-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
136 lines (116 loc) · 4.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from dataset.dataloader import get_dataloaders
from trainer import UnifiedMultiTaskTrainer
from utils.curriculum_scheduler import CurriculumScheduler
from utils.config import OptimizerConfig, DataConfig
from utils.logger import get_logger
from utils.script_util import *
def main(config: Config):
n_gpus = torch.cuda.device_count()
if config.use_ddp:
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, config))
else:
run(rank=0, n_gpus=1, config=config)
def run(rank, n_gpus, config: Config):
if rank == 0:
logger = get_logger(config.log_dir)
logger.info(config)
writer = SummaryWriter(log_dir=config.log_dir)
writer_val = SummaryWriter(log_dir=os.path.join(config.log_dir, 'val'))
dist.init_process_group(backend='nccl', init_method='env://',
world_size=n_gpus, rank=rank)
torch.manual_seed(config.seed)
torch.cuda.set_device(rank)
# create dataset
logger.info('creating data loader...')
data_config = Config.dataset_config
train_dl, valid_dl = get_dataloaders(data_config.dataset_dir, data_config.sr,
data_config.channels, data_config.min_duration,
data_config.max_duration, data_config.sample_duration,
data_config.aug_shift, data_config.batch_size,
data_config.shuffle, data_config.train_test_split,
data_config.device, data_config.composer)
# create model and diffusion
logger.info('creating model and diffusion...')
model, diffusion = create_model_and_diffusion(config)
conditioner = create_multi_conditioner(config.conditioner_config)
# create optimizer
optimizer_config: OptimizerConfig = config.optimizer_config
grad_clip = optimizer_config.grad_clip
optim = torch.optim.AdamW(params=model.parameters(),
lr=optimizer_config.lr,
betas=(optimizer_config.beta_1, optimizer_config.beta_2),
weight_decay=optimizer_config.weight_decay
)
# confirm checkpoint
latest_checkpoint_path = get_latest_checkpoint(config.save_dir)
if os.path.isfile(latest_checkpoint_path):
try:
model, optim, _, epoch_str = load_checkpoint(latest_checkpoint_path, model,
logger, optim)
global_step = (epoch_str - 1) * len(train_dl)
print('Resume learning mode')
except:
model = load_model_diffsize(latest_checkpoint_path, model)
epoch_str = 1
global_step = 0.
print('Resume learning mode')
elif config.is_fintuning:
pass
else:
epoch_str = 1
global_step = 0
print('Initial state mode')
global_step = (epoch_str - 1) * len(train_dl)
# creating scheduler
lr_scheduler = torch.optim.lr_scheduler.LinearLR(optimizer=optim, last_epoch=epoch_str - 2)
scaler = GradScaler(enabled=config.use_fp16)
if config.use_ddp:
model = DDP(model, device_ids=[rank])
curriculum_scheduler = CurriculumScheduler(config.num_epoch, config.stage_ratios)
logger.info('training...')
if rank == 0:
trainer = UnifiedMultiTaskTrainer(
config=config,
rank=rank,
epoch_str=epoch_str,
global_step=global_step,
# config=config,
model=model,
diffusion=diffusion,
conditioner=conditioner,
dls=[train_dl, valid_dl],
optimizer=optim,
lr_scheduler=lr_scheduler,
scaler=scaler,
logger=logger,
writers=[writer, writer_val],
grad_clip=grad_clip,
grad_accum_every=config.grad_accum_every,
curriculum_scheduler=curriculum_scheduler
)
else:
trainer = UnifiedMultiTaskTrainer(
config=config,
rank=rank,
model=model,
diffusion=diffusion,
conditioner=conditioner,
dls=[train_dl, None],
optimizer=optim,
lr_scheduler=lr_scheduler,
scaler=scaler,
logger=logger,
writers=[writer, None],
grad_clip=grad_clip,
grad_accum_every=config.grad_accum_every,
curriculum_scheduler=curriculum_scheduler
)
trainer.curriculum_train()
if __name__ == '__main__':
config = Config()
main(config=Config)