8rv4h3(CjI(^M!BFk(rRA{PY~LG0+D zl*L>2T>FgXn%tLvCc*1`i+}Bb^wl+%yq%Y-V=ryhCDuw4#LQS!1KQeHDa$(&7m!mS zpKeM}F}%C6J&6%X^}VaS_f0}A@bK5lLRnCvxCA_z?{8(Yrzh{|;CGkmBQ9iqrM+0OP+O_y$j&2rhdbG^ zneGd}w8UBZ0jk##w}YSjp-^%Xvafj1PA~d7t?Yq$^Ojy1WGV{M_b4F5GXD%18R@J~D`>j{oW_u=zqO z@wWY0S#JIg_}LB}j;C|35tk%nvo_VPLxbrj$QZabvFA*(mIl9`Nt)yL;q6B>8~(&; z3&Q*wez^-Vy>jad-kTo!+1<<}n$qR((QG}Ejju%rPdME73e%jwFK~re{7L3?Ikh`_-Y z<_%|Lam5)`wWCjayspYUVLGd%cw=AVoT^sAYy4a>Q)zM}D+7?YxYSlkT`1@4; zC&=~5Ny+5bp0iSCOt49v{lx9l~-(1b7{+(Aa zDoGrFZ-M-EeFU|cZ8POKgZgJ0FZ+(IMEP~wH|**uTjJSCs9;P9^+ey(a;EH(C^&^q zY{)ry8}Fi}sI&U+q1K9gp4Rfy_kH>&`U4lYTArS`GwM(#h70XG`Mc|_Q*3HlGd5S> zdLf2mG>EUkqg65NhLu{dmye<=ekqsEhShZuFIFV7AldgC78|uIOBriqO*_zutXU)1 z%USS~eEpt3TF{s;wnfzD>hRaV{I?u8Z&YP|3;G;B5Of$}-(;e9U=p^u zAT$40*QK1_ZkGt1@2?uVm%A>MJ@@zia)tGAwy{#DxI{wZ?aa~$=yz?8!+74oinxtW zJumRhjnOy!7B8BR$!b8uPdYZsU0l_QGe7J8v;}kcF6WgyBEzF1#$tVokDlC^vqu+g z^L@fU=X%ljQqinP$IAFa#{e_G0=1v>U5|U7ggpz1lg6dcBvcwIH(pR($y9q6bpMMv z^xEb%D*H>%yY#{izN$!u3=7`hr_8L>CRhcI;SDEpZJhILetu1=Zhgo_d;i2|o&?QB z)2kH?ty8paR;R`0GAI7l7Q9%Lrus$RYo)gyKHPahxY(xA(DN6R&DpM(m2gzu1T%@p6TCj6PbI$8T5Hwh0_=nQ>(nnUpZyE$A0ww|#F=0?LaS8If8tCK_B!VCY+!vN6hZ3A=8wq}N zc06z_1Ovs2zz`S+6p9f+fmbvdMHpffB9PNx=7wS+I3!9021h|q81OR;2f-i+?-+#% zM0!UaBn}3F!EhpQGzx-4gP)-=2o6Sw5;{qcXK>;{Vo(q`7z4>U40u6ekq{`BP@=+1 zNTsJEbTM4!MgqT3ln5LJhrm#95hMx?LEs1)0>>7XjF-9KU_fAeSl|i?3=mid5_5Eh zZ;Z}dFc<`bgNeYQNH9#a2oes3pb0Ztd`JG{m@ac8uy6(5d;nn!I4Hl z9DEFACWtcI@FLJ?2n@^(Mw$c)A%Xy-h9VFIV+&E@dOehu(9CSZgFvDoNElKC4kP(N zi6BrI2pme7)eGY{!&9QYcJLxWHwMG#N~Db!#T1R*vjUN{&P32zy*MJTN#Mf+7tZEE@_* z%3K5ltQIMZ$=uGoFpvru7#5@g27&+y4TFIUgTV+TJYob{p39sd53o4+Q6j@ZIB_7m z2#%~`gbp5OE;J703TXvk5CjY@g26$sD3FWd1Up_f!Wcg@p+!iR96@*_bb@GeUz&%Y zCrJ8=^#pJSRtE`3iTGai_O@kERb_DTb@sdL$$%h;X7Qjv-Xf5sD^WyA2V4dqy2tM^ zq-6W|JxChtKkpGB1UTZ*l#(JbdPs?b3Wh@bqi=H01${=dz24a6QZ}K5y(Fmn`CN7z z4mg#QQbv46d-I-cgVd9s!_}DqA%I=28@#fc09`kZg6tuR+vt+8TO9l zvvIiMn?85C)N6L7BDyuryq;Y8a=ZCKR+FbZmio1VtD`e|^T*T$*%!-EYPI-pV>H5F z=tOxgH-w&I`66@c@~u zk@85Q?!u?ZU;4_%OsRN8p(ajGoh8|5(Z{FC1aEkgWFgbd z_mA)wd{|~Jvmbh2^*qRsaw|>`WRQ!;Bm4DIcb8*NosBQbNxi}9v?lh2Rz&Kp-?W+b zdi1j``gtkWfP|(B#4`r*))ubI7g%Dr#bu#PUJ3iJCm$Qb>Tg~pI%*-2!qh*aJ_}#g zfGnh+gWtj!4YKR7Q(yZ`Q}R}%HVBa}^GnAV?{7U4XXOi@=u;G3kdU7>?!1VgeR*>LS1KCH*|-iGE53c<%61SiL6-7PW^2Arr`z50bNe)K zs|e4w1Z~s#4+6?X?i-N|8Zxa6y@tB;hazfIcZmp`A^zNlzXy&`aGw^%>#=l$lU zJmbK`4CpQR=G(oe{ejbe<5eE+ew=(*v+~1o!2QY#Asx(P;oD zX%bjTZK`|O6RIRE)x*m>+0Q-c=V|6@`{Ww~enn7%UzwYRNoJm1>&9q0x6{dN+8%U7y#pfLg>=fK$sbrvK2jq^rTZQ1fOu z#*BCWhtz7GqQ!2^?VHt5%WI_(qj}scXB(g9&4@M1Kg+*`c#}KLa@``@e#iWJUJMhr z-7fxO?WJGOht`9$FtK%K@?sM&YvGa4gtQ}W+69zZ6iXEwo1b@RHs_Rf=ta@2&B+R` zY@us?g1S$}JTC9QbU&c)K{kV&W(SKm*LS=3HP5jK#YoAW&TE2uS6|=e75S{>!1m4Z znF{1{YHlcgZmBiDwO(I(dsUiM=t02=bsj!LJgd8VR@=E3&1*|-Vm~$88RSumF$#>8|@r25f_d&=;c*b=0z3y}_e>cHmvR7~p1FAF66Bt643wHOa ze&NkZOXA}medvE`)zH1&@`1G$`}?E;LkYf4b>6p5xL5s#Ws~MjT95gT#U+>E&s}dL z*I#xhq!)zO*IebF`jY=BuguHEeM?bNXCu!A4PzR?TQ9~G3s zDDwZf|NIsog69|iZuqwN85u8Er_yh~iLih}nmK#?)jSSj036Ci43K6O<$*yFq=&|T zN<0`8D6qSdcqH`r7Y$!uzbio^)<7~GJzwCsqZc5GNKYZ~ygPb1{tY~QNuMxBhl*g1 za^t1RNs*P7guDf&2hgJx5kxfZS-HQvZ=~SfC2f zNE`%6ETEEzGks7Ff~Noj!SWL`ftf>_7fsSzNbtai0s#)xA)2JOkT61>pm@d!HbTxK zFtgR>K?7NX0;7UsF%TS>92&?P1d3!u$OmSh{xTD8Lv^^ZB+W$$f}as^Bm@D*hr$9GjUmO4nDP!vPZ$?uAjc3KS&Vs5V7hQ% zNz%0l99jg01`7VjlHhZa6Bx16n{Xq5e#RZ^S|kc4f&x+*M^gEsM5gypdZzykHU>q2 zvFQ_Lm}q%{Bm<6s)&kQ;0hNdX${mV8lB6D?NQjMCBBmffP{-i7aR}fH$W<74MFPM8 zsuVq%~0?m#f zNoOE05g>7qAPhhu17~nxLCygzfB?mSUr6E_gF*rv0TTVlLX1!-&qf?wry(teDwqNt zHy9Bq#v~yN1D6&O1QQK(<}q5(5|9dPL_Qf-(zK{Y+wOl0B=B80Jh*jh9hu55g%nv))bV92>lF1u)iV$IhM3KfLy@(k%9wq z2CNJalL!DwAa{UQY6vMhtjxp|MQ1qBo?iD+;jTy;ut z;_eyJxrxBxBV~1N90~k@LkyVK(E;FE`zMW{B!