-
💢
MadType
is a Python metaclass that does type-validation at run-time. -
🌐 Generate Json-Schema
-
💪 32 tests for the features and usage of MadType class
-
💪 18 tests for the features and usage of json-schema function
-
PEP589 does not perform type-checking.
TypedDict type definitions could plausibly used to perform runtime type checking of dictionaries. For example, they could be used to validate that a JSON object conforms to the schema specified by a TypedDict type. This PEP doesn’t include such functionality, since the focus of this proposal is static type checking only, and other existing types do not support this, as discussed in Class-based syntax. Such functionality can be provided by a third-party library using the typing_inspect third-party module, for example.
from typing import TypedDict
from madtypes import MadType
def test_simple_dict_incorrect_setattr(): # 🤯 DOES NOT RAISE ERROR 🤯
class Simple(TypedDict):
name: str
Simple(name=2)
a: Simple = { "name": 2 }
class Person(dict, metaclass=MadType): # 💢 MadType does !
name: str
def test_mad_dict_type_error_with_incorrect_creation():
with pytest.raises(TypeError):
Person(name=2)
⚠️ MadType instanciation is much slower than pure Python.⚠️ Manually adding type-check inside a class is more effective than using MadType
MadType is appropriate to apply when :
-
The described data is a business related element
-
You are using MadType to assert valid data
-
You are debugging
-
The instantiation occurs rarely
-
The schema has to be communicated with the team
def test_object_json_schema():
class Item(dict, metaclass=MadType):
name: str
assert json_schema(Item) == {
"type": "object",
"properties": {"name": {"type": "string"}},
"required": ["name"],
}
It is possible to use the MadType
metaclass customize primitives as well.
class SomeStringAttribute(str, metaclass=MadType):
pass
SomeDescriptedAttribute(2) # raise type error
It is possible to use this to describe a field.
class SomeDescriptedAttribute(str, metaclass=MadType):
annotation = str
description = "Some description"
using json_schema
on SomeDescription
will include the description attribute
class DescriptedString(str, metaclass=MadType):
description = "Some description"
annotation = str
class DescriptedItem(Schema):
descripted: DescriptedString
assert json_schema(DescriptedItem) == {
"type": "object",
"properties": {
"descripted": {
"type": "string",
"description": "Some description",
},
},
"required": ["descripted"],
}
Regex can be defined on an Annotated type using the pattern
attribute.
json_schema
At the moment it is not checked nor tested, and will probably render an invalid json-schema
without warning nor error
def test_pattern_definition_allows_normal_usage():
class PhoneNumber(str, metaclass=MadType):
annotation = str
pattern = r"\d{3}-\d{3}-\d{4}"
PhoneNumber("000-000-0000")
def test_pattern_raise_type_error():
class PhoneNumber(str, metaclass=MadType):
annotation = str
pattern = r"\d{3}-\d{3}-\d{4}"
with pytest.raises(TypeError):
PhoneNumber("oops")
def test_pattern_is_rendered_in_json_schema():
class PhoneNumber(str, metaclass=MadType):
annotation = str
pattern = r"^\d{3}-\d{3}-\d{4}$"
description = "A phone number in the format XXX-XXX-XXXX"
class Contact(Schema):
phone: PhoneNumber
schema = json_schema(Contact)
print(json.dumps(schema, indent=4))
assert schema == {
"type": "object",
"properties": {
"phone": {
"pattern": "^\\d{3}-\\d{3}-\\d{4}$",
"description": "A phone number in the format XXX-XXX-XXXX",
"type": "string",
}
},
"required": ["phone"],
}
It is possible to define a is_valid
method on a Schema
object, which is during instantiation
to allow restrictions based on multiple fields.
def test_object_validation():
class Item(dict, metaclass=MadType):
title: Optional[str]
content: Optional[str]
def is_valid(self, **kwargs):
"""title is mandatory if content is absent"""
if not kwargs.get("content", None) and not kwargs.get(
"title", None
):
raise TypeError(
"Either `Title` or `Content` are mandatory for Item"
)
Item(
title="foo"
) # we should be able to create with only one of title or content
Item(content="foo")
with pytest.raises(TypeError):
Item()
It is possible to create a schema from existing schemas.
def test_multiple_inheritance():
class Foo(dict):
foo: str
class Bar(dict):
bar: str
class FooBar(Foo, Bar, metaclass=MadType):
pass
FooBar(foo="foo", bar="bar")
with pytest.raises(TypeError):
FooBar()
Fields can be removed.
def test_fields_can_be_removed():
@subtract_fields("name")
class Foo(dict, metaclass=MadType):
name: str
age: int
Foo(age=2)
pip3 install madtypes