-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaverage_precision.py
177 lines (148 loc) · 6.86 KB
/
average_precision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
from collections import defaultdict
from ssdutils import jaccard_overlap
from utils import Size, prop2abs
IMG_SIZE = Size(1000, 1000)
#-------------------------------------------------------------------------------
def APs2mAP(aps):
"""
Take a mean of APs over all classes to compute mAP
"""
num_classes = 0.
sum_ap = 0.
for _, v in aps.items():
sum_ap += v
num_classes += 1
if num_classes == 0:
return 0
return sum_ap/num_classes
#-------------------------------------------------------------------------------
class APCalculator:
"""
Compute average precision of object detection as used in PASCAL VOC
Challenges. It is a peculiar measure because of the way it calculates the
precision-recall curve. It's highly sensitive to the sorting order of the
predictions in different images. Ie. the exact same resulting bounding
boxes in all images may get different AP score depending on the way
the boxes are sorted globally by confidence.
Reference: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
Reference: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
"""
#---------------------------------------------------------------------------
def __init__(self, minoverlap=0.5):
"""
Initialize the calculator.
"""
self.minoverlap = minoverlap
self.clear()
#---------------------------------------------------------------------------
def add_detections(self, gt_boxes, boxes):
"""
Add new detections to the calculator.
:param gt_sample: ground truth sample
:param boxes: a list of (float, Box) tuples representing
detections and their confidences, the detections
must have a correctly set label
"""
sample_id = len(self.gt_boxes)
self.gt_boxes.append(gt_boxes)
for conf, box in boxes:
arr = np.array(prop2abs(box.center, box.size, IMG_SIZE))
self.det_params[box.label].append(arr)
self.det_confidence[box.label].append(conf)
self.det_sample_ids[box.label].append(sample_id)
#---------------------------------------------------------------------------
def compute_aps(self):
"""
Compute the average precision per class as well as mAP.
"""
#-----------------------------------------------------------------------
# Split the ground truth samples by class and sample
#-----------------------------------------------------------------------
counts = defaultdict(lambda: 0)
gt_map = defaultdict(dict)
for sample_id, boxes in enumerate(self.gt_boxes):
boxes_by_class = defaultdict(list)
for box in boxes:
counts[box.label] += 1
boxes_by_class[box.label].append(box)
for k, v in boxes_by_class.items():
arr = np.zeros((len(v), 4))
match = np.zeros((len(v)), dtype=np.bool)
for i, box in enumerate(v):
arr[i] = np.array(prop2abs(box.center, box.size, IMG_SIZE))
gt_map[k][sample_id] = (arr, match)
#-----------------------------------------------------------------------
# Compare predictions to ground truth
#-----------------------------------------------------------------------
aps = {}
for k in gt_map:
#-------------------------------------------------------------------
# Create numpy arrays of detection parameters and sort them
# in descending order
#-------------------------------------------------------------------
params = np.array(self.det_params[k], dtype=np.float32)
confs = np.array(self.det_confidence[k], dtype=np.float32)
sample_ids = np.array(self.det_sample_ids[k], dtype=np.int)
idxs_max = np.argsort(-confs)
params = params[idxs_max]
confs = confs[idxs_max]
sample_ids = sample_ids[idxs_max]
#-------------------------------------------------------------------
# Loop over the detections and count true and false positives
#-------------------------------------------------------------------
tps = np.zeros((params.shape[0])) # true positives
fps = np.zeros((params.shape[0])) # false positives
for i in range(params.shape[0]):
sample_id = sample_ids[i]
box = params[i]
#---------------------------------------------------------------
# The image this detection comes from contains no objects of
# of this class
#---------------------------------------------------------------
if not sample_id in gt_map[k]:
fps[i] = 1
continue
#---------------------------------------------------------------
# Compute the jaccard overlap and see if it's over the threshold
#---------------------------------------------------------------
gt = gt_map[k][sample_id][0]
matched = gt_map[k][sample_id][1]
iou = jaccard_overlap(box, gt)
max_idx = np.argmax(iou)
if iou[max_idx] < self.minoverlap:
fps[i] = 1
continue
#---------------------------------------------------------------
# Check if the max overlap ground truth box is already matched
#---------------------------------------------------------------
if matched[max_idx]:
fps[i] = 1
continue
tps[i] = 1
matched[max_idx] = True
#-------------------------------------------------------------------
# Compute the precision, recall
#-------------------------------------------------------------------
fps = np.cumsum(fps)
tps = np.cumsum(tps)
recall = tps/counts[k]
prec = tps/(tps+fps)
ap = 0
for r_tilde in np.arange(0, 1.1, 0.1):
prec_rec = prec[recall >= r_tilde]
if len(prec_rec) > 0:
ap += np.amax(prec_rec)
ap /= 11.
aps[k] = ap
return aps
#---------------------------------------------------------------------------
def clear(self):
"""
Clear the current detection cache. Useful for restarting the calculation
for a new batch of data.
"""
self.det_params = defaultdict(list)
self.det_confidence = defaultdict(list)
self.det_sample_ids = defaultdict(list)
self.gt_boxes = []