From 7260be34abd9c96e3d74dfe03748ac24a5fdd9f5 Mon Sep 17 00:00:00 2001 From: 5PB-3-4 <107768007+5PB-3-4@users.noreply.github.com> Date: Thu, 7 Mar 2024 02:04:30 +0900 Subject: [PATCH] src --- src/main.cpp | 2398 ++++++++++++++++++++++++++++++++++++++++++++++++++ src/pch.cpp | 4 + src/pch.h | 48 + 3 files changed, 2450 insertions(+) create mode 100644 src/main.cpp create mode 100644 src/pch.cpp create mode 100644 src/pch.h diff --git a/src/main.cpp b/src/main.cpp new file mode 100644 index 0000000..115bd47 --- /dev/null +++ b/src/main.cpp @@ -0,0 +1,2398 @@ +#include "pch.h" + +#pragma warning(disable:4244) +#pragma warning(disable:4819) +#pragma warning(disable:26451) + +/********************************************************************************/ +/*[prototype]*/ + +// main function +int medianblur(lua_State* L); +int boxblur(lua_State* L); +int gaussianblur(lua_State* L); +int bilateralfilter(lua_State* L); +int resizefilter(lua_State* L); +int resample(lua_State* L); +int sobelfilter(lua_State* L); +int sobelRGB(lua_State* L); +int laplacianfilter(lua_State* L); +int laplacianRGB(lua_State* L); +int cannyfilter(lua_State* L); +int cannyRGB(lua_State* L); +int morphologyfilter(lua_State* L); +int morphologyRGB(lua_State* L); +int ch_chg(lua_State* L); +int thres(lua_State* L); +int adpthres(lua_State* L); +int diffusion(lua_State* L); +int noise(lua_State* L); +int fig_blur(lua_State* L); +int moebius(lua_State* L); +int meanshift(lua_State* L); +int voronoi(lua_State* L); +int delaunay(lua_State* L); +int pencilskc(lua_State* L); +int stylize(lua_State* L); +int det_enhance(lua_State* L); +int edgePreserve(lua_State* L); +int oilpaint(lua_State* L); +int hist_eq(lua_State* L); +int color_map(lua_State* L); +int img_read(lua_State* L); +int img_call(lua_State* L); +int mov_read(lua_State* L); + +// utility function +template +T constrain(T v, T min, T max); +void GetLuaTable(lua_State* L, int stackIndex, std::vector>& vals, int key); +const char* toStringRestrict(lua_State* L, int idx) noexcept; +uintptr_t GetAddData(const char* modname, uintptr_t address); +std::tuple GetPixelData(lua_State* L, const char* mode); +void PutPixelData(lua_State* L, void* pixeldata); +void img_read_tmp(String path, int idx, Mat& out); + +/********************************************************************************/ +/*[c++ <=> lua]*/ + +static luaL_Reg functions[] = { + {"medianblur", medianblur}, + {"boxblur", boxblur}, + {"gaussianblur", gaussianblur}, + {"bilateralfilter", bilateralfilter}, + {"resizefilter", resizefilter}, + {"resample", resample}, + {"sobelfilter", sobelfilter}, + {"sobelRGB", sobelRGB}, + {"laplacianfilter", laplacianfilter}, + {"laplacianRGB", laplacianRGB}, + {"cannyfilter", cannyfilter}, + {"cannyRGB", cannyRGB}, + {"morphologyfilter", morphologyfilter}, + {"morphologyRGB", morphologyRGB}, + {"ch_chg", ch_chg}, + {"thres",thres}, + {"adpthres",adpthres}, + {"diffusion", diffusion}, + {"noise", noise}, + {"fig_blur", fig_blur}, + {"moebius", moebius}, + {"meanshift", meanshift}, + {"voronoi", voronoi}, + {"delaunay", delaunay}, + {"pencilskc", pencilskc}, + {"stylize", stylize}, + {"det_enhance", det_enhance}, + {"edgePreserve", edgePreserve}, + {"oilpaint", oilpaint}, + {"hist_eq", hist_eq}, + {"color_map", color_map}, + {"img_read", img_read}, + {"img_call", img_call}, + {"mov_read", mov_read}, + { nullptr, nullptr } +}; + +extern "C" { + __declspec(dllexport) int luaopen_cvmods(lua_State* L) + { + luaL_register(L, "cvmods", functions); + return 1; + } +} + +/********************************************************************************/ +/*[callback function]*/ + +int medianblur(lua_State* L) +{ + int ksize = lua_tointeger(L, 1); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmp, out; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmp); + + cv::medianBlur(tmp, out, 2 * ksize + 1); + + PutPixelData(L, out.data); + return 0; +} + +int boxblur(lua_State* L) +{ + int boxW = lua_tointeger(L, 1); + int boxH = lua_tointeger(L, 2); + bool Normalize = static_cast(lua_toboolean(L, 3)); + int border = lua_tointeger(L, 4); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmp, out; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmp); + + std::vector mode{ + BORDER_CONSTANT, + BORDER_REPLICATE, + BORDER_REFLECT, + BORDER_REFLECT_101, + BORDER_ISOLATED + }; + + cv::boxFilter(tmp, out, -1, Size(boxW, boxH), Point(-1, -1), Normalize, mode[border]); + PutPixelData(L, out.data); + return 0; +} + +int gaussianblur(lua_State* L) +{ + int boxW = lua_tointeger(L, 1); + int boxH = lua_tointeger(L, 2); + double sigmaX = lua_tonumber(L, 3); + double sigmaY = lua_tonumber(L, 4); + int border = lua_tointeger(L, 5); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmp, out; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmp); + + std::vector mode{ + BORDER_CONSTANT, + BORDER_REPLICATE, + BORDER_REFLECT, + BORDER_REFLECT_101, + BORDER_ISOLATED + }; + + int kx = constrain(2 * boxW - 1, 0, INT_MAX); + int ky = constrain(2 * boxH - 1, 0, INT_MAX); + cv::GaussianBlur(tmp, out, Size(kx, ky), sigmaX, sigmaY, mode[border]); + + PutPixelData(L, out.data); + return 0; +} + +int bilateralfilter(lua_State* L) +{ + int d = lua_tointeger(L, 1); + double sigmacolor = lua_tonumber(L, 2); + double sigmaspace = lua_tonumber(L, 3); + int border = lua_tointeger(L, 4); + bool alphasync = static_cast(lua_toboolean(L, 5)); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmp; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmp); + + + Mat bgr(tmp.size(), CV_8UC3), alpha(tmp.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmp, 1, bgra.data(), 2, ch.data(), 4); + + std::vector mode{ + BORDER_CONSTANT, + BORDER_REPLICATE, + BORDER_REFLECT, + BORDER_WRAP, + BORDER_REFLECT_101 + }; + + Mat tmpB, tmpC; + cv::bilateralFilter(bgra[0], tmpB, d, sigmacolor, sigmaspace, mode[border]); + bgra[0] = tmpB.clone(); + if (alphasync) + { + cv::bilateralFilter(bgra[1], tmpC, d, sigmacolor, sigmaspace, mode[border]); + bgra[1] = tmpC.clone(); + } + + + Mat out(tmp.size(), img.type()); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + + PutPixelData(L, out.data); + + return 0; +} + +int resizefilter(lua_State* L) +{ + int new_w = lua_tointeger(L, 1); + int new_h = lua_tointeger(L, 2); + double coef_w = lua_tonumber(L, 3); + double coef_h = lua_tonumber(L, 4); + int resize_mode = lua_tointeger(L, 5); + bool set_size = static_cast(lua_toboolean(L, 6)); + bool proto = static_cast(lua_toboolean(L, 7)); + + auto dp = GetAddData("exedit.auf", 0x1b2b20); + auto exdata = reinterpret_cast(dp); + auto dt = &(exdata->obj_edit); + auto wt = exdata->obj_w; + auto ht = exdata->obj_h; + auto ow = exdata->obj_line; + auto oh = exdata->obj_max_h; + + Mat buf_bgra = cv::Mat::zeros(Size(wt, ht), CV_8UC4); + if (proto) + { + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame); + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(buf_bgra); + wt = width; + ht = height; + } + else + { + parallel_for(0, ht, 1, [&](int y) + { + auto pBGRA = buf_bgra.ptr(y); + + for (auto x = 0; x < wt; ++x) + { + int idx = x + y * ow; + + int uy = static_cast((*dt + idx)->y); + int ucb = static_cast((*dt + idx)->cb); + int ucr = static_cast((*dt + idx)->cr); + int ua = static_cast((*dt + idx)->a); + + pBGRA[x][0] = saturate_cast((3 + ((uy * 16320) >> 16) + ((ucb * 28919) >> 16)) >> 2); + pBGRA[x][1] = saturate_cast((3 + ((uy * 16320) >> 16) + ((ucb * -5616) >> 16) + ((ucr * -11655) >> 16)) >> 2); + pBGRA[x][2] = saturate_cast((3 + ((uy * 16320) >> 16) + ((ucr * 22881) >> 16)) >> 2); + pBGRA[x][3] = saturate_cast((3 + ((ua * 16320) >> 16)) >> 2); + } + } + ); + } + + std::vector rsmode{ + INTER_NEAREST, + INTER_LINEAR, + INTER_CUBIC, + INTER_AREA, + INTER_LANCZOS4, + INTER_LINEAR_EXACT, + INTER_NEAREST_EXACT + }; + + Mat out; + if (set_size) + { + new_w = constrain(new_w, 0, ow - 8); + new_h = constrain(new_h, 0, oh); + cv::resize(buf_bgra, out, cv::Size(new_w, new_h), 0.0, 0.0, rsmode[resize_mode]); + } + else + { + double cw_max = static_cast(ow - 8) / wt; + double ch_max = static_cast(oh) / ht; + coef_w = constrain(coef_w, 0.0, cw_max); + coef_h = constrain(coef_h, 0.0, ch_max); + cv::resize(buf_bgra, out, cv::Size(), coef_w, coef_h, rsmode[resize_mode]); + new_w = out.cols; + new_h = out.rows; + } + + if ((ow - 8) < new_w || oh < new_h) + { + std::cout << "image is too big..." << std::endl; + return 0; + } + + parallel_for(0, new_h, 1, [&](int y) + { + auto pOUT = out.ptr(y); + + for (auto x = 0; x < new_w; ++x) + { + int idx = x + y * ow; + int r = static_cast(pOUT[x][2]); + int g = static_cast(pOUT[x][1]); + int b = static_cast(pOUT[x][0]); + int a = static_cast(pOUT[x][3]); + + int r_ = (r << 6) + 18; + int g_ = (g << 6) + 18; + int b_ = (b << 6) + 18; + int a_ = (a << 6) + 1; + + (*dt + idx)->y = static_cast(((r_ * 4918) >> 16) + ((g_ * 9655) >> 16) + ((b_ * 1875) >> 16) - 3); + (*dt + idx)->cb = static_cast(((r_ * -2775) >> 16) + ((g_ * -5449) >> 16) + ((b_ * 8224) >> 16) + 1); + (*dt + idx)->cr = static_cast(((r_ * 8224) >> 16) + ((g_ * -6887) >> 16) + ((b_ * -1337) >> 16) + 1); + (*dt + idx)->a = static_cast((a_ * 16448) >> 16); + } + } + ); + exdata->obj_w = new_w; + exdata->obj_h = new_h; + + return 0; +} + +int resample(lua_State* L) +{ + double coef_w = lua_tonumber(L, 1); + double coef_h = lua_tonumber(L, 2); + int resize_exp = lua_tointeger(L, 3); + int resize_red = lua_tointeger(L, 4); + bool proto = static_cast(lua_toboolean(L, 5)); + + auto dp = GetAddData("exedit.auf", 0x1b2b20); + auto exdata = reinterpret_cast(dp); + auto dt = &(exdata->obj_edit); + auto wt = exdata->obj_w; + auto ht = exdata->obj_h; + auto ow = exdata->obj_line; + auto oh = exdata->obj_max_h; + + Mat buf_bgra = cv::Mat::zeros(Size(wt, ht), CV_8UC4); + if (proto) + { + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmp; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(buf_bgra); + wt = width; + ht = height; + } + else + { + parallel_for(0, ht, 1, [&](int y) + { + auto pBGRA = buf_bgra.ptr(y); + + for (auto x = 0; x < wt; ++x) + { + int idx = x + y * ow; + + int uy = static_cast((*dt + idx)->y); + int ucb = static_cast((*dt + idx)->cb); + int ucr = static_cast((*dt + idx)->cr); + int ua = static_cast((*dt + idx)->a); + + pBGRA[x][0] = saturate_cast((3 + ((uy * 16320) >> 16) + ((ucb * 28919) >> 16)) >> 2); + pBGRA[x][1] = saturate_cast((3 + ((uy * 16320) >> 16) + ((ucb * -5616) >> 16) + ((ucr * -11655) >> 16)) >> 2); + pBGRA[x][2] = saturate_cast((3 + ((uy * 16320) >> 16) + ((ucr * 22881) >> 16)) >> 2); + pBGRA[x][3] = saturate_cast((3 + ((ua * 16320) >> 16)) >> 2); + + } + } + ); + } + + Mat eximg, rdimg; + std::vector rsmode{ + INTER_NEAREST, + INTER_LINEAR, + INTER_CUBIC, + INTER_AREA, + INTER_LANCZOS4, + INTER_LINEAR_EXACT, + INTER_NEAREST_EXACT + }; + + double cw_max = static_cast(ow - 8) / wt; + double ch_max = static_cast(oh) / ht; + coef_w = constrain(0.01 * coef_w, 0.0, cw_max); + coef_h = constrain(0.01 * coef_h, 0.0, ch_max); + cv::resize(buf_bgra, rdimg, Size(), coef_w, coef_h, rsmode[resize_red]); + + double cx = static_cast(wt) / rdimg.cols; + double cy = static_cast(ht) / rdimg.rows; + cv::resize(rdimg, eximg, Size(), cx, cy, rsmode[resize_exp]); + + int new_w = eximg.cols; + int new_h = eximg.rows; + + if ((ow - 8) < new_w || oh < new_h) + { + std::cout << "image is too big..." << std::endl; + return 0; + } + + parallel_for(0, new_h, 1, [&](int y) + { + auto pOUT = eximg.ptr(y); + + for (auto x = 0; x < new_w; ++x) + { + int idx = x + y * ow; + int r = static_cast(pOUT[x][2]); + int g = static_cast(pOUT[x][1]); + int b = static_cast(pOUT[x][0]); + int a = static_cast(pOUT[x][3]); + + int r_ = (r << 6) + 18; + int g_ = (g << 6) + 18; + int b_ = (b << 6) + 18; + int a_ = (a << 6) + 1; + + (*dt + idx)->y = static_cast(((r_ * 4918) >> 16) + ((g_ * 9655) >> 16) + ((b_ * 1875) >> 16) - 3); + (*dt + idx)->cb = static_cast(((r_ * -2775) >> 16) + ((g_ * -5449) >> 16) + ((b_ * 8224) >> 16) + 1); + (*dt + idx)->cr = static_cast(((r_ * 8224) >> 16) + ((g_ * -6887) >> 16) + ((b_ * -1337) >> 16) + 1); + (*dt + idx)->a = static_cast((a_ * 16448) >> 16); + } + } + ); + exdata->obj_w = new_w; + exdata->obj_h = new_h; + + return 0; +} + +int sobelfilter(lua_State* L) +{ + int ksize = lua_tointeger(L, 1); + bool balp = static_cast(lua_toboolean(L, 2)); + int dx = lua_tointeger(L, 3); + int dy = lua_tointeger(L, 4); + int border = lua_tointeger(L, 5); + double scale = lua_tonumber(L, 6); + double delta = lua_tonumber(L, 7); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + Mat tmpB, tmpC, tmpD, tmpE; + cv::cvtColor(bgr, tmpB, COLOR_BGR2GRAY); + tmpB.convertTo(tmpC, CV_32F, 1.0 / 255, 0.0); + + std::vector mode + { + BORDER_CONSTANT, + BORDER_REPLICATE, + BORDER_REFLECT, + BORDER_REFLECT_101, + BORDER_ISOLATED + }; + + ksize = constrain(2 * ksize - 1, 0, INT_MAX); + cv::Sobel(tmpC, tmpD, -1, dx, dy, ksize, scale, delta, mode[border]); + cv::convertScaleAbs(tmpD, tmpE, 255.0, 0.0); + + if (balp) + cv::threshold(tmpE, bgra[1], 0.1, 255, THRESH_BINARY); + + Mat out; + std::vector ch_out{ tmpE, tmpE, tmpE, bgra[1] }; + cv::merge(ch_out, out); + PutPixelData(L, out.data); + return 0; +} + +int sobelRGB(lua_State* L) +{ + int ksize = lua_tointeger(L, 1); + bool balp = static_cast(lua_toboolean(L, 2)); + int dx = lua_tointeger(L, 3); + int dy = lua_tointeger(L, 4); + int border = lua_tointeger(L, 5); + double scale = lua_tonumber(L, 6); + double delta = lua_tonumber(L, 7); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA, tmpB; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + tmpA.convertTo(tmpB, CV_32FC4, 1.0 / 255, 0.0); + + std::vector ch_col; + cv::split(tmpB, ch_col); + + std::vector mode + { + BORDER_CONSTANT, + BORDER_REPLICATE, + BORDER_REFLECT, + BORDER_REFLECT_101, + BORDER_ISOLATED + }; + + ksize = constrain(2 * ksize - 1, 0, INT_MAX); + Mat tmpC = Mat::zeros(tmpA.size(), CV_32F); + Mat tmpD, tmpF; + for (auto i = 0; i < 3; ++i) + { + Mat tmpE; + cv::Sobel(ch_col[i], tmpE, -1, dx, dy, ksize, scale, delta, mode[border]); + cv::add(tmpC, tmpE, tmpC); + } + cv::convertScaleAbs(tmpC, tmpD, 255.0, 0.0); + + if (balp) + cv::threshold(tmpD, tmpF, 0.1, 255, THRESH_BINARY); + else + cv::convertScaleAbs(ch_col[3], tmpF, 255.0, 0.0); + + Mat out; + std::vector ch_out{ tmpD, tmpD, tmpD, tmpF }; + cv::merge(ch_out, out); + PutPixelData(L, out.data); + return 0; +} + +int laplacianfilter(lua_State* L) +{ + int ksize = lua_tointeger(L, 1); + bool balp = static_cast(lua_toboolean(L, 2)); + int border = lua_tointeger(L, 3); + double scale = lua_tonumber(L, 4); + double delta = lua_tonumber(L, 5); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + Mat tmpB, tmpC, tmpD, tmpE; + cv::cvtColor(tmpA, tmpB, COLOR_BGRA2GRAY); + tmpB.convertTo(tmpC, CV_32F, 1.0 / 255.0, 0.0); + + std::vector mode{ + BORDER_CONSTANT, + BORDER_REPLICATE, + BORDER_REFLECT, + BORDER_REFLECT_101, + BORDER_ISOLATED + }; + + ksize = constrain(2 * ksize - 1, 0, INT_MAX); + cv::Laplacian(tmpC, tmpD, -1, ksize, scale, delta, mode[border]); + cv::convertScaleAbs(tmpD, tmpE, 255.0, 0.0); + + if (balp) + cv::threshold(tmpE, bgra[1], 0.1, 255, THRESH_BINARY); + + Mat out; + std::vector ch_out{ tmpE, tmpE, tmpE, bgra[1] }; + cv::merge(ch_out, out); + PutPixelData(L, out.data); + return 0; +} + +int laplacianRGB(lua_State* L) +{ + int ksize = lua_tointeger(L, 1); + bool balp = static_cast(lua_toboolean(L, 2)); + int border = lua_tointeger(L, 3); + double scale = lua_tonumber(L, 4); + double delta = lua_tonumber(L, 5); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA, tmpB; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + tmpA.convertTo(tmpB, CV_32FC4, 1.0 / 255, 0.0); + + std::vector ch_col; + cv::split(tmpB, ch_col); + + std::vector mode{ + BORDER_CONSTANT, + BORDER_REPLICATE, + BORDER_REFLECT, + BORDER_REFLECT_101, + BORDER_ISOLATED + }; + ksize = constrain(2 * ksize - 1, 0, INT_MAX); + + Mat tmpC = Mat::zeros(tmpA.size(), CV_32F); + Mat tmpD, tmpF; + for (auto i = 0; i < 3; ++i) + { + Mat tmpE; + cv::Laplacian(ch_col[i], tmpE, -1, ksize, scale, delta, mode[border]); + cv::add(tmpC, tmpE, tmpC); + } + cv::convertScaleAbs(tmpC, tmpD, 255.0, 0.0); + + if (balp) + cv::threshold(tmpD, tmpF, 0.1, 255, THRESH_BINARY); + else + cv::convertScaleAbs(ch_col[3], tmpF, 255.0, 0.0); + + Mat out; + std::vector ch_out{ tmpD, tmpD, tmpD, tmpF }; + cv::merge(ch_out, out); + PutPixelData(L, out.data); + return 0; +} + +int cannyfilter(lua_State* L) +{ + double thres1 = lua_tonumber(L, 1); + double thres2 = lua_tonumber(L, 2); + int asize = lua_tointeger(L, 3); + bool gradient = static_cast(lua_toboolean(L, 4)); + bool balp = static_cast(lua_toboolean(L, 5)); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + Mat tmpB, tmpC; + cv::cvtColor(bgr, tmpB, COLOR_BGRA2GRAY); + cv::Canny(tmpB, tmpC, thres1, thres2, 2 * asize - 1, gradient); + + if (balp) + cv::threshold(tmpC, bgra[1], 0.1, 255, THRESH_BINARY); + + Mat out; + std::vector ch_out{ tmpC, tmpC, tmpC, bgra[1] }; + cv::merge(ch_out, out); + PutPixelData(L, out.data); + return 0; +} + +int cannyRGB(lua_State* L) +{ + double thres1 = lua_tonumber(L, 1); + double thres2 = lua_tonumber(L, 2); + int asize = lua_tointeger(L, 3); + bool gradient = static_cast(lua_toboolean(L, 4)); + bool balp = static_cast(lua_toboolean(L, 5)); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + std::vector ch_col; + cv::split(tmpA, ch_col); + + Mat tmpB = Mat::zeros(tmpA.size(), CV_8U); + for (auto i = 0; i < 3; ++i) + { + Mat tmpC; + cv::Canny(ch_col[i], tmpC, thres1, thres2, 2 * asize - 1, gradient); + cv::add(tmpB, tmpC, tmpB); + } + + if (balp) + cv::threshold(tmpB, ch_col[3], 0.1, 255, THRESH_BINARY); + + Mat out; + std::vector ch_out{ tmpB, tmpB, tmpB, ch_col[3] }; + cv::merge(ch_out, out); + PutPixelData(L, out.data); + return 0; +} + +int morphologyfilter(lua_State* L) +{ + int ksize = lua_tointeger(L, 1); + int ktype = lua_tointeger(L, 2); + int mode = lua_tointeger(L, 3); + int iterations = lua_tointeger(L, 4); + int border = lua_tointeger(L, 5); + bool alphasync = static_cast(lua_toboolean(L, 6)); + + luaL_openlibs(L); + lua_getglobal(L, "anc"); + int stackidx = lua_gettop(L); + lua_pushnil(L); + std::array pt{ 0, 0 }; + int j = 0; + while (lua_next(L, stackidx) != 0) + { + if (lua_isnumber(L, -1)) + { + pt[j] = lua_tointeger(L, -1); + ++j; + } + lua_pop(L, 1); + } + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + std::vector kshape{ + MORPH_RECT, + MORPH_CROSS, + MORPH_ELLIPSE + }; + + std::vector opmode{ + MORPH_ERODE, + MORPH_DILATE, + MORPH_OPEN, + MORPH_CLOSE, + MORPH_GRADIENT, + MORPH_TOPHAT, + MORPH_BLACKHAT, + MORPH_HITMISS + }; + + std::vector bmode{ + BORDER_CONSTANT, + BORDER_REPLICATE, + BORDER_REFLECT, + BORDER_REFLECT_101, + BORDER_ISOLATED + }; + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + img.copyTo(tmpA); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + Mat tmpB = Mat::zeros(tmpA.size(), CV_8UC3); + Mat tmpC, tmpD; + + bgra[0].copyTo(tmpB, bgra[1]); + cv::cvtColor(tmpB, tmpB, COLOR_BGR2GRAY); + ksize = constrain(2 * ksize - 1, 1, INT_MAX); + Point anchor(pt[0], pt[1]); + Mat kernel = getStructuringElement(kshape[ktype], Size(ksize, ksize), anchor); + cv::morphologyEx(tmpB, tmpC, opmode[mode], kernel, anchor, iterations, bmode[border]); + + if (alphasync) + cv::morphologyEx(bgra[1], tmpD, opmode[mode], kernel, anchor, iterations, bmode[border]); + else + tmpD = bgra[1].clone(); + + Mat out; + std::vector ch_out{ tmpC, tmpC, tmpC, tmpD }; + cv::merge(ch_out, out); + PutPixelData(L, out.data); + + return 0; +} + +int morphologyRGB(lua_State* L) +{ + int ksizeB = lua_tointeger(L, 1); + int ksizeG = lua_tointeger(L, 2); + int ksizeR = lua_tointeger(L, 3); + int ktype = lua_tointeger(L, 4); + int mode = lua_tointeger(L, 5); + int iterations = lua_tointeger(L, 6); + int border = lua_tointeger(L, 7); + bool alphasync = static_cast(lua_toboolean(L, 