{G{8jb<1Ns19*LBJJ9sSe23lN8HRuZ`T>ClvnF{7MY9pAAtoGvfJgv_A|XA@&u0+1-72E$1(f-_TViCDv+#GybXP(mQSOXKGk0IWi~oh#{p zn>GxP{P7180u#x(737H@Cm<|@Nnu(FIE)CjQdGd73z|T4wC!7be^WjT4cUxZ>)`gP zR$Mavcs+AVbeuAtGIiEpk6Pkl<-wj$u|}ZY?fZ3e&OUCH4-z$7hL+biR%!GblJtJ2 zN=qmg*{bZWhz*M6yh(N$8p)G!Gd9#e6Cz~mbGK+N{7II=?V`qlvC3haAIYPYD5a2a zN>&~Wo@d&iHM(&+TxnU; znOJ(;YFS5xwua~Mu#57QpKC3=M764T`(~7Ge*DRBeqOuv zvi8K7>y!AUr%G-y*iTIj3271McW4U)$C-pfvBiw-b}{n=?E-vR&8b9R9`A z$xq#~#wc}>2BBj zez$s|e^?;TIO=-va((S3aOr@!P%=cBflkM;Dm=GEXpXbozT? z^*|$1W7K?fd``c~!fm6#(=05W_F!vd43=iIhR9Tq)r#Mz>KRset&48K*^}3Z9mW)_ zyY21BoIa(UKAJ3 zLiBZbG~R&M`Kk(=9u0>SleUeBQ!A*nJ*ZeiAEtS_P;(sL;vKDzc$ zo2VV|ZRW7-$^MFU)hlxe-+>zR+b5ZngV?Ubv26SeAGwk9ZSI1ulvAD+r+Q8fiOqJb zUXyy1PyLV_<+qmn!IaZWQ6+d~;`dUk1L34VyH8{%>dM>hw@q9{=_ha%le=9)clmbz zEcRZ6*b;RV^}k5eQ5E#;E*sFCVUVt*OjqX#zz%;q^D{xn?PH@!aDG}5>~^iWgM;oK z^X%9OyzMpSh5?Dc(DJnV1I+!0w7fpoL^DpGx#tj&wBvi?+AP&#ByMx|YZ*NZpPO_; zZ{l+DYtidNVcb;JR(F(_-^qk?vozC=Jsq&oH~zBBI&SEbaI@SarZ+-O%k1N`dRUU4 z=ew3>A(rR7uZqO-!!{G{woA+nChgsR8WTrOB|3xm8!>*_W27S(nkK}5a_`=!Cq_}~ zS{_e5^ZIkwl*_a`o^-etSp->}&KZ0$RdK>8@0ZubLncbDHxM;#>dYCD)XUIC#)llS z(onI>Ba2KKB7qn-CCQM2M#p=@P)C6=`!Og-d0r$_jy zRAYBE@!0rv-vyOVlwa4jY=gg&v-#kBwrM(?QVY)T<*ZB{= zw2Ec;Vj;vVtBB|QR=za<0FOXl?9XexTCj^2{!9)%hJOv*VB5m){pGIZ44`kQ5WWe9ht3hb9&Q>x22aOIImB z5ZNTwCOSS-(iM@vy_3!G;co#w*|hwUzvB0J{(YO$w3|xGoFSEp$wg(Uy%cIxLYkM? zGl#xG@LHeDEvCo>&lQ&En!PybNEnUX><(J__B4(+P43*Ty)-c}dcuf)LY6$BQ?v-P zpVyXWk8W*Wm9%a2SIGIkcj+cM?<|>H<5`L`-@HXE)P8cmydT-;MQ$owdZ*J~eB|`n zX=~mx1;@}obapzo#9d3@OfVJBLMC{xpY?(HubjcJEcuE47~EPbY7NRX8hnuPL#Xyq zZkedYGGl@1?}3Z21-Aytz0@LyZy9H?{dlmRxZ1Xl71saY)UcG3^=tQ|;h<)MI5x9y zElC2KD)LUmSCx1B{LP9M_0TG5e+Dr0liIasZilzo2b%o8BEmp zxT!7&-bM6e_~zbjCBL%W!C|I2`swLTsg=z6zcsqd&+x3x$o~kyVnS%FiW%#3qkPF&2 z?jF~ktXvv0vG=8j5BBtZx>Rw|Y@@90YJByB{R3h9 z!uhKcZ^X(3S7y&VRlnutqyxp^ z#H{%rz90U{5h-`+h0x!g&Agoo=yN~2oA#xf-qx7?W5(;?UvH;#GpxP8_-XL0@T#`^ zC;mKFTQ{k}q1<0yVQWACwrnigJMhBDwTJung-s0OQi-;|%>52Bezk-pWyMvt*;~&p zX+uwT3XBE?_hJ1l#9GfOBvROl6+H=!__gpNe7{nMgw>oBXdDq%1Qq2xX5jwizTmv6h0N{_zLu z!$3wW){Ax@1q-1d<%rO9LKnWgj80Z23fFYqd4$vT} zg#T_6(2Lb+Mha3tLBW^=t0>?Z34ny8_eq=%kd{QDky}tYA`@PYkKn_i&5Z`s00o$e zfRpO;NI>R5+7o8!_z028CyCpf3e3bmEWq`w(M_icC-J1A0zk?bW>Qgr3k`4*u-cKHJ|cNQ zMn~O_NM$C1ohm!<2&w{r&Pg2ufTuuq;{Yau1`Qy~BbVE%oJ3j{B@*2oqYG#gfoX!q z2PjWKK?mZWV+jFjVuW2)c4D@=A~Vr&7DGd5hp2OdsRODzA_r1u1Og(kT{@s3~1(o;8SBsg%4s;o+3X0SRDXcfGbI?emr0l zC|JPY$Rj%1*We_|p8+HGVL2Kx4*=F9UPi#dtUxgb1-eUM5Tt+sTfkdUP-D;v1T`4Y z%^(pvl2j=GokP&NA>kJB3@7n*nIbdc0HwnT)(*hbQSbqkk=6-H@X=iUfTTdW{~IYJ z=;Dz|P2vQ1Eq3BgAc)iP2xtN115?t<0+hp&dOJ9fufS21nHb3!1d3EaLV(U0s4e}E zL(nD!$bW1_rOi&v$@<@9;Re7CiVT1|LFocXY8`=+1uzBewsuV>0x%~nCgg_vV%1)%QVs+SwSVssm zajKDqhLC2e#!Ko+!a%s-U`A+AvO6kPp~9^VgNCt zk18493Ibh9B=J@daH;wVxC9jePBd6}(AR~7x(%t|f&tWfg!;^vxQP1EV70)N&r5=K z6sWBr!1aX%s|p7o4T=oFoj9TD5<78L6jX`8b;=C~FpC5IS5ngy2g*rsP?G{ZM?1cw zwxpIN7jZKX!AXdWmnB3x((;meh)4k02vT7V+)+q9L^xnzjW{^roudO0+XA5Ve2fyo z=Q7>@82_6A|82}j@N;4zK6t1E4p3(%s3nLIg#LmvfIF{v~H1C^7b zGaMhp*Gf9e@j=3*!W9DC4gWomwDL%R=l^{mHG$2UlM{ASm?iZWm6aKkNKB3<2B<4a z5zY%U^BsNs2g)y5T9K-^aMHC%+(eLbN*+C;{_Dv9HidykCY)F|L&He{oU%_scxC_Z z#^lkRUr7fB1?2^>bfo8ik`5`|iJL#=v zf*`8)ZaK+Qg@?QD50;FqCi#S-oot5)43tuO;jz-KISb-<9V_UxWV}=>hrYH7g`KYV zZRy@pYTBe{6g0Hwu1gc7SV(73nY(J#v6(0YNkr=nErd?x8NNzz_^iA9BrPC^VTU`Q zV9EYuss3}hY`2ke89eO6mLo5Vvv2#57jS(2v@499o;Rb;|v2_%xQb58r%kMZp;Q;81V8g^wpx za^8l^`DWUq>$1|^M9#CuDy0lJ$dZMOKTWW{pq)?rd!K3P@u@`@j-{$4FM~Ami&dp~ zxv$?WqgA_HK5&-Uo!