-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
88 lines (78 loc) · 4.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import hydra
import omegaconf
import joblib
from trainer import UTAUTAI_Trainer
from utautai.soundstorm import SoundStorm, ConformerWrapper
from utautai.prompt_tts.style_module import StyleModule
from utautai.dataset.data_processor import DataProcessor
def dict_from_config(cfg: omegaconf.DictConfig) -> dict:
dct = omegaconf.OmegaConf.to_container(cfg, resolve=True)
assert isinstance(dct, dict)
return dct
@hydra.main(config_name='config', version_base=None, config_path='configs')
def main(cfg: omegaconf.DictConfig) -> None:
conformer_kwargs = cfg.conformerwrapper
conformer = ConformerWrapper(codebook_size=conformer_kwargs.codebook_size,
num_quantizers=conformer_kwargs.num_quantizers,
conformer=dict_from_config(conformer_kwargs.conformer))
soundstorm_kwargs = cfg.soundstorm
soundstorm = SoundStorm(net=conformer,
num_semantic_token_ids=soundstorm_kwargs.num_semantic_token_ids,
semantic_pad_id=soundstorm_kwargs.semantic_pad_id,
pad_id=soundstorm_kwargs.pad_id,
schedule=soundstorm_kwargs.schedule)
stylemodule_kwargs = cfg.stylemodule
stylemodule = StyleModule(name=stylemodule_kwargs.bert_name,
output_dim=stylemodule_kwargs.output_dim,
prompt_seq_len=stylemodule_kwargs.prompt_seq_len,
mert_seq_len=stylemodule_kwargs.mert_seq_len,
dim_head=stylemodule_kwargs.dim_head,
heads=stylemodule_kwargs.heads,
depth=stylemodule_kwargs.depth,
device=stylemodule_kwargs.device,
timesteps=stylemodule_kwargs.timesteps,
causal=stylemodule_kwargs.causal,
use_ddim=stylemodule_kwargs.use_ddim,
noise_schedule=stylemodule_kwargs.noise_schedule,
objective=stylemodule_kwargs.objective)
kmeans_kwargs = cfg.kmeans
kmeans = joblib.load(kmeans_kwargs.path)
dataprocessor_kwargs = cfg.dataprocessor
dataprocessor = DataProcessor(sr=dataprocessor_kwargs.sr,
channels=dataprocessor_kwargs.channels,
batch_size=dataprocessor_kwargs.batch_size,
num_workers=dataprocessor_kwargs.num_workers,
dataset_dir=dataprocessor_kwargs.dataset_dir,
train_test_split=dataprocessor_kwargs.train_test_split,
min_duration=dataprocessor_kwargs.min_duration,
max_duration=dataprocessor_kwargs.max_duration,
num_buckets=dataprocessor_kwargs.num_buckets,
sample_length=dataprocessor_kwargs.sample_length,
aug_shift=dataprocessor_kwargs.aug_shift,
cache_dir=dataprocessor_kwargs.cache_dir,
labels=dataprocessor_kwargs.labels,
device=dataprocessor_kwargs.device,
n_tokens=dataprocessor_kwargs.n_tokens,
train_semantic=dataprocessor_kwargs.train_semantic)
trainer_kwargs = cfg.trainer
trainer = UTAUTAI_Trainer(model=soundstorm,
stylemodule=stylemodule,
kmeans=kmeans,
dataprocessor=dataprocessor,
num_warmup_steps=trainer_kwargs.num_warmup_steps,
batch_size=trainer_kwargs.batch_size,
epochs=trainer_kwargs.epochs,
lr=trainer_kwargs.lr,
initial_lr=trainer_kwargs.initial_lr,
grad_accum_every=trainer_kwargs.grad_accum_every,
log_steps=trainer_kwargs.log_steps,
save_model_steps=trainer_kwargs.save_model_steps,
results_folder=trainer_kwargs.results_folder,
log_dir=trainer_kwargs.log_dir,
accelerate_kwargs=dict_from_config(trainer_kwargs.accelerate_kwargs),
num_ckpt_keep=trainer_kwargs.num_ckpt_keep,
use_tensorboard=trainer_kwargs.use_tensorboard,
loss_weight=trainer_kwargs.loss_weight)
trainer.train()
if __name__ == '__main__':
main()