forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ReferenceImplementation.qs
182 lines (151 loc) · 8.38 KB
/
ReferenceImplementation.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains reference solutions to all tasks.
// The tasks themselves can be found in Tasks.qs file.
// We recommend that you try to solve the tasks yourself first,
// but feel free to look up the solution if you get stuck.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.BasicGates {
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Math;
//////////////////////////////////////////////////////////////////
// Part I. Single-Qubit Gates
//////////////////////////////////////////////////////////////////
// Task 1.1. State flip
// Input: A qubit in state |ψ⟩ = α |0⟩ + β |1⟩.
// Goal: Change the state of the qubit to α |1⟩ + β |0⟩.
// Example:
// If the qubit is in state |0⟩, change its state to |1⟩.
// If the qubit is in state |1⟩, change its state to |0⟩.
operation StateFlip_Reference (q : Qubit) : Unit is Adj+Ctl {
X(q);
}
// Task 1.2. Basis change: |0⟩ to |+⟩ and |1⟩ to |-⟩ (and vice versa)
// Input: A qubit in state |ψ⟩ = α |0⟩ + β |1⟩.
// Goal: Change the state of the qubit as follows:
// If the qubit is in state |0⟩, change its state to |+⟩ = (|0⟩ + |1⟩) / sqrt(2).
// If the qubit is in state |1⟩, change its state to |-⟩ = (|0⟩ - |1⟩) / sqrt(2).
// If the qubit is in superposition, change its state according to the effect on basis vectors.
// Note: |+⟩ and |-⟩ form a different basis for single-qubit states, called X basis.
operation BasisChange_Reference (q : Qubit) : Unit is Adj+Ctl {
H(q);
}
// Task 1.3. Sign flip: |+⟩ to |-⟩ and vice versa.
// Inputs: A qubit in state |ψ⟩ = α |0⟩ + β |1⟩.
// Goal: Change the qubit state to α |0⟩ - β |1⟩ (flip the sign of |1⟩ component of the superposition).
operation SignFlip_Reference (q : Qubit) : Unit is Adj+Ctl {
Z(q);
}
// Task 1.4*. Amplitude change (|0⟩ to cos(alpha)*|0⟩ + sin(alpha)*|1⟩).
// Inputs:
// 1) Angle alpha, in radians, represented as Double.
// 2) A qubit in state β|0⟩ + γ|1⟩.
// Goal: Change the state of the qubit as follows:
// If the qubit is in state |0⟩, change its state to cos(alpha)*|0⟩ + sin(alpha)*|1⟩.
// If the qubit is in state |1⟩, change its state to -sin(alpha)*|0⟩ + cos(alpha)*|1⟩.
// If the qubit is in superposition, change its state according to the effect on basis vectors.
operation AmplitudeChange_Reference (alpha : Double, q : Qubit) : Unit is Adj+Ctl {
Ry(2.0 * alpha, q);
}
// Task 1.5. Phase flip
// Input: A qubit in state |ψ⟩ = α |0⟩ + β |1⟩.
// Goal: Change the qubit state to α |0⟩ + iβ |1⟩ (flip the phase of |1⟩ component of the superposition).
operation PhaseFlip_Reference (q : Qubit) : Unit is Adj+Ctl {
S(q);
// alternatively R1(0.5 * PI(), q);
}
// Task 1.6*. Phase change
// Inputs:
// 1) Angle alpha, in radians, represented as Double.
// 2) A qubit in state β|0⟩ + γ|1⟩.
// Goal: Change the state of the qubit as follows:
// If the qubit is in state |0⟩, don't change its state.
// If the qubit is in state |1⟩, change its state to exp(i*alpha)|1⟩.
// If the qubit is in superposition, change its state according to the effect on basis vectors.
operation PhaseChange_Reference (alpha : Double, q : Qubit) : Unit is Adj+Ctl {
R1(alpha, q);
}
// Task 1.7. Global Phase Change
// Input: A qubit in state β|0⟩ + γ|1⟩.
// Goal: Change the state of the qubit to - β|0⟩ - γ|1⟩.
operation GlobalPhaseChange_Reference (q: Qubit) : Unit is Adj+Ctl {
R(PauliI, 2.0 * PI(), q);
}
// Task 1.8. Bell state change - 1
// Input: Two entangled qubits in Bell state |Φ⁺⟩ = (|00⟩ + |11⟩) / sqrt(2).
// Goal: Change the two-qubit state to |Φ⁻⟩ = (|00⟩ - |11⟩) / sqrt(2).
operation BellStateChange1_Reference (qs : Qubit[]) : Unit is Adj+Ctl {
Z(qs[0]);
// alternatively Z(qs[1]);
}
// Task 1.9. Bell state change - 2
// Input: Two entangled qubits in Bell state |Φ⁺⟩ = (|00⟩ + |11⟩) / sqrt(2).