-ISG&b1c{(ZJ;Nb^lcH&ZL-hAdytIRzXO-_Pr;)b6HPjgOZP zO#*A)F+>j1R!aZD=ewK^s%vqqq$lqdZFygNm^(4>Lk^OWpFVKK)#TxmsS;Soo8`zo zi-ZPW^e+d-nJjtY*NvYK!yev0N9CQg)cDYGZh5BaCZp=S8oxCA-S%LIJwrb>F2q~v z1}zyxqkb+bId$!G;*Aq<#u5ROZjPkJ|?F2)rj13YIn66EH){5O4*E?Xms)K*VXeX;kd_=R7N^Wf8xAc$#rbo z-Pj9nh=%j-i>6KE2Q|8MA*p;HWa7RglsSv0e3Ly_`QXCaciAUPYk0+mPbGe}ak*Za zMpR{X{$fNm{nD%hx_vFSib86Y>6Uy@XSv|zA9lagt@F5D0}U-gmbpwFW}X=7rqbz9 zbrZQQ^Q8^0|C#c$G!QsTzeuId{-ffhuzeSgN>L(K?}aqllp3GHF_M9&y;h+9DIwWg z(^qVp{DMHEeb+|8W5PJ2`I}#^Dje>FQ$kQpLsg6ZcWgMW$N9U=&T)g?Qw+&v!cgbp0bgaJSah%I|hi^L-8Gw!ZkV58Syv$`lOXWD* zc5U$Ky!6`^QA7ydTZ_f`ecg13Y-n1B4>qigk1Rjnn?9DA@c#RD^jn55M3QH+P?=-- zjv=M(<`+3Sy_>Y&!PLF0=`m&^;)~Ar676HEe=Pg*onD@{c^yV|H8Ll-d*4m!NloEf z>LwVqgT65|JG-r}e!k27qyN`C+vuK>KpLCv+H9c>zo~=A_(;~OcQ+V)+@Y*qw_qpc zkXMRVuVq=3(=y_sy)2yVw(a_#eh`1LcwM^v3_ecz`g7aqY;}o%9DiiLVO^WY&vmdX zly!i(t|{E?(S53m)`@=MA=!`6X!Lj-PJmJBWt2l~XkAX{lw+@?CDXGVU!HK>%Rk=T}DWV8?(gU|%KNU7TRFApvt&xx4)!a zZ{Xr05C7}_{QQ{4!5pjRB2`2W$4pW)KgHjmcZSLmOm1@4>aF!o(VwzS|W^~LkZVyXHyaep$jP9mLr zF9uMAas8wXNx!B!Q9as3vzy}uT`RYJ^-}uH!Z~$>ul}_!N&*#!+FkGIB6)svP-}T( z?NGZDyXft^3G(5VqpOGCQZ)yOrNus3_o5nS=Q%#zXI)cB4|^%>&ToD(|Hq%rr0coG zm1;V+x=t-Q_`r#}`Rn)-E7BW}T1S{qzfIkB=rHqr^n*eZ`;Ni}MJRP?q4PN`ec@tO zv)$Ef=Wumgpx=Iay5+s-%%op~+-~BWiFrT)9JhN;rj9j%hdxP~mU)I;LpI}=qu|$5 z?0*?OH1D$nU-oPgc3>~@{;_2JfTLT6&G=?%&EzF!Y7cxnUO`0He!lwZB}TIgPMm+d zJF+OMY+>YP7qsH-EL*1%pGLWB6h{0VmXw~`-*~<-F~46FMrk*e8OojU>BiW-ScgkL zB3k*MC#)^fy!o3$(0%a|xlKvd(t7@!erju{l{~pGd063FouDFLYENo|xAU?)^(uMWhZ!uzIy=WlP8W4SiztV6yOZN6);% zd{tO&)kY^9VI}(exsPO)Dyix{AC+k&9g)1T5&7zKiFffIZMvg`>ZFDW_}j?IXEs^< zN|uZi7RA$)r&%vso(q%^ydoS~|L)4(K4QW#Tjxse<6HBNJZFoc7thR64J*!B4NAF~ zy|O$RIQ&P4vu3oH)$j><vM&63!0TUttzREYWS?~eudKg#~79}Xu*$(`gRd=X+h z_iqF4U*V4iyHo*0{NLLW0ZIPh-!pCa=XoKQE z?@7x4xC#U);NP|%LB^Ve__h{8O9jvkPAoBkfd6J#`c1rHj{r}GMt?HqfiD9$=)EnQ zzjt4Yeq-mrPOXvTJ)kK&lTr+o6|r^h;%My_SuHLd{kq+di39l%>BeRWeTvGx_Ye1?)OLrq zemLVtBG#S;@H1^i>tT!q4^wJAirrscd9rfoZnIGKjpa>ugb+77>tl0k_DfdO`?v~g zFZGuT5PL zb+ueDFrXBg`ooRxt#-zfIIPGJ)>m>Pc6ChRwFcg#aI_q1hLVVeY~=V zhu`aORI1jz;rA(7JAdb%a-H#kN$OKflI3blNXA8s;nz(2Dc0wNllZTDWM{BlC$c?o zIrwrqLc_#DD1V}yac?@g%&W~$cTw>e&|4A}+muzgpbJ z@?c5w9(Lr{+^Q}i0Z;jHXuj|CtQJ4Fts4J&Bnt~9*(wzO zp+8-CXAK%RC7Gg}Oa(2cJ9uBmI8Wxz;4IP3>B!D`vbj&+fqme7hRcl7lY6kQWOoBH zBHP1Fx4U~;T-J2L^50fkms(O6pSJy|?6YN=8z1oU3)z>OuaoZ9NUzO)cxhej{o2WG zk2~;}xHKKjle(w0XSIIHb&(s9@mGZ~zrb@k^YBtnCnqIC_E;NeJZPOw(mGt4n!TA` z&&%#qpOCyY$3~?uBQEiVKp4h+RlJ2(zfl@sM(%f2z9a4WAN7JcB-MVQo-}PA>Jijf z&|n71qZ<|VnO(@ey8su+qD%QB&ghNFZD>fY7F}Sd0)2Wsy|l5RTIZ@RmNPn1#siOE zj9ShuLm7Tw5O}6yY-BEcGPx<(e^t(ZJ$@(JRl1k^LVHys@0DCihMjBd`F5$#!o6u* zvke=Sou|9jQ9e3 zKGP58!c&^9MtL}1>*ui#oD@oI5g+C8cil9%We;Yaj%Tr#7nX34epAKSOpHQ!o0&Cw~4fM&nF8~ztF8LSL!u`(tcDmrp;Ly zc^`HPcxAljn!zp%QVcWebeDxpY{msc*uLOXdcMN9ZM67>{XLwO@>&Jn@a7*? z!>sZ+%7^N)W)^){?=Fa~I?B1r+wilWF7-@Zsa#sEGws1pNdx@R@ znSLT)_^%I-`SYPzOSE0epgPy$=uCP{VTbs@2 zmiIc5+-$B3dhY$=;*bI++OswJm7ItF zC|gbO*RN)U-A#NNogEf_pHw@P!+x?bKe(Ym$=Y&W*XV7i%Z5VywvWV}Xy*X2nb+y7 zG)rcWLccY}(tTQg{Z@Fw-|cNj1%N%Xiw2At9!-o#A(7FJi^-2P{cA*R$(kotCswyae7^A z=D_0WpEu@P9s+svj|(OGwd3-(k~K6^?Cbc|Pkr;Az!*)Ck-&L4kq_Z)ZMGEsB9Wc&FKR87pM#1uKcn+#-PI*C0S2i_Z8%IR>m zkFrKNReV~bPYbW7wYUsIZPoq9@rvi=-CoN@o^(9u2A=P`rn1q%5O%$FW=7M4kZ(ehPf5;8 zl0~JKWDgrVRl%0c{Cnm9vc{v4vzgT=ySw1L_s%ap77Yojb?nN@Q-6H;7{5%>stFUY z-WM9WYb$?gRRHpF@1lB2>+J2?%t^27t+5hbA-zNyv)e)J-8lKb81v5@PcA;|oZ27p zdwx|qO!S;zgmQ%J4FcvKhcNt)SXD-B;7$&I?z+U4StCn0LyWx6&`xu_YuhM<_W|M} zw%+!4!jSd6jGUY9uksE-KSO-haAp{hhB?RuxtEX3guKupVfBvtNS%82P-8D56h+?NRb*P4^H`S?Y3w>$kH(m){5VGk@>CD;F ziKV@M(4tsR1{Z4okSjwR7GlmC-RX$FZTu*kIx3+p@F6pdqFIak<*OH1d?Z;p1WG|W z6~o7-ChkcE`*pHo(coE2^0LDB^Vcm!Zh05+@c*!TV0cAL_rg4KcI+%?vAS}`WZ+@g z`xQgOnq+!{H|<8LpC*H&bFumk^~``|-f7I(C&!7@Pf=^3ugtKoSFni}Ilk_`Sb2~X zbuq!rrpE6#1G;y3#?5D++#cUSJ+N#QrgsfznDv&YHSWWRC5mnOT5#{-Hq9yZy=~}l zQIR$~*@Ada>>cBSr;41kLto0(a@89`X_%aEHsrUy6kSf*5B00H$BS6RQu$dtXnuG` zT;{HAFJh|t@kHOb+{3-?