-
Notifications
You must be signed in to change notification settings - Fork 3
/
oliverKernel.h
223 lines (189 loc) · 6.05 KB
/
oliverKernel.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/**
* The MIT License (MIT)
*
* Copyright (c) 2015 Yichao Cheng
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/**
* The CUDA kernel of the engine.
*
* Author: Yichao Cheng ([email protected])
* Created on: 2014-12-20
* Last Modified: 2014-12-20
*/
#ifndef OLIVER_KERNEL_H
#define OLIVER_KERNEL_H
#include "common.h"
/**
* The CUDA kernel for expanding vertices in the work queue.
*/
template<typename VertexValue,
typename AccumValue,
typename EdgeValue,
typename F,
int GroupSize>
__global__
void edgeFilterKernel(
const VertexId *workqueue,
const VertexId *workqueueSize,
const EdgeId *vertices,
const VertexId *outgoingEdges,
VertexValue *vertexValues,
AccumValue *accumulators,
EdgeValue *edgeValues,
int *workset,
F f)
{
int group_off = THREAD_INDEX % GroupSize;
int group_idx = THREAD_INDEX / GroupSize;
int group_num = NUM_THREADS / GroupSize;
for (int g = group_idx; g < *workqueueSize; g += group_num) {
VertexId srcId = workqueue[g];
EdgeId start = vertices[srcId];
EdgeId end = vertices[srcId + 1];
EdgeId outdegree = end - start;
VertexValue srcValue = vertexValues[srcId];
for (EdgeId e = start + group_off; e < end; e += GroupSize) {
// Edge level parallelism, which is exploited by SIMD lanes
AccumValue accum = f.gather(srcValue, outdegree, edgeValues[e]);
VertexId dstId = outgoingEdges[e];
f.reduce(accumulators[dstId], accum);
workset[dstId] = 1;
}
}
}
template<typename VertexValue,
typename AccumValue,
typename F,
bool UseScan>
__global__
void vertexFilterKernel(
const int *workset,
VertexId worksetsize,
VertexValue *vertexValues,
AccumValue *accumulators,
VertexId *workqueue,
VertexId *workqueueSize,
F f)
{
int v = THREAD_INDEX;
if (v >= worksetsize) return;
if (UseScan) {
__shared__ VertexId local_queue[1200];
__shared__ VertexId local_queue_size;
__shared__ VertexId global_pos; // shared by all CTA threads
if (threadIdx.x == 0) local_queue_size = 0;
__syncthreads();
if (workset[v] && f.cond(vertexValues[v], v)) {
f.update(vertexValues[v], accumulators[v]);
VertexId pos = atomicAdd((int *)&local_queue_size, 1);
local_queue[pos] = v;
// printf("push %d to local queue at pos:%d \n", v, pos);
}
__syncthreads();
if (threadIdx.x == 0)
global_pos = atomicAdd(workqueueSize, local_queue_size);
__syncthreads();
// CTA copys its queue
for (int i = threadIdx.x; i < local_queue_size; i += blockDim.x) {
workqueue[global_pos+i] = local_queue[i];
//printf("push %d to next queue at pos:%d \n", local_queue[i], pos+i);
}
} else {
if (!workset[v]) return;
if (f.cond(vertexValues[v], v)) {
f.update(vertexValues[v], accumulators[v]);
VertexId pos = atomicAdd(workqueueSize, 1);
workqueue[pos] = v;
}
}
}
/**
* The vertex map kernel.
* sparse -> sparse
*/
template<typename VertexValue,
typename AccumValue,
typename EdgeValue,
typename F>
__global__
void edgeMapKernel(
const int *workset,
VertexId worksetsize,
const EdgeId *vertices,
const VertexId *outgoingEdges,
VertexValue *vertexValues,
AccumValue *accumulators,
EdgeValue *edgeValues,
F f)
{
VertexId srcId = THREAD_INDEX;
if (srcId >= worksetsize) return;
if (!workset[srcId]) return;
EdgeId start = vertices[srcId];
EdgeId end = vertices[srcId + 1];
EdgeId outdegree = end - start;
VertexValue srcValue = vertexValues[srcId];
for (EdgeId e = start; e < end; e ++) {
// Edge level parallelism, which is exploited by SIMD lanes
AccumValue accum = f.gather(srcValue, outdegree, edgeValues[e]);
VertexId dstId = outgoingEdges[e];
f.reduce(accumulators[dstId], accum);
}
}
/**
* The vertex map kernel.
*/
template<typename VertexValue,
typename AccumValue,
typename F>
__global__
void vertexMapSparseKernel(
const int *workset,
VertexId worksetsize,
VertexValue *vertexValues,
AccumValue *accumulators,
F f)
{
int v = THREAD_INDEX;
if (v >= worksetsize) return;
if (!workset[v]) return;
f(vertexValues[v], accumulators[v]);
}
/**
* The vertex map kernel.
*/
template<typename VertexValue,
typename AccumValue,
typename F>
__global__
void vertexMapDenseKernel(
const VertexId *workqueue,
const VertexId *workqueueSize,
VertexValue *vertexValues,
AccumValue *accumulators,
F f)
{
VertexId pos = THREAD_INDEX;
if (pos >= *workqueueSize) return;
VertexId v = workqueue[pos];
f(vertexValues[v], accumulators[v]);
}
#endif // OLIVER_KERNEL_H