8)); + + luaL_openlibs(L); + lua_getglobal(L, "anc"); + int stackidx = lua_gettop(L); + lua_pushnil(L); + std::array pt{ 0, 0 }; + int j = 0; + while (lua_next(L, stackidx) != 0) + { + if (lua_isnumber(L, -1)) + { + pt[j] = lua_tointeger(L, -1); + ++j; + } + lua_pop(L, 1); + } + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat tmpB = Mat::zeros(tmpA.size(), CV_8UC3); + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + img.copyTo(tmpA); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + bgra[0].copyTo(tmpB, bgra[1]); + + std::vector col_ch; + cv::split(tmpB, col_ch); + + std::vector kshape{ + MORPH_RECT, + MORPH_CROSS, + MORPH_ELLIPSE + }; + + std::vector opmode{ + MORPH_ERODE, + MORPH_DILATE, + MORPH_OPEN, + MORPH_CLOSE, + MORPH_GRADIENT, + MORPH_TOPHAT, + MORPH_BLACKHAT, + MORPH_HITMISS + }; + + std::vector bmode{ + BORDER_CONSTANT, + BORDER_REPLICATE, + BORDER_REFLECT, + BORDER_REFLECT_101, + BORDER_ISOLATED + }; + + std::vector ksize{ ksizeB, ksizeG, ksizeR }; + Point anchor(pt[0], pt[1]); + std::vector kernel; + for (auto i = 0; i < 3; ++i) + { + Mat tmpB = getStructuringElement(kshape[ktype], Size(2 * ksize[i] - 1, 2 * ksize[i] - 1), anchor); + kernel.emplace_back(tmpB); + col_ch.emplace_back(bgra[1]); + } + + Mat tmpC = Mat::zeros(tmpA.size(), CV_8U); + std::vector tmpD(6, tmpC); + iterations = constrain(iterations, 1, INT_MAX); + parallel_for(0, 6, 1, [&](int j) + { + Mat tmpE; + cv::morphologyEx(col_ch[j], tmpE, opmode[mode], kernel[j % 3], anchor, iterations, bmode[border]); + tmpD[j] = tmpE.clone(); + } + ); + if (alphasync) + { + for (auto i = 0; i < 3; ++i) + { + cv::add(tmpC, tmpD[3 + i], tmpC); + } + } + else + { + col_ch[3].copyTo(tmpC); + } + + Mat out; + std::vector ch_out{ tmpD[0], tmpD[1], tmpD[2], tmpC}; + cv::merge(ch_out, out); + + PutPixelData(L, out.data); + return 0; +} + +int ch_chg(lua_State* L) +{ + int ch_red = lua_tointeger(L, 1); + int ch_green = lua_tointeger(L, 2); + int ch_blue = lua_tointeger(L, 3); + int ch_alpha = lua_tointeger(L, 4); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmp; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmp); + + Mat out(tmp.size(), tmp.type()); + std::vector ch{ ch_blue,0, ch_green,1, ch_red,2, ch_alpha,3 }; + cv::mixChannels(&tmp, 1, &out, 1, ch.data(), 4); + + PutPixelData(L, out.data); + return 0; +} + +int thres(lua_State* L) +{ + double thres = lua_tonumber(L, 1); + double maxv = lua_tonumber(L, 2); + int tmode = lua_tointeger(L, 3); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + std::vector mode{ + THRESH_BINARY, + THRESH_BINARY_INV, + THRESH_TRUNC, + THRESH_TOZERO, + THRESH_TOZERO_INV, + THRESH_OTSU, + THRESH_TRIANGLE + }; + + Mat tmpB, tmpC; + cvtColor(bgr, tmpB, COLOR_BGR2GRAY); + cv::threshold(tmpB, tmpC, thres, maxv, mode[tmode]); + + Mat out; + std::vector ch_out{ tmpC, tmpC, tmpC, bgra[1] }; + cv::merge(ch_out, out); + + PutPixelData(L, out.data); + return 0; +} + +int adpthres(lua_State* L) +{ + int adpthres = lua_tointeger(L, 1); + double maxv = lua_tonumber(L, 2); + int bsize = lua_tointeger(L, 3); + int tmode = lua_tointeger(L, 4); + double valC = lua_tonumber(L, 5); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA, tmpB; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + cv::cvtColor(bgra[0], tmpB, COLOR_BGR2GRAY); + + std::vector mode{ + THRESH_BINARY_INV, + THRESH_BINARY + }; + + std::vector adp_mode{ + ADAPTIVE_THRESH_MEAN_C, + ADAPTIVE_THRESH_GAUSSIAN_C + }; + + Mat tmpC; + tmode = constrain(tmode, 0, 1); + adpthres = constrain(adpthres, 0, 1); + cv::adaptiveThreshold(tmpB, tmpC, maxv, adp_mode[adpthres], mode[tmode], 2 * bsize + 1, valC); + + Mat out; + std::vector ch_out{ tmpC, tmpC, tmpC, bgra[1] }; + cv::merge(ch_out, out); + PutPixelData(L, out.data); + return 0; +} + +int diffusion(lua_State* L) +{ + int iter = lua_tointeger(L, 1); + float decay_factor = static_cast(lua_tonumber(L, 2)); + float decay_offset = static_cast(lua_tonumber(L, 3)); + float gamma = static_cast(lua_tonumber(L, 4)); + int sigma = constrain(lua_tointeger(L, 5), 0, INT_MAX); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA, tmpB; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + tmpA.convertTo(tmpB, CV_32FC4, 1.0 / 255.0); + + Mat tmpC = cv::Mat::zeros(tmpB.size(), CV_32FC3); + parallel_for(0, height, 1, [&](int y) + { + auto pIN = tmpB.ptr(y); + auto pPOW = tmpC.ptr(y); + + for (auto x = 0; x < width; ++x) + { + pPOW[x][0] = std::pow(pIN[x][0], gamma); + pPOW[x][1] = std::pow(pIN[x][1], gamma); + pPOW[x][2] = std::pow(pIN[x][2], gamma); + } + } + ); + + Mat tmpE = tmpC.clone(); + for (int i = 0; i < iter; ++i) + { + float gain = std::pow(decay_factor, -((float)i + decay_offset)); + sigma *= sigma; + Mat tmpD; + cv::GaussianBlur(tmpC, tmpD, Size(), (double)sigma); + + parallel_for(0, height, 1, [&tmpD, &tmpE, gain, width](int y) + { + auto pIN1 = tmpD.ptr(y); + auto pIN2 = tmpE.ptr(y); + + for (auto x = 0; x < width; ++x) + { + pIN2[x][0] += (pIN1[x][0] * gain); + pIN2[x][1] += (pIN1[x][1] * gain); + pIN2[x][2] += (pIN1[x][2] * gain); + } + } + ); + tmpD.release(); + } + + float gm_inv = 1.0 / gamma; + Mat tmpF = cv::Mat::zeros(tmpB.size(), tmpB.type()); + parallel_for(0, height, 1, [&tmpE, &tmpF, &tmpB, gm_inv, width](int y) + { + auto pIN3 = tmpE.ptr(y); + auto pIN4 = tmpB.ptr(y); + auto pOUT = tmpF.ptr(y); + + for (auto x = 0; x < width; ++x) + { + pOUT[x][0] = constrain(std::pow(pIN3[x][0], gm_inv), 0.f, 1.f); + pOUT[x][1] = constrain(std::pow(pIN3[x][1], gm_inv), 0.f, 1.f); + pOUT[x][2] = constrain(std::pow(pIN3[x][2], gm_inv), 0.f, 1.f); + pOUT[x][3] = pIN4[x][3]; + } + } + ); + + Mat out; + convertScaleAbs(tmpF, out, 255.0, 0.0); + PutPixelData(L, out.data); + return 0; +} + +int noise(lua_State* L) +{ + float alp = static_cast(lua_tonumber(L, 1)); + float valK = static_cast(lua_tonumber(L, 2)); + int iter = lua_tointeger(L, 3); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + Mat tmpB, out(tmpA.size(), tmpA.type()); + anisotropicDiffusion(bgra[0], tmpB, alp, valK, iter); + bgra[0] = tmpB.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + PutPixelData(L, out.data); + return 0; +} + +int fig_blur(lua_State* L) +{ + double size = lua_tonumber(L, 1); + double cbrt = lua_tonumber(L, 2); + auto fpath = toStringRestrict(L, 3); + + try + { + Mat k1 = cv::imread(fpath, IMREAD_GRAYSCALE); + + // size : sy = col : rows + int sx = static_cast(size); + int sy = static_cast(double(sx) * k1.rows / k1.cols); + Mat tmpA; + cv::resize(k1, tmpA, Size(sx, sy), 0.0, 0.0, INTER_LANCZOS4); + + Mat tmpB, tmpC, kernel; + Mat tmpD = Mat::ones(tmpA.size(), CV_32F); + tmpA.convertTo(tmpB, CV_32F, 1.0, 0.0); + cv::Scalar sums = cv::sum(tmpB); + cv::divide(tmpB, tmpD * sums[0], tmpC); + cv::multiply(tmpC, tmpD*cbrt, kernel); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), in0; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(in0); + + Mat bgr(img.size(), CV_8UC3), alpha(img.