forked from eglrp/ssd_tensorflow_traffic_sign_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
189 lines (155 loc) · 6.08 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
'''
Run inference using trained model
'''
import tensorflow as tf
from settings import *
from model import SSDModel
from model import ModelHelper
from model import nms
import numpy as np
from sklearn.model_selection import train_test_split
import cv2
import math
import os
import time
import pickle
from PIL import Image
import matplotlib.pyplot as plt
from moviepy.editor import VideoFileClip
from optparse import OptionParser
import glob
def run_inference(image, model, sess, mode, sign_map):
"""
Run inference on a given image
Arguments:
* image: Numpy array representing a single RGB image
* model: Dict of tensor references returned by SSDModel()
* sess: TensorFlow session reference
* mode: String of either "image", "video", or "demo"
Returns:
* Numpy array representing annotated image
"""
# Save original image in memory
image = np.array(image)
image_orig = np.copy(image)
# Get relevant tensors
x = model['x']
is_training = model['is_training']
preds_conf = model['preds_conf']
preds_loc = model['preds_loc']
probs = model['probs']
# Convert image to PIL Image, resize it, convert to grayscale (if necessary), convert back to numpy array
image = Image.fromarray(image)
orig_w, orig_h = image.size
if NUM_CHANNELS == 1:
image = image.convert('L') # 8-bit grayscale
image = image.resize((IMG_W, IMG_H), Image.LANCZOS) # high-quality downsampling filter
image = np.asarray(image)
images = np.array([image]) # create a "batch" of 1 image
if NUM_CHANNELS == 1:
images = np.expand_dims(images, axis=-1) # need extra dimension of size 1 for grayscale
# Perform object detection
t0 = time.time() # keep track of duration of object detection + NMS
preds_conf_val, preds_loc_val, probs_val = sess.run([preds_conf, preds_loc, probs], feed_dict={x: images, is_training: False})
if mode != 'video':
print('Inference took %.1f ms (%.2f fps)' % ((time.time() - t0)*1000, 1/(time.time() - t0)))
# Gather class predictions and confidence values
y_pred_conf = preds_conf_val[0] # batch size of 1, so just take [0]
y_pred_conf = y_pred_conf.astype('float32')
prob = probs_val[0]
# Gather localization predictions
y_pred_loc = preds_loc_val[0]
# Perform NMS
boxes = nms(y_pred_conf, y_pred_loc, prob)
if mode != 'video':
print('Inference + NMS took %.1f ms (%.2f fps)' % ((time.time() - t0)*1000, 1/(time.time() - t0)))
# Rescale boxes' coordinates back to original image's dimensions
# Recall boxes = [[x1, y1, x2, y2, cls, cls_prob], [...], ...]
scale = np.array([orig_w/IMG_W, orig_h/IMG_H, orig_w/IMG_W, orig_h/IMG_H])
if len(boxes) > 0:
boxes[:, :4] = boxes[:, :4] * scale
# Draw and annotate boxes over original image, and return annotated image
image = image_orig
for box in boxes:
# Get box parameters
box_coords = [int(round(x)) for x in box[:4]]
cls = int(box[4])
cls_prob = box[5]
# Annotate image
image = cv2.rectangle(image, tuple(box_coords[:2]), tuple(box_coords[2:]), (0,255,0))
label_str = '%s %.2f' % (sign_map[cls], cls_prob)
image = cv2.putText(image, label_str, (box_coords[0], box_coords[1]), 0, 0.5, (0,255,0), 1, cv2.LINE_AA)
return image
def generate_output(input_files, mode):
"""
Generate annotated images, videos, or sample images, based on mode
"""
# First, load mapping from integer class ID to sign name string
sign_map = {}
with open('signnames.csv', 'r') as f:
for line in f:
line = line[:-1] # strip newline at the end
sign_id, sign_name = line.split(',')
sign_map[int(sign_id)] = sign_name
sign_map[0] = 'background' # class ID 0 reserved for background class
# Create output directory 'inference_out/' if needed
if mode == 'image' or mode == 'video':
if not os.path.isdir('./inference_out'):
try:
os.mkdir('./inference_out')
except FileExistsError:
print('Error: Cannot mkdir ./inference_out')
return
# Launch the graph
with tf.Graph().as_default(), tf.Session() as sess:
# "Instantiate" neural network, get relevant tensors
model = SSDModel()
# Load trained model
saver = tf.train.Saver()
print('Restoring previously trained model at %s' % MODEL_SAVE_PATH)
saver.restore(sess, MODEL_SAVE_PATH)
if mode == 'image':
for image_file in input_files:
print('Running inference on %s' % image_file)
image_orig = np.asarray(Image.open(image_file))
image = run_inference(image_orig, model, sess, mode, sign_map)
head, tail = os.path.split(image_file)
plt.imsave('./inference_out/%s' % tail, image)
print('Output saved in inference_out/')
elif mode == 'video':
for video_file in input_files:
print('Running inference on %s' % video_file)
video = VideoFileClip(video_file)
video = video.fl_image(lambda x: run_inference(x, model, sess, mode, sign_map))
head, tail = os.path.split(video_file)
video.write_videofile('./inference_out/%s' % tail, audio=False)
print('Output saved in inference_out/')
elif mode == 'demo':
print('Demo mode: Running inference on images in sample_images/')
image_files = os.listdir('sample_images/')
for image_file in image_files:
print('Running inference on sample_images/%s' % image_file)
image_orig = np.asarray(Image.open('sample_images/' + image_file))
image = run_inference(image_orig, model, sess, mode, sign_map)
plt.imshow(image)
plt.show()
else:
raise ValueError('Invalid mode: %s' % mode)
if __name__ == '__main__':
# Configure command line options
parser = OptionParser()
parser.add_option('-i', '--input_dir', dest='input_dir',
help='Directory of input videos/images (ignored for "demo" mode). Will run inference on all videos/images in that dir')
parser.add_option('-m', '--mode', dest='mode', default='image',
help='Operating mode, could be "image", "video", or "demo"; "demo" mode displays annotated images from sample_images/')
# Get and parse command line options
options, args = parser.parse_args()
input_dir = options.input_dir
mode = options.mode
if mode != 'video' and mode != 'image' and mode != 'demo':
assert ValueError('Invalid mode: %s' % mode)
if mode != 'demo':
input_files = glob.glob(input_dir + '/*.*')
else:
input_files = []
generate_output(input_files, mode)