2019-01-26
周末arXiv网站没有更新,今天写一下老本行-visual object tracking,总结一下SiamRPN系列文章。
[0] SiamFC文章,对SINT(Siamese Instance Search for Tracking,in CVPR2016)改进,第一个提出用全卷积孪生网络结构来解决tracking问题的paper,可以视为只有一个anchor的SiamRPN
论文题目:Fully-convolutional siamese networks for object tracking
论文地址:https://arxiv.org/abs/1606.09549
项目地址:https://www.robots.ox.ac.uk/~luca/siamese-fc.html
tf实现:https://github.com/torrvision/siamfc-tf
pytorch实现:https://github.com/rafellerc/Pytorch-SiamFC
[0.1] 后面的v2版本即CFNet,用cf操作代替了correlation操作。
论文题目:End-To-End Representation Learning for Correlation Filter Based Tracking
项目地址:http://www.robots.ox.ac.uk/~luca/cfnet.html
MatConvNet实现:https://github.com/bertinetto/cfnet
SiamFC之后有诸多的改进工作,例如
[0.2] StructSiam,在跟踪中考虑Local structures
论文题目:Structured Siamese Network for Real-Time Visual Tracking
[0.3] SiamFC-tri,在Saimese跟踪网络中引入了Triplet Loss
论文题目:Triplet Loss in Siamese Network for Object Tracking
[0.4] DSiam,动态Siamese网络
论文题目:Learning Dynamic Siamese Network for Visual Object Tracking
代码地址:https://github.com/tsingqguo/DSiam
[0.5] SA-Siam,Twofold Siamese网络
论文题目:A Twofold Siamese Network for Real-Time Object Tracking
论文地址:http://openaccess.thecvf.com/content_cvpr_2018/papers/He_A_Twofold_Siamese_CVPR_2018_paper.pdf
[1] SiamRPN文章,将anchor应用在候选区域的每个位置,同时进行分类和回归,one-shot local detection。
论文题目:High Performance Visual Tracking with Siamese Region Proposal Network
论文地址:http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf
项目地址:http://bo-li.info/SiamRPN/
[2] DaSiamRPN, SiamRPN文章的follow-up,重点强调了训练过程中样本不均衡的问题,增加了正样本的种类和有语义的负样本。
论文题目:Distractor-aware Siamese Networks for Visual Object Tracking
论文地址:https://arxiv.org/abs/1808.06048
项目地址:http://bo-li.info/DaSiamRPN/
test code:https://github.com/foolwood/DaSiamRPN
[3] Cascaded SiamRPN,将若干RPN模块cascade起来,同时利用了不同layer的feature。
论文题目:Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking
论文地址:https://arxiv.org/abs/1812.06148
[4] SiamMask,在SiamRPN的结构中增加了一个mask分支,同时进行tracking和video segmentation。
论文题目:Fast Online Object Tracking and Segmentation: A Unifying Approach
论文地址:https://arxiv.org/abs/1812.05050
项目地址:http://www.robots.ox.ac.uk/~qwang/SiamMask/
[5] SiamRPN++, SiamRPN文章的follow-up,让现代网络例如ResNet在tracking中work了,基本上所有数据集都是SOTA。
论文题目:SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks
论文地址:https://arxiv.org/abs/1812.11703
项目地址:http://bo-li.info/SiamRPN++/
[6] Deeper and Wider SiamRPN,将网络加深加宽来提升性能,重点关注感受野和padding的影响。
论文题目:Deeper and Wider Siamese Networks for Real-Time Visual Tracking
论文地址:https://arxiv.org/abs/1901.01660
test code:https://gitlab.com/MSRA_NLPR/deeper_wider_siamese_trackers
2019-01-25
[1] Salient Object Detection文章
Deep Reasoning with Multi-scale Context for Salient Object Detection
论文链接:https://arxiv.org/abs/1901.08362
[2] 交通场景异常检测综述
Anomaly Detection in Road Traffic Using Visual Surveillance: A Survey
论文链接:https://arxiv.org/abs/1901.08292
[3] 3D目标检测
3D Backbone Network for 3D Object Detection
论文链接:https://arxiv.org/abs/1901.08373
[4] 语义分割文章
Application of Decision Rules for Handling Class Imbalance in Semantic Segmentation
论文链接:https://arxiv.org/abs/1901.08394
[5] 目标检测文章
Object Detection based on Region Decomposition and Assembly
论文链接:https://arxiv.org/abs/1901.08225
[6] 牛津的图卷积网络文章
Hypergraph Convolution and Hypergraph Attention
论文链接:https://arxiv.org/abs/1901.08150
2019-01-24
[1] 京东PoseTrack2018亚军方案的技术报告
A Top-down Approach to Articulated Human Pose Estimation and Tracking
论文链接:https://arxiv.org/abs/1901.07680
[2] 投稿TNNLS网络压缩文章
Towards Compact ConvNets via Structure-Sparsity Regularized Filter Pruning
论文链接:https://arxiv.org/abs/1901.07827
代码:https://github.com/ShaohuiLin/SSR
[3] 港中文&商汤 DeepFashion数据集
DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images
论文链接:https://arxiv.org/abs/1901.07973
代码:https://github.com/switchablenorms/DeepFashion2
[4]目标检测文章
Bottom-up Object Detection by Grouping Extreme and Center Points
论文链接:https://arxiv.org/abs/1901.08043
代码:https://github.com/xingyizhou/ExtremeNet
2019-01-23
[1] 商汤 COCO2018 检测任务冠军方案文章 Winning entry of COCO 2018 Challenge (object detection task)
Hybrid Task Cascade for Instance Segmentation
论文链接:https://arxiv.org/abs/1901.07518
[2] 小米用NAS做超分的技术报告
Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search
论文链接:https://arxiv.org/abs/1901.07261
[3] 目标检测文章
Consistent Optimization for Single-Shot Object Detection
论文链接:https://arxiv.org/abs/1901.06563
[4] 商汤的不均衡样本分类文章
Dynamic Curriculum Learning for Imbalanced Data Classification
论文链接:https://arxiv.org/abs/1901.06783
[5] 人脸检测文章
Improved Selective Refinement Network for Face Detection
论文链接:https://arxiv.org/abs/1901.06651
[6] 旷视的零售商品数据集
RPC: A Large-Scale Retail Product Checkout Dataset
论文链接:https://arxiv.org/abs/1901.07249
数据集:https://rpc-dataset.github.io/
[7] 人体属性识别综述
Pedestrian Attribute Recognition: A Survey
论文链接:https://arxiv.org/abs/1901.07474
项目地址:https://sites.google.com/view/ahu-pedestrianattributes/