-
Paper:Involution: Inverting the Inherence of Convolution for Visual Recognition
-
Origin Repo:d-li14/involution
-
Code:rednet.py
-
Evaluate Transforms:
# backend: cv2 # input_size: 224x224 transforms = T.Compose([ T.Resize(256), T.CenterCrop(224), T.Normalize( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True, data_format='HWC' ), T.ToTensor(), ])
-
Model Details:
Model Model Name Params (M) FLOPs (G) Top-1 (%) Top-5 (%) Pretrained Model RedNet-26 rednet_26 9.2 1.7 75.96 93.19 Download RedNet-38 rednet_38 12.4 2.2 77.48 93.57 Download RedNet-50 rednet_50 15.5 2.7 78.35 94.18 Download RedNet-101 rednet_101 25.7 4.7 78.92 94.35 Download RedNet-152 rednet_152 34.0 6.8 79.12 94.38 Download
-
Citation:
@InProceedings{Li_2021_CVPR, title = {Involution: Inverting the Inherence of Convolution for Visual Recognition}, author = {Li, Duo and Hu, Jie and Wang, Changhu and Li, Xiangtai and She, Qi and Zhu, Lei and Zhang, Tong and Chen, Qifeng}, booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021} }