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&in0, 1, bgra.data(), 2, ch.data(), 4); + + Mat in1, in2, out1, out2; + bgra[0].convertTo(in1, CV_32F); + bgra[1].convertTo(in2, CV_32F); + cv::filter2D(in1, out1, -1, kernel); + cv::filter2D(in2, out2, -1, kernel); + + Mat out3(img.size(), CV_8UC4); + cv::convertScaleAbs(out1, bgra[0], 1.0, 0.0); + cv::convertScaleAbs(out2, bgra[1], 1.0, 0.0); + cv::mixChannels(bgra.data(), 2, &out3, 1, ch.data(), 4); + PutPixelData(L, out3.data); + } + catch (const std::exception& ex) + { + std::cout << ex.what() << std::endl; + } + return 0; +} + +void GetPtElement(lua_State* L, int stackIndex, std::vector>& tb, int key) +{ + std::vector elements; + int stackHead = lua_gettop(L); + lua_pushnil(L); + while (lua_next(L, stackHead) != 0) + { + if (lua_istable(L, -1)) + { + tb.emplace_back(elements); + GetPtElement(L, lua_gettop(L), tb, key+1); + } + else + { + if (lua_isnumber(L, -1)) + { + double ele = lua_tonumber(L, -1); + tb[key].emplace_back(ele); + } + } + lua_pop(L, 1); + } +} + +int moebius(lua_State* L) +{ + try + { + bool normalize = static_cast(lua_toboolean(L, 1)); + int iterX = lua_tointeger(L, 2); + int iterY = lua_tointeger(L, 3); + + std::vector> coef(4, { 0, 0 }); + std::vector> cf; + luaL_openlibs(L); + lua_getglobal(L, "coef"); + + int cfidx = 0; + if (lua_checkstack(L, 100) == 0) + return 0; + + std::vector init; + cf.emplace_back(init); + GetPtElement(L, lua_gettop(L), cf, 0); + + int range = cf[0][0] + 1; + std::copy(cf.begin() + 1, cf.begin() + range, coef.begin()); + + Mat buf_bgra; + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame); + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(buf_bgra); + + // デバッグ + //std::vector> c4(4, std::complex(0.0, 0.0)); + //for (auto i = 0; i < 4; ++i) + //{ + // c4[i] = std::complex(coef[i][0], coef[i][1]); + // std::cout << c4[i] << std::endl; + //} + + std::complex ca(coef[0][0], coef[0][1]); + std::complex cb(coef[1][0], coef[1][1]); + std::complex cc(coef[2][0], coef[2][1]); + std::complex cd(coef[3][0], coef[3][1]); + + if (ca * cd == cb * cc) + return 0; + + iterX = constrain(iterX, 1, INT_MAX); + iterY = constrain(iterY, 1, INT_MAX); + int input_w = iterX * width; + int input_h = iterY * height; + int csize = input_w * input_h; + std::vector coodX(csize, 0); + std::vector coodY(csize, 0); + parallel_for(0, csize, 1, [&](int i) + { + int x = i % input_w; + int y = i / input_w; + + double nx = double(x); + double ny = double(y); + if (normalize) + { + nx -= double(input_w) / 2; + ny -= double(input_h) / 2; + } + + std::complex pos(double(nx) / input_w, double(ny) / input_h); + std::complex fz = (ca * pos + cb) / (cc * pos + cd); + + coodX[i] = fz.real(); + coodY[i] = fz.imag(); + } + ); + + double xmax = *max_element(coodX.begin(), coodX.end()); + double xmin = *min_element(coodX.begin(), coodX.end()); + double ymax = *max_element(coodY.begin(), coodY.end()); + double ymin = *min_element(coodY.begin(), coodY.end()); + double xrange = (xmax == xmin) ? 1.0 : (xmax - xmin); + double yrange = (ymax == ymin) ? 1.0 : (ymax - ymin); + + Mat tmp(Size(input_w, input_h), buf_bgra.type()); + parallel_for(0, input_h, 1, [&](int y) + { + auto pOUT = tmp.ptr(y); + for (auto x = 0; x < input_w; ++x) + { + int cdi = x + y * input_w ; + int new_x = int((input_w - 1) * (coodX[cdi] - xmin) / xrange); + int new_y = int((input_h - 1) * (coodY[cdi] - ymin) / yrange); + + new_x = new_x % width; + new_y = new_y % height; + + auto pIN = buf_bgra.ptr(new_y); + pOUT[x] = pIN[new_x]; + } + } + ); + + Mat out; + cv::resize(tmp, out, Size(width, height), 0, 0, INTER_LANCZOS4); + PutPixelData(L, out.data); + + /* + Mat out; + bool wh_flag = (ow < oh); + bool w_flag = ((ow - 8) < new_buf.cols); + bool h_flag = (oh < new_buf.rows); + bool b_flag = (new_buf.rows < new_buf.cols); + double cn = 0.0; + + if (w_flag || h_flag) + { + if (!h_flag) + { + cn = double(ow - 8) / new_w; + } + else if (!w_flag) + { + cn = (double)oh / new_h; + } + else + { + if (b_flag) + { + cn = (double)oh / new_h; + } + else + { + cn = double(ow - 8) / new_w; + } + } + std::cout << cn << std::endl; + cv::resize(new_buf, out, Size(), cn, cn, INTER_LANCZOS4); + } + + assert((out.cols <= (ow - 8)) && (out.rows <= oh)); + + cv::namedWindow("result", WINDOW_NORMAL); + cv::imshow("result", out); + */ + + /* + parallel_for(0, out.rows, 1, [&](int y) + { + auto pOUT = out.ptr(y); + + for (auto x = 0; x < out.cols; ++x) + { + int idx = x + y * out.cols; + int r = static_cast(pOUT[idx][2]); + int g = static_cast(pOUT[idx][1]); + int b = static_cast(pOUT[idx][0]); + int a = static_cast(pOUT[idx][3]); + + int r_ = (r << 6) + 18; + int g_ = (g << 6) + 18; + int b_ = (b << 6) + 18; + int a_ = (a << 6) + 1; + + (*dt + idx)->y = static_cast(((r_ * 4918) >> 16) + ((g_ * 9655) >> 16) + ((b_ * 1875) >> 16) - 3); + (*dt + idx)->cb = static_cast(((r_ * -2775) >> 16) + ((g_ * -5449) >> 16) + ((b_ * 8224) >> 16) + 1); + (*dt + idx)->cr = static_cast(((r_ * 8224) >> 16) + ((g_ * -6887) >> 16) + ((b_ * -1337) >> 16) + 1); + (*dt + idx)->a = static_cast((a_ * 16448) >> 16); + } + } + ); + */ + + /* + parallel_for(0, ht, 1, [&](int y) + { + for (auto x = 0; x < wt; ++x) + { + int cdi = x + y * wt; + double xrange = (xmax == xmin) ? 1 : (xmax - xmin); + double yrange = (ymax == ymin) ? 1 : (ymax - ymin); + int new_x = int((wt - 1) * (coodX[cdi] - xmin) / xrange); + int new_y = int((ht - 1) * (coodY[cdi] - ymin) / yrange); + + new_x = constrain(new_x, 0, wt - 1); + new_y = constrain(new_y, 0, ht - 1); + + auto pOUT = buf_bgra.ptr(new_y); + + int idx = x + y * ow; + int r = static_cast(pOUT[new_x][2]); + int g = static_cast(pOUT[new_x][1]); + int b = static_cast(pOUT[new_x][0]); + int a = static_cast(pOUT[new_x][3]); + + int r_ = (r << 6) + 18; + int g_ = (g << 6) + 18; + int b_ = (b << 6) + 18; + int a_ = (a << 6) + 1; + + (*dt + idx)->y = static_cast(((r_ * 4918) >> 16) + ((g_ * 9655) >> 16) + ((b_ * 1875) >> 16) - 3); + (*dt + idx)->cb = static_cast(((r_ * -2775) >> 16) + ((g_ * -5449) >> 16) + ((b_ * 8224) >> 16) + 1); + (*dt + idx)->cr = static_cast(((r_ * 8224) >> 16) + ((g_ * -6887) >> 16) + ((b_ * -1337) >> 16) + 1); + (*dt + idx)->a = static_cast((a_ * 16448) >> 16); + } + } + ); + */ + } + catch (const std::exception& ex) + { + std::cout << ex.what() << std::endl; + } + + return 0; +} + +int meanshift(lua_State* L) +{ + double sp = lua_tonumber(L, 1); + double sr = lua_tonumber(L, 2); + int maxl = lua_tointeger(L, 3); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + Mat tmpB, out(tmpA.size(), tmpA.type()); + cv::pyrMeanShiftFiltering(bgra[0], tmpB, sp, sr, maxl); + bgra[0] = tmpB.