-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPARAMETERS.lib
111 lines (94 loc) · 6.11 KB
/
PARAMETERS.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
********************************************************************
* Carbon-nanotube Field Effect Transistors
* HSPICE Models (Parameters File)
* Version 2.2.1
*
*
* Copyright The Board Trustees of the Leland Stanford Junior University 2009
* Albert Lin, Gordon Wan, Jie Deng, Prof. H-S Philip Wong
*
*
* 09/09/2008 Last Modified by Albert Lin.
*
* Carbon-nanotube Field Effect Transistors HSPICE implementation
* based on "A Circuit-Compatible SPICE model for Enhancement Mode
* Carbon Nanotube Field Effect Transistors" by Jie Deng and
* H-S Philip Wong.
*
* Library name: PARAMETER.lib
********************************************************************
********************************************************************
* LICENSE AGREEMENT
* Stanford Leland Junior University and the authors ("Stanford")
* provide these model files to you subject to the License Agreement,
* which may be updated by us from time to time without notice to you.
* The most-up-to-date License Agreement can be found at
* http://nano.stanford.edu/license.php
********************************************************************
********************************************************************
* Global parameters
********************************************************************
.PROTECT
.PARAM q=1.60e-19 $ Electronic charge
+ Vpi=3.033 $ The carbon PI-PI bond energy
+ d=0.144e-9 $ The carbon PI-PI bond distance
+ a=0.2495e-9 $ The carbon atom distance
+ pi=3.1416 $ PI, constant
+ h=6.63e-14 $ Planck constant,X1e20
+ h_ba=1.0552e-14 $ h_bar, X1e20
+ k=8.617e-5 $ Boltzmann constant
+ epso=8.85e-12 $ Dielectric constant in vacuum
****Csub not here, in instantiations
.PARAM Cgsub=30e-12 $ Metal gate (W) to Substrate fringe capacitance per unit length,approximated as 30af/um,
$ with 10um thick SiO2 default 30e-12
+ Cgabove=27e-12 $ W local interconnect to M1 coupling capacitance, 500nm apart, infinite large plane
$ default 27e-12
+ Cc_cnt=26e-12 $ The coupling capacitance between CNTs with 2Fs=6.4nm, about 26pF/m
+ Ccabove=15e-12 $ Coupling capacitance between CNT and the above M1 layer, 500nm apart, default 15e-12
+ Cc_gate=78e-12 $ The coupling capacitance between gates with 2F=64nm, about 78pF/m, W=32nm, H=64nm,
$ contact spacing 32nm default 78e-12
+ Ctot='Cgsub+Cgabove+Cc_gate+Cc_gate' $ total coupling capacitance for gate region
***changed to use Csub=20e-12
+ Cint='0*Cc_cnt+0.5*(20e-12+Ccabove)' $ total coupling capacitance for source/drain region CNT, redefined within models
***following two are extra, should set both to zero to be like isscc
+ Coeff1_Cgsd=0e-12 $ The slope for Cg_sd vs. Lsd, H=64nm, Klowk=2, contact spacing 32nm, valid for 10nm<Lsd<100nm
+ Coeff2_Cgsd=0e-18 $ The intersection of Cg_sd vs. Lsd, H=64nm, Klowk=2, contact spacing 32nm, valid for 10nm<Lsd<100nm
+ Rsub=1 $ Substrate resistance, set to zero for the ideal case
+ Klowk=2 $ The dielectric constant of low-k material
+ Ksub=4 $ The dielectric constant of SiO2
***Kox is Kgate
+ Kox=16 $ The dielectric constant of high-K gate oxide
***Hox is not here, in instantiations. Hox is Tox.
***beta is defined within model
+ Ld_par=15e-9 $ Length of the drain CNT, 1 MFP of OP scattering, to calculate parasitic diffusion capacitance
+ Rcnt=3.3e3 $ n+ CNT resistance due to finite modes, 3.3K for 0.7eV doped n+CNT
+ FacR=0.4 $ The factor of Rus/Rcnt
***Vfbs are not here, but in instantiations
***changed to 0.66, value used in isscc
+ Efo=0.66 $ The n+/p+ doped CNT fermi level (eV), 0.66eV for 1% doping level, 0.6eV for 0.8% doping level
+ lambda_op=15e-9 $ The Optical Phonon backscattering mean-free-path in Matallic CNT,15nm
+ lambda_ap=500e-9 $ The Acoustic Phonon backscattering mean-free-path in Matallic CNT, 500nm
+ photon=0.16 $ The photon energy, typical value 0.16eV
+ L_channel=32e-9 $ CNFET printed/physical channel length, assume 32nm for 32nm node technology
***changed to value used in isscc
+ L_sd=16e-9 $ n+CNT source/drain full length, 32nm, from gate edge to S/D metal contact edge
+ L_relax=40e-9 $ delta_Vds relaxation range at drain side, fitting parameter
***Leff is below
+ sub_pitch=6.4e-9 $ Sublithography full pitch, 6.4nm
+ de_fac=4 $ the factor to calculate the number of electrons in CNT
***extra, should set to large to be like isscc.
+ Lgmax=100e-9 $ The maximum channel length to calculate current for short channel device
+ coeffj='4*q*q/h/1e-20' $ The coefficient of current component, 4 is due to both spin degeneracy and mode degeneracy
+ Coeff_Cc='pi*Klowk*epso' $ The coefficient of the coupling capacitance between adjacent CNTs
+ kT='k*(TEMP+273)' $ The KT constant
+ Rus='Rcnt*FacR' $ Source side contact resistance
+ Rud='Rcnt*(1-FacR)' $ Drain side contact resistance
***extra 2, should set Ccsd to zero to be like isscc
+ Ccsd=0 $ The coupling capacitance between channel region and source/drain islands
+ CoupleRatio=0.0 $ The percentage of coupling capacitance between channel and drain out of the total fringe capacitance Ccsd
+ Leff=15e-9 $ The mean free path in p+/n+ doped CNT, estimated as 15nm
***extra, should set to very large to be like isscc
+ Lceff=200e-9 $ The mean free path in intrinsic CNT, estimated as 200nm
+ phi_M=4.5 $ Metal work function default=4.6
+ phi_S=4.5 $ CNT work function
.UNPROTECT