-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov8-RCSOSA+TADDH+AIFI+SPDConv12cpca.yaml
57 lines (50 loc) · 2.29 KB
/
yolov8-RCSOSA+TADDH+AIFI+SPDConv12cpca.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, SPDConv, [128]] # 1-P2/4
- [-1, 3, RCSOSA, [128]]
- [-1, 1, SPDConv, [256]] # 3-P3/8
- [-1, 6, RCSOSA, [256]]
- [-1, 1, SPDConv, [512]] # 5-P4/16
- [-1, 6, RCSOSA, [512, True]]
- [-1, 1, SPDConv, [1024]] # 7-P5/32
- [-1, 3, RCSOSA, [1024, True]]
- [-1, 1, Conv, [256, 1]] # 9
- [-1, 1, AIFI, [1024, 8]] # 10
# - [-1, 1, BiLevelRoutingAttention_nchw, [8, 7]] # 11
# - [-1, 1, BiLevelRoutingAttention, [8, 7]] # 11
# - [-1, 1, SimAM, [1e-4]] # 11
# - [-1, 1, TripletAttention, []] # 11
- [-1, 1, CPCA, []] # 11
# - [-1, 1, MPCA, []] # 11
# - [-1, 1, SegNext_Attention, []] # 11
# - [-1, 1, DAttention, [[20, 20]]] # 11
# - [-1, 1, MLCA, []] # 11
# - [-1, 1, LocalWindowAttention, []] # 11
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RCSOSA, [512]] # 14
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, RCSOSA, [512]] # 17 (P3/8-small)
- [-1, 1, SPDConv, [256]]
- [[-1, 14], 1, Concat, [1]] # cat head P4
- [-1, 3, RCSOSA, [512]] # 20 (P4/16-medium)
- [-1, 1, SPDConv, [512]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, RCSOSA, [512]] # 23 (P5/32-large)
- [[17, 20, 23], 1, Detect_TADDH, [nc, 512]] # Detect(P3, P4, P5)