-
Notifications
You must be signed in to change notification settings - Fork 0
/
primeFactorizationUsingSeiveO(log n).cpp
92 lines (72 loc) · 1.73 KB
/
primeFactorizationUsingSeiveO(log n).cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define ll long long int
#define mod 100000
#define for1(k,n) for(ll i=k;i<n;i++)
#define for2(k,n) for(ll j=k;j<n;j++)
#define E cout<<endl
#define max 10000000
int pre[max + 1];
void buildPrimeFactorSeive()
{
fill(pre, pre + max + 1, -1); //filling all in starting with -1
pre[0] = 0;
pre[1] = 1;
for (int i = 2; i <= max; i++)
{
if (pre[i] == -1)
{
for (int j = i; j <= max; j = j + i)
{
if (pre[j] == -1)
pre[j] = i;
}
}
}
}
void factorPrint(int n)
{
vector <int> vec;
while (n != 1)
{
vec.pb(pre[n]);
n = n / pre[n];
}
int same = vec[0];
int count = 1;
int i;
for ( i = 1; i < vec.size(); i++)
{
if (same == vec[i])
count++;
else
{ cout << same << "^" << count << " ";
count = 1;
same = vec[i];
}
}
cout << same << "^" << count << " ";
}
int main()
{
cout<<"Enter your number to find the prime factorisation (below 10^7)\n";
int n;
cin >> n;
buildPrimeFactorSeive();
factorPrint(n);
return 0;
}
//c v a s selecting text or x for selecting cut
//ctrl+d after selecting text to select same type
//ctrl+shift+d for copy and paste the line below it
//ctrl+del to delete a text
//ctrl+left to jump left of line or vice versa
//ctrl+shift+"/" to comment whole block and vice versa for undo
//ctrl+"/" for commenting a line
/*
when N <= 10, then both O(N!) and O(2N) are ok (for 2N probably N <= 20 is ok too)
when N <= 100, then O(N3) is ok (I guess that N4 is also ok, but never tried)
when N <= 1.000, then N2 is also ok
when N <= 1.000.000, then O(N) is fine (I guess that 10.000.000 is fine too, but I never tried in contest)
finally when N = 1.000.000.000 then O(N) is NOT ok, you have to find something better…*/