-
Notifications
You must be signed in to change notification settings - Fork 7
/
utils.py
154 lines (123 loc) · 4.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import torch
from torch.autograd import Variable
import torchvision.transforms as transforms
from collections import defaultdict
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def accuracy(output, label, topk=(1,)):
maxk = max(topk)
batch_size = label.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(label.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def data_transforms_cifar(args):
assert args.dataset in ['cifar10', 'imagenet']
if args.dataset == 'cifar10':
MEAN = [0.49139968, 0.48215827, 0.44653124]
STD = [0.24703233, 0.24348505, 0.26158768]
elif args.dataset == 'imagenet':
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
if args.dataset == 'cifar10':
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
# transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
elif args.dataset == 'imagenet':
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
valid_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
return train_transform, valid_transform
def get_variable(inputs, cuda=False, **kwargs):
if type(inputs) in [list, np.ndarray]:
inputs = torch.Tensor(inputs)
if cuda:
out = Variable(inputs.cuda(), **kwargs)
else:
out = Variable(inputs, **kwargs)
return out
class keydefaultdict(defaultdict):
def __missing__(self, key):
if self.default_factory is None:
raise KeyError(key)
else:
ret = self[key] = self.default_factory(key)
return ret
class PrefetchedWrapper(object):
def prefetched_loader(loader):
stream = torch.cuda.Stream()
first = True
for next_input, next_target in loader:
with torch.cuda.stream(stream):
next_input = next_input.cuda(async=True)
next_target = next_target.cuda(async=True)
next_input = next_input.float()
if not first:
yield input, target
else:
first = False
torch.cuda.current_stream().wait_stream(stream)
input = next_input
target = next_target
yield input, target
def __init__(self, dataloader):
self.dataloader = dataloader
self.epoch = 0
def __iter__(self):
if (self.dataloader.sampler is not None and
isinstance(self.dataloader.sampler,
torch.utils.data.distributed.DistributedSampler)):
self.dataloader.sampler.set_epoch(self.epoch)
self.epoch += 1
return PrefetchedWrapper.prefetched_loader(self.dataloader)