// Goal: Change the two-qubit state to |Ψ⁺⟩ = (|01⟩ + |10⟩) / sqrt(2).
operation BellStateChange2_Reference (qs : Qubit[]) : Unit is Adj+Ctl {
X(qs[0]);
// alternatively X(qs[1]);
}
// Task 1.10. Bell state change - 3
// Input: Two entangled qubits in Bell state |Φ⁺⟩ = (|00⟩ + |11⟩) / sqrt(2).
// Goal: Change the two-qubit state to |Ψ⁻⟩ = (|01⟩ - |10⟩) / sqrt(2).
operation BellStateChange3_Reference (qs : Qubit[]) : Unit is Adj+Ctl {
X(qs[0]);
Z(qs[0]);
// note that this is not equivalent to Y(qs[0]), since Y gate adds an extra global phase
}
//////////////////////////////////////////////////////////////////
// Part II. Multi-Qubit Gates
//////////////////////////////////////////////////////////////////
// Task 2.1. Two-qubit gate - 1
// Input: Two unentangled qubits (stored in an array of length 2).
// The first qubit will be in state |ψ⟩ = α |0⟩ + β |1⟩, the second - in state |0⟩
// (this can be written as two-qubit state (α|0⟩ + β|1⟩) ⊗ |0⟩).
// Goal: Change the two-qubit state to α |00⟩ + β |11⟩.
// Note that unless the starting state of the first qubit was |0⟩ or |1⟩,
// the resulting two-qubit state can not be represented as a tensor product
// of the states of individual qubits any longer; thus the qubits become entangled.
operation TwoQubitGate1_Reference (qs : Qubit[]) : Unit is Adj+Ctl {
CNOT(qs[0], qs[1]);
}
// Task 2.2. Two-qubit gate - 2
// Input: Two qubits (stored in an array of length 2)
// in state |+⟩ ⊗ |+⟩ = (|00⟩ + |01⟩ + |10⟩ + |11⟩) / 2.
// Goal: Change the two-qubit state to (|00⟩ + |01⟩ + |10⟩ - |11⟩) / 2.
// Note that while the starting state can be represented as a tensor product of single-qubit states,
// the resulting two-qubit state can not be represented in such a way.
operation TwoQubitGate2_Reference (qs : Qubit[]) : Unit is Adj+Ctl {
Controlled Z([qs[0]], qs[1]);
// alternatively: CZ(qs[0], qs[1]);
}
// Task 2.3. Two-qubit gate - 3
// Input: Two qubits (stored in an array of length 2) in an arbitrary
// two-qubit state α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩.
// Goal: Change the two-qubit state to α|00⟩ + γ|01⟩ + β|10⟩ + δ|11⟩.
operation TwoQubitGate3_Reference (qs : Qubit[]) : Unit is Adj+Ctl {
// Hint: this task can be solved using one intrinsic gate;
// as an exercise, try to express the solution using several controlled Pauli gates.
CNOT(qs[0], qs[1]);
CNOT(qs[1], qs[0]);
CNOT(qs[0], qs[1]);
}
// Task 2.4. Toffoli gate
// Input: Three qubits (stored in an array of length 3) in an arbitrary three-qubit state
// α|000⟩ + β|001⟩ + γ|010⟩ + δ|011⟩ + ε|100⟩ + ζ|101⟩ + η|110⟩ + θ|111⟩.
// Goal: Flip the state of the third qubit if the state of the first two is |11⟩:
// i.e., change the three-qubit state to
// α|000⟩ + β|001⟩ + γ|010⟩ + δ|011⟩ + ε|100⟩ + ζ|101⟩ + θ|110⟩ + η|111⟩.
operation ToffoliGate_Reference (qs : Qubit[]) : Unit is Adj+Ctl {
CCNOT(qs[0], qs[1], qs[2]);
// alternatively (Controlled X)(qs[0..1], qs[2]);
}
// Task 2.5. Fredkin gate
// Input: Three qubits (stored in an array of length 3) in an arbitrary three-qubit state
// α|000⟩ + β|001⟩ + γ|010⟩ + δ|011⟩ + ε|100⟩ + ζ|101⟩ + η|110⟩ + θ|111⟩.
// Goal: Swap the states of second and third qubit if and only if the state of the first qubit is |1⟩:
// i.e., change the three-qubit state to
// α|000⟩ + β|001⟩ + γ|010⟩ + δ|011⟩ + ε|100⟩ + η|101⟩ + ζ|110⟩ + θ|111⟩.
operation FredkinGate_Reference (qs : Qubit[]) : Unit is Adj+Ctl {
Controlled SWAP([qs[0]], (qs[1], qs[2]));
}
}