-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_with_wave2vec.py
444 lines (379 loc) · 16.3 KB
/
train_with_wave2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#!/usr/bin/env/python3
"""Recipe for training a wav2vec-based ctc ASR system with librispeech.
The system employs wav2vec as its encoder. Decoding is performed with
ctc greedy decoder.
To run this recipe, do the following:
> python train_with_wav2vec.py hparams/train_{hf,sb}_wav2vec.yaml
The neural network is trained on CTC likelihood target and character units
are used as basic recognition tokens.
Authors
* Rudolf A Braun 2022
* Titouan Parcollet 2022
* Sung-Lin Yeh 2021
* Ju-Chieh Chou 2020
* Mirco Ravanelli 2020
* Abdel Heba 2020
* Peter Plantinga 2020
* Samuele Cornell 2020
Reference: https://github.com/speechbrain/speechbrain/blob/develop/recipes/LibriSpeech/ASR/CTC/train_with_wav2vec.py
"""
import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main, if_main_process
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path
logger = logging.getLogger(__name__)
# Define training procedure
class ASR(sb.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
wavs, wav_lens = batch.sig
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
# Downsample the inputs if specified
if hasattr(self.modules, "downsampler"):
wavs = self.modules.downsampler(wavs)
# Add augmentation if specified
if stage == sb.Stage.TRAIN:
if hasattr(self.modules, "env_corrupt"):
wavs_noise = self.modules.env_corrupt(wavs, wav_lens)
wavs = torch.cat([wavs, wavs_noise], dim=0)
wav_lens = torch.cat([wav_lens, wav_lens])
if hasattr(self.hparams, "augmentation"):
wavs = self.hparams.augmentation(wavs, wav_lens)
# Forward pass
# Handling SpeechBrain vs HuggingFance pretrained models
if hasattr(self.modules, "extractor"): # SpeechBrain pretrained model
latents = self.modules.extractor(wavs)
feats = self.modules.encoder_wrapper(latents, wav_lens=wav_lens)[
"embeddings"
]
else: # HuggingFace pretrained model
feats = self.modules.wav2vec2(wavs, wav_lens)
x = self.modules.enc(feats)
# Compute outputs
p_tokens = None
logits = self.modules.ctc_lin(x)
# Upsample the inputs if they have been highly downsampled
if hasattr(self.hparams, "upsampling") and self.hparams.upsampling:
logits = logits.view(
logits.shape[0], -1, self.hparams.output_neurons
)
p_ctc = self.hparams.log_softmax(logits)
if stage == sb.Stage.VALID or (
stage == sb.Stage.TEST and not self.hparams.use_language_modelling
):
p_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
return p_ctc, wav_lens, p_tokens
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC+NLL) given predictions and targets."""
p_ctc, wav_lens, predicted_tokens = predictions
ids = batch.id
tokens, tokens_lens = batch.tokens
if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN:
tokens = torch.cat([tokens, tokens], dim=0)
tokens_lens = torch.cat([tokens_lens, tokens_lens], dim=0)
loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
loss = loss_ctc
if stage == sb.Stage.VALID:
# Decode token terms to words
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
if stage == sb.Stage.TEST: # Language model decoding only used for test
if self.hparams.use_language_modelling:
predicted_words = []
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
else:
predicted_words = [
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
for utt_seq in predicted_tokens
]
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
should_step = self.step % self.grad_accumulation_factor == 0
# Managing automatic mixed precision
if self.auto_mix_prec:
self.wav2vec_optimizer.zero_grad()
self.model_optimizer.zero_grad()
with torch.cuda.amp.autocast():
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
self.scaler.scale(
loss / self.grad_accumulation_factor
).backward()
if should_step:
if not self.hparams.freeze_wav2vec:
self.scaler.unscale_(self.wav2vec_optimizer)
self.scaler.unscale_(self.model_optimizer)
if self.check_gradients(loss):
self.scaler.step(self.wav2vec_optimizer)
self.scaler.step(self.model_optimizer)
self.scaler.update()
self.optimizer_step += 1
else:
with self.no_sync():
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
(loss / self.grad_accumulation_factor).backward()
if should_step:
if self.check_gradients(loss):
self.wav2vec_optimizer.step()
self.model_optimizer.step()
self.wav2vec_optimizer.zero_grad()
self.model_optimizer.zero_grad()
self.optimizer_step += 1
return loss.detach().cpu()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
sb.nnet.schedulers.update_learning_rate(
self.wav2vec_optimizer, new_lr_wav2vec
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
"lr_wav2vec": old_lr_wav2vec,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
if if_main_process():
with open(self.hparams.test_wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
"Initializes the wav2vec2 optimizer and model optimizer"
# Handling SpeechBrain vs HuggingFance pretrained models
if hasattr(self.modules, "extractor"): # SpeechBrain pretrained model
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
self.modules.encoder_wrapper.parameters()
)
else: # HuggingFace pretrained model
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
self.modules.wav2vec2.parameters()
)
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable(
"wav2vec_opt", self.wav2vec_optimizer
)
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
def zero_grad(self, set_to_none=False):
self.wav2vec_optimizer.zero_grad(set_to_none)
self.model_optimizer.zero_grad(set_to_none)
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
)
if hparams["sorting"] == "ascending":