$%MYi1dP`CuH`X1EvxSDR8|LN*V$R#j?A39-1s8yN-D-_ zR8iw5SD0b#1^TRjmB#%L|2>MIF+`?W;dBgTUz7N$KO?dFn9J|R4)hirO}QgpAUe-l zUg|+~j<5AX*(2RD>9l*QE4)#QEAvTzDJezFGyWI12-D_*gzq(M+~Chs02KaT#4-RaDC}41~tC^1khP*J))dIWE|EIS{ z+8+wq%SSHN;vs}jmz4?M<7jxmUmd~bPH;-lP6o|T(qT|6$s3$NGV8#Q2oksh4R0)n z2iPkLL4iN5!N68y3>tJ^fn9Ba5<3{se`6exy#*pIeYDNsKcNw9I6mUGf2a@*1^;CP zJ6LIi#kl^jpTLe&2=a*h2;rtI#7QKSLE%4P4>Zm|YyV#i{7>|QfpG#@Jlga5umpP4 z1ER#>;H3ZM%ivqB&iO5Lvx9A)2EJUy9@}{fkZ6ZdOIldk%MOO7OSlV&J6SXd;)Jfa zMf;+P8c!De04%%Ug4pjz&Ci8wQ)_cG^2%;c94wyb8B7hH4&T4wiSA`^YMq);@il4H z&*U1um)CswrA%wmJ98MaTc@JR#cF2zE$MLJ<2^`d$!mO>eUW2v#^Y)hmmtc!@9XZC zmqL=>*HzDKzu1TnF+98QmfA3|exyk+=vA_o^Dm3>`zrA_whw(RCQtYYOuh6AOb`1u zFC@~u-6hnJMCjSZG#T~M$ZFJxn7C%#2$lP+Ibu3lPFL&wj?z`gzPcdEZ;Rbc^4?av zy)V~z{|U)_JUp+N^5$j}Enyk-#*JQyu05zXj_@Pg6m)RYmY{*oro}7OGSG2 zm9;^v4$`HX#RrR09EmqNtUm-ik{`#0*W{kCv0|$H-M?4@$vp{m;ZZUWz@(m`+6p7A zXpRZ_5!axPqk7|l_{SnYprp#j!<@KNz7T=Z&t*{zzE6*)!Bk$;{eO$7{(ywv1P4*HzD=V2Url#uoGl72DEL-)| z2IAR}Z+iP`#O>iv@rKjUyral>J*q6d_C1VP-_EElQwx<}+->Iw7wM%|rzX8ye{p$= zXCQaT@V>PnuWUz3i)JbxyT*6i_WyZ?Q#(j`NNga9D?jYUf`vPM_(y7^sJ({=2DZdS z3I*W?pT3$}qgR#=0rdmk*YxfDIGMN3)GoZOnD#)-EX&~gC(OQ> zOpazl)XkY6J)0%+pKCFY^H}Eg({{sIKkKnGgS60#h3`0e3e(T4%o~Z^4eFWR;}u)0 z=nAs^6Ezj#8S-Oqiv@Ytw@iKvD*ArLi)VHxQp>(_zPU1DqlL4)uZPLjc*ChBW;{(> zU0dKi-f>3eW$urmuiwqy=;&g3X?Oo#!L`H+V)>9U5-;fXtfMVRaZ1r-C&>&OFwA|L+aMiber7gXHU?Xd*>+ooU+`A$Ip zoLkMz*roYY1OJq|b5R6Ykql3wOMCi}4e$3U{+VI_omU zRChKXKC`1xelbpq0&$St)U5q37AEXZxMWzm`)2Y!r8Yl0y_PEWN08d(?h=N_eL5-6D@X+-pN{5ot=B~ z)>C8n{P(v86dgF%)!%;mtmsDnmdZZy1sel@rAv6d}VMlwHwBNDP)T7%d7@wIH)MtoJ**TeCcZS z=7T{yZpq-K_?^Gl_q>CVg|kbwBPH&qBgV`YXPfYg!VWcweVPi42^FXP$@$bHFZm9Z zD80RK=To7V@1WYY!_>KgUvzd>%#m+wysJu#XALh(8}Dr`kvZ>Ogh5>UPV$}*eSY@4 z)4lt+!0(=@bMGsyi8x_3_MDHnc4g(Bl=}rOR2zFA+1}xp5+q5Vfm+mL_TPE zSP;#n<=!C!rEt3JI-Uz;TeWewXZ9$V`BXm1Zzz$ut#MY8UF0oK` z;X7Pr2Va}V)R{FYb(QPMcLjWWOTsh%RS}7-8l{lL4aM$;a9djOwwkWDoHJv=y57+- zkSZw%WPaE)#Y7oicfi5q zUSby6vQcR?5;V}1;#>dYC7sxwU|^qDzXbh3$5|c5G%2T3>G{p?V*^r>N0S|~+&1-w`5(QP;BPmAS# z^ymtg`!&B9PyL{np-p05po(9=PoTQ8BsDzyp2OZdOS9y)Cau`j(>l)+&Dv`vE{)JC z{?uc{XPPE#qOQJ^a`Q=3vzyShkT3pv^Ylmd#(|Mm8`ajxDbLcagiLu;1#kZ}#EB@E zY?=2bWNKya;U!FV&WAXi`9k;Yv+t&W$r-4xZsj}o)v{O@{lUeQYb=(#zm}v5tQ;kq z&9GDlKSO_ue;br;7uMh8BfoF9DejibMChWw*M+BdS8Etal4U;}UviaulW_wtssn#ha7VZ$~V%+3DBy zSkJVK4&Yy#nafSB^R`T0CeQJwqlo=`as0P>KBwo*O6sQ%-oN?x zT@*rrIpC&A)ioFycXbZGlZspC@CO&pjCoHyIm?~%-wrpetkARdBiXTiQnF3Cs>K8X z?qb~M$F5(`KD_<+7rXMaLYotZ@tK+i(U zf)m^(?!hg%ySux)yA#~q;U{bDz5kVc&iU?O%s%=vFXlzPRjsu$YF`3rgj(o(4yFoX z%{Xg+M3gN*+y0G5NdFl}{XLEPn27k$5q+rE{$iXzIEg9ocR<Uoi9!pX%>ak3VaD zro_%46qLyS{gg3LA&-KDW(j@vj?x=V9pllN)}I zjQ-6N|0E6e4-wyo=Jzjd`O{nWJMV?*-@3Ek-oJktnm;6I|6mZSl7BJChneng1}W2& zid^A9X`iULST)KVyC6D3Cd9lkh|#98HzVXcF>pf+ALD>C8i_t3Ow;8PQH{=Dt#;Q< zOwb?>E3F8cRlL2FzU3698Oq%T-~C)Jy8LJYHH0ceBw`?NsP_tkZ|O?=DaED_`xwEfxwutFXrk_^Uu^9mL-aUhw6_S06VD>fWFG!o`n60LJPvT038e zBcv2Kd^@L0fDlWcovOtd*5J5^h4NKP(Xq3zN)K1%mGi1X$(c@ea=54lmw|W6 zbwy8HiAeB6k@!4gB{5a~07%7Iz+zQ7S?yoylKyE4i39-*eL@f|z zZ88*|&G*zxli^sGkJ59bLRTqLCmHhk?lR+Z8NSZoQ`0cUISIaVHQE@{ss3%gHuv>; zw;0Vze}E)dUJ~H~sD@cE{g+j@-14Gl$9H$;&9#eMTz40#TR@#m2#2)K7%iv9w0Oi$_oz-aMbo6rP^0r<*U(d}D(yqRq5mtZ zePM+yk|bkS3ROywSotH*3vxpPMzb*r?we6nP;{z1(Dki-UItbopHXM#Hz>bi5xC9A zmttT>vlTfIGH(b!d_9*)#K1^MEs68_G%Vl!;vEwQ?I%yYXh4LWQfzZVxL=eSi@7Ka zD#D3T>O*$Vhik?-mu69>wZ$2KymwH43_0QFh`2Hajzc>dT!%lVS^*|IyeYjqpiGMV zbM@psJ`_eEc6h&@9WGpLo}f;Ink11hcrAt#tnCXa~fL2JrN}LqZUF09uK*qpW6vvl$AnV%lOYfyqdwel zpr^5*z-kwcz9wzHemF~ad&X-V-JMp%gwhvKM*kf};UBVX0tM+!(l^~^n^aw%x3W;t zVdOvO-GJ{wL97C>&T`OR45rW!hT`tZX-C@;QMM9@Q`K_ZyDTJ~W0wO+DWfj}_d)NB8xyn&V_bo}=r-$6^sP6JYD!