-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathexercise2.f90
55 lines (43 loc) · 1.53 KB
/
exercise2.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
program exercise2
! Compute an approximation to the conductance of a narrow channel.
! The steady volume flux (volume flow rate) Q in a rectangular
! capillary of cross section width x height 2b x 2c (with 2b > 2c)
! we can write:
!
! Q = -C (dp/dx) / eta
!
! with dp/dx the pressure gradient and eta the dynamic viscosity.
! One can define a viscosity-independent conductance C
!
! C = (4/3) b c^3 [ 1 - 6(c/b) \sum_k tanh (a_k b/c)/a_k^5 ]
!
! where a_k = (2k - 1) pi/2 and the sum is k = 1, ..., \inf.
!
! E.g. T. Papanastasiou, G. Georiou, and A. Alexandrou,
! "Viscous Fluid Flow" CRC Press, Boca Raton, Florida (2000).
! Exercise
! Use a loop to compute a fixed number of terms in the sum over
! index k. Convergence may be rather slow (check by printing out
! the current value every 20 iterations.
!
! We will use the sample values w = 62, h = 30. The template below
! computes only the first term k = 1.
use iso_fortran_env
implicit none
integer, parameter :: kp = real64
real (kp), parameter :: pi = 4.0*atan(1.0)
real (kp), parameter :: w = 62.0
real (kp), parameter :: h = 30.0
real (kp) :: a, b, c
real (kp) :: conductance
a = 0.5*pi
b = 0.5*w
c = 0.5*h
! First term only
conductance = (4.0/3.0)*b*(c**3)*(1.0 - 6.0*(c/b)*tanh(a*b/c)/a**5)
! Some appropriate output might be ...
print *, "Value of w: ", w
print *, "Value of h: ", h
print *, "Value of pi: ", pi
print *, "Approximation is: ", conductance
end program exercise2