# we sort training data to speed up training and get better results.
train_data = train_data.filtered_sorted(sort_key="duration")
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "descending":
train_data = train_data.filtered_sorted(
sort_key="duration", reverse=True
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError(
"sorting must be random, ascending or descending"
)
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
)
valid_data = valid_data.filtered_sorted(sort_key="duration")
# test is separate
test_datasets = {}
for csv_file in hparams["test_csv"]:
name = Path(csv_file).stem
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=csv_file, replacements={"data_root": data_folder}
)
test_datasets[name] = test_datasets[name].filtered_sorted(
sort_key="duration"
)
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("wav")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav):
sig = sb.dataio.dataio.read_audio(wav)
return sig
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("wrd")
@sb.utils.data_pipeline.provides(
"wrd", "char_list", "tokens_list", "tokens"
)
def text_pipeline(wrd):
yield wrd
char_list = list(wrd)
yield char_list
tokens_list = label_encoder.encode_sequence(char_list)
yield tokens_list
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
special_labels = {
"blank_label": hparams["blank_index"],
}
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[train_data],
output_key="char_list",
special_labels=special_labels,
sequence_input=True,
)
# 4. Set output:
sb.dataio.dataset.set_output_keys(
datasets, ["id", "sig", "wrd", "char_list", "tokens"],
)
return train_data, valid_data, test_datasets, label_encoder
if __name__ == "__main__":
# CLI:
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# Dataset prep (parsing Librispeech)
from librispeech_prepare import prepare_librispeech # noqa
# multi-gpu (ddp) save data preparation
run_on_main(
prepare_librispeech,
kwargs={
"data_folder": hparams["data_folder"],
"tr_splits": hparams["train_splits"],
"dev_splits": hparams["dev_splits"],
"te_splits": hparams["test_splits"],
"save_folder": hparams["output_folder"],
"merge_lst": hparams["train_splits"],
"merge_name": "train.csv",
"skip_prep": hparams["skip_prep"],
},
)
# here we create the datasets objects as well as tokenization and encoding
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(
hparams
)
# Loading the labels for the LM decoding and the CTC decoder
if hasattr(hparams, "use_language_modelling"):
if hparams["use_language_modelling"]:
try:
from pyctcdecode import build_ctcdecoder
except ImportError:
err_msg = "Optional dependencies must be installed to use pyctcdecode.\n"
err_msg += "Install using `pip install kenlm pyctcdecode`.\n"
raise ImportError(err_msg)
ind2lab = label_encoder.ind2lab
labels = [ind2lab[x] for x in range(len(ind2lab))]
labels = [""] + labels[
1:
] # Replace the <blank> token with a blank character, needed for PyCTCdecode
decoder = build_ctcdecoder(
labels,
kenlm_model_path=hparams["ngram_lm_path"], # .arpa or .bin
alpha=0.5, # Default by KenLM
beta=1.0, # Default by KenLM
)
else:
hparams["use_language_modelling"] = False
# Trainer initialization
asr_brain = ASR(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
# We load the pretrained wav2vec2 model
if "pretrainer" in hparams.keys():
run_on_main(hparams["pretrainer"].collect_files)
hparams["pretrainer"].load_collected(asr_brain.device)
# We dynamicaly add the tokenizer to our brain class.
# NB: This tokenizer corresponds to the one used for the LM!!
asr_brain.tokenizer = label_encoder
# Training
asr_brain.fit(
asr_brain.hparams.epoch_counter,
train_data,
valid_data,
train_loader_kwargs=hparams["train_dataloader_opts"],
valid_loader_kwargs=hparams["valid_dataloader_opts"],
)
# Testing
if not os.path.exists(hparams["output_wer_folder"]):
os.makedirs(hparams["output_wer_folder"])
for k in test_datasets.keys(): # keys are test_clean, test_other etc
asr_brain.hparams.test_wer_file = os.path.join(
hparams["output_wer_folder"], f"wer_{k}.txt"
)
asr_brain.evaluate(
test_datasets[k],
test_loader_kwargs=hparams["test_dataloader_opts"],
min_key="WER",
)