-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOverview(1) - Experimental designs, linear models and biomarkers.qmd
77 lines (50 loc) · 2.01 KB
/
Overview(1) - Experimental designs, linear models and biomarkers.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
title: "Linear Models for Differential Expression"
author: "Alex Sanchez"
date: "`r Sys.Date()`"
format:
html:
theme:
light: cerulean
dark: textmate
toc: true
toc-depth: 2
---
```{r setup, include=FALSE}
require(knitr)
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE, comment = NA, prompt = TRUE, tidy = FALSE, fig.width = 7, fig.height = 7, fig_caption = TRUE,cache=FALSE)
Sys.setlocale("LC_TIME", "C")
```
```{r packages, include=FALSE}
# require(devtools)
# if(!require(installifnot)) install_github("uebvhir/installifnot")
library("bibtex")
```
# Introduction
An overview of the topics and their relation
# Experiments and Experimental design
## Experimental studies. Basic concepts and goals
## The principles of experimental design
## Types of experimental design (Introducing linear models)
# Analizing designed experiments
## The Analysis of the variance (ANOVA)
## The general linear model
### The design matrix and the contrast matrix
# Biomarkers (1): Building biomarkers
## Building biomarkers from tests
### From difference between groups to cutoffs. The ROC curve
## Building biomarkers using high throughput data
### Linear models for microarrays (or other continuous features)
### Multiple testin adjustments are important here!
## Biomarkers (2): Validating biomarkers
### Performance measures:
Sensitivity, Specificity, PPV. NPV, The ROC curve and AUC
### Using biomarkers to build classifiers/predictors
### Validating classifiers/predictors
- Test/ Train
- Crossvalidation
# Some references
- [HarvardX Biomedical Data Science Open Online Training](http://rafalab.github.io/pages/harvardx.html)
- [Common statistical tests are linear models](https://lindeloev.github.io/tests-as-linear/)
- [Penn State Course's om Genomics Data Analysis, Lesson 7: Linear Models for Differential Expression in Microarray Studies](https://online.stat.psu.edu/stat555/node/12/)
- [Introduction 2 Data Science](https://rafalab.github.io/dsbook/linear-models.html#lse)