$mm zF^2$6KDmE%Z8$Q$#ME6uYkiW~lJepeYzE6Jtpri`C){hd+`~XEFF? zTn=JzyG8?9sV&a6)t3@tPst0^q4ywhFvN( zI?-b7VHWvJ#wUCdUph9y_suD6c}52@OMS)sCOra?(Ngt3o_l*##|E|P7{!+Vy4n;a z`d;x32oA(VB;xd5eJx@@JxNIi*kqzQ@a-&)n2`HjN``D)&rqQ1Q+pP6jbz6!9sK3ZkRic~grw_tRCo;!J6@@b+J=Zgw4$%9od z^lr>cii%D4*pvD(q;PZ~_tm;u^4>HTh->kENxggN@rtWXuv8Q=DJcN(qe9giL@<3fI4g?Qyy$V(;x zWpEgt?4V3iNfo7^da279Z_^Op&BC6ij*%DeWV7z=f=HCLZ%5&k5aCUL?$~OjAaHXI zRm_Cn9M-1rn!TFEw-{_N)b>I0=|-hThqES8y19jKpz-bLF7mDoYkiHSE1u7)r35!yqi7dQDbNG6;tI2qA)Fy(_@{;V@P>XCa?1Z zxr0hMe^t!gFlzzgh*gKbjmbJ0cM z+)I3O1F@Z&0YDZ8j5$-u@tvY|yt^R5ddD)}gMUj{A;C`Xt%gxvw>Gu>A>vgS82m@ejtQ;}H8AO7wHMTn}C| z(mKf8&GRie&GSvZC@1E-OLtdukd$Rde~vR_Z-Fm(zMd&Z+G%|wHuKTl9e1^0 z=9edpZkMp`7YrP!OMX{ISCdZyA-nbPS!V@JtM_c9q0Gqdb$Vw2Tv6wnhPhPO0j3vN z!H32#R+K^f1w<8^0xk&6*X8Buqpr`FiG0AURJnTp|H$X}U%%mjiTPhh^I^XGsM-HO zn!hq9$sw8kuJaR9N*HiKKVl(cFN4TYesj)0;o~FF_k&+Pa%f6_gT#kJ?Vp1S=HKBi zjO>XA#S8?ovf&k4pK`0z)9#fNu?=|7=;AG4R=rnP^;$Y1uN z-~T}VHop8@@&@`ld1a~!6@-B^aSQlE@0O>z7P-TQ0LbVdj>Oj!t>dLx;-Nus@4NFB zQaI7yKg*ke9Jm{8wms3HSXw#M1>}k^+4oDJAH?EmW>bc~Tnb6BPoy|pPo%_Uyt_0$ zZkZOaD~1w}%G{i{873b0W~-Id?_&(&QgnWcXM^iRwJCgEhb>fjv118-YjG}xwiyfT%~D0Qb!n5_8WxY%v8;QpXaRX zX|f&TJlUq!00P33yjubPbUW4IF5_Ij4I-$Wr?zY=`X%o!O1kw>0r@=ghS1E1il$4T zq#g80+>rINEul)3pwp?B*nUp7U-*RhB^H%abyXj{@@}J;P@}HqCWcIi!Ky**W5=pe z4I+mK#!f^p>6$nQU@Lq;t_XtrCgZtUBZq!!Xp%Vh61QtZHZB9iarKW+g`aTWER3e2 zO(qEzBQvK_wp80tJAR>^-!GFRo-CSSv zsEXPO7;Qyr%@$n62}n(qs7;=hJfP8~dpxW5A2#F2j^#8J{>l#)%H>iBl50kRy}2ra zC6f%Rky^O>Y8kcvi$xMPK5Z1Vws58WB*CD)gIE9|KQ`U=s^3Gy8^kNg!mT+N1?z-} zS}Q6IUeeufI1!=_fP`yOyeRWc}MOH3Y#nZ_Hh95xLs$`7xsmBedfGjZf)A%OVv`T+ zBzCChcF;WQ1vr|}m_#JTn=|XP1|6{`*eKkmhN|Qm6yg#}LF(xrd-8uu^iXbO99I&T zY`SpG_SWI2r3e{F)fVys(LlO-oR?uK ^Rk5p8V3 zhrdOSZYr$8tUEHxPEqy5PB}X0BYFz{c04R3g{uaRtY#_e0}8qMen1=c`72AflanB# zJjpYT3Y~xcfs%I_DicX7P}%21Gg$ed5K~KPEypmCt0CIy05#jYBNkb>WaSKWDAx5IiR( z!gd|jDn)J`M=ls2&#T`-LcJX%1T%N4D2joK8m1k_5FX5En#7;^J$CD*xosDH zvAo*qHuFuV1!?NWEK#|XK=`>}95qnFze$$1D*(*Wj+cg5E9-x@?L=5*lx!3j>L#`T zW#HAAWh74>$H1Ds@j}cC4f32|6*;EESkwd@)S%dZF_(H&@x*N`g#^V-V}y;U*r1k8 z5L_;wE#|N>6+MFj*3FIBG3Vg;ez(a)y*DkPWmRDwaHuJ}3b>>#5qtt8DTD#k6e}ac zjQ|k4IZ8w0zG(AbZZhwG6aUs#+fjduYaV@|4{sVckA~7j?}#e~X8#ge&u=+W{#s*n z6g?nji)(~)02_Qz1J56Ldn(46+HX|5d3}Kn{TMG+S&VmnU@8I(w_XU{?}zPXuS`cy zrXM;)+HGURcq7--2+Nt`j7R)j8fTQzNC&v;h)4Uf?k7Ryn`hq?J)m4n?LIKwuhEhk zwALaW8|25J!{k2`owq|uP3qqow#*(u*N>)xCf~Y8;W~N}5u8x-G)(1?NrV8GGgB)v zVqQ1wAo^<>ftkZ9(X2p{T3)L^Jl1GIB`1jrMv#I2{T+!P1t-Z{d{I613Z==? z#(=0TZSg$l6th>5b?O*Q`36;BiwVW3NuG+}ohmQ~q*s%WX9yH4uyPBXu1r>~*K)|} zEFOh?L}=c@T+~4};1hV9s3eH6Jw5H$qu$~@`jzsN5})NbX8dGkHuvK2S;5w*?_Z!Mz943v7+jAoj523@&PX?v?fWuszH(=q8Z`XHp!n>d zp&fK8k2dBZnqq!{dWh2Z7$tNQFb*sp>;wgS78D^7StQAq?XU|~!Gu(U#uxP#Ez4v0 z!lqSeJ|9U#xR+~5qqBil3i1`e#HhxzrmTY#HayXS{UY_$;;dVuhNft}p5q0GIe1m%Jc@ zarutho1;4IY@%%iQ}7gSkEw?!{rs(o-Hd@EQ|9Y5a%0%)-LWa!X#&#};5%WVdGCZK zARV+&5_jHYuvC-;RuB2EGegr%XYLm{vRfJZ3Pi$cqGAS8sf{s1UvLv9^?erLpQo;w zDOm>i-cMZ`Cmg^!uJU|ZfP|TvcIzYg?#9#$kw+Wg6vpag@-Id}9lD05614{T#0FI~*K*Gxo&>RKw zd4%l!+l97tA6+S0iF_60%zA#eApwTPFkc5_(dM<=_o=Hb?Is#}g{0Z`r}Q`l1=oar0^cj)$4kqZG{stWn{!rFX=)EC z8-1Uek~SWD0`Fag1biiJwA+7pX&ad3746f}-HMyCZF>>q2^|UT{Xz#ygq+=+LHOwdD}J-apF|bw zokIcrH&1;GiDC)t&>=p2|4b|lzo82G_Y41oDwf2{3iv5}#P|_u@)1=C`~g27x#e9w^q5-z zu>}2}SoQ~P{c{TR$9(61gSWp#W*|%~iP3&^sGy7-EQySov{ZmKjg80^HaM?y-K{oG zvz(&>T0B*_rZPMRv_)WNOb8bD3(liCHHz_6BlY)Z1@u$(s${8_Gh;b>qvTxP7=ofN z$=swYkB?Y=w@+tFBkWD$m?WZ9>8ovW_UXUEQ9fV&vW{<+!cwT=G}Ovtx2h>SDOO)v zv!t_+S52wYR_Oz@cWzK0FEn2q*IS*1Jr|d6rYsRSceHwtNE-wXx$My>7_hhqphBQa z^lQYJi!fETK(us>)k<1fEc}?EGe3%hiA@+Y>33|d&|^HzqAbZ9?Cl@HWeWf-F4b4R z`HfRAE<>F4gz+KPW857Nmz&V=#5v8p-yJtEE~1Yinj!