forked from univai-summerschool-2019/CNN3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
standalone-model.py
83 lines (67 loc) · 2.23 KB
/
standalone-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# modified from https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
# and from wandb class
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
import wandb
from wandb.keras import WandbCallback
run = wandb.init()
config = run.config
# dimensions of our images.
img_width, img_height = 150, 150
train_data_dir = '../dogcat-data/train'
validation_data_dir = '../dogcat-data/validation'
nb_train_samples = 2000
nb_validation_samples = 2000
epochs = 50
batch_size = 32
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.summary()
#exit()
model.compile(loss='binary_crossentropy', optimizer='sgd',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
#shear_range=0.2,
#zoom_range=0.2,
#horizontal_flip=True
)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
callbacks=[WandbCallback()],
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)