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + PutPixelData(L, out.data); + return 0; +} + +int voronoi(lua_State* L) +{ + int pt = lua_tointeger(L, 1); + int seed = lua_tointeger(L, 2); + bool lindrw = static_cast(lua_toboolean(L, 3)); + int red = lua_tointeger(L, 4); + int green = lua_tointeger(L, 5); + int blue = lua_tointeger(L, 6); + int linth = lua_tointeger(L, 7); + int lintp = lua_tointeger(L, 8); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + cv::Subdiv2D subdiv; + subdiv.initDelaunay(cv::Rect(0, 0, width, height)); + std::vector points(pt, Point2f(0.f, 0.f)), facecenter; + std::seed_seq sq{ seed }; + std::mt19937 rn(sq); + + for (auto i = 0; i < pt; ++i) + { + uint rnd = rn(); + float px = static_cast(rnd % width); + float py = static_cast(rnd % height); + points[i] = Point2f(px, py); + } + + points.emplace_back(Point2f(0, 0)); + points.emplace_back(Point2f(width - 1, 0)); + points.emplace_back(Point2f(0, height - 1)); + points.emplace_back(Point2f(width - 1, height - 1)); + subdiv.insert(points); + + std::vector idx; + std::vector> facetlist; + + subdiv.getVoronoiFacetList(idx, facetlist, facecenter); + Mat vn = Mat::zeros(tmpA.size(), CV_8UC3); + std::vector ltype{ LINE_4, LINE_8, LINE_AA }; + int linType = ltype[lintp]; + + parallel_for_each(facetlist.begin(), facetlist.end(), [&](std::vector ftl) + { + std::vector vertices(ftl.size(), Point()); + auto polyColor = Vec3f(0.f, 0.f, 0.f); + int polyColorNum = 0; + int psize = ftl.size(); + + for (int i = 0; i < psize; ++i) + { + Point vertex = ftl[i]; + vertices[i] = vertex; + int vx = vertex.x; + int vy = vertex.y; + + if (0 <= vx && vx < bgr.cols && 0 <= vy && vy < bgr.rows) + { + auto pIMG = bgra[0].ptr(vy); + polyColor += pIMG[vx]; + polyColorNum++; + } + } + polyColor /= float(polyColorNum); + cv::fillConvexPoly(vn, vertices.data(), psize, cv::Scalar(polyColor), linType); + vertices.clear(); + } + ); + + if (lindrw) + { + cv::Scalar lincol(blue, green, red); + parallel_for_each(facetlist.begin(), facetlist.end(), [&](std::vector ftl) + { + Point2f p1 = ftl[0]; + int psize = ftl.size(); + for (int i = 0; i < psize; ++i) + { + Point2f p2 = ftl[i]; + cv::line(vn, p1, p2, lincol, linth, linType); + p1 = p2; + } + } + ); + } + + Mat out(tmpA.size(), tmpA.type()); + bgra[0] = vn.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + PutPixelData(L, out.data); + return 0; +} + +int delaunay(lua_State* L) +{ + int pt = lua_tointeger(L, 1); + int seed = lua_tointeger(L, 2); + bool lindrw = static_cast(lua_toboolean(L, 3)); + int red = lua_tointeger(L, 4); + int green = lua_tointeger(L, 5); + int blue = lua_tointeger(L, 6); + int linth = lua_tointeger(L, 7); + int lintp = lua_tointeger(L, 8); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + cv::Subdiv2D subdiv; + subdiv.initDelaunay(cv::Rect(0, 0, width, height)); + std::vector points(pt, Point2f(0.f, 0.f)); + std::seed_seq sq{ seed }; + std::mt19937 rn(sq); + for (auto i = 0; i < pt; ++i) + { + uint rnd = rn(); + float px = static_cast(rnd % width); + float py = static_cast(rnd % height); + points[i] = Point2f(px, py); + } + + points.emplace_back(Point2f(0, 0)); + points.emplace_back(Point2f(width - 1, 0)); + points.emplace_back(Point2f(0, height - 1)); + points.emplace_back(Point2f(width - 1, height - 1)); + subdiv.insert(points); + + std::vector edgelist; + std::vector trilist; + + subdiv.getTriangleList(trilist); + subdiv.getEdgeList(edgelist); + Mat dn = Mat::zeros(tmpA.size(), CV_8UC3); + std::vector ltype{ LINE_4, LINE_8, LINE_AA }; + int linType = ltype[lintp]; + + parallel_for_each(trilist.begin(), trilist.end(), [&](Vec6f tri) + { + std::vector vertices(3, Point()); + auto polyColor = Vec3f(0.f, 0.f, 0.f); + + vertices[0] = Point(tri[0], tri[1]); + vertices[1] = Point(tri[2], tri[3]); + vertices[2] = Point(tri[4], tri[5]); + + for (int i = 0; i < 3; ++i) + { + auto pIMG = bgra[0].ptr(vertices[i].y); + polyColor += pIMG[vertices[i].x]; + } + polyColor /= 3.f; + cv::fillConvexPoly(dn, vertices.data(), 3, cv::Scalar(polyColor), linType); + vertices.clear(); + } + ); + + if (lindrw) + { + cv::Scalar lincol(blue, green, red); + parallel_for_each(edgelist.begin(), edgelist.end(), [&dn, &lincol, linth, linType](Vec4f edges) + { + cv::line(dn, Point(edges[0], edges[1]), Point(edges[2], edges[3]), lincol, linth, linType); + } + ); + } + + Mat out(tmpA.size(), tmpA.type()); + bgra[0] = dn.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + PutPixelData(L, out.data); + return 0; +} + +int pencilskc(lua_State* L) +{ + float sgmS = static_cast(lua_tonumber(L, 1)); + float sgmR = static_cast(lua_tonumber(L, 2)); + float shade = static_cast(lua_tonumber(L, 3)); + bool color = static_cast(lua_toboolean(L, 4)); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat imgA(height, width, CV_8UC4, frame), tmpA; + if (imgA.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + imgA.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + sgmS = constrain(sgmS, 0.f, 200.f); + sgmR = constrain(sgmR, 0.f, 1.f); + shade = constrain(shade, 0.f, 0.1f); + + Mat tmpB, tmpC, tmpD; + pencilSketch(bgr, tmpB, tmpC, sgmS, sgmR, shade); + if (color) + tmpD = tmpC.clone(); + else + cvtColor(tmpB, tmpD, COLOR_GRAY2BGR); + + Mat out(tmpA.size(), tmpA.type()); + bgra[0] = tmpD.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + PutPixelData(L, out.data); + return 0; +} + +int stylize(lua_State* L) +{ + float sgmS = static_cast(lua_tonumber(L, 1)); + float sgmR = static_cast(lua_tonumber(L, 2)); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + sgmS = constrain(sgmS, 0.f, 200.f); + sgmR = constrain(sgmR, 0.f, 1.f); + Mat tmpB; + stylization(bgr, tmpB, sgmS, sgmR); + + Mat out(tmpA.size(), tmpA.type()); + bgra[0] = tmpB.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + PutPixelData(L, out.data); + return 0; +} + +int det_enhance(lua_State* L) +{ + float sgmS = static_cast(lua_tonumber(L, 1)); + float sgmR = static_cast(lua_tonumber(L, 2)); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat imgA(height, width, CV_8UC4, frame), tmpA; + if (imgA.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + imgA.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + sgmS = constrain(sgmS, 0.f, 200.f); + sgmR = constrain(sgmR, 0.f, 1.f); + + Mat tmpB; + detailEnhance(bgr, tmpB, sgmS, sgmR); + + Mat out(tmpA.size(), tmpA.type()); + bgra[0] = tmpB.