#1zIkZBXtN&YMOo^`D@A`a z8zH?ZH0Z>~`Nxwbn-Y8ah{v>39996Y0-zUwQpwDH8{t+DDUht+D@Z21(7l{Z(M zn)*ilNY&$v=H$9;z6)B$lh2yeA=-?Dd3Dz+i9hwNu1HWGv`4Ev>zeQB&*@njsJcu6 zj43Ce?Y#z6DR z@OVkL+3n5AgChArW%?_6fvGSG`3ooms*QIo@TbuY$F-}&y*;mVt2ZIQ5QFK`n7z9XM|)+_H1oXYa_t z>Z?Z`xN}Y+9F|}RI#aYLauK5x2u7Y{MOql3m#<^}!O>>LvF`E|G$nSFi_73J$1nqT z(R6QzExL6hbX;E2n&1o}BU zE~$!3f*1iIuNMy8-l-?}X43mh&>bd0mT_ov zH0^oUl^!#m6n0Lt^vSNN-DbJ2!iDk(V6|}Xc64AbPe9#vMo=m?%zEx+VN8OI?b`Fh z&;x5e!*Go}{^OojZy^9v$!3qEOW28uL8K(plXR zp_OHLI8*%qkZ&}e7mlANW{XHbiJ4j}x$$bS$q-Vu&KO!hdD;zH;~rRUp9cWmsq`i# zqWX}2Md6SN)9hf3IW_%6aQ0zh2doz9m>@$F#UGD>{Mv%%yIAr%k8y_I;A6_R3VR1}k*dC1Vx5H(d6LzAO7385|9;LSfdnB6n z#y~$>#Skl=`8FBE&Dg7{pRw!fBY@La!t<9ok5N0;ddJDnBFfz#M?qTK0pgr#!RXOI z-uZzXzp~ZQYF~3GdgE&9B+1~O&D%pw4g?zmMbzkYJ~#AK6~8rD&fX`c#~~OyQ{#KB z%)@6h4g=S+qQQrYqkL8#A?)&Q9T+0Yqc;3p&0AkR!Nh#VmCE4a8LCA1GWi$?@MF#TS z=YEqLR6Cint991-Qh^op>ow!I3WF$tb)}uC*dtt{7)(^bJ9lB6fbUl}zL*b&Af49P zGCIQ*o2MiEh%`h8Vp+@{-|{`&V#Xrmy6&aZg%rQr`Tn|(WXwg|VgRIik`&IW34G$u zZ0^Msas*D%H92GC5@Jf4mLp+4YXg4JJ~w8(xmEtgi}Kvz=N8i+a|t_U{Bg*TB`~nM zhA~_Oa!ltjMZCet{00P60IBC=IT1Dft9DG<@DT+a#+gm5AKVv30b7U2A1$l?t=J4% zq%jCoH{AV{o&HUXZ|Vu85ETZg(3IbttYx2<9d=DYu?xE3urDz7CgxOxm4I#m83Ek= zmpvUhvi+a+Ofj`qNxL|JOe^tHHd7XyC*FWX)eTkum(Fft)D<=HM;Y>$$@h;kge6e` zndU!@-Pl!sEU@3@MI!PwHASqJ(MLL3B4Z>SG3D<>;{U2h{-xjex5nfn-im{nBbFe9 zK>e=*<@b!!1R$B*>S{_ zsl;lvjrCN?K_L6?QEH)OeyUdzE!Hs|?aaUAsfU->R&RA^XhjfA1FtVrvRto{E`HIo zr>39tu6x|Kjm7wW`Z*dCnSnx$O3kq|OiobpYe1Qyr+Q2ks%HjK=v|(d#Y!oD&ZOj{ zI;sNz-s~OdxlXr;X4dR5ha>WDasW;Hf%jhXZ#w3T-QE`&{X6COJ+0Fd=2Gw1#-L!w z6)73KZ>KHiDvXBlHQ9swaOqG+Uq+bw^CWoBd`XFn>NQ7_Fc&g0SZEQ!E-Z;r{E*=p1mYU8HU)i@a z4E^L%>Lb8$lOB8sbjV$nZr2u-Z{^PlTs`kYos^shFSGD@6qef#RrfR1e~M1GJUs%C z4%Vqjylvj+QWir;nSGdtI;Gose-!XMkQ7F=m=y91NOtYL9oCg>vP_||bMKFQ}BUGKV_63Y|xuB$8l?oo=LA%O&U&*En$bRt<4GzY-;3E#YIz)(E|&`znlc zPhp9$MHhXGitleNcfW6dxtfUs7o!K@7*1E8LcZ5nI_uRCze=X2-gS6DNHWDrRfHr- zG{}l`eogX$+%do~bHX8+_By8_6B}U2x7gf2ewFTWG3nvrO6Sg)*rdTA25!+$#qe5( zNvh|wkhS0}3)x1m^1Z_$>ca5s!O9uhwEACl0 zFkQ5v={?e2xtT@qW3e@^C}2Z=g*JVmrJc!hP41Yd`)g&EWcha~rJ+-T zaYr>CGyoSho2e#W?Gw6mR@CjLAByUO3$UZXfqP*XM}!$=8uvX^UXzUjB>auI1{;gL z#!3~VpWbT(fB1F(YA9-NEOi5H76h{Z#s_0o`?l44#T9hmzxIS9$BNd(%Lp_}qdzeC zJini}GCrqB%dJM|s%9AlFixLqcD65jN5GPItwZ5*m=Vf6d3n$||A1vkV9H`u08@|5 z_DJaL+Dj6=U;ZK^xSD@Kq4muylGn^m+LUFTKlq4&;ZfY?;~Loz?N-1rC<7n?#(%^~ zXY~Zmu$qAevLv*zq^&Vnp2LUm%_4VhlM9_#Nf^!GvTVQj&4Yi4LBe@sxPWdGGhS== zyW^?!C5WZ+URdF4orjs4U0|IadaSAPEst8WMe*$kOk=)i-ua$wN$w~gOO%bCpOF*` zV=kuD{4HpnLDE7zH60*_sD4rD7sE?BY!g1wBg=UtHIcaA&5VD`Cz!!hPKA#jC4^dJ zPMT57K665E@>Aywg@Fp9=?jFZOcHK&ZqoOLI;27tw^n^NX5p_e?do-KGO997w;AJ4 z_qQa1MYUQ3)0|lTK%m0{`pbfMqcRMnAk!>cE}6 zECEs~nmHevo{1ijzsv=0VhUOXo5u8!8ll75yt{7_875PD|EY)wWaJ<#>gH!IKZ?hx z(B_?R%%bNr=_*Aq`0LaVE#WV-UGC$Q>S+psOR}Ax@n_L`rH@{Y(E(P?# zfw&)zxCBoqJO@0aB;RE0$EZjC$0pKz%U`bySB?u?iO=!_>cY^9V80G zP9Y#-po0Z$6?QShaw*Lw-LjZLs0O+|3Db!L?#49FT0c|T{Sb!S#)(db5Uj$u&*30F zAIdOkq-M#uDKQxhf@=;TCL$+`V z{J6M?97zL$*|j)mk`qQ@RpyeXI;%?>!iSFKxG)id0VNKES%(3*aeaEVTP2l}@-pJ2 zS}Gfm+YhulE_4nVEO~M+y&IL=pQ+_w^@4$U*>VReeO@U;DMURu!wEOAw#5;b4wCCz z%$X-4-hj?~ejP+vi6-7*@p(IF13Gd!)0I^4dWRh8;&OlRvm`?0! z9YQg5#%Svn*AhX8cMi{lR<8k(dAXVU#{1*nB)PH?0{qaf{+$pZ~C?G%JQneya8n7dywV+dU)!YRs}UpB+Jz^s)vJ zk^0?ENR}HcAIsl^-pvm)?q#)2FDc2BU^h)KU9U5f`DLcq!;Lx65~|Rro}#^`cpiY> zTb5mRqN)R_#6#mjO5p|d8T+$}qs1UME2yLwb(~5N{*=h)h-U|^B}U3%EQ4_SlgJkD z@98iPRvD$ty-~f2iMmTGl(@%}OJYI?elCJggZI0#u*EWeX$kjTh)K zu@4`GzuqGTVcR{|9``B51u}~;(KCM9d$-q1DVqs@2Zo!w8x3(Bc`Q)~XBi|k^Z@73eA$EfcgXS2VA@?dj-uC)QE6J4$4`U1R zfq^go&@fm;NdO4-o=(AQsj>AJpAxAxexxyu$n#niH{5GRlwI1JH}F34SG5)@sksKV z?