diff --git a/tutorials/tutorial1/input.ini b/tutorials/tutorial1/input.ini index 22feb79..208c5b6 100644 --- a/tutorials/tutorial1/input.ini +++ b/tutorials/tutorial1/input.ini @@ -13,14 +13,19 @@ n_tau_hyb=1000 [update] swap_vector="1 0 3 2 5 4 1 2 3 4 5 0" +# We measure the coefficients of the Green's function directly (from l=0 to n_legendre-1). +# At the end of the simulation, we transform the data to G(tau) and G(iomega_n). +# The parameters measurement.G1.n_tau and measurement.G1.n_matsubara only affect this postprocess. [measurement.G1] n_legendre=50 n_tau=1000 n_matsubara=500 -[measurement.two_time_G2] -on=1 -n_legendre=50 - -[measurement.equal_time_G2] -on=1 +# If you measure many observables in a single simulation, thermalization may take very long. +# Do not use the following options unless you understand the behavior of the worm sampling very well. +# [measurement.two_time_G2] +# on=1 +# n_legendre=50 +# +# [measurement.equal_time_G2] +# on=1 diff --git a/tutorials/tutorial1/plot.py b/tutorials/tutorial1/plot.py index c6a9080..1edf9ec 100644 --- a/tutorials/tutorial1/plot.py +++ b/tutorials/tutorial1/plot.py @@ -32,6 +32,8 @@ def load_g(path): r["Sign"] = h5['/simulation/results/Sign/mean/value'].value + r["Sign_count"] = h5['/simulation/results/Sign/count'].value + #r["Equal_time_G1"] = h5['/EQUAL_TIME_G1'].value[:,:,0] + 1J*h5['/EQUAL_TIME_G1'].value[:,:,1] return r @@ -74,6 +76,8 @@ def load_g(path): gomega_l = result_list[i]["Gomega"] #equal_time_G1 = result_list[i]["Equal_time_G1"] + print "The number of measurements is ", result_list[i]["Sign_count"] + print "sign=",sign #occ = 0.0 #for i_f in range(nf): @@ -98,5 +102,5 @@ def load_g(path): plt.legend(loc='best',shadow=True,frameon=False,prop={'size' : 12}) plt.tight_layout() -plt.savefig("GF.pdf") +plt.savefig("GF.eps") plt.close(1)