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + PutPixelData(L, out.data); + return 0; +} + +int edgePreserve(lua_State* L) +{ + float sgmS = static_cast(lua_tonumber(L, 1)); + float sgmR = static_cast(lua_tonumber(L, 2)); + int mode = lua_tointeger(L, 3); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + std::vector flags{ + RECURS_FILTER, + NORMCONV_FILTER + }; + + sgmS = constrain(sgmS, 0.f, 200.f); + sgmR = constrain(sgmR, 0.f, 1.f); + Mat tmpB; + edgePreservingFilter(bgr, tmpB, flags[mode], sgmS, sgmR); + + Mat out(tmpA.size(), tmpA.type()); + bgra[0] = tmpB.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + PutPixelData(L, out.data); + return 0; +} + +int oilpaint(lua_State* L) +{ + int size = lua_tointeger(L, 1); + int ratio = lua_tointeger(L, 2); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat imgA(height, width, CV_8UC4, frame), tmpA; + if (imgA.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + imgA.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + size = constrain(size, 2, INT_MAX); + Mat tmpB; + oilPainting(bgr, tmpB, size, ratio); + + Mat out(tmpA.size(), tmpA.type()); + bgra[0] = tmpB.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + PutPixelData(L, out.data); + return 0; +} + +int hist_eq(lua_State* L) +{ + double limit = lua_tonumber(L, 1); + int glidW = lua_tointeger(L, 2); + int glidH = lua_tointeger(L, 3); + bool adp = static_cast(lua_toboolean(L, 4)); + bool col = static_cast(lua_toboolean(L, 5)); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat imgA(height, width, CV_8UC4, frame), tmpA; + if (imgA.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + imgA.copyTo(tmpA); + + Mat bgr(tmpA.size(), CV_8UC3), alpha(tmpA.size(), CV_8U); + std::vector bgra{ bgr, alpha }; + std::vector ch{ 0,0, 1,1, 2,2, 3,3 }; + cv::mixChannels(&tmpA, 1, bgra.data(), 2, ch.data(), 4); + + Mat tmpB, tmpC; + cvtColor(bgr, tmpB, COLOR_BGR2GRAY); + if (adp) + { + auto clahe = cv::createCLAHE(limit, Size(glidW, glidH)); + clahe->apply(tmpB, tmpC); + } + else + { + cv::equalizeHist(tmpB, tmpC); + } + + Mat out(tmpA.size(), tmpA.type()); + if (col) + { + parallel_for(0, height, 1, [&](int y) + { + auto pIN1 = tmpC.ptr(y); + auto pIN2 = tmpB.ptr(y); + auto pIN3 = tmpA.ptr(y); + auto pOUT = out.ptr(y); + + for (auto x = 0; x < width; ++x) + { + double coef = 0; + if (pIN2[x] != 0) + { + coef = ((double)pIN1[x]) / pIN2[x]; + } + + pOUT[x][0] = saturate_cast(coef * pIN3[x][0]); + pOUT[x][1] = saturate_cast(coef * pIN3[x][1]); + pOUT[x][2] = saturate_cast(coef * pIN3[x][2]); + pOUT[x][3] = pIN3[x][3]; + } + } + ); + } + else + { + Mat tmpD; + cvtColor(tmpC, tmpD, COLOR_GRAY2BGR); + bgra[0] = tmpD.clone(); + cv::mixChannels(bgra.data(), 2, &out, 1, ch.data(), 4); + } + + PutPixelData(L, out.data); + return 0; +} + +int color_map(lua_State* L) +{ + int cmode = lua_tointeger(L, 1); + bool hsvmode = static_cast(lua_toboolean(L, 2)); + bool invmode = static_cast(lua_toboolean(L, 3)); + + auto [frame, width, height] = GetPixelData(L, ""); + Mat img(height, width, CV_8UC4, frame), tmp, tmpA; + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + img.copyTo(tmp); + + std::vector col_ch, hsv_ch; + cv::split(tmp, col_ch); + Mat alpha = col_ch[3].clone(); + + Mat tmpB, tmpC, tmpD; + cvtColor(tmp, tmpA, COLOR_BGRA2BGR); + if (hsvmode) + { + cvtColor(tmpA, tmpB, COLOR_BGR2HSV_FULL); + cv::split(tmpB, hsv_ch); + hsv_ch[0].convertTo(tmpC, CV_8U); + } + else + { + cvtColor(tmpA, tmpC, COLOR_BGR2GRAY, 1); + } + + if (invmode) + { + Mat tmp1 = Mat::ones(tmpC.size(), CV_8U) * 255; + Mat tmp2 = Mat::zeros(tmpC.size(), CV_8U); + cv::subtract(tmp1, tmpC, tmp2); + tmpC = tmp2.clone(); + } + + std::vector map{ COLORMAP_AUTUMN, + COLORMAP_BONE, + COLORMAP_JET, + COLORMAP_WINTER, + COLORMAP_RAINBOW, + COLORMAP_OCEAN, + COLORMAP_SUMMER, + COLORMAP_SPRING, + COLORMAP_COOL, + COLORMAP_HSV, + COLORMAP_PINK, + COLORMAP_HOT, + COLORMAP_PARULA, + COLORMAP_MAGMA, + COLORMAP_INFERNO, + COLORMAP_PLASMA, + COLORMAP_VIRIDIS, + COLORMAP_CIVIDIS, + COLORMAP_TWILIGHT, + COLORMAP_TWILIGHT_SHIFTED, + COLORMAP_TURBO, + COLORMAP_DEEPGREEN + }; + cv::applyColorMap(tmpC, tmpD, map[cmode]); + + parallel_for(0, img.rows, 1, [&](int y) + { + auto pout = img.ptr(y); + auto prgb = tmpD.ptr(y); + auto palp = alpha.ptr(y); + + for (auto i = 0; i < img.cols; ++i) + { + pout[i][0] = prgb[i][0]; + pout[i][1] = prgb[i][1]; + pout[i][2] = prgb[i][2]; + pout[i][3] = palp[i]; + } + } + ); + PutPixelData(L, img.data); + + return 0; +} + +int img_read(lua_State* L) +{ + try + { + auto fpath = toStringRestrict(L, 1); + int mode = lua_tointeger(L, 2); + double alpha = lua_tonumber(L, 3); + double beta = lua_tonumber(L, 4); + + if (fpath == nullptr) + { + std::cout << "cannot read file" << "\n" + << "please enter/select correct value" << std::endl; + return 0; + } + + cv::Mat frame, img, tmp; + if (mode == -2) + { + auto document = Document::loadFromFile(std::string(fpath)); + if (!document) return 0; + + uint w = constrain((int)alpha, 0, INT_MAX); + uint h = constrain((int)beta, 0, INT_MAX); + uint bgcol = 0x00000000; // 背景を透明に + auto bitmap = document->renderToBitmap(w, h, bgcol); + bitmap.convertToRGBA(); + auto fdata = reinterpret_cast(bitmap.data()); + Mat f(Size(bitmap.width(), bitmap.height()), CV_8UC4, fdata); + if (f.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + cvtColor(f, img, COLOR_BGRA2RGBA); + } + + img_read_tmp(fpath, mode, img); + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + + auto dp = GetAddData("exedit.auf", 0x1b2b20); + auto exdata = reinterpret_cast(dp); + auto ow = exdata->obj_line; + auto oh = exdata->obj_max_h; + if (oh < img.rows || (ow - 8) < img.cols) + { + std::cout << "Mat array is too bigs..." << std::endl; + return 0; + } + + if (img.channels() == 3) + { + cvtColor(img, tmp, COLOR_BGR2BGRA); + } + else if (img.channels() == 1) + { + cvtColor(img, tmp, COLOR_GRAY2BGRA); + } + else + { + img.copyTo(tmp); + } + + if (tmp.type() != CV_8UC4) + { + cv::convertScaleAbs(tmp, frame, alpha, beta); + } + else + { + tmp.copyTo(frame); + } + + lua_getglobal(L, "obj"); + lua_getfield(L, -1, "setoption"); + lua_pushstring(L, "drawtarget"); + lua_pushstring(L, "tempbuffer"); + lua_pushinteger(L, frame.cols); + lua_pushinteger(L, frame.rows); + lua_call(L, 4, 0); + + lua_getglobal(L, "obj"); + lua_getfield(L, -1, "load"); + lua_pushstring(L, "tempbuffer"); + lua_call(L, 1, 0); + + PutPixelData(L, frame.data); + } + catch (const std::exception& ex) + { + std::cout << ex.what() << std::endl; + } + return 0; +} + +int img_call(lua_State* L) +{ + cv::Mat img; + img_read_tmp("", -1, img); + if (img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + + int w = img.cols; + int h = img.rows; + lua_pushlightuserdata(L, img.data); + lua_pushinteger(L, w); + lua_pushinteger(L, h); + + return 3; +} + +int mov_read(lua_State* L) +{ + try + { + int idx = lua_tointeger(L, 1); + double alpha = lua_tonumber(L, 2); + double beta = lua_tonumber(L, 3); + int midx = lua_tointeger(L, 4); + bool reload = static_cast(lua_toboolean(L, 5)); + + auto dp = GetAddData("exedit.auf", 0x1b2b20); + auto exdata = reinterpret_cast(dp); + auto tn = exdata->frame_num; + auto ow = exdata->obj_line; + auto oh = exdata->obj_max_h; + + std::vector mode{ + cv::CAP_ANY, + cv::CAP_FFMPEG, + cv::CAP_IMAGES + }; + + static std::string path(""); + static std::unique_ptr vcp; + static double fnum = 0; + static int fnum_idx = 0; + if (reload || (path == "")) + { + CFileDialog fileDialog(true, nullptr, nullptr, OFN_FILEMUSTEXIST); + if (fileDialog.DoModal() == IDOK) + { + CString fullPathName = fileDialog.GetPathName(); + auto huh = fullPathName.GetString(); + path = std::string(huh); + + vcp = std::make_unique(path, mode[midx]); + vcp->set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('H', '2', '6', '4')); + fnum = vcp->get(cv::CAP_PROP_FRAME_COUNT); + fnum_idx = static_cast(fnum); + } + } + + if (idx == -2) + { + idx = tn % fnum_idx; + } + else if (idx == -1) + { + idx = constrain(tn, 0, fnum_idx); + } + else + { + idx = constrain(idx, 0, fnum_idx); + } + double val = static_cast(idx); + + bool isset = vcp->set(cv::CAP_PROP_POS_FRAMES, val); + if (!isset) + return 0; + + cv::Mat frame, img, tmp; + bool isread = vcp->read(img); + if ((!isread) || img.empty()) + { + std::cout << "Mat array is empty..." << std::endl; + return 0; + } + + if (oh < img.rows || (ow - 8) < img.cols) + { + std::cout << "Mat array is too bigs..." << std::endl; + return 0; + } + + if (img.channels() == 3) + { + cvtColor(img, tmp, cv::COLOR_BGR2BGRA); + } + else if (img.channels() == 1) + { + cvtColor(img, tmp, cv::COLOR_GRAY2BGRA); + } + else + { + img.copyTo(tmp); + } + + if (tmp.type() != CV_8UC4) + { + cv::convertScaleAbs(tmp, frame, alpha, beta); + } + else + { + tmp.copyTo(frame); + } + + lua_getglobal(L, "obj"); + lua_getfield(L, -1, "setoption"); + lua_pushstring(L, "drawtarget"); + lua_pushstring(L, "tempbuffer"); + lua_pushinteger(L, frame.cols); + lua_pushinteger(L, frame.rows); + lua_call(L, 4, 0); + + lua_getglobal(L, "obj"); + lua_getfield(L, -1, "load"); + lua_pushstring(L, "tempbuffer"); + lua_call(L, 1, 0); + + PutPixelData(L, frame.data); + } + catch (const std::exception& ex) + { + std::cout << ex.what() << std::endl; + } + return 0; +} + +/********************************************************************************/ +/*[utility functions]*/ + +template +T constrain(T v, T min, T max) +{ + if (v < min) + { + v = min; + } + else if (max < v) + { + v = max; + } + return v; +} + +void GetLuaTable(lua_State* L, int stackIndex, std::vector>& vals, int key) +{ + std::vector elements; + int stackHead = lua_gettop(L); + lua_pushnil(L); + while (lua_next(L, stackHead) != 0) + { + if (lua_istable(L, -1)) + { + vals.emplace_back(elements); + GetLuaTable(L, lua_gettop(L), vals, key + 1); + } + else + { + std::any ele = nullptr; + bool flags = false; + switch (lua_type(L, -1)) + { + case LUA_TBOOLEAN: + ele = static_cast(lua_toboolean(L, -1)); + flags = true; + break; + case LUA_TNUMBER: + ele = lua_tonumber(L, -1); + flags = true; + break; + case LUA_TSTRING: + ele = toStringRestrict(L, -1); + flags = (typeid(ele) == typeid(const char*)); + break; + case LUA_TLIGHTUSERDATA: + ele = lua_touserdata(L, -1); + flags = true; + break; + case LUA_TUSERDATA: + ele = lua_topointer(L, -1); + flags = true; + break; + default: + break; + } + + if (flags) + vals[key].emplace_back(ele); + } + lua_pop(L, 1); + } +} + +const char* toStringRestrict(lua_State* L, int idx) noexcept +{ + if (lua_isnumber(L, idx)) + { + double num = lua_tonumber(L, idx); + std::string tmp = std::to_string(num); + const char* chr = tmp.c_str(); + return chr; + } + else if (lua_isstring(L, idx)) + { + return lua_tostring(L, idx); + } + else + { + return nullptr; + } +} + +uintptr_t GetAddData(const char* modname, uintptr_t address) +{ + HMODULE hmod = GetModuleHandleA(modname); + uint32_t& base_add = (uint32_t&)hmod; + uint32_t dp = *std::bit_cast>(base_add + address); + + DWORD old = 0; + auto pt = reinterpret_cast(dp); + VirtualProtect(pt, sizeof(pt), PAGE_EXECUTE_READWRITE, &old); + return dp; +} + +std::tuple GetPixelData(lua_State* L, const char* mode) +{ + lua_getglobal(L, "obj"); + lua_getfield(L, -1, "getpixeldata"); + lua_pushstring(L, mode); // ここから引数 + lua_call(L, 1, 3); + + void* framedata = lua_touserdata(L, -3); + int width = lua_tointeger(L, -2); + int height = lua_tointeger(L, -1); + + lua_pop(L, 3); // スタックから消去 + + return { framedata, width, height }; +} + +void PutPixelData(lua_State* L, void* pixeldata) +{ + lua_getglobal(L, "obj"); + lua_getfield(L, -1, "putpixeldata"); + lua_pushlightuserdata(L, pixeldata); // ここから引数 + lua_call(L, 1, 0); + lua_pop(L, 1); +} + +void img_read_tmp(String path, int idx, Mat& out) +{ + static Mat img; + std::vector mode{ + IMREAD_UNCHANGED, + IMREAD_COLOR | IMREAD_ANYDEPTH, + IMREAD_GRAYSCALE | IMREAD_ANYDEPTH, + IMREAD_REDUCED_COLOR_2, + IMREAD_REDUCED_COLOR_4, + IMREAD_REDUCED_COLOR_8 + }; + + if (0 <= idx) + { + img = cv::imread(path, mode[idx]); + } + else if (idx == -2) + { + img = out.clone(); + return; + } + out = img.clone(); +} diff --git a/src/pch.cpp b/src/pch.cpp new file mode 100644 index 0000000..124be93 --- /dev/null +++ b/src/pch.cpp @@ -0,0 +1,4 @@ +サソ// pch.cpp: 繝励Μ繧ウ繝ウ繝代う繝ォ貂医∩繝倥ャ繝繝シ縺ォ蟇セ蠢懊☆繧九た繝シ繧ケ 繝輔ぃ繧、繝ォ + +#include "pch.h" +// 繝励Μ繧ウ繝ウ繝代う繝ォ貂医∩繝倥ャ繝繝シ繧剃スソ逕ィ縺励※縺繧句エ蜷医√さ繝ウ繝代う繝ォ繧呈仙粥縺輔○繧九↓縺ッ縺薙ョ繧ス繝シ繧ケ 繝輔ぃ繧、繝ォ縺悟ソ隕√〒縺吶 diff --git a/src/pch.h b/src/pch.h new file mode 100644 index 0000000..24fb2ec --- /dev/null +++ b/src/pch.h @@ -0,0 +1,48 @@ +サソ// pch.h: 繝励Μ繧ウ繝ウ繝代う繝ォ貂医∩繝倥ャ繝繝シ 繝輔ぃ繧、繝ォ縺ァ縺吶 +// 谺。縺ョ繝輔ぃ繧、繝ォ縺ッ縲√◎縺ョ蠕後ョ繝薙Ν繝峨ョ繝薙Ν繝 繝代ヵ繧ゥ繝シ繝槭Φ繧ケ繧貞髄荳翫&縺帙k縺溘a 1 蝗槭□縺代さ繝ウ繝代う繝ォ縺輔l縺セ縺吶 +// 繧ウ繝シ繝芽」懷ョ後d螟壹¥縺ョ繧ウ繝シ繝牙盾辣ァ讖溯ス縺ェ縺ゥ縺ョ IntelliSense 繝代ヵ繧ゥ繝シ繝槭Φ繧ケ縺ォ繧ょスア髻ソ縺励∪縺吶 +// 縺溘□縺励√%縺薙↓荳隕ァ陦ィ遉コ縺輔l縺ヲ縺繧九ヵ繧。繧、繝ォ縺ッ縲√ン繝ォ繝蛾俣縺ァ縺縺壹l縺九′譖エ譁ー縺輔l繧九→縲√☆縺ケ縺ヲ縺悟阪さ繝ウ繝代う繝ォ縺輔l縺セ縺吶 +// 鬆サ郢√↓譖エ譁ー縺吶k繝輔ぃ繧、繝ォ繧偵%縺薙↓霑ス蜉縺励↑縺縺ァ縺上□縺輔>縲りソス蜉縺吶k縺ィ縲√ヱ繝輔か繝シ繝槭Φ繧ケ荳翫ョ蛻ゥ轤ケ縺後↑縺上↑繧翫∪縺吶 + +#ifndef PCH_H +#define PCH_H + +// 繝励Μ繧ウ繝ウ繝代う繝ォ縺吶k繝倥ャ繝繝シ繧偵%縺薙↓霑ス蜉縺励∪縺 +#include "framework.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +using namespace cv; +using namespace dnn; +using namespace dnn_superres; +using namespace ximgproc; +using namespace xphoto; +using namespace Concurrency; +using namespace lunasvg; +#endif //PCH_H