}c%T6^PC%;sofjWbNS$+832v8#+)+{n}%9QU6_VG^grq*$b)6-!BSmA& zR#9!Lhw5$>(J5>P&Q|R;4$H$n$E2ZM#3O*b=_Fo@hvUg2;zg*R^nP+GSocItMXfOi zzgh1v9)xk-k?3`v#(1L!O2HW5CzD^XUOIy)Sj5Q7m{K z1--(FbBvVeCdZte<#sba+m_6lDJ1 zZ1~^}qtPPP*&aEHuGg2|hju<50$cSkYuKu-ypYv1J%2qu9RD`H=075bedCz+h?bmuS8YN z!PYN>NUByESZPM1M;p;4@zZ&F8eUI{p)-7$qapnH%u9LQFhn}_t;4OZ@0WXtDYnEg z5j{YkYx$)Q<&7FT9xo}wd+px-9x(k~tIQdGB>Rl}L|Wcl)M0f={S2q%Z$fov*p3KJ_yInWZLuc$vP6n{sY z|AD2fe_<*4zw}1`G*NuyN&m^AtZW|*bF$d`VAQ`zH8#!&8SNuQ`Y)l+zu1)ZBd?h; z5%`K0mGrNe^?x?j|Lf@Q^x?mJ5V4kl2>&9&e~{llTjBpDL;C0Lod1jOK344f)9mmE zApYT&_=hSA@}HiF*r^co54U<^^xQ|cyiNUYNA`Jz-d~RF*huhj{?J`QA0L`ZE->}o zNn-P#z(H|CKLgl1c;~d|jK1fS5nMHnMx7X3mfZW9(qm1$z4*+$zwQK`dnr4r)-*?n z+&z5n*U;`ko)A_YE=BurM3_VloJhSLimE<3eD~g{{~|jwCQ$Ubp+mX`&^J=?YG2>; zWAGWUghfz?_m&}+&AD6!dsA^8JDtsW3(xZ)N`KqAQ}V3Ip7E4`(Bkv=-Fzo?eo0?(`$f{VI${7#avmWNwd%ax+&kLWaA~-D;8UPkXkoKL<-&bNs zQGVJ(CT)o}_DVjr@A|YA_l4tL&9)c{!J}HLguhT6Ql-nEl%UajJg360;Hci_$-MUT zS9q53TWnvBT3F>N!(=R@txH;g+PU(~Dn}0}b9AJwzS<-RKdPf4An{hjrDU`q4}jl% zF_>)wJuMm@!c9hIOKMs4lX7TtZL;m=Kn%uH37pUkH2W%}%&Fs$=`c z#HzWz1)eynKmC+D=$PBA{~!Ed>ONsexr|1cc~K4B_sOz{39`^>wU)IX5PxV9bGsJ2PR?cbcp>HAPP8*qS?BOIw~2vmeFQ7 zL*klvKa|l8Ge|W{pi9NYtHtJp{`}>Urbv1{T2@rr?glM*h(#F-=!WxGGi-tUSy!%ya^K}kU&}Hgx<+Bq(H$~(a}1O4 zIFyXx_h>Z&0R3&(6`MHQBwlsl9iLtMavhL0YNpX1<|%BUy@F;{J{gvJT2w~l=g3Ms9Xb0~YG)LAcLP8mJn)ws@=@YaQWS2B>M!cTq zRVzJMc|@ZRU_Kj!sVlcIx}2i4tJh(pfTe`rS6V!O%so^EDb2m_jfaQ=Qs=58Tdh;+ zd^Q;d?wm(KkJM2!o_zAfG@nW-zX_qj9z&p9FztS#`dADJ4c?Bk0^e z+FXBBHVF@e(mXRZI5;0T{$Af!z1c*~seK(Y7O=7>frZ*!C9hhPRI5Z;V2mvFl`F%0 zP{sFCj27hRFyS?nzRR0y*>-%1wLDF{|J7o1GKd<5uEXck64y@{uftt39Z`ixnNILU z!C-Hz8Ym|SQ%VHx0HT%hK0?~Vy0@14U`?O{15f8m_!d|XpFkvdk)91D_uGp)8=)@l zX}~6mTUVZ3lZrNTlFVCT9b-Aj;G@iWJW_J=Vj}4Dia6dY{Vx)+j}1sWQx8rqFnBvF zR?h)foe=FyqvQ^7j}CRbf*ir$DLgme;pYFWfgAQ_0r z3lmw+g#j{2lfLF$^eKO91zk~pJ>Wa>N{;)}Nj2LnBjfgGFcqkMFTtSqFCK63=VynL z&x~3p(*cH`P&mSQAy0|nu8VR!)f;G$l9P_QbgA$LS*4o@Dsz5J;o+nDvIi6EN!*v` z1f&&yn)$TEkan?(c66*1&ld|;Ob8uX3&x-x113_dN-6JiuxdT+nJ9v+o&>-PbKeeK z>S;~O<=Nc(q4|lks!)$9>K7Se4_k_^(DZr`a=fVW*R|%2vNk7SrCE95zP;C{>f`ta z$3)U1si%>H&Sj;JKDHY^?QD4a7KP_PskmstTzwINrf0}-Zd4H+b@5V&MQovr!};|| zD-5mjWj7%qvOc}(fw==roS%U0R^0&X!35(sAV=?dbh&C84@TQ5Nrp~6Ps8`%+Klm9 zrP-_)?ByC)sG-@euuM?)CTL7Xy*Fg#-U>zD!kch1@a`OU&It#ZjMzt~;Cm_rS!hrl z*#fLQ)N-X<$rL?j5V1p14>tGrFNo#A^u2b%O!65!SGkg$)88Iv=Doj4YJO{}L$yLO zhi&a$(F@@jdHxvMI;FQmy*SyQ&hdtc$)52Vd0>Q2z*ni*l}6+bL#e!VYB6$x3+S=El`Etp%N!a2ct`=ifFJeewEo!d*} z=a4#VFKRW1JgO-WdNQge9iB7Q^Dw!4Q8dJRi*XT!^UL8dfK0>r@mSHiP4ZC}{O#DQ zTqNLm57N`xrWkE%I6vk6AuDbd=Rs)gs3uimL|kGwwQht|Lj&a}+2iXcQmk0vI2!FW zXC1JWJws0*R|X~A*iPVz!aI8(~`0b zjYl3t8E0E}K={f4Df8$|rbxZweAG0geHxv1C$|U@~V#%-#a0TMUn>*hZws)vpcUGT# zG7YP9{VA_katLCmVm=i)$6tw&Y|l%EDz+~J;;xnk|D3iF;9Te&Phjpuh&LX3W(yV@ zfa3rPXlMwHZ`Nd%g{#?__ut;D?&XQ!Ky_kT2M{jTg2Kn*7vC8UoT=A2%1SaTo*#WS zy$@s{^J4^1QjHAZY(uE%E3QQ-oa<8Td!?ZsbcQ`&8agkktc+9lVCCO$%z;vn?j37@OBd zf|z2Im`y*!F$#s_I^NSJMNgk)#}t@dkP+oW8ym8G%|($lGNmvW3i(i^O510Ct>#Dt zOkv1Md0rUwLHMc7y}5lm^20fd2pS)=W7|60XdLlN+3ChTaW8IotAEDw^~&da`2bY@s?2KAMNO=@rK)?hX!N~-9BvzF%=fw#zV;MY_KoV9uNt}F;$B0>n- zZvE}sA#`0AB#I5p64$`EkR*xGrFOtaU#~0C4XR2;d~m~rCgd~h8Cd@WIHT{gR?6iU znVVn2m}pEX0%kKg8tp^Y#Qd`}_b&jQZ3qkfN=;C`_Pf&cnFcLIUNc;U|c|5 zmSfINE17?q#w(tDTJPtVbRfov=zWXS6D`~9_mL_Tfoz5$nOg6g$2B1^j_kK-t9es@xR^C_8`^BOn{VS7wl|7o_-CKmgQVK9^8eE>&96P^*HkK2V@V z+CgFYwyB^Z+r*TLjFc$M@+{t@wSbtuFl?BKchKw#xL`^J{#aOuS{@n~z_pY!kSD`e zguS2zg*^58TWdH_SRM8x7b`n%<%^O`udQ|M6@3z6zD-TB()CuJ&Bzt5w3}?UND3=i z5*VC9_mf-u411IQo^2q>%I1y}M5NZjyNgN~N1;Ms?+&0xe^71@gVDKZOrRoiZpzKF z3Mm9fz_&<4qZ7JLxa0hjsr0FmT5zr3lUfgDYw{VbGGvmAP z^;6;-jg(KIlALF_kapeJeq}yl8q5aqp_7iiCmeo3LO&Y|<=*Uz=m7#fW)oBuc&u>p zFX5yxX{_vS&OA^$NQ~GaN#!z|ZjRk41y?wk*ICsdHBQ%WCj;)sLr{uKzD*+*&d~mw z^F^4}sf>-!J^*wlRs;mFiaZdo@!F>y=qkZu6Zq|cV=oU;vt4|)Id56pMY#+W1cvG| zP|iqkTfcMMI_ELtt`S9~9%;9`qI!uO4Ruf-{A~QvE=!bJM+F%a5Onr$u|$o5%0m;gCIn4HPT#LJUPBORo$THnF* zhb+6Fe2q9eox@H+&4c5-;J-#8EJPWjd?rHdeRbUYQk^{Y)76p{%ZJucw+P76*L;K; z;*K&Nl}0N~PljeuF~TmE5D}T5F2K0iONKDj>Ao zx>)Sm6&{c>N@_`H(98P*R*%b=-i9D7&D!3F8*^x^~vyr4K@QDPb zn`UMwgT9clYnvQH=}4x7l!q^Ew9hoSR4=usuYMwUpw3h8Qe|f&kuL=r+nl~QFlHZO z!2}@j0L$Z)%myWOS2%aCF7Ag^QjrQ0o~Hv(#T(f2TX;1>{O z`Gq6o=RnCdl;y@r;Si1R1TyVO-b6x{pYkxtkR$VKQoTc{CW`KdV1t*+YtkFj@*j&$GF zcw^hPZ5tiiwr!_kn;kppIO(8ccg&7$+v)ITt$p@6tM|F*j{B`@yl>U}rAE#9%>R6z zA6c8}4?H-lsFL8oLYWt{!=wn#arhyejm0t?|0c8AP!cm8i7lTuRk_r=s;`N_EhZ%Q3YL`t3e=*Sc`$ zg);?c2aM-iikg)g{37$#5X;&_*PI0Dt+tH`cj16sw(`ybpp(0Umt2N*F+4a%7_W4< z-gkGtaj{bSg1(2pG$Em2Vd02&H9g84tt(uLHcw2a**z#wQuZC0gm-c0(pW_FzieLT zfvCeddq}NYA@9e)-C0C3*C5d(}_GFOoU$fv?7FOp1NaY0UYC`JV5_ykb0 z{wqN9x`-HpxTGVfd_s3@iculiKJ^b9CucISE6HD<`839U-o(w899m3m z^UoRaA9Cg&L*2hUr~me|{vmVzkSu>_o`38KF@E`%07@>np-Dz4!2o4u;!HRCPDu^W zT#r9(L;(l_#64x)%C9xfz@Q5n>U1M1UA1yB)52{}8^B6NlGr5Z0B`s{XKWX3=NK3R zGC4fE*S=E@A`L?^<{y3%@e5h)9tOTcSYtHG)HUDRh3Re@ys~UUC;z z=3RE>P5E8te8aH7qSR*c-2LVN0B8fMy)v>2m}%2IvPua)G3%xqt~w^0$7`;ugRZps zD_PfL^V*{%n?Tp99;*bAayA-?i00WVezB`0n>e~nLvnt!nnlHVmz)YUnlwWSFF7s&vD zw;W`dU@f68*UVTyuM$avhg#KINS?P^L*&1(JDCxTh0tKS?iw7b-eiG|);#YJH>4a8 z%V@{6#IT#V;YQ(;Ghchb_0Iz7##k&-OS=rFdh6ft+L{?tX?IcUa>&Mqc(ssP36bgn z+3zC}hjswdHa)%E^Ey;V<^=+f4SeFznXt%&GQ8+m5m{Uq8@Q6RJTthT>Rv#}4~`T( zf1L6*R6AW_W0L&- z;}=zb7vnadNxZg`=PBu3412Jx{m|1z;n`=o~&nI*zSfm*?_O4rsW6L)K%iht~tR@c9Wl>8}M zRXgP&BH;BK8JaW+tpO!KE2x1?*#Z`amYn8wLoYc+Lv+7WWGlrp>WBp;t}IkVO}j0N zX#H5dH_AbG7VjImq{{k)&?TXS*fM0|6-;Y^ca zJF7Q|rJfFGCu~*Pk4KTnA#;^WkbFl*(|1drRsHZbJ6+x;IBUMko)kaNWx2D9$s2B0 z)V0?oMBcKt{opddGch{8{-TIvrDw52It*xe3wey8CCnGERqI4za*tu~?*>TZz7MP* z z_NEqS@27eyd2#FWp4&wj_UGBrQbL}H{%YkR3{^@K(MKa-s@-r~T`M6wR@XO; zX97>~3>-v6b>i-uQHr)jfx+0e>cF&fagwHFidBF_$#0pW2~JFSMOdWYH)+ zf8p3n0~KQI>Tb)ht|`Q3>1H}i98=(qAf5Y}k_``-j({oY43m4b1pRSal#HowLf13d zfQXSk|0u%p^+*SE#{J?%&)wGN64%DuWl#7@uG@wOFD$3qcf!TeKhF5_Lq~ANt$<7P zODH4A93}dMDECmGsg`D@X+(A{q@oG>tvcU8VotM&pcD5R=QPJb%tgD|gJ@zEXH9;S z3$hd-L<<^P@p!sk#hxMGLnCm@W$!+QGbXuvg{LRZqu?EE0Baq*B*D=Tej3zRT%7YH znbRLb$WX*n{0JDv4H``YMV;P=k{39ADX=s@G7F5_&1pjX4n^CP(vi|L_XJQf@Ji%# z1}+W5L28EOpYf~Z+tKFOL^`I3sStREgKPu<9#v6I*CdbZ2^}p8Z|fJ<>$^3O(4BmZ zt(=j0ounFX%9#X1br<|HM{D8kiPh6tb0sh9craSPzWHzei)GC$1Rz}HHdf*?&^C5C z*I_u5O>hBCc)A3*d6^*U5Zlw*oHOW|4~s94p_N}iK2SFOY?ROQi3-0aEBax?8q=@? zm{LP-Z*Zp29Jcknf+E|(B0XWHo^&Kp;yW^D#qMClqrBwfj3*a@Tydi<0O$hGA{uT& zOY93X6rM28)!6y3NuyvOdj!D#nrbw)1Oe0T66Ft(NpQC-whNMowJE)v}^yzE4MtI`h>akJvF07CkDXOf^& z5+F%X?~n0}<=QXvsMkyd`t{Zy=$FE$Pu8=s$QUvS9ca^jozm08G;;5`2V4WdrArsQ zY**MHcz;xGt_v}Rv5EM^!^G|2BA6$E)9o)H=-v?!u6Mr8Fz$(P(bdrrRK5kopvY$>d0gn`|d`Ai3|Wvk_?c<4D&5d?t)1q&&Sf#DDQ?g8#HR2vyzMe0alt!dWE!R zK9pIH@3KjAEIU_&w#4*foZ<>0G~ML0CSg$}C){V4uLPe`Bg-K2tkTx*lt%*Gvt^_g_9k0u3#A zfgc)2*dCH{gIA1saF&$gZKoa%7R#tG?(3}DDbv%)F)E|(pPmxsq7Q>G1UHp@-*2}s z2nC@vxOUhUfA(L3lcw|{(Q6uc8ex&Ee%&$Bcvau{QQ5Rr!`Do!u73Skdg8OWD|6mI zn+DiaUrX^{tzNiVV{=n0a{S?Ag+O3lRN8h87&MqSIz^l(2phJhC#NTDo%y)ox_qJ{ zv(d=s8HU?*SA%tboH1NKL!5Aa1&>)}X;XZR7om3jb&04(SoXGY-(GQX_2Pd2dwa8N z=Br3S4*A>-R+JPk7Gzo0g{Y%WYP_n_bRz&mgf29b!GCSXrEYz2(U3r#0lFYx*Ky-V>Myf-&iPU=H0?&GmM;LO zs!%4UQx5_2hSgmfUfDU@zJf=t6Q%hpaN6ON4``e=f>2u3CxNIqWYvA9D=N6~r9%vt zP8u|FT@y92sY#UXp^yteMBBJX`mPwYPE{-E!phg8k1xXCIOMXCIiPTmXvvJ=ZmGid zY6=A5#}~w~@gcD$GK@l0bR0?8CqDqpjbZpDy?102)QL-{23kp zx>l*MPu#-PZonnR$k6aLLVN%T2So_v!*`TI%aE{8_o`{B-^Mwxr;KU_|4lo;|(H5hNIqTcHdvyDiio=_1A^1A~{D2tI>jf{M331W!ZF?c_Kgx$F2H)GJ z(Qg0P@i>IYAq%Sbfd$9>eGx8*reyEe(O7f)1ZQzGkh||7hY{o8AliPtg4oWMPPfdQ zA?lGvdvDGQwSDI*j6^s9gIk0U1R_Q}dM@&(M5vg|&&7gt_5gn8XbmBmcrm*|JQ?1e zUvaqI4#pmoH$gac?fXmXJ+wWCV>;8CpedTbP9b)p

  • 6 Introducción a la inferencia estadística