Skip to content

Latest commit

 

History

History
58 lines (52 loc) · 1.97 KB

README.md

File metadata and controls

58 lines (52 loc) · 1.97 KB

Multimodal Pathway for Point Cloud Understanding

1. Requirements

PyTorch >= 1.7.0 < 1.11.0; python >= 3.7; CUDA >= 9.0; GCC >= 4.9; torchvision;

pip install -r requirements.txt
# Chamfer Distance & emd
cd ./extensions/chamfer_dist
python setup.py install --user
cd ./extensions/emd
python setup.py install --user
# PointNet++
pip install "git+https://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"
# GPU kNN
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl

2. Point-MAE Pre-training

To pretrain Point-MAE on ShapeNet training set, run the following command. If you want to try different models or masking ratios etc., first create a new config file, and pass its path to --config.

CUDA_VISIBLE_DEVICES=<GPU> python main_pathway.py --config cfgs/pretrain.yaml --exp_name <output_file_name>

5. Point-MAE Fine-tuning

Fine-tuning on ScanObjectNN, run:

CUDA_VISIBLE_DEVICES=<GPUs> python main_pathway.py --config cfgs/finetune_scan_hardest.yaml \
--finetune_model --exp_name <output_file_name> --ckpts <path/to/pre-trained/model>

Fine-tuning on ModelNet40, run:

CUDA_VISIBLE_DEVICES=<GPUs> python main_pathway.py --config cfgs/finetune_modelnet.yaml \
--finetune_model --exp_name <output_file_name> --ckpts <path/to/pre-trained/model>

Voting on ModelNet40, run:

CUDA_VISIBLE_DEVICES=<GPUs> python main_pathway.py --test --config cfgs/finetune_modelnet.yaml \
--exp_name <output_file_name> --ckpts <path/to/best/fine-tuned/model>

Few-shot learning, run:

CUDA_VISIBLE_DEVICES=<GPUs> python main_pathway.py --config cfgs/fewshot.yaml --finetune_model \
--ckpts <path/to/pre-trained/model> --exp_name <output_file_name> --way <5 or 10> --shot <10 or 20> --fold <0-9>

Part segmentation on ShapeNetPart, run:

cd segmentation
python main_pathway.py --ckpts <path/to/pre-trained/model> --root path/to/data --learning_rate 0.0002 --epoch 300