Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can I identify and analyze videos? How to input video? Do you have any examples #25

Open
libai-lab opened this issue Sep 25, 2024 · 1 comment

Comments

@libai-lab
Copy link

Can I identify and analyze videos? How to input video? Do you have any examples,How much GPU is needed to run

@runninglsy
Copy link
Collaborator

It's common practice to extract multiple frames from a video to create a multi-image input. While Ovis1.6 is primarily trained on single-image samples, it also supports multi-image inputs. Below is an example demonstrating how to handle two-image inputs:

import torch
from PIL import Image
from transformers import AutoModelForCausalLM

# load model
model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis1.6-Gemma2-9B",
                                             torch_dtype=torch.bfloat16,
                                             multimodal_max_length=8192,
                                             trust_remote_code=True).cuda()
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()

# enter image path and prompt
images = []
for i in range(2):
    image_path = input(f"Enter image_{i+1} path: ")
    images.append(Image.open(image_path))
text = input("Enter prompt: ")
query = f'Image 1: <image>\nImage 2: <image>\n{text}'

# format conversation
prompt, input_ids, pixel_values = model.preprocess_inputs(query, images)
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=model.device)
attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]

# generate output
with torch.inference_mode():
    gen_kwargs = dict(
        max_new_tokens=1024,
        do_sample=False,
        top_p=None,
        top_k=None,
        temperature=None,
        repetition_penalty=None,
        eos_token_id=model.generation_config.eos_token_id,
        pad_token_id=text_tokenizer.pad_token_id,
        use_cache=True
    )
    output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0]
    output = text_tokenizer.decode(output_ids, skip_special_tokens=True)
    print(f'Output